
The Inuence of Caches on the Performance of Heaps

Anthony LaMarca

Richard E. Ladner

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Technical Report UW-CSE-96-02-03

February 29, 1996

Abstract

As cycle times grow relative to memory speeds, the cache performance of algorithms has an

increasingly large impact on overall performance. Unfortunately, most commonly used algorithms

were not designed with cache performance in mind. This paper investigates the cache perfor-

mance of implicit heaps. We present optimizations which signi�cantly reduce the cache misses

that heaps incur and improve their overall performance. We present an analytical model called

collective analysis that allows cache performance to be predicted as a function of both cache

con�guration and algorithm con�guration. As part of our investigation, we perform an analysis

of the cache performance of both traditional heaps and our improved heaps in our model. In

addition empirical data is given for �ve architectures to show the impact our optimizations have

on overall performance. We also revisit a priority queue study originally performed by Jones [21].

Due to the increases in cache miss penalties, the relative performance result we obtain on today's

machine di�er greatly from the machines of only ten years ago. We compare the performance

of implicit heaps, skew heaps and splay trees and discuss the di�erence between our results and

Jones's.

1 Introduction

The time to service a cache miss to memory has grown from 6 cycles for the Vax 11/780 to

120 for the AlphaServer 8400 [6, 14]. Cache miss penalties have grown to the point where good

overall performance cannot be achieved without good cache performance. Unfortunately, many

fundamental algorithms were developed without considering caching.

In this paper, we perform a study of the cache performance of heaps [36]. The main goal

of our study is to understand and improve the memory system performance of heaps using both

experimental and analytical tools. We collect experimental data from execution times on various

machines and from instruction counts and cache miss ratios from trace driven simulations. Our

analytical data is drawn from analyses performed with collective analysis, a framework we have

developed which allows an algorithm's cache performance to be predicted for direct mapped caches.

We develop an improved implicit heap which has better memory system and overall performance.

In our experiments, our improved heap incurs as much as 65% fewer cache misses running in the hold

1

model [21]. The reduction in cache misses translates to speedups as high as 75% for a heap running

in the hold model, and performing heapsort with our optimized heaps improved performance by as

much as a factor of two.

In this paper we also reproduce a subset of the experiments performed by Jones comparing the

performance of various priority queues [21]. In our experiments, we compare the performance of

traditional heaps, our improved heaps, top-down skew heaps and both top-down and bottom-up

splay trees. Our comparison of priority queues yielded very di�erent results from Jones's original

experiments. Caches have changed architectures to the point that a bottom-up splay tree, the

structure which performed best in Jones's experiments, now performs many times worse than a

traditional heap.

1.1 Methodology

This paper is a study of the performance of algorithms. We examine the way programs are ana-

lyzed and optimized for performance. In this section we present the methodology we use in our

performance study and contrast it with approaches that have been used in the past.

The true test of performance is execution time and numerous researchers investigate algorithm

performance by comparing execution times. The drawback of simply implementing an algorithm

and measuring its execution time, however, is that very little intuition is provided as to why the

performance was either good or bad. As we will show in this paper, it is possible for one algorithm

to exhibit good cache locality with high instruction counts while a similar algorithm exhibits just

the opposite. While execution time is the �nal measure of performance, it is too coarse-grained a

metric to use in the intermediate stages of analysis and optimization of algorithms.

The majority of researchers in the algorithm community compare algorithm performance using

analyses in a unit-cost model. The RAM model [8] is used most commonly, and in this abstract

architecture all basic operations, including reads and writes to memory, have unit cost. Unit-cost

models have the advantage that they are simple, easy to use and produce results that are easily

compared. The big drawback is that unit-cost models do not reect the memory hierarchies present

in modern computers. In the past, they may have been fair indicators of performance, but that is

no longer true.

It is also common for the analyses of algorithms in a speci�c area to only count particular

expensive operations. Analyses of searching algorithms, for example, typically only count the

number of compares performed. The motivation behind only counting expensive operations is a

sound one. It simpli�es the analysis yet retains accuracy since the bulk of the costs are captured.

The problem with this approach is that shifts in technology can render the \expensive" operations

inexpensive and vice versa. Such is the case with compares performed in searching algorithms.

On modern machines comparing two registers is no more expensive than copying or adding them.

In Section 2.3, we show how this type of analysis can lead to incorrect conclusions regarding

performance.

In this paper, we employ an incremental approach to evaluating algorithm performance. Rather

than discard existing analyses and perform them again in a new comprehensive model, we leverage

as much as we can o� existing analyses and �ll in where they are weak. An evolutionary approach

should involve less work than a complete re-evaluation and it o�ers an easy transition for those

interested in a more accurate analysis.

The main weakness of existing unit-cost analysis is that it fails to measure the cost of cache

2

misses that algorithms incur. For this reason, we divide total execution time into two parts. The

�rst part is the time the algorithm would spend executing in a system where cache misses do not

occur. We refer to this as the instruction cost of the algorithm. The second part is the time spent

servicing the cache misses that do occur and we call this the memory overhead.

We measure instruction cost with both analyses in a unit-cost model and with dynamic in-

struction counts from executions. In this paper we employ both existing unit-cost analyses and

some simple analyses of our own. Details of our technique for instrumenting programs to produce

dynamic instruction counts are described in Section 3.4. Neither of these techniques will model

instruction cost perfectly. Execution delays such as branch delay stalls and TLB misses are not

measured with either of these methods. Nor do they capture variance in the cycle times of di�erent

types of instructions. Despite these shortcomings, however, they both provide a good indication of

relative execution time ignoring cache misses.

We measure memory overhead using trace-driven cache simulation. Cache simulations have the

bene�t that they are easy to run and the results are accurate. In addition, we use collective analyses

to explore ways in which the memory behavior of an algorithm might be predicted without address

traces or implementations. When both analytical predictions and simulation results are available,

we compare them to validate the accuracy of the predictions.

1.2 Related Work

There has been a large amount of research on analyzing and improving cache performance. Most

cache performance analysis is currently done with hardware monitoring [33] or with trace-driven

simulation [13, 35]. Neither of these solutions o�ers the bene�ts of an analytical cache model,

namely the ability to quickly obtain estimates of cache performance for varying cache and algorithm

con�gurations. An analytical cache model also has the inherent advantage that it helps a designer

understand the algorithm and helps uncover possible optimizations.

A number of researchers have employed hybrid modeling techniques in which a combination of

trace-driven simulation and analytical models is used [1, 29]. These techniques compress an address

trace into a few key parameters describing an application's behavior, and these are then used to drive

an analytical cache model. The di�erence between the collective analysis framework we present

and these techniques is that collective analysis does not involve any trace data. The behavior of an

algorithm is explicitly stated, and this serves as input to our model. While this makes the analysis

more di�cult to perform, it o�ers the advantage that our model can provide fast predictions for

a variety of algorithm con�gurations and cache con�gurations. Temam, Fricker and Jalby [32]

provide a purely analytical approach for predicting conict misses in loop nests of numerical codes.

In their model, the memory reference patterns are examined, and cache performance is predicted

by determining when each data item is reused and how often this reuse is disrupted. Our work

di�ers from theirs in that they work with algorithms whose exact reference pattern is known, while

ours is intended for algorithms whose general behavior is known but whose exact reference pattern

is not predictable across iterations.

Anderson et al augment trace-driven cache simulation by categorizing the cache misses by the

type of miss and by the name of the data structure incurring the miss [25]. The Memspy system

they developed allows the programmer to see a breakdown of cache misses by the four C's [19] for

each data structure. Systems with similar features include include Cprof [24] and SHMAP [12].

A study by Rao [27] examines the performance of page replacement policies using the inde-

3

pendent reference model [7] to predict miss behavior. In collective analysis, we make assumptions

similar to Rao's about the distribution of references within cache regions. The result is that our

formulas for cache performance are very similar to Rao's.

The compiler community has produced many optimizations for improving the cache locality of

code [5, 2, 37] and algorithms for deciding when these optimizations should be applied [22, 4, 16].

The vast majority of these compiler optimizations focus on loop nests and o�er little improvement

to pointer-based structures and algorithms whose reference patterns are di�cult to predict. The

reference patterns of the priority queue algorithms we examine in the paper are complicated enough

that these compiler optimizations o�er little bene�t.

Priority queues and heaps in particular have been well studied. Improved algorithms have been

developed for building, adding and removing from heaps [23, 9, 3, 17, 15]. A number of pointer-

based, self-balancing priority queues, including splay trees and skew heaps [30], have been developed

since the heap was introduced. The main di�erence between the work in this paper and previous

work is that we focus on cache performance as well as instruction cost. This di�erent approach

raises opportunities not previously considered and allows us to improve performance beyond existing

results. Evaluations of priority queue performance include Jones's study using various architectures

and data distributions [21], and a study by Naor et al which examines instruction counts as well as

page fault behavior [26].

1.3 Overview

In Section 2 we describe the heap we use as the base of our study. We describe a typical memory

system and present two optimizations of heaps for this typical memory system. In Section 3 we

present collective analysis, a framework for predicting cache performance of algorithms. We perform

a collective analysis of heaps and explore the impact our optimizations have on cache performance.

In Section 4 we present data from trace driven simulations and executions on various architectures

to show the impact of our optimizations on both cache performance and overall performance of

heaps. In Section 5 we revisit Jones's priority queue study [21]. We compare the performance

of a traditional heap, an improved heap, skew heaps and splay trees in the hold model using

exponentially distributed keys. In Section 6 we present our conclusions.

2 Implicit Heaps

In this section, we �rst describe the heap that we chose as the base to which we apply our op-

timizations. We then present our assumptions about memory systems and motivate the design

and analysis of algorithms with a focus on memory system performance. Finally, we present our

optimizations to the base heap.

We use a implicit binary heap as our base. Throughout the paper we refer to this as a traditional

heap. It is an array representation of a complete binary tree with N elements. All levels of the

tree are completely full except for the lowest, which is �lled from left to right. The tree has depth

dlog

2

(N + 1)e. Each element i in the heap has a key value Key[i] and optionally some associated

data. The N heap elements are stored in array elements 0 � � �N � 1, the root is in position 0, and

the elements have the following relationships

4

Parent(i) = b

i�1

2

c, if i > 0

LeftChild(i) = 2i+ 1

RightChild(i) = 2i+ 2

A heap must satisfy the heap property, which says that for all elements i except the root,

Key[Parent(i)] � Key[i]. It follows that the minimum key in the data structure must be at the

root.

In this paper, we use heaps as priority queues that provide the add and remove-min operations.

In our implementation of add, the element is added to the end of the array and is then percolated

up the tree until the heap property is restored. In our remove-min, the root is replaced with the

last element in the array which is percolated down the tree by swapping it with the minimum of its

children until the heap property is restored. In this paper, we do not consider the implication nor

the optimization of other priority queue operations such as reduce-min or the merging of two priority

queues. Heap have been well studied and there are numerous extensions and more sophisticated

algorithms for adding and removing [23, 9, 3, 17, 15].

2.1 The Memory System

While machines have varying memory system con�gurations, almost all share some characteristics.

Most new machines have a multi-level cache architecture where the cache closest to memory is

typically direct-mapped and has a high miss penalty [18]. The third level cache in the DEC

AlphaServer 8400, for example, has a four megabyte capacity and and a miss penalty of 120 cycles

[14]. The optimizations we present in this paper are intended to improve the performance of the

data references of heaps in large caches with low degrees of associativity.

2.2 Why Look at Cache Performance?

Traditional algorithm design and analysis has, for the most part, ignored caches. Unfortunately,

as the following example will show, ignoring cache behavior can result in misleading conclusions

regarding an algorithm's performance.

Building a heap from a set of unordered keys is typically done using one of two algorithms. The

�rst algorithm is the obvious and naive way, namely to start with an empty heap and repeatedly

perform adds until the heap is built. We call this the Repeated-Adds algorithm.

The second algorithm for building a heap is due to Floyd [15] and builds a heap in fewer

instructions than Repeated-Adds. Floyd's method begins by treating the array of unordered keys

as if it were a heap. It then starts half way into the heap and re-heapi�es subtrees from the middle

up until the entire heap is valid. The general consensus is that, due to its low operation count and

linear worst case behavior, Floyd's method is the preferred algorithm for building a heap from a

set of keys [28, 34, 8].

In our experiments, we executed both build-heap algorithms on a set of uniformly distributed

keys. As the literature suggests, Floyd's method executes far fewer instructions per key than

does Repeated-Adds. Our runs on a DEC Alphastation 250 showed that for uniformly distributed

keys, both algorithms executed a number of instructions linear in the number of elements in the

heap. Floyd's algorithm executed on average 22 instructions per element while Repeated-Adds

5

averaged 33 instructions per element. This would seem to indicate that Floyd's method would be

the algorithm of choice. When we consider cache performance, however, we see a very di�erent

picture.

First consider the locality of the Repeated-Adds algorithm. An add operation can only touch a

chain of elements from the new node at the bottom up to the root. Given that we have just added

an element, the expected number of uncached elements touched on the next add is likely to be very

small. There is a 50% chance that the previously added element and the new element have the

same parent, a 75% chance that they have the same grand-parent and so on. Thus, the number of

new heap elements that needs to be brought into the cache for each add should be small on average.

Now consider the cache locality of Floyd's method. Recall, that Floyd's method works its way

up the heap, re-heapifying subtrees until it reaches the root. For i > 1, the subtree rooted at i does

not share a single heap element with the subtree rooted at i� 1. Thus, as the algorithm progresses

re-heapifying successive subtrees, we expect the algorithm to exhibit poor temporal locality and to

incur a large number of cache misses.

To test this, we performed a trace driven cache simulation of these two algorithms for building

a heap. Figure 1 shows a graph of the cache misses per element for a two megabyte direct-mapped

cache with a 32 byte block size using 8 byte heap elements and varying the heap size from 8,000 to

4,096,000. This graph shows that up to a heap size of 262,144, the entire heap �ts in the cache, and

the only misses incurred are compulsory misses. Once the heap doesn't �t in the cache, however,

we see that Floyd's method incurs signi�cantly more misses per element than Repeated-Adds as

our intuition suggested. We expect the execution time of an algorithm to represent a mix of the

number of instructions executed and misses incurred. Figure 2 shows the execution times of these

two algorithms on a DEC Alphastation 250 using 8 byte heap elements and varying the heap size

from 8,000 to 4,096,000. When the heap �ts in the cache, Floyd's method is the clear choice.

Surprisingly, however, if the heap is larger than the cache, the di�erence in cache misses outweighs

the di�erence in instruction count and the naive Repeated-Adds algorithm prevails.

This example serves as a strong indicator that more accurate analyses and better performing

algorithms can be produced by design and analysis techniques that are conscious of the e�ects of

caching.

2.3 Optimizing Remove-min

For a stream of operations on a heap where the number of adds and the number of removes are

roughly equal, the work performed will be dominated by the cost of the removes. Doberkat [10]

showed that independent of N , if the keys are uniformly distributed, add operations percolate

the new item up only 1.6 levels on average. Doberkat [11] also studied the cost of the remove-min

operation on a heap chosen at random from the set of legal heaps. He showed that after remove-min

swaps the last element to the root, the swapped element is percolated down more that (depth� 1)

levels on average. Accordingly, we focus on reducing the cost of the remove-min operation.

Our �rst observation about the memory behavior of remove-min is that we do not want siblings

to span cache blocks. Recall that remove-min moves down the tree by �nding the minimum of a

pair of unsorted siblings and swapping that child with the parent. Since both children need to be

loaded into the cache, we would like to guarantee that both children are in the same cache block.

Figure 3 shows the way a heap will lay in the cache if four heap elements �t in a cache block

and the heap starts at the beginning of a cache block. Unfortunately, in this con�guration, half

6

0

0.2

0.4

0.6

0.8

1

10000 100000 1e+06

M
is

se
s

p
er

 e
le

m
en

t

Heap size in elements

Floyd’s Method
Repeated Adds

Figure 1: A comparison of the cache performance of Repeated-Adds and Floyd's method for building

a heap. Simulated cache size is 2 megabytes, block size is 32 bytes and heap element size is 8 bytes.

0

20

40

60

80

100

120

10000 100000 1e+06

T
im

e
(c

y
cl

es
 p

er
 e

le
m

en
t)

Heap size in elements

Floyd’s Method
Repeated-Adds

Figure 2: Execution time for Repeated-Adds and Floyd's method on a DEC Alphastation 250.

Heap element size is 8 bytes.

7

0 1 2 3 4 5 6 7 8 9 10 11
block 0 block 1 block 2

Siblings

Figure 3: This typical layout of a 2-heap is

not cache block aligned and siblings span cache

blocks.

0 1 2 3 4 5 6 7 8
block 0 block 1 block 2

Siblings

Figure 4: Starting this 2-heap on the last ele-

ment of a cache block guarantees that siblings

do not span cache blocks.

of the sets of siblings span a cache block. Similar behavior occurs for other cache con�gurations

where the cache block size is an even multiple of heap element size and the memory allocated for

the heap starts a cache block.

There is a straightforward solution to this problem, namely to pad the array so that the heap

does not start a cache block. Figure 4 shows this padding and its e�ect on the layout of the heap in

the cache. We expect this optimization to have its biggest impact when number of heap elements

per cache line is two. As this represents a change in data layout only, the optimization will not

change the number of instruction executed by the heap.

Our second observation about remove-min is that we want to fully utilize the cache blocks that

are brought in from memory. Consider a remove-min operation that is at element 3 and is trying to

decide between element 7 and element 8 as its minimum child. If a cache miss occurs while looking

at element 7, we will have to bring the block containing elements 5-8 into the cache. Unfortunately,

we will only look at two of the four elements in this cache block to �nd the minimum child. We

are only using two elements even though we paid to bring in four.

As before, there is a straightforward solution to the problem. Increasing the fanout of the heap

so that a set of siblings �lls a cache block eliminates this waste. The remove-min operation will no

longer load elements into the cache and not look at them. A d-heap is the generalization of a heap

with fanout d rather than two [20]. Figure 5 shows a 4-heap and the way it lays in the cache when

four elements �t per cache block.

Unlike our previous optimization, this change will de�nitely have an impact on the dynamic in-

struction count of our heap operations. The add operation should strictly bene�t from an increased

fanout. Adds percolate an element from the bottom up and only look at one element per heap level.

Therefore the shorter tree that results from a larger fanout will cause the add operation to execute

fewer instructions. The instruction count of the remove-min operation, on the other hand, can be

increased by this change. In the limit, as d grows large, the heap turns into an unsorted array that

0 1 2 3 4
block 0 block 1

5 6 7 8
block 2

Siblings

block 3

9 10 11 12

0

1 2 3 4

5 6 7 8 9 10 11 12

Figure 5: The layout of a 4-heap when four elements �t per cache line and the array is padded to

cache-align the heap.

8

1.5

2

2.5

3

3.5

4

4.5

5

2 4 6 8 10 12 14 16

R
em

o
v
e-

m
in

 c
o
st

 /
 l

o
g
 N

d

Swap cost = 3 compares
Swap cost = 2 compares
Swap cost = 1 compare

Swap cost = 0 compares

Figure 6: The cost of remove-min as a function of d for a number of compare to swap cost ratios.

requires a linear number of compares. Recall that the remove-min operation moves the last element

of the array to the root and then for each level �nds the minimum of the d children and swaps this

smallest element with its parent. Since the children are stored in an unsorted manner, d compares

must be performed to �nd the minimum child. The cost of a swap can vary depending on how much

data is stored with each element. We give the swap a cost of a relative to the cost of a compare.

Thus, the total cost at each level is d + a. We calculate the total cost as d + a multiplied by the

number of levels traversed. In our analysis, we assume that the tail element is always percolated

back down to the lowest level in the heap. The total expected cost for remove-min counting swaps

and compares is

(d+ a) log

d

((d� 1)N + 1) � (d+ a) log

d

(dN) =

(d+ a) log

d

N + (d+ a) =

(d+a)

log

2

d

log

2

N + d+ a

We can see that for large N , the remove-min cost is proportional to log

2

N by a factor of

(d + a)= log

2

d. This expression shows that increasing d will increase the time spend searching

for the minimum child (d=log

2

d). Increasing d also reduces the total cost of the swaps (a=log

2

d).

Figure 6 shows a graph of (d + a)= log

2

d for various values of a. For remove-min operations with

a swap cost of at least one compare, we see that increasing fanout actually reduces the total cost

initially. For a swap cost of two compares, the remove-min cost is reduced by a quarter by changing

the fanout from two to four and does not grow to its initial level until the fanout is larger than

9

twelve. Thus we expect that as long as fanouts are kept small, instruction counts should be the

same or better than for heaps with fanout two.

This graph also helps to point out the dangers of an analysis that only counts one type of

operation. This graph clearly shows that even if we do not consider caching, a heap with fanout

four should perform better than a heap with fanout two. This would not be evident however, if we

were only to consider the number of compares performed, as is commonly done. The curve on the

graph which has swap cost of zero is the equivalent of only counting compares. This curve does

not show amortization of swap costs and suggests the misleading conclusion that larger fanouts are

not bene�cial

1

.

3 An Analytical Evaluation of Heaps

While simple and accurate, trace driven simulation does not o�er the bene�ts of an analytical cache

model, namely the ability to quickly obtain estimates of cache performance for varying cache and

algorithm con�gurations. An analytical cache model also has the inherent advantage that it helps a

designer understand the algorithm and helps suggest possible optimizations. In this section, we �rst

present collective analysis, a framework for predicting cache performance of algorithms. We then

present a collective analysis of both cache-aligned and unaligned d-heaps. We validate our analysis

by comparing the predictions of collective analysis with trace driven cache simulation results.

3.1 Collective Analysis

Collective analysis is a framework that can be used to predict the performance of a system of algo-

rithms in a realistic memory model. Collective analysis is intended for systems of algorithms whose

memory behavior can be accurately approximated by a set of independent memoryless processes.

3.1.1 Our Memory Model

We assume that there is a single cache with a total capacity of C bytes, where C is a power of two.

In our model, the cache has a block size of B bytes, where B � C and is also a power of two. In

order to simplify analysis, we only model direct mapped caches [18], and in our model we do not

distinguish reads from writes. We assume that items that are contiguous in the virtual address

space map to contiguous cache locations, which means that we are modeling a virtually indexed

cache [18]. Our model does not include a TLB, nor does it attempt to capture page faults due to

physical memory limitations.

3.1.2 Applying the Model

The goal of collective analysis is to approximate the memory behavior of an algorithm and predict

its cache performance characteristics from this approximation. The �rst step is to partition the

cache into a set of regions R, where regions are non-overlapping, but not necessarily contiguous,

sections in the cache. All cache blocks must belong to a region, and a cache block cannot be split

across regions. The cache should be divided into regions in such a way that the accesses to a

1

The only reference we found that proposed larger fanout heaps due to their reduced operation cost was an exercise

by Knuth [23, Ex. 28 Pg. 158].

10

particular region are uniformly distributed across that region. If the accesses are not uniformly

distributed, the region should be subdivided into multiple regions. Once the accesses within a

region are uniformly distributed, further subdivision should be avoided in order to minimize the

complexity of the analysis.

The next step is to break the system of algorithms to be analyzed into a set of independent

memoryless processes P , where a process is intended to characterize the memory behavior of an

algorithm or part of an algorithm from the system. The behavior of the system need not be

represented exactly by the processes, and simplifying approximations are made at the expense

of corresponding inaccuracies in the results. Areas of the virtual address space accessed in a

uniform way should be represented with a single process. Collectively, all of the processes represent

the accesses to the entire virtual address space and hence represent the system's overall memory

behavior.

For purposes of the analysis we assume that the references to memory satisfy the independent

reference assumption [7]. In this model each access is independent of all previous accesses, that is,

the system is memoryless. Algorithms which exhibit very regular access patterns such as sequential

traversals will not be accurately modeled in our framework because we make the independent

reference assumption. A formal approach uses �nite state Markov chains in the model. In the

following we take an informal intuitive approach.

De�ne the access intensity of a process or set of processes to be the rate of accesses per instruc-

tion by the process or set of processes. Let �

ij

be the access intensity of process j in cache region

i. Let �

i

be the access intensity of the set of all processes in cache region i. Let � be the access

intensity of all the processes in all the regions. Given our assumption about uniform access, if a

cache block B is in region i and the region contains m cache blocks, then process j accesses block

B with intensity �

ij

=m. Once the system has been decomposed into processes and the intensities

have been expressed, the calculations to predict cache performance are fairly simple.

The total access intensity by the system for cache region i is

�

i

=

X

j2P

�

ij

.

The total access intensity of the system is:

� =

X

i2R

�

i

=

X

i2R

X

j2P

�

ij

.

In an execution of the system a hit is an access to a block by a process where the previous

access to the block was by the same process. An access is a miss if it is not a hit. The following

theorem is a reformulation of the results of Rao [27]. Our formulation di�ers from Rao's only in

that we group together blocks into a region if the accesses are uniformly distributed in the region.

This simpli�es the analysis considerably.

Theorem 1 The expected total hit intensity of the system is

� =

X

i2R

1

�

i

X

j2P

�

2

ij

: (1)

11

Proof: De�ne � to be the expected total hit intensity of the system and �

i

to be the expected

hit intensity for region i. The total hit intensity of the system is the sum of the hit intensities for

each region. The hit intensity for a region is the sum across all processes of the hit intensity of the

process in that region.

An access to a block in a direct mapped cache by process j will be a hit if no other process has

accessed the block since the last access by process j. We say that a cache block is owned by process

j at access t if process j performed the last access before access t on the block. Since accesses to

region i by process j are uniform throughout the region, the fraction of accesses that process j

owns of any block in region i is

�

ij

�

i

. Hence the expected hit intensity for region i by process j is

�

2

ij

�

i

. Hence, �

i

=

1

�

i

X

j2P

�

2

ij

and � =

X

i2R

1

�

i

X

j2P

�

2

ij

Corollary 1 The expected overall miss intensity is �� �.

Corollary 2 The expected overall hit ratio is

�

�

.

3.2 Cache-Aligned d-heaps

We �rst perform collective analysis on d-heaps whose sets of siblings are cache aligned. A d-

heap with N elements has depth dlog

d

((d � 1)N + 1)e. Parent(i) = b

i�1

d

c and Children(i) =

di+ 1; di+ 2; � � � ; di + d. Let e be the size in bytes of each heap element.

In this analysis, we restrict our heap con�gurations to those in which all of a parent's children

�t in a single cache block (where de � B). This limits the values of d that we are looking at; for a

typical cache block size of 32 bytes, fanout is limited to 4 for 8 byte heap elements, and fanout is

limited to 8 for 4 byte heap elements. We also restrict our analysis to heap con�gurations in which

the bottom layer of the heap is completely full (where dlog

d

((d� 1)N +1)e = log

d

((d� 1)N + 1)).

Heaps are often used in discrete event simulations as a priority queue to store the events. In

order to measure the performance of heaps operating as an event queue, we analyze our heaps in

the hold model [21]. In the hold model, the heap is initially seeded with some number of keys.

The system then loops repeatedly, each time removing the minimum key from the heap, optionally

performing some other work, and �nally adding a random value to the element's key and adding

it back into to the heap. It is called the hold model because the size of the heap holds constant

over the course of the run. In this analysis, the work performed between the remove-min and the

add consists of w random uniformly distributed accesses to an array of size C. While this probably

does not model the typical simulation event handler, it is a reasonable approximation of a work

process and helps to show the cache interference between independent algorithms.

The �rst step of our analysis is to divide the cache into regions based on the heap's structure.

Recall that we have a cache with a size of C bytes, a cache block size of B bytes, and a heap with

N elements, fanout d and element size e. Let S =

C

e

be the size of the cache in heap elements.

levels of the heap will �t in the cache. That is to say, heap levels 0 � � � r � 1 �t in the cache

and heap level r is the �rst level to spill over and wrap around in the cache. We divide the cache

into r+ 1 regions, where regions 0 � � � r� 1 are the same size as the �rst r heap levels and region r

takes up the remaining space in the cache. Region i, 0 � i < r, is of size d

i

and region r is of size

12

Regions 0 1 2 ...

...1 d d d
2

S − d −1
 d−1

Size in
elements

0

r−1
r

r−1 r

S−1

Figure 7: The division of the cache into regions for the d-heap.

S �

d

r

�1

d�1

. In our analysis of d-heaps, the regions are all contiguous; Figure 7 shows the division.

Let S

i

be the size of cache region i.

Given the heap's structure, r = blog

d

((d � 1)S + 1)c whole The next step is to partition the

system into processes which approximate its memory access behavior. It is at this point that

we make three simplifying assumptions about the behavior of the remove-min operation. We �rst

simplify the percolating down of the tail element by assuming that all levels of the heap are accessed

independently, once per remove-min on average. We also assume that when a heap level is accessed

by remove-min, all sets of siblings are equally likely to be searched through for the minimum. While

this is clearly not how the remove-min algorithm behaves, the rates of accesses and overall access

distributions should be reasonably accurate.

To further simplify the heap's behavior, we make a �nal assumption regarding the caching of

elements. In the event that a set of siblings are brought into the cache on a miss, other sets of

siblings may be read in at the same time (if de < B). The result is that a reference to a set of siblings

may not incur a fault even though the set has never before been accessed. In our analysis, we ignore

this e�ect and assume that neighboring sets of siblings are never faulted in. This assumption also

causes misses due to false sharing to be overlooked [18].

The basic structure of our decomposition is to create one or more processes for each level in

the heap. Given a total of N elements, there are t = log

d

((d � 1)N + 1) levels in the heap. Let

N

i

be the size in elements of heap level i. We begin by dividing the t heap levels into two groups.

The �rst group contains the �rst r levels 0 � � � r � 1 of the heap that will �t in the cache without

any overlap. The second group contains the remaining levels of the heap r � � � t� 1. For 0 � i < t,

N

i

= d

i

.

Lemma 1 The size of heap level i, r � i < t, is a multiple of S.

Proof: Since N

i

= d

i

, it is su�cient to prove that d

i

mod S = 0. Since d, C and e are positive

powers of 2, and e < B � C, both d

i

and S are also positive powers of 2. It is su�cient to show

that d

i

� S. Let d = 2

x

and S = 2

y

.

d

i

= d

i�r

d

r

� d

r

= d

blog

d

((d�1)S+1)c

� d

blog

d

(

dS

2

)c

=

2

xblog

2

x
(2

x+y�1

)c

= 2

xb

x+y�1

x

c

� 2

x(

x+y�1

x

�

x�1

x

)

= 2

y

= S:

13

For each heap level i in the �rst group, we create a process i, giving us processes 0 � � � r � 1.

For the second group we create a family of processes for each heap level, and each family will have

one process for each cache-sized piece of the heap level. For heap level i, r � i < t, we create

N

i

S

processes called (i; 0) � � � (i;

N

i

S

� 1).

Finally, we create a process to model the random reads that occur between the remove-min and

the add. We call this process o.

If remove-min is performed on the heap at an intensity of � our access intensities are

�

ij

=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

� if 0 � j < r and i = j, (2)

S

i

N

x

� if j = (x; y) and r � x < t and 0 � y <

N

x

S

, (3)

S

i

S

w� if j = o and 0 � i � r, (4)

0 otherwise. (5)

In our simpli�ed remove-min operation, heap levels are accessed once per remove-min on aver-

age, and each access to a heap level touches one cache block. An access by process j, 0 � j < r,

represents an access to heap level j. We know that all accesses by process j will be in cache region

j, and process j makes no accesses outside of cache region j. Thus, with a remove-min intensity

of �, process j, 0 � j < r, will access region i with an intensity of � if i = j and 0 otherwise

(Equations 2 and 5).

Next, consider a process (x; y) where r � x < t. This process represents one of

N

x

S

cache-sized

pieces from heap level x. We expect that one cache block will be accessed from heap level x per

remove-min. The chance that the block accessed belongs to the process in question is

S

N

x

. The

total access intensity of the process is the access intensity of the level multiplied by the chance that

an access belongs to the process, or

S

N

x

�. Since the process maps a piece of the heap exactly the

size of the cache, it is easy to calculate the access intensities for each region. Since the accesses of

process (x; y) are uniformly distributed across the cache, the access intensities for each region will

be proportional to its size. Given that the process's access intensity is

S

N

x

�, the access intensity of

process (x; y) where r � x < t in cache region i is

S

N

x

�

S

i

S

=

S

i

N

x

� (Equation 3).

Given that the system iterates at a rate of �, the total access intensity of process o is w�. Since

process o accesses an array of size C uniformly, we expect the accesses to spread over each cache

region proportional to its size. Thus, the access intensity of process o in cache region i is

S

i

S

w�

(Equation 4).

The region intensities �

i

and the overall intensity are easily calculated.

�

i

=

8

>

<

>

:

�+

S

i

S

(t� r + w)� if 0 � i < r,

S

r

S

(t� r + w)� if i = r.

� = (t+ w)�:

14

An expression for the hit intensity � can be derived from Equation 1. The sum across regions

is broken into 0 � � � r� 1 and r. The sum across processes is broken up based on the two groups of

heap levels. Plugging in our access intensities and reducing gives us

� =

0

B

B

@

r�1

X

i=0

1 +

S

2

i

S

(

d

1�t

� d

1�r

1� d

+

w

2

S

)

1 +

S

i

S

(t� r + w)

+

S

r

(

d

1�t

� d

1�r

1� d

+

w

2

S

)

t� r + w

1

C

C

A

�: (6)

3.3 Unaligned d-heaps

The cache performance of a d-heap in which sets of siblings are not cache block aligned can be

predicted with a simple change to the cache-aligned analysis. In our cache-aligned analysis, we

correctly assume that examining a set of siblings will touch one cache block. In the unaligned case

this is not necessarily true. A set of siblings uses de bytes of memory. On average, the chance that

a set of siblings spans a cache block is

de

B

. In the event that the siblings do span a cache block, a

second block will need to be touched. Thus on average, we expect 1+

de

B

cache blocks to be touched

examining a set of siblings. This simple change yields the following new intensities

�

ij

=

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

(1 +

de

B

)� if 0 � j < r and i = j,

S

i

N

x

(1 +

de

B

)� if j = (x; y) and r � x < t and 0 � y <

N

x

S

,

S

i

S

w(1 +

de

B

)� if j = o and 0 � i � r,

0 otherwise.

�

i

=

8

>

<

>

:

(1 +

de

B

)�+

S

i

S

(t� r + w)(1 +

de

B

)� if 0 � i < r,

S

r

S

(t� r + w)(1 +

de

B

)� if i = r.

� = (t+w)(1 +

de

B

)�

An expression for � can be derived by substituting these intensities into Equation 1 and reducing.

3.4 Validation

In our study both our dynamic instruction counts and out cache simulation results were measured

using Atom [31]. Atom is a toolkit developed by DEC for instrumenting codes on Alpha work-

stations. Dynamic instruction counts were obtained by inserting an increment to an instruction

15

counter after each instruction executed by the algorithm. Cache performance was determined by in-

serting calls after every load and store to compute statistics and maintain the state of the simulated

cache.

In order to validate our analysis, we compare our results with the output of a trace-driven cache

simulation of an implementation of the system. In both the analysis and the trace executions, we

set the cache size equal to 2 megabytes, the cache block size to 32 bytes and the heap element size

to 4 bytes. In this con�guration, a cache block holds 8 heap elements.

The quantity we compare is miss intensity (� � �). Miss intensity is an interesting measure,

as it tell us how many times an operation must service cache misses. We compare the model's

predictions with the number of misses per iteration observed by the cache simulator. Figure 8

shows this comparison for an unaligned 2-heap and an aligned 2, 4 and 8-heap with w = 0 and a

range of N between 1,000 and 8,192,000. Since we do not consider startup costs and since no work

is performed between the remove-min and the add, we do not predict or measure any cache misses

until the size of the heap grows larger than the cache. This graph shows that the miss intensity

predicted by the collective analysis agrees with the results of the cache simulations surprisingly

well considering the simplicity of our model. For now we focus on the accuracy of our predictions;

comments regarding the e�ects our optimizations have on cache misses are reserved for the next

section.

We next compare our model predictions against simulations for a system in which 25 random

reads are performed each iteration. Figure 9 shows the miss intensities for an unaligned 2-heap and

an aligned 2, 4 and 8-heap with w = 25 and a range of N between 1,000 and 8,192,000. Again,

we see that the predictions of the collective analysis closely match the simulation results. Unlike

the heap operating alone, this system incurs cache misses even when the heap is smaller than the

cache due to interactions with the work process.

4 An Experimental Evaluation of Heaps

In this section we present performance data collected for our improved heaps. Our executions were

run on a DEC Alphastation 250. Dynamic instruction counts and cache performance data was

collected using Atom [31] (see Section 3.4). In all cases, the simulated cache was con�gured as

direct-mapped with a total capacity of two megabytes with a 32 byte block size, the same as the

second level cache of the Alphastation 250.

4.1 Heaps in the Hold Model

Figure 10 shows the dynamic instruction count for an unaligned 2-heap, and an aligned 2, 4 and

8-heap running in the hold model with the outside work consisting of 25 random reads to memory

(w = 25). The heap size is varied from 1,000 to 8,192,000. The traditional heap and the aligned

2-heap execute the same number of instruction, since the only di�erence is the layout of data.

Changing the fanout of the heap from two to four provides a sizable reduction in instruction count

as Figure 6 predicted. Also as predicted, changing the fanout from four to eight increased the

instruction count, but not higher than the heaps with fanout two.

Figure 11 shows the number of cache misses incurred per iteration for our heaps when eight heap

elements �t in a cache block. This graph shows that cache aligning the traditional heap reduces the

cache misses by around 15% for this cache con�guration. Increasing the heap fanout from two to

16

0

1

2

3

4

5

6

7

1000 10000 100000 1e+06

M
is

se
s

p
er

 i
te

ra
ti

o
n

Heap size in elements

Traditional Heap - simulated
Traditional Heap - predicted
Aligned 2-Heap - simulated
Aligned 2-Heap - predicted
Aligned 4-Heap - simulated
Aligned 4-Heap - predicted
Aligned 8-Heap - simulated
Aligned 8-Heap - predicted

Figure 8: Cache misses per iteration for the hold model with w = 0 predicted by collective analysis

and measured with trace driven simulation. Caches are direct-mapped with 2048k capacity and a

32 byte block size. Heap element size is 4 bytes.

0

2

4

6

8

10

12

14

16

18

1000 10000 100000 1e+06

M
is

se
s

p
er

 i
te

ra
ti

o
n

Heap size in elements

Traditional Heap - simulated
Traditional Heap - predicted
Aligned 2-Heap - simulated
Aligned 2-Heap - predicted
Aligned 4-Heap - simulated
Aligned 4-Heap - predicted
Aligned 8-Heap - simulated
Aligned 8-Heap - predicted

Figure 9: Cache misses per iteration for the hold model with w = 25 predicted by collective analysis

and measured with trace driven simulation. Caches are direct-mapped with 2048k capacity and a

32 byte block size. Heap element size is 4 bytes.

17

700

750

800

850

900

950

1000

1050

1100

1000 10000 100000 1e+06

In
st

ru
ct

io
n
s

p
er

 i
te

ra
ti

o
n

Heap size in elements

Traditional Heap
Aligned 2-Heap
Aligned 4-Heap
Aligned 8-Heap

Figure 10: Dynamic instruction count for a variety of heaps running in the hold model (w = 25).

four provides a large reduction in cache misses, and increasing from four to eight reduces the misses

further still. This graph serves as a good indicator that our optimizations provide a signi�cant

improvement in the memory system performance of heaps.

Figure 12 shows the execution time for the heaps in the hold model when eight heap elements

�t in a cache block and w = 25. This graph looks very much like a simple combination of the

previous two graphs. Aligning the traditional heap provides a small reduction in execution time.

Increasing the fanout from two to four provides a large reduction in execution time due to both

lower instruction count and fewer cache misses. The 8-heap executes more instructions that the 4-

heap and consequently executes slower initially. Eventually, however, the reduction in cache misses

overcomes the di�erence in instruction count, and the 8-heap performs best for large data sets.

4.2 Heapsort

We next examine the e�ects our improvements have on heapsort [36]. We compare heapsort built

from traditional heaps and our aligned d-heaps. The traditional heaps were built using Floyd's

method. Our aligned heaps are built using either Floyd's method or Repeated-Adds; the choice is

made dynamically at runtime depending on the heapsize and fanout in order to maximize perfor-

mance.

Figure 13 shows the execution time of our four heapsorts running on an DEC Alphastation 250

sorting uniformly distributed 32 bit integers. As before, we see that increasing fanout from 2 to 4

provides a large performance gain. Again we see that the instruction count overhead of the 8-heap

is overcome by the reduced cache misses and the 8-heap performs best for larger heap sizes. The

18

0

2

4

6

8

10

12

14

16

1000 10000 100000 1e+06

M
is

se
s

p
er

 i
te

ra
ti

o
n

Heap size in elements

Traditional Heap
Aligned 2-Heap
Aligned 4-Heap
Aligned 8-Heap

Figure 11: Cache misses per iteration for a variety of heaps running in the hold model (w = 25).

Simulated cache was 2048k in capacity with a 32 byte block size. Heap element size is 4 bytes.

3000

3500

4000

4500

5000

5500

6000

1000 10000 100000 1e+06

T
im

e
(c

y
cl

es
 p

er
 i

te
ra

ti
o
n
)

Heap size in elements

Traditional Heap
Aligned 2-Heap
Aligned 4-Heap
Aligned 8-Heap

Figure 12: Cycles per iteration on a DEC Alphastation 250 for a variety of heaps running in the

hold model (w = 25). Heap element size is 4 bytes.

19

Machine Processor Clock Rate L1 Cache Size L2 Cache Size

Alphastation 250 Alpha 21064A 266 Mhz 8k/8k 2048k

Pentium 90 Pentium 90 Mhz 8k/8k 256k

DEC 3000/400 Alpha 21064 133 Mhz 8k/8k 512k

Power PC MPC601 80 Mhz 32k 512k

Sparc 20 SuperSparc 60 Mhz 20k/16k 1024k

Table 1: Clock rate and cache sizes of the machines on which we tested our heaps.

8-heap sorting 8,192,000 numbers nearly doubles the performance of the traditional binary heap.

4.3 Generality of Results

So far all our data has been presented for the DEC Alphastation 250, and all of our simulations

have been run for two megabyte caches. In order to demonstrate the general applicability of our

optimizations across modern architectures, we now present data for our heaps running in the hold

model on four machines other than the Alphastation. Figure 14 shows the speedup of our 4-heap

over the traditional heap running in the hold model with w = 0 with 8 byte heap elements. As

our four additional machines we chose the Sparc 20, the IBM Power PC, the DEC Alpha 3000/400

and a Pentium 90 PC. The clock rates of the machines tested ranged from 60 to 266 megahertz,

and the cache sizes ranged from 256k to 2024k. Table 1 shows the processor, clock rate and cache

size for the machines we tested. Figure 14 shows that despite the di�erences in architecture, our

4-heaps consistently achieve good speedups that increase with the size of the heap.

Both the Power PC and the Pentium speedup curves begin to climb earlier than we might

expect. Since no work is performed between iterations, we expect few second-level cache misses to

occur until the heap is larger than the cache. Recall, however, that this expectation is based on the

assumption that data contiguous in the virtual address space is always contiguous in the cache. This

assumption is not true for any of these �ve machines, all of whose second-level caches are physically

indexed. It is likely that for the Power PC and the Pentium, the operating systems (AIX and Linux

respectively) are allocating pages that conict in the cache and that this is causing second-level

cache misses to occur earlier than we expect. These cache misses provide an earlier opportunity for

the 4-heap to reduce misses and account for the increased speedup. These di�erences might also

be due in part to di�erences in the number of �rst level cache misses. This would not explain all

of the di�erence however, as the �rst level miss penalties in these cases are small.

5 A Comparison of Priority Queues

In this section, we compare a number of priority queues running in the hold model. Our experiments

are intended to be a reproduction of a subset of the priority queue study comparison performed by

Jones in 1986 [21]. The results of Jones's experiments indicated that for the architecture of that

time, pointer-based, self-balancing priority queues such as splay trees and skew heaps performed

better than the simple implicit heaps. The changes that have occurred in architecture since then,

20

0

200

400

600

800

1000

1200

1400

1600

1800

1000 10000 100000 1e+06

T
im

e
(c

y
cl

es
 p

er
 e

le
m

en
t)

Heap size in elements

Traditional Heap
Aligned 2-Heap
Aligned 4-Heap
Aligned 8-Heap

Figure 13: Cycles per iteration on a DEC Alphastation 250 for a variety of heapsort algorithms

sorting uniformly distributed 32 bit integers.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1000 10000 100000 1e+06

S
p
ee

d
u
p
 (

4
-h

ea
p
 o

v
er

 t
ra

d
it

io
n
al

)

Heap size in elements

Pentium 90
Power PC

Alphastation 250
Alpha 3000/400

Sparc 20

Figure 14: The speedup of an aligned 4-heap over the traditional heap running in the hold model

with w = 0 and 8 byte heap elements for a number of architectures.

21

however, have shifted the priorities in algorithm design, and our conclusions are somewhat di�erent

than those drawn by Jones.

5.1 The Experiment

We examined the performance of �ve priority queue implementations operating in the hold model.

In our experiments we compared a traditional heap, a cache-aligned 4-heap, a top-down skew heap

and both a top-down and a bottom-up splay tree. The implementations of the traditional heap

and the aligned 4-heap were those described earlier in this paper. The implementations of the skew

heap and the bottom-up splay tree were taken from an archive of the code used in Jones's study.

The top-down splay tree implementation is an adoption of Sleator and Tarjan's code [30]. As Jones

did in his study, the queues were run in the hold model, and no work was performed between the

remove-min and the add of each iteration (w = 0). In our experiments, a queue element consisted

of an 8 byte key and no data. This varies slightly from Jones's experiments where he used 4 byte

keys. A larger key value was chosen to allow extended runs without the keys overowing.

In our runs, the priority queues were initially seeded with exponentially distributed keys and

the priority queues were run in the hold model for 3,000,000 iterations to allow the queue to reach

steady state. The queue was then measured for 200,000 iterations. As before, executions were

run on a DEC Alphastation 250. Dynamic instruction counts and cache performance data was

collected using Atom [31] (see Section 3.4). Cache simulations were con�gured for a two megabyte

direct-mapped cache and a 32 byte block size.

In our experiments, the queue size was varied from 1,000 to 1,024,000. (The bottom-up splay

tree was only run up to a size of 512,000 elements due to physical memory pressure.) This di�ers

from Jones study where he used considerably smaller queues, ranging from size 1 to 11,000.

5.2 Results

Figure 15 shows a graph of the dynamic instruction count of the �ve priority queues. As we

expect, the number of instructions executed per iteration grows with the log of the number of

elements for all �ve of the priority queues. The 4-heap executed around 25% fewer instructions

than the traditional heap as Figure 6 predicts for a swap cost of two compares. The bottom-up

splay tree performed almost exactly the same number of instructions as the traditional heap. This

somewhat contradicts Jones's �ndings in which the splay tree far outperformed the heap. This

di�erence is not surprising since Jones's experiments were run on a CISC machine o�ering a host

of memory-memory instructions while ours were run on a load-store RISC machine. Splay trees

and skew heaps are extremely memory intensive. The bottom-up splay tree and the traditional

heap executed roughly the same number of instructions in our study, yet the splay tree executed

almost three times as many loads and stores as the heap. The pointer manipulations performed

by the self-balancing queues were fairly inexpensive on the architectures that Jones used. On our

load-store RISC machine, however, these pointer manipulations translate into a larger instruction

count, slowing down the bottom-up splay tree relative to the heaps.

The top-down splay tree performed the most instructions by a wide margin. To be fair, we

must say that while the top-down splay trees were coded for e�ciency, they did not receive the

heavy optimization that Jones gave his codes or that we gave our heaps.

The cache performance of the priority queues is compared in Figure 16. As the experiments were

run in the hold model with no work between iterations, we do not expect cache misses to occur after

22

0

100

200

300

400

500

1000 10000 100000 1e+06

in
st

ru
ct

io
n
s

p
er

 i
te

ra
ti

o
n

Queue size in elements

Top-Down Splay
Top-Down Skew
Bottom-Up Splay
Traditional Heap
Aligned 4-Heap

Figure 15: Instruction count per iteration of �ve priority queues running in the hold model with

w = 0 and 8 byte keys.

0

2

4

6

8

10

12

14

1000 10000 100000 1e+06

M
is

se
s

p
er

 i
te

ra
ti

o
n

Queue size in elements

Top-Down Splay
Top-Down Skew
Bottom-Up Splay
Traditional Heap
Aligned 4-Heap

Figure 16: Cache misses per iteration of �ve priority queues running in the hold model with w = 0

and 8 byte keys. Simulated cache is 2048k in capacity with a 32 byte block size.

23

0

1000

2000

3000

4000

5000

6000

1000 10000 100000 1e+06

T
im

e
(c

y
cl

es
 p

er
 i

te
ra

ti
o
n
)

Queue size in elements

Top-Down Splay
Top-Down Skew
Bottom-Up Splay
Traditional Heap
Aligned 4-Heap

Figure 17: Cycles per iteration of �ve priority queues running in the hold model with w = 0 and 8

byte keys.

warmup unless the queue is larger than the cache. It is at this point that an important di�erence

in the priority queues is revealed. Depending on their algorithms for adding and removing, these

queues incur varying memory overhead to maintain their structure. This memory overhead has a

huge impact on cache performance. Both of the heaps are implicit and their elements consist only

of the keys. No pointers or counts are required per element to maintain their structure. The top-

down skew heap and top-down splay tree, on the other hand, both require a left and right pointer

per element, adding 16 bytes of overhead to each queue element. In addition, queue elements for

the pointer-based queues are allocated from the system memory pool, and there is management

overhead incurred each time an element is allocated. The pointer overhead combined with the

overhead of the system memory pool causes the top-down skew heap and top-down splay tree to

start incurring cache misses at one-quarter the queue size of the heaps. Due to the nice locality

properties that splay trees possess, the top-down splay tree's cache misses grow at a slightly lower

rate than the skew heap.

The queue requiring the most overhead is the bottom-up splay tree with three pointers per

element (left, right and parent). The result is that the splay tree has the largest footprint in

memory and is the �rst to incur cache misses as the queue size is increased.

The execution times for the �ve queues executing on an Alphastation 250 are show in Figure 17.

Due to their low instruction count and small cache miss count, our aligned 4-heap performs best,

with the traditional heap �nishing second. This varies from Jones's �ndings in which the implicit

heaps �nished worse than splay trees and skew heaps.

24

Another di�erence between our results and Jones's is that in our study, the skew heap outper-

formed the bottom-up splay tree. With only slightly higher instruction count than the traditional

heap and moderate cache performance, the skew heap outperforms both of the splay trees and

�nishes third overall in our comparison.

Our two splay tree implementations turned in similar execution times with the higher instruction

count for the top-down splay tree o�setting the higher cache miss count for the bottom-up splay

tree. Despite the locality bene�ts splay trees a�ord, their large footprint in memory caused them

to perform poorly in our study.

5.3 Impressions

The goal of this section is de�nitely not to convince the reader that heaps are the best prior-

ity queues. The goal instead is to reveal the importance of a design that is conscious of memory

overhead and the e�ects of caching. Our experiments were run with memory-tuned algorithms com-

peting against algorithms that were optimized without considering caching. Our results strongly

suggest that future designs will need to pay close attention to memory performance if good overall

performance is to be achieved.

There are obvious optimizations that could be applied to the splay trees and skew heaps which

would reduce their cache misses and improve their performance. One good starting point would be

to allocate queue nodes in large bundles to minimize the overhead incurred in the system memory

pool. By allocating elements 1000 at a time, overhead could be reduced from 8 bytes per queue

element to 8 bytes per 1000 queue elements.

An additional optimization would be to store queue nodes in an array and represent references

to the left and right elements as o�sets in the array rather than using 64 bit pointers. If the queue

size was limited to 2

32

, the 8 byte pointers could be replaced with 4 byte integers instead. These

two optimizations alone would reduce the total overhead for the top-down skew heap to 4 (left) +

4 (right) = 8 bytes rather than 8 (left) + 8 (right) + 8 (memory pool) = 24 bytes. These simple

changes would have a signi�cant impact on the performance of all of the pointer-based priority

queues used in our study. It is unlikely, however, that the splay trees or skew heaps could be made

to perform as well as our heap for the applications we looked at, since our heaps have such low

instruction counts and have no memory overhead due to their implicit structure.

6 Conclusion

The main conclusion of our work is that the e�ects of caching need to be taken into account in the

design and analysis of algorithms. We presented examples which show how algorithm analysis which

does not include memory system performance can lead to incorrect assumptions about performance.

We presented a study of the cache behavior of heaps and showed simple optimizations that

signi�cantly reduce cache misses which in turn improve overall performance. For the DEC Alphas-

tation 250, our optimizations sped up heaps running in the hold model by as much as 75% and

heapsort by a factor of two.

We also introduced collective analysis, an analytical model for predicting the cache performance

of a system of algorithms. Collective analysis is intended for applications whose general behavior

is known, but whose exact reference pattern is not. As the model does not perform analysis on

address traces, it o�ers the advantage that algorithm con�guration can be varied as well as cache

25

con�guration. In our framework, we performed a cache analysis of d-heaps, and our performance

predictions closely match the results of a trace-driven simulation.

Finally, we reproduced a subset of Jones's experiments [21] examining the performance of a

number of priority queues. Our experiments showed that the low memory overhead of implicit

heaps makes them an excellent choice as a priority queue, somewhat contradicting Jones's results.

We observed that the high memory overhead of the pointer-based, self-balancing queues translated

into poor memory system and overall performance. We also discussed potential optimizations to

these pointer-based queues to reduce their memory overhead and reduce cache misses.

Acknowledgments

We thank Ted Romer for helping us with Atom toolkit. We also thank Mike Salisbury and Jim

Fix for helpful comments on drafts of this paper.

26

References

[1] A. Agarwal, M. Horowitz, and J. Hennessy. An analytical cache model. ACM Transactions

on Computer Systems, 7:2:184{215, 1989.

[2] J. Anderson and M. Lam. Global optimizations for parallelism and locality on scalable parallel

machines. In Proceedings of the 1993 ACM Symposium on Programming Languages Design

and Implementation, pages 112{125. ACM, 1993.

[3] S. Carlsson. An optimal algorithm for deleting the root of a heap. Information Processing

Letters, 37:2:117{120, 1991.

[4] S. Carr, K. McKinley, and C. W. Tseng. Compiler optimizations for improving data locality.

In Sixth International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 252{262, 1994.

[5] M. Cierniak and Wei Li. Unifying data and control transformations for distributed shared-

memory machines. In Proceedings of the 1995 ACM Symposium on Programming Languages

Design and Implementation, pages 205{217. ACM, 1995.

[6] D. Clark. Cache performance of the VAX-11/780. ACM Transactions on Computer Systems,

1:1:24{37, 1983.

[7] E. Co�man and P. Denning. Operating Systems Theory. Prentice{Hall, Englewood Cli�s, NJ,

1973.

[8] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press, Cam-

bridge, MA, 1990.

[9] J. De Gra�e and W. Kosters. Expected heights in heaps. BIT, 32:4:570{579, 1992.

[10] E. Doberkat. Inserting a new element into a heap. BIT, 21:225{269, 1981.

[11] E. Doberkat. Deleting the root of a heap. Acta Informatica, 17:245{265, 1982.

[12] J. Dongarra, O. Brewer, J. Kohl, and S. Fineberg. A tool to aid in the design, implementa-

tion, and understanding of matrix algorithms for parallel processors. Journal of Parallel and

Distributed Computing, 9:2:185{202, June 1990.

[13] M. Farrens, G. Tyson, and A. Pleszkun. A study of single-chip processor/cache organizations

for large numbers of transistors. In Proceedings of the 21st Annual International Symposium

on Computer Architecture, pages 338{347, 1994.

[14] D. Fenwick, D. Foley, W. Gist, S. VanDoren, and D. Wissell. The AlphaServer 8000 series:

High-end server platform development. Digital Technical Journal, 7:1:43{65, 1995.

[15] Robert W. Floyd. Treesort 3. Communications of the ACM, 7:12:701, 1964.

27

[16] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory management by

global program transformation. Journal of Parallel and Distributed Computing, 5:5:587{616,

Oct 1988.

[17] G. Gonnet and J. Munro. Heaps on heaps. SIAM Journal of Computing, 15:4:964{971, 1986.

[18] J. Hennesey and D. Patterson. Computer Architecture A Quantitative Approach. Morgan

Kaufman Publishers, Inc., San Mateo, CA, 1990.

[19] M. Hill and A. Smith. Evaluating associativity in CPU caches. ACM Transactions on Computer

Systems, 38:12:1612{1630, 1989.

[20] D. B. Johnson. Priority queues with update and �nding minimum spanning trees. Information

Processing Letters, 4, 1975.

[21] D. Jones. An emperical comparison of priority-queue and event-set implementations. Com-

munications of the ACM, 29:4:300{311, 1986.

[22] K. Kennedy and K. McKinley. Optimizing for parallelism and data locality. In Proceedings of

the 1992 International Conference on Supercomputing, pages 323{334, 1992.

[23] D. E. Knuth. The Art of Computer Programming, vol III { Sorting and Searching. Addison{

Wesely, Reading, MA, 1973.

[24] A. Lebeck and D. Wood. Cache pro�ling and the spec benchmarks: a case study. Computer,

27:10:15{26, Oct 1994.

[25] M. Martonosi, A. Gupta, and T. Anderson. Memspy: analyzing memory system bottlenecks

in programs. In Proceedings of the 1992 ACM SIGMETRICS Conference on Measurement and

Modeling of Computer Systems, pages 1{12, 1992.

[26] D. Naor, C. Martel, and N. Matlo�. Performance of priority queue structures in a virtual

memory environment. Computer Journal, 34:5:428{437, Oct 1991.

[27] G. Rao. Performance analysis of cache memories. Journal of the ACM, 25:3:378{395, 1978.

[28] R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA, 1988.

[29] J.P. Singh, H.S. Stone, and D.F. Thiebaut. A model of workloads and its use in miss-rate

prediction for fully associative caches. IEEE Transactions on Computers, 41:7:811{825, 1992.

[30] D. Sleator and R. Tarjan. Self-adjusting binary search trees. Journal of the ACM, 32:3:652{686,

1985.

[31] Amitabh Srivastava and Alan Eustace. ATOM: A system for building customized program

analysis tools. In Proceedings of the 1994 ACM Symposium on Programming Languages Design

and Implementation, pages 196{205. ACM, 1994.

28

[32] O. Temam, C. Fricker, and W. Jalby. Cache interference phenomena. In Proceedings of the

1994 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems,

pages 261{271, 1994.

[33] R. Uhlig, D. Nagle, T. Stanley, T. Mudge, S. Sechrest, and R. Brown. Design tradeo�s for

software-managed TLBs. ACM Transactions on Computer Systems, 12:3:175{205, 1994.

[34] M. Weiss. Data structures and algorithm analysis. Benjamin/Cummings Pub. Co., Redwood

City, CA, 1995.

[35] H. Wen and J. L. Baer. E�cient trace-driven simulation methods for cache performance

analysis. ACM Transactions on Computer Systems, 9:3:222{241, 1991.

[36] J. W. Williams. Heapsort. Communications of the ACM, 7:6:347{348, 1964.

[37] M. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of the 1991 ACM

Symposium on Programming Languages Design and Implementation, pages 30{44. ACM, 1991.

29

