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Abstract

The Web is less agent-friendly than we might hope. Most information on the Web is presented

in loosely structured natural language text with no agent-readable semantics. HTML annotations

structure the display of Web pages, but provide virtually no insight into their content. Thus, the

designers of intelligent Web agents need to address the following questions: (1) To what extent

can an agent understand information published at Web sites? (2) Is the agent's understanding

su�cient to provide genuinely useful assistance to users? (3) Is site-speci�c hand-coding necessary,

or can the agent automatically extract information from unfamiliar Web sites? (4) What aspects

of the Web facilitate this competence?

In this paper we investigate these issues with a case study using the ShopBot. ShopBot is a fully-

implemented, domain-independent comparison-shopping agent. Given the home pages of several

on-line stores, ShopBot autonomously learns how to shop at those vendors. After its learning is

complete, ShopBot is able to speedily visit over a dozen software stores and CD vendors, extract

product information such as availability and price, and summarize the results for the user. Prelim-

inary studies show that ShopBot enables users to both �nd superior prices and substantially reduce

Web shopping time.

Remarkably, ShopBot achieves this performance without sophisticated natural language processing,

and requires only minimal knowledge about di�erent product domains. Instead, ShopBot relies on

a combination of heuristic search, pattern matching, and inductive learning techniques.
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1 Introduction

In recent years, AI researchers have created several prototype software agents that help users

with email and netnews �ltering [15], Web browsing [4, 13], meeting scheduling [6, 16, 14], and

internet-related tasks [7]. Increasingly, the information such agents need to access is available on

the World-Wide Web. Unfortunately, the Web is less agent-friendly than we might hope. Although

Web pages are written in HTML, this language only de�nes how information is to be displayed, not

what it means. There has been some talk of semantic markup of Web pages, but it is di�cult to

imagine a semantic markup language that is expressive enough to cover the diversity of information

on the Web, yet simple enough to be adopted universally.

Thus, the advent of the Web raises several fundamental questions for the designers of intelligent

software agents:

� Ability: To what extent can intelligent agents understand information published at Web

sites?

� Utility: Is an agent's ability great enough to provide substantial added value over a sophis-

ticated Web browser coupled with directories and indices such as Yahoo and Lycos?

� Scalability: Existing agents rely on a hand-coded interface to Internet services and Web

sites [11, 7, 3, 18, 12]. Is it possible for an agent to approach an unfamiliar Web site and

automatically extract information from the site?

� Environmental Constraint: What properties of Web sites underlie the agent's compe-

tence? Is sophisticated natural language understanding necessary? Howmuch domain-speci�c

knowledge is needed?

While we cannot answer all of the above questions conclusively in a single conference paper, we

investigate these issues by means of a case study in the domain of electronic commerce.

This paper introduces ShopBot, a fully implemented comparison-shopping agent.

1

We demonstrate

the utility of ShopBot by comparing people's ability to �nd cheap prices for a suite of computer

software products with and without the ShopBot. ShopBot is able to parse product descriptions

and identify several product attributes, including price and operating system, for the products.

It achieves this performance without sophisticated natural language processing, and requires only

minimal knowledge about di�erent product domains. Instead, it extracts information from online

vendors via a combination of heuristic search, pattern matching, and inductive learning techniques

| with surprising e�ectiveness. Our experiments demonstrate the generality of ShopBot's archi-

tecture both within a domain | we test it on a suite of online software shops | and across

domains | we test it on another domain, online CD stores.

The rest of this paper is organized as follows. We begin with a brief description of the online

shopping task in Section 2. Section 3 provides a detailed description of the ShopBot prototype

1

It is publicly accessible at http://www.cs.washington.edu/homes/bobd/shopbot.html.
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and the principles upon which it is built. In Section 4 we present experiments that demonstrate

ShopBot's usefulness and generality. Finally, we discuss related work in Section 5, and conclude

with a critique of ShopBot and directions for future work.

2 The Online-Shopping Task

Our long-term goal is to design, implement, and analyze shopping agents that can help users with

all aspects of online shopping. The capabilities of a sophisticated shopping assistant would include

the following:

1. Help the user decide which product to buy. For example, the user may ask \What new science

�ction books are available in paperback?" or \What CD-ROM encyclopedias are available

for the Macintosh?"

2. Find product speci�cations and reviews. For example, if the user indicates they are interested

in a special lens for a camera, the agent might point them at the recent discussion of such

lenses in the newsgroup rec.camera and direct them to specialized Web sites.

3. Make savvy recommendations, taking into consideration recorded user requirements and prod-

uct dependencies. For example, the shopping assistant might suggest that \Since you are

running on an Gateway2000 P5-75, you will need a 16 bit soundblaster card and quad-speed

CD-ROM drive in order to install the Myst software you have selected. Shall I search for the

appropriate hardware?"

4. Comparison shop. Identify a set of vendors that sell the desired product, and rank them

based on appropriate criteria such as price, speed of delivery, etc.

5. Monitor \What's new" lists and other sources to discover and analyze new vendors and sources

of speci�cations or reviews.

6. Notice relevant special o�ers and discounts.

In the remainder of this paper, we discuss our implemented ShopBot prototype. As a �rst step, we

have focused on comparison shopping. While other shopping subtasks remain topics for future work,

ShopBot is already demonstrably useful (see Section 4). ShopBot's capabilities (and limitations)

form a baseline for future work in this area.

3 ShopBot: A Comparison-Shopping Agent

Our initial research focus has been the design, construction, and evaluation of a scalable comparison-

shopping agent called ShopBot. Figure 1 summarizes the problem tackled by ShopBot. Our ShopBot

prototype operates in two phases: an o�ine learning algorithm that creates a vendor description
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for each merchant, and a shopping assistant that uses this description to help a person shop in real

time.

In the sections below, we describe some important observations that underlie our system, and then

summarize the ShopBot architecture and its representation of product domains. Section 3.3 explains

the ShopBot's o�ine learning algorithm, and Section 3.4 details the procedure for comparison

shopping.

Given:

� A domain description, including information about product attributes useful for

discriminating between di�erent products and between variants of the same product (e.g.,

name, manufacturer, price, etc.),

� A set of URL's for the home pages of possible vendors,

� An attribute A (e.g., price) by which the user wants to compare vendors, and

� A speci�cation of the desired product in terms of the values of selected attributes.

Determine: The set of stores where the desired product is available, sorted by A.

For Example: \Find me the cheapest price for the Mac version of Adobe Photoshop."

Figure 1: The Comparison Shopping Problem

3.1 Environmental Regularities

It may seem that construction of a scalable shopping agent is beyond the state of the art in AI,

because it requires full-
edged natural language understanding and extensive domain knowledge.

While this may be true for the full range of capabilities described in Section 2, we have been able

to construct the successful ShopBot prototype by exploiting several environmental regularities that

are usually obeyed by online vendors. These regularities are reminiscent in spirit of those identi�ed

as crucial to the construction of real-time [1], dynamic [9], and mobile-robotic [2] agents.

1. Online stores are designed so consumers can �nd things quickly. For example,

most stores include mechanisms to ensure easy navigation from the store's home page to a

particular product description (e.g., a searchable index).

2. Vendors attempt to create a sense of identity by using a uniform look and feel. For

example, although stores di�er widely from each other in their product description formats,

any given vendor typically describes all stocked items in a simple consistent format.

3. Merchants use whitespace to facilitate customer comprehension of their catalogs.

In particular, while di�erent stores use di�erent product description formats, the use of ver-
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tical separation is universal. For example, each store starts new product descriptions on a

fresh line.

Online vendors obey these regularities because they facilitate sales to human users. Of course,

there is no guarantee that what makes a store easy for people to use will make it easy for software

agents to master. In practice, though, we were able to design ShopBot to take advantage of these

regularities. Our prototype ShopBot makes use of the �rst regularity by focusing on stores that

feature a search form.

2

The second and third regularities allow ShopBot's learning algorithm to

incorporate a strong bias, and thus require only a small number of training examples, as we explain

below.

3.2 Product-Independent Architecture

ShopBot decomposes the comparison-shopping problem into two phases. The learning phase, de-

scribed in Section 3.3, analyzes online vendor sites to learn a symbolic description of each site. This

phase is moderately computationally expensive, but is performed o�ine, and needs to be done only

once per store.

3

The comparison-shopping phase, described in Section 3.4, uses the learned vendor

descriptions to shop at each site and �nd the best price for a speci�c product desired by the user.

This phase executes very quickly, with network delays dominating ShopBot computation time.

The ShopBot architecture is product-independent | to shop in a new product domain, it simply

needs a description of that domain. To date, we have tested ShopBot in the domains of software

and CD products. Figure 2 shows the information ShopBot requires about a new product domain.

The information falls into three categories: a description of the product attributes, heuristics for

understanding vendor pages, and seed knowledge to bootstrap learning. Supplying this information

is clearly beyond the capability of the average user. Furthermore, it is di�cult if not impossible for

an expert to provide the necessary information without some investigation of online vendors in the

new product domain. Nevertheless, we were surprised by the relatively small amount of knowledge

ShopBot must be given before it is ready to shop in a completely new product domain.

3.3 Creating Vendor Descriptions

The most novel aspect of ShopBot is its learner module, illustrated in Figure 3. The learner

automatically generates a vendor description for an unfamiliar online merchant. Together with the

domain description, a vendor description contains all the knowledge required by the comparison-

shopping phase for �nding products at that vendor. Figure 4 shows the information contained in

a vendor description. The problem of learning such a vendor description has three components:

� Identifying an appropriate search form,

2

In future work, we plan to generalize ShopBot to shop at other types of stores.

3

If a vendor \remodels" the store, providing di�erent searchable indices, or a di�erent search result page format,

then this phase must be repeated for that vendor.
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� Attributes of products in this domain (e.g., for computer software, we have product name,

manufacturer, price, operating system requirements, etc.).

� Heuristics for understanding vendor pages: regular expressions for recognizing attributes (or

synonyms thereof) on vendor pages.

� Seed knowledge to support learning: descriptions of several popular products in this domain

(e.g., \Microsoft Encarta," \Adobe Photoshop") to be used as \test queries" for inductive

learning of vendor page formats.

Figure 2: Elements of a ShopBot domain description

� Determining how to �ll in the form, and

� Discerning the format of product descriptions from the resulting page.

These components represent three decisions the learner must make. The three decisions are strongly

interdependent, of course | e.g., the learner cannot be sure that a certain search form is the

appropriate one until it knows it can �ll it in and understand the resulting pages. In essence, the

ShopBot learner searches through a space of possible decisions, trying to pick the combination that

will yield successful comparison shopping.

DOMAIN
DESCRIPT

SHOPBOT   LEARNER

For each vendor
  Search for indices
  For each potential index
    For each sample product
       Query on attributes
       Accumulate responses
  Analyze 

ONLINE
VENDORS

Product attributes

Result of search

URLS OF
POSSIBLE
VENDORS

VENDOR
DESCRIPT

Figure 3: The ShopBot learner's algorithm for creating vendor descriptions.

The learner's basic method is to �rst �nd a set of candidate forms | possibilities for the �rst

decision. For each form F

i

, it computes an estimate E

i

of how successful the comparison-shopping

phase would be if form F

i

were chosen by the learner. To estimate this, the learner determines how
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� The URL of a page containing a form for a searchable index.

� A function mapping product attributes to �elds of that form.

� Parsing functions for extracting product data from pages returned by the index:

{ A function that recognizes failure pages (e.g., \Product not found").

{ A function that strips header and trailer information from successful pages.

{ A function that extracts a set of individual product descriptions from the remaining text

on a successful page.

Figure 4: A vendor description.

to �ll in the form (this is the second decision), and then makes several \test queries" using the form

to search for several popular products. The results of these test queries are used for two things.

They provide training examples from which the learner induces the format of product descriptions

in the result pages from form F

i

(this is the third decision). The results of the test queries are also

used to compute E

i

| the learner's success in �nding these popular products provides an estimate

of how well the comparison-shopping phase will do for users' desired products. Once estimates have

been obtained for all the forms, the learner picks the form with the best estimate, and records a

vendor description comprising this form's URL and the corresponding second and third decisions

that were made for it.

In the rest of Section 3.3, we elaborate on this procedure. Our emphasis is on the basic techniques

rather than the details. We do not claim to have developed an optimal set of heuristics; indeed, the

optimal set will change as vendor sites evolve. We go into greatest detail on the third decision |

learning result page formats | because we think it is the most novel and most likely to be useful

in other Web-related tasks.

3.3.1 Finding and Classifying Forms

The learner begins by �nding potential search forms. It starts at the vendor's home page and

follows URL links, performing a heuristic search looking for any HTML forms at the vendor's site.

(To avoid putting an excessive load on the site, we limit the number of pages the learner is allowed

to fetch.) Since most vendors have more than one HTML form, this procedure usually results in

multiple candidate forms.

The learner then attempts to identify and discard forms that are obviously not searchable indices

yielding product information. For example, a form whose �elds are labeled as requests for name,

address, email, phone, and fax numbers, is probably used for gathering information about customers

rather than providing quick access to products for sale. Because this process is heuristic, the learner

only discards forms about which it is very con�dent.
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1. Initialize LineDs to the empty set.

2. Induce what header and tail text the vendor uses on each page, by abstracting out references

to product attributes and then pattern matching the beginning and end of each page.

3. For each page,

(a) Remove the header and tail information from the page.

(b) Partition the page text into logical lines such that each logical line starts with an HTML

tag that forces a line break.

(c) For each logical line, create a line description. If LineDs doesn't contain this description,

add it with its associated counters set to zero. Increment the occurrence counter. If any

product attribute appears in the logical line's text, increment the attribute counter. If

a price appears in the logical line's text, increment the price counter.

4. Rank the descriptions in LineDs using a weighted sum of the counters, and return the best.

Figure 5: Procedure for unsupervised learning of the product description format, given a set of

result pages obtained from the same vendor using the same form.

3.3.2 Analyzing Candidate Forms

At this point, the learner assumes that each remaining form could be a searchable index. It now

seeks to identify the form that will yield the best results for the comparison-shopping phase, by

making several \test queries" to each form and analyzing the responses. A key insight underlying

this algorithm is the decomposition of the learning problem into three subproblems: learning a gen-

eralized failure template, learning to strip out irrelevant header and tail information, and learning

product description formats. We describe each of these below.

The learner �rst queries each form with several \dummy" product names such as \qrsabcdummynosuchprod"

to determine what a \Product Not Found" result page looks like for that form. The learner builds

a generalized failure template based on these queries. All the vendors we examined had a simple

regular failure response, making this learning subproblem straightforward.

Next, the learner queries the form with several popular products speci�ed in the domain description

(Figure 2). Since the domain model typically includes several attributes for each sample product,

the learner must choose which attribute to enter in each of the form's �ll-in �elds. The domain

description contains regular expressions encoding synonyms for each attribute; if the regular ex-

pression matches the text preceding a �eld, then the learner associates that attribute with the �eld.

In case of multiple matching regular expressions, the �rst one listed in the domain description is

used. Fields that fail to match any of the regular expressions are left blank. Thus, the learner

makes its second decision | how to �ll in the form | on the basis of the heuristics provided in

the domain description.

4

4

We adopted this simple procedure for expedience; it is not an essential part of the ShopBot architecture. We plan
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The learner now matches each result page for one of these popular products against the generalized

failure template; any page that does not match the template is assumed to represent a successful

search. If the majority of the test queries are failures rather than successes, the learner assumes

that this is not the appropriate search form to use for the vendor.

3.3.3 Identifying Product Information

The learner now uses these pages from successful searches as training examples from which to

induce the format of product descriptions in the result pages for this form | this is the third

decision the learner must make. Each such page contains one or more product descriptions, each

containing information about a particular product (or version of a product) that matched the query

parameters. However, extracting these product descriptions turns out to be di�cult. The problem

is complicated by the ubiquitous presence of irrelevant information (e.g., advertisements, headings,

subheadings, and links to other pages). Initially, we thought that product descriptions would be

easy to identify because they would always contain the product name, but this is not always the

case. Furthermore, the product name often appears in other places on the result page, not only

in product descriptions. We also suspected that the presence of a price would serve as a clue to

identifying product descriptions, but this intuition also proved false | for some vendors the product

description does not contain a price, and for others it is necessary to follow a URL link to get the

price. In fact, the format of product descriptions varied widely and no simple rule worked robustly

across di�erent products and di�erent vendors.

However, the regularities we observed (Section 3.1) suggested a learning approach to the problem.

We considered using standard grammar inference algorithms (e.g., [5, 20]) to learn regular expres-

sions that capture product descriptions, but such algorithms require large sets of labeled example

product descriptions | precisely what our ShopBot lacks, since it just has a set of pages, and it

doesn't (yet) know what pieces of the pages constitute product descriptions. In short, standard

grammar inference is inappropriate for our task because it is data intensive and relies on super-

vised learning. Instead, we adopted an unsupervised learning algorithm that induces what the

product descriptions are, given the pages. Our algorithm requires only a handful of training exam-

ples, because it employs a very strong bias based on the second and third regularities described in

Section 3.1. The algorithm is shown in Figure 5.

Based on the third regularity, the learner assumes that every product description starts on a

fresh line, as speci�ed by an HTML tag such as <p> or <li>. So after �ltering out header and

tail information, the algorithm breaks the remaining HTML code of each page into logical lines

representing vertical-space-delimited text.

Based on the second regularity, the learner assumes that at a certain level of abstraction, every

product is described in the same format.

5

Each logical line is abstracted into a line description

to investigate enabling ShopBot to override the heuristics in cases where they fail.

5

In fact, the assumption of a uniform format is justi�ed by more than the vendor's desire for a consistent look and

feel. Most online merchants store product information in a relational database and use a simple program to create a

custom page in answer to customer queries. Since these pages are created by a (deterministic) program, they have a

uniform format.
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Internet Shopping Network NECX Direct

Line Description Rank Line Description Rank

<br><a>text</a>text 324 <li><a>text</a></li>text<br> 402

<a>text</a>text 4 <h4>text<a>text</a> 21

<h2>text<a>text</a>text 3 <li><a>text</a></li>text 12

</h2>text 0 <a>text</a> 4

<br>text 0 <br> 0

</h4> 0

text 0

Figure 6: Line descriptions produced when learning the format of Internet Shopping Network

(http://www.internet.net) and NECX Direct (http://necxdirect.necx.com). The highest

ranked line descriptions were correctly recognized as encoding product information.

by removing the arguments from HTML tags and replacing all occurrences of intervening freeform

text with the variable text. For example, a logical line consisting of the source:

<li>Click<a href="http://store.com/Encarta">here</a>for the price

of Encarta.

would be abstracted into the line description \<li>text<a>text</a>text." See Figure 6 for some

other examples of line descriptions.

Finally, the learner uses a heuristic ranking process to choose which line description is most likely

to be the one the store uses for product descriptions. Our current ranking function is the sum of

the number of lines in which some text (not just whitespace) was found, plus the number in which

a price was found, plus the number in which one or more of the required attributes were found.

This heuristic exploits the fact that since the test queries are for popular products, vendors tend

to stock multiple versions of each product, leading to an abundance of product descriptions on a

successful page. Figure 6 shows the line descriptions produced during the process of learning the

product description formats for two software vendors. In both cases, ShopBot correctly picked the

line description corresponding to product descriptions. Other vendors have very di�erent product

formats, but this algorithm is broadly successful, as we will see in Section 4.

3.3.4 Generating the Vendor Description

The ShopBot learner repeats the procedure just described for each candidate form. The �nal step

is to decide which form is the best one to use for comparison shopping. As mentioned above,

this choice is based on making an estimate E

i

for each form F

i

of how successful the comparison-

shopping phase would be if form F

i

were chosen by the learner. The E

i

used is simply the value

of the heuristic ranking function for the winning line description. This function re
ects both the

number of the popular products that were found and the amount of information present about each
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one. The exact details of the heuristic ranking function do not appear to be crucial, since there is

typically a large disparity between the rankings of the \right" form and alternative \wrong" forms.

Once the learner has chosen a form, it records a vendor description (Figure 4) for future use by

the ShopBot shopper described in the next section. If the learner can't �nd any form that yields a

successful search on a majority of the popular products, then ShopBot abandons this vendor.

The ShopBot learner runs o�ine, once per merchant. Note that the learner's running time is linear

in the number of vendors, the number of forms at a vendor's site, the number of \test queries,"

and the number of lines on the result pages. The learner typically takes 5{15 minutes per vendor.

3.4 Real-Time Comparison Shopping

While the ShopBot learner is run infrequently, the ShopBot shopper is designed for frequent opera-

tion by a wide range of users. Since all learning has been performed o�ine, the shopper can execute

very quickly. Figure 7 summarizes the shopper architecture. As input, the shopper requires both

the vendor description (Figure 4) and the domain description (Figure 2). The shopper interacts

with the user through a graphical user interface (GUI) that is created from the domain description.

SHOPBOT   BUYER

Get user request
For each vendor
  Go to index
  Fill in form
  Parse results
Sort 
Display to user

Product attrib.

Search result

GUI
ONLINE
VENDORS

Purchase 
Request

Best buys

VENDOR
DESCRIPT

DOMAIN
DESCRIPT

Figure 7: The ShopBot shopper's comparison-shopping algorithm

The operation of the shopper is fairly simple. Once it has received a request from the human via

the GUI, it goes in parallel to each online vendor's searchable index, and �lls out and submits the

forms. For each resulting page not matching the vendor's failure template, it strips o� the header

and trailer, and looks in the remaining HTML code for any results | any logical lines matching

the learned product description format. It then sorts the results (e.g., by ascending order of price),

and generates a summary for the user.

Several important principles underlie the ShopBot shopper's user interface:

� Users are impatient. Because most of the work has been done by the learner, the ShopBot

shopper is very fast; in fact, fetching pages over the network is the bottleneck. The shopper

accesses all vendors in parallel, so it is much faster than even an expert human.
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� Users desire continual feedback and control. Norman [17] argues that users should feel

in control of their agents, and that it helps if they can build an accurate conceptual model of

their agent's activity. The shopper promotes this by providing constant feedback telling the

user which vendors are being contacted and what prices have been found so far (see Figure 8).

The user can interrupt it at any time.

� Provide no information without graceful degradation. The shopper provides the

user with enough context around any information it extracts so that the user can verify its

conclusions or investigate manually. For the user's convenience, ShopBot indicates the store's

home page, the search form it used, and each full product description found.

Figure 8: A snapshot of ShopBot shopping for Quicken.

13



Group Time (min:sec) Navigator eXceed Word Quicken

1 13:20 $30.71 $373.06 $282.71 $ 42.95

2 112:30 38.21 (not found) 282.71 41.50

3 58:30 40.95 610.00 294.97 42.95

Table 1: Subjects using the ShopBot performed the task much faster and generally found lower

prices.

4 Empirical Results

In this section we consider the overall usefulness of the current ShopBot prototype, the ease with

which ShopBot can learn new vendors in the software domain, and its degree of domain indepen-

dence.

4.1 Evaluating ShopBot Utility

We conjectured that there are two components responsible for the ShopBot's utility. First, the

ShopBot shopper acts as a repository of knowledge about the Web: since the user interacts with the

shopper after the learning phase has been completed, ShopBot is able to immediately access online

vendors and search for the user's desired product. Second, the ShopBot shopper is both methodical

and e�ective at actually �nding products at a given vendor; most users are too impatient to perform

a manual exhaustive search. For our �rst experiment, we attempted to measure the usefulness of

the current prototype ShopBot and to determine which component was responsible for the utility.

We enlisted seven subjects who were novices at electronic shopping, but who did have experience

using Netscape. We divided the subjects into three groups:

1. Those who used ShopBot (3 subjects),

2. Those who used Netscape's search tools and were also given the URLs of twelve software

stores used by ShopBot (2 subjects), and

3. Those who were limited to Netscape's search tools (2 subjects).

Two independent parties suggested popular software items, yielding descriptions of four prod-

ucts: Netscape Navigatior and Hummingbird eXceed for Windows, and Microsoft Word and Intuit

Quicken for the Macintosh. We asked all subjects to try to �nd the best price for these products

and to report how long it took them. Table 1 presents the mean time and prices for each group.

6

It is perhaps unsurprising that ShopBot users completed their task much faster than the other

subjects, but there are several interesting observations to draw from Table 1. First, subjects limited

6

The trials using subjects in Group 1 were run separately and independently of each other, in order to avoid any

positive e�ects from caching or negative e�ects from overloading of the ShopBot server.
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to Netscape's search methods never found a lower price than ShopBot users. Second, although we

thought the list of store URLs might make group 2 subjects more e�ective than ShopBot users,

the URLs actually slowed the subjects down. We suspect the tedium of checking stores repeatedly

caused group 2 subjects to make mistakes as well. For example, one group 2 subject failed to �nd

a price for eXceed (the other found a low price on an inappropriate version). It seems clear that

ShopBot's utility is due to both its knowledge and its painstaking search.

4.2 Acquistion of New Software Vendors

To assess the generality of the ShopBot architecture, we asked an independent person not familiar

with ShopBot to �nd online vendors that sell popular software products and that have a search

index at their Web site. The independent person found ten such vendors. Although it needs a

bit of help at three, ShopBot is able to �nd products at all of them.

7

ShopBot currently shops

at twelve software vendors: the aforementioned ten plus two more we found ourselves and used

in the original design of the system. Table 2 shows the prices it found for each of the four test

products at each store. (Some of the prices are slightly lower than the users in group 1 found above,

because the data in Table 2 was obtained at a later date.) This demonstrates the generality of

ShopBot's architecture and learning algorithm within the software domain. The table also shows

the variability in both price and availability across vendors, which motivates comparison shopping

in the �rst place.

4.3 Generality Across Product Domains

We have begun to de�ne a new domain description that enables ShopBot to shop for pop/rock CD's.

We chose the CD domain (�rst used by the hand-crafted agent BargainFinder [11]) to demonstrate

the versatility and scope of ShopBot's architecture. With one day's work on describing the CD

domain, we were able to get ShopBot to shop successfully at four CD stores. BargainFinder currently

shops successfully at three. (It would shop at three more, but those vendors are blocking out its

access.) So with a day's work, we were able to get ShopBot into the same ballpark as a hand-crafted

agent in the same domain.

Of course, we do not claim our approach will work with every online vendor. In fact, we know of

two vendors where its basic techniques would fail currently | one has product descriptions that

comprise multiple logical lines, another has product descriptions in varying formats; ShopBot's

learning algorithm uses such a strong bias that it cannot correctly learn the formats for these

vendors. Nevertheless, the fact that it works on all ten sites found by an independent source

strongly suggests that sites where it fails are not abundant.

7

On three vendors, the system was unable to get to the search form by itself. For one vendor, the only way to get

to the search form is to go through an image map; ShopBot cannot understand images. For two other vendors, the

search form is at a di�erent Web site | ShopBot searches for HTML forms only at the site where the vendor's home

page resides, so if a vendor has pages at two di�erent sites, ShopBot will �nd only the ones at the home page's site.

To get ShopBot to handle these sites, we gave it the search page URL to start from, rather than the home page URL.

We also needed to re�ne some heuristics in ShopBot to get it to handle all ten vendors | again, we do not claim to

have identi�ed the perfect set of heuristics.
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Home Page URL Navigator eXceed Word Quicken

http://www.internet.net/ $ 28.57 { $ 282.71 $ 43.06

http://www.cybout.com/cyberian.html 36.95 { 289.95 42.95

http://necxdirect.necx.com/ 31.95 { 329.95 42.95

http://www.sparco.com/ 35.00 { 312.00 49.00

http://www.warehouse.com/ 39.95 { fail fail

http://www.cexpress.com/ ? ? fail ?

http://www.avalon.nf.ca/ 44.95 { { {

http://www.azteq.com/ ? { ? ?

http://www.cdw.com/ { { 289.52 fail

http://www.insight.com/web/zdad.html { { 315.00 {

http://www.applied-computer.com/twelcome.html { $ 349.56 { 43.47

http://www.sidea.com/ 59.00 { { {

Table 2: Prices found by ShopBot for the four test products at twelve software stores. \{" indicates

that ShopBot successfully recognized that the vendor was not selling this product; \?" indicates

ShopBot found the product but did not determine the price; fail indicates that ShopBot failed to

�nd the product even though the vendor was selling it.

5 Related Work

We can view related agent work as populating a three-dimensional space where the axes are the

agent's task, the extent to which the agent tolerates unstructured information, and whether its

interface to external resources is hand-coded. In this section, we contrast ShopBot with related

agents along one or more of these dimensions. ShopBot is unique in its ability to learn to extract

information from the semi-structured text published by Web vendors.

Much of the related agent work requires structured information of the sort found in a relational

database (e.g., [12, 3]). The Internet Softbot [7] is also able to extract information from the rigidly

formatted output of UNIX commands such as ls and Internet services such as netfind. There

are agents that analyze unstructured Web pages, but they do so only in the context of the assisted

browsing task [4, 13], in which the agent attempts to identify promising links by inferring the

user's interests from her past browsing behavior. Finally, there have been attempts to process

semi-structured information, but again in a very di�erent context than ShopBot. For example,

FAQ-Finder [8] relies on the special format of FAQ �les to map natural language queries to the

appropriate answers.

In contrast with ShopBot, virtually all learning agents (e.g., [15, 14, 6, 10]) learn about their

user's interests, instead of learning about the external resources they access. The key exception

is the Internet Learning Agent, ILA [18]. ILA learns to understand external information sources

by explaining their output in terms of internal categories. ILA learns by querying an information

source with familiar objects and analyzing the relationship of output tokens to the query. For

example, it queries the University of Washington personnel directory with Etzioni and explains
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the output token 685-3035 as his phone number.

ShopBot borrows from ILA the idea of learning by querying with familiar objects. However, ShopBot

overcomes one of ILA's major limitations. ILA focused exclusively on the problem of category

translation and explicitly �nessed the problem of locating and extracting relevant information from

a Web site | ILA relied on hand-coded \wrappers" to parse the response from each Web site into

a small, ordered list of relevant tokens. Thus, ShopBot is solving a di�erent learning problem than

ILA: instead of trying to interpret each of a list of relevant tokens, ShopBot attempts to identify

the relevant tokens and learn the format in which they are presented. ShopBot replaces ILA's hand-

coded wrappers with an inductive learning algorithm biased to take advantage of the regularities

in Web store fronts.

Along the task dimension, BargainFinder [11] is the closest agent to ShopBot. Indeed, ShopBot's

task was inspired by BargainFinder's feasibility demonstration and popularity. However, there are

major technical di�erences between BargainFinder and ShopBot. Whereas BargainFinder is hand-

coded for one product domain, ShopBot is product-independent: it takes a description of a product

domain as input. Whereas BargainFinder must be hand-tailored for each store it shops at, the

only information ShopBot requires about a store is its URL | ShopBot learns how to extract

information from the store. In short, BargainFinder is not an AI program, while ShopBot relies on

AI techniques (heuristic search, pattern matching, and inductive learning). Consequently, ShopBot

scales to di�erent product domains and is robust to changes in online vendors and their product

descriptions.

6 Summary, Critique, and Future Work

Although the Web is an appealing testbed for the designers of intelligent agents, its sheer size, lack

of organization, and ubiquitous use of unstructured natural language make it a formidable challenge

for these agents. In this paper we presented ShopBot, a fully-implemented comparison-shopping

agent that operates on the Web with surprising e�ectiveness. ShopBot automatically learns how to

shop at online vendors and how to extract product descriptions from their Web pages. It achieves

this performance without sophisticated natural language processing, and requires only minimal

knowledge about di�erent product domains. Instead, it uses heuristic search, pattern matching,

and inductive learning techniques which take advantage of regularities at vendor sites. The most

important regularity we observed empirically is that vendors structure their store fronts for easy

navigation and use a uniform format for product descriptions. Hence, with a modest amount of

e�ort ShopBot can learn to shop at a Web store.

The experiments of Section 4 demonstrate that ShopBot is a useful agent which successfully navi-

gates a variety of stores and extracts the relevant information. The �rst experiment showed that

ShopBot provided signi�cant bene�t to its users, who were able to �nd better prices in dramatically

less time than subjects without ShopBot. The second and third experiments showed that ShopBot

scales to multiple stores and multiple product domains. It shops successfully at all ten software

stores found by an independent person. And although it was originally designed for software, a

new domain description enabled it to shop for CD's as well, with coverage comparable to that of
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BargainFinder, an agent custom built for this domain.

While our experiments have shown that the ShopBot prototype is remarkably successful, they have

also revealed a number of limitations. Some of these apply to ShopBot as it stands now, and can

probably be �xed with fairly straightforward extensions:

� ShopBot needs to do a more detailed analysis of product descriptions. It does not distinguish

between upgrades to a product and the product itself. Because the upgrades tend to be

cheaper than the product, they appear higher in ShopBot's sorted list.

� ShopBot relies on a very strong bias, which ought to be weakened somewhat. In particular,

ShopBot assumes that product descriptions reside on a single line, and that product descrip-

tion lines outnumber other line types. A more sophisticated learning algorithm would check

whether these assumptions are violated, and if so, resort to a more subtle analysis of the

vendor's product descriptions.

Other concerns may impact the ShopBot's basic architecture:

� ShopBot is limited to the comparison shopping task, and should be extended to the other

tasks described in Section 2.

� ShopBot is limited to stores that provide a searchable index. Some online stores, especially

ones with smaller inventories, provide no index, but use a hierarchical organization instead.

ShopBot needs to be able to navigate such hierarchies.

� ShopBot is boldly consumer-oriented, which may aggravate vendors who do not want to be

comparison-shopped. In fact, several vendors are currently blocking access by BargainFinder.

We plan to reimplement the ShopBot shopper in Java, making it harder to distinguish from

a person shopping.

� The ShopBot shopper's performance is linear in the number of vendors it accesses (except for

the negligible cost of sorting the �nal results). Once an order of magnitude more merchants

populate the Web, it will be important for ShopBot to restrict its search to vendors it considers

likely to stock the product at a good price.

� ShopBot relies heavily on HTML. If a vendor provides information exclusively by embedding

it in graphics or using Java, ShopBot will be unable to handle the vendor. However, future

versions of ShopBot should be able to run Java applets and attempt to analyze their output,

just as ShopBot currently does with HTML. We acknowledge that in some cases the output

will be too complex or too graphical to permit analysis, but hope that the problem will be

lessened by the fact that vendors tend to include \low-technology" formats for the bene�t

of users on slow network links and users whose browsers are not Java-compliant. Finally, in

the more distant future, agents may have su�cient value to users that they will clamor for

vendors to provide agent-friendly interfaces to their stores.

All these issues need to be addressed in future research. We also plan additional tests of the

ShopBot learner to demonstrate scalability to more domains (e.g., books, consumer electronics,
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etc.). Each of these domains consists of products that can be concisely described with a small

number of attributes, so it should be feasible to develop domain descriptions for them. We hope to

endow ShopBot with more knowledge about the various product domains. For example, we plan to

provide ShopBot with rough price expectations for di�erent products. A $1.00 price for Encarta is

probably an error of some sort, not a bargain.

We believe that the basic ideas behind the learning algorithm of Section 3.3 are not limited to

creating descriptions of product catalogs. We are planning to extend the algorithm to generate

\wrappers" (i.e., interface functions) for accessing databases whose contents can be described with

relational schemata and whose search forms can be interpreted as relational operations restricted

with the use of binding templates [19]. For example, we are generalizing our approach to learn the

contents of Web-based Yellow Pages services.

More generally, we conjecture that the vendor regularities that facilitate ShopBot's success are far

from unique. ShopBot is a case study suggesting that many Web sites are semi-structured and thus

amenable to automatic analysis via AI techniques. We anticipate that regularities will be discovered

in other classes of Web sites, which will enable intelligent Web agents to thrive. Although the Web

is less agent-friendly than we might hope, it is less random than we might fear.
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