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Abstract

Subdivision surfaces provide a curved surface representation that is useful in a number of applications, in-
cluding modeling surfaces of arbitrary topological type [5] , fitting scattered data [6] , and geometric compression
and automatic level-of-detail generation using wavelets [8] . Subdivision surfaces also provide an attractive rep-
resentation for fast rendering, since they can directly represent complex surfaces of arbitrary topology. This direct
representation contrasts with traditional approaches such as trimmed NURBS, in which tesselating trim regions
dominates rendering time, and algebraic implicit surfaces, in which rendering requires resultants, root finders, or
other computationally expensive techniques.

We present a method for subdivision surface triangulation that is fast, uses minimum memory, and is simpler in
structure than a naive rendering method based on direct subdivision. These features make the algorithm amenable
to implementation on dedicated geometry engine processors, allowing high rendering performance on appropri-
ately equipped graphics hardware.

CR Categories and Subject Descriptors: I.3.6 [Computer Graphics]: Methodology and Techniques.

Additional Key Words: subdivision surfaces, surface rendering.

1 Introduction
A subdivision surface results from iteratively refining a control mesh by adding new vertices into the mesh and per-
turbing the vertex locations using weighted averages of the vertex and its neighbors. The control mesh usually gives
a rough polygonal approximation of the resulting surface; some methods even interpolate the control mesh[4]. The
first subdivision surfaces were based on quadrilateral meshes and generalize biquadratic [3] and bicubic [1] tensor
product surfaces.

We present an implementation of Loop’s subdivision scheme [7] with additions by Hoppe et al. [6]. Loop’s subdivi-
sion scheme is a generalization of C2 quartic triangular B-splines, and is the simplest method known to lead to tangent
plane smooth surfaces. The control mesh consists of triangular faces and, like subdivision surfaces in general, can
have any topology. The resulting surface has the same topology as the control mesh.

Figure 1 diagrams Loop’s subdivision process. Each iteration splits all the edges in the control mesh and introduces
four new triangles for each original one. The location of a new vertex is obtained by a weighted average of the sur-
rounding vertices. For example, when the edge BC is split, the vertex m is intro-
duced at location m = A+3B+3C+D

8 . Each iteration also perturbs the locations of ex-
isting vertices by taking a weighted average of the locations of the vertex and its
immediate neighbors. Both of these operations—creating new vertices and per-
turbing the existing ones—can be expressed as matrix multiplications. Analysis
of the eigenstructure of these matrices provides formulas for calculating the limit-
ing location of each control vertex on the final surface. We can also compute two
tangent vectors at each control vertex, leading directly to the normal vector at that

m

A B

C D

Figure 1: Triangle subdivision.

point.

Hoppe et al. [6] extended Loop’s scheme by introducing subdivision rules that lead to a piecewise smooth surface
with features such as creases, corners, darts, and conical vertices. The vertices and edges of the control mesh are



typed and the weights in the subdivision rule are chosen based on the vertex and edge types (the rules are collected in
Appendix). Figure 2 shows a control mesh with color coded vertices and edges and the resulting subdivision surface.

Figure 2 A control mesh and the resulting subdivision surface. Green edges are smooth while blue ones
are sharp (creases). For vertices, yellow means smooth, magenta conical, green dart, and cyan a crease
vertex (corner, regular, and irregular).

1.1 Rendering

Figure 1 suggests a simple method for rendering a subdivision surface: for each triangle, create four new triangles,
and compute the locations of the resulting (original and new) vertices, then recurse. While this algorithm is straight-
forward, it is inappropriate for implementation in dedicated graphics hardware. Geometry engines (GEs) typically
have limited memory and may be ill-suited to linked-list traversal and recursion.

We describe a novel algorithm for subdivision surface triangulation that is fast, uses little memory, and is easy to
parallelize. These features make the method ideal for GE implementation. If GEs are available, then the host is freed
from doing most of the work of generating triangles on the subdivision surface. In addition, instead of sending the
GEs a long list of triangles, the host sends a compact representation of the surface, reducing host-GE bandwidth
requirements. Even a machine without GEs, however, can reap the speed benefits of the simple indexing, iterative
processing, and small memory consumption of our algorithm.

1.2 Overview of paper

In the next section we describe the full algorithm for rendering subdivision surfaces. We describe how to do the sub-
division using a simple 2D array (Section 2.1.1) and present a sliding window method for rendering the subdivision
surface patches depth-first and in-place, thus saving memory (Section 2.1.2). We then describe how we find the sub-
meshes that are sent to GEs (Section 2.2) and describe some practical issues and limitations (Section 2.3). Section
3 presents our results and compares subdivision surface rendering to that of NURBS surface rendering. Section 4
discusses the promise for fast rendering when other subdivision surface features are considered such as automatic
LOD selection and compression. An appendix describes the actual subdivision rules.

2 Method
Our basic idea is to divide the subdivision of an arbitrary control mesh into two tasks. The host manages the general
control mesh and partitions it into small, regular patches. These patches can then be rendered independently inside
a GE using a straightforward algorithm. The patches are stored so that after partitioning the host need only consult a
cache and send the precomputed messages to the GEs to render more frames.

We have implemented the control mesh in the host as a half-edge data structure similar to ones presented in [10].



However, a much simpler data structure, a 2D array, suffices if the surface is rendered a pair of control mesh triangles
at a time. The vertices can have arbitrary dimensions in either representation, so each vertex can have color or texture
coordinates in addition to 3D space coordinates. The subdivision algorithm treats all dimensions in the same fashion.

In order to preserve continuity between patches, the patches need to overlap. Figure 3 shows two subdivisions of a
patch consisting of a single control triangle. In the first subdivision, all the support vertices within the 1-neighborhood
of the patch are needed both to split the edges and to update the (three) old vertices in the patch. The neighboring
triangles are subdivided only enough to obtain a new layer of supporting vertices and edges. In the second subdivision
this support layer shrinks even closer to the patch.

Figure 3 Neighbors are needed for subdivision.

We first describe how a 2D array can be used to subdivide pairs of control mesh triangles. Then we present a depth-
first method for performing these calculations in a memory-efficient manner. We describe how we find the triangle
pairs from the original control mesh, and finally describe the structure of the messages sent from host to GEs as well
as some limitations caused by limited resources.

2.1 Subdivision inside a GE

2.1.1 Subdivision in a 2D array

A 2D array is perhaps the simplest possible data structure for describing points on a surface. However, it can store
effectively only regularly tesselated surfaces of planar topology, so it is not a suitable representation for the general
control mesh. Inside the control polygons things are much more regular: the surface has planar topology and the
vertices are connected in a very regular fashion. The valence of each new vertex is always six, as can be seen from
Figs. 1 and 4. When we combine two triangles into a quadrangle, we obtain a natural mapping from subdivided trian-
gle pairs to a square array. Figure 4 shows the array representation of the triangle pair after one and two subdivisions.

level j level j+1

Figure 4 A 2D array stores vertices compactly.

There is no need to keep any connectivity information to find the neighbors for a vertex, and a vertexes’ and edges’
types can be obtained from their locations in the 2D array and from the types in the original message: corner vertices
and the edges obtained by splitting original edges retain their type, all new edges are smooth, and all new vertices are



smooth except when they lie on a crease edge, in which case they are regular crease vertices. Since there is no place
for the extra corner support vertices in the 2D array, they are simply stored in an additional array.

With this scheme, it is easy to subdivide the triangles one level at a time. The size of the array at an intermediate level
j is (2j +3)�(2j +3). At the final level we can calculate the vertex coordinates and normal vectors on the final surface,
store them to a (2j + 1) � (2j + 1) matrix, and render them as triangle strips. An exception occurs if the (diagonal)
edge between the original triangles is sharp. In that case all the vertices on that diagonal have two normal vectors, so
we need one more element for each row for the extra normal, and each row must be rendered as two triangle strips.

2.1.2 The sliding window method

The simple method of subdividing a triangle pair one level at a time, even with a clever implementation, uses memory
on the order of the size of the output. Since each level of subdivision quadruples the number of triangles, we could
only implement a very modest number of levels (e.g., 2) in a GE. Instead, we use a depth-first approach that incre-
mentally calculates the vertex coordinates, renders the triangles as soon as they are calculated, and reuses memory.
This technique enables us to go several levels deeper than the naive approach for the same amount of memory.

It turns out that it is sufficient to store only a window of three rows of the 2D array for each level, plus two rows
for the final vertex coordinates and normal vectors. In the course of the algorithm we slide the window down the 2D
arrays. Figure 5 illustrates the initialization phase of the algorithm. On the left side we have the three first rows of the
triangle array at subdivision level j. We obtain the first row support vertices at level j + 1 by splitting the vertical and

Figure 5 Initialization of the depth-first algorithm.

diagonal edges between the second and first row vertices at level j. Similarly, the second row is obtained by splitting
the horizontal edges and updating the vertices of the second row at level j. The third row is obtained by splitting the
vertical and diagonal edges connecting the second and third rows at level j. We initialize the three-row arrays a level
at time, and at the final level we calculate the final coordinates and normal vectors on the top border (second row).

After the top rows have been initialized, we begin the recursive part of the algorithm. We introduce the next row
of vertices from the original message. Figure 6 shows how a new row at level j provides the neighbors needed for
splitting the horizontal edges and updating the vertex coordinates in the middle row. The new and updated vertices
become the new low row at level j + 1, and they are written over the old high row at that level. We can now repeat
the same going from level j + 1 to j + 2.

The new row at level j also enables us to split the diagonal and vertical edges connecting the level j low and middle
rows, which produces yet another new row for level j+1. In this manner, we write new rows over old ones and descend
towards the final subdivision level. There, with each new row, we calculate the final coordinates and normals for the
middle row vertices and render another triangle strip using the new and the previous final values.

Figure 6 Introduction of the lowest row on the left enables us to calculate two new rows on the right.

Pseudocode for the depth-first algorithm looks like this:



SUBDIVIDE(level, last)

BEGIN

IF (level != last) THEN

split horizontal edges and update vertices

SUBDIVIDE(level+1, last)

split vertical and diagonal edges

SUBDIVIDE(level+1, last)

ELSE

calculate final positions and normals

render triangle strip

ENDIF

END

Although the algorithm is not tail recursive, we can unroll the algorithm and execute it iteratively since we know the
maximum number of subdivision levels.

Let us denote by n the number of 3D points (with normal vectors) that running the algorithm for l levels produces.
The length of the rows at the finest level is approximately

p

n, and since the rows at a coarser level are only half
as long as at the next finer level, the algorithm uses O(

Pl
i=0
p

n 1
2i ) = O(

p

n) memory (roughly 5 � 2l+1 3D vectors,
2�2l+1 of which are used by the final vertices and normal vectors). Each vertex is calculated only once, the calculation
takes constant time, and since there are only about one quarter as many vertices at a coarser level, the algorithm uses
O(
Pl

i=0 n 1
4i ) = O(n) time.

2.2 Finding triangle pairs

The triangle pairs are found by a greedy algorithm that produces a pairing that seems nearly
optimal. Each triangle is inserted into one of four sets (see Fig. 7) depending on how many
free neighbors it has. Triangles with zero or one free neighbors have the highest priority (0),
and the triangles with three free neighbors have the lowest priority (3). Of the remaining
triangles (two free neighbors), the ones with both neighbors in set 3 have lower priority (2).
The algorithm chooses a triangle from the highest nonempty set and pairs it with the neigh-
bor of highest priority. The paired triangles are removed from the sets, and their remaining
neighbors are moved to a higher priority set (from 2 and 1 to 0, from 3 to 2). Additionally,
after moving a triangle from set 3 to 2, all the triangles in 2 with a neighbor in 0, 1, or 2 are
moved to set 1.

set free neighbors

0

1

2

3

0 or 1

3

2,one of themin 0 or 1

2,both of themin 3

Figure 7: The sets for pair-
ing triangles.

Pairing a triangle with three free neighbors (set 3) may occur only once, in the beginning, if all the triangles form a
closed surface. By removing the first triangle pair we create a hole in the mesh. Now we have some triangles along
the boundary of the mesh with only one or two free neighbors. Pairing a triangle with only one free neighbor cannot
take us away from the optimum solution: it could be that the neighbor was needed as a mate of some other triangle
in the optimum pairing, but if we don’t pair it, the triangle with one neighbor will be left alone.

The algorithm removes the “protruding” triangles at the boundary (in set 0), along with their only free neighbor, which
usually makes some other triangle(s) have only one free neighbor. If we rid a triangle of all free neighbors, we can
pair it with a dummy mate at any time without affecting the optimum solution; in such a case we also make a note
so that the dummy mate won’t be rendered twice. If we find that all the boundary triangles have only one boundary
edge, we try to find two such neighboring triangles (set 1) and chip them off the mesh. In the rare case that we cannot
find such pair, we randomly pair a border triangle (set 2) with a free neighbor, which again moves some triangles to
set 0 or at least to set 1.

Figure 8 gives two examples how the algorithm proceeds. In the left mesh, all the triangles with a border edge belong
to set 1, while the others belong to set 3. We start by pairing two triangles marked “1”, which promotes one of triangles
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Figure 8 Pairing of triangles in a mesh.

marked “2” to set 1. They form the next pair, which now promotes one of the triangles marked “3” to set 0, and so
forth. In the mesh on the right we always remove triangle pairs such that at least one of the triangles is left with only
one free neighbor.

2.3 Some implementation issues

2.3.1 Host-GE interface

Figure 9 presents the information in the message that is sent to GEs for rendering two triangles. The message com-
prises two parts: a fixed-length part and a variable-length part. The fixed-length part contains the vertex coordinates
along with vertex and edge types for the triangle pair (the shaded triangles) and the neighboring triangles (the four
unshaded triangles). Additional information includes the dimension of vertex coordinates and whether the second
triangle should be rendered or is a dummy. The variable-length part accommodates the variable valence of the con-
trol mesh vertices. We use a counter for each of the four corners followed by a list containing the position and type
information for the corner support vertices and edges.

...

... ...

...

Figure 9 Two triangles and their immediate neighbors.

2.3.2 The overhead of subdividing the neighbors

When looking at Fig. 3 it might seem that we are doing more work subdividing the immediate neighbors than the
actual patch. A closer look reveals, however, that after a few subdivisions the space and time spent on the support
edges and vertices is but a small fraction of the real work. If we assume that we have a regular control mesh with
vertices of valence six and a patch of two control triangles (as in Fig 4), the numbers of vertices and edges are as
follows (i is the number of subdivisions):

vertices edges
support 4 � 2i + 6 (38;72) 8 � 2i + 6 (72;134)
patch 4i + 2 � 2i + 1 (81;289) 3 � 4i + 2 � 2i (208;800)

The actual numbers at levels 3 and 4 are shown in parentheses.

A larger patch size with more control triangles would would mean less duplicated work with the support edges. How-
ever, a variable patch size would destroy the simple square array structure and the patch would not be guaranteed to



be topologically a plane. Also, the patch size should be constant to obtain even load balancing for maximum perfor-
mance in the case of several GEs.

2.3.3 Limitations

Due to the limited memory, there has to be a maximum number for the levels of subdivision we can process in a GE.
If the user wants more subdivisions, the first levels can be done in the host, and the results are then sent to GEs.

The memory limitations also prevent us rendering meshes with arbitrarily large vertex valencies. Thus we have to
impose a maximum limit for the corner support vertices for each triangle pair. We currently support a combined
valency of 40 for the four corner vertices, though the choice is arbitrary and could be made somewhat larger. In the
case the control mesh contains vertices of too large valency, the mesh would have to be modified by, e.g., introducing
a small triangle at such a vertex (and three others to keep the mesh triangular) and distributing the valency among the
new vertices.

3 Results
We implemented this algorithm as an experimental extension to OpenGL for the Silicon Graphics Onyx Reality En-
gine. The host stores the general control mesh using a half-edge data structure, chops the mesh into triangle pairs,
and sends the pairs (with their neighbors) to GEs. The GE microcode (unoptimized C) subdivides the triangle pairs
and renders them using the existing OpenGL code for rendering triangle strips.

3.1 Performance measurements

We present some performance measurements comparing subdivision surface and NURBS versions of the Utah teapot
and a cylindrical car part with holes (see Fig. 10). In the following table, RE refers to an SGI Onyx RE2 with 12
geometry engines operating in parallel, while Indigo refers to an SGI Indigo2 XL on which all subdivision work is
done in the host.

Subdivision surfaces
model control triangles triangles/sec (1000s)

points RE Indigo
teapot 157 4960 147 26

19840 207 31
car part 126 3264 157 26

13056 212 39

NURBS surfaces
teapot 512 8740 141 24
car part 1143+189 5608 80 22

All subdivision surface times include finding triangle pairs. The additional control points for the “car part” NURBS
surface indicate trim curve points; measured times include trim region tesselation. The two sets of subdivision surface
timing numbers are for 2 and 3 levels of subdivision.

The results show that even our unoptimized implementation was faster than the OpenGL NURBS, both for a GE
microcode implementation (RE) and when the subdivision was performed completely on the host (Indigo). In ad-
dition, for a fixed number of triangles, the visual quality of a subdivision surface rendering is generally better than
that obtained with a NURBS rendering. The reason is that the subdivision surface representation concentrates more
triangles in areas of higher detail; this effect is difficult to achieve with NURBS renderers.

The triangle rate increases with the number of subdivision levels. There seem to be three reasons: with more subdivi-
sion levels, the setup and communication costs are amortized over a larger number of triangles, more of the computed



Figure 10 Subdivision surfaces: the Utah teapot and a cylindrical car part with holes.

triangles are inside the control triangles where the subdivision algorithm is most regular, and individual triangle strips
become longer.

3.2 Real time editing

We implemented a simple surface editor that allows us to move the control vertices around and change the types of
the control vertices and the connecting edges. The fast rendering allows interactive editing of the control mesh even
for quite complicated objects (consisting of hundreds of control triangles) and gives real-time feedback by showing
the resulting subdivision surface. Figure 11 shows a model of a head and the result of a couple of minutes’ worth of
editing.

Figure 11 A mannequin head before and after editing.

3.3 Comparison with NURBS

Subdivision surfaces possess several potential advantages over NURBS patches. The most obvious advantage is that
a single subdivision surface can model an object of any topology, whereas objects with complicated shapes usually
need to be covered by several NURBS patches. Figure 12 shows such a surface. With a single continuous surface
there is no need to stitch patches together to avoid cracks or to trim patches to avoid surface interpenetration. Further,
the control points of a NURBS patch need to be in a topologically regular 2D lattice, whereas the subdivision surface
control mesh gives more freedom about the connectivity of the control points.



Figure 12 A distributor cap: control mesh and the resulting surface.

4 Discussion
4.1 Compression in communication

Rendering a (piecewise) smooth surface accurately by polygonal approximation requires a large number of polygons.
Our method not only relieves the host from the task of tesselating the surface into a set of triangles, but it also reduces
communication between host and GEs. Let’s assume that the user wants to subdivide the control mesh four times to
achieve a rather high geometrical accuracy. Every triangle in the control mesh is subdivided four times, yielding
44 = 256 triangles. When these triangles are rendered, for example as triangle strips, we still have to send each
vertex twice (on average) to the graphics hardware. A single subdivision message, however, sends typically only
10-15 vertices (two triangles and their neighbors), along with some type information, but produces 512 triangles.

Subdivision surfaces combined with wavelet analysis may yield even greater compression in communication [2]. A
multiresolution representation of the control mesh would allow sending larger submeshes compactly.

4.2 Level-of-detail control

In order to obtain interactive rendering speeds, automatic level-of-detail (LOD) control is essential. With subdivision
surfaces, there is no need to store or create alternate descriptions of geometry at different levels of detail. The LOD
control is built in: one parameter, the number of subdivision levels, dictates how detailed the rendering is.

It is quite easy to obtain a continuous LOD control by interpolating between subdivision levels. This is important
for eliminating “jumping” of the surface, e.g., when one zooms in to an object to display more detail. Suppose we
want to display the object at subdivision level 3.5. Let us call the vertices introduced at level j even and vertices at
level j + 1 odd. We would then calculate the surface points at level 4, use the average of the parent vertices (even) for
each odd vertex as the starting point, and the actual location as the ending point. The non-integer subdivision levels
between 3 and 4 can now be obtained by interpolating between the starting and ending points.

It is also possible to render different control mesh triangle pairs at different levels of subdivision. A naive implemen-
tation would leave cracks between patches, but with a bit of extra information, the cracks can easily be filled. Let’s
assume that while rendering the current patch we know that the patch on the left was rendered with one fewer levels
of subdivision. We know that each leftmost vertex of the even rows corresponds to a vertex on the neighboring patch.
Introducing a new triangle consisting of the even, odd, and the next even vertex will fill the crack. In general, if there
are more levels between the patches, the crack filling polygons consist of the vertices shared by the patches and of
all the finer level vertices between them.



4.3 Conclusions

We have presented an algorithm for rendering Loop-Hoppe subdivision surfaces that uses very little memory and is
efficient to execute. A control mesh of arbitrary topology is efficiently divided into patches consisting of triangle
pairs and their immediate neighbors. The patches can be rendered separately and they are about the same size, which
makes the algorithm attractive for parallel implementation if several GEs are available.

Subdivision surfaces have several advantages over traditional surface descriptions, such as NURBS. Arbitrarily com-
plicated objects can be represented by a single surface rather than a collection of patches; the control mesh is quite
natural to edit by designers and provides both smooth surfaces and sharp features; level-of-detail control is supported
in a natural way; and our implementation outperformed the OpenGL NURBS versions of comparable surface models.
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Appendix
The edges and vertices in the control mesh can have the following types. An edge can be either smooth (continuous
surface normals) are a crease (discontinuous surface normals). A vertex can be either smooth, dart, crease, or corner,
depending whether it has zero, one, two, or more incident crease edges, respectively. A crease vertex is regular iff
there is exactly two smooth edges between the two creases, otherwise it is nonregular. Additionally, any vertex can
be tagged as a conical vertex.

Figure 13 presents the masks used for both subdividing the control mesh and calculating the final positions and normal
vectors at each vertex location. A new value is obtained by an affine combination of a vertex and its neighbors, and the
mask gives the appropriate weights. For example, a new vertex position can be obtained by v0

0 =
Pn

i=0 civi=
Pn

i=0 ci,
where v0 is the old vertex position and the other vi’s are the neighbors.

c4
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Figure 13 The subdivision masks for vertices and edges.

There are several cases1 for applying the leftmost vertex mask both for subdivision (S) and calculating the final po-
sition (F):

1Formulas from [6], except for conical vertices from [9].



vertex type c0 ci

S smooth or dart n=a(n) � n 1
S crease 6 edge c0-ci crease ? 1 : 0
S corner 1 0
S conical b(n) 1
F smooth or dart 3n/(8a(n)) 1
F regular crease 4 edge c0-ci crease ? 1 : 0
F nonregular crease 3 edge c0-ci crease ? 1 : 0

where a(n) = 5=8 � (3 + 2 cos(2�=n))2
=64 and b(n) = (3 + 2 cos(2�=n)=8.

The center mask is used when subdividing edges (between a and b). If the edge is smooth or if either of the vertices (a
or b) is a dart, the weights fa,b,c,dg are f3,3,1,1g. If the edge is a crease and one of the edge vertices (a) is a regular
crease while the other (b) is either non-regular crease or corner, the weights are f5,3,0,0g. In the remaining cases the
weights are f1,1,0,0g.

The normal vectors can be calculated by taking the cross product of two surface tangent vectors u1 and u2. For non-
crease vertices, we use the left mask. The center weight c0 is 0 for both u1 and u2, while ci = cos(2�i=n) for u1 and
ci = cos(2�(i � 1)=n) for u2. For crease vertices we use the right mask (the fat line denotes the crease), where u1

goes along and u2 across the crease. The u1 weights are w1 = 1, wn = �1, other wi’s are 0. For a regular crease
vertex, u2 weights fw0, ..., w4g are f-2,-1,2,2,-1g. For a non-regular crease vertex, u2 weights are, for n � 4, w0 = 0,
w1 = wn = sin �, and wi = (2 cos � � 2)(sin(i � 1)�) for 1 < i < n, where � = �=(n � 1); for n = 3, fw0, ..., w3g are
f-1,0,1,0g; for n = 2, fw0, w1, w2g are f-2,1,1g.
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