
Using Role Components to Implement

Collaboration-Based Designs

Michael VanHilst and David Notkin

Department of Computer Science and Engineering

University of Washington

Seattle, Washington 98195

4 April 1996

Technical Report UW-CSE-96-04-01

UW-CSE-96-04-01

Abstract

In this paper we present a method of code implementation that works in conjunction

with collaboration and responsibility based analysis modeling techniques to achieve

better code reuse. Our approach maintains a closer mapping from responsibilities in the

analysis model to entities in the implementation. In so doing, it leverages the features of

exible design and design reuse found in collaboration based design models to provide

similar adaptability and reuse in the implementation. Our approach requires no special

development tools and uses only standard features available in the C++ language. In

an earlier paper we described the basic mechanisms used by our approach and discussed

its advantages in comparison to the framework approach. In this paper we show how

our approach combines code and design reuse and describe speci�c techniques that can

be used in the development of larger applications.

1 Introduction

The notion of collaborations is well accepted in object oriented design. In collaborations,

groups of objects (or classes) cooperate to perform a task or maintain an invariant. In

the collaboration view, a role is the part of an object that ful�lls its responsibilities in

the collaboration. In most design methodologies, roles are an ephemeral concept, existing

briey, if at all, between the description of collaborations and the speci�cation of classes.

They do not generally exist as identi�able components of the implementation.

In our approach to object oriented implementation, roles are an important key to code

reuse and adaptation. Roles encapsulate fewer decisions a�ecting reusability, and they are

more stable than classes with respect to evolution. We provide a method to implement

roles as source code entities|speci�cally, class templates de�ned in a stylized way|and

compose them into classes using separate speci�cation statements|classes de�ned in terms

of instantiations of those class templates. Our approach improves code reuse and adapt-

ability, and overcomes a number of other limitations found in more traditional approaches

to implementation. In this paper we demonstrate how a design that originates with a

collaboration-based methodology can be implemented directly using role components.

In the �rst section we describe collaborations and roles more fully and discuss their

signi�cance in object oriented design. In the second section, we present the basic details

of our method of implementing roles as source code components.

1

In the third section

we describe the design of a container recycling machine similar to the one presented in

Jacobson, et al. [11]. In the fourth section, we show how to implement that design using role

components. The �fth section discusses some of the di�erences between our implementation

and the implementation presented by Jacobson, et al., with respect to possible changes. We

also describe some of our experiences with a much larger application, a telescope imaging

system. The sixth section contains a discussion of related work, while the last section

contains a summary and some concluding remarks.

1

A lengthier discussion of the details is available in an earlier paper, in which we compared our approach to

the use of frameworks [15]. The paper is also available at http://www.cs.washington.edu/homes/vanhilst/.

VanHilst and Notkin 1

UW-CSE-96-04-01

2 Collaborations, Roles, and Collaboration-based Designs

A collaboration is a set of objects together with obligations on and relationships among

those objects. Collaborations are often used to model sequences of message passing and

state changes derived from use-case-like scenarios in the requirements analysis. In so doing,

collaborations o�er a view that complements the static view of class and inheritance struc-

tures. Collaborations are often informal [2, 3, 11, 18], but they have also been formalized

in contracts [10], given a notation [13], and associated with framework implementations [7].

Collaborations provide an ability to abstract. A collaboration can address only the

parts of objects needed to participate in a particular task, concern, or pattern. Just as a

task can be decomposed into simpler tasks, a collaboration can be composed from other,

simpler collaborations. Indeed, an entire application can be viewed as a composition of

collaborations [14]. In this view of collaborations, a role speci�es a part of a single object

that participates in a particular collaboration. Collaborations may be seen, then, not so

much as collections of objects, but as collections of roles.

2

An object participates in a

collaboration by having a role in that collaboration.

An object that participates in several collaborations may have several roles, one from

each of the collaborations. The relationship between objects and roles has a number of

signi�cant features. Just as a collaboration may be viewed as a collection of roles, an

object (or class) may also be viewed as a collection of roles. So, a role is a unit of design

common to both views.

Any object that has the proper role may play that role in a collaboration. Thus the

same speci�cation of a collaboration may apply to di�erent sets of objects, provided the

corresponding objects play the same roles. In this we can see the value of roles in reuse. If

we can reuse a speci�cation, we can reuse its roles, even if the objects that contain them

are di�erent. Viewed another way, if we replace an existing object in a collaboration, the

new object must still play the same role. Moreover, if we change or add a collaboration, the

roles of the participant objects in other collaborations do not change. Both classes and roles

must change when the collaborations in which they participate change. However, classes

participate in many collaborations and roles in only one, so roles change less frequently.

Thus, compared to classes, roles are more stable in evolution and adaptive reuse.

A few approaches to object oriented development already use collaborations and role-

like decompositions to achieve better design reuse [7, 14]. Our strategy is to extend this

kind of reuse to code by implementing the roles in the design directly as encapsulated

source-code components. Classes are then literally compositions of role components.

Because we want to implement roles directly, we need a design methodology in which

roles are still identi�able late in the design process. We have found this to be possible

with a number of existing collaboration-based design methodologies, such as use-cases [11],

responsibilities [17], and role models [14].

2

Some methodologies make a distinction between collaborations of objects and collaborations of roles.

Where that distinction might be signi�cant, we will always mean the latter.

VanHilst and Notkin 2

UW-CSE-96-04-01

3 A Method for Implementing Roles

To implement the roles from a collaboration-based design, we need a mechanism that gives

role components the same properties as roles in the design. In a design, when a role is added

to an existing class, it extends the interface of that class. Thus inheritance is the logical

glue for composing roles into classes. But, roles can be composed with a variety of other

roles in a variety of classes, so the inheritance in the implementation must be delayed until

composition takes place. Similarly, roles in the design place no restrictions on the types

of objects with which they collaborate other than that they play the appropriate role, so

bindings to types for all collaborator references must also be delayed.

We have found that we can satisfy all of these properties using class templates in C++.

There are two key language structures that we use to explicitly de�ne and implement roles

and to compose those roles into classes.

For each role, we de�ne a separate class template that is parameterized by each of the

collaborators. For example, a father's role in a two parent household might be (partially)

de�ned as:

template <class ChildType, class MotherType, class SuperType>

class FatherRole : public SuperType {

ChildType *child;

MotherType *mother

...

};

The ChildType and MotherType parameters indicate that the father role will collaborate

with a child role and a mother role that are played by objects of yet-unknown types. The

SuperType parameter is used in every role de�nition in our approach, since every role is

part of some yet-unknown class.

We compose roles into classes by instantiating templates like these, binding the template

parameters to the speci�c classes that play the roles. An instantiation of the FatherRole

might, for example, appear as:

class Father2Class

: public FatherRole <ChildClass, MotherClass, Father1Class> {};

This says that the Father2Class includes the FatherRole. It also says that speci�c classes,

ChildClass and MotherClass, play the child and mother roles in the collaboration with

the FatherRole. Father1Class is the class that we extended to get Father2Class. The

Father1Class might be de�ned in terms of HusbandRole and its instantiation:

class Father1Class : public HusbandRole <MotherClass, emptyClass> {};

This de�nes Father1Class as a collaborator with MotherClass playing a wife role in a

marriage collaboration. The emptyClass (essentially a default base class) parameter simply

indicates that the Father1Class is a base class.

This somewhat abstract description of our implementation method will be clari�ed by

example in Sections 5 and 6; more details also appear elsewhere [15].

VanHilst and Notkin 3

UW-CSE-96-04-01

By writing di�erent template instantiations, we could de�ne di�erent combinations of

roles without modifying the role de�nitions themselves. This allows us to handle various

orders of inheritance, to include the same role twice, and to add additional roles before,

after, or in between the roles currently de�ned. Section 5 discusses the ways in which these

kinds of exibility support our strategy for application development and evolution.

4 The Recycling Machine Design

To demonstrate our implementation approach, we begin with a modi�ed version of Jacob-

son, et al.'s [11] collaboration-based design for a container recycling machine. This example

de�nes a vending machine that takes empty beverage containers and issues a receipt for the

deposit value of the containers. The front of the machine has three slots (one each for cans,

bottles, and crates), a button to request a receipt, a slot to issue a receipt, and a lighted

panel marked \NOT VALID."

The interaction between the recycling machine and a customer combines two separate

activities, Adding Item and Print Receipt. In the Adding Item scenario, when a customer

inserts an empty beverage container into one of the slots, a customer total and a daily

total for that item type are both incremented by the system. In the Print Receipt scenario,

when the customer presses the receipt button, the customer total is calculated and the

following information for each item type is printed on a receipt: name, number deposited,

unit deposit value, and total deposit value. Finally the sum of the deposit values is printed

and the receipt is issued through the slot. The customer totals are then cleared, and the

machine is ready for a new customer.

An analysis of the recycling machine's detailed requirements yields two extensions to

the basic Adding Item scenario, Validate Item and Item Stuck. These extensions provide

additional or alternative sequences of events to the original base scenario. In the Validate

Item scenario, when an item is inserted, it is measured by the system. The measurements

are used to determine if the container should be accepted for a deposit refund. If it is

not accepted, no totals are incremented, and the NOT VALID sign is highlighted. In the

Item Stuck scenario, before incrementing any counts, the system checks to see if the item

has become stuck. If the item is stuck, the system sounds an alarm and no totals are

incremented.

We identi�ed the following classes needed to support the recycling machine's scenarios:

CustomerPanel, DepositReceiver, DepositItem, ReceiptBasis, and InsertedItem. Figure 1

shows a diagram of the object structure. DepositItem is the abstraction for each item

type. Its responsibilities are to validate items of its type and to maintain a daily total. It

must also know its name and deposit value. ReceiptBasis is the abstraction for a single

customer session. Its responsibilities are to keep the list of customer totals by item type and

to print the appropriate information on a customer receipt. To ful�ll its responsibilities,

the ReceiptBasis maintains a list of InsertedItem objects. Each InsertedItem keeps the

customer's total for a speci�c container type and has a reference to that type's DepositItem

object. The CustomerPanel interfaces to the devices and displays of the front panel, while

the DepositReceiver is the main control class for the system's interactions.

Once the objects are known, the scenarios can be restated as collaborations among

VanHilst and Notkin 4

UW-CSE-96-04-01

Alarm

S

S

S

So

CustomerPanel

� -

DepositReceiver

-

DepositItem

ReceiptPrinter

�

�

�

�+

ReceiptBasis

A

A

A

AU

InsertedItem

-

A

A

A

AK

Figure 1: A block diagram showing the objects for the recycling machine design.

-

-

-

-

-

-

-

CustomerPanel DepositReceiver ReceiptBasis InsertedItem DepositItem

addItem

addItem(s)

addItem(*item)

getItem()

init(*item)

incr()

incr()

Figure 2: Interaction diagram for Adding Item collaboration.

participant objects. For example, the Adding Item scenario can be restated as: When

a customer inserts an empty beverage container a slot, the CustomerPanel signals the

DepositReceiver with the slot type. The DepositReceiver identi�es the corresponding De-

positItem and signals the ReceiptBasis. The ReceiptBasis adds an InsertedItem to its list

if one of that type does not already exist. The ReceiptBasis tells the InsertedItem to in-

crement the customer's total. The DepositReceiver then tells the DepositItem to increment

the daily total. The interaction diagram for this collaboration is shown in Figure 2.

5 The Recycling Machine Role Implementation

Our strategy for implementing applications is to create a source-code component for each

role in the design. The goal is to make it easier to reuse code among related applications,

and to support a wider range of future adaptations with less impact on the existing im-

VanHilst and Notkin 5

UW-CSE-96-04-01

plementation code. In this section we describe the process of implementing the recycling

machine design using the method described briey in Section 3. Our intent is to illu-

minate where this process and the resulting implementation di�er from more traditional

approaches.

In the collaboration-based design from the previous section, identifying roles is easy.

The interaction diagram used to describe the Adding Item collaboration shows the oper-

ations that each object needs to ful�ll its role in that collaboration. We simply collect

the operations for a particular object and determine which attributes those operations use.

CRC or class cards [2, 18] can be used in a similar manner, if the responsibilities are

annotated with the names of the collaborations to which they belong.

But we need more information to construct our application, especially when trying to

compose several roles to form a single class. First, the same operation, or attribute, may

be de�ned for more than one role. If so, we must determine if the duplicate operation is

to be shared, repeated, or overridden. Depending on the results of this analysis, some roles

may need to be subdivided. Second, where one collaboration extends another, we need

to identify the calls between roles within the same class. These may be implied, but not

shown, in interaction diagrams. Third, the use of data structures may also be implied, but

not shown. The ReceiptBasis class in the recycling machine example uses a linked list, in

which InsertedItems might function as nodes. Finally, we need to determine the order in

which to compose the roles.

To aid in the process of answering these questions, we have found the roles/responsibilities

matrix, adapted from business management [6], to be a useful tool. Figure 3 shows a

roles/responsibilities matrix for part of the recycling machine involving the Adding Item,

Item Stuck, and Validate Item collaborations.

3

In the matrix, rows represent collaborations,

while columns represent classes. The internal cells of the matrix represent roles.

In the column for the CustomerPanel class, there are two methods with the same name.

In the design, the addItem() method from the Validate Item extension replaced the one

from the Adding Item collaboration. We will implement the three roles with the methods

that are shown in the matrix. In the composition of the CustomerPanel class, the role from

Validate Item must be in a more derived position than the role from Adding Item so that

the any methods in the extension can override those in the base.

The column for the DepositReceiver class has three addItem() methods, each having a

di�erent responsibility. The method from Adding Item adds an item to the receipt basis and

increments the counts. The method from Validate Item checks the container's dimensions

and calls the original addItem() method only if they are valid. The method from Item

Stuck checks for a stuck container and calls the original only if no container is stuck. The

implementations of the latter two include a call to the original encoded as a call to the super

class: SuperType::addItem(s). Thus their roles must be more derived than the Adding Item

role. From the requirements we determine that the Validate Item role's addItem() method

must be called �rst, thus it must be the most derived. By inserting the Stuck Item role

between the Validate Item role and the Adding Item role, when Validate Item's addItem()

method calls SuperType::addItem(s), Stuck Item's addItem() will be called next. With

the composition ordered in this way, everything works as intended. The class de�nition

3

To save space, the Alarm and Printer columns have been left out.

VanHilst and Notkin 6

UW-CSE-96-04-01

Linked List

Adding

Item

Validate

Item

Item Stuck

CustomerPanel

addItem(s)

invalid()

addItem(s,l,w,h)

isStuck()

DepositReceiver

item[N], *receipt

addItem(s)

addItem(s,l,w,h)

addItem(s)

ReceiptBasis

list

addItem(*item)

InsertedItem

*next

setNext(*next)

getNext()

number, *item

incr()

init(*item)

getItem()

DepositItem

total

incr()

l,w,h

accept(l,w,h)

Figure 3: Roles/responsibilities matrix for part of the recycling machine. (Names followed

by parens () are method names. Names in italics are attribute variable names.)

class emptyClass{};

class DepositReceiver1Class : public DRAddingItemRole

<ReceiptBasisClass,DepositItemClass, emptyClass> {};

class DepositReceiver2Class : public DRItemStuckRole

<CustomerPanelClass,AlarmClass, DepositReceiver1Class> {};

class DepositReceiver3Class : public DRValidateItemRole

<CustomerPanelClass,DepositItemClass, DepositReceiver2Class> {};

typedef DepositReceiver3Class DepositReceiverClass;

Figure 4: De�nition statements to compose the DepositReceiver class.

statements to compose these roles into a class is shown in Figure 4.

In the composition for the DepositReceiver class, Item Stuck may be thought of as inter-

cepting the addItem() call from Validate Item to Adding Item to add additional behavior,

or, as in this case, additional conditions on the existing behavior. This is an example of

what we call specialization by inserting ancestors [15]. It may be helpful to model the ow

of control among collaborations as well as within collaborations to analyze the complete

behavior. This can be done informally by drawing on a copy of the roles/responsibilities

matrix, or more formally using state-transition diagrams or petri nets, as shown by Aliee

and Warboys [1].

The Adding Item role in the ReceiptBasis class uses a linked list. We separated the

Linked List collaboration from that of Adding Item in order to reuse an existing linked

list implementation. Because Adding Item's role in the ReceiptBasis class uses the list,

the Linked List role must be less derived in the ReceiptBasis inheritance hierarchy. When

ReceiptBasis calls getNext() on the list, it wants an object of a type that includes the

VanHilst and Notkin 7

UW-CSE-96-04-01

Print

Receipt

CustomerPanel

printReceipt()

DepositReceiver

*receipt

printReceipt()

ReceiptBasis

printReceipt()

InsertedItem

number, *item

getNumber()

getItem()

DepositItem

name, value

getName()

getValue()

Figure 5: The roles/responsibilities matrix row for the Print Receipt collaboration.

CPAddingItem

CPItemStuck

CPValidateItem

CPPrintReceipt

CustomerPanel

DRAddingItem

DRItemStuck

DRValidateItem

DRPrintReceipt

DepositReceiver

HeadLinkedList

RBAddingItem

RBPrintReceipt

ReceiptBasis

IIAddingItem

IIPrintReceipt

NodeLinkedList

InsertedItem

DIAddingItem

DIValidateItem

DIPrintReceipt

DepositItem

Figure 6: Order of inheritance for role composition by class (more derived toward bottom).

InsertedItem class's Adding Item role. This required an unsafe type cast in the implemen-

tation in Jacobson, et al.[11]. We can easily solve this by making the Linked List's role in

the InsertedItem class more derived than Adding Item's role. This is not a problem for the

InsertedItem class inheritance hierarchy, since the Adding Item role does not access any-

thing from the Linked List role. As we explain elsewhere [15], we often make data structure

nodes derived classes of the data. This di�ers from the traditional approach to reusable

data structures, where the common data structure parts are base classes and nodes have

pointers to data.

Figure 5 shows part of the roles/responsibilities matrix for the Print Receipt collabora-

tion. Compared with the row from the earlier matrix for the Adding Item collaboration,

the two collaborations share many attributes in common. In this situation, we will want

to split one or both collaborations into two parts. The common part will contain most of

the attributes, while the specialized part contains mostly methods. This is the same issue

as that of abstract use cases described in Jacobson, et al.[11].

The order of inheritance for role composition in the �ve classes discussed is shown in

�gure 6. From this graphical representation, we can generate the type de�nition statements

to compose the roles and form the application's classes. A small amount of additional code

is needed to instantiate objects and initialize the application.

6 Discussion

Choosing a structure that allows anticipated change is one of the challenges of object

oriented design. Simple subclassing is limited in the adaptations it can support. Often

the designer must choose between evolutionary paths, supporting one set of changes while

forgoing the opportunity to make others. Suppose we designed our recycling machine with

VanHilst and Notkin 8

UW-CSE-96-04-01

base classes to measure and count containers as in the original and subclasses to print the

receipt. If some stores wanted machines that gave change instead of printing a receipt, we

could replace the receipt printing subclasses while reusing the original base. But suppose,

instead, that for some states we needed to change the validation criteria from measuring

cans to reading their bar codes. How much code could we reuse then? With traditional

approaches, we would have to copy and edit the receipt printing subclasses for use with

the bar code reading base classes. With our approach, in either case we just recompile

with the new roles speci�ed in the appropriate composition statements. If we later want to

upgrade the receipt format of the machines|say, to include a machine readable bar code

of its own|there will only be one version of receipt printing code to upgrade.

One of the strategies for supporting change is to encapsulate the behaviors of change in

separate objects. But objects created to encapsulate change distort designs based on is-a

and has-a relationships. The recycling machine design in Jacobson, et al., had an alarmist

object intended to encapsulate the Item Stuck extension to the DepositReceiver class. Even

then, the ideal of completely encapsulating change could not be realized. As described in the

book, \Unfortunately, we cannot accomplish this with today's programming languages" [11,

p.250]. Code in the DepositReceiver class had to be modi�ed to support the Alarmist's

extension. Our approach doesn't have the same problem because we don't encapsulate

change in separate objects. We encapsulate it in roles that can become an integral part of

the original class. The other parts of our DepositReceiver class did not have to be modi�ed

for the Item Stuck extension.

What about support for structural change? In the original design, the Item Stuck role of

the DepositReceiver class sends an isStuck() message to the CustomerPanel object to �nd

out if any containers are stuck. What if a new design uses a ContainerFeed object for that

function? In our approach, binding to collaborator types is delayed. If the DepositReceiver's

Item Stuck role used its own reference to the CustomerPanel object, we could change the

binding for the type of that collaborator to the ContainerFeed object's class and initialize

the reference to point at the ContainerFeed object. If the DepositReceiver's Item Stuck role

was using the reference to CustomerPanel from its super class, we could create a new role

with its own reference, and insert it between the Item Stuck role and its immediate super

class.

4

In our designs, we almost always use separate roles for external references. Not

only does this defer the decision about which roles should share a common reference, but

it gives us the opportunity to choose among roles that satisfy an obligation locally, roles

that reference other objects in the same address space, and roles that satisfy obligations

by accessing a remote server. All of these architectures can be supported without changing

the implementations of our roles.

Of course, we can't support every change. By mapping units of design directly into units

of implementation, our goal is to make it proportionally easy to change the implementation

as it is to change the design. Changes that are di�cult to make in the design will probably

be di�cult to make in the implementation, as well.

With our approach, the runtime cost of con�gurability is low. Because we use inher-

itance to compose the roles, there are no extra levels of indirection. Composition occurs

4

We left the location of the CustomerPanel reference pointer out of the roles/responsibilities matrix to

simplify the earlier discussion.

VanHilst and Notkin 9

UW-CSE-96-04-01

at compile time, so we can inline method calls to remove the function call overhead com-

monly associated with decomposing operations into smaller steps. With so low overhead,

our approach encourages a more aggressive strategy toward decomposing applications into

smaller pieces that encapsulate fewer decisions. This bias towards decomposition is, in turn,

reected in our designs.

To test the scalability of our approach to large applications, we have undertaken the de-

velopment of an image display and manipulation application. Our intension is to duplicate

an astronomy application that was originally written in 30,000 lines of C and Xlib code.

This display program poses a number of challenges. One of its challenges is a complicated

structure involving many-to-many relationships among viewports, images, and coordinate

systems. Another is our desire to provide di�erent versions of the program for use in many

di�erent contexts. We hope to reuse component code in similar and dissimilar objects to

support a variety of con�gurations tailored to speci�c uses. We are already using the code

written thus far to explore and experiment with di�erent architectures as we try to address

the structural issues of the design.

As we had expected, the order of evolution of the image display application does not at

all follow the order of inheritance in the class compositions. Added features tend to go in

the middle of the class hierarchy where they can interact with existing features in a natural

order, while the more derived roles tend to be concerned with event detection and object

initialization. Yet, at each step in the evolution we have a workable application.

By being able to reason about the ow of control within and among objects, we are able

to structure the ow of control implicitly through the speci�cations of composition rather

than using an encapsulated central dispatcher. This lets us use local decision making at

run time while still maintaining a global overview to determine the order of responding to

events such as mouse movements and recon�gured windows.

Our inheritance hierarchies tend to be much deeper than those found in other object

oriented applications. Each of the major classes is composed of 10 to 20 roles, and we

are still adding roles. We have found graphical representations of class compositions and

role dependencies to be indispensible in managing our designs. By inspecting the role

hierarchies, we can easily identify common super classes, and in some cases, by changing

the order of role composition, we were able to reduce the number of classes needed by the

application. The repeated use of roles within a class is common, especially the generic

handle roles used for inter-object referencing.

We have had some di�culties with template instantiation, especially when trying to

support separate compilation of source code �les. We have also had some di�culty with

debugger support for template generated names. Our templates can get nested very deeply.

Many of these problems appear to be compiler-speci�c, so a general solution may not yet be

available. We suspect that similar problems are encountered by other users of templates.

The fact that some compilers seem to work much better than others gives us hope some of

the issues will be ironed out.

VanHilst and Notkin 10

UW-CSE-96-04-01

7 Related Work

Our work is similar to subject oriented programming in that both approaches address the

issue of composing di�erent views on a common set of objects [9]. In subject oriented

programming, separate structures are merged by combining common objects. The mech-

anism of Harrison and Ossher requires a runtime dispatcher and special compiler tools.

By comparison, ours is a light weight approach intended for building a single application

structure.

The notion of role has a counterpart in object oriented data bases [8, 16]. The issue for

OODB is that an employee object may play the role of trainee at one time and manager at

another, or possibly even the same, time. While both uses of role address objects playing

roles in di�erent contexts, the OODB usage is more concrete. In our usage, if an object

satis�es the requirements of a role, it can play that role. In the OODB sense, an object

must have a role of that name. For OODB roles, the main issue if the ability of objects to

dynamically change roles.

Bracha and Cooke demonstrated delayed inheritance using type parameters in a paper

presented at OOPSLA'90 [5]. They called the resulting components mixins. The term

roughly corresponds to the use of multiply inherited classes in CLOS. Unfortunately the

meaning of the term mixin is often confused with the di�erent semantics of multiply inher-

ited base classes in C++. Bracha's dissertation focused on semantics and language issues

and did not present mixins in the context of a design methodology [4].

The C++ Standard Template Library of Stepanov and Musser uses templates exten-

sively [12]. But the STL uses templates for genericity, not composition, and it does not use

inheritance. Roles can use STL data structures, but roles can also be used to implement

data structures. Our poster at OOPSLA'95 presented role-based implementations of the

list and binary tree data structures and showed how the two could be composed to form a

multiply threaded list with a binary tree �nd() operation. This would not be possible with

the equivalent data structures in the STL.

8 Conclusion

We have demonstrated a new approach for implementing object-oriented programs using

source code role components. We showed how to derive the roles from a collaboration-based

design and how to compose the role implementations at compile time to form the classes of

the application. Our approach supports more exibility for change and adaptive reuse than

traditional approaches to implementation, while requiring fewer deviations in the design

and less run time overhead than common approaches for supporting change. Our approach

requires no special tools and uses only the features associated with class templates in C++.

While all of our experience to date has been with small applications, recent experience

working on a larger application has been very promising.

References

[1] Fereidoon Shams Aliee and Brian C. Warboys. Roles represent patterns. In Proceedings of the

VanHilst and Notkin 11

UW-CSE-96-04-01

Workshop on Pattern Languages of Object-Oriented Programs at ECOOP'95, 1995.

[2] Kent Beck and Ward Cunningham. A laboratory for teaching object-oriented thinking. In

Proceedings of the 1989 ACM Conference on Object-Oriented Programming Systems, Languages

and Applications, pages 1{6, 1989.

[3] Grady Booch. Object Oriented Design with Applications. Benjamin/Cummings, 1991.

[4] Gilad Bracha. The programming language JIGSAW: Mixins, Modularity and Inheritance. PhD

thesis, University of Utah, 1992.

[5] Gilad Bracha and William Cooke. Mixin-based inheritance. In Proceedings of the 1990 ACM

Conference on Object-Oriented Programming Systems, Languages and Applications, pages 303{

311, 1990.

[6] Alison M. Burkett. Clarifying roles and responsibilities. CMA: the Management Accounting

Magazine, 69(2):26{28, March 1995.

[7] Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[8] Georg Gottlob, Michael Schre, and Brigitte RQ"ock. Extending object-oriented systems with

roles. ACM Transactions on Information Systems, to appear, 1996.

[9] William Harrison and Harold Ossher. Subject-oriented programming (a critique of pure ob-

jects). In Proceedings of the 1993 ACM Conference on Object-Oriented Programming Systems,

Languages and Applications, pages 411{428, 1993.

[10] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: Specifying behavioral

compositions in object-oriented systems. In Proceedings of the 1990 ACM Conference on Object-

Oriented Programming Systems, Languages and Applications, pages 169{180, 1990.

[11] Ivar Jacobson, Magnus Christenson, Patrick Jonsson, and Gunnar

�

Overgaard. Object-Oriented

Software Engineering: A Use Case Driven Approach. Addison-Wesley, 2nd edition, 1992.

[12] D. R. Musser and A. A. Stepanov. Algorithm-oriented generic libraries. Software Practice and

Experience, 24(7):623{642, July 1994.

[13] Trygve Reenskaug, Egil P. Anderson, Arne Jorgan Berre, Anne Hurlen, Anton Landmark,

Odd Arild Lehne, Else Nordhagen, Erik Ness-Ulseth, Gro Oftedal, Anne Lise Skaar, and Pal

Stenslet. OORASS: Seamless support for the creation and maintenance of object-oriented

systems. Journal of Object-Oriented Programming, 5(6):27{41, October 1992.

[14] Trygve Reenskaug, Per Wold, and Odd Arild Lehne. Working With Objects: The OOram

Software Engineering Method. Manning, 1995.

[15] Michael VanHilst and David Notkin. Using C++ to implement role-based designs. In to

appear in Proceedings of the 2nd JSSSST International Symposium on Object Technologies for

Advanced Software. Springer-Verlag, 1996.

[16] Roel J. Wieringa, Wiebren de Jong, and Paul Sprint. Roles and dynamic subclasses: a modal

logic approach. In Proceedings of the 1993 European Conference on Object-Oriented Program-

ming, pages 32{59, 1994.

[17] Rebecca Wirfs-Brock and Brian Wilkerson. Object-oriented design: A responsibility-driven ap-

proach. In Proceedings of the 1989 ACM Conference on Object-Oriented Programming Systems,

Languages and Applications, pages 71{76, 1989.

[18] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented Soft-

ware. Prentice Hall, 1990.

VanHilst and Notkin 12

