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Abstract

In this paper we present our results and experiences of using symbolic model checking to

study the speci�cation of an aircraft collision avoidance system. Symbolic model checking has

been highly successful when applied to hardware systems. We are interested in the question of

whether or not model checking techniques can be applied to large software speci�cations.

To investigate this, we translated a portion of the �nite-state speci�cation of TCAS II (Tra�c

Alert and Collision Avoidance System) into a form accepted by a model checker (SMV). We

successfully used the model checker to investigate a number of dynamic properties of the system.

We report on our experiences, describing our approach to translating from RSML to SMV

and our methods for achieving acceptable performance in model checking, and giving a summary

of the properties that we were able to check. We consider the paper as a data point that provides

reason for optimism about the potential for successful application of model checking to software

systems. In addition, our experiences provide a basis for characterizing features that would be

especially suitable for model checkers built speci�cally for analyzing software systems.

The intent of this paper is to evaluate symbolic model checking of state-machine based

speci�cations, not to evaluate the TCAS II speci�cation. We used a preliminary version of the

speci�cation, the version 6.00, dated March, 1993, in our study. We did not have access to later

versions, so we do not know if the properties identi�ed here are present in later versions.

�
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1 Introduction

Model checking is a technique for analyzing �nite state spaces. Most model checkers take as input a

�nite state machine and a temporal predicate about that state space and produce as output either

a counterexample or else an assertion that the predicate is true. Model checking is now widely

and successfully used for verifying properties of hardware systems, even for many with exceedingly

large state spaces.

The question of whether model checking can be applied as pro�tably to software systems as to

hardware systems remains open. One key concern is that model checking is limited to handling

�nite state machines even though software systems are generally speci�ed as in�nite state machines.

Jackson [14] and Wing and Vaziri-Farahani [20] have addressed aspects of this concern, showing

some techniques for approximating in�nite state machines with �nite state machines that can then

be used for model checking.

A second key concern is that hardware systems tend to possess certain properties, such as

regularity, that allow model checking to succeed, while software systems may not exhibit similar

properties. This concern has not been as aggressively addressed in the literature. The examples

used by Jackson, by Wing and Vaziri-Farahani, and by Atlee and Gannon [3], for instance, are

useful for showing the basic promise of applying model checking to software systems, but still

consider relatively small systems. When the systems and their associated state spaces grow in

size, the question remains as to whether they will exhibit structures and properties conducive to

model checking. In this paper, we address this question in greater detail by discussing our e�ort in

applying model checking to a large and realistic �nite state speci�cation.

Speci�cally, we manually translated a signi�cant portion of a preliminary version of the TCAS

II (Tra�c Alert and Collision Avoidance System) System Requirements Speci�cation from the Re-

quirements State Machine Language (RSML) [16] into a form suitable for input to the Symbolic

Model Veri�er (SMV) [17]. We then wrote formulae to check a number of properties of the spec-

i�cation. These included properties that had been identi�ed previously by other techniques, as

well as properties of the speci�cation that were not known to any of the authors before model

checking was applied. We were able to study properties relating to the consistency of transitions

and the consistency of function de�nitions, as well as safety properties. These results are detailed

in Section 5.

Recently, Sreemani and Atlee [19], in work independent of ours, analyzed the A-7E aircraft

software requirement speci�cation with SMV, and were also able to check several dynamic proper-

ties. While their motivations were similar, our studies di�er in several ways because of di�erences

in the speci�cations. The A-7E aircraft requirements were written in the Software Cost Reduction

(SCR) requirements notation [1, 13], as opposed RSML. RSML contains features like hierarchical

states and particular assumptions and constraints on timing that are not present in SCR. It was

previously believed that a state hierarchy has to be attened, or the analysis has to be limited

to a subset of the RSML features [2]. In addition, the environment of the A-7E speci�cation is

abstracted as a set of predicates, whereas the inputs to our system are events and numerical values.

Numerical calculation and comparison are abundant in the TCAS speci�cation, and they could

incur signi�cant performance problems in the model checking process.

Our objective was to test the e�ectiveness of model checking technology on software systems,

so our experiences in applying model checking are more important than the individual results.

We convey some of the obstacles we faced and the techniques that we used to overcome these
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Figure 1: Model Checking

obstacles to allow us to check formulae against the speci�cation. Other software systems that are

often speci�ed using �nite state machines | for example, telephony and communication systems,

network and distributed system protocols, and other reactive systems | might well yield to similar

analyses. In this domain, the question of producing �nite state speci�cations from in�nite state

speci�cations is largely moot, since �nite state speci�cations are already ubiquitous.

Based on our experience, and as an additional step towards making model checking of soft-

ware speci�cations more practical, we discuss some of the limitations of current model checking

technology and suggest directions for developing model checkers better suited to software.

2 Model Checking

Many systems can be usefully modeled as �nite state machines governed by transition relations.

We can express properties about the state space as formulae in a temporal logic. The truth value of

the formula could in principle be determined by exploring the reachability graph of the state space.

We use the term model checking to mean exploring a �nite state space to establish properties of the

system. However, the state spaces arising from practical problems are often huge, so exhaustively

exploring the state space is not generally feasible. What is done is to use an implicit representation

of the state space, where the reachability relation is represented as a collection of boolean formulae.

The truth values of temporal formulae are tested by a series of operations on the boolean formulae

as opposed to an explicit search. This is referred to as symbolic model checking.

Figure 1 is a schematic of the model checking process with the speci�c representations that

we used for the components shown in parentheses. The speci�cation is translated to an input for

the model checker, possibly with some simpli�cations of the model. The input and the formula

that is being tested are then converted to the internal representation of the model checker. The

representations are passed to the model checking algorithm. The result is either a claim that the

formula is true or else a counterexample that shows that it is false. The result can be analyzed by

the software engineer to re�ne the model of the speci�cation, the temporal formulae, or even the

speci�cation itself. This iterative process will be further illustrated later.

Since we are interested in dynamic properties, the formulae are usually expressed in a temporal

logic. A logic in widespread use is Computational Tree Logic (CTL)[9], a branching-time temporal

logic. CTL is designed to conveniently express both safety and liveness properties. In addition to
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Figure 2: An Example of an RSML state machine.

standard logical symbols, there are next, until, future, and global operators. The examples in this

paper use a global operator G, so that the formula AG (x | (y & !z)) says that in all reachable

states either x is true, or y is true and z is simultaneously false.

A data structure that has been developed to represent boolean functions is the Ordered Binary

Decision Diagram (OBDD, or BDD for short) [6]. A BDD is a directed acyclic graph that encodes

the function. (One way to view it is as a decision tree with isomorphic sub-trees identi�ed.) The

properties that make BDDs useful in model checking include that they give unique representation

of functions, they can be combined e�ciently and there are algorithms that can manipulate BBDs

to test logical relations. Several hardware model checkers, such as SMV which we used in our study,

have been constructed using BDDs as their internal representation. These are successfully used

for checking large circuits in both commercial and academic settings. The key for these checkers

to work e�ciently is that the BDD representation remains small even when the state space being

explored is very large.

A BDD is de�ned with respect to a �xed ordering of variables, and all the BDDs in use must

use the same ordering of variables. Many operations have concise BDD representations under all

variable orderings. Some operations such as addition and comparison of integers have concise repre-

sentations only with a suitable variable ordering. However, some operations, such as multiplication,

cannot be represented concisely, requiring exponential size under any variable ordering ([4, 18]).

3 Translating RSML Speci�cations into SMV programs

Before we could apply the BDDmodel checking algorithms to the TCAS speci�cation, we had to �rst

translate the speci�cation from RSML into a form accepted by a BDD based model checker, such

as SMV. We �rst briey overview RSML and SMV, which lays the foundation for our description

of the translation.

3.1 RSML

RSML is based on a Mealy-machine model of �nite-state machines with outputs on the transitions

between states. RSML includes several features found in other communicating state machine models

(e.g., Statecharts [11]), such as hierarchical abstraction into superstates and parallel state machines

(AND decomposition). It also has innovative features like transition buses and AND/OR tables.

Figure 2 is an example of an RSML state machine. It shows the state hierarchy and the

transitions between the states. There are three kinds of states in RSML: OR states, in which
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Transition(s): S1 �! S2

Location: M . Q . S

Trigger Event: x

Condition:

A

N

D

OR

R in state U T .

Alt > 1000 ft T .

t � t(entered(Q)) +5 sec . T

Output Action: y

Figure 3: Transition from S1 to S2.

exactly one substate is active at any given time (e.g. M, whose substates are P and Q), AND

states, in which all the substates are executed in parallel (e.g. Q, whose substates are R and S),

and atomic states (e.g. P), which have no substates. A substate of an AND state or an OR state

can be an AND state, an OR state or an atomic state. In the �gure, arrows without origins specify

start states. For example, when state Q is entered, the machine is in states U1 and S1.

A transition consists of a source state, a destination state, a trigger event, and possibly a

guarding condition and/or an output action. A transition is taken when its trigger event occurs

and its guarding condition (if present) is true, thus producing an output action. The action identi�es

an event that may trigger another transition in the system. The guarding conditions on a transition

are expressed in a tabular representation of disjunctive normal form called AND/OR tables (see

Figure 3.) The far-left column of the AND/OR table lists the logical phrases. Each of the other

columns is a conjunction of those phrases and contains the logical values of the expressions. The

table evaluates to true if one of its columns is true. A column evaluates to true if all of its

entries are true. A dot denotes \don't care." When two or more transitions out of a state are

triggered simultaneously leading to di�erent next states, the state transition is nondeterministic.

Nondeterminism is usually a design aw in the speci�cation [15].

Figure 3 shows a possible transition from S1 to S2. The transition is taken exactly when trigger

event x is generated and the predicate speci�ed by the AND/OR table is true. Event x may be

triggered by some other transition in the system, or by the input interface as a result of receiving

an external message from the environment. In the AND/OR table, t is a special variable in RSML

that indicates the current time, while t(entered(Q)) is a function that returns the time when state

Q was last entered. Therefore, the AND/OR table speci�es the predicate that either (column 1)

state R is in U and Alt is greater than 1000 ft or (column 2) the machine entered state Q at least

5 seconds ago. Alt can be an input variable, or an arbitrary function. If the transition is taken,

event y will be generated, possibly triggering other transitions in the machine.

The cascading of events continues until no transitions are generated. At this point, the system

reaches a stable state. A step is de�ned by the change in the system state from the point at which

the initial event was received until the point when system reaches a stable state. Each interim

state change in a step is called a microstep. A step (and thus a microstep) is assumed to happen

instantaneously. Once a step is initiated, no external messages can arrive until the system reaches
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a stable state. This assumption is called the synchrony hypothesis [16].

3.2 SMV

SMV is a tool for checking �nite state systems against speci�cation written in the temporal logic

CTL. SMV supports speci�cation of synchronous Mealy machine systems as well as speci�cation

of asynchronous �nite state systems. It also supports both deterministic and nondeterministic

models, and provides for modular system descriptions. Since SMV is meant to describe �nite state

machines, it contains only boolean, scalar and �xed array data types. Below we summarize only

the SMV features pertinent to our discussion.

An SMV program is divided into modules, each of which consists of variable declarations and

assignments, and a list of CTL formulae. Transitions in SMV are de�ned by a collection of parallel

assignments to variables. The assignments are simultaneously executed once at each clock tick.

The statement init(var) sets the initial value of variable var and next(var) sets its value in the

next state. The statement next(var) can contain a case expression, so that transitions can have

guarding conditions.

A variable can be nondeterministic. There are two sources of nondeterminism in SMV. An

expression can be a set, and it nondeterministically evaluates to a value from that set. In addition,

when the initial or the next state value of a variable is not de�ned, SMV nondeterministically

assigns it a value of its type.

An expression can also be assigned to a symbol instead of a variable. In this case, a variable

is not introduced in the BDD representation of the system. Instead the symbol's de�nition is

expanded when it is used. It is analogous to #define in C.

Properties to model check are expressed as CTL formulae. SMV uses symbolic model check-

ing algorithms based on BDD to determine whether the CTL formulae are satis�ed by the SMV

program.

3.3 Translating RSML to SMV

In this section we present an overview of the rules we derived in translating RSML speci�cations

into SMV programs.

The Synchrony Hypothesis In our example in Figure 3, suppose that x is an event that is

generated as a result of receiving an external message. We declare a boolean variable x for event

x. We call such a variable an environment variable. We allow SMV to nondeterministically assign

values to the environment variables to model the unpredictable inputs. However, to maintain the

synchrony hypothesis, we have to restrict them to change only when the system is stable. So, we

�rst de�ne a symbol Stable, which is a conjunct of the negation of all the variables that represent

events. That is, we de�ne

Stable := !x & !y & !z;

assuming x, y and z are the only events in the system. For event x we have an assignment:

next(x) := case

Stable: {0,1}; -- line 1

1: 0; -- line 2

esac;
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(Comments in SMV start with \--".) The statement speci�es that (line 1) if the system is stable in

the current state, the value of x is 0 or 1 nondeterministically in the next state; (line2) otherwise,

the value of x is 0 in the next state, meaning that event x has been received in the current microstep.

(1 means true in SMV, so a guarding condition of 1 serves as the default case.)

This nondeterministic setting of the values of environment variables is a simpli�cation of how

the environment operates. Of course there are certain assumptions on changes in inputs that are

necessary for the correct behavior of the system. If the assumptions are known, we can model them

by specifying how the environment variables change values. However, allowing SMV to nondeter-

ministically set the variables enables us to examine the e�ects of violating these assumptions on

properties of the system.

Hierarchical States and Transitions To translate a state hierarchy into SMV, we create an

SMV variable for each OR state in the hierarchy that either is a root state or is a child state of an

AND state. The type of such a state variable is an enumerated set containing one value for each

of its descendent states that is either an AND state or an atomic state and is not a descendant of

some other state variable.

In our example, we declare:

M: {P, Q};

R: {U1, U2, V};

S: {S1, S2, S3};

The values of the three variables completely describe which state the machine is in. The change of

these variable solely depends on state transitions of the machine.

A transition is taken if and only if (1) the machine is in the source state of the transition,

(2) the trigger event occurs, and (3) the guarding condition speci�ed by the AND/OR table is

satis�ed. We de�ne a symbol for each transition. It is assigned a boolean expression, which is a

logical conjunction of the above three conditions. For the transition in Figure 3, we de�ne:

T_S1_S2 := (M = Q) & (S = S1) -- source state

& x -- trigger event

& (((M = Q & (R = U1 | R = U2)) & Alt > 1000) -- guarding condition (column 1)

| Time_Since_Entered_Q >= 5); -- guarding condition (column 2)

Notice that the �rst line of the expression is (M = Q) & (S = S1) instead of simply (S = S1).

The reason is that if the machine is not in state Q, then it is not in state S1 regardless of the value

of the variable S. The third line of the expression shows how to translate the condition that the

machine is in state U: the machine is in state Q, and it is either in state U1 or in state U2. The

variable Time Since Entered Q will be explained shortly. So, to model the state change, we have

an assignment:

next(S) := case

!(M = Q) & next(M) = Q : S1; -- line 1

T_S2_S1 | T_S3_S1 : S1;

T_S1_S2 | T_S3_S2 : S2;

T_S1_S3 | T_S2_S3 : S3;

1 : S;

esac;
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where T S2 S1, T S3 S1, etc. would be de�ned similarly to T S1 S2. Notice that line 1 in the case

expression speci�es that the start state of S is S1.

Output actions are modeled as a logical disjunction of the transitions that generate it. For

example:

next(y) := T_S1_S2 | T_U1_U2;

assuming the transitions from S1 to S2 and from U1 to U2 are the only transitions that trigger

event y.

This translation is not precise when two of the transitions, say T S1 S2 and T S1 S3, can be

triggered simultaneously: the semantics of RSML are that the transition is nondeterministic in this

case, whereas SMV always evaluates the conditions in a case expression in order. Nondeterminism

is usually unintentional, and in Section 5.1 we will describe how to detect the inconsistency. If the

nondeterminism is intentional, we can model it by declaring an unassigned (and thus nondeter-

ministic) variable and including it in the case expression. For example, we can declare a boolean

variable coin, and after line 1 in the case expression above we can add:

T_S1_S2 & T_S1_S3 & coin : S2;

T_S1_S2 & T_S1_S3 & !coin : S3;

These two conditions state that if the two transitions are triggered simultaneously, the machine

will go to S2 if coin is 1, and go to S3 otherwise.

Timing constraints Recall that in Figure 3, there is a timing constraint t � t(entered(Q)) +

5 sec, which is equivalent to t� t(entered(Q)) � 5 sec. So, to model this constraint, we need the

di�erence between the current time and the time at which state Q was last entered. We create an

variable Time Since Entered Q to implement a timer:

next(Time_Since_Entered_Q) := case

!(M = Q) & next(M) = Q : 0;

Stable & Time_Since_Entered_Q < 5 : Time_Since_Entered_Q + 1;

1: Time_Since_Entered_Q;

esac;

The assignment says that (line 1) if the machine enters state Q, reset the timer, (line 2) if the

machine is stable and the timer is less than 5 seconds, advance the timer and (line 3) otherwise,

the timer remains unchanged.

Notice that this implementation assumes that arrivals of inputs are separated by multiples of

one second. This assumption happens to be also true in TCAS. If the time granularity is di�erent,

we can simply scale the constants accordingly.

1

Miscellaneous Our example does not contain all RSML constructs, such as Prev(), constants,

macros, functions, statechart arrays, and transition buses. Roughly, Prev(e) returns the previous

value of expression e. Modeling Prev() requires introducing an auxiliary variable to \remember"

the variable's previous state. Constants can be trivially implemented with de�ned symbols in SMV.

Macros and functions without arguments can be modeled similarly. Macros and functions with

arguments are somewhat trickier; they can be implemented as SMV modules that are instantiated

at each call site. Statechart arrays can be implemented as an array of modules. The translation of

transition buses is no di�erent from that of ordinary transitions.

1

We assume that time is discrete.
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Figure 4: Composite RA in Own Aircraft of TCAS

4 Obstacles to Model Checking TCAS with SMV

After we derived the translation rules in the previous section, we had to overcome a number of

obstacles to make model checking the TCAS speci�cation feasible.

4.1 TCAS

The �rst obstacle we had to overcome was the sheer size of the preliminary TCAS II System Re-

quirements Speci�cation, a 400 page document. As a �rst attempt we decided to try model check

a portion of it, i.e. a state machine called Own Aircraft, which occupies about 30% of the spec-

i�cation. Own Aircraft has close interactions with another part of TCAS called Other Aircraft.

Own Aircraft models the state of the TCAS equipped aircraft under consideration (the own air-

craft). Other Aircraft tracks the state of some other aircraft in the vicinity of the own aircraft,

and gives a resolution advisory (RA) to Own Aircraft. Up to 30 other aircraft can be tracked.

Considering the advisories given by the 30 instances of Other Aircraft, Own Aircraft derives a

composite resolution advisory and generates visual and audio outputs to the pilot. Examples of

advisories include Climb, Descend, Increase-Climb (\increase the current climb rate"), Increase-

Descend, Climb-VSL0 (\do not climb"), Climb-VSL500 (\do not climb more than 500 ft/min"),

etc. Figure 4 shows the state Composite RA, one of the twelve parallel substates of Own Aircraft.

We treated Other Aircraft as part of the environment of Own Aircraft. That is, we created en-

vironment variables for any states of Other Aircraft that are referenced within Own Aircraft. Like

other environment variables they were nondeterministic, except that we restricted when these vari-

ables could change to ensure correct synchronization behavior. We focused on resolution maneuvers

with one intruder and thus modeled only one instance of Other Aircraft.

4.2 BDDs

We knew a priori that there is no e�cient BDD representation for multiplication and division so we

realized that we needed to avoid them. Two functions in Own Aircraft do involve multiplication and
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division of values for measured altitudes and altitude rates. These are measurements of variables

that we are already modeling nondeterministically so we made the conservative simpli�cation to

treat these calculated values as nondeterministic themselves. This simpli�cation did not cause

problems for the properties that we checked and reported below.

4.3 SMV

The performance of BDD based algorithms is directly related to the size of the BDDs that are

generated. Some of our early attempts at checking generated enormous BDDs: at one point the

BDDs consumed 200 MB of physical memory, and other runs were terminated before the BDD was

constructed. Our attempts to check formulae with the large BDDs were generally unsuccessful or

too slow (our initial success in identifying nondeterminism was an overnight run, although we can

now �nd the nondeterminism in a few minutes).

The size of the BDDs can be reduced by variable reordering and conjunctive partitioning [7].

These techniques dramatically improved the performance of checking some formulae; however,

they did not solve all the problems. The BDD size was very sensitive to the ranges of the variables

representing altitudes and altitude rates. Initially, we had to limit the precision of all the variables

to at most 4-bit numbers and rede�ne the constants accordingly in order for the model checker

to build the BDDs in a reasonable amount of time. Increasing the ranges by one bit sometimes

exploded the checking time from ten minutes to more than ten hours.

The problem had to do with the issue of variable ordering for BDDs representing integer addition

and comparison mentioned earlier. In particular, a BDD for the sum of the integers X = x

1

x

2

� � �x

n

and Y = y

1

y

2

� � �y

n

has size O(n) if the variables are in the order x

1

; y

1

; x

2

; y

2

; : : : ; x

n

; y

n

but

requires exponential size if the variables are in the order x

1

; x

2

; : : :x

n

; y

1

; : : : ; y

n

. SMV does not

interleave the bits among the variables it is representing when constructing the BDDs. Therefore,

although comparison and addition have concise BDD representations, SMV produces exponential

size BDDs for them.

We considered two ways of attacking this problem, namely changing the internals of SMV to

interleave the bits, or doing addition and comparison at the source code level. The latter method

seemed a simpler approach and we were able to use it with great success, although in principle

the former may be a better long term solution. We implemented our own adder and comparator

in our SMV program and manipulated all the variables and constants at the bit level.

2

Changing

the variables in our TCAS translation from 4-bit numbers to 15-bit numbers blows up the size of

the state space roughly from 10

40

to 10

64

. However with our source code level implementation of

addition and comparison, this increase in precision increased the run time and the number of BDD

nodes used by less than a factor of three. Variables with 15 bits are enough for representing all the

integers in TCAS.

Yet another performance problem was that generating a counterexample often took hours even

though the formula was determined false within minutes. To tackle this problem, we optimized the

counterexample searching routine in SMV, so that once a formula is evaluated false, a counterex-

ample that falsi�es the formula can now be found almost instantly.

2

We did this in a disciplined way by writing some awk scripts to preprocess the SMV program.
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5 Results of Model Checking TCAS

Once we overcame these obstacles, we were positioned to do some analysis of the preliminary TCAS

speci�cation using SMV. We report on some of the results below. For each of the properties below,

the model checker generated the result (with a counterexample if the formula was false) within

several minutes on a Sun SPARCstation 10. The process consumed less than 40MB out of the

256MB physical memory. The size of the reachable state space was at least 10

56

as reported by

SMV.

5.1 Transition Consistency

There are known nondeterministic transitions in earlier versions of the TCAS speci�cation. So,

our �rst attempt at validation was to �nd such transitions in one of these versions with the model

checker. (For the other properties that we checked, we worked with a later draft TCAS speci�ca-

tion, in which there is no unintentional nondeterminism.) These nondeterministic transitions had

previously been identi�ed by Heimdahl and Leveson[12] using static analysis. We were interested

in checking these properties to verify that model checking could match previous results. Static

techniques are conservative in that the problematic states may not be reachable (although in this

particular case it is obvious that they are). Model checkers also generate counterexamples, giving

proofs that the states are indeed reachable from some initial state.

In our example in Figure 2, possible nondeterministic transitions are in state S. For example,

the transitions from S1 to S2 and from S1 to S3 would be triggered at the same time if their trigger

events were the same and their guarding conditions were simultaneously satis�ed. We can check

this with the model checker by the following CTL formula:

AG !(T_S1_S2 & T_S1_S3)

Recall that T S1 S2 is true when the transition from S1 to S2 is taken; similarly for T S1 S3.

So the CTL formula speci�es that the two transitions are never taken simultaneously. Applying

this technique to all the states, the model checker was able to �nd the known nondeterministic

transitions in that particular version of the TCAS speci�cation.

5.2 Function Consistency

Displayed Model Goal, shown in Figure 5, is a function in the TCAS speci�cation whose value

is displayed to the pilot. It represents the optimal altitude rate at which the pilot should aim.

The function de�nition consists of eight cases, which are supposed to be mutually exclusive. It is

not obvious whether this is the case since the mutual exclusion depends on logic elsewhere in the

speci�cation.

Checking for mutual exclusion of the cases is similar to checking for nondeterminism. We de�ne

a boolean symbol Case-1 for the �rst Case, and Case-2 for the second case, and so on, and check

an CTL formula of the form:

AG !((Case-1 & Case-2) | (Case-1 & Case-3) | ... | (Case-6 & Case-7))

The model checker found a counterexample showing that the formula was false. After carefully

examining the counterexample, we decided that the scenario was due to the oversimpli�ed model

of Other Aircraft, which we had considered as a part of the nondeterministic environment. In the
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:

0 if Composite RA not in state Positive /* case 1 */

Max(Own Track Alt Rate; if (New Climb or New Threat) and /* case 2 */

PREV(Displayed Model Goal); not New Increase Climb and

1500 ft/min) not (Increase Climb Cancelled or

Increase Descend Cancelled) and

Composite RA in state Climb

Min(Own Track Alt Rate; if (New Descend or New Threat) and /* case 3 */

PREV(Displayed Model Goal); not New Increase Descend and

�1500 ft/min) not (Increase Climb Cancelled or

Increase Descend Cancelled) and

Composite RA in state Descend

2500 ft/min if New Increase Climb /* case 4 */

�2500 ft/min if New Increase Descend /* case 5 */

Max(Own Track Alt Rate; if Increase Climb Cancelled and /* case 6 */

1500 ft/min) not New Increase Climb and

Composite RA in state Positive

Min(Own Track Alt Rate; if Increase Descend Cancelled and /* case 7 */

�1500 ft/min) not New Increase Descend and

Composite RA in state Positive

Prev(Displayed Model Goal) Otherwise /* case 8 */

Figure 5: De�nition of Displayed Model Goal in the TCAS speci�cation. Most of the identi�ers are RSML

macros or abbreviations, the de�nitions of which are omitted here due to limited space. (Their truth values

depend on Composite RA and Other Aircraft.)

counterexample, Other Aircraft reverses from an Increase-Climb advisory to an Increase-Descend

advisory in one step, which is prohibited by the logic in the speci�cation. After we changed the

code to prevent Other Aircraft from making such spurious transitions, no counterexamples were

found.

5.3 Safety Properties

The state of Composite RA in Figure 4 is also shown to the pilot. Therefore it is critical that

Composite RA and Displayed Model Goal are consistent with each other. For example, one would

expect that if Composite RA is in state Climb, then Displayed Model Goal should be at least 1500

ft/min. However, the model checker revealed that this is not true in the preliminary speci�cation.

In fact, it showed that when Composite RA is Climb, Displayed Model Goal could be negative.

The CTL formula we checked is similar to the following:

3

AG !(Composite_RA = Climb & Displayed_Model_Goal < 1500)

The counterexample given by the model checker is a three step scenario:

1. At time t

0

, there is an intruder aircraft and Other Aircraft gives a Descend advisory. As a re-

sult, Composite RA is in state Descend and by case 3 of the de�nition of Displayed Model Goal,

it is � �1500 ft/min.

3

The exact formula di�ers due to some implementation details. The same is true for the other formula below.
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2. At time t

1

> t

0

, Other Aircraft realizes that an increase in descend rate is necessary and

issues an Increase-Descend advisory, which puts Displayed Model Goal at �2500 ft/min by

case 5.

3. At time t

1

+ 1, the situation has changed and Other Aircraft projects that a climb would

result in greater separation from the intruder. So it reverses its advisory to Climb, making

Composite RA enter state Climb. At that point, case 7 applies and Displayed Model Goal

becomes � �1500 ft/min, resulting in contradictory outputs.

Another property that was shown to be not satis�ed is that, when Other Aircraft changes to

an Increase-Climb advisory, Displayed Model Goal should not decrease. In CTL this is:

AG !(New_Increase_Climb & Displayed_Model_Goal < Prev_Displayed_Model_Goal)

where New Increase Climb evaluates to true when Other Aircraft gives a new Increase-Climb ad-

visory, and Prev Displayed Model Goal is the previous value of Displayed Model Goal. However,

the counterexample it gave required an Increase-Climb advisory to be generated when the value

of Own Track Alt Rate is greater than 2500 ft/min. This is prevented by the logic in the speci-

�cation of Other Aircraft, which we had modeled as a part of the nondeterministic environment.

After re�ning our model of Other Aircraft to avoid generating an Increase-Climb advisory in such

a situation, the formula was shown to be true by the model checker.

Yet another safety property is that when the aircraft is close to the ground, Displayed Model Goal

should never be less than some threshold. Speci�cally, whenever the aircraft is below 1450 feet above

ground level, Displayed Model Goal � �2500 ft/min. The model checker found that this property

was not satis�ed. The counterexample it gave revealed a typographical error in the preliminary

speci�cation (> instead of �).

4

5.4 References to Uninitialized Values

It is possible for an AND/OR table or function to refer to the previous value of some variable

(e.g., an input variable, state, or function reference) even though the variable was not yet de�ned

in the previous step. In such a case the value of Prev() is unde�ned. The model checker handles

such unde�ned references in the same way that it handles environment variables. That is, it

nondeterministically assigns values in an attempt to �nd a counterexample to the formula. So

while analyzing for the properties mentioned above, the model checker also discovered situations

where a variable is referenced before it is de�ned, e.g., referring to Prev() in the �rst step.

5.5 Discussion

Our translation rules are precise in that the set of transition sequences allowed by the RSML

state machine is identical to that of the state machine speci�ed by the translated SMV program.

Therefore if the entire speci�cation was translated, the model checking would be both sound and

complete. However, because we abstracted Other Aircraft, some counterexamples found by the

model checker were not possible for the full speci�cation. We had to incrementally constrain the

model of Other Aircraft to eliminate the spurious transitions.

4

The authors had discovered the typographical error by observation during the translation process.
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It may seem that the repeated process of getting an incorrect counterexample and �xing it is

an undesirable artifact of the incomplete translation of the speci�cation. There are several reasons

why leaving part of the model nondeterministic is in fact a useful technique:

� A speci�cation may be so complex that model checking it in its entirety is infeasible. This

approach, then, allows model checking to be bene�cially applied to parts of the speci�cations

without fully considering all the remaining components.

� A software engineer can use the information obtained from analyzing the counterexamples to

clarify the relationship between parts of the speci�cation, in particular between those parts

that are fully modeled and those that are partially modeled.

� Development and analysis of the speci�cation can be interleaved so that potential problems

can be found or avoided earlier. For example, when developing the TCAS speci�cation, an

engineer could �rst have speci�ed Own Aircraft and have left Other Aircraft nondeterministic.

An analyst could then have model checked Own Aircraft and discovered the assumptions on

the behavior of Other Aircraft that are necessary for Own Aircraft's correct operations. This

information could then have been used to develop Other Aircraft, which could be model

checked later to see whether the assumptions hold.

This iterative approach appears to have bene�ts for analysis and shows potential for iterative

development of speci�cations, as well.

6 Related Work

There are a number of other widely researched approaches to handling the state-space explosion

problem. Corbett recently classi�ed these techniques into several categories [10]: in addition to

symbolic model checking, Corbett considered several variants on standard reachability analysis

techniques, several compositional techniques, some approaches that exploit abstraction, some that

use data ow analysis, and some that use integer programming. We have not yet done a comparison

of our use of model checking to any of these techniques.

7 Conclusions and Future Work

We have shown that it is feasible to translate part of a large �nite state speci�cation into a form suit-

able for a model checker, and have been able to check several non-trivial properties. Our approach

to analyzing the speci�cation incrementally, by modeling some components nondeterministically

and then re�ning them, proved to be quite powerful. We believe that these are important steps

towards realizing symbolic model checking as an e�ective tool in the process of analyzing software

speci�cations.

Additional research is needed to assess the strengths and weaknesses of the techniques that we

used to overcome a number of obstacles in model checking parts of the TCAS speci�cation:

� Multiplication and division cannot be represented e�ciently by BDD's ([4, 18]). Bryant and

Chen [5] introduced a di�erent data structure, the BMD (Binary Moment Diagram) which

can be used to represent multiplication concisely. With a variant of this data structure, the
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*BMD, they were able to verify division circuits. A hybrid approach where BMD's are used to

represent arithmetic variables and BDD's are used to represent control variables, as suggested

by Clarke and Zhao [8], may be attractive. Building model checkers that can handle arbitrar-

ily complicated numeric calculations is almost certainly intractable. However, rudimentary

arithmetic, coupled with an understanding of the appropriate notions of approximation might

be su�cient to handle many applications.

� Automating the translation from RSML to input to SMV (or another model checker) appears

to be a straightforward matter of programming. It might be reasonable to develop a model

checker that directly accepts languages such as RSML or Startcharts, eliminating the need

for any source-level translation at all.

� It might be possible to exploit the general structure of the derived transition relation to

improve performance. (Although we only showed how to translate the TCAS speci�cation, we

believe that this is a generalizable approach.) Our SMV description of an RSML speci�cation

had variables to represent the state space, time, environment, and internal events. Although

we treated these uniformly in our translation to SMV, they were used in di�erent ways. It

is possible that a model checker that incorporated some of the semantics of time into the

internal algorithms could outperform a checker that handled time with ordinary numeric

variables. Similarly, testing whether the system had achieved stability could be subsumed

by reachability algorithms. In other words, by exploiting common properties of software

speci�cations that represent process control systems like TCAS, one might be able to build

model checkers that perform better and are easier to use.

� We have not yet done a comparison of our use of model checking to a number of other ap-

proaches to handling the state-space explosion problem. Corbett recently classi�ed these

techniques into several categories [10]: in addition to symbolic model checking, Corbett dis-

cusses several variants on standard reachability analysis techniques, several compositional

techniques, some approaches that exploit abstraction, some that use data ow analysis, and

some that use integer programming. It would be interesting to compare these alternative

approaches.

We believe that this investigation contributes to an increase in optimism that symbolic model

checking can be successful in the analysis of software speci�cations.
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