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Abstract

Recently there has been a great deal of interest in the

operating systems research community in prefetching

and caching data from parallel disks, as a technique

for enabling serial applications to improve I/O perfor-

mance. [16, 30, 32, 41, 51, 42]. We consider algorithms

for integrated prefetching and caching in a model with

a �xed-size cache and any number of backing storage

devices (which we will call disks). The integration of

caching and prefetching with a single disk was previ-

ously considered by Cao et al. [8]. We show that the

natural extension of their aggressive algorithm to the

parallel disk case is suboptimal by a factor of (nearly)

the number of disks in the worst case. Our main result is

a new algorithm, reverse aggressive, with near-optimal

performance for integrated prefetching and caching in

the presence of multiple disks.

1 Introduction

1.1 Motivation

Recent advances in technology have made magnetic

disks both cheaper and smaller. As a result, parallel

disk arrays have become an attractive means for achiev-

ing high performance from storage devices at low cost.

Multiple disks o�er the advantages of both increased

bandwidth and reduced contention. Nonetheless, there

are many applications which do not bene�t from this

I/O parallelism as much as they could, and end up

stalling for I/O a signi�cant fraction of the time.

At the same time, it has been observed that many of

these applications have largely predictable access pat-

terns. This has enabled the use of prefetching and in-

formed cache replacement(e.g., [16, 30, 32, 41, 51, 42]) as

techniques for reducing I/O overhead in such systems.

The two techniques are not independent, however, and

can interact poorly if their interaction is not considered

carefully [8, 41].

In this paper, we consider a theoretical model that

captures the important characteristics of a system for

prefetching and caching with multiple disks. We study

the o�ine problem of constructing an optimal prefetch-

ing and caching schedule in this model, for a given

request stream. An optimal schedule minimizes the

elapsed time required to serve the given request stream.

Although complete information about future requests is

usually not available, partial information is often avail-

able in the form of limited or even signi�cant lookahead

into the request stream. Empirically we have found

that a limited-lookahead version of our algorithm out-

performs other approaches in practice [28]. In addition,

the design and analysis of the optimal o�ine algorithm

is an important step towards understanding and evalu-

ating more practical limited-lookahead algorithms.

1

Surprisingly, even in the o�ine, single-disk situation,

this is a challenging combinatorial problem: we know

of no polynomial time algorithm for determining an op-

timal prefetching schedule. The di�culty comes from

the fact that prefetching too soon can cause additional

cache misses by replacing blocks that would remain in

the cache if prefetching were done later or not at all:

new and possibly better eviction opportunities arise as

a program proceeds. Nonetheless, Cao et al. [8] were

able to show that a simple and natural algorithm called

aggressive, which prefetches as early as is reasonable,

has performance that is provably close to optimal in

the single disk case.

We show, however, that the natural extension of this

algorithm to the multiple disk case has performance that

is suboptimal by a factor nearly equal to the number of

disks. The interaction between caching and prefetching

is signi�cantly more complicated in a system with mul-

tiple disks because a set of blocks can be prefetched in

parallel only if they reside on di�erent disks: each disk

can serve only one prefetch at a time. The prefetching

schedule and choice of cache evictions impact the poten-

1

We can perhaps draw an analogy with the impact of the op-

timal o�ine paging algorithm [1] on the design, implementation

and evaluation of online paging algorithms.
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Figure 1: An example of prefetching and caching with two disks. One disk holds blocks A, C, E, and F, and another

disk holds blocks b and d. The cache size is K = 4 and the fetch time is F = 2.

tial for subsequent parallel prefetching in a complex way.

Our main result is a new algorithm, reverse aggressive,

with near-optimal performance for this problem.

1.2 An Example

An example will serve to introduce our model and illus-

trate the challenge posed by the multi-disk problem. In

the example, the cache holds four blocks. The applica-

tion references one block per time unit. If the applica-

tion wants to reference a block that is not present in the

cache, the application must wait or stall until the block

is present. In this example, it takes two time units to

fetch a block from disk, and each disk can perform only

one fetch at a time. Every fetch evicts some block from

the cache; the evicted block becomes unavailable at the

moment the fetch starts. The goal is to minimize the

total time spent by the application, or equivalently to

minimize the stall time.

The application references blocks according to the se-

quence (A; b; C; d; E; F ), and the cache initially holds

blocks A, b, d, and F . Blocks A, C, E, and F reside on

one disk; blocks b and d on a di�erent disk. A straight-

forward approach is to use the aggressive algorithm [8]:

always fetch the missing block that will be referenced

soonest; evict the block whose next reference is furthest

in the future; but don't fetch if the evicted block will be

referenced before the fetched block. Figure 1(a) shows

the cache block changes. For example, initially, the �rst

missing block is C, and the block whose next reference

is furthest in the future is F . Moreover, the reference to

F is after the reference to C. Therefore, the aggressive

algorithm immediately initiates a fetch for C, evicting

F . Notice that this fetch is entirely overlapped wtih

computation (the references to A and b). The sched-

ule produced using this algorithm results in one unit of

stall time (the sixth time unit). The entire sequence is

served in seven time units.

Figure 1(b) shows another schedule that is faster by

one time unit. On the �rst fetch, d is evicted rather

than F , even though d is referenced earlier. This has

the advantage of o�oading one fetch from the heavily

loaded disk to the otherwise idle disk. This change al-

lows two fetches to proceed in parallel later, thus saving

one time unit.

The example shows that it is helpful to take disk load

into account when making fetching and eviction deci-

sions. This is the factor that makes the multi-disk prob-

lem more di�cult than the single-disk problem.

1.3 Overview of Results

Our model generalizes the previous example in the ob-

vious way. Its parameters are as follows.

� Let d be the number of disks.

� Let B be a set of blocks. We will refer to the disk

on which a block b 2 B resides as the color of b.

� There is a cache that contains at most K blocks in

B at any time.

� A reference sequence, or request sequence, is an

ordered sequence of references R = r

1

; r

2

; : : : r

jRj

,

where each r

i

2 B.

� Fetching a block from a disk into the cache takes

F time units.

We imagine that there is a cursor which at any time

points to the next request to be served. If this request

is for a block that is in the cache, the cursor advances

by one during the next time unit. If this request is for

a block that is not in the cache, the cursor stalls un-

til that block arrives in the cache (i.e., until the fetch

Page 2



for that block completes). Note that to the extent that

the cursor is advancing, a prefetch can overlap the serv-

ing of requests. Also, prefetches can overlap each other

provided that the prefetched blocks reside on di�erent

disks.

We consider three algorithms for parallel prefetching

in this paper, conservative, aggressive and reverse ag-

gressive. The �rst two are natural extensions of the two

single disk prefetching strategies described in [8]. They

lie at opposite ends of the spectrum in terms of the

total number of fetches performed: Conservative per-

forms the minimum possible number of fetches, at the

expense of a worse elapsed time in the worst case; Ag-

gressive prefetches as aggressively as possible without

making things worse.

We give nearly tight bounds on the performance of

both of these algorithms. Unfortunately, for both of

these algorithms, there are reference patterns on which

their performance is suboptimal by a factor of nearly d,

for values of d, F and K that are typical in practice.

Theorem 1 On any reference string R, the elapsed

time of conservative with d disks on R is at most d+ 1

times the elapsed time of the optimal prefetching strategy

on R.

This bound is nearly tight for d� F � K: There are

arbitrarily long strings on which conservative requires

time 1 + d

K�F

K

F

F+d

times the optimal elapsed time.

Theorem 2 On any reference string R, the elapsed

time of aggressive with d disks on R is at most d(1 +

F+1

K

) times the elapsed time of the optimal prefetching

strategy on R.

This bound is nearly tight for d �

p

F : There are

arbitrarily long strings on which aggressive requires time

d�

3d(d�1)

F+3(d�1)

times the optimal elapsed time (within an

additive constant that depends only on F and K).

Our main result is the development and analysis of

a new algorithm, called reverse aggressive, whose per-

formance is provably close to optimal. Interestingly,

it achieves this by constructing a prefetching schedule

backwards, i.e. by considering the reference sequence

in reverse order. For reasons that will be made clear,

this causes it to avoid problems encountered by the (for-

ward) aggressive algorithm. Aggressive su�ers from load

imbalance and an inability to keep lightly loaded disks

from outpacing (prefetching far ahead of) heavily loaded

disks. We give an intuitive explanation as well as a

more formal justi�cation of reverse aggresive's advan-

tages in section 2. Detailed proofs are contained in the

appendix. On real systems, dF=K is small

2

, so that the

2

F=K is typically less than 0.02, and typical disk-arrays have

at most 5 disks. Moreover, technological trends are such that

F=K will only get smaller with time.

factor 1 + dF=K in the following theorem is not much

greater than one (hence our claim of \near-optimality").

Theorem 3 Reverse aggressive requires at most 1+

dF=K times the optimal elapsed time to service any re-

quest sequence, plus an additive term dF independent

of the length of the sequence.

This bound is nearly tight for small d: There are arbi-

trarily long strings on which reverse aggressive requires

(1 + (F � 1)=K) times the elapsed time of the optimal

prefetching strategy on R.

1.4 Related Work

Our problem is a generalization of, but signi�cantly

more complicated than, the classical paging problem.

Indeed, one principle for prefetching (the optimal evic-

tion rule described in section 2.2) is derived from Be-

lady's optimal longest forward distance [1] paging algo-

rithm. As we will see, however, the application of this

rule alone is insu�cient to guarantee good prefetching

performance; the natural algorithm based on it is sub-

optimal by a factor of nearly d+ 1. (See Theorem 1.)

On the theoretical side, we know of no prior work

on the integration of parallel prefetching and caching.

There have been some interesting results on the use of

data compression for the design of optimal prefetching

strategies [29, 49], and work on prefetching strategies

for external merging under a probabilistic model of re-

quest sequences [38]. However, these studies concen-

trated only on the problem of determining which blocks

to fetch, and did not address the problem of determining

which blocks to replace.

Our work builds on recent studies of the sequential

version of this problem (single disk) which showed [8, 7]

that it is important to integrate prefetching, caching and

disk scheduling and that a properly integrated strategy

can perform much better than a naive strategy, both

theoretically and in practice.

In the systems community, caching and prefetching

have been known techniques to improve the performance

of storage hierarchies for many years [50, 1, 17]. The

breadth of application of these techniques has ranged

from architecture [46] to database systems [47, 11, 39,

13] to �le systems [17, 33, 24, 37, 48, 6, 21, 9, 42]

and beyond. A recent trend in this research is to

use applications' knowledge about their access pat-

terns to perform more e�ective caching and prefetch-

ing [6, 9, 41, 42, 23, 34].

Our practical motivation for this problem comes from

�le systems. In this domain, the most common prefetch-

ing approach is to perform sequential read-ahead, i.e.

to detect when an application accesses a �le sequen-

tially, and to prefetch the blocks of the �les that are
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so used [17, 33, 35]. The obvious limitation of this ap-

proach is that it bene�ts only applications that make

sequential references to large �les. Another large body

of work has been on predicting future access patterns

(without hints from the application) even when access

patterns are more complicated [16, 48, 39, 13, 21].

Much research in the past on parallel I/O has con-

centrated on techniques for \striping" and distributing

error-correction codes among redundant disk arrays or

other devices to achieve high bandwidth by exploiting

parallelism and to tolerate failures [27, 45, 2, 12, 10, 40,

20, 31, 36, 19, 3, 5, 26, 43, 25, 14, 4, 18, 15, 22, 44].

Our work complements these previous e�orts. File ac-

cess prediction (with or without application hints) can

be used to provide the inputs to the algorithm described

in this paper. Once future accesses are known, our al-

gorithm determines a near-optimal prefetching sched-

ule. Our algorithm achieves near-optimal performance

for any given layout of disk blocks (such as striping).

Its performance will only improve when a near-optimal

layout is used.

Recently, caching and prefetching have also been em-

pirically studied for parallel �le systems [16, 30, 32, 41,

51, 42].

Finally, in joint work with P. Cao, E. Felten and K. Li

of Princeton University, we have performed an empirical

study of the performance of the algorithms described

in this paper. A companion paper [28] reports on this

empirical evaluation. A brief summary of the results is

given in section 3.4 of this paper.

1.5 Organization of the Paper

In section 2, we describe several properties that can be

assumed of optimal prefetching algorithms. These con-

strain the problem and by adhering to them, we can

ensure that an algorithm's performance is not far from

optimal. Also in section 2, we describe the algorithms in

greater detail and give intuition on their performance.

In section 3, we give high level descriptions of the proofs

of the results claimed in section 1.3. We conclude with

open problems for further research. Detailed proofs are

contained in the appendix.

2 Characterizing the Optimal

Prefetching Schedule

2.1 Holes

At any point in processing the sequence (i.e. for any

given cache state and cursor position), a hole is a block

that is not present in the cache. We will use the term

\hole" to refer to both the missing block and its next

occurrence in the request sequence; which of these is

meant will be clear from the context. If the cache is

full, there are K out of jBj blocks in the cache and thus

jBj � K holes. After a block is requested for the last

time, we consider the corresponding hole in the request

sequence to be at position jRj+1, i.e., greater than the

index of any request, where R is the request sequence.

2.2 Prefetching with a single disk

Before proceeding, we review the results of Cao et al. [8]

for prefetching and caching in the single-disk case. They

described four properties that can be assumed of any

optimal strategy in the single-disk case:

1. optimal fetching: when fetching, always fetch the

missing block that will be referenced soonest;

2. optimal eviction: when fetching, always evict the

block in the cache whose next reference is furthest

in the future;

3. do no harm: never evict block A to fetch block B

when A's next reference is before B's next refer-

ence;

4. �rst opportunity: never evict A to fetch B when

the same thing could have been done one time unit

earlier.

It is easy to show that any schedule for serving re-

quests and performing fetch-and-evict operations that

does not follow these rules can be transformed into one

that does, with performance at least as good. The �rst

two rules specify what to fetch and what to evict, once a

decision to fetch has been made. The last two rules con-

strain the times at which a fetch can be initiated. How-

ever, these rules do not uniquely determine a prefetch-

ing schedule. In particular, they do not specify how to

choose between an earlier prefetch with a correspond-

ingly earlier eviction and a later prefetch with a cor-

respondingly later eviction. The former helps prevent

stalling on earlier holes, whereas the latter may help

prevent the introduction of holes, and hence stalling at

a later time.

Nonetheless, these rules do provide a fair amount of

guidance in the design of a prefetching algorithm. Cao

et al. considered two natural algorithms that follow

these rules, aggressive and conservative, that lie at op-

posite ends of the spectrum of possibilities. Aggressive

is the algorithm that initiates a prefetch whenever its

disk is ready (i.e. is not in the middle of a prefetch)

and the do no harm rule allows it. Conservative is

the algorithm that refuses to fetch until it can evict

the same block that would be evicted by the optimal
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longest forward distance [1] algorithm in the classical

paging model. That is, conservative applies the rule

optimal eviction as though the prefetch were to be initi-

ated immediately before serving the request to the miss-

ing block, then applies the rule �rst opportunity to swap

the chosen fetch/eviction pair as early as possible. Con-

servative makes the minimum number of total fetches,

but it often declines opportunities to prefetch blocks.

Cao et al. showed that in the single-disk case, con-

servative's elapsed time on any sequence is at most

twice the optimal time, and that aggressive's worst-case

elapsed time is at most min(1+F=K; 2) times optimal,

where F is the time required to fetch a block and K is

the cache size measured in blocks. (They also showed

that these bounds are tight.) On real systems, F=K is

typically small, so aggressive is close to optimal.

2.3 The multi-disk case

There is an obvious and natural extension of each of

these algorithms to the multi-disk case. For aggressive,

it is the following: Whenever a disk is free, prefetch

the �rst missing block of that disk's color, replacing the

block (of any color) whose next reference is furthest in

the future among all cached blocks. However, a fetch

should be started only if the next access to the evicted

block is after that to the block being fetched.

Unfortunately, as we shall see, this algorithm does

not enjoy the same performance guarantee in the multi-

disk case as it achieved in the single disk case. In fact,

the four properties on which it was based in the single

disk case do not hold for optimal strategies in the multi-

disk case. As a result, it su�ers from two problems in

the multi-disk case that did not exist in the single disk

case:

� The eviction decisions it makes are \color-blind":

It chooses evictions to make without consideration

of the load on the disks. These choices can result

in a situation where many of the holes at any time

are of the same color, and therefore can not subse-

quently be prefetched in parallel. (See �gure 1 for

an example of this.)

� Aggressive is too aggressive. The result is that it

can cause some disks to fetch too far ahead with

respect to other disks. These fetches increase the

share of the cache occupied by blocks belonging to

the lightly loaded disk(s), creating even more holes

for the heavily loaded disk(s) to �ll.

Therefore, we are motivated to approach the multi-

disk prefetching problem in a way that will constrain the

space of possibilities for the prefetching schedule in the

same way that the four rules described above constrain

the schedule in the single-disk case.

2.4 Properties of Optimal Parallel

Prefetching

It is not hard to show that out of the four rules for

optimal prefetching with one disk, only the last (�rst

opportunity) holds when there are multiple disks. Find-

ing a rule to replace optimal fetching is not much of a

problem, however. The \colored" version of the rule

can be used, i.e., for each disk c, the next block to fetch

from c is the next missing block in the sequence that is

colored c. Thus, as in the single-disk case, the question

of which block to fetch reduces to the question of when

to initiate a prefetch operation; this question needs to

be answered for each disk, of course.

Optimal eviction is more troublesome. Suppose there

are two disks, colored red and blue. If there are many

red blocks missing in the sequence, say, it may be that

the best choice for eviction is a blue block even though

the block whose next request is furthest in the future

is red. This is because the relatively lightly-loaded blue

disk can better handle the increased burden of another

missing block than the red disk can. Given that a blue

block is to be evicted, say, it is true that the best choice

is the blue block that is not requested for the longest

time. That is, the colored version of this rule holds, but

it doesn't tell us which color block to evict.

Even the seemingly obvious do no harm rule can be

violated by the optimal prefetching strategy. This is

because the loads on the disks can be imbalanced. If

there are many red blocks missing from the sequence,

say, but no blue blocks missing, it may be advantageous

to buy time by evicting a blue block (and completing

a fetch of a red block sooner than it would be possible

otherwise), and then bringing the blue block back into

the cache after a request to some red block has been

served (so that a new eviction opportunity has arisen).

2.5 Using the reverse sequence

An interesting twist allows us to convert multiple-disk

prefetching to a more constrained, and hence easier to

solve, problem. In particular, we consider the request

sequence in reverse (in a sense we will describe momen-

tarily). We will be able to show that of the four rules,

all but one (optimal eviction) hold for optimal schedules

serving the reverse sequence. Moreover, we will be able

to replace this rule by a simple \colored" variant (as

we did with the optimal fetching rule for the forward

sequence).

First, we return to the single disk case, and observe

that any prefetching schedule that serves the reverse

sequence S

r

in time T can be used to derive a schedule

to serve S in time T as follows. If the schedule for

serving S

r

serves request r

i

between times t and t+1, the
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Figure 2: An example of reversing a schedule of prefetching and caching with two disks: a disk holding blocks A, B,

and D, and another disk holding block c. The cache size is K = 2 and the fetch time is F = 2.

derived schedule for S serves r

i

between times T � t� 1

and T � t. If the reverse schedule replaces a with b

between times t and t+F , the derived schedule replaces

b with a between times T � t�F and T � t.

3

Applying

this logic twice, we see that the optimal elapsed time for

the reverse sequence is the same as the optimal elapsed

time for the original sequence.

Reversal of the sequence is more complicated when

multiple disks are considered. In the forward direction,

the prefetching schedule is constrained to fetch at most

one block at a time from each disk; eviction choices may

be blocks of either color. Switching between the forward

sequence and the reverse sequence, fetches become evic-

tions and vice versa. To derive a useful schedule from

a schedule serving the reverse sequence, then, requires

that the schedule for the reverse sequence be constrained

to evict at most one block of each color at a time. This

is illustrated in the following example (see �gure 2):

Consider the request sequence \ABcD", where upper

case letters denote red blocks and lower case letters de-

note blue blocks. Let F = 2 andK = 2. By assumption,

at time 0, blocks A and B reside in the cache (for the

execution of the sequence in the forward direction). At

time 1, a fetch is initiated to bring c into the cache from

the blue disk, evicting A. At time 2, a fetch of D from

the red disk is initiated, evicting B from the cache. The

request to c stalls for one step until time 3 at which the

fetch completes.

In the schedule for the reverse sequence, at time 1, D

is evicted in order to start fetching B. Since c is blue

and D is red, a fetch of A (evicting c) can be started at

time 2, even though A and B are both red. The request

for B stalls until time 3; it is served between times 3

and 4.

3

We assume that all algorithms start with the cache containing

the �rst K distinct requests in the sequence. Alternatively, all

our results hold within an additive constant that accounts for

di�erences in algorithms' transient cold-cache startup behaviors.

We can assume without loss of generality that all algorithms end

with the last K distinct requests in the cache.

As previously mentioned, all of the rules presented in

section 2.2 except optimal eviction can be assumed of

optimal prefetching schedules for the reverse sequence.

This fact makes it easier to �nd a schedule for the re-

verse sequence, then transform it into one for the orig-

inal sequence, than to �nd a schedule for the original

sequence directly. The reason for this is that in the for-

ward direction, any time a block is prefetched a decision

must be made as to which color block to evict. In the

reverse direction, this decision is made for us: the block

to evict is the one not needed for the longest time whose

color matches the color of the free disk. (I.e., the \col-

ored" version of the optimal eviction rule can be used.)

One might expect that fetch decisions are harder, but

this is not the case. In the forward direction, the miss-

ing block to fetch is the one of the right color that is

needed soonest. (This is the colored version of optimal

fetching described earlier.) In the reverse direction, it is

the one needed soonest, regardless of color.

2.6 The reverse aggressive algorithm

Reverse aggressive is a prefetching algorithm that per-

forms aggressive prefetching on the reverse of its input

sequence, then derives a schedule to serve the forward

sequence as described in section 2.5. That is, on the re-

verse sequence, it behaves as follows. Whenever a disk

is not in the middle of a prefetch, it determines which

block in the cache is not needed for the longest time

among those with the same color as the disk. If the

index of the next request to that block is greater than

the index of the �rst hole (of any color), a prefetch is

initiated.

An intuitive explanation of reverse aggressive's ad-

vantage over (forward) aggressive is the following:

� Whereas aggressive chooses evictions without con-

sidering the relative loads on the disks, reverse ag-

gressive greedily evicts to as many disks as possible

on the reverse sequence. In the forward direction,
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this translates to making eviction decisions (creat-

ing new holes) based on the ability to �ll the holes

later on without incurring unnecessary stall penal-

ties, while at the same time ensuring close to the

highest degree of parallelism possible.

� Whereas aggressive can wastefully prefetch ahead

on some of its disks, reverse aggressive is greedy in

the reverse direction. Consequently, it is fetching

pages in the forward direction just in time (to the

extent possible) for them to be used. This results in

performing close to the best evictions possible for

those fetches, and exploiting parallelism as much as

possible without creating load imbalance.

3 Results

In this section we give high-level descriptions of the

main ideas used to derive our results. Full details are

given in the appendix.

3.1 Performance of conservative and ag-

gressive

The key concept in the proof of theorem 2 is the no-

tion of domination from the work on prefetching in the

single-disk case [8]. This allows us to bound the cost of

aggressive's prefetching schedule in terms of the progress

of the optimal schedule at intermediate points during

the processing of the request sequence.

De�nition: Given two sets A and B of holes with

jAj � jBj, A is said to dominate B if for all i, 1 �

i � jAj, the index of A's i

th

hole (ordered by increasing

index) is no less than the index of B's i

th

hole. We will

say that the i

th

hole in A is matched to the i

th

hole of

B.

If aggressive's cursor is ahead of opt's cursor, and ag-

gressive's holes dominate opt's holes, then opt's cursor

cannot pass aggressive's: while aggressive stalls on a

hole, opt cannot pass its matching hole. We show that

aggressive is able to continually regain and maintain

such an advantage (having its cursor ahead and its holes

dominate) over opt at regular intervals, without losing

too much time to opt in the process.

The lower bounds of nearly d in theorems 1 and 2

come from the fact that an adversary can construct re-

quest sequences that cause both conservative and ag-

gressive to always fetch blocks from only one disk (be-

cause they make poor replacement choices). The op-

timal algorithm opt can serve these same sequences at

nearly d times the rate because of the parallelism of

prefetching on d disks. The additive term of one for con-

servative (in both the upper and lower bounds) comes

from opt's ability to overlap prefetches with the serving

of requests. In contrast, conservative may not be able

to do so.

The factor of d in the upper bounds comes from the

fact that d is also a limit to the parallelism available to

opt. As in the single-disk case, the factor of 1+(F+1)=K

in the upper bound for aggressive comes from the fact

that aggressive's newly created holes are always at least

K steps from the cursor. From this, it follows that

aggressive prefetches too soon (creating extra holes) at

most once every K requests.

3.2 Performance of reverse aggressive

The proof of theorem 3 required several new ideas. The

notion of domination from the proof of theorem 2 was

replaced by a stronger notion that we call strong domi-

nation.

De�nition: Let A and B be sets of holes, possibly

with di�erent numbers of holes of each color. For each

color c, let N

c

(A) (resp. N

c

(B)) be the number of holes

of color c in A (resp. B). Let N

c

= min(N

c

(A); N

c

(B)).

If N

c

(A) > N

c

(B), we say that c is an excess color

of A; if N

c

(A) < N

c

(B), c is an excess color of B; if

N

c

(A) = N

c

(B), c is not an excess color. Let E

c

=

jN

c

(A) �N

c

(B)j. If c is an excess color of A, we refer

to A's �rst E

c

holes of color c following the cursor as

excess holes; excess holes of B are de�ned similarly. We

say the set of holes A strongly dominates the set of holes

B if

� for each c, A's last N

c

holes of color c dominate B's

last N

c

holes of color c (i.e. A's non-excess holes

of color c dominate B's non-excess holes of color c,

whether c is an excess color of A or B or c is not

an excess color), and

� all of B's excess holes precede the �rst hole in A of

any color.

The following crucial lemma is then used to show that

if reverse aggressive strongly dominates opt, and both

have the opportunity to initiate a fetch replacing blocks

of the same color, then reverse aggressive strongly dom-

inates opt after the corresponding fetches complete.

4

Lemma 4 Strong Domination Lemma

Let a and b be two prefetching schedules for a request

sequence R that satisfy the optimal prefetching rules

described in section 2.5. If a's holes at some time t

4

We are speaking here of the performance of reverse aggressive

on the reverse sequence, compared to an optimal schedule for

the reverse sequence. However, as described in 2.5, the optimal

elapsed time is the same in both directions, and from reverse

aggressive's schedule, we are able to derive a prefetching schedule

for the forward sequence with the same elapsed time.
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strongly dominate b's holes at some time t

0

, a's cursor

position at time t is at least as great as b's cursor posi-

tion at time t

0

, and

1. both algorithms initiate a prefetch using the same

disk (i.e. a and b evict blocks of the same color, a

at time t and b at time t

0

), or

2. a initiates a prefetch at time t but b does not initiate

a prefetch evicting a block of the same color at time

t

0

, or

3. b initiates a prefetch at time t

0

but a does not ini-

tiate a prefetch evicting a block of the same color

at time t, and every block in a's cache of the same

color as b's evicted block is requested before a's �rst

hole at time t,

then a's resulting holes strongly dominate b's resulting

holes.

It is not possible to show that reverse aggressive

strongly dominates opt throughout the sequence. In-

stead, we show that by giving reverse aggressive a little

more time to serve every subsequence of K requests,

it will strongly dominate opt at these regular inter-

vals. That is, reverse aggressive loses about dF steps

by prefetching too soon, thereby generating extra holes

to �ll, only every K requests or so.

The di�culty in showing this is that, in fact, reverse

aggressive may prefetch prematurely very often, but with

at most d � 1 disks. We show that it is able to com-

pensate by consistently making good (distant from the

cursor) evictions with the other (\good") disk. While

reverse aggressive spends an extra F steps relative to opt

�lling the �rst extra hole created by one of the \bad"

disks, the good disk �lls one hole. This gives reverse ag-

gressive a \one hole lead" over opt with respect to the

�lling of holes. (Remember, each disk can fetch blocks

of any color.) This provides a bu�er against stalling

on the (further) extra holes created by the bad disks,

at least until an extra hole created by the good disk

is reached. (The strong domination lemma is used to

show that this invariant is maintained.) The good disk

creates extra holes only once every K requests.

Formalizing all these arguments is di�cult; the details

are presented in the appendix.

3.3 The algorithms' running times

We mention only briey the time required to determine

a prefetching schedule (as opposed to the time required

to serve the sequence in the model described in section

1.3, which is the primary measure we are trying to op-

timize). A linear pre-processing step can be used to

determine per-block lists of requests (indices in the re-

quest sequence), per-disk lists of requests, per-disk lists

of missing blocks (holes), and for each disk, the index

of the next request to the block in the cache that is not

needed for the longest time. These data structures can

be maintained using a constant number of operations

per request, so that each of the algorithms conservative,

aggressive, and reverse aggressive can be implemented

to run in time O(jBj + jRj) in the uniform-cost RAM

model. We omit the details of this analysis in this ex-

tended abstract.

3.4 Empirical Results

As mentioned, in joint work with P. Cao, E. Felten and

K. Li, we have performed an empirical study of the per-

formance of these algorithms. We implemented the ag-

gressive and reverse aggressive algorithms and tested

them on reference streams taken from real �le systems.

These results are reported in a companion paper [28].

We found that in practice, aggressive does substan-

tially better than the worst-case performance we show

here, if the layout of data on the disks is favorable

(roughly, if the loads on the disks are balanced), though

still not as well as reverse aggressive. With unbalanced

loads on the disks (with the number of disks d rang-

ing from 2 to 20), we found that reverse aggressive

outperforms aggressive signi�cantly. That paper also

presents empirical results on the performance of limited-

lookahead versions of these algorithms. In our simula-

tions, we found that the algorithms perform well even

with limited advance knowledge of future �le accesses.

For further details, see [28].

4 Open problems

As mentioned in the introduction, we know of no

polynomial-time algorithm for optimal prefetching even

for one disk. It is a di�cult problem to �nd either such

an algorithm or a proof of hardness. We do have an

e�cient algorithm to determine whether a sequence can

be served with zero stall time (in the single-disk case).

Another very interesting direction is to extend these

results to the case in which only probabilistic informa-

tion is available about the request sequence.
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Appendix: Proofs

Terminology

The following de�nitions will be useful. Further de�ni-

tions will be introduced later, which will be speci�c to

the particular proofs in which they are used.
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De�nition: We divide the request sequence into

phases, maximal-length subsequences of requests to K

distinct blocks, as follows. The �rst phase begins with

the �rst request. Each phase ends immediately before

the �rst request to the (K+1)

st

distinct block since the

beginning of the phase, and the next phase begins with

that request.

Given two sets A and B of holes with jAj � jBj, A is

said to dominate B if for all i, 1 � i � jAj, the index

of A's i

th

hole (ordered by increasing index) is no less

than the index of B's i

th

hole. We will say that the i

th

hole in A is matched to the i

th

hole of B. Notice that

domination is transitive.

If algorithm A has fetches in progress at any time

t, we denote A's holes before initiating those fetches

by H

�

A

(t) (i.e. H

�

A

includes the holes being �lled, but

not the ones being created), and A's holes after those

fetches complete (but ignoring any later fetches that

may overlap them) by H

+

A

(t).

Reverse aggressive: upper bound

Notation

� In this section, we assume all algorithms are work-

ing with the reverse sequence, and denote the opti-

mal algorithm for serving the reverse sequence by

opt.

� Under any algorithm that works on the forward

sequence and follows the optimal eviction rule, no

new holes will be created in a phase once the cursor

enters the phase. For every hole in the phase, there

is at least one block in the cache that is not re-

quested for the remainder of the phase (since there

are only K blocks requested in the phase, by de�-

nition, and the cache holds K blocks). In contrast,

it is possible that reverse aggressive (and opt work-

ing on the reverse sequence, in fact) will create a

new hole within a phase even after its cursor has

entered the phase. Although it's true that for every

hole in the phase, there is a block in the cache that

is not requested until after the end of the phase,

it may be that all those blocks are the same color,

and that the best eviction choice of another color

is a block that will be requested before the end of

the phase. However, if reverse aggressive does cre-

ate new holes in the phase containing the cursor,

it will create such holes of at most d � 1 colors.

We refer to the other disk as the busy disk for the

phase. As long as there are holes remaining in the

phase, the busy disk will initiate a fetch to �ll one

of them every F steps.

� A fetch using the busy disk (and evicting a block of

the same color as the busy disk; the block fetched

may be any color) is referred to as a busy-disk fetch;

fetches using other disks are referred to as non-

busy-disk fetches.

Outline of the proof

We �rst give some preliminaries, proving the claims of

section 2.4 and a simple lemma on combining subsets

of dominating and dominated sets of holes. Next, we

de�ne strong domination, the invariant that is main-

tained as we compare reverse aggressive's prefetching

schedule to opt's, and a variant of this we call phase

domination. We show that if reverse aggressive strongly

dominates (or phase dominates) opt, and both initiate

a prefetch operation using the same disk (i.e. evicting

blocks of the same color) according to the rules for opti-

mal prefetching, reverse aggressive continues to strongly

dominate (resp. phase dominate) opt after their respec-

tive prefetches are completed.

The phase domination lemma is used to bound re-

verse aggressive's elapsed time for a single phase rela-

tive to opt's elapsed time. Roughly speaking, if reverse

aggressive's holes dominate opt's, opt can't get ahead of

reverse aggressive since opt's �rst hole is at least as early

in the request sequence as reverse aggressive's. By al-

lowing reverse aggressive a small amount of time to cor-

rect for mistakes it makes by prefetching sooner than

opt, the phase domination invariant is maintained until

both algorithms reach the end of the phase. This step of

the proof is complicated by the fact that the algorithms

may fetch blocks using their respective disks in di�er-

ent orders. We must permute one sequence of fetches

in order to make direct comparisons between the two

algorithms' operations.

Finally, we show that by using a di�erent permutation

(and a correspondingly di�erent matching of one algo-

rithm's prefetch operations to the other's), the strong

domination lemma implies that strong domination holds

as an invariant as we compare the algorithms' progress

from one phase to the next.

Lemma 5 Any prefetching schedule that doesn't sat-

isfy the four rules described in section 2.4 can be trans-

formed into one that does, with no increase in elapsed

time.

Proof:

1. optimal fetching (�ll the �rst hole): Suppose that

at time t

1

, a fetch is initiated to �ll some hole h

2

other than the �rst hole h

1

. h

1

must be �lled before

it can be served; say it is �lled by a fetch initiated

at time t

2

> t

1

. Since the (later) reference to h

2

cannot be served until after the reference to h

1

is

served, no further stall time is induced by �lling h

1

at time t

1

and h

2

at time t

2

. Since we are working
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with the reverse sequence, this change can be made

regardless of the colors of h

1

and h

2

.

2. colored optimal eviction (evict the block not needed

for the longest time among those colored the same

as the free disk): Suppose that at time t

1

, block b

1

is evicted, and block b

2

of the same color as b

1

is

in the cache and is not referenced before the next

reference to b

1

. If b

2

is subsequently evicted before

the next reference to b

1

is served, the e�ect is the

same if b

2

is evicted �rst, then b

1

. Otherwise, b

1

must be fetched back at some time t

2

> t

1

before

the reference to it can be served. If b

2

is evicted at

time t

1

instead of b

1

, it can be fetched back at time

t

2

. By assumption, there are no intervening refer-

ences of b

2

on which to stall; thus the transformed

schedule stalls no more than the original.

3. do no harm (don't evict b

1

to fetch b

2

if b

1

is needed

sooner): Suppose b

1

is evicted to fetch b

2

. b

1

must

be fetched back before the reference to it can be

served; this fetch evicts some other block b

3

. Since

fetches on any disk can be of any color, the fetch of

b

1

can be replaced by a fetch of b

2

(evicting b

3

). By

assumption, there are no intervening references of

b

2

on which to stall; thus the transformed schedule

stalls no more than the original.

4. �rst opportunity (perform each fetch/eviction pair

as soon as possible): Suppose that disk c is left

idle at time t, a fetch of block b

1

is initiated at

t+1 evicting block b

2

of color c, and that the block

served at time t is not b

2

. Then by initiating the

fetch at time t rather than t + 1, the hole (b

1

) is

�lled one step sooner; certainly, no additional stall

is incurred by this change.

2

Lemma 6 Given two sets of holes A = A

1

[A

2

and

B = B

1

[B

2

with jA

1

j � jB

1

j, jA

2

j � jB

2

j, A

1

\A

2

= ;,

and B

1

\B

2

= ;, if A

1

dominates B

1

and A

2

dominates

B

2

, then A dominates B.

Proof: Suppose the contrary. Let i be such that the

i

th

member of A (ordered, as usual, by increasing index

in the request sequence) has an index less than the i

th

member of B. Then A contains i holes with indices less

than or equal to that of A's i

th

hole, and B contains

only i � 1 such holes. But because A

1

dominates B

1

and A

2

dominates B

2

, for each member of A there is a

distinct member of B with lesser or equal index. Thus

we have a contradiction. 2

Note that the lemma extends to pairs of sets com-

posed of more than two disjoint subsets each.

De�nition: Let A and B be sets of holes, possibly

with di�erent numbers of holes of each color. For each

color c, let N

c

(A) (resp. N

c

(B)) be the number of holes

of color c in A (resp. B). Let N

c

= min(N

c

(A); N

c

(B)).

If N

c

(A) > N

c

(B), we say that c is an excess color of

A; if N

c

(A) < N

c

(B)), c is an excess color of B; if

N

c

(A) = N

c

(B), c is not an excess color. Let E

c

=

jN

c

(A) �N

c

(B)j. If c is an excess color of A, we refer

to A's �rst (counting from the cursor to the end of the

sequence) E

c

holes of color c as excess holes; excess holes

of B are de�ned similarly.

We say the set of holes A strongly dominates the set

of holes B if

� for each c, A's last N

c

holes of color c dominate

B's last N

c

holes of color c (i.e. A's non-excess

holes dominate B's non-excess holes, whether c is

an excess color of A or B or c is not an excess color),

and

� all of B's excess holes strictly precede the �rst hole

in A of any color.

This idea is illustrated in �gure 3, in which holes of

di�erent colors are depicted by di�erent shapes.

Notice that by the previous lemma, strong domina-

tion implies (ordinary, color-blind) domination. (Match

non-excess holes according to colors, and all of one set's

excess holes to all of the other set's excess holes.) We

will be concerned most of the time with equal-sized

sets of holes. The exception to this is merely a conve-

nience that allows us to consider separately the e�ects

of changes to sets of holes, where the changes always

occur in pairs that conserve the sizes of the sets (i.e.

one hole is �lled and a new one created by a prefetch

operation).

Lemma 7 Strong domination is transitive.

Proof: Suppose A strongly dominates B and B

strongly dominates C. We show that A strongly domi-

nates C. Fix a color c; for convenience (so we can use

it as an adjective), suppose c is red. De�ne N

c

(�) as

before. For a collection S of sets of holes, let N

c

(S) =

min

s2S

(N

c

(s)). (We will drop the brackets when list-

ing the members of a set.) Let N

c

= N

c

(A;B;C). We

consider three cases:

1. N

c

= N

c

(A). A has N

c

red holes, and these domi-

nate the last N

c

red holes in B. B's last N

c

(B;C)

red holes dominate C's last N

c

(B;C) red holes, so

B's last N

c

red holes must dominate C's last N

c

red holes. Since domination is transitive, A's N

c

red holes dominate C's last N

c

red holes. Suppose

h is a red hole in C that is excess with respect to

A. If h is matched to a red hole h

0

of B, h

0

is excess

w.r.t. A and thus precedes A's �rst hole, so h must

precede A's �rst hole as well. If h is excess w.r.t.

B, it precedes B's �rst hole, which precedes or is

the same as A's �rst hole.
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Increasing request index

Figure 3: Strong domination example: the upper set of holes strongly dominates the lower one. Mismatched shapes

represent excess holes.

2. N

c

= N

c

(B). A's last N

c

red holes dominate B's

N

c

red holes, which dominate C's last N

c

red holes.

Suppose h is a red hole in C that is excess w.r.t. B.

h must precede B's �rst hole. Since B's �rst hole

precedes or is the same as A's �rst hole, h precedes

A's �rst hole as well. If h is excess w.r.t. A, we are

done. If h matches some hole h

0

of A, h surely does

not occur after h

0

.

3. N

c

= N

c

(C). A's last N

c

(A;B) red holes dominate

B's last N

c

(A;B) red holes, so A's last N

c

red holes

must dominate B's last N

c

red holes, which dom-

inate C's N

c

red holes. C has no excess red holes

w.r.t. B or A.

These three cases are illustrated in �gure 4. 2

Lemma 8 Domination Lemma

Let a and b be two prefetching schedules for a request

sequence R. If a's holes at some time t strongly dom-

inate b's holes at some time t

0

, a's cursor position at

time t is at least as great as b's cursor position at time

t

0

, and

1. both algorithms perform a prefetch using the same

disk (i.e. a and b evict blocks of the same color, a

at time t and b at time t

0

), or

2. a performs a prefetch at time t but b does not at

time t

0

, or

3. b performs a prefetch at time t

0

but a does not at

time t, and every block in a's cache of the same

color as b's evicted block is requested before a's �rst

hole (i.e. a prefetches aggressively),

then a's resulting holes strongly dominate b's resulting

holes.

This is illustrated in �gure 5.

Proof: De�ne N

c

(A), N

c

(B), and N

c

as before (with

respect to the sets of holes before each change to a set

of holes is made), where A denotes a's set of holes at

time t and B denotes b's set of holes at time t

0

.

We consider the individual changes to A and B in

three steps:

1. a's �rst hole is removed from A if one of clauses 1

and 2 of the premise holds.

2. b's new hole is added to B if one of clauses 1 and

3 holds and a's new hole is added to A if one of

clauses 1 and 2 holds.

3. b's �rst hole is removed from B if one of clauses 1

and 3 holds.

We will show that after each step, strong domination of

A over B is preserved.

For convenience, we will say that (a hole at) index i

is \left" of (a hole at) index j, and (the hole at) j is

\right" of (the hole at) i, if i < j.

First, suppose that clause 1 of the premise holds.

Step 1: a's �rst hole is �lled

Let c be the hole's color. First, since a's new �rst hole

is to the right of its old �rst hole (the one being �lled),

b's excess holes all are still to the left of a's �rst hole.

If c was an excess color of a, we are done. Otherwise,

b's hole that was matched to a's �lled hole becomes an

excess hole, and since it occurred no later than the hole

it matched, it is to the left of a's new �rst hole.

Step 2: eviction

Let a's last N

c

holes of the same color c as the block

evicted occur at indices a

1

< a

2

< : : : < a

N

c

, and let b's

occur at b

1

< b

2

< : : : < b

N

c

. Since a's holes strongly

dominate b's, we know that a

i

� b

i

for each i. Let a

and b both make the best possible eviction of color c.

Let b's new hole be its j

th

non-excess hole of color c, i.e.

the new hole occurs between b

j�1

and b

j

, or at an index

greater than b

N

c

in which case j = N

c

+ 1, or before b

1

in which case j = 1. (As a special case, if c is an excess
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case 3

case 2

case 1

C

B

A

C

B

A

A

C

first holered hole

B

Figure 4: Strong domination is transitive.

new holefilled hole

Figure 5: Domination lemma: the upper set of holes continues to strongly dominates the lower one.
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color of b, and the new hole is before b's last excess

hole of color c, the new hole becomes an excess hole

and the last excess hole takes its place in the following

argument.) Let a's new hole be its r

th

hole of color c,

with a similar special case to that in the de�nition of

j. Let a

0

1

< a

0

2

< : : : < a

0

N

c

+1

be the indices of a's

last N

c

+ 1 holes of color c after the eviction, and let

b

0

1

< b

0

2

< : : : < b

0

N

c

+1

be the indices of b's last N

c

+ 1

holes of color c after the eviction. Then for i < r, a

0

i

= a

i

and for i > r, a

0

i

= a

i�1

; for i < j, b

0

i

= b

i

and for i > j,

b

0

i

= b

i�1

. To show that domination is preserved, we

need to show that a

0

i

� b

0

i

for each i, 1 � i � N

c

+ 1.

For i < min(r; j) and i > max(r; j) it is immediate that

a

0

i

� b

0

i

. If r > j, then we have

a

0

r

> a

r�1

� b

r�1

= b

0

r

a

0

r�1

= a

r�1

� b

r�1

> b

0

r�1

: : :

a

0

j

= a

j

� b

j

> b

0

j

and we are done. If r � j, then we must show

a

0

j

= a

j�1

� b

0

j

a

0

j�1

= a

j�2

� b

0

j�1

= b

j�1

: : :

a

0

r+1

= a

r

� b

0

r+1

= b

r+1

a

0

r

� b

0

r

= b

r

:

Suppose that one or more of these inequalities does not

hold, and let i be the largest index for which a

0

i

< b

0

i

.

Then we have

a

0

i

< b

0

i

< b

0

i+1

� a

0

i+1

where a's new hole at a

0

r

satis�es a

0

r

� a

0

i

. But this

means that a had a block that is not requested until

index b

0

i

in its cache, and elected to evict the block re-

quested earlier at index a

0

r

instead. This contradicts

the assumption that a made the best possible eviction

choice, i.e. that it evicted the block whose next occur-

rence was at the greatest index among all blocks in the

cache.

Since the holes of color other than c are una�ected

by this change, and domination of holes of color c is

preserved, strong domination is preserved.

Step 3: b's �rst hole is �lled

Let c be the hole's color. If c is an excess color of

b, then b will have one fewer excess hole of color c; the

remaining ones are unchanged, and thus are still to the

left of a's �rst hole. Otherwise, the hole was matched

to some hole of a, which becomes an excess hole. The

newly excess hole's position is relevant in the de�nition

of strong domination only if it is a's �rst hole; in this

case, since neither a's �rst hole nor b's excess holes are

changed, strong domination is preserved.

The proof is complete for clause 1 of the premise.

If clause 2 holds (a fetches but b does not), step 1 is

the same as in the proof for clause 1. For step 2, �rst

note that a's new hole is to the right of a's (old) �rst

hole (by the do no harm rule), so that b's excess holes

still precede all of a's holes. Let c be the color of a's new

hole. If c is an excess color of b, an argument similar

to the one above for clause 1 shows that a's holes of

color c will dominate b's non-excess holes of the same

color. If c is not an excess color of b, the new hole or

some previous hole of a will become an excess hole. In

the former case, a's last N

c

holes are unchanged. In the

latter case, the index of a's i

th

non-excess hole of color

c is the same or greater than before, for each i � N

c

.

No changes are made in step 3.

If clause 3 holds (b fetches but a does not), nothing

happens in step 1. Let c be the color of b's new hole.

Again, for step 2, an argument similar to that for clause

1 shows that a's non-excess holes of color c dominate

b's non-excess holes of color c; if not, a would perform

a prefetch operation since a prefetches aggressively. If

c is not an excess color of b, we are done with step 2.

Otherwise, we need to show that all of b's excess holes of

color c precede a's �rst hole. Suppose that b has N

c

+1

holes of color c at or to the right of a's �rst hole. a has

only N

c

holes of color c, so b has some hole h of color

c that is not a hole of a and is to the right of a's �rst

hole. Again, we have a contradiction to the hypothesis

that a prefetches aggressively: a can �ll its �rst hole

and evict the block requested at h. Step 3 is the same

as for clause 1. 2

Phase domination is similar to strong domination, but

is concerned only with holes in the phase containing the

cursor.

De�nition: Let A (B) be algorithm a's (resp. b's)

set of holes at time t (resp. t

0

) such that a's cursor at

time t is in the same phase of the request sequence as

b's cursor at time t

0

. For each color c, de�ne N

c

(A),

N

c

(B), N

c

, E

c

, and excess holes as before. Then A

phase-dominates B if

1. All of b's excess holes strictly precede a's �rst hole

of any color.

2. For each color c that is excess for a, if b's i

th

hole of

color c is within the phase for any i > 0, it occurs

no earlier than a's (i+E

c

)

th

blue hole.

3. For each color c that is not an excess color or is an

excess color for b, if b's i

th

hole of color c is within

the phase for any i > E

c

, it occurs no earlier than

a's (i�E

c

)

th

hole of color c.
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Lemma 9 Phase domination is transitive.

Proof: Similar to lemma 7. 2

The proof of the following is the same as that of of

lemma 8, except we consider all holes beyond the end of

the phase boundary to be equivalent (i.e. as though they

were beyond the end of the entire request sequence).

Lemma 10 Phase Domination Lemma

Let a and b be two prefetching schedules for a request

sequence R. If a's holes at some time t phase dominate

b's holes at some time t

0

,

1. both algorithms perform a prefetch using the same

disk (i.e. a and b evict blocks of the same color, a

at time t and b at time t

0

), or

2. a performs a prefetch at time t but b does not at

time t

0

, or

3. b performs a prefetch at time t

0

but a does not at

time t, and every block in a's cache of the same

color as b's evicted block is requested before a's �rst

hole,

and a's cursor position at time t is at least as great as

b's cursor position at time t

0

or the blocks evicted are

the same color as a's busy disk in the current phase

(and thus the new holes are beyond the end of the cur-

rent phase), then a's resulting holes phase dominate b's

resulting holes.

Here is our main result.

Theorem 11 Reverse aggressive requires at most 1+

dF=K times the optimal elapsed time to service any re-

quest sequence, plus an additive term dF independent

of the length of the sequence.

Proof: We show that for each i, there are times T

i

and T

0

i

, such that

� reverse aggressive's cursor at time T

i

is not more

than F � 1 steps behind opt's cursor at time T

0

i

;

� reverse aggressive's cursor is within the i

th

phase;

� H

+

agg:

(T

i

) dominates H

�

opt

(T

0

i

);

� Neither reverse aggressive nor opt is in the middle

of a fetch on reverse aggressive's busy disk for phase

i;

� T

0

i

+ i(dF � 1) � T

i

.

The theorem will follow from the last condition, since

each phase is of length at least K, so that opt's elapsed

time is at least K for each phase.

We prove this by induction. For the base case (i = 0),

we take T

0

= T

0

0

= 0. The fact that the claims hold at

this time is trivial. For the inductive step, assume the

claims hold for the i

th

phase. We show that they hold

for the (i+ 1)-st phase via a two step process.

� We �rst show that in phase i, reverse aggressive

loses at most (d� 1)F steps to opt (lemma 12).

� We then use this fact to show that at the end of the

phase, by giving reverse aggressive an extra dF � 1

steps relative to opt (from the start of the phase),

the invariants are restored.

We begin with a formal statement of the �rst of these

steps.

Lemma 12 Suppose that at time T

i

, reverse aggres-

sive's cursor is at position p

i

in the sequence. Let

T

0

i

+ t

O

(j) (resp. T

i

+ t

A

(j) ) denote the time at which

opt (resp. reverse aggressive) serves the request at cur-

sor position j � p

i

, for any j such that r

j

is in phase i.

Then for all j in the phase, t

A

(j) � t

O

(j) + (d� 1)F .

Proof: Suppose the contrary, and consider the least

index ` such that t

A

(`) > t

O

(`) + (d� 1)F .

Then t

A

(` � 1) � t

O

(` � 1) + (d � 1)F , and reverse

aggressive stalls at least one step more than opt on re-

quest r

`

. In particular, reverse aggressive stalls at time

T

i

+ t

A

(`)� 1, and opt does not stall at time T

0

i

+ t

O

(`).

We know that reverse aggressive will perform busy-

disk fetches continuously (completing a fetch at time

T

i

+ bF for each b � 1) at least until such a time as

there are no holes left in the phase (after which reverse

aggressive won't stall at least until the end of the phase

is reached). Now, let b and � be such that t

A

(`) � 1 =

bF + � and � < F . Then reverse aggressive has �lled b

holes by busy-disk fetches by time T

i

+ t

A

(`) � 1, and

opt has �lled at most b�d+1 holes by busy-disk fetches

by time T

0

i

+ t

O

(`), since

t

O

(`) < t

A

(`)� (d� 1)F

= bF + � + 1� (d� 1)F

� (b� d+ 2)F:

Let n be the number of non-busy-disk fetches com-

pleted by opt by time T

0

i

+ t

O

(`). Consider the se-

quence S = ((c

1

; color

1

); : : : ; (c

n+b�d+1

; color

n+b�d+1

))

of fetches opt initiates after time T

0

i

that complete at or

before time T

0

i

+ t

O

(`), where the pair (c; color) denotes

that a fetch evicting a block of color color is initiated at

cursor position c. For each fetch (c

0

; color

0

) of opt, we

de�ne a matching fetch opportunity of reverse aggres-

sive. A matching fetch opportunity is a pair (c; color)

such that reverse aggressive has the opportunity to ini-

tiate a fetch of color color at a cursor position at least

Page 16



as great as c. Each matching fetch opportunity to a

fetch in S allows reverse aggressive to complete a fetch

(if necessary) by time T

i

+ t

A

(`) � 1. They are de�ned

as follows:

� opt's j

th

busy-disk fetch is matched to the j

th

busy-

disk fetch reverse aggressive performs in the phase.

(Since reverse aggressive prefetches continuously

using its busy disk, we know that each of these fetch

opportunities corresponds to an actual fetch.)

� Let opt's j

th

non-busy-disk fetch be initiated at

time T

0

i

+ t

0

j

. This fetch is matched to the fetch

on the same disk that reverse aggressive initiates

(if any) in the time interval

[T

i

+ t

0

j

+ (d� 1)F; T

i

+ t

0

j

+ dF � 1]:

Note that by hypothesis, at time T

i

+ t

0

j

+(d� 1)F

reverse aggressive is already at or beyond the cur-

sor position at which opt initiates its j

th

non-busy-

disk fetch, and its disk of the same color becomes

free (�nishes any fetch already in progress) within

another F �1 steps. Therefore, such a fetch oppor-

tunity exists.

If opt completes a total of n non-busy-disk fetches

by time T

0

i

+ t

O

(`), then each fetch except (possi-

bly) the last one on each non-busy-disk (i.e. at least

n� (d� 1) of the n non-busy-disk fetches) is initi-

ated at a time less than or equal to T

0

i

+ t

O

(`)�2F .

Therefore, reverse aggressive can initiate a match-

ing fetch if needed at a time strictly less than

T

i

+ t

O

(`) + (d � 2)F and will complete the fetch

at a time strictly less than

T

i

+ t

O

(`) + (d� 1)F < T

i

+ t

A

(`):

� Finally, the last non-busy-disk fetch of each color

performed by opt is matched to one of the last d�1

busy-disk fetches performed by reverse aggressive.

We claim that reverse aggressive's holes after these

n+ b� d+ 1 matching fetch opportunities phase dom-

inate opt's holes after completing its sequence S of n

non-busy-disk fetches and at most b � d + 1 busy-disk

fetches. Let A

0

be reverse aggressive's set of holes at

time T

i

. Let O

0

be opt's set of holes at time T

0

i

. Let

New(H; (c; color)) denote the new set of holes (uniquely

determined by the optimal prefetching principles opti-

mal fetching and colored optimal eviction described in

section 2.5) should a prefetch be initiated, if possible

(i.e. if allowed by the do no harm principle), evict-

ing a block of color color at cursor position c when

the current set of holes is H . De�ne O

j

, j � 1, in-

ductively as the set of holes resulting from executing

opt's j

th

fetch (c

j

; color

j

) with the set of holes O

j�1

;

i.e. O

j

= New(O

j�1

; (c

j

; color

j

)). Similarly, de�ne

A

j

, j � 1, inductively by A

j

= New(A

j�1

; (c

j

; color

j

)).

A

n+b�d+1

is the state that would be reached by start-

ing in reverse aggressive's state A

0

, but then initiating

fetches (when possible) according to opt's prefetching

schedule. By a sequence of applications of the phase-

domination lemma (Lemma 10), we have that A

n+b�d+1

phase-dominates O

n+b�d+1

.

We now show that reverse aggressive's holes after ex-

ercising its matching fetch opportunities phase domi-

nate A

n+b�d+1

. Because phase domination is transi-

tive, we will obtain that reverse aggressive's holes phase

dominate opt's. Since opt and reverse aggressive may

perform fetches on di�erent disks at di�erent times and

in di�erent orders, we need to somehow permute opt's

schedule of fetches into reverse aggressive's; then we will

be able to make pairwise comparisons between the two

sequences of fetches and apply the phase domination

lemma. Toward this end, we de�ne the following:

De�nition: Consider a fetch sequence, de�ned by a

sequence of triples of the form (t

j

; c

j

; color

j

), where for

each j, t

j

� t

j+1

and c

j

� c

j+1

. (t

j

; c

j

; color

j

) denotes

a fetch, or an attempt at a fetch (since no fetch may be

possible under the optimal prefetching rules), beginning

at time t

j

with the cursor at a position at least c

j

, where

the color of the disk performing the fetch (and the color

of the evicted block) is color

j

.

A fetch sequence S is obtained from a fetch sequence

S

0

by a busy-early swap if S

0

and S are the same except

that a pair (t

0

j

; c

0

j

; color

j

), (t

0

j+1

; c

0

j+1

; color

j+1

) in S

0

is

replaced by (t

j

; c

j

; color

j+1

), (t

j+1

; c

j+1

; color

j

) in S,

where c

j

� p

i

, c

j+1

� c

0

j

, and color

j+1

is the color

of reverse aggressive's busy disk for the phase. (c

j

� p

i

will be enough to ensure that reverse aggressive is able

to complete a fetch with the busy disk and that the

new hole is beyond the end of phase i, which is what is

needed to maintain phase domination.)

A fetch sequence S is obtained from a fetch sequence

S

0

by an overlapping swap if S and S

0

are the same

except that a pair (t

0

j

; c

0

j

; color

j

), (t

0

j+1

; c

0

j+1

; color

j+1

)

in S

0

is replaced by (t

j

; c

j

; color

j+1

), (t

j+1

; c

j+1

; color

j

)

in S, where t

0

j+1

< t

0

j

+ F , t

j+1

< t

j

+ F , c

j

� c

0

j+1

,

and c

j+1

� c

0

j

. (Note that for actual fetch sequences,

c

j+1

� c

0

j

is implied by c

j

� c

0

j+1

, since cursor positions

increase with time.)

Lemma 13 Suppose that fetch sequence S within

phase i is obtained from fetch sequence S

0

by a busy-

early swap. Then the set of holes reached by performing

S phase dominates that reached under S

0

.

Proof: Let blue denote the color of the busy disk,

and let red denote the color of the second disk to fetch

(under S

0

) in the swapped pair. The sets of holes of

the two sequences immediately before completing the

swapped pair of fetches are the same. In both cases, a
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blue fetch can be performed (since by hypothesis there

are still holes in the phase), and will not create a new

hole within the phase.

Unless the �rst hole is a red block, the set of red blocks

in the cache at the time of the red fetch is the same

under S

0

and S. If the �rst hole is red, then under S

0

,

this red block is brought into the cache by the red fetch

(but it doesn't represent a better eviction choice for the

red fetch under S). Thus, the best eviction opportunity

at the time of the red fetch is at least as good as that

under S

0

, since under S the red fetch occurs later than

under S

0

and thus at a cursor position at least as great.

Let the �rst hole occur at index h

1

and the second at

h

2

; let the new hole created by the red fetch under S

0

occur at index h

r

. There are two possibilities:

� h

2

< h

r

. Under S

0

, the red fetch �lls h

1

and the

blue fetch �lls h

2

; under S, the blue fetch �lls h

1

and the red fetch �lls h

2

. The red hole created

under S is at a position in the request sequence

at least as great as h

r

, since the cursor position of

the red fetch is at least as great as under S

0

. Under

neither sequence does the blue eviction create a new

hole in phase i. Thus, the sets of holes remaining in

phase i after completing S

0

and S are the same, or

after S one red hole has a greater index than after

S

0

.

� h

1

< h

r

< h

2

. Under S

0

, the red fetch �lls h

1

and creates a hole at h

r

. This new hole is the �rst

hole at the time of the blue fetch, and thus the

blue fetch �lls it (leaving h

2

un�lled). Under S,

however, the red fetch may be unable to proceed.

The blue fetch �lls the hole at h

1

; after this, the

�rst hole is at h

2

. The red eviction of h

r

would

violate the rule do no harm. But the end result is

the same as it is under S

0

(ignoring holes beyond

the end of the phase): the next hole is at h

2

, and a

new blue hole has been created beyond the end of

the phase. The red block requested at h

r

does not

need to be evicted and then fetched back. (Again,

under S it may be possible to create a red hole with

greater index; in this case, h

2

gets �lled, and the

holes phase dominate those after S

0

by clause 2 of

the phase domination lemma.)

2

Lemma 14 Suppose that fetch sequence S within

phase i is obtained from fetch sequence S

0

by an overlap-

ping swap. Then the set of holes reached by performing

S strongly dominates (and thus phase dominates) the

set of holes reached under S

0

.

Proof: Neither fetch a�ects the eviction opportuni-

ties of the other, since they overlap and evict to di�erent

disks. For each of the two fetches under S

0

, the fetch of

the same color under S is initiated at a cursor position

at least as great. An argument similar to the proof of

lemma 13 �nishes the proof. 2

Lemma 15 Reverse aggressive's sequence of fetch

opportunities can be obtained from the sequence leading

to A

n+b�d+1

(i.e. opt's sequence of fetches) via a se-

quence of busy-early swaps, overlapping swaps that don't

involve fetches performed by the busy disk, and inser-

tions of extra fetches not matched to any fetch of opt.

Proof: First we show that for each disk other than

the busy disk, any inversion of fetches on that disk and

the busy disk is in the \right direction" (i.e. corresponds

to a busy-early swap). Let blue denote the color of the

busy disk, and let red denote the color of another disk.

We refer to fetches using the blue disk as blue fetches

(even though blue is the color of the evicted block; the

block fetched may be any color), and those using the

red disk as red fetches (even though red is the color

of the evicted item). For j � b, let t

B

j

be the time

at which reverse aggressive's j

th

blue fetch is initiated,

and for j � b � d + 1, let t

0

B

j

be the time at which

opt's j

th

blue fetch is initiated. Similarly de�ne t

R

j

, for

1 � j � r� 1, and t

0

R

j

for 1 � j � r for the red fetches,

where r is the number of red fetches completed by opt

at or before T

0

i

+ T

O

(`). First, consider all of reverse

aggressive's blue and red fetches except its last d � 1

blue fetches, and all of opt's blue and red fetches except

its last red fetch (which is matched to one of reverse

aggressive's last d � 1 blue fetches). We have that for

all j � b� d+1, t

B

j

� t

0

B

j

(i.e. reverse aggressive's j

th

blue fetch is no later than opt's) and for all j � r � 1,

t

R

j

� t

0

R

j

(i.e. reverse aggressive's j

th

red fetch is no

earlier than opt's). Suppose that there is an inversion

in the \wrong direction," i.e. that for some j and some

k, t

0

B

j

< t

0

R

k

and t

R

k

< t

B

j

. Then

t

0

B

j

< t

0

R

k

� t

R

k

< t

B

j

� t

0

B

j

which is a contradiction, since t

0

B

j

< t

0

B

j

.

Finally, consider one of reverse aggressive's last d� 1

blue fetches and opt's last (r

th

) red fetch that it matches.

For this blue fetch to be involved in an inversion in the

wrong direction means that for some k, t

0

R

r

< t

0

R

k

and

t

R

k

< t

B

b

. Since opt's r

th

red fetch is its last, the �rst

inequality is false for all k � r.

For fetches other than blue fetches (i.e. non-busy-

disk fetches), let t

0

1

and t

0

2

be the times of two fetches

of opt where t

0

1

� t

0

2

, and let t

1

and t

2

be the times

of reverse aggressive's matching fetch opportunities. If

opt's fetches don't overlap, then t

0

1

� t

0

2

� F . By the

de�nition of matching fetch opportunites, we have t

1

�

(T

i

�T

0

i

)+ t

0

1

+dF �1 and t

2

� (T

i

�T

0

i

)+ t

0

2

+(d�1)F .

Putting these together, we have t

1

< t

2

, i.e. reverse
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aggressive's matching fetch opportunities occur in the

same order as opt's fetches.

That the cursor positions of the swapped pairs satisfy

the inequalities in the de�nitions of busy-early-swaps

and overlapping swaps, respectively, can be seen from

the de�nition of matching fetch opportunities. 2

We now complete the proof of lemma 12 using the

previous lemmas; recall that we have already shown that

A

n+b�d+1

phase-dominate opt's set of holes O

n+b�d+1

.

Lemmas 13, 14, and 15, along with the transitivity of

phase domination, together imply that aggressive's holes

at time T

i

+t

A

(`)�1 phase dominate opt's holes at time

T

0

i

+ t

O

(`). Thus we have

Corollary 16 Reverse aggressive's �rst hole at time

T

i

+ t

A

(`)� 1 is at a cursor position at least as great as

opt's �rst hole at time T

0

i

+ t

O

(`).

This contradicts the hypothesis that reverse aggressive

stalls at time T

i

+ t

A

(l) � 1 and opt does not stall at

time T

0

i

+ t

O

(l). 2

We now use lemma 12 in order to prove the outer

inductive step.

Let f

0

j

be the j

th

fetch opt performs that completes

after time T

0

i

and at or before time T

0

i+1

, and suppose

it begins at time T

0

i

+ t

0

j

. We know that H

+

agg:

(T

i

)

strongly dominates H

�

opt

(T

0

i

). Therefore, we have that

at the time that opt initiates f

0

1

, reverse aggressive's

holes strongly dominate opt's.

De�ne the j

th

matching fetch to be the fetch (if any)

that reverse aggressive performs on the same disk as f

0

j

that is initiated in the time interval

[T

i

+ t

0

j

+ (d� 1)F; T

i

+ t

0

j

+ dF � 1];

say at time T

i

+ t

j

. (Notice this is a di�erent matching

than that used in lemma 12. In this matching, fetches

of all colors are matched in the same way non-busy-disk

fetches were matched in lemma 12.) By lemma 12, we

know that reverse aggressive's cursor position at time

T

i

+ t

j

is at least as great as opt's cursor position at

time T

0

i

+ t

0

j

.

By the same argument as in the last part of the

proof of lemma 15, reverse aggressive's sequence of fetch

opportunities can be obtained from opt's sequence of

fetches by a sequence of overlapping swaps and inser-

tions. Applying the domination lemma, lemma 14,

and transitivity of strong domination as needed, we ob-

tain that reverse aggressive's holes after completing its

matching fetch opporunities dominate opt's holes after

completing its sequence of fetches.

Let c be the color of reverse aggressive's busy disk

in phase i + 1. Consider the fetch f

0

r

that opt has in

progress, if any, on its disk c at the time its cursor posi-

tion �rst reaches phase i+1. De�ne T

0

i+1

to be time at

which this fetch completes, T

0

i

+t

0

r

+F . T

i+1

is de�ned as

the time at which reverse aggressive's matching fetch f

r

completes; note T

i+1

� T

i

+ t

0

r

+(d+1)F �1. If reverse

aggressive has no matching fetch f

r

, then we take T

i

to

be T

i

+ t

0

r

+ dF . If opt has no fetch in progress when

its cursor reaches phase i + 1, let T

0

i+1

be the time at

which opt's cursor reaches phase i+ 1. Reverse aggres-

sive reaches phase i + 1 after losing at most (d � 1)F

steps to opt since the start of phase i, and any fetch

in progress on disk c completes within another F � 1

steps; de�ne the completion time of that fetch (if any)

as T

i+1

; if there is no such fetch, let T

i+1

be equal to

T

i

+(d�1)F . By the preceding argument, the invariants

of the outer induction are true for phase i+ 1. 2

Conservative: Lower Bound

The following example shows that for d < F , there are

arbitrarily long strings on which conservative requires

time 1 + d

K�F

K

F

F+d

times the optimal elapsed time.

Example: Suppose that F dividesK, and also that d

dividesK, and consider a repeated cycle onK+(

K

F

�1)d

blocks. Conservative always evicts the page just refer-

enced whenever it �lls a hole, since that is the page that

won't be needed again for the longest time. Thus con-

servative will never be able to overlap prefetches with

each other or with references. Since there are at least

(

K

F

� 1)d holes on each pass through the cycle, conser-

vative will spend at least K + (

K

F

� 1)d + (

K

F

� 1)dF

steps on each pass through the cycle. Suppose that the

blocks are colored such that each contiguous sequence

of d blocks in the cycle contains one block from each of

the d disks. It is not hard to see that opt is able to main-

tain its holes in groups of d, one of each color, spaced

F steps apart. Thus opt can service the entire sequence

without stalling, and requires only K + (

K

F

� 1)d steps

on each pass through the cycle. The ratio of these two

expressions (after a little manipulation) turns out to be

at least as great as the stated bound.

Conservative: Upper Bound

Theorem 17 On any reference string R, the elapsed

time of conservative with d disks on R is at most d+ 1

times the elapsed time of the optimal prefetching strategy

on R.

Proof: Let m be the minimum number of fetches

(which is exactly how many fetches conservative per-

forms) on request sequence R. Conservative's running

time is at most jRj + mF , even if it never overlaps

prefetches with each other or with the servicing of re-

quests. Since the optimal algorithm opt must perform

at least as many fetches as conservative, and also must
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service the request sequence R, opt's running time is at

least max(jRj;mF=d). The ratio of these is maximized

with jRj = mF=d, and has the value d+ 1. 2

Aggressive: Lower Bound

The following example shows that for two disks, there

are arbitrarily long strings on which aggressive requires

time 2�

4

F+2

times the optimal elapsed time (within an

additive constant that depends only on F and K). In

general, our bound is a little weaker: for d disks, there

are arbitrarily long strings on which aggressive requires

time d�

3d(d�1)

F+3(d�1)

times the optimal elapsed time (within

an additive constant that depends only on F and K).

Consider the sequence

b

1

b

2

r

1

� � � r

F

b

3

b

4

r

F

� � � r

1

b

2

b

1

r

1

� � � r

F

b

4

b

3

: : :

where all r

i

are red and all b

i

are blue. Let K = F +

2. The initial cache contents are b

1

, b

2

, and r

1

� � � r

F

;

there are holes at the �rst references to b

3

and b

4

. Both

algorithms service the initial request of b

1

during the

�rst unit of time. Aggressive then evicts the block in its

cache not referenced for the longest time, b

1

, in order

to fetch b

3

; the optimal algorithm opt does the same.

At the completion of this fetch, the next hole for both

algorithms is at b

4

, and the cursor is at the �rst request

of r

F

. Aggressive immediately evicts the block among

those in the cache not used for the longest time, which

is now b

2

; opt evicts r

1

instead. Both algorithms stall

for F � 2 steps on the hole at b

4

. However, opt is able

to initiate a fetch of its next hole, r

1

, evicting b

3

, since

the hole is red and the fetch in progress is fetching a

blue block; aggressive is unable to perform a second

fetch in parallel because its next hole (b

2

) is also blue.

Notice that aggressive still has no red holes, and thus

can complete only one fetch every F steps. >From this

point on, opt is able to create one red and one blue hole

in each subsequence of F + 2 requests, and can always

�ll them without stalling, whereas aggressive will always

create a pair of blue holes, and will require time 2F to

serve each subsequence of F + 2 requests, since it takes

this long to complete two fetches. Thus from this point

on, the ratio of aggressive's running time to that of opt

is

2F

F+2

= 2�

4

F+2

.

We have illustrated the case K = F + 2, d = 2 for

simplicity. It is easily generalized to arbitrarily large

values of

K

F

(which are the cases of interest in practice)

as follows: let K = iF + 2, and interleave i distinct

subsequences of F distinct red blocks each with i + 1

distinct pairs of blue blocks in round-robin fashion, re-

versing each subsequence of red blocks and each pair

of blue blocks on alternate occurrences. It is not hard

to see that aggressive will behave similarly to the illus-

trated case, and that opt is able to service the sequence

without stalling (after an initial startup period).

The generalization to d > 2 is also straightforward.

Consider the sequence

b

1

� � � b

d

b

1

� � � b

d�2

x

1

� � �x

d�1

r

1

� � � r

F�d+1

x

0

1

� � �x

0

d�1

� � �

� � � b

d+1

� � � b

2d

b

d+1

� � � b

2d�2

� � �

where F > d and K = F + 2d � 1, the colors of the

b

i

are all the same, the colors of the x

i

are distinct

from each other and the color of the b

i

, and the color

of x

0

i

is the same as that of x

i

. We omit the details of

the startup period, and note that if aggressive has holes

at b

1

� � � b

d

, it will �ll them by evicting b

d+1

� � � b

2d

and

thus requires time at least dF to serve the sequence up

to b

d+1

. Its state is then similar to the state in which

it started, and thus the process can repeat inde�nitely.

opt, on the other hand, is able to maintain d holes of

d distinct colors, and can serve the sequence without

stalling. Each sequence of 3(d�1)+F requests requires

time 3(d � 1) + F for opt, and dF for aggressive, for a

ratio of

dF

3(d� 1) + F

= d�

3d(d� 1)

F + 3(d� 1)

:

Again, generalizing to arbitrary K=F is easy.

Aggressive: Upper Bound

First we state a very simple lemma, leaving the proof

to the reader.

Lemma 18 If a set A of holes dominates a set B of

holes, and some hole in A is �lled and some hole at a

larger index added to A, the resulting holes A

0

dominate

B.

Theorem 19 On any reference string R, the elapsed

time of aggressive with d disks on R is at most d(1 +

F+1

K

) times the elapsed time of the optimal prefetching

strategy on R.

Proof:

In the analysis of aggressive prefetching with one disk,

it was shown that if A's holes dominate B's holes, and

A's cursor position is at least as great as B's, and each

algorithm initiates a fetch, A's holes will continue to

dominate B's when the fetch is completed. This result

was referred to as the domination lemma [8]. The proof

of this is similar to but simpler than that of lemma 8

for algorithms working with the reverse sequence.

In order to apply this lemma to more than one disk,

we must be sure that when we are comparing a fetch A

initiates to a fetch B initiates that the hole being �lled

by A is the �rst missing hole. If not, the domination

lemma does not hold.

In general, we can not ensure that d parallel

prefetches aggressive initiates will �ll the �rst d holes,
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since some of these holes may be of the same color. How-

ever, we do know that by the time aggressive completes

d prefetches on the same disk, the �rst d holes that were

present (and perhaps others) have been �lled.

Therefore, our proof strategy is to run opt at 1=d

times the speed of aggressive, so that during each sub-

sequence of time in which aggressive �lls at least its �rst

d holes, opt can �ll at most its �rst d holes. We will

show inductively that at the end of each of these sub-

sequences, aggressive's holes dominate opt's holes. This

will imply that aggressive can can take only d times as

long as opt to complete a phase.

Notice that as long as there are holes in the phase con-

taining the cursor, there are blocks in the cache which

are not requested before the end of the phase (since

the cache holds K blocks and there are only K distinct

requests in a phase). Since aggressive always evicts a

block that is not requested until after the block that re-

places it, once its cursor enters a phase, aggressive will

not create any new holes within the phase. Also, once

aggressive enters a phase, each disk will initiate a fetch

every F steps as long as there are holes of that disk's

color remaining in the phase.

We prove the following claim:

For each i up to the number of phases in R, there are

times T

i

and T

0

i

such that

� T

i

� dT

0

i

+ id(F + 1);

� H

�

agg:

(T

i

) dominates H

+

opt

(T

0

i

);

� aggressive's cursor is in the i

th

phase of the request

sequence at time T

i

;

� aggressive's cursor position at time T

i

is at least as

great as opt's cursor position at time T

0

i

;

� each of aggressive's disks is either ready to initiate

a prefetch or is already �lling a hole in phase i, for

which opt has not yet started �lling its matching

hole.

The theorem follows from the �rst part of the claim,

since each phase has length at least K, so that opt's

running time on each phase is at least K (except for

a possibly incomplete �nal phase, which is served by

aggressive in at most d times as much time as opt).

This claim is proven by induction on i. The basis

(i = 1) is trivial, since both algorithms start at the

beginning of the �rst phase in the same state, with both

disks idle.

For the induction, assume that the claim is true for i.

We �rst show that for each index j in phase i, ag-

gressive's cursor passes j after at most d times as many

steps as opt's cursor takes to pass j. Let T

i

+ t

A

(j) be

the time aggressive serves request j, and let T

0

i

+ t

O

(j)

be the time opt serves j. Assume by way of contradic-

tion that aggressive's cursor falls behind opt's (relative

to the start of the phase) by more than a factor of d,

and let j be the least index for which this happens, i.e.,

t

A

(j) > dt

O

(j). It must be true that aggressive has a

hole at j (or equivalently stalls on the j

th

request in the

phase) at time T

i

+ t

A

(j)� 1, and that the j

th

request

in the phase is in opt's cache before time T

0

i

+ t

O

(j),

since T

i

+ t

A

(j) is the �rst time aggressive's cursor falls

behind opt's by more than a factor of d. As noted pre-

viously, each disk of aggressive's �lls a hole every F

steps as long as there are holes of that disk's color in

the phase. Let h be the number of aggressive's holes at

time T

i

that are the same color as the one at j, up to

and including the one at j. Then t

A

(j) � hF , since the

hole at j is �lled at a time no later than T

i

+ hF . At

time T

0

i

, Opt has at least h holes at or before j, since

aggressive's holes at T

i

dominate opt's holes at T

0

i

. Thus

the earliest time opt could �nish �lling all its holes up

to index j is T

0

i

+ dh=deF , even if it �lls a hole every

F steps on each disk. Thus we have a contradiction:

hF � t

A

(j) > dt

O

(j) � d(dh=deF ) � hF .

To show that aggressive's holes after �nishing phase i

dominate opt's holes, we need another induction. Let

I

0

j

= [T

0

i

+ jF; T

0

i

+ (j + 1)F ), j � 0, and let c

j

be opt's cursor position at time T

0

i

+ jF . Also, let

I

j

= [T

i

+t

A

(c

j

); T

i

+t

A

(c

j

)+dF ). Consider the set of at

most d fetches that opt completes during I

0

j

. We match

these to the set of fetches aggressive initiates during I

j

.

We prove by induction on j that opt 's set of holes, after

completing all its fetches that complete in I

0

j

, is domi-

nated by aggressive's set of holes, after completing all

its fetches that are initiated in I

j

. The base case fol-

lows from the fact that H

�

agg:

(T

i

) dominates H

+

opt

(T

0

i

)

from the inductive hypothesis of the outer induction.

For the inductive step, note that each fetch opt com-

pletes during I

0

j

is initiated at a cursor position at most

c

j

, and that aggressive's cursor position is at least c

j

during the time period I

j

. Thus aggressive's fetches can

be matched to opt's and the domination lemma implies

that aggressive's resulting holes dominate opt's resulting

holes. Any extra fetches of aggressive (there may actu-

ally be as many as d

2

by aggressive and as few as 0 by opt

during their respective time intervals) don't a�ect this,

by lemma 18. As a special case, if aggressive should

stop fetching altogether at some time (and thus have

fewer than d fetches to match to opt's), we know that

aggressive has reached the optimal cache con�guration:

its cache contains the next K distinct requests, and its

holes are as far from the cursor as possible. These holes

certainly dominate opt's holes at any earlier cursor po-

sition.

Consider the value j such that opt's cursor reaches

phase i+1 during I

0

j

, and let C be this cursor position.
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Then by our inductive hypothesis, aggressive's holes af-

ter completing all fetches in the corresponding interval

dominate opt's holes after completing all fetches in this

interval. Note that the last matching fetch in this set

completes by time T

i

+t

A

(c

j

)+(d+1)F . Let T

i+1

be the

maximum of the times at which fetches initiated in I

j

complete and the time that aggressive's cursor reaches

phase i+1. Then T

i+1

� max(T

i

+t

A

(c

j

)+(d+1)F; T

i

+

t

A

(C)) � max(T

i

+ d(t

O

(c

j

) + F ) +F; T

i

+ dt

O

(C)). If

we let T

0

i+1

= t

O

(C) be the time at which opt's cursor

reaches phase i+1, then since T

i

� dT

0

i

+(F +1)di, we

have that T

i+1

� dT

0

i

+(F +1)di+d(t

O

(c

j

)+F )+F �

dT

0

i+1

+ (F + 1)d(i+ 1), as needed. 2
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