
On the Performance of a Bus-based Multiprocessor

Cluster Architecture

�

Craig Anderson and Jean-Loup Baer

Department of Computer Science and Engineering

Box 352350

University of Washington

Seattle, WA 98195-2350

fcraig, baerg@cs.washington.edu

TR UW-CSE-95-12-01

December 4, 1995

Abstract

The focus of this paper is on the evaluation of a hierarchical cluster architecture

where a cluster consists of a single bus shared-memory multiprocessor and where the

interconnect is a tree hierarchy of busses.

We �rst outline a cache coherence protocol for a UMA architecture. We then in-

troduce a variation of the protocol for sector caches where the coherence and transfer

units are not the same. We evaluate, through cycle by cycle simulation, the UMA ar-

chitecture under these two protocols. We simulate six benchmarks with varied memory

access patterns and show that the clustering concept is bene�cial as long as architec-

tures are balanced. The subblock protocol works well and is more stable than protocols

with �xed block size that can behave very well on some applications and very poorly

on others.

In the second part of the paper, we modify the UMA architecture into a NUMA

architecture. We discuss several ways to perform memory allocation in this new con-

text. We test some of these allocations on two of the benchmarks and report that

improvements are largest when the memory allocation does not induce much extra

computations and when architectures are balanced.

�

This work was supported in part by NSF Grants CCR-94-01689, CCR-91-23308 and by Apple Computer,

Inc.

1

1 Introduction

In order to meet the needs of computationally intensive applications, shared-memory pro-

cessors must be scalable. The single shared-bus architecture that has been so successful in

the 1980's cannot meet the bandwidth requirements of current and future large applications.

One architecture that has been proposed is based on clusters of processors connected via

some interconnection network. Table 1 summarizes variations on this basic scheme. In this

paper, the focus is on the evaluation of a hierarchical cluster architecture, where a cluster

consists of a single bus shared-memory multiprocessor, i.e., processors with private level 1

caches and a shared level 2 cache, and where the interconnect is a tree hierarchy of busses.

Table 1: Hierarchical Systems

Architecture

Feature Wilson DDM KSR Stanford Galactica Convex Hector

DASH Net Exemplar

Cluster Bus Bus Ring Bus Bus 5X5 Bus

Inter- Crossbar

connect

Top Tree Tree Tree Mesh Mesh Four Two

Inter- of of of Rings Level

connect Busses Busses Rings Ring

Cluster Snoopy Snoopy Snoopy Snoopy Snoopy Directory Snoopy

Cache

Coherence

Top Snoopy Snoopy Snoopy Direc- Hybrid SCI None

Cache tory

Coherence

Cluster Yes Dir.y Dir.y Yes Yesz Yes No

Cache?

Inclusion? Yes Yes Yes No N/A Yes N/A

Memory UMA COMA COMA NUMA NUMA NUMA NUMA

Organi-

zation

Reference [Wil87] [HLH92] [FIR93] [LLJ

+

92] [WTP

+

92] [Con94] [VSLW91]

yDir.: Only directory entries are cached, not data.

zEach cluster shares a portion of main memory, which can be used as a cache of other clusters'

pages.

Several factors impact the scalability of this type of architecture. In a hierarchical setting,

it is important to be able to determine the proper number of processors sharing a common

bus in a cluster, and the number of clusters that may share an inter-cluster bus before

that bus becomes saturated. As a corollary, any artifact that reduces the communication

2

overhead caused by cache coherence will be welcomed since it will postpone reaching the

saturation points of the various busses. Another critical aspect is that the shared-memory

programming paradigm must recognize the e�ects of non-uniform memory latency. In the

context of a hierarchical bus based multiprocessor system, this implies the e�cient scheduling

and compilation of parallel programs, and means to selectively control the placement and

caching of shared data.

We start this paper (Section 2) by introducing the base architecture, a Uniform Memory

Access (UMA) system, then continue by outlining a simple (but not simplistic) snoopy-based

cache coherence protocol, and terminate this section by describing our evaluation method-

ology. In Section 3, we propose improvements on the coherence protocol using subblocks as

units for coherence. These improvements have been proven e�ective in non-hierarchical sys-

tems and we evaluate them, with appropriate modi�cations, in this new context. In Section

4, we modify the UMA architecture by placing memory at the cluster level. This NUMA

architectural variation is evaluated with di�erent memory allocation procedures. Finally, in

Section 5, we summarize our �ndings on the e�ectiveness of cluster architectures.

2 Base Architecture and Protocol

2.1 Base Architecture

Memory

Bus cache Bus cache

Pcache Pcache Pcache Pcache Pcache Pcache

P P P P P P

Level 1 bus Level 1 bus

Level 2 bus

Figure 1: Base (UMA) Machine Architecture

The base architecture is built on a hierarchy of busses as shown in Figure 1. Although the

�gure and the remainder of the paper limit themselves to two levels, the basic protocol that

we developed works on a machine that may have from two to an arbitrarily high number of

levels.

3

At the bottom of the hierarchy (level 0) are processors along with their caches. The

processors are grouped into clusters of some number of processors per cluster, typically two

to eight. Each processor cache has a dual directory which permits simultaneous processor

access and cache coherence checks initiated by bus requests. The intra-cluster processors

are connected to one another via a conventional bus, which we call the level 1 bus. Also

connected to the intra-cluster bus is an intra-cluster cache/bus connector, or bus cache.

This component both connects each level 1 bus to the corresponding level 2 bus, and also

caches data for the processors in the cluster below it. To reduce bus tra�c, all caches in the

system are write back caches. Bus caches satisfy the inclusion property, that is, each cache

at a given level contains a superset of the contents of the caches below it in the hierarchy

[BW88]. Inclusion is guaranteed through the actions of the protocol, as in [Wil87]. When a

bus cache replaces a block, it sends a message down that forces all processor caches below it

to invalidate the block.

Each bus cache has a dual directory so that operations on both busses it is connected

to can proceed in parallel. Each bus cache also has a number of bus request bu�ers that

hold both bus requests that have been enqueued waiting for access to either bus, as well as

information about read/write/swap operations in progress that are being acted on in other

parts of the system.

At the top of the hierarchy is memory. Like in single bus snoopy protocols, blocks found

in memory have no state. Requests for blocks that are not found in any cache progress up

the hierarchy until they reach the top, where they are satis�ed by main memory.

2.2 Overview of the base protocol

The base protocol is designed to minimize response time and bus tra�c, especially at the

higher levels of the hierarchy. To do this, requests are satis�ed as close as possible to the

requesting processor. The protocol will attempt to satisfy a request using caches at the same

level as that as that of the requester; the request is forwarded to higher levels only when

necessary. In some cases, a request may need to travel up the hierarchy, then back down to

another branch of the tree; the reply retraces the same path back to the request originator.

In addition, lines are written back only to the next higher level of the hierarchy. Only when

a cache at the top the hierarchy writes a line back does the line migrate to memory.

The processor level protocol most closely resembles the Illinois protocol with INVALID,

VALID EXCLUSIVE, READ SHARED, and DIRTY cache block states. There are also

transitional states that are needed for the correctness of the protocol (see below).

The blocks in the bus caches are in one of the �ve following states (with, of course,

the possibility that they are in transitional states; see [And95] for a complete protocol

description):

� INVALID: The block is not present in or below the cache.

� READ SHARED: The block is present in the cache in a clean state and may exist

elsewhere in the system in a clean state.

4

� VALID EXCLUSIVE: The block is present in the cache, but is not guaranteed to be

up-to-date. The block may exist below this cache in a dirty or clean state.

� DIRTY SHARED: The block is present in the cache and is dirty with respect to

memory. This cache is responsible for writing the value back to memory. In addition,

the block may exist lower in the hierarchy in READ SHARED state only.

� DIRTY OWNED: The block is present in the cache, is dirty with respect to memory,

and is the only cached copy in the system.

Having di�erent states for non-processor caches is usual for hierarchical architectures

[Wil87], [YTB92]. The introduction of the DIRTY SHARED state is motivated by its e�ect

of reducing level 1 tra�c in inter-cluster requests.

Bus requests are generated by processor actions (read, write, swap) and cache states. In

addition to the usual single-bus multiprocessor transactions, there is a need for transactions

traveling \down" the hierarchy in the case of inter-cluster transfers and for maintaining

inclusion (e.g., purge transactions).

When a request misses in a processor cache, the processor is forced to wait until the

request is satis�ed. The processor's cache allocates a block for the data (if necessary) and

enqueues the appropriate bus request.

Because con
icting request can be generated \at the same time" by di�erent processors,

and because there is no implicit serialization device such as the bus in a single-bus system, it

is possible that a request generated by a miss will fail. If the request succeeds, the processor

is restarted; otherwise the processor will wait a �xed amount of time after the failed request

has been returned to it, then retry the request (we experimented with an Ethernet-like

back-o� policy but it did not present obvious advantages).

In addition to the above states, the protocol uses transition states to inhibit additional

requests for a block when the state of the block is in
ux. This helps to greatly reduce the

complexity of the state space of a given block. For example, suppose a processor wishes to

write to a given block which is not in its cache (call it cache X). The block exists in a cache

(call it cache Y) in another cluster in state DIRTY. To obtain the block, cache X must send

a request which propagates up and then back down the hierarchy to cache Y. Assuming the

request succeeds, the up-to-date value of the cache block won't be found in any cache until

the reply has reached cache X. Because of this, all other requests for this block must be

canceled and retried until the block is in a stable state in cache X. This is done by allocating

a block (if necessary) on each cache on the path from X to Y and assigning a transitional

state to that block. Then, when under the normal cache snoop mechanism a cache detects a

request on the bus(es) it is attached to that matches a block in a transition state, it signals

that the request should be canceled. The request is then sent back to the originator, which

will try the request again after waiting a period of time.

Occasionally, a request from a cache's upper bus and another request from its lower bus

will attempt to access the same cache block on the same cycle. When this occurs, the request

from the lower bus will be delayed until the request from the upper bus has been processed.

5

The reason that the request on the upper cache is given preference is that it is likely that

the upper request has traveled further than the lower request, hence making it wait for the

lower request will likely force the upper request (rather than the lower) to be retried. This

is a more expensive operation than retrying the lower request.

In a similar vein, two (or more) con
icting block requests may exist waiting for access to

the same bus at the same time. If all the con
icting requests are in lower cache bus bu�ers,

then the �rst request to obtain the bus has priority over all other requests. However, any

upper cache bus request has priority over any lower cache bus request, for the same reason

given above that an upper bus transaction has priority over a lower bus transaction if they

access the same block on the same cycle.

2.3 Evaluation methodology

Our architectural evaluations are performed on a cycle by cycle execution driven simulator,

a modi�cation of Cerberus [BAD89, AB93]. The processor module simulates (at a crude

level) the pipeline delays of a RISC processor. All instruction references and all private

data references are assumed to hit in the processor cache with no additional delay. Shared

references that hit in the simulated cache and require no further action by the memory

system also require a single cycle to �nish.

All busses in our simulations are 64 bits wide and split-transaction on non cache-to-

cache transactions. Arbitration for bus access is done on a round-robin basis, and requires

one cycle. We assume the bus has separate address lines so that addressing information may

be transmitted at the same time as data for the same transaction.

In the baseline architecture, the processor caches (for shared data) were 8K bytes, 2-way

set-associative and had either an 8 byte or a 64 byte block size. Bus caches were either 32K

or 128K bytes, 4-way set associative and had the same block size as the processor caches. If

a shared reference requires the use of the memory system, the delays are 6 cycles plus one

cycle per 8 bytes for a hit in the bus cache (latency of 14 cycles for a 64 byte block). If the

reference misses in the processor and bus caches, the delays are 20 cycles plus two cycles

(one for the upper and one for the lower bus) per 8 bytes for a memory access (latency of

36 cycles for a 64 byte block). These �gures assume no contention on the busses.

We used 6 applications to test and evaluate the proposed designs. We chose these bench-

marks because together they exhibit a wide variety of reference patterns. In all cases, we

gathered statistics only for the parallel section of the program.

The Gauss { a gaussian elimination program without pivoting [Dar88]{ and Cholesky {

sparse matrix factorization from the SPLASH suite [SWG92] { benchmarks both have good

spatial locality and exhibit high hit rates. MP3D { a 3-dimensional molecule simulator also

from the SPLASH suite { exhibits a great deal of true sharing, and was written to avoid

false sharing. Both the Topopt { topological optimization on VLSI circuits using a parallel

simulated annealing algorithm [DN87] { and Pverify { a veri�cation program which compares

two circuits and reports if they are functionally equivalent [Egg89] [MDWS87] { applications

exhibit both true and false sharing, even using moderate block sizes. Lastly, the Barnes

6

application { another of member the SPLASH suite simulating the e�ect of gravity on a

system of bodies { does relatively few shared accesses.

3 Evaluation of the UMA architecture

In this section, we evaluate the e�ectiveness of the UMA hierarchical architecture. This

evaluation is done under two protocols: (1) the base protocol of the previous section, and

(2) a protocol that, in general terms, uses a large block size (64 bytes) for read transfers

and a subblock size (8 bytes) as a unit for coherence. The motivation for the second set of

experiments is that the subblock protocol was found to be successful when applied within a

cluster [AB95]. We �rst describe brie
y this second protocol.

3.1 Subblock protocol for two level architecture

The subblock protocol is intended to work with sector caches where blocks are subdivided

into subblocks (in our case, blocks of 64 bytes are divided into 8 subblocks of 8 bytes each).

In the sector caches, both blocks and subblocks have states.

At the intra-cluster level the protocol is similar to the one described in [AB95]. There

are 4 block states and 4 subblock states. Cache to cache transfers are favored. On read

misses, as many valid subblocks in the block as possible are transferred. On writes to clean

subblocks and write misses, only the subblock to be written is invalidated. The motivation

is to avoid false-sharing as much as possible.

When expanding the single bus subblock protocol to a hierarchy of busses, we strove to

make a minimal amount of changes to the single bus protocol in order for it to work at the

cluster level in a hierarchical system. At the same time, we based the upper level subblock

protocol on the \standard" hierarchical protocol given in the previous section. Unlike the

lower level protocol, the block state in a bus cache (INVALID, CLEAN SHARED or DIRTY

SHARED) merely describes what type of subblocks may be found in the block. The block

state makes it simpler to preferentially replace blocks that will not require a write back.

Given an unlimited number of state bits, we would have chosen to use 5 subblock states,

corresponding to the 5 upper level states in the standard hierarchical protocol. Concerns

about the number of state bits required forced us to discard a state. Of the �ve states,

the choice came down to discarding either the DIRTY OWNED or DIRTY SHARED state.

Because upper bus bandwidth is usually the bottleneck in hierarchical bus systems, it should

be saved in preference to saving lower bus bandwidth. Hence, we decided to discard the

DIRTY SHARED subblock state. A complete protocol description for both levels can be

found in [And95].

3.2 Evaluation of the UMA architecture

We simulated ten di�erent combinations of processors and clusters, ranging in size (and

cost) from the 2 clusters of 2 processors (2X2) con�guration to the 8 clusters of 4 processors

7

con�guration. Two of the organizations (2X8 and 2X16) are unbalanced because they have

many processors per cluster and few (i.e., 2) clusters. Not only must the cluster bus support

the tra�c of 8 or even 16 processors, but also the processors will su�er more cache misses

when the sum of the sizes of the processor caches approaches or exceeds (in the 32K bus

case) the size of the bus cache, possibly causing many forced replacements as the bus cache

maintains inclusion. Nevertheless, we still include those con�gurations in our results.

In the following paragraphs, we give detailed results for the six benchmarks we studied.

For those applications for which results are plotted, we present the ten con�gurations from

left to right in order of increasing number of processors; and for a given number of processors,

in increasing number of clusters. In the legend, the bars are labeled with the block size (8b

and 64b for the standard hierarchical protocol with small { 8 bytes { and large { 64 bytes {

block sizes and Sb for the subblock protocol; we also call these protocols 8b, 64b, and Sb).

All �gures are con�gurations with 128KB bus caches and speed-up is versus a one processor

con�guration with an 8 byte size block and 128KB bus cache (in that case a second level

cache).

Barnes The Barnes application sped up well on the cluster architecture, achieving near-

linear speedup up to 16 processors, and a speedup of about 27 using 32 processors. Because

of Barnes' small data set, there was little di�erence between using the small or large bus

cache. And since Barnes did comparatively few shared references, varying the block size had

only a minor e�ect on overall performance. Using the small block size did have a slight (up

to 5 percentage points) advantage over using the large block size, particularly when 16 or

32 processors were used. When we examined the statistics for the number of times a bus

transaction had to be retried, we found that the number of retried bus transactions was

relatively large when a large number of processors were used. This was especially true in the

64 byte blocks case.

Running the subblock protocol had very little e�ect on program performance. In some

cases, using the Sb-protocol increased performance by 1{2%, while in others it had the same

speedup as the 8b-protocol.

Gauss Gauss performs best when using a large block size because of its spatial locality.

This is quite evident from Figure 2. Though the speedup for the 8b-protocol didn't get

much above 10 for any con�guration, the 64b-protocol achieved excellent speedup on nearly

all con�gurations; in some cases, an apparent superlinear speedup was obtained because the

additional processors and bus caches could hold more of the working set, and because the

single processor used for the comparison has an 8 byte line size. Not surprisingly, those

con�gurations that had more clusters had better speedups than those with few clusters,

though the di�erences were small except for the 2X16 con�guration. In that case, the lower

bus had a high utilization rate which led to a drop-o� in performance.

The reason for the 64b-protocol's superior performance is that it used far fewer transac-

tions, about 85% less, to move data around. The number of bytes transferred on the upper

bus was slightly larger, from 10 to 15% depending on the con�gurations, indicating that most

8

Machine configuration (# of clusters X size of cluster)

2X2

S
pe

ed
up

 v
s.

 1
 p

ro
ce

ss
or

8b 64b Sb

10

20

30

2X4 4X2 2X8 8X24X4 6X4 2X16 4X8 8X4

Figure 2: UMA architecture { Gauss speedups

of the data transferred in each 64 byte block was needed (sooner or later) by the processor,

and that false sharing was not a problem.

The Sb-protocol performed quite well on Gauss. For all con�gurations and both sizes of

bus cache, the subblock protocol equaled or slightly exceeded the already excellent perfor-

mance of the 64b-protocol. The lone exception to this was the (unbalanced) 2X16, 128K

bus cache organization where performance dropped by 1%. Like the case with single bus

machines [AB95], the subblock protocol's policy of using large transfers worked well in appli-

cations (like Gauss) with good spatial locality. The number of upper bus transfers under the

Sb-protocol was nearly identical to the number used by the 64b-protocol, and the number

of upper bus bytes transferred was less.

Cholesky Like Gauss, Cholesky performs best when using a large block size. Unlike Gauss,

Cholesky did not achieve near linear speedup because of the limited size of the input matrix

that restricts available concurrency [SWG92]. Maximum speedup of about 17.5 was obtained

using the 64 byte block size and 32 processors (in the 8X4 or 4X8 organizations) and 128K

bus cache size. The advantage of using the 64b-protocol over the 8b-protocol was 12{30%

for large bus caches and much more for small bus caches. Generally, the di�erences were

largest when there were more bus transactions, either because of small bus caches or larger

numbers of processors. The improved performance was due to the reduced number of bus

transactions needed by the 64b-protocol. The reduction was of the order of 80% on both

upper and lower busses. Using the large block size reduced the total number of transactions

9

Machine configuration (# of clusters X size of cluster)

S
pe

ed
up

 v
s.

 1
 p

ro
ce

ss
or

8b 64b Sb

2X2 2X4

10

15

5

4X2 2X8 4X4 8X2 6X4 2X16 4X8 8X4

Figure 3: UMA architecture { MP3D speedups

on the lower busses as well.

The performance of the subblock protocol was better than that of the 8b-protocol (up

to 15% for balanced con�gurations with a large number of processors) but not as good as

that of the 64b-protocol (by about 15 to 25% in the same conditions). This is not a surprise,

given the subblock protocol's performance on Cholesky was closer to the 8b than the 64b-

protocol when using a single bus [AB95]. This stems from the nature of Cholesky's data

access pattern to the main data structure.

MP3D MP3D performed best when using a 64 byte block size. Speedups reached a max-

imum of about 10 under the 8b-protocol and about 15 under the 64b-protocol. (cf. Figure

3). MP3D's medium speedup is largely due to a great deal of true sharing. The sharing

caused a large amount of tra�c on the upper bus, which was saturated when using 16 or

more processors. For all but the 2X8 and 2X16 con�gurations, the upper bus was saturated

before the cluster busses were saturated.

The reason for the di�erence in performance caused by increasing the block size from 8

bytes to 64 bytes is again due to the reduction in bus transactions on both upper and lower

level busses. The gain in performance caused by this reduction was partially o�set by a

larger number of bytes transferred, sometimes as much as 2.7 times on the upper bus and

3.2 times on the cluster bus.

As in Cholesky, the performance of the Sb-protocol was in between those of the other

two protocols. In contrast with Cholesky, though, the performance was much closer to that

10

Machine configuration (# of clusters X size of cluster)

8b 64b Sb

2X2 2X4

25

20

S
pe

ed
up

 v
s.

 1
 p

ro
ce

ss
or

10

4X42X84X2 8X2 6X4 8X42X16 4X8

Figure 4: UMA architecture { Topopt speedups

of the best protocol.

Topopt Topopt exhibits both true and false sharing. Thus, unlike the 3 previous applica-

tions, the best speedups are obtained under the 8b-protocol (cf. Figure 4). Since Topopt has

a small working set size, speedups were similar for the small and large bus caches. Under

the 8b-protocol and with large bus caches, the speedups were 7.8 for 8 processors, 12.7 for

16 processors, and 21{25 for 32 processors depending on the cluster con�gurations.

The e�ects of false sharing were noticeable by the fact that bus transactions (both read

and invalidate) in the 64b-protocol increased by a factor of 1.5 to 2.1 over the 8b-protocol.

The di�erences between the 2 protocols in terms of the number of transactions increased

as the number of clusters increased. This is to be expected, since more of the false sharing

tra�c must cross the top interconnect when more clusters are used.

Since every read transaction using 64 byte blocks transfers 8 times as much data as when

8 bytes blocks are used, between 11 and 15 times more data was transferred on the upper

bus in the 64b-protocol. Again, the disparities between the two protocols increased as the

number of clusters was increased (keeping the number of processors constant). Because the

subblock protocol (which does not su�er from false sharing) also transferred many times

the data that the 8b-protocol did, part of the large increase in data transferred in the 64b-

protocol was due to the fact that many of the additional words transferred with the requested

word(s) were not used by the processor.

The performance of the Sb-protocol was very close to that of the 8b-protocol except when

11

the con�gurations were unbalanced (e.g., 2X16). Conversely, in balanced con�gurations, the

Sb-protocol was very close to 8b or even better (8X4).

Pverify Since there is a large amount of false sharing in Pverify, we expected that like

in Topopt the 8b-protocol would perform best. With large bus caches, the working set of

the application was in-cache and hence good speedups (up to 28 for 32 processors) were

attained. Speedups with the 64b-protocol were much more modest (speedup of 8 only for

32 processors) and the di�erence between the two protocols got wider as the number of

processors increased causing saturation for the 64 byte block size on both the upper and

lower busses.

The Sb-protocol performance was close, but inferior, to that of the 8b-protocol when

the number of processors was limited. As soon as the number of processors attached to a

cluster, or the number of clusters increased, the performance of the Sb-protocol dropped o�

considerably. Overall, though, it was always better than that of the 64b-protocol.

3.3 Summary

The cluster concept performed well on our varied mix of applications. Speedups were gener-

ally very good, except for Cholesky and MP3D. Cholesky did not speedup well because the

data set we chose to simulate was small (to keep simulation times manageable) and lacked

su�cient parallelism. MP3D, on the other hand, had so much sharing that it saturated the

upper bus, long before it saturated the lower busses except when only two clusters were

used. Like the case for single bus systems, using the \wrong" block size for an application

substantially reduced performance because of increased bus tra�c. The subblock protocol,

which was designed to take advantage of an application's spatial locality while avoiding false

sharing problems, functioned well on most of the applications. Though in only a few cases

did it exceed the performance of the best choice of block size, its execution times were nearly

always close to the faster of either the 8b or 64b-protocol. However, its behavior was not

quite as good as it was for the single bus case [AB95]. Some explanations for this include:

� The subblock protocol lacked a DIRTY SHARED subblock state at the bus cache level.

This caused some level of increase in the number of cluster bus transactions.

� The subblock protocol allocated cache space on a block (64 byte) by block basis. This

works well if a good portion of the block is used, or if the cache is large enough that

capacity/con
ict misses are not a problem. This was often not the case for Topopt

and Pverify, especially at the processor level where small caches (8K) were used.

� The small processor caches used in the hierarchical system increased the replacement of

cache blocks. This had the e�ect of increasing the average number of valid subblocks

per block. For most applications, this would speed execution, but it did just the

opposite for Topopt and Pverify since the additional valid subblocks were often not

used. In addition, the subblock protocol's policy of transmitting more than just the

12

requested subblock in response to a read request wasted bus bandwidth because in

many cases the additional subblocks were not used by the requester.

It would be interesting to perform experiments where the subblock protocol would be

used only intra-cluster and large blocks transmitted at the upper bus level. Similarly, one

could expand the concept of subblock with the subblock in the bus cache having the size of

a block in a processor cache. The savings in tag bits would be very large but the protocol

would be slightly more complex.

One of the most important goals in designing a cluster architecture is that of balancing

the tra�c that will be carried on each level. If a system designed for a given number of

processors has many processors per cluster, and few clusters, then tra�c on the upper bus

will be relatively small, since a given processor can access a good proportion of the other

processors in the system merely by accessing the cluster bus. The biggest drawback is that

the cluster busses can be saturated by the tra�c from the many processors per cluster, while

the upper bus is relatively unloaded. This often happened with the 2X16 con�guration. On

the other hand, if few processors per cluster are used, then the upper level bus becomes

saturated long before the cluster level busses (this happened, in a less visible way, for the

8X2 con�guration). In an ideal situation, cluster bus utilization should increase at the same

rate as upper bus utilization. In practice, this is nealy impossible to achieve because various

applications will load lower and upper busses in di�erent ways.

To summarize our results, each program performed consistently well on three balanced

con�gurations, 4X4, 4X8 and 8X4 when using either the best block size or the Sb-protocol.

Since the tendency is towards larger block sizes, in order to save tag bits, our results are en-

couraging. To dwell a little more in detail, Barnes had so few shared references that both bus

levels were lightly loaded, even in the unbalanced con�gurations. Much of Gauss's tra�c was

to and from memory, because of con
ict misses. Therefore, upper bus utilization was high,

even for the balanced architectures. The balanced architectures did not experience cluster

bus saturation, unlike, for example, the 2X16 con�guration. Cholesky's lack of speedup even

on the balanced systems was due to the absence of application parallelism caused by the

relatively small input data set. Bus utilization with the large blocks never exceeded 40% on

either upper or lower busses. MP3D's poor speedup, on the other hand, was due to large

amounts of true sharing which caused upper bus saturation for all but the most imbalanced

of con�gurations long before linear speedup was reached. When using the 8 byte block size

with Pverify, the 8X4 and 4X4 con�gurations had very well balanced bus loads. For these

con�gurations, the Sb-protocol performed quite well. On Topopt, the 4X8 and 4X4 con�gu-

rations overall were the most balanced, especially when the large (i.e., wrong) block size or

the Sb-protocol were used.

4 From UMA to NUMA variations

The base architecture has a Uniform Memory Access (UMA) structure. Two factors argue

for changing from the UMA model to a NUMA model where physical memory is distributed

13

among the processors or clusters in a system. First, this approach is more modular and hence

expandability is achieved more easily. Second, from a performance viewpoint, some reduction

in memory access times could be achieved if an application placed its data structures so that

misses to memory could be satis�ed by the memory located in the cluster.

To investigate data placement in a hierarchy of busses, we modi�ed the hierarchical archi-

tecture detailed previously, moving physical memory into the clusters. These modi�cations

are presented below. We also modi�ed some of the applications, namely Gauss and MP3D, so

that they allocated data in the cluster in which it is most heavily used. We report on simula-

tion results for these two applications whose memory access patterns are most representative

of those simulated in the UMA architecture.

4.1 Cluster Memory and Memory Allocation

We modi�ed the base architecture of Figure 1 so that memory was distributed among the

clusters. We show a two level system in Figure 5. We assumed that each cluster's memory

bank could observe and respond to memory requests, both on the upper bus and the appro-

priate cluster bus. Further, associated with each memory block is a bit indicating if memory

has an up-to-date copy of the block. When the system is initialized, all such bits are initially

set to true. The bit is set to false when the memory block is accessed by a cache outside

the memory's cluster; it is reset to true when the block is written back. It is necessary to

turn the bit o� on both read and read exclusive requests from remote caches, since a remote

processor may write to a block which has been read from memory without a bus transaction,

since the block is loaded in the VALID EXCLUSIVE state. Since we assumed that cluster

memory banks could respond to requests from outside the cluster in the same manner as

in the UMA case, non-local requests in the cluster system also require the same amount of

cycles as before, i.e., 36 cycles. Local requests are satis�ed in 23 cycles.

We changed the memory allocation mechanism from �ne grain (i.e., a block) memory

interleaving to coarse grain (i.e., a page, in our case 4K) interleaving. One problem with

using coarse-grain interleaving and allocating data in \local" pages is that it can increase

con
ict misses. This occurs when the number of clusters is a power of 2 and when the bits

comprising the page number are part of the cache index function, which happens when the

cache size divided by the cache associativity is larger than the page size. Thus, when a

processor explicitly allocates data in its cluster's memory, that data will be mapped to only

1/n of the cache's space, where n is the number of clusters.

Our solution to this underutilization of the cache was simple: we used additional address

bits in the cache indexing function so that successive pages mapped in the same cluster

would map to di�erent parts of the cache. The additional bits were taken from the portion

of the address just above the bits normally used to index the cache.

14

Processor
Cache

Processor
Cache

Bus
Cache

Memory
Bank

Processor
Cache

Processor
Cache

Bus
Cache

Upper Level Bus

Lower Level Bus Lower Level Bus

Memory
Bank

Figure 5: NUMA Cluster Architecture

4.2 Results of the evaluation

In the following, we �rst describe the modi�cations made to two applications, Gauss and

MP3D, then present the results of running the program on the simulator. For comparison

purposes, we varied several architectural parameters for our evaluation. One parameter is

whether or not memory was distributed in clusters, i.e., the UMA architecture. Another

parameter is whether or not the modi�ed cache index was used. Finally, either the original

or the modi�ed version of the program could be used.

Table 2: Evaluated Architectural Variations

Memory Modi�ed Modi�ed

Program Clusters Index Program

Base

(Gauss, MP3D) No No No

Unmodi�ed Cluster

(MP3D) Yes No No

Unmodi�ed Cluster/MI

(Gauss) Yes Yes No

Modi�ed Cluster

(Gauss, MP3D) Yes Yes Yes

Table 2 lists the con�gurations that appear in the graphs to follow. We simulated both

the regular and modi�ed index (MI) function for both applications. However, to reduce the

15

2X2 2X4 4X2 2X8 4X4 8X2 2X16 4X8 8X4 2X2 2X4 4X2 2X8 4X4 8X2 2X16 4X8 8X4
Machine Configuration - (# of Clusters X Size of Cluster)

0

1

2

3

S
p

ee
d

u
p

 v
s.

 8
I

B
a
se

Gauss - 128K Bus Cache

8I Unmodified Cluster/MI 8I Modified Cluster 64I Unmodified Cluster/MI 64I Modified Cluster

1
.0

6
1

.1
0

1
.0

6
1

.1
1

1
.4

4
1

.4
4

1
.0

1
1

.0
3

1
.4

7
1

.8
9

1
.9

7
1

.9
8

0
.9

4
0

.9
8

1
.6

7
2

.1
3

2
.8

0 2
.9

4

1
.0

1
1

.0
2

1
.0

1
1

.0
2

1
.0

8
1

.0
7

1
.0

3
1

.0
3

1
.0

8
1

.1
0

1
.1

1
1

.1
1

1
.0

2
1

.0
2

1
.2

2
1

.2
7

1
.2

9
1

.2
9

0

1

2

3

S
p

ee
d

u
p

 v
s.

 6
4
I

B
a
se

Figure 6: NUMA { Gauss Speedups

number of graphs presented, we will present only one data set for Unmodi�ed Cluster (UC).

For MP3D, we will present UC using the normal index function, since using the modi�ed

index function had little e�ect. On the other hand, we will show data for Gauss on UC

with MI, since using MI made a signi�cant di�erence in UC's performance. For the speedup

curves, we normalized to the performance of the base architecture for the same con�guration

and block size. Hence a bar of length 1.0 indicates that the con�guration performed the

same as the base architecture.

Gauss The Gauss benchmark solves the system A � x = b. Rows are statically assigned

to processors to work on. Since the memory for the rows is allocated dynamically, it is

straightforward to allocate each row in the proper cluster. Though the b elements are also

statically assigned to processors, we did not allocate them into a speci�c cluster, since each

element would have required a separate call to the allocator, increasing the memory overhead

for the b vector by a large amount.

One complication in examining the results for Gauss is the fact that it had many con
ict

misses, even when many 128K bus caches are used (i.e., many clusters). Reducing the

number of con
ict misses by using a di�erent function to index the cache could increase

system performance, irrespective of whether or not cluster allocation is used. In order to

separate out this e�ect from the e�ect of the memory allocation procedure per se, when

we ran the unmodi�ed program on the cluster architecture, we used the additional address

bits to index the cache. The results of the simulation are shown in Figure 6. The main

16

observations are as follows:

� the NUMA architecture yields extremely signi�cant performance improvements when a

small cache block size is used (up to almost a 200% gain) and non-negligible ones when

a large block size is used (up to 30%). The higher gains for the small block size stem

from two factors: (i) because of Gauss's high spatial locality, a miss to a large cache

block brings in other needed data as well as the requested data, which reduces the

number of bus transactions when compared to using a small block size (recall Section

3.2). Since cluster allocation potentially saves bus cycles on every memory transaction,

it has more opportunities to improve performance when small block sizes are used; and,

(ii) since the UMA architecture performed already so well with large block sizes, there

wasn't a great deal of room for improvement.

The gains when using 4 or 8 clusters were large enough that the small block performance

came close to or exceeded UMA's performance when using large blocks. However, it

was still 25 to 30% behind the performance of the NUMA with large block sizes.

� The best relative { and absolute { improvements occurred when the number of clusters

was large and the NUMA architecture was balanced (4X8 or 8X4).

� Directing the memory allocation (i.e., using the modi�ed program) brought minimal

improvement for this application. This indicates that most of the NUMA bene�ts were

due to localization of memory and reduction of con
ict misses.

MP3D For MP3D, we cluster allocated the particles, since they are statically assigned to

processors at the beginning of the program. Unfortunately, the original program allocated

all particles as a contiguous single dimensional array, which cannot be spread out among

memory clusters so that particles are allocated in the proper cluster. In addition, processors

are not assigned a contiguous block of particles to manipulate; instead, small groups of

particles are assigned to processors in a round-robin fashion. In order to maintain the

same assignments of particles to processors, we converted the single-dimension array into a

dynamically allocated, three-dimensional array of particles. This had the e�ect of increasing

the total working set size, because additional storage was required for the arrays of pointers.

The change also increased the number of instructions needed to access the particle structure.

Thus, in order for the modi�ed program to show a speed increase, it would have to reduce

memory access times enough to make up for the additional cycles spent on accessing the

particle data structure.

The results of the simulation are shown in Figure 7. In general terms they are the same

as for Gauss but with less pronounced e�ects.

� When the number of processors was small, the NUMA architecture was slightly ben-

e�cial for the small block sizes (up to 10% performance increase) and had no impact

on the large block size con�gurations. Performing the program modi�cations outlined

above had a detrimental e�ect since the computational overhead was larger than the

gain in memory access times.

17

2X2 2X4 4X2 2X8 4X4 8X2 2X16 4X8 8X4 2X2 2X4 4X2 2X8 4X4 8X2 2X16 4X8 8X4
Machine Configuration - (# of Clusters X Size of Cluster)

0.0

0.5

1.0

1.5

S
p

ee
d

u
p

 v
s.

 8
I

B
a
se

Mp3d - 128K Bus Cache

8I Unmodified Cluster 8I Modified Cluster 64I Unmodified Cluster 64I Modified Cluster
1

.0
1

0
.9

6

1
.0

1
0

.9
6

1
.0

2
1

.0
0

1
.0

0
0

.9
9

1
.1

0
1

.2
6

1
.0

5
1

.3
6

1
.0

0
0

.8
7

1
.1

3
1

.7
3

1
.0

5
1

.6
6

1
.0

0
0

.9
2 1
.0

0
0

.8
9

1
.0

1
0

.9
2 1

.0
0

0
.9

6 1
.0

2
0

.9
8

1
.0

2
1

.0
6

1
.0

0
1

.0
1

1
.0

6
1

.2
2

1
.0

3
1

.1
4

0.0

0.5

1.0

1.5

S
p

ee
d

u
p

 v
s.

 6
4
I

B
a
se

Figure 7: NUMA { MP3D Speedups

� When the number of processors was large (32), NUMA without program modi�cation

showed a small bene�t. When program modi�cations were included the bene�ts were

much larger for small blocks and larger for large blocks, provided that the architecture

was balanced otherwise there could be a signi�cant degradation (13% in 2X16 case for

small blocks).

� When the modi�ed program was run, there were in all cases signi�cant improvements

in upper bus tra�c, both in terms of reduced number of transactions and number

of bytes transferred. However, this did not always translate into overall performance

improvements because of (i) the computation overhead due to the transformation in

addressing structure, and (ii) there was a higher number of cluster bus reads thus

saturation of cluster busses was reached more quickly (mostly in unbalanced cases like

2X16 con�gurations).

4.3 Previous work and summary

Singh et al. examined the e�ects of data placement on the DASH, where the granularity

of data distribution to home nodes is the page [SJGH93]. A general technique they tried

was the �rst touch, in which data was allocated in the home cluster which �rst accessed

it. This technique has the potential to work well only when data structures are initialized

in parallel by the processor which is going to access it the most. In most cases, �rst touch

improved application performance over round-robin allocation, but occasionally it was worse.

18

Restructuring the application's data worked even better than the \blind" �rst-touch method,

though it did make the code more di�cult to write, and decreased performance in one

instance when a small data set was used.

Erlichson et al. investigated the bene�ts of clustering in a NUMA architecture which

di�ers from ours in the sense that a cluster was made up of processors sharing a �rst level

cache and that clusters were connected by an interconnection network. Caches were made

coherent via a full directory scheme [ENSO94]. They found limited advantage to clustering

because of contention and larger access times to the shared cache.

In our case, we found that cluster allocation succeeded in reducing upper bus tra�c on

the two applications we simulated. It also increased application performance for all con�gu-

rations when running the Gauss application, and for balanced architectures for MP3D. Using

cluster allocation succeeded in reducing the number of transactions and bytes transferred on

the upper bus for both applications. Reducing upper bus tra�c is in general a good way to

increase application performance, since saturation on the upper bus often limits application

performance. However, lowering upper bus tra�c is not always enough to increase applica-

tion performance. At times other factors, such as changing the code and data structures to

do cluster allocation, and changing the cache index function can have an adverse impact on

cache hit rates and can increase the total number of instructions executed.

5 Conclusion

In this paper we have presented and evaluated several variations on a hierarchical cluster

architecture where the interconnect is a hierarchy of busses.

Starting with a UMA architecture, we brie
y introduced a basic hierarchical snoopy-

based cache coherence protocol. We then extended this protocol to a subblock protocol for

sector caches so that e�ects of false sharing could be minimized. We simulated, on a cycle

by cycle basis, six benchmarks on both the standard and subblock protocols on a variety

of two level cluster con�gurations, varying both the number of clusters and the number of

processors per cluster.

Applications had very di�erent performance, depending on the block size used with the

standard invalidate protocol. Overall, though, the benchmarks performed well when using

the \correct" block size. When con�gurations were used that balanced bus tra�c between the

upper and lower levels of the system, saturation of the upper bus sometimes occurred, but in

all but one of the benchmarks did not noticeably impair application speedup. Only on MP3D

did upper bus saturation (due to a great deal of true sharing between clusters) strongly a�ect

performance. In spite of our good results using identical busses at both the upper and lower

levels of the system, it would be advisable to have a \bee�er" interconnect above the cluster

level. Since it is unlikely that non-cluster busses will be shorter than cluster busses, clocking

the non-cluster busses faster than the cluster busses will probably not be an option. Instead,

wider busses (to improve bandwidth) or multiple (possibly interleaved) busses [BBW92]

would allow more clusters (hence more processors) to be e�ectively connected in a hierarchical

system.

19

The hierarchical subblock protocol performed relatively well on the six benchmarks. Un-

like the conventional protocol used with a �xed block size, its performance across the tested

benchmarks was much more consistent. The overall performance improvements of the sub-

block protocol were relatively less impressive than in the case of single bus system [AB95].

One of the reasons is that we wanted to minimize the number of states in the bus cache

in order to make the standard and subblock protocols more comparable cost-wise. Another

factor that should be investigated is whether limiting the subblock protocol at the intra-

cluster level or using di�erent block and subblock sizes for the private and bus caches would

improve performance.

We then examined the issue of data placement in NUMA hierarchical systems when

physical memory is distributed among the system's clusters. We found that providing a

simple method for allocating data in the cluster nearest the processor was e�ective in reducing

upper bus tra�c in the two applications studied. The reductions in upper bus tra�c led

to consistent performance gains for only one of the two applications. For the other one,

performance was slightly improved remained the same because the application's algorithm

had to be changed to accommodate cluster allocation. The main conclusion of this part

of our study is that NUMA architectures will work best when the architecture is balanced.

However, this conclusion is based on a limited application sample. More applications should

be simulated where tuning the memory allocation cannot be performed, e.g., because of the

dynamic allocation of threads, or where the computation to communication ratio is di�erent.

References

[AB93] Craig Anderson and Jean-Loup Baer. A multi-level hierarchical cache coherence

protocol for multiprocessors. In Proc. of 7th Int. Parallel Processing Symopo-

sium, pages 142{148, 1993.

[AB95] Craig Anderson and Jean-Loup Baer. Two techniques for improving the per-

formance of bus-based multiprocessors. In International Symposium on High-

Performance Computer Architecture, pages 264{275, 1995.

[And95] Craig Anderson. Improving the Performance of Bus-Based Multiprocessors. PhD

thesis, University of Washington, 1995.

[BAD89] Eugene D. Brooks III, Tim S. Axelrod, and Gregory A. Darmohray. The Cer-

berus multiprocessor simulator. In G. Rodrigue, editor, Parallel Processing for

Scienti�c Computing, pages 384{390. SIAM, 1989.

[BBW92] Jonathan Bertoni, Jean-Loup Baer, and Wen-Hann Wang. Scaling shared-bus

multiprocessors with multiple buses and shared caches: a performance study.

Microprocessors and Microsystems, 16(7):339{50, 1992.

20

[BW88] Jean-Loup Baer and Wen-Hann Wang. On the inclusion properties for multi-

level cache hierarchies. In Proc. of 15th Int. Symp. on Computer Architecture,

pages 73{80, 1988.

[Con94] Convex Computer Corporation. Convex Exemplar Scalable Parallel Processing

System, 1994.

[Dar88] Gregory A. Darmohray. Gaussian techniques on shared-memory multiprocessors.

Master's thesis, University of California, Davis, April 1988.

[DN87] Srinivas Devadas and A. Richard Newton. Topological optimization of multiple

level array logic. IEEE Transactions on Computer-Aided Design, November

1987.

[Egg89] Susan Eggers. Simulation Analysis of Data Sharing in Shared Memory Multi-

processor. PhD thesis, University of California, Berkeley, 1989.

[ENSO94] Andrew Erlichson, Basem Nayfeh, Jaswinder Singh, and Kunle Olukotun. The

bene�ts of clustering in shared address space multiprocessors: an applications-

driven investigation. Technical Report CSL-TR-94-632, Stanford University,

1994.

[FIR93] S. Frank, H. Burkhardt III, and J. Rothnie. The KSR-1: bridging the gap

between shared memory and MPPs. In Proc. of Spring 1993 COMPCON, pages

285{294, February 1993.

[HLH92] Erik Hagersten, Anders Landin, and Seif Haridi. DDM - a cache-only memory

architecture. IEEE Computer, 25(9):44{54, September 1992.

[LLJ

+

92] Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis Stevens,

Anoop Gupta, and John Hennessy. The DASH prototype: Implementation and

performance. In Proc. 19th Annual Symposium on Computer Architecture, pages

92{103, June 1992.

[MDWS87] H-K. T. Ma, S. Devadas, R. Wei, and A. Sangiovanni-Vincentelli. Logic veri�-

cation algorithms and their parallel implementation. In Proceedings of the 24th

Design Automation Conference, pages 283{290, 1987.

[SJGH93] Jaswinder Pal Singh, Truman Joe, Anoop Gupta, and John L. Hennessy. An

emprical comparison of the Kendall Square Research KSR-1 and Stanford DASH

multiprocessors. In Supercomputing, pages 214{225, 1993.

[SWG92] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stan-

ford Parallel Applications for Shared Memory. Computer Architecture News,

pages 5{44, March 1992.

21

[VSLW91] Zvonko Vranesic, Micahel Stumm, David Lewis, and Ron White. Hector: A hier-

archically structured shared-memory multiprocessor. IEEE Computer, 24(1):72{

79, January 1991.

[Wil87] Andrew Wilson Jr. Hierarchical cache/bus architecture for shared memory mul-

tiprocessors. In Proc. of 14th Int. Symp. on Computer Architecture, pages 244{

252, 1987.

[WTP

+

92] Andrew Wilson, Marc Teller, Thoams Probert, Dyung Le, and Richard LaRowe.

Lynx/Galactica Net: A distributed, cache coherent multiprocessor system. In

Proc. of the 25th Hawaii International Conference on System Sciences, volume 1,

pages 416{426, 1992.

[YTB92] Q. Yang, G. Thangadurai, and L. Bhuyan. Design of an adaptive cache coherence

protocol for large scale multiprocessors. IEEE TPDS, 3(3):281{293, May 1992.

22

