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Abstract

Inequality constraints are useful for specifying various aspects of user interfaces, such as constraints

that one window is to the left of another, or that an object is contained within a rectangle. How-

ever, current local propagation constraint solvers can't handle inequality constraints. We present

Indigo, an e�cient local propagation algorithm for satisfying acyclic constraint hierarchies, including

inequality constraints.

A shorter version of this technical report will appear in the Proceedings of the 1996 ACM Symposium

on User Interface Software Technology.



1 Introduction

Constraints are useful for a number of aspects of user interface construction, including layout,

model-view consistency, and consistency of multiple views. In selecting the class of constraints to be

supported in a UI toolkit, there are various tradeo�s between simplicity and power. Some of these

tradeo�s include:

� one-way or multi-way constraints

� functional constraints only, or more general kinds of relations

� required constraints only, or constraint hierarchies

A constraint is functional if, for each of its constrained variables v not annotated as read-only, there is

a unique value for v that will satisfy the constraint, given values for the other variables. A constraint

hierarchy is a set of constraints labelled by strengths. The constraints labelled as \required" must be

satis�ed, while those labelled with weaker strengths are merely preferences [Borning et al. 92]. One

important application of constraint hierarchies is in representing our desire that parts of a graphical

object don't move unnecessarily, by placing weak stay constraints on them. This allows us to give

a simple declarative semantics for constraint satisfaction in the presence of state and change over

time. We can also use constraint hierarchies for expressing other kinds of preferences, for example,

that a �gure track the mouse if possible (but not if it bumps up against an immoveable object).

An important tradeo� concerning the constraint graph, rather than the individual constraints, is:

� acyclic constraint graphs only, or cycles allowed

All of these properties are declarative attributes of the constraints or the constraint graph, rather

than of the constraint satisfaction algorithm. Naturally, however, the di�erent properties place

di�erent requirements on the algorithm. One class of algorithm that has been explored by a number

of researchers, and used in a variety of systems, is that of local propagation algorithms for multi-

way constraints, constraint hierarchies, functional constraints only, and no cycles. These algorithms

provide a good balance between expressiveness and e�ciency; recent examples include DeltaBlue

[Sannella et al. 93], SkyBlue [Sannella 94], and QuickPlan [Vander Zanden 96].

In local propagation algorithms, each constraint has a set of methods that can be used to satisfy

the constraint. When a method is executed, it sets one of the constrained variables to a value such

that the constraint is satis�ed. All of the constraints in a traditional local propagation algorithm

must be functional, since otherwise one couldn't provide the methods for that constraint.

Inequality constraints are useful in a variety of user interface applications, particularly in layout.

For example, we might want a constraint that one window be to the left of another, or that a

�gure be contained within a rectangle. However, inequality constraints aren't functional, and aren't

supported in traditional local propagation algorithms. Consider the constraint a � b: given b we

can't uniquely determine a.

In previous UI systems, inequality constraints are either not provided, are only checked but not

enforced, or have been supported using a variant of the simplex algorithm, iterative numerical

methods, a backtracking technique, or the like. The research reported here was born out of a

dissatisfaction with this state of a�airs, and the conviction that, for an acyclic constraint network

with inequalities, it should be possible to devise a straightforward local propagation algorithm.
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Indigo is such an algorithm. The key idea in Indigo is that we propagate lower and upper bounds on

variables (i.e. intervals), rather than speci�c values. We process the constraints strongest to weakest,

tightening the bounds on variables as we go. When all the constraints have been processed, each

variable will have a speci�c value | in other words, its upper bound will be equal to its lower bound.

Indigo is quite useful in its own right. However, it has actually been designed as a component

of a larger algorithm, Ultraviolet, which partitions the constraint graph into di�erent regions and

uses a subsolver appropriate for the kind of constraints in that region. These subsolvers include

two local propagation solvers: Blue for functional constraints over arbitrary kinds of objects and

Indigo for inequality and other numeric constraints; and two cycle solvers: Purple for cycles of linear

equality constraints and Deep Purple for linear inequality constraints. The subsolvers communicate

via shared variables. An earlier version of Ultraviolet | which doesn't include Indigo | is described

in [Borning & Freeman-Benson 95].

Ultraviolet has been implemented and tested, and Indigo has been tested separately as well as a

standalone solver. The current version of Ultraviolet has also been used as the constraint solver in the

Constraint Drawing Framework, a commercial graphics library written in Smalltalk. The Constraint

Drawing Framework is an updated version of CoolDraw [Freeman-Benson 93]; the techniques for

integrating the constraint mechanism with the other parts of the package are the same as descried

in the earlier paper.

2 Related Work

Two systems designed for user interface applications that support inequality constraints are QOCA

and DETAIL. QOCA [Helm et al. 92a] is a constraint solving toolkit that supports the incremental

solution of simultaneous linear equality and inequality constraints while optimizing convex quadratic

objective functions. Of particular note is its use of a parametric solved form, which allows solutions

to be computed rapidly from changing input variables, and a projection algorithm that supports

feedback regarding the possible range of movement of an object on the screen. However, QOCA

doesn't support constraint hierarchies. QOCA has also been integrated with Unidraw to provide an

architecture for constraint-based graphical editing [Helm et al. 92b]. DETAIL [Hosobe et al. 94] is

an incremental solver for multi-way constraints and constraint hierarchies. It is more general than

traditional local propagation, since it allows constraint cycles to be grouped into cells, which are

then solved by an appropriate subsolver. The most recent version of DETAIL [Hosobe et al. 96]

supports inequality constraints as well as functional constraints, although the current prototype has

exponential time complexity.

There has been considerable work on interval constraints in other areas of computer science, par-

ticularly arti�cial intelligence and constraint logic programming. Davis [Davis 87] discusses the

completeness and running time for interval propagation algorithms, as well as for other kinds of

labels. Hyv�onen [Hyv�onen 92, Hyv�onen et al. 94, Hyv�onen 95] presents a number of interval con-

straint satisfaction algorithms, and also describes the generalization of interval propagation to divi-

sion propagation. (A division is a union of ordered, non-overlapping intervals.) Another active area

of research is the incorporation of interval constraints into constraint logic programming. Examples

of such systems include CLP(BNR) [Older & Benhamou 93, Benhamou & Older 96] and Newton

[Benhamou et al. 94]; see [Benhamou 95] for a recent survey. Most of these systems use local prop-

agation to narrow the intervals that describe the permitted values for a variable (see for example

the local tolerance propagation procedure in [Hyv�onen 92]). These techniques are similar to that

used in Indigo, although they apply only to required constraints rather than constraint hierarchies.

(However, some of these systems also support the optimization of an objective function.)
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3 Constraint Hierarchy Solutions

A solution to a constraint hierarchy is a mapping from variables to domain elements. Given a

constraint hierarchy, if not all of the preferential constraints can be satis�ed, we need a way to

select which solutions are desired. In our previous work on DeltaBlue and SkyBlue we've used

the locally-predicate-better comparator, in which we are concerned only whether or not a con-

straint is satis�ed in a given solution. This comparator has proven quite satisfactory for functional

constraints. However, for inequality constraints, an alternative comparator, locally-error-better, is

superior. We give a brief, informal description of this comparator here; for a formal de�nition see

reference [Borning et al. 92].

We will need to consider the error in satisfying a constraint. This error is 0 if and only if the

constraint is satis�ed, and becomes larger the further away the solution is from a satisfying one. For

example, the error in satisfying the constraint a = b for real numbers a and b is just ja� bj.

A solution S is locally-error-better if there is no other solution T that is better than S. Informally,

T is better than S if there is some level k in the hierarchy such that the errors for all the constraints

in levels 0 to k � 1 are exactly the same for T and S, and at level k the errors in satisfying each

constraint using T are less than or equal to the errors using for S, and strictly less for at least one

constraint. In general, there may be more than one locally-error-better solution to a given hierarchy.

To illustrate why locally-error-better gives more satisfactory results for inequality constraints in UI

applications, consider an object constrained to lie within a �xed rectangle. Suppose the user is

moving the object with the mouse, and tries to move it outside the rectangle. We'll make the mouse

movement constraint strong but not required, so that the object will stop moving if it bumps up

against an immovable obstacle, rather than giving an error. Using locally-predicate-better, if the

user moves the object slowly, it will move as far as the side of the rectangle and then stop. However,

if the user moves the mouse quickly (so that at one time the cursor is well within the rectangle and

the next time outside), the �gure will remain at the old location and not bump up against the side

at all. (Since we can't satisfy the mouse constraint exactly, using locally-predicate-better we don't

try to satisfy it at all.) Further, if the user tries to move the �gure along the side of the rectangle

it won't move unless the user gets the cursor positioned just on the boundary (but not outside it).

In contrast, with locally-error-better, the �gure will follow the cursor until the cursor moves outside

the rectangle. After that, the �gure will move along the wall of the rectangle so that it is as close

to the cursor as possible, as if the object were magnetically attracted to the cursor.

4 The Algorithm

In this section we describe the algorithm and the data structures it uses. For simplicity, we initially

omit discussion of read-only variables; these are discussed at the end of this section. The input to

the Indigo algorithm is a set of constraints, including both equalities and inequalities, and a set of

variables. The algorithm �nds a locally-error-better comparator to the constraints. (If there are

multiple locally-error-better solutions, Indigo �nds one of them.)

4.1 Principal Data Structures

Our implementation is in Smalltalk, and makes use of inheritance, so we'll describe it using object-

oriented terminology. The two key kinds of objects are variables and constraints. Each constraint
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represents a relation that should be satis�ed. It has a strength (ranging from required to absolute

weakest), and a set of variables to which it applies. A given collection of variables and constraints

forms a constraint graph, which is assumed to be acyclic. (We can construct a bipartite graph by

having a vertex for each variable and each constraint, and an edge from a constraint vertex to

a variable vertex if the variable is constrained by the constraint [Gangnet & Rosenberg 92]. The

constraint graph is said to be acyclic if the corresponding bipartite graph is acyclic.)

Each variable has a lower and an upper bound, which are initially�1 and +1 respectively. As with

our previous algorithms DeltaBlue and SkyBlue, every variable has an implicit stay constraint at the

absolute weakest strength. (A stay constraint is simply an equality constraint between a variable

and its value prior to the start of constraint satisfaction; it expresses our desire that the values of

variables shouldn't be changed unless necessary.) The existence of these stay constraints implies

that when the algorithm terminates, each variable will have a speci�c value | in other words, its

lower bound will be equal to its upper bound. This is a useful property for interactive graphical

applications, in which objects need to be displayed at some speci�c place on the screen. The values

found for the variables will constitute a locally-error-better solution to the constraints.

We make extensive use of intervals, which are objects that represent the lower and upper bounds

on a variable. All intervals are closed intervals, unless the bound is in�nite. We'll write [a; b] to

represent the closed interval consisting of all numbers between a and b, and [a;1) to represent the

half-open interval consisting of all numbers greater than or equal to a. We de�ne the usual arithmetic

operations (+, �, �, �) as messages to intervals. For example, [l

1

; u

1

] � [l

2

; u

2

] is de�ned to be

the interval containing all numbers that are the product of one number from [l

1

; u

1

] and another

number from [l

2

; u

2

]. We also allow mixed-mode arithmetic, in which one operand is an interval and

one is a number; in this case the numeric argument n is coerced to be the singleton interval [n; n].

De�nitions of all the interval operations, including the case of in�nite bounds, are given in Appendix

A; see also reference [Alefeld & Herzberger 83]. This use of intervals, and in particular overloading

the arithmetic operators for interval arithmetic and allowing in�nite bounds, substantially simpli�es

both the presentation and implementation of the algorithm.

Finally we de�ne the tighten message to variables (with an interval argument) to tighten the bounds

on the variable if possible, given the argument. For example, if a variable currently has the bounds

[3,10], if we tighten it using [5,8], its new bounds will be [5,8]. On the other hand, if a variable

current has the bounds [3,10] and we tighten it using [50,100], its new bounds will be the singleton

interval [10,10], since 10 is the number within the interval [3,10] that minimizes the distance to the

interval [50,100]. The operation v.tighten(i) for a variable v and interval i is de�ned as follows:

if intersect(v.bounds,i) is not empty then

v.bounds := intersect(v.bounds,i);

else if v.upperBound < i.lowerBound then

v.lowerBound := v.upperBound;

else /* we know v.lowerBound > i.upperBound */

v.upperBound := v.lowerbound;

end if;

The tighten operation will be key in �nding locally-error-better solutions, in which we minimize the

error in satisfying non-required constraints, even when they can't be satis�ed completely.

4.2 Propagation Methods

In a traditional local propagation solver, each constraint has a collection of methods. When a

method is executed, it sets one of the constrained variables to a value such that the constraint is
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satis�ed. For example, the constraint a+b = c has three methods: c := a+b, a := c-b, and b := c-a.

In contrast, in Indigo, each constraint has a collection of bounds propagation methods. Thus, the

a+ b = c constraint has three bounds propagation methods, which tighten the bounds on a, b, and

c respectively:

a.tighten(c.bounds - b.bounds)

b.tighten(c.bounds - a.bounds)

c.tighten(a.bounds + b.bounds)

If we have previously tightened the bounds on say c, when we process the constraint a + b = c we

may then need to tighten the bounds on both a and b. This is in sharp contrast to the behavior of

standard local propagation algorithms, in which to satisfy a constraint a single method is executed

(and hence a single variable changed).

4.3 Algorithm Pseudo-Code

With these preliminaries out of the way, the description of the algorithm itself is straightforward.

Informally, we process the constraints strongest to weakest. For each constraint cn, we try to satisfy

cn as well as possible by tightening the bounds on the variables it constrains. (However, if cn is

required, then we must be able to satisfy it exactly, or we signal an error.) Tightening the bounds

on cn's variables may cause the bounds on other variables to be tightened, rippling out to further

variables. To implement this, the algorithm keeps a queue of constraints to be checked. The queue

contains just cn to start. If we can tighten the bounds on any of cn's variables, we add the other

constraints on these variables to the queue. We keep processing the constraints on the queue until

it is empty. After all the constraints have been processed (including the weakest stays), we will have

determined values for all of the variables.

In pseudo-code, the algorithm is as follows.

all constraints := list of all constraints, strongest �rst;

all variables := set of all variables;

active constraints := new set;

for v in all variables do

initialize v.bounds to unbounded;

end for;

for current constraint in all constraints do

tight variables := new set;

queue := new queue;

queue.add(current constraint);

while queue not empty do

cn := queue.front;

tighten bounds(cn,queue,tight variables,active constraints);

check constraint(cn,active constraints);

queue.dequeue;

end while;

end for;

The variable active constraints holds a set of constraints that have already been considered, but which

may need to be considered again if we subsequently tighten the bounds on one of their variables.

During the processing of each constraint, queue holds a queue of constraints whose variables may
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need to have their bounds tightened, and tight variables is a set of variables whose bounds have

been tightened while processing the current constraint. (When processing a given constraint, we

never have to tighten the bounds on a variable twice, as will be discussed in Section 4.4. The set

tight variables is used to prevent the algorithm from reprocessing tight variables.)

The procedure tighten bounds tightens the bounds on variables constrained by cn, and enqueues other

a�ected constraints. The procedure check constraint checks for unsatis�ed required constraints, and

also determines when constraints need to be added to or deleted from the set active constraints.

procedure tighten bounds(cn,queue,tight variables,active constraints)

for v in cn.variables and v not in tight variables do

tighten 
ag := cn.tighten bounds for(v);

tight variables.add(v);

if tighten 
ag then

for c in v.constraints do

if c in active constraints and c not in queue then

queue.add(c);

end if;

end for;

end if;

end for;

end procedure tighten bounds;

In the tighten bounds procedure, the tighten bounds for message to the constraint cn tightens the

bounds on its constrained variable v if possible, given the bounds on its other constrained variables.

It returns true if the bounds were changed.

procedure check constraint(cn,active constraints)

if cn is unary then

if cn is required and cn is not satis�able then

exception(required constraint not satis�ed);

end if;

return;

end if;

if not all of c's variables have unique values then

active constraints.add(cn);

return;

end if;

if cn is satis�ed then

active constraints.delete(cn);

else if cn is required then

exception(required constraint not satis�ed);

else exception(constraints too di�cult);

end if;

end procedure check constraint;

In procedure check constraint we �rst check whether the constraint cn is unary. (A unary constraint

is a constraint on a single variable.) A unary constraint need only be processed once | there is

never any reason to consider it again, since its in
uence is completely represented in the current

bounds of the variable it constrains. Otherwise cn is n-ary. If not all of its variables have unique

values, then we need to add cn to active constraints, since we will need to consider cn again when

the bounds on one of its variables are tightened. However, if all of cn's variables have unique values,

cn need never be considered again, and hence can be deleted from active constraints if it is there.
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There are two exceptions that can be raised. If a required constraint can't be satis�ed (i.e. we

can't make its error be 0), we raise a required constraint not satis�ed exception. Finally, there is an

assumption that all constraints in active constraints can be satis�ed completely. If this turns out

to not be the case, we raise a constraints too di�cult exception. The algorithm is thus sound but

incomplete | that is, if it �nds a solution, the solution will be correct, but there are some sets of

constraints for which it won't �nd a solution. We could provide an algorithm that is both sound

and complete at the cost of some additional complexity. However, the incompleteness arises only

under unusual conditions, and so we haven't added these features. See Section 5.2 for more details.

4.4 Correctness

The idea for the proof is to show that the domains of the variables give exactly those values that

can appear in a locally-error-better solution to the constraints. If each variable has a stay constraint

on it, each domain will consist of a single value, and so we will have found a locally-error-better

solution.

We have been describing the domains as intervals. However, in this section we generalize this and

describe the domains as arbitrary sets. (There are cases where domains other than single intervals

can arise | see Section 5.2.) We show that if D

i

is the domain for variable v

i

, then if y 2 D

i

there

is some locally-error-better solution where v

i

takes on the value y. This global optimality property

is a generalization of the global consistency property used in the constraint satisfaction and interval

labelling literature [Hyv�onen 92].

The proof demonstrates that the global optimality property is maintained as an invariant of the

algorithm. Formally, the proof is an induction argument, where the induction is performed both on

the order that the constraints are processed by the main loop of the algorithm and on the order that

domains of variables are updated by tighten bounds.

Before we proceed with the proof, we need to de�ne the properties that the tighten operation must

have so that the algorithm works correctly. The tighten operation restricts the domains of the

variables of a constraint in a manner that does not exclude any correct solution, but at the same

time only retains values that can participate in a correct solution.

Suppose v

1

; : : : ; v

k

are the variables for constraint c with domainsD

1

; : : : ; D

k

. Let R = D

1

�� � ��D

k

,

and let e

min

be the minimum error achievable for constraint c by any x 2 R. (e

min

= 0 corresponds

to satisfying the constraint.) Let S = fr 2 R j r has error e

min

for cg. The tighten operation �nds

domains D

0

1

; : : : ; D

0

k

with D

0

i

= �

i

S. (�

i

denotes the projection of a set of tuples onto its i-th

component.)

We also need to de�ne what it means to minimize the errors in satisfying a list of constraints.

Consider a list of constraints c

1

; : : : ; c

t

. There will be some minimum achievable error e

1

for c

1

. Let

e

2

be the minimum achievable error for c

2

given that c

1

has error e

1

, and so on. A solution that

minimizes the errors in satisfying c

1

; : : : ; c

t

is a solution for which c

i

has error e

i

for 1 � i � t.

Proceeding now to the proof itself, we �rst show that any value in a domain can be extended to an

optimal solution for the constraints processed so far. Next, we show that in an optimal solution,

each variable takes on a value in its domain. Together, these lemmas allow us to prove that Indigo

is correct.

Lemma 4.1 Suppose constraints c

1

; : : : ; c

t

have been processed. Suppose y 2 D

i

. There exists a

solution to the constraints that minimizes the errors for c

1

; : : : ; c

t

and in which variable v

i

takes on

the value y.
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Proof: The proof is by induction on t. The base case is for t = 0, which is trivial, since there are

no constraints.

Suppose that the lemma holds when t � 1 constraints have been processed, and now consider the

case where c

1

; : : : ; c

t

have been processed.

Consider the graph formed by the constraints c

1

; : : : ; c

t

. This graph is a forest. We root each tree by

the constraint of highest index in the tree. Let T be the tree rooted at c

t

. Each constraint c

j

which

is not a root has a variable v

i

which is between c

j

and the root of the tree. We call this variable the

leading variable of the constraint. Root constraints do not have leading variables.

When the algorithm processes the constraint c

t

, the tighten operation is applied to the constraints

in T in a root to leaf order. (Our implementation uses breadth �rst search, although any other

ordering consistent with the tree order would be �ne, such as depth �rst ordering. In addition,

we only consider those constraints in T that are in active constraints. The algorithm would still be

correct, although less e�cient, if we considered all the constraints in T .)

Our �rst claim is that if the tighten operation is applied to a non-root constraint, it does not change

the domain of the leading variable. Suppose tighten is applied to c

j

with leading variable v

i

. Let

D

i

be the domain of v

i

, and let D

i

be the previous domain of v

i

, after processing c

t�1

but before

processing c

t

. By the induction hypothesis, if y 2 D

i

, then there is a solution with minimum error

for c

j

that has v

i

= y. Since D

i

� D

i

every value in D

i

can be extended to a minimumerror solution

of c

j

. This means that the tighten operation will not shrink D

i

when it is applied to c

j

. This justi�es

the optimization of not tightening the variables in the set tight variables.

We now show that if v

i

is a variable in T and y 2 D

i

, then there is a solution where v

i

takes on the

value y. (If v

i

is not a variable in T , then the induction hypothesis implies the result.) We prove

this with an induction proof over the subtrees of T . We show that if A is a subtree of T rooted at a

variable, then if v

i

is a variable of A and y 2 D

i

, there is a solution with v

i

taking a value y which

satis�es all of the constraints of A. Our induction is on the height of A.

The base cases are trees of height 0 or 1. The tree of height 0 is an unconstrained variable, so it

trivially satis�es the constraints. A tree of height one is a variable subject to a unary constraint c

j

.

When the constraint c

j

is processed, D

i

is restricted to the values satisfying c

j

with the minimum

possible error. As the domain D

i

is further restricted, the values still satisfy c

j

.

Suppose A is a tree rooted at v

l

where v

l

is the leading variable of constraints c

j

1

; : : : ; c

j

k

. There

are three cases for v

i

:

1. v

i

is v

l

. If we set v

i

to y, then we can �nd assignments to the other variables of the constraints

c

j

1

; : : : ; c

j

k

. Each of these variables is a root of a tree, so by induction we �nd an assignment

to the variables of each the trees completing the assignment.

2. v

i

is a non-leading variable of one of the constraints c

j

s

. In this case, we �nd an assignment to

the variables c

j

s

which satis�es c

j

s

with minimum error and has v

i

= y. This �xes the value

of v

l

. We then can satisfy the other constraints containing v

l

as in case 1. We now complete

the assignment by induction.

3. v

i

is some other variable of A. In this case, v

i

is in a subtree A

j

s

rooted at v

r

which is in the

constraint c

j

s

. By induction, we �nd an assignment to the variables of A

j

s

, which gives us an

assignment to v

r

. As in case 2, we can extend this to a full assignment.

To complete the proof, we need to show the result applies to the tree T . T is rooted at the constraint

c

t

with subtrees A

1

; : : : ; A

k

. Suppose that v

i

is a variable of A

j

, and A

j

has root v

j

. By induction,
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we can �nd an assignment satisfying the constraints of A

j

with v

i

= y. This sets the variable v

j

to

some value. We now �nd values for the other variables of c

t

which satisfy c

t

with minimum error,

and then �nd assignments to each subtree creating a complete assignment.

The other direction of the proof is to show that all of the valid solutions are contained inside the

domains.

Lemma 4.2 Suppose there is a solution with variable v

i

= y that minimizes the errors for con-

straints c

1

; : : : ; c

t

. Then y 2 D

i

after c

t

has been processed.

Proof:

The proof is by induction. The base case is for t = 0. This is trivial since variables are initialized to

unbounded domains.

Suppose the result holds after t� 1 constraints have been processed. We want to show that if there

is a solution that satis�es the constraints with v

i

= y, then y 2 D

i

. Let D

i

denote the domain of v

i

after processing c

t�1

but before processing c

t

.

Suppose v

i

does not have its domain updated when c

t

is processed, and there is a solution with

v

i

= y. By the inductive hypothesis, we must have y 2 D

i

and since D

i

= D

i

, we have y 2 D

i

.

We now show that the lemma holds for the v

i

's that are updated by giving an induction proof on the

variables. This induction proof orders the variables in the order that they are updated by tighten.

The base case is for variables updated by applying tighten to the constraint c

t

. Let c

t

have variables

v

i

1

; : : : ; v

i

k

and consider an assignment that achieves the minimum errors for c

1

; : : : ; c

t

with v

i

1

= y.

Since this assignment achieves the minimum errors for c

1

; : : : ; c

t�1

we have v

i

j

2 D

i

j

. The tighten

routine will put v

i

j

in D

i

j

. Since domains do not shrink after they are �rst tightened (as shown in

the proof for Lemma 4.1), we must have y 2 D

i

1

.

The inductive step is almost the same. Suppose that the constraint c

j

has variables v

i

1

; : : : ; v

i

k

and v

i

k

is the leading variable. Consider an assignment that achieves the minimum errors for the

constraints with v

i

1

= y and v

i

k

= z. By the outer induction hypothesis, we have v

i

j

2 D

i

j

and

by the inner induction hypothesis, we have z 2 D

i

k

. The tighten operation now guarantees that

y 2 D

i

1

.

Theorem 4.3 Given an acyclic set of constraints, the Indigo algorithm computes a locally-error-

better solution, assuming that the implementations of the tighten operation are correct.

Proof:

Let S

L

be a locally-error-better solution, and S

I

a solution found by the Indigo algorithm. Assume

that S

I

is not a locally-error-better solution. Let c

l

be the �rst constraint where S

L

and S

I

have

di�erent errors.

If S

L

's error for c

l

is greater than S

I

's error for c

l

, then S

L

was not a locally-error-better solution.

Now suppose that S

I

has a greater error for c

l

than S

L

had. Lemmas 4.1 and 4.2 show that the

domains D

1

; : : : ; D

n

include all the values which achieve the minimum errors for the constraints

9



c

1

; : : : ; c

l�1

. This means that the optimal solution for c

l

is in the domains that are used by the

tighten operation, contradicting our assumption that each constraint achieves the minimumpossible

error.

4.5 Weak Algorithm

A weak version of the Indigo algorithm is one in which the tighten operation computes domains

which may be too big. The weakened condition for tighten is that D

0

i

� �

i

S. In this case we can still

conclude that the solution found by the algorithm will be a locally-error-better one; but occasionally

the weak version of the algorithm will be unable to �nd a solution (and will so indicate). In other

words, the weak version of Indigo is sound but incomplete.

Lemma 4.4 A weak version of Indigo computes a lower bound on the minimum error achievable

for each constraint.

Proof: Let e

0

1

; : : : ; e

0

m

be the error bounds found by the weak version of the algorithmand e

1

; : : : ; e

m

be the error bounds found by the exact algorithm. As long as e

0

t

= e

t

, we must have D

i

0

� D

i

(where

D

i

0

is the domain computed by the weak algorithm). Let c

l

be the �rst constraint on which the

error bounds di�er. In determining the minimum error for c

l

, the weak algorithm is considering a

set of tuples that includes all of the tuples considered by the exact algorithm. Therefore, the weak

algorithm must �nd minimumbounds that are no greater than those that the exact algorithm �nds.

Hence, if e

0

6= e, we must have e

0

< e.

We can now show that the weak version of Indigo is sound but incomplete.

Theorem 4.5 Given an acyclic set of constraints, which include stay constraints on every vari-

able, a weak version of Indigo either computes a locally-error-better solution, or terminates with a

constraints too di�cult or a required constraint not satis�ed exception.

Proof: We �rst show that the algorithm will terminate with a required constraint not satis�ed

exception i� there is no solution that satis�es the required constraints. The algorithm processes the

required constraints �rst, and each constraint will be submitted to the check constraint procedure. If

the constraint is unary, then we can determine immediatelywhether it is compatible with the current

bounds for its variable. If it is compatible, we tighten the bounds (and so any further tightenings of

the bounds for that variable will mean that the constraint is still satis�ed). If it is not compatible,

we raise a required constraint not satis�ed exception. If the constraint is n-ary and all its variables

already have unique values, these are of course the values the variables will take in the returned

solution. In this case we test whether or not the constraint is satis�ed. If it is, it will be also satis�ed

in the returned solution; if it is not, we raise the required constraint not satis�ed exception.

Suppose instead the algorithm terminates successfully. By Lemma 4.4 we have found a lower bound

on the minimum error achievable for each constraint. After we process a stay constraint, the bounds

on a variable will always be tightened to a single value. Thus, since each variable has a stay

constraint, we will have also found a speci�c value for each variable. Suppose this solution is not

locally-error-better. Then there must be another solution that is better than the one found | but

this contradicts the assertion that the algorithm �nds lower bounds on the minimum achievable

errors.
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The only other possibility is that the algorithm terminates with a constraints too di�cult exception.

Our current implementation of Indigo is in fact a weak version of the algorithm, since our tighten

operations can produce intervals that are too big (Appendix A). The advantage of doing this is that

we can use a single interval as the bounds for each variable | otherwise we would need to support

unions of intervals, which would be slower for multiplication and division constraints in some cases

(Section 5.2).

4.6 No Solutions

If the required constraints cannot be satis�ed, the algorithm signals a required constraint not satis�ed

exception. Intuition might lead one to believe that if the required constraints can be satis�ed there

is always at least one locally-error-better solution, but it turns out this is not correct in certain

pathological cases. Consider the following constraints:

required a > 0

medium a = 0

Even though clearly the required constraint can be satis�ed, there are no locally-error-better solu-

tions, since for any potential solution x that satis�es a > 0, x=2 has a smaller error for the a = 0

constraint. (See [Borning et al. 92] for further details.)

This problem doesn't arise in our current implementation, since we don't support strict inequalities.

However, there would be no particular problem in handling this situation. Recall that the algorithm

�nds domains for the variables that contain exactly those values that can participate in a locally-

error-better solution (or, for the weak version of the algorithm, supersets of the actual domains).

Thus if the algorithm computes an empty domain, this implies that there are no solutions to the

constraints, and we could raise an appropriate exception.

4.7 Performance

Suppose we have n variables, and m constraints. When a constraint is processed, we tighten bounds

until they are all tight. The key observation is that the bounds on a variable are never tightened

more than once when a constraint is processed. Because the constraint network is acyclic, if we

encountered the same variable more than once, we would have a cycle. The run time for processing

a single constraint is O(n) in the worst case, so the algorithm has a run time bound of O(nm).

In most cases the algorithm will perform much better than this, although there do exist contrived

examples which force the algorithm to perform this amount of work.

4.8 An Example

Consider the following constraints.
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required a � 10

required b � 20

required a+ b = c

required c+ 25 = d

strong d � 100

medium a = 50

abs weakest a = 5

abs weakest b = 5

abs weakest c = 100

abs weakest d = 200

(The abs weakest constraints are the absolute weakest stay constraints on a, b, c, and d, which have

initial values of 5, 5, 100, and 200 respectively.)

We process the constraints strongest �rst. After processing a � 10, we tighten the bounds on a to

[10;1). We then process the b � 20 constraint, tightening b's bounds to [20;1). Both of these

constraints are unary, so they aren't added to active constraints. Next, we process a+ b = c, and so

tighten the bounds on c to [30;1). Since not all of this constraint's variables have unique values,

we add a+ b = c to active constraints. The last required constraint is c+ 25 = d. We process it and

tighten the bounds on d to [55;1), and add c + 25 = d to active constraints as well.

We now go to the strong constraint d � 100. This tightens the bounds on d to [55,100]. This

propagates to c through the c + 25 = d constraint (which is in active constraints), tightening c's

bounds to [30,75]. We further propagate the change to both a and b through a+ b = c, so that a's

bounds are now [10,55] and b's bounds are [20,65]. Next, we process the medium constraint a = 50.

Since 50 is within a's current bounds, we set a's bounds to [50,50], and tighten b's bounds to [20,25],

c's bounds to [70,75], and d's bounds to [95,100]. Finally we process the absolute weakest stays. The

stay on a has no e�ect, while the stay on b pins b's bounds to [20,20], since we try to satisfy b = 5

as well as possible given the current bounds. This propagates to c and then to d, giving bounds of

[70,70] for c and [95,95] for d. The remaining stays have no e�ect. We have thus found the solution

a = 50, b = 20, c = 70, d = 95, which is a locally-error-better solution to the hierarchy.

4.9 Read-Only Variables

One or more variables in a constraint cn may be annotated as read-only, so that cn won't a�ect

their values [Borning et al. 92]. (We can thus simulate a one-way constraint system by annotating

all but one of the variables as read-only in every constraint.) Read-only variables add no particular

extra complexity to the algorithm. We partition the constraint graph into writeable regions, joined

by variables annotated as read-only in one of the regions. We then perform a topological sort on the

regions, putting a region in which a variable is annotated as read-only before the connected region

in which it is writeable. We then solve the regions independently, in order. When we come to solve

a region with a variable annotated as read-only, that variable will already have been given a value

when solving the upstream region.

4.10 Locally-Predicate-Better Solutions

As discussed previously, the locally-error-better comparator gives more satisfactory results than

locally-predicate-better. However, if we did want locally-predicate-better solutions, the algorithm

can be easily modi�ed to produce them.

To accomplish this, when we �rst process a constraint, we test whether it can be satis�ed, given the
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existing bounds on its variables. If it can, we proceed as in the locally-error-better algorithm. If it

can't, we simply ignore the constraint, rather than trying to satisfy it as well as possible.

5 Future Work

5.1 Compilation

In many interactive applications, we need to solve the same constraint graph repeatedly with di�erent

input values for one or more of the variables, for example, when moving a point in a constrained

�gure with the mouse. We can achieve much better performance if we compile a plan for the

given constraint graph, and repeatedly execute the plan for each input value. Fortunately, it is

straightforward in Indigo to compile such plans. The compilation algorithm has been designed but

not yet implemented.

To compile a plan, we �rst identify one or more of the variables as input variables to the plan. These

are the variables that will be set to a di�erent value each time the plan is executed, for example

to the current x and y mouse positions. Essentially we then do a partial evaluation of the Indigo

algorithm, producing a series of straight-line invocations of the tighten method.

To illustrate, let's modify the previous example by making a an input variable, with the input coming

in at the medium strength.

required a � 10

required b � 20

required a+ b = c

required c+ 25 = d

strong d � 100

medium a = input

abs weakest a = a:oldValue

abs weakest b = b:oldValue

abs weakest c = c:oldValue

abs weakest d = d:oldValue

The compiled code produced for these constraints follows, interspersed with commentary. First we

reset the bounds on a, b, c, and d to the bounds resulting from processing the constraints stronger

than the input constraint a = input. (These bounds are independent of input.)

a.bounds := [10,55];

b.bounds := [20,65];

c.bounds := [30,75];

d.bounds := [55,100];

Next, we tighten the bounds on a to a single value, using input, and then call the propagation

methods for b, c, and d. (Note that we need to call the propagation method for d after that for c.)

a.tighten(input);

b.tighten(c.bounds - a.bounds);

c.tighten(a.bounds + b.bounds);

d.tighten(c.bounds + 25);

At this point we can discard the absolute weakest stay on a, since we know a's bounds have been

tightened to a single value. We then try to tighten b's bounds to satisfy the stay constraint on b,

and propagate to c and d. (We know we don't need to propagate to a, since it already has a unique

value.)
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b.tighten(b.oldValue);

c.tighten(a.bounds + b.bounds);

d.tighten(c.bounds + 25);

After this is done, we also know that c and d have unique values, and so the remaining absolute

weakest stays have no e�ect. Finally, note that we could inline the tighten messages, at the expense

of larger code size.

5.2 Unions of Intervals

As noted in the algorithm pseudo-code presented in Section 4.3, under some conditions Indigo will

not be able to solve a collection of constraints. The algorithm is thus sound but incomplete | if

it �nds an answer, the answer will be correct, but it won't always be able to �nd one. Here is an

example of a hierarchy that can't be solved by Indigo.

required �1 � a � 1

required �1 � b � 1

strong a � b = 2

weak a = 0:5

In attempting to solve these constraints, we would �rst process �1 � a � 1 and �1 � b � 1,

tightening the bounds on a and b to [�1; 1]. We then process the a � b = 2 constraint. We can't

satisfy this constraint given the current bounds on a and b, but given our restriction to just storing

single bounds no tightening is possible. We then process a = 0:5, setting a to 0.5, since this is within

a's current bounds. We then propagate the restriction to b, tightening b's bounds to the singleton

interval [1; 1]. At this point we detect that both a and b have unique values but the active constraint

a � b = 2 can't be satis�ed, so we raise a constraints too di�cult exception.

Following Hyv�onen [Hyv�onen 92], we could avoid this problem by allowing the possible values for

variables to be described by divisions (unions of ordered, non-overlapping intervals), rather than by

single intervals. If this were done, we would also remove the test for constraints in active constraints

which end up being unsatis�ed after speci�c values are found for their variables. (By using divisions

instead of single intervals, for the standard arithmetic constraints we can completely represent the

set of values for which the constraint attains its minimum error. The check guards against the

situation where a constraint in active constraints ends up not achieving its minimum error bound.)

In the example, after processing the a � b = 2 constraint, the divisions for a and b would both be

[�1;�1j1; 1], i.e. [�1;�1][ [1; 1]. Then, when we process the a = 0:5 constraint, we would restrict

a to [1; 1] (which satis�es the a = 0:5 constraint as well as possible). We would then propagate this

restriction to b, giving [1; 1] for b. This solution of a = 1, b = 1 is the single locally-error-better

solution to the constraints.

There does not appear to be a practical need for this extension for our current collection of constraints

(+, �, �, �, =, �, �) and intended applications, and processing divisions would be more expensive

than processing single intervals. However, this extension would allow us to handle additional kinds

of constraints such as absolute value, and so we plan to do an experimental implementation in the

future.
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5.3 Incrementality

Another important technique for making local propagation algorithmsmore e�cient is to make them

incremental. In an incremental algorithm such as DeltaBlue or SkyBlue, when a constraint is added

or deleted, the current solution can be updated incrementally, rather than planning from scratch.

Unfortunately, producing an incremental version of Indigo does not seem to be straightforward, and

so far we have not been able to devise a satisfactory incremental version. However, we believe that

the ability to do compilation will still result in quite adequate performance in our target interactive

applications such as constraint-based drawing systems.
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A De�nitions of Interval Arithmetic Operations

As discussed in Section 4.1, we make extensive use of intervals in our implementation of Indigo. All

intervals in our current implementation are closed intervals, unless the bound is in�nite. Thus

[l; u] = fx j l � x � ug

[l;1) = fx j x � lg

(�1; u] = fx j x � ug

(�1;1) = <

The arithmetic operations +, �, �, � on intervals are de�ned as follows.

A +B = fa+ b j a 2 A ^ b 2 Bg

A �B = fa� b j a 2 A ^ b 2 Bg

A �B = fa� b j a 2 A ^ b 2 Bg

A �B = fa� b j a 2 A ^ b 2 Bg ; if 0 62 [l

2

; u

2

]

It is straightforward to compute the results of these arithmetic operations for closed intervals with

�nite bounds, and, in the case of division, denominators that don't include 0. Here are equations

for these cases.

[l

1

; u

1

] + [l

2

; u

2

] = [l

1

+ l

2

; u

1

+ u

2

]

[l

1

; u

1

]� [l

2

; u

2

] = [l

1

� u

2

; u

1

� l

2

]

[l

1

; u

1

]� [l

2

; u

2

] = [l

3

; u

3

]

where l

3

= min(l

1

� l

2

; l

1

� u

2

; u

1

� l

2

; u

1

� u

2

)

u

3

= max(l

1

� l

2

; l

1

� u

2

; u

1

� l

2

; u

1

� u

2

)

[l

1

; u

1

]� [l

2

; u

2

] = [l

1

; u

1

]� [1=u

2

; 1=u

1

] ; if 0 62 [l

2

; u

2

]

The propagation rules are more complex for the general case. If we wish to describe the bounds of

variables exactly, we need to allow divisions (Section 5.2). For example, the propagation methods

for A�B must exclude 0 from B (if it isn't already excluded).

In our current implementation, for e�ciency we restrict the domains of variables to being single

intervals. Therefore, in the following function de�nitions, we return the smallest single interval that

includes the true result (Section 4.5).

We also support mixed-mode arithmetic, in which one operand is an interval and the other is

a number | in this case, a number n can simply be coerced to be the interval [n; n]. In our

implementation, in addition to coercing numbers to intervals as needed, we also include special-case

code that handles the mixed-mode cases for multiplication and division to make these operations

more e�cient. For simplicity these cases are omitted from the function de�nitions below.

function + (a, b : Interval) : Interval

real lower, upper;

lower := (if a.lower = �1 or b.lower = �1 then �1 else a.lower + b.lower);

upper := (if a.upper = 1 or b.upper = 1 then 1 else a.upper + b.upper);

return Interval(lower,upper);

end function +;
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function - (a, b : Interval) : Interval

real lower, upper;

lower := (if a.lower = �1 or b.upper = 1 then �1 else a.lower - b.upper);

upper := (if a.upper = 1 or b.lower = �1 then 1 else a.upper - b.lower);

return Interval(lower,upper);

end function -;

function * (a, b : Interval) : Interval

real lower, upper, temp;

boolean not set; /* not set is true if the variables lower and upper haven't been initialized yet */

not set := true;

if a.lower 6= �1 and b.lower 6= �1 then

not set := false;

upper := lower := a.lower*b.lower;

end if;

if a.lower 6= �1 and b.upper 6=1 then

temp := a.lower*b.upper;

lower := (if not set then temp else min(lower,temp));

upper := (if not set then temp else max(upper,temp));

end if;

if a.upper 6=1 and b.lower 6= �1 then

temp := a.upper*b.lower;

lower := (if not set then temp else min(lower,temp));

upper := (if not set then temp else max(upper,temp));

end if;

if a.upper 6=1 and b.upper 6=1 then

temp := a.upper*b.upper;

lower := (if not set then temp else min(lower,temp));

upper := (if not set then temp else max(upper,temp));

end if;

/* now check for an in�nite lower bound for the result */

if (a.lower = �1 and (b.upper = 1 or b.upper > 0))

or (b.lower = �1 and (a.upper = 1 or a.upper > 0))

or (a.upper = 1 and (b.lower = �1 or b.lower < 0))

or (b.upper = 1 and (a.lower = �1 or a.lower < 0)) then

lower := �1;

end if;

/* check for an in�nite upper bound for the result */

if (a.lower = �1 and (b.lower = �1 or b.lower < 0))

or (b.lower = �1 and (a.lower = �1 or a.lower < 0))

or (a.upper = 1 and (b.upper = 1 or b.upper > 0))

or (b.upper = 1 and (a.upper = 1 or a.upper > 0)) then

upper := 1;

end if;

return Interval(lower,upper);

end function *;
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function / (n, d : Interval) : Interval

real lower, upper, temp;

boolean n pos, n neg, d epsilon, d neg epsilon; /* used later */

boolean not set; /* not set is true if the variables lower and upper haven't been initialized yet */

not set := true;

if n.lower 6= �1 and d.lower 6= �1 then

not set := false;

upper := lower := n.lower/d.lower;

end if;

if n.lower 6= �1 and d.upper 6=1 then

temp := n.lower/d.upper;

lower := (if not set then temp else min(lower,temp));

upper := (if not set then temp else max(upper,temp));

end if;

if n.upper 6=1 and d.lower 6= �1 then

temp := n.upper/d.lower;

lower := (if not set then temp else min(lower,temp));

upper := (if not set then temp else max(upper,temp));

end if;

if n.upper 6=1 and d.upper 6=1 then

temp := n.upper/d.upper;

lower := (if not set then temp else min(lower,temp));

upper := (if not set then temp else max(upper,temp));

end if;

/* in checking for in�nite lower or upper bounds we use the following booleans:

n pos : true if n includes some positive numbers

n neg : true if n includes some negative numbers

d epsilon : true if d includes positive numbers arbitrarily close to 0

d neg epsilon : true if n includes negative numbers arbitrarily close to 0 */

n pos := (n.upper = 1 or n.upper > 0);

n neg := (n.lower = �1 or n.lower < 0);

d epsilon := ((d.lower = �1 or d.lower � 0) and (d.upper = 1 or d.upper > 0));

d neg epsilon := ((d.lower = �1 or d.lower < 0) and (d.upper = 1 or d.upper � 0));

/* check for an in�nite lower bound for the result */

if (n.lower = �1 and (d.upper = 1 or d.upper > 0))

or (n.upper = 1 and (d.lower = �1 or d.lower < 0))

or (n neg and d epsilon)

or (n pos and d neg epsilon) then

lower := �1;

end if;

/* check for an in�nite upper bound for the result */

if (n.lower = �1 and (d.lower = �1 or d.lower < 0))

or (n.upper = 1 and (d.upper = 1 or d.upper > 0))

or (n neg and d neg epsilon)

or (n pos and d epsilon) then

upper := 1;

end if;

return Interval(lower,upper);

end function /;
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