
An Overview of Compiler Techniques for

Interprocedural Array Section Analysis

Sung-Eun Choi

Department of Computer Science and Engineering

University of Washington

Box 352350

Seattle, WA 98195-2350 USA

Technical Report 95-11-06

November 1995

Abstract

Dependence analysis of arrays is crucial in the compilation of parallel applications, as an

inaccurate summary of array usage may reduce the potential for optimizations. Standard scalar

techniques are inadequate for they do not accommodate speci�c accesses to arrays. Array section

analysis describes accesses to arrays at a �ner granularity than the scalar techniques. More

precisely, array section analysis techniques summarize a collection of accesses to a speci�c array

in a procedure. In this paper, we present a summary of existing array section analysis techniques

for interprocedural dependence analysis. We identify and compare two classes of such techniques

and give suggestions for improving the techniques.

1 Motivation

Many scienti�c research problems such as material simulation and uid dynamics model two- or

three-dimensional objects that can be mapped onto grid-like structures. These problems lend

themselves well to implementations using array data structures. The data sets for these problems

can be very large, thus requiring the use of parallelizing techniques.

However, obtaining good performance on parallelized versions of scienti�c codes is not a simple

matter. Parallelization consumes much programmer e�ort; scientists are now required to be experts

in parallel programming as well as their given disciplines. As a result, much of the research in

parallel programming focuses on ease of use and portability as well as performance. Usability

intensi�es the conict between portability and performance. Good performance is usually achieved

by exploiting speci�c hardware and hardware mechanisms, while portability can be achieved by

hiding much of the underlying architecture from the user.

Two approaches to solving the parallel programming problem exist: parallelizing compilers

and parallel programming languages. Parallelizing compilers extract parallelism from a sequential

program. Parallel programming languages introduce new concepts and constructs to allow the

programmer to express parallelism. Though parallelizing compilers and compilers for parallel lan-

guages perform somewhat distinct duties, both approaches require information about array accesses

to aid in producing high performance applications.

A substantial e�ort has been concentrated on compiler optimizations for parallel operations on

arrays. These arrays are either shared among many threads of control or distributed across many

processors such that the entire array may not be directly accessible by any one thread. Given

accurate analysis tools, a compiler can make wise decisions about the existence of parallelism, data

placement and communication. To illustrate this point, we present two examples that bene�t from

optimizations using array dependence information.

Array dependence analysis can be used to perform loop optimizations. In the following example,

the procedure ShiftVector shifts part of its one-dimensional array parameter, A, by k positions

(k � 0.) ShiftVector calls ShiftElement with parameters A, i and k, and copies the data in

A

i+k

to A

i

.

ShiftVector (A; lo; hi; k)

for i lo to hi do

ShiftElement(A; i; k)

ShiftElement (A; i; k)

A

i

= A

i+k

If at compile time, a compiler can determine that k is greater than hi� lo+1, then each call to

ShiftElement can run independently of each other and the loop can be parallelized (see Figure 1.)

In fact, even if the condition does not hold true, the loop may be unpeeled (hi � lo+ 1) � k times

and then the rest of the iterations of the loop may be run in parallel.

Dependence information for parallel arrays can also be utilized to exploit task parallelism and in

automatic data distribution. In the following example, the procedure InitializeJacobi performs

2

lo hi

Ai = Ai+k

...... ...

Figure 1: Example of data shifting. If A

i+k

never falls within the shaded region, the all the

iterations can be run simultaneously.

the initialization for the Jacobi iterations. InitializeJacobi initializes the boundaries of its array

parameter and then initializes each element of the body.

InitializeJacobi (A; ub

1

; ub

2

)

f Initialize the array A for the Jacobi Iterations g

f Initialize the boundary conditions g

InitializeRow(A; 0; ub

2

; 0:0)

InitializeRow(A; ub

1

; ub

2

; 0:5)

InitializeColumn(A; 0; ub

1

; 0:75)

InitializeColumn(A; ub

2

; ub

1

; 0:5)

f Initialize the body g

for i 1 to ub

1

� 1 do

InitializeRow(A; i; ub

1

; 1:0)

InitializeRow (A; row; ub; value)

for i 1 to ub� 1 do

A

row;i

= value

InitializeColumn (A; column; ub; value)

for i 1 to ub� 1 do

A

i;column

= value

Figure 2 illustrates the initialization of the boundary conditions. InitializeJacobi calls Ini-

tializeRow to initialize the top and bottom boundaries and InitializeColumn to initialize the

left and right boundaries. Each of these four tasks may be run in parallel since none of them

interfere with the others. Moreover, the loop that executes the initialization of the body may be

parallelized. The execution of the loop may also be considered a task, and all calls in Initialize-

Jacobi may be run simultaneously. With this knowledge, the compiler may choose to distribute

the data in such a way as to maximize processor utilization during these tasks.

Clearly, maintaining information about array access patterns across procedure boundaries is

vital to the compiler if it is to perform optimizations such as the ones suggested above. In this

paper, we investigate the issues involved in summarizing array accesses across procedure boundaries

by evaluating the existing techniques. The goals of the paper are threefold: present a set of criteria

for evaluating existing techniques, use the criteria to evaluate existing techniques, and suggest a

method for improving the accuracy of the techniques.

3

0

ub1

0
ub2

Figure 2: Initialization of boundary conditions. Light shaded areas indicate the areas modi�ed by

InitializeRow in the boundary initialization phase and the dark shaded areas are modi�ed by

InitializeColumn.

The paper is organized as follows. In Section 2, we give some background and further motivation

for the paper. In Section 3, notation and assumptions used throughout the paper are presented.

In Section 4, we introduce the criteria for evaluating summary techniques and de�ne standard and

shape-based schemes. In Section 5, we compare existing analysis techniques in the given framework.

In Section 6, the techniques are evaluated using our criteria. Finally, in Section 7, we suggest a

way to improve the existing techniques.

2 Background

An array section is the subset of array elements referred to by an access to the array in a loop

or loop nest. The loop induction variables are expected to index into the array and help describe

the section. Hence, additional information about the access may be secured from loop bounds and

stride information.

Intraprocedural dependence analysis of array sections is a well studied problem [14, 18]. Con-

sider the following:

A

f()

= : : :

: : : = A

g()

Determining whether a dependence exists from the assignment of A

f()

to the use of A

g()

requires

knowledge about the array indexing functions f and g. If f and g are a�ne in the loop induction

variables, a standard dependence test

1

can often determine whether f and g may refer to the same

location by checking for (symbolic) equality of the two equations. For references nested in loops,

many standard dependence tests use a system of linear equations that includes bounds and stride

information. If the system of equations has one or more solutions, then a dependence may exist.

Dependence is often called intersection because we are checking if the solution set of f intersects

with that of g.

1

We refer the reader to other sources for discussion of several standard dependence tests [3, 8, 14, 19].

4

Array section analysis is complicated by procedure calls. Any implementation of interprocedural

dependence analysis requires some knowledge of the array accesses made by a call to a particular

procedure. For simple scalar variables, access information can consist of as little as two bits of

information: a use bit and a mod bit. The use bit is set to true if the variable may be used

anywhere in the procedure or procedures called from within it. The mod bit is set to true if the

variable may be modi�ed anywhere in the procedure or procedures called from within it. Arrays

are actually collections of scalar variables. Summarizing accesses to arrays implies comprehending

the collection of accesses for each procedure called.

One solution to the problem of summarizing accesses in procedure calls is to use inline expansion

[10, 15]. Inline expansion simply replaces the call to a procedure with the procedure body itself.

After expansion, array accesses can be analyzed as in the intraprocedural case. Unfortunately,

inline expansion is expensive for all but very small or infrequently called procedures. In fact, even

in such cases, inline expansions can give unexpected results [6]. In particular, inlined procedures

increase code size and compile time. The procedure body is inserted at each call site and that same

code must be optimized at these call sites. The code explosion caused by inlining is particularly

expensive when the program's call graph is very deep. Furthermore, in the presence of recursion of

unknown depth or routines with unavailable source code, inline expansion is impossible.

If compile time and memory were not issues, the correct solution to summarizing array usage

would be not to summarize at all. Each reference to an array A is treated as a reference to a speci�c

scalar. For example, a reference to the i

th

element of A would be treated as a reference to a simple

scalar variable, A

i

. The following example illustrates the massive time and storage requirements of

an exact scheme.

for i 0 to 999999 do

A

i

= i

The references to A are described by a set of one million two bit values noting that every position

from 0 to 999999 is modi�ed. In addition, testing for dependence between this and any other

reference to A requires at least one million tests for intersection, one for each A

i

.

Alternatively, any part of an array accessed in a procedure could imply that the entire array is

accessed. Thus the entire array is treated as a simple scalar variable. A dependence always exists

between a summarized access and any other access to the same array. This scalar approximation

may be insu�cient due to the nature of procedures in scienti�c array codes. Procedures are often

used to perform speci�c computation on regular slices of arrays such as rows, columns, diagonals

and triangles. Approximating all accesses to an array by the entire array can limit optimization

[5].

Solutions that lie between scalar approximation and the exact method may better �t the needs

of scienti�c applications for which array optimizations are necessary. This paper focuses on four

technique that reside in this solution space.

3 Notation and Assumptions

In this section, we present our notation for identifying array accesses within a loop and state some

assumptions and simpli�cations made throughout the paper.

5

3.1 Notation

In general, an array access can be distinguished by three ordered sets, or tuples, of expressions:

array index expressions, �, loop boundary conditions, B, and loop stride expressions, �. For an

access to a d-dimensional array, A, nested in l loops, we de�ne the following:

array index expressions

For the ordered set of array index expressions �(A) = (�

1

; �

2

: : : �

d

), �

i

is the expression used

to index into the i

th

dimension of A.

loop boundary conditions

For the ordered set of loop boundary conditions B(A) = (�

1

; �

2

: : : �

l

), �

j

is the ordered pair

of expressions, (lb

j

; ub

j

), the lower and upper bounds of the loop induction variable i

j

of the

j

th

loop of the loop nest.

loop stride expressions

For the ordered set of loop stride expressions �(A) = (�

1

; �

2

: : : �

l

), �

j

is the expression

representing the stride of the j

th

loop of the loop nest with induction variable, i

j

.

An expression may contain any number of program variables, including loop induction variables and

other variables that may vary between iterations of any loop in the loop nest. We de�ne the array

access descriptor, � as the triplet, <�,B,�>. The space required to maintain � is proportional

to the size of each of its components. The size of � varies with d, the rank of the array being

summarized. The size of B and � vary with l, the number of loops in which the array access is

nested.

3.2 Assumptions

Though we make no assumption about programming language or the underlying machine architec-

ture, we particularize the following for convenience:

� The rank of an array is d and the number of loops around an access to an array is l. The

number of static references to a particular array in a particular procedure is m.

� Loops are numbered 1 to l from the outermost loop to the innermost loop. For the ordered

set of loop induction variables, I = (i

1

; i

2

: : : i

l

), each element i

j

is the loop induction variable

of the j

th

loop of the loop nest.

� Arrays are physically allocated in row-major order and are indexed from higher dimension to

lower dimension. The �rst element of a d-dimensional array A is A

0;:::;0

.

� All expressions that access a particular dimension of an array are assumed to be linear in

the loop induction variables. A non-linear index expression for a dimension is handled by

assuming dependence in that dimension.

� Only array parameters passed by reference and global array variables are relevant in interpro-

cedural array section analysis.

6

We also assume that individual accesses to array elements are easily described by any of the

techniques presented Section 5. As a result, only those accesses nested in loops are addressed.

4 Comparison Criteria

Prior to this section, use of the term summary has been somewhat imprecise. There are actually

two types of array summaries: single-site and multi-site. Single-site summaries represent access

information associated with a single reference. Multi-site summaries are the union of two or more

single-site summaries. We de�ne a simple multi-site summary as a union that is represented as

a collection of single-site summaries. Alternatively, a condensed multi-site summary is a union

of two or more summaries that is collapsed into fewer summaries. A partially condensed multi-

site summary scheme collapses any number of summaries into fewer multi-site summaries. A

completely condensed summary scheme collapses any number of summaries into a single multi-

site summary; thus the size of a completely condensed summary is independent of the number of

references summarized.

Recall that interprocedural array section analysis should increase the opportunity for optimiza-

tions while maintaining reasonable bounds on the cost in compilation time and memory require-

ments. Our comparison focuses on three aspects: summary representation, the union operation,

the intersection operation.

Any summarization technique should balance accuracy with time and space complexity, where

accuracy is determined by how close the summary is to the actual array accesses. Summary

representation balances accuracy and space; a high precision representation generally requires more

storage space. The union and intersection operations balance accuracy and time; a high precision

operation generally requires more time.

Based on the intersection operation used, we distinguish two types of array summarizing

schemes: standard and shape-based. Standard schemes can be thought of as extensions to in-

traprocedural array section analysis. Standard schemes use �, or a subset of �, to describe array

accesses and employ one of a number of standard dependence tests to determine intersection. Stan-

dard dependence tests come in two avors: exact and inexact. The exact tests determine the

existence of exact integer solutions to the equations involved in the dependence test. Exact tests

are complicated, and as a result, implementations of these tests generally handle very speci�c and

well structured loops and indexing expressions [3]. The inexact tests are less precise and are thus

su�cient but not neccessary in determining dependence. Shape-based schemes use the geometric

properties of array sections for union and intersection. The intersection operation is always exact

since the shape-based scheme uses geometric objects; the intersection of d-dimensional accesses is

the intersection of these objects in d space. We use this distinction to present the array summary

techniques in the next section.

5 Comparison of Summary Techniques

In this section we compare two standard schemes, atoms and regular sections, to two shape-based

schemes, convex hulls and simple sections. Of the two standard schemes, the atom technique

7

uses simple multi-site summary representations, while regular sections use completely condensed

representations. Both shape-based schemes use completely condensed representations (see Table 1.)

summary

representation standard shape-based

simple multi-site atom

condensed multi-site regular section convex hull

simple section

Table 1: Classi�cation of the four techniques.

We use the following example to demonstrate the advantages and limitations of each technique.

On line 1 in LowerTriangle, part of a lower triangular region, bounded by ub, of the n�n array

parameter A is written. On line 2, part of row x, bounded by ub, is also modi�ed.

LowerTriangle (A; ub)

f modify the lower triangular region, bounded by ub g

for i

1

 0 to ub by 1 do

for i

2

 0 to i

1

by 1 do

1 A

i

1

;i

2

= : : :

x =

ub

2

f modify part of row x, bounded by ub g

for i

2

 0 to ub by 1 do

2 A

x;i

2

= : : :

Figure 3 shows the exact triangle, row and combined sections written in LowerTriangle. The

array access descriptor for the triangle access is as follows:

�

1

(A) = (i

1

; i

2

)

B

1

(A) = ((0; ub); (0; i

1

))

�

1

(A) = (1; 1):

The array access descriptor for the row access is as follows:

�

2

(A) = (x; i

2

)

B

2

(A) = ((0; ub))

�

2

(A) = (1):

8

φ2

φ1

φ2

φ1

φ2

φ1

Figure 3: Array sections of A modi�ed by a call to LowerTriangle (the element A

0;0

is the upper

left corner of the array; �

1

increases downward and �

2

increases to the right.)

5.1 Standard Schemes

One reason for using a standard scheme is that standard dependence tests developed for intrapro-

cedural analysis may be directly applied to the representations. Standard dependence tests can

be interchanged for di�erent levels of accuracy and cost, and thus are treated as invariants in our

comparison.

Atoms. Li and Yew [11, 12, 13] use a data structure called an atom for single-site summaries.

The multi-site summary is simply a list of atoms; in other words, it is a simple multi-site summary.

The union operation can compose the simple multi-site summary in time linear in the number of

summaries involved in the union. Though fast and highly accurate, simple multi-site summaries

require space proportional to the number of references being summarized. Moreover, the intersec-

tion of two simple multi-site summaries requires testing for dependence between every single-site

summaries in each multi-site summary.

An atom is essentially a matrix describing the ordered sets � and B, with very few restrictions

on the expression of � and B. An expression can be any combination of the following: a constant,

a procedure invariant

2

, loop induction variable or a variable of unknown value. The rows of the

matrix are the index expressions, �, followed by the induction variables, I. The columns include

the induction variables I, a column for the constant term, c, and a column to indicate linearity. A

position in the �rst d rows of an atom is the coe�cient (or constant value, for column c) of the loop

induction variable in the index expression; a position in the last l rows of an atom is the coe�cient

(or constant value, for column c) of the loop induction variable in the loop boundary condition (see

Figures 4 and 5.) Notice that loop boundary condition expressions are not allowed to contain loop

induction variables of loops that are nested deeper that the loop for which the boundary condition

is being set (these are marked by a � in Figures 4 and 5.) The size of an atom is (d+ l)� (l + 2).

If l is assumed to be no bigger than d, then an atom's size is proportional to d

2

.

2

A procedure invariant is a variable whose value does not change after the �rst use of that variable in that

procedure.

9

Linear c i

1

i

2

�

1

Yes 0 1 0

�

2

Yes 0 0 1

i

1

� ub � �

i

2

� 0 1 �

Figure 4: Atom for the use of A in line 1 of LowerTriangle.

Linear c i

2

�

1

Yes 0 1

i

2

� ub �

Figure 5: Atom image for the use of A in line 2 of LowerTriangle.

Regular Sections. Regular sections are motivated by observing the common case. Most array

accesses do not require the expressibility o�ered by Li and Yew's atoms. Originally proposed

by Callahan [4], regular sections have undergone a few evolutionary changes. Restricted regular

sections [5] can represent accesses to rows, columns and diagonals, and their higher dimension

equivalents. Bounded regular sections [9], while disallowing the diagonal, consider bounds and

stride information. Both are completely condensed multi-site summaries.

Restricted regular sections are represented by the index expressions, �. Each expression, �

i

, is

either a constant or procedure invariant, �, or an index expression of the form �i

j

+�. Each index

position can vary over only one loop induction variable. The size of a restricted regular section

summary is O(d). The restricted regular section for the above example is as follows:

�

1

(A) = (i

1

; i

2

)

�

2

(A) = (x; i

2

)

�

1[2

(A) = (i

1

; i

2

):

The summary is obtained by the following algorithm. If the i

th

index position of both of the

sections involved in the summary is the same constant, k, then �

i

of the union is k. If �

i

is not

already part of a diagonal, then �

i

of the union is the outer-most induction variable over which

either section varies. A diagonal is identi�ed by two or more index positions that vary over the same

loop induction variable. Consequently, if the previous cases do not hold, for each index position, �

i

,

every other index position is checked to see if a diagonal exists. If the same diagonal exists in both

sections, that diagonal becomes part of the union. Notice that although diagonals are representable,

triangles are not representable since bounds information is not preserved. The ability to express

diagonal sections forces the union operation to run in O(d

2

) time. The shaded area in Figure 6

shows the restricted regular section summary of the accesses to A in LowerTriangle.

10

φ2

φ1

Figure 6: Restricted regular section summary of the accesses to A in LowerTriangle.

Unlike the restricted version, bounded regular sections exclude diagonals, yet maintain loop

bounds and stride information. Though the entire array access descriptor, �, may be needed, the

size of a bounded regular section representation is O(d), due to representation and restrictions on

the expressions. An expression may only contain constants or procedure invariants. A bounded

regular section can be represented by a single expression or a triplet, [lb

i

: ub

i

: �

i

] for each index

position. Diagonals are not describable, since the all loop induction variable information is lost in

the triplet. Triangles also cannot be accurately represented since loop bounds are not allowed to

include other loop induction variables. The bounded regular section for LowerTriangle is as

follows:

BRS

1

= ([0 : ub : 1]; [0 : ub : 1])

BRS

2

= (x; [0 : ub : 1])

BRS

1[2

= ([0 : ub : 1]; [0 : ub : 1]):

where BRS

1[2

is the bounded regular section of the union of the sections accessed in lines 1

and 2.

φ2

φ1

Figure 7: Bounded regular section summary of the accesses to A in LowerTriangle.

The union of two bounded regular sections can be obtained in d steps. The boundary conditions

of the union of two sections are obtained by calculating the minimum of the two lower bounds,

11

lb, and the maximum of the two upper bounds, ub. The stride is obtained by calculating the

greatest common divisor of the two stride expressions, s. Figure 7 shows the bounded regular

section summary of the accesses to A in LowerTriangle.

5.2 Shape-Based Schemes

Shape-based schemes exploit the geometric characteristics of the access patterns in regular scienti�c

applications. Any array can be thought of as a d-dimensional space. Array accesses often de�ne

geometric shapes in this space. While the intersection operation is exact for both techniques, the

union operations may introduce areas which are not in either section involved in the union. Both

techniques presented below are completely condensed summaries.

Convex Hulls. Triolet et al. [17] suggests using the smallest convex regions covering the array

accesses to describe the shape of the accesses. The convex hulls are described by regions and

execution contexts. A region is simply the ordered set of index expressions, �, and the execution

context is the loop boundary conditions, B. The result is a set of linear equalities and inequalities

that describe the convex hull. The union and intersection operators are implemented using solutions

from convex hull theory. A multi-site summary is a convex hull obtained by computing the union

of the convex hulls involved in the summary. The intersection operation looks for the existence of a

convex hull that satis�es both sets of linear equalities and inequalities. The union and intersection

operations are rather expensive and grow more so as the number of edges of the convex hull increases.

The system of linear equations for the triangle and row accesses in LowerTriangle are shown

below and the convex hull describing the union of the two accesses is illustrated in Figure 8.

H

1

= fi

1

� 0; i

1

� ub; i

2

� 0; i

2

� i

1

g

H

2

= fi

1

= x; i

2

� 0; i

2

� ubg

H

1[2

= fi

1

� 0; i

1

� ub; i

2

� 0; i

2

� ub; i

1

� (

x

ub

)i

2

g

φ1

φ2

Figure 8: Convex hull de�ned by the region and execution contexts in LowerTriangle.

12

Simple Sections. Balasundaram and Kennedy [1, 2] exploit the observation that accesses to

arrays usually occur in simple, mathematically describable entities. A simple section is any section

of the space that can be described by a set of simple boundaries. A simple boundary is a line, plane

or hyperplane that is either parallel to any axis, or diagonal at a 45

�

angle to any two axes. A

simple section can be described by exactly 2d

2

simple boundaries: 2d for each axis and 2� (2�

�

d

2

�

)

for each diagonal. Simple sections also maintain stride information. Notice that simple sections

are convex regions described by speci�c edges that are bounded in number.

The following are the simple boundaries for the running example and the union of the two

accesses is illustrated in Figure 9. For convenience, we have describe the two boundaries for each

axis or diagonal as a single inequality. Each of the 2d

2

boundaries are maintained, regardless of

whether the boundary contributes to the section or not. These boundaries are called redundant

and are marked with an asterisk.

SS

1

= f0 � i

1

� ub;

0 � i

2

� ub

�

;

0

�

� i

1

+ i

2

� ub+ ub

�

;

0 � i

1

� i

2

� ub

�

g

SS

2

= fx � i

1

� x;

0 � i

2

� ub;

x

�

� i

1

+ i

2

� x+ ub

�

;

x� ub

�

� i

1

� i

2

� x

�

g

SS

1[2

= f0 � i

1

� ub;

0 � i

2

� ub;

0

�

� i

1

+ i

2

� ub+ ub

�

;

x� ub � i

1

� i

2

� ub

�

g

The union of two simple sections is obtained by �nding the minimum of each lower bound and

the maximum of each upper bound for each inequality. A dependence exists if for all inequalities,

the maximum of the lower bounds is less than or equal to the minimum of the upper bounds. Both

of these operations run in time proportional to the number of simple boundaries, 2d

2

.

6 Discussion

We divide our discussion into three parts. First, we evaluate the techniques in terms of the three

comparison criteria: summary representation, union operation and intersection operation. Next,

we present a summary of all the techniques. Finally, we discuss some performance results and

examine these results.

13

φ2

φ1

Figure 9: The simple section union of the triangle and row accesses in LowerTriangle.

6.1 Comparison Criteria

In this section, we examine each of the three comparison criteria. For each subsection, the discussion

will progress from the worst to the best techniques, where the worst is the slowest or largest and

the best is the fastest or smallest.

Summary Representation. The simplest and smallest summary representation is that of the

restricted regular section. It requires space proportional to d, the rank of the array being sum-

marized. In fact, due to the restrictions on the expressions, the space requirement is cd, where c

is small. As shown in Figure 6, the lack of bounds information may make the restricted regular

section summary approximate a subarray access as an access to the entire array.

Bounded regular sections also require summary information proportional to d, though with

a larger constant, as the bounds and stride information are maintained. For LowerTriangle,

a bounded regular section results in a slightly more accurate union than that of the restricted

version. The additional cost of storing bounded regular sections pays o� when procedures work on

subsections of the array or use stride values other than one.

The bound on the size of simple section summaries is tight, since even redundant boundaries

must be maintained. Every summary requires 2d

2

simple boundaries. The representations of convex

hull summaries can be said to be minimal in that they do not contain redundant equations and

they describe the smallest convex region covering the array sections. Unfortunately, the number of

equations needed to describe a convex hull cannot be precisely bounded.

Since atoms allow an access to vary over more than one loop induction variable, their size

is proportional to l � (d + l), d + l rows and l columns. Recall that Li and Yew's scheme is a

simple multi-site summary. Simple multi-site summaries are precise and easy to construct, but are

generally not reasonable as the storage requirements and intersection operation do not scale.

Union Operation. The atom technique is the most accurate summary of the schemes presented.

The union of any number of atoms is obtained in linear time. We have already determined that the

space requirements for this multi-site summary are excessive. A constant time union which does

not check for duplicates may magnify the memory requirements. If we assume that only single-site

14

summaries are merged with multi-site summaries, the duplicate-free union operation requires m

atom comparisons, where m is the number of single-site atoms in the multi-site summary. Each

atom comparison is actually l � (d+ l) integer comparisons.

For the convex hull scheme, the union always gives the smallest single convex shape that covers

every array section. Unfortunately, this may introduce areas that are not in any section. Convex

hull operations are dependent on the number of points or inequalities involved in the operation.

Therefore, we cannot accurately bound the time for the convex hull operations in terms of d, l or

m. Triolet et al. report that their technique generally ran in O(I

2

V), where I is the number of

inequalities and V is the number of variables in those inequalities.

Simple sections are approximations to convex hulls and thus can be even less precise. Unlike

the convex hull algorithms, the bound on the union operation is tight, running in time proportional

to the number of simple boundaries, �(d

2

). Obtaining the union of two simple sections requires

comparing the upper and lower bounds of the d

2

inequalities.

Regular section representations are least accurate. The union of two bounded regular sections

runs in O(d) time. Combining restricted regular sections runs is O(d

2

), because of diagonal con-

straints. Both are guaranteed to �nd the smallest regular section describing the union, though both

may introduce areas not in either section being summarized.

Intersection Operation. For the standard schemes, the amount of information available, in

terms of �, a�ects the types of standard dependence tests employable. The implementations

of exact tests can be unrealistic, while inexact tests are less precise. Linearization [3] has been

proposed to increase the precision of standard dependence tests by ensuring simultaneity of the index

expression. For certain standard dependence tests, an dimension-by-dimension comparison may

show dependence between two references, when in fact the accesses are independent due to another

dimension's index function. Unfortunately, linearization may also introduce inaccuracies when array

references are not contiguous. Stride information may also be sacri�ced through linearization.

Since atoms carry very few restrictions on the types of expressions that can be represented, they

may make use of any standard dependence test. Unfortunately, the number of applications of the

dependence test may be unreasonable. A simple multi-site summary requires a pairwise comparison

of each single-site summary in each multi-site summary. Intersection of atoms requires O(m

1

m

2

)

applications of the intersection operator, where m

1

and m

2

are the sizes of each of the multi-site

summaries and may be unbounded. Regular sections contain less information, and thus employ

less accurate dependence tests. More importantly, since regular sections are completely condensed,

the dependence test need only be applied once.

The dependence tests for the shape-based schemes are exact for the array summaries involved.

The running times are similar to those for summary union. Again, the time for the convex hull

dependence test cannot be accurately bound, as it may depend on the types and number of accesses

involved in the summaries. The time bound on the intersection of simple sections is �(d

2

).

6.2 Summary

We have examined two types of interprocedural array summary techniques, standard and shape-

based. The standard schemes are simpler and can pro�t from dependence tests developed for

15

intraprocedural analysis. The shape-based schemes are more precise and have larger memory

requirements. Table 2 lists the schemes from most accurate to least accurate and comments on the

overall behavior of the scheme.

space time

technique accuracy requirements requirements

atom highest unbounded unbounded

convex hull unbounded unbounded

simple section quadratic in d quadratic in d

bounded

regular section linear in d linear in d

restricted

regular section lowest linear in d quadratic in d

Table 2: Summary of overall behavior of presented techniques.

Of the techniques described, the simple multi-site summary of Li and Yew's atoms is most

accurate. Despite this, we dismissed this simple multi-site summary technique, since asymptotically,

it is as expensive as performing standard scalar analysis on each array access. Of the condensed

schemes considered, Triolet's convex hull method is the next most accurate. Unfortunately, it

su�ers problems similar to the atom method, as the cost of union and intersection generally grow

with the number of accesses summarized.

Regular sections and simple sections have size and running times proportional to the rank of

an array being summarized. Asymptotically, bounded regular sections behave up to an order of

magnitude better than restricted regular sections and simple sections. Though restricted regular

sections allow diagonals, without bound information they seem to be under-speci�ed and gain little,

if any, bene�t over the bounded regular section implementation. Simple sections are elegant and

have a tight bound on their size and operations, though that bound is quadratic in d.

Table 3 shows the size and running times of the discussed schemes. The times for the intersection

operation of the standard schemes are marked with an asterisk because they only indicate the

number of times the intersection operations must be applied, not the actual time. The actual time

for the intersection operation of the standard schemes depends on the standard dependence test

used. The union and intersection operations for the convex hull scheme run in time proportional

to some function of d, l and m, denoted f

u

, for union, and f

i

, for intersection.

6.3 Observations

In papers such as this one, pinpointing the right answer is almost always dependent on speci�c

details and conditions under which certain assumptions are made (e.g. the problem type, the

programming model, the phase of the moon.) With this in mind, we will make some observations

and attempt to further evaluate the four array summarization techniques.

16

technique Type Size Union Intersection

Standard atom simple O(m� l � (d+ l)) O(m� l � (d+ l)) O(m

1

m

2

)�

restricted

regular

section condensed O(d) O(d

2

) O(1)�

bounded

regular

section condensed O(d) O(d) O(1)�

Shape-Based convex

hull condensed O(m� (d+ l)) O(f

u

(m; d; l)) O(f

i

(m; d; l))

simple

section condensed �(d

2

) �(d

2

) �(d

2

)

Table 3: Space and time requirements for each summary technique.

Bounds Parameters. Table 3 says nothing about the variables used within it. The �rst obser-

vation is that d, the rank of the array, is generally small. Expressing problems in three dimensions

or less is very natural to us because we live in a three dimension world. More concretely, Shen et

al. [16] studied array access patterns over a suite of a dozen numerical packages. They found that,

of the 18,549 array accesses in this suite, over 99% of them are to arrays of three or less dimensions.

In fact, no arrays of rank greater than �ve are ever accessed. On the other hand, m, the number of

static references to a particular array in a particular procedure, is dependent solely on the program

being compiled. Consequently, techniques whose behavior varies with d are preferred over those

whose behavior varies with m.

Experimental Results. The atoms, bounded regular sections and convex hull techniques were

each used to detect parallelizable loops in the presence of procedure calls in Linpack, a library of

linear algebra routines [7]. Of 99 loops containing procedure calls, 27 are parallelizable. The scalar

approximation technique is only able to recognize 9 of the loops as parallelizable while each of the

three techniques

3

are able to detect all 27.

The Linpack benchmark consists primarily of basic linear algebra subroutines, or BLAS. BLAS

are common in many regular scienti�c applications. The experimental results suggests that for the

type of routines in Linpack, the inexpensive and more general bounded regular section method is

su�cient for interprocedural analysis of array accesses.

Context of Work. We should also consider the context in which each technique was developed

and also the context in which each technique could be used.

The atoms, bounded regular sections and convex hull techniques are intended to alleviate the

problems presented by procedure calls within loops. The granularity of parallelism sought is at the

3

The simple section technique would certainly perform as well as the bounded regular sections, since simple

sections are bounded regular sections with diagonal constraints.

17

loop-level. Without interprocedural information, a compiler must assume the worst case. Callahan

exploited the observation that procedures in BLAS generally perform operations on rows, columns

and other easily describable shapes. Those observations proved to be correct, at least for the types

of BLAS seen in the Linpack benchmark.

Simple sections are directed at task parallelism. While an entire procedure may access regions

of an array resembling regular sections, portions of the procedure may access more oddly shaped

regions, for which simple sections are better suited.

7 Suggestions for Hybrid Representation

Simple multi-site summaries provide high precision, yet the time and space requirements are not

scalable. Completely condensed summaries alleviate the time and space demands while sacri�cing

accuracy. In this section, we suggest a method to convert a completely condensed summary scheme

into one that provides a partially condensed hybrid summary.

Creating hybrid summaries should consider three factors: accuracy of analysis, speed of analysis

and memory requirements. The accuracy of a hybrid summary is dictated by an acceptance function

that decides whether two summaries bene�t from condensation. The speed of analysis is a�ected

by the size of the hybrid summary; the number of elements in a hybrid summary determines the

number of applications of the dependence test. The memory requirements are directly related to

the size of the hybrid summary.

Partial condensation can be reduced to a graph partitioning problem. Each array section is a

node; the edges are determined by some locality function that connects nodes that may bene�t

from condensation. Each node may be weighted with section size information. Each edge can be

weighted by quantifying the bene�t from condensing two nodes. Using a general purpose graph

partitioning algorithm is not desirable since this requires precomputing the entire graph, which

can be expensive; for every array variable, we must create a complete graph of every section of

the array accessed. Consequently, we suggest a heuristic algorithm that constructs parts of the

graph dynamically as needed. We introduce the bounding box acceptance test and two partitioning

algorithms, bucket and largest-�rst. The algorithms can be applied to two completely condensed

techniques that we deemed equitable in the previous section in terms of time, space and precision:

bounded regular sections and simple sections.

7.1 Bounding Box Test

An acceptance test should not require signi�cant computation, as this decreases the speed of anal-

ysis. Also, the information required for the test should be available from the summary information.

In order to illustrate the use of the bounding box test, we use the following example. The procedure

TransposeOne performs a transpose on one column and one row of the given square matrix, A.

TransposeOne (A; lb; ub; x)

f copy the x

th

row g

for i lb to ub do

temp

i

= A

i;x

18

f copy the x

th

column into the x

th

row g

for i lb to ub do

1 A

i;x

= A

x;i

f copy the x

th

row into the x

th

column g

for i lb to ub do

2 A

x;i

= temp

i

The bounding box test calculates the area of the bounding box surrounding each of sections

and also that of the section produced by merging the two. The test compares the sum of the areas

of the two separate sections to the area of the condensed array section. If the condensed summary's

area is within some � of the summed areas, the summaries are condensed. Each bounding box

calculation can be performed in O(d) time and the entire test can be performed in O(d) time. The

bounding box calculation for TransposeOne is as follows:

bb

1

(A) = 1� (ub� lb+ 1)

bb

2

(A) = 1� (ub� lb+ 1):

bb

1[2

(A) = (ub� lb+ 1)� (ub� lb+ 1):

If � is

3

2

and (ub� lb+1)

2

is within 3(ub� lb+1), the two summaries are condensed. Since the

area of the bounding box is a single integer, it is reasonable to store the area for every summary.

7.2 Condensation Algorithms

As with the acceptance test, a condensation algorithm should attempt to maintain the asymptotic

bound on the running time of collecting condensed multi-site summary information. The union

operation for all of the completely condensed schemes is associative, and thus the completely

condensed summary can be collected incrementally in a single pass. The bucket algorithm can also

run simultaneously with the computation of the single-site summaries. The largest-�rst algorithm

requires a preprocessing pass.

For each array variable, the bucket algorithm maintains a set of b partitions called buckets.

Each bucket contains a completely condensed multi-site summary, and together, these buckets

form a partially condensed summary. For each single-site summary visited, the bounding box test

is applied to that single-site summary and each bucket. If the test succeeds for only one of the

buckets, the single-site summary is added to that bucket, and the new multi-site summary for that

bucket is computed. If the test fails for every bucket and the number of buckets is less than b, that

single-site summary is placed in a new bucket. If the test fails for every bucket and the number of

buckets is equal to b, we must force it into a bucket. The single-site summary should be placed into

the bucket for which the bounding box test was closest to succeeding. If the test returns positively

for more than one bucket, the single-site summary is added to the bucket that would produce the

smallest bounding box area. After the entire procedure is analyzed, the set of buckets become the

partially condensed summary.

19

The largest-�rst algorithm also maintains b buckets, but the buckets are not �lled until all of the

single-site bounding box areas have been collected. The �rst pass saves and sorts the summaries by

the area of the bounding box around each access. If the number of single-site summaries is less than

some small number, s � b, the summaries are kept as single-site summaries. As an optimization, if

any of the single-site summaries completely cover any another, these summaries can be condensed.

Otherwise, the original bucket algorithm is run using the sorted list. The larger sections ensure that

an unlucky ordering does not place in separate buckets two or more smaller sections that would

bene�t from being condensed with a larger section.

7.3 Performance Evaluation

The following example is used to demonstrate the bucket algorithm. SplitTranspose performs a

single transpose on row x

1

for the square sub array of A starting at A

0;0

and ending with A

s;s

, and

on row x

2

for the square sub array of A starting at A

s+1;s+1

and ending with A

ub;ub

(see Figure 10.)

SplitTranspose (A; x

1

; s; x

2

; ub)

f Perform a single transpose on the sub array of A starting at 0 bounded by s g

TransposeOne(A; 0; s; x

1

)

f Perform a single transpose on the sub array of A starting at s+ 1 bounded by ub g

TransposeOne(A; s+ 1; ub; x

2

)

The following assumptions are made. First, the number of buckets, b, is three. Next, the

splitter, s, divides either dimension of A into unequal parts and the part from 0 to s is larger than

the part from s+1 to ub. Next, � should be small enough so that the bounding box test always fails.

The bucket algorithm has left the accesses in TransposeOne uncompressed and we have already

bound the summary information in TransposeOne to the environment of SplitTranspose.

φ1

φ2

x1

x1

x2

x2

s

s

Figure 10: Array sections modi�ed by the procedure SplitTranspose. The dark outlines indicate

the partial condensation achieved by the bucket algorithm with bucket size three.

The bucket algorithm processes the following summaries this order: (a) elements 0 to s in row

x

1

, (b) elements 0 to s in column x

1

, (c) elements s + 1 to ub in row x

2

, and (d) elements s + 1

to ub in column x

2

. The summaries (a), (b) and (c) immediately �ll the three buckets, since they

20

fail the bounding box test. Summary (d) also fails, but is forced into the same bucket as (c) since

the bounding box around these two accesses is smaller than that of (d) and any other bucket. The

partially condensed summary is shown by the dark outlines in Figure 10. Notice that the bucket

algorithm is fairly sensitive to b and �. If we had chosen b = 2, due to the order in which the

summaries were seen, one bucket would contain (a) and (c) and the other would contain (b) and

(d). Even with b = 2, a larger � could have placed (a) and (b) to the same partition and (c) and

(d) into the same partition. This actually points to a problem with the largest-�rst algorithm.

The algorithm produces a partition that is as bad as the normal bucket algorithm for groups of

elements of nearly the same size. We may want to embed some locality information in our list by

using ranges instead of discrete sizes and then ordering the elements of the ranges by some locality

metric. Using a locality metric slows down the preprocessing step by the cost of obtaining locality

information. Alternatively, all elements of nearly the same size may be considered together. This

may increase the time for a single step of the algorithm by a factor of

(b�1+m)!

(b�1)!m!

, if all possible

permutations are considered. Both of the two methods increase the running time of the bucket

algorithm by more than a constant factor and are not discussed further here.

Limiting the number of buckets to b maintains the asymptotic bound on the running time of

the dependence test; an unbounded bucket algorithm may result in a simple multi-site summary.

Moreover, b bounds the running time of the partial condensation. A complete condensation takes

m total applications of the union operation per array variable, where m is the number of accesses

to that array. The bucket algorithm requires at most m union operations and m � b applications

of the acceptance test. Since b is a constant, the cost of each union operation increases by at most

O(d), the price of the acceptance test.

The bucket algorithm su�ers from an ordering problem: collection of summary information is

no longer associative. The order in which each of the accesses is visited determines the partition

of the summaries. Though the accuracy of such a partially condensed summary is never worse

than that of the completely condensed summary, a poor partition increases the running time of the

dependence test by up to a factor of b

2

.

Largest-�rst is a two-pass algorithm that corrects the associativity problem by preprocessing.

Each step of the �rst pass runs in time proportional to the cost of the bounding box calculation,

O(d), plus insertion into the sorted list O(logm

ave

), where m

ave

is the average number of elements

in the list. The running time of the new pass is the same as for the bucket algorithm. E�ectively,

the cost of each union operation is increased by O(d+ logm

ave

).

Recall that we expect d to be not much more than three. With this consideration, the bucket al-

gorithm's asymptotic behavior is the same as for complete condensation. Unfortunately, we cannot

boundm

ave

, and thus the largest-�rst algorithm always behaves worse than complete condensation.

One thing that can be said about m

ave

is that it is not necessarily a function of program size. A

larger program may imply an increase in the number of procedures, but it does not necessarily

imply an increase in the size of those procedures. Since m

ave

grows logarithmically, the largest-�rst

algorithm seems reasonable.

In summary, partial condensation can be viewed as a graph partitioning problem. Since the

graph describing the array sections and their locality is expensive to compute, we have introduced

two partitioning algorithms that create the graph dynamically. The bucket algorithm increases

the running time of the collection of summary information by O(d). The largest-�rst algorithm

21

requires a preprocessing pass and increases the running time by O(d+ logm

ave

). The parameters

b and � enable tuning of accuracy and performance. Neither hybrid summary is less accurate than

a completely condensed summary, but the number of applications of the dependence test needed

may increase by a factor of b

2

.

8 Conclusions

Compiler techniques for interprocedural array section analysis enable optimizations that bene�t par-

allel scienti�c codes. Both compiler-guided and programmer-guided parallelization take advantage

of information gathered about array accesses across procedure boundaries. We have identi�ed two

types of interprocedural array section summary techniques, standard and shape-based. While the

shape-based schemes cleverly exploit the geometric properties of array accesses and are usually more

accurate, the standard schemes can leverage dependence tests developed for intraprocedural analy-

sis. We also noticed that while completely condensed multi-site summaries add inaccuracies, simple

multi-site summaries are unreasonable due to their time and space requirements. Consequently, a

hybrid summary representation, obtained through partial condensation, may be desirable.

The technique of choice depends on the behavior of the program being analyzed and the type

of parallelism sought. While the type of parallelism sought is often a decision of the compiler, the

program clearly is not. As is true in most large systems, when the compiler techniques improve,

the style of programming changes. Fortunately, two of the techniques discussed (bounded regular

sections and simple sections) exploit the common cases that are very natural to the programmer,

namely rows, columns, diagonals and their higher dimensional equivalents. Encouraging the pro-

grammer to use this model for programming by employing these analysis techniques would inspire

either a change for the better or no change at all in programming style.

Acknowledgements. Many thanks go out to Craig Chambers, Susan Eggers, Burton Smith and

Larry Snyder for their (repeated) careful readings of this paper and the lessons learned from them.

References

[1] V. Balasundaram. A mechanism for keeping useful internal information in parallel program-

ming tools: The data access descriptor. Journal of Parallel and Distributed Computing, 9:154{

170, 1990.

[2] V. Balasundaram and K. Kennedy. A technique for summarizing data access and its use in

parallelism enhancing transformations. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 41{53, June 1989.

[3] M. Burke and R. Cytron. Interprocedural dependence analysis and parallelization. In Pro-

ceedings of the ACM SIGPLAN Symposium on Compiler Construction, pages 162{175, June

1986.

[4] D. Callahan. A Global Approach to Detection of Parallelism. PhD thesis, Rice University,

March 1987.

22

[5] D. Callahan and K. Kennedy. Analysis of interprocedural side e�ects in a parallel programming

environment. Journal of Parallel and Distributed Computing, 5(5):517{550, 1988.

[6] K. D. Cooper, M. W. Hall, and L. Torczon. Unexpected side e�ects of inline substitution: A

case study. ACM Letters on Programming Languages and Systems, 1(1):22{32, March 1992.

[7] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK: user's guide. SIAM

Publications, Philadelphia, Pennsylvania, 1979.

[8] G. Go�, K. Kennedy, and C.-W. Tseng. Practical dependence testing. In Proceedings of

the ACM SIGPLAN Conference on Programming Language Design and Implementation, vol-

ume 26, pages 15{29, June 1991.

[9] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section

analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3), July 1991.

[10] C. A. Huson. An in-line subroutine expander for parafrase. Master's thesis, University of

Illinois at Urbana-Champaign, January 1983.

[11] Z. Li and P.-C. Yew. E�cient interprocedural analysis for program parallelization and restruc-

turing. In Proceedings of ACM SIGPLAN Symposium on Parallel Programming: Experience

with Applications, Languages, and Systems, pages 85{99, July 1988.

[12] Z. Li and P.-C. Yew. Interprocedural analysis and program restructuring for parallel progams.

Technical Report CSRD Report No. 720, University of Illinois at Urbana-Champaign, Urbana,

Illinois, January 1988.

[13] Z. Li and P.-C. Yew. Interprocedural analysis for parallel computing. In Proceedings of the

International Conference on Parallel Processing, volume 2, pages 221{228, August 1988.

[14] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for supercomputers. Com-

munications of the ACM, 29(12):1184{1201, December 1986.

[15] R. W. Scheier. An analysis of inline substitution for a structured programming language.

Communications of the ACM, 20(9):647{654, September 1977.

[16] Z. Shen, Z. Li, and P.-C. Yew. An empirical study on array subscripts and data dependencies.

In Proceedings of the International Conference on Parallel Processing, pages 145{152, August

1989.

[17] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of call statements. In Proceedings

of the ACM SIGPLAN Symposium on Compiler Construction, pages 176{185, June 1986.

[18] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis, University of Illinois

at Urbana-Champaign, October 1982.

[19] A. Yazici and T. Terzio�gul. A comparison of data dependence analysis tests. Parallel Computing

and Transputer Applications, 1:575{583, September 1992.

23

