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Abstract

Assertions on time-stamped event histories (TEHS) have begmusal-time theory for
specifying, analyzing, and verifying requirements and designs, and also have been proposed fc
monitoring implementations. This paper investigates the direct use of TEHSs for programming. '
define some language and system support mechanisms, show by example the potential benefi
programming with TEHs, and describe an implementation that is an extension of a state-basec
system. Benefits include cleaner and more readable code, and programs that more closely res
specifications.

1 Introduction

The behavior of a real-time system can be characterized by a set of traces or histories of its
interesting events over time. Each such time-stamped event history (TEH) may be representes
event sequence:

H=<X1, X2,....,Xj,...>.
Theith event Xj, is a triple Ej, Vj, Ti) whereE; is the name of the type or class of the ewnis
the data, if any, associated with the event, Bnd the time of the event. Such traces have been
used for the assertional specification, reasoning, verifying, and monitoring of real-time systems
mainly because many required and desired properties can be expressed conveniently in terms
TEHs. However, there has been little or no language and system support for dealing directly w
TEHSs in application programs.

The purpose of our work is to study the use of TEHs for writing real-time programs. Our propc
IS to provide support for accessing TEHs in programaddition tonormal languagand system
facilities; we are not suggesting that traces be used as a universal data object to the exclusion
others. Our contributions are to demonstrate by examples that there are real benefits in
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programming with TEHSs, to defireome basic associated programming mechanisms, and to reg
on some software tools that implement these ideas.

In the next section, we survey some standard applications of TEHs in other areas. Section 3
presents our programming and event notation. Several examples comparing conventional prot
with ones using TEHSs are discussed in Section 4. The subsequent section describes our supf
software tools and initial experiments. We then desanilS=ction Gome open research problems
and issues connected with this new approach.

2 Applicationsof TEHsS

For many years TEH®r related objects such as those that also include states in the traces, ha
been employed in real-time theory for specifying, analyzing, and verifying requirements and de:
Examples include logics such as Real-Time Logic (RTL) [Jahanian&Mok86] that deal directly w
timed events and histories, asdostate and programming models such as Timed u@wata

(i.e., [Attiya&Lynch89) and Timed CSP [Reed&Rosc86], respectiely, where traces atbe
underlying behavioral descriptions.

A more recent application has been the monitoring or checking of real-time systems
[Chodrow_et_al91, Jahanian_et_al94]. In these works, timing constraints expressed in a lang
based on RTL are checked at run-time by a separate monitoring component of the software. \
have used similar ideas for monitoring executable specifications in our Communicating Real-Tii
State Machine (CRSM) notatigRaju&Shaw94]. Here, event-triggered timing specifications
expressed in an RTL variant are checked during simulation runs; the simulation and specificati
code are each a separate component as in the other works discussed in this paragraph. Thes
within the RTL framework have significantly influenced the research reported in this paper.

We have also been influenced by a new programming model, called time-sensitive objects (TS
[Callison95], that develops a data-centered approach to specifying and building real-time syste
The basic idea is to maintain histories of the values of data objects over time; operations are d
for updating and accessing these histories. The TSO model is proposed as an alternative to tt
conventional process model, for example, timeisigageriodic objects replacing periodic
processes.

Another application area that uses TEH-like objects in an interesting way is parallel debugging
systemgMcDowell&Helmbold89]. Many of these systems record event histories, sometimes wi
time-stamps, as the principal debugging data. Parallel discrete event simulation languages als:
time-stamped event lists in a central way [Fujimoto90]. One example is the Rapide language w
provides an event pattern language for defining triggers for processes [Luckham&Vera95]; the
event patterns describe partially ordered sets of events.

TEHSs arethe objects of convenience or necessity in these other theoretical and practical
applications. However, we know of no language or system that supportditbetiuse for
programming real-time systems.



3 Event and Programming Notation

As described in the introduction, each ev§nt (Ej, Vi, Tj) is a fame value time) triple, for
example:

X5 = (Temperature15° C, 10:00 AM).
The history is ordered by time, so tAHak Tj+1 for all i. Several eventsom different classes could

occur simultaneouslyFor events of the same class or name, we require that they be strictly
separated in time; e.g..H = Ej andi # , thenTj # Tj.

A time-stamped history that is stored during the execution of a program is of finite length and ¢
defined up to the most recent event that has occurraeéviénts have occurred, then the stored
history is

H=<X1,...,Xn>,
whereXp is the most recent event. It is most convenient to reference these events starting fror
latest and working backwards. Following earlier works, including our own, we will use negative
indices:

H=<Xon,...,X-1>,
where for positive i, we hav§ = Xj-n-1. That is, the most recent evenkig, the second most
recent isX-2, and the first event X-n.

The identification of the most recenevents is given bthe vector fornkE() = (C-k, ... ,C-1) which
mean<£-j =C.j, fori = 1 tok. For exampleE() = (down up, timeout down) is a short form for
E-4=down E-3=up, E-2=timeout andE-1=down The symbol "~" preceding an event name mean:
that the event has not occurred at the indicated position. For ex&f)pre(~Temperature
Pressurgis an abbreviation fde-2zTemperaturendE-1=PressureFinally, " is used as a "don't

care" or "wild card" indicator, such asHi) = (a, ¢, b) which specifies th&-2 could be any event.

A TEH H contains all of the events that have occurred. Most often, we will be interested in onh
subset of the events in each part of a program. This is accomplished by dafip@atjonson H
thateither include oeliminate designated event classes. The notatipexprwill denote the
projection or restriction ol as designated by the expresstapr. In its simplest formsexpr could
be an event nanté or it's "negation" €. H | C andH | ~C mean, respectively, to include only the
events fronC in the history and to exclude the events fi©nfror examplelH | downrestricts the
history to thedownevent class only. We also permit lists in the projections, s¢ithét, ... ,Ck)

restricts the history to only ever@y, ... ,Ck, andH | ~(Cjq, ... ,Ck) excludes these events.

The program examples will use a conventional imperative notation with similarities to Ada and
CSP/Occam. This is essentially a textual version of our graphical CRSM language [Raju&Shav
Guarded commands and non-determinacy are used where apprépgaseded command is of
the formguard -~ commandThe symbol []" is used to separate guarded commands or lists of
guarded commands, that are candidates for non-deterministic selection.



All events in our programs, including timeoy(sge below)are input-output (I0) communication
events following the synchronous CSP model. To send a mesgagm a channel, a process
Issues the command:
C(expn! .
A receiving process on the same channel will give a command:
C(x)? .
If input-output occurs, it happens simultaneously. The effect at the receiver is the assignment:
X 1= expr.
Both sender and receiver then proceed. The corresponding 10O event is theQrigkpr,(T) ,
whereT is the timelO occurred

If events have no message fields, the parentheses are omitted. A possible timeout or delay is
described by the syntax

Timer? [t] ,
wheret is the delay interval. This is viewed as an irfportn a clock processn theTimerchannel.

4 Example Programs With Comparisons

The purpose is to illustrate programming solutions to several real-time problems, comparing tr
in a conventional programming language with ones that support TEHs. We choose particularly
simple problems, but with realistic features, so that we can expose some of the potential bene
TEHSs.

Example 1: Recognizing Single Clicks from a Mouse Button

Consider a mouse input device with a single button. The computer can detect two events fron
button -- adownevent, name®, corresponding to pressing the button and@aventU that is
triggered when the button is released. A single click, der#®@ed recognized if the time between
aU and its precedinD is less than a given intervak. A single click recognizer will send &C
message to a handler whenever this constraint is met.

A solution in a sindard programming notation, with title subscriptedlbyr “standard”, is:

Single_Clickers::

loop
D? // Wait for input D.
{
u? ScC! // Wait for U and then output SC;
[] Timer?[tsc] U? // or timeout then wait for U.
}
end loop



The “[]” indicates a selection between tdenput statement before and thienerinput statement
after it, based on which occurs firdta U occurs before th€&imerlO occurs atimetsc then the
SCsignal is generated; otherwise, the program waitslfand returns to the top of the loop.

A TEH version with title subscripted biA for “history”, is:

Single_ClickerH::

loop

D? U?

if (T-1 —T-2) <tsc) then SC!
end loop

The program history contains the event clagsdd, andSC No projections are required in the
solution. Now compar8ingle_Clickeg andSingle_Clicke. The TEH version has a direct and
straightforward specification of tH&Cproperty and very simple control structures inside the loop
In the first program, it's not as obvious that 8(&is generated correctly; a timeout is necessary
within a non-deterministic statement -- arguably more complex. (Of course;:Hherogram also
incursa cost in storing and accessing histories.)

Example 2: Part of a Traffic Light Controller

An intersection of a street and an avenuetiaspairs oftraffic lights that cycle through the normal
red-green-yellow sequence. If an ambulance approaches the intersection, all lights are turned
and the street or avenue direction of the ambulance is stored. A conventional state-based pro
containing the ambulance processing appears in [Raju&Shaw94afielight eventssr, sg sy,

ar, ag, anday are associated with commands that turn the street and avenue lights red, green
yellow, respectively. An ambulance sensing event witliection parameter, called
amb_approaching@, signifies that an ambulance is approaching the intersection. The code with
TEH for the ambulance detection and processingensuring that all lights are red, is:

AmbulanceH::

using H | (ag, ay, ar, sg, sy, Sr)

amb_approaching(direction)?

case E-1 of
ag: ay! Timer?[5] ar!
ay: Timer?[5] ar!
sg:  sy! Timer?[5] sr!
sy:  Timer?[5] sr!
ar, sr: null

end case

The initial projectionn theusingstatement restricts the history to only traffic light everitke
caseconstruct over the last event generates appropriate sequences to turn the street or aven
lights red. For example, if the last event wgshus turning the street lights green, I0 commands



are issued to turn the street light yella), wait for 5 time units Timer?[5]), and turn the street
lights red ¢r!). The rest of the system is constructed so that, under normal operation, both ligh
red after any turn-red evear andsr).

Conventional code for this task also requires knowledge of the state of the traffic lights when t
amb_approaching@vent occursAmbulancej obtains this state directly froB.1. Without TEH

support, one could distribute pieces of the above code through the traffic controller, as is done
[Raju&Shaw94], encode the state through program variables, essentially storing the history, o
allow references to actual labeled states such as provided by the statechart specification langt
[Harel87]. In the latter, a guard on a state transition could refer explicitly to the state of some «
component. Generally, access to TEHs allows a programmer to reeteatatstate.

Example 3: General Mouse Clicker Recognizer

Example 1 is generalizdgbreto recognize single clicks, double clicks, and selections from a mot
button. Let a single click§Q be defined as above. A double cli€Xd) is two consecutive single
clicks separated by a time interval less than a gaterSingle click signals are not generated if the
single click is part of a double click. If the separation betwe@raad the followingJ is greater

than or equal tesc then theD corresponds to a selection st&§(and theU to a selection end
(SB); SSandSEevents are generated. A state machine solution to this problem is presented in
[Shaw92].

A conventional program implementing the recognizer is:

Click_Recognizers::

loop
D?
{
Timer?[tsc] SS! U? SE! I/l Timeout after first D
[JuU? // D U has been input
{
Timer?[tdc] SC! /l Timeout after D U
[] D? // D U D recognized
{
u? DCI! // DU D U means DC
[] Timer?[tsc] SC! SS! U? SE! // see below *.
}
}
}
end loop

A graphical state machine representation is easier to follow, because it does not have the dee
nesting of the above text. The most complex case is in the innermost(¢jawbkere the previous



three button inputd U D, have indicated a possible double click, but theUagbes not occur in
time; in this case a8Cis sent for the firsD U pair and then a selection is generated.

A TEH version follows below. In it, we request alarm clock tim@scand ACIicto send a

wakeup signal at some future timeelative to its call, using the output command:
ACi.Wake_M@)! ,

wherei is eitherscor dc. A wakeupsignal ACi.Wake_Upis generated by the@larmclocks after

the interval expires. The alarm clocks also resporiRegesignat that terminate any outstanding

Wake_Meequests.

Click_Recognizery::
using H | ~(Wake_Me, Reset)

loop
{
D? ACsc.Wake_Me(tsc)! ACdc.Reset!
[] U? ACdc.Wake_Me(tdc)! ACsc.Reset!
[] ACsc.Wake_Up?
[] ACdc.Wake_Up?
}
case E() of
(D, U, D, U): DC!
(D, U, ACdc.Wake_Up): SC!
(~D, ~U, D, ACsc.Wake_Up): SS! U? SE!
(D, U, D, ACsc.Wake_Up): SC! SS! U? SE!
others: null
end case
end loop

The projection eliminates the alarm clocWgake MeandReseevents from consideratiomhis
example also illustrates the use of the vector notaEQnfor event listsThe nesting complexity
has been replaced by a simpler, but still somewhat difficult, event accepting part that involves
generating and resetting timing signals. Theestatement separates the possible outputs into fot
clear classes that are not too far removed from a formal specification. In order of appearance,
are thedouble click, thesimple single clickthe selection, and the more complicated single click
followed by a selectiarFor example, iE() = (D, U, D, U) then aDC message is output

Example 4: Part of a Coolant Controller

This is a toy example in process control taken from [Jaffe_et_al91], that shows the use of all
components of the event triple as well as some history. The coolant temperature of a reactor 1

controlled to maintain a temperature & Celsiusby moving two rods. Whenever the temperature

changes by®Celsius, a sensor sends the temperature to the controller which checks on the ve
of the data; the check also ensures that the readings don't arrive too quickly. Let the temperat



sensing event b@ emperaturedegreestime) over the 10 channdlemperatur@. The validity
checking and rod moving part of the controller can be coded using TEHSs as follows:

Coolant_Controllery::
using H | Temperature

loop
Tempe.rét.ure(d)?
valid := (d > -273) and (d < 500) and (abs(V-1 - V-2) =¢)
and ((T-1 — T-2) =2tmin)
{
((d < C) and valid) - Move_Rod(up)!
[l ((d=C) and valid) - Move_Rod(down)!
[] - valid - Error!
}
end loop

The projection restricts the history accesseBatmperaturesvents only. Note that.1=d in the

program. Without histories, one would typically declare and use varsiitesa®ld_temp

new_tempold_time andnew_timein order to compute the value\dlid. It would also require

the usual amount of error-prone switching of values each time through the loop, for example:
old_time:=new_time

5 Supporting Software Tools

In order to permit some early experimentation, we have extended our communicating real-time
machine (CRSM) software [Raju&Shaw94] with TEH support. The resulting system, called
CRSM+H, consists of a graphical editor and a simulator. The editor permits the creation of gel
state machines, where the transitions are guarded commvahdsne durationsA command can

be a CSP-like send or receive, or any C++ program. In addition, there is a novel set of timing
facilities that allow the specification of timing durations for transitions and provide access to clc
The TEH extensions implement mechanisms for storing and accessing event histories as disct
below. Some of the TEH features amdmall part of theode was borrowed from the assertion
checker component of the CRSM tools. The simulator executes a system of machines over
simulated time.

Each 10 communication is an event. Global history is stored in anafresaent recordsso that an
eventX(i) is the recordX(i).E, X(i).V, X(i).T) . Fori = 0, the reference is to tlhi instance; if

I <0, the reference is to tith most recent instance as defined earlier. A finite size window of the
most recent eventm all IO channed is maintainedn the arrayX. In our experiments to date gaof
size 20 has been adequdtkere is also an implementation of thextorE(), defined in Section 3,

as aBoolean functiorE(C.k, ... ,C-1), which returns True iE-j =C.j, fori = 1 tok, and False



otherwise TheprojectionH | (C1, ... ,Ck) and the elimination projectidd | ~(C3, ... ,Ck) are
supported bylobal initializationfunctionsH_Use(C1 , ... ,Ck) andH_Not(Cy, ... ,Ck),

respectivelyT(i) andV(i) return the time and value of evemn channe in the modified or
projected event history

Several examples have been run, including the general click recognizer of Eamitie last
section Click_Recognizey). The sensor and integrator tasks presented as Ada programs in
[Corbett94]were also translated into both pure CRSM and CRSM+H machines and then simul
TheTEH (CRSM+H)versions of the sensor and integrator seemed simpler than both the Ada ¢
pure CRSM versions, requiring fewer timeouts and following the specifications in a more
straightforward fashion.

6 Research and | ssues

This work started in 1995 and is still in its early stages. However, it seems clear from our com|
and paper experiments that TEHs offer some real benefits for programming real-time applicatit
What is not clear yet though is how to recognize those algorithms that can be beneficially
reformulated and how to do so. Our examples in Section 4 required a surprising amount of
experimentation before we achieved satisfactory results, perhaps because the ideas were nev
Part of this is discovering or inventing an appropriate programming Stykeapproach to this
issue that we are pursuing is to develop solutions to common problems in a variety of different
event-based real-time languages, such as Ada95, Esterel, statecharts, and CRSMs, and com|
these with solutions with TEIn fact, the idea for TEHs came to the first author while comparir
programs in the above languages for the general click recognizer problem.

There are a number of open issues concerning programming and systems support for historie:
Various projections on histories are needed, but it's not yet evident whether the simple restrict
given here are sufficient. For example, one could imagine something similar to regular express
(REs) or REs plus negation for defining the event classes of intdoegtver some care must be
taken to ensure that the complexity of computing the projections remains reasonable.

A related problem is the "scope" of histories and events. As presented, histories are global; it r
be desirable to have histories also at various local levels without resorting to projections, for
example, because of clock errors (see below). Both the experiments with assertion checking &
those reported here use a small window covering the most recent events; there may be useful
applications that require larger windows or that require some of the ingraksan a history. In

any case, we have not investigated in detail either the performance or predictabilty of the funct
for updating and accessing histories.

Time-stamped events are potentially very general objects. We have concentrated on 10 event:
and within a particular communication model. One might wish to declare new event classes, ai
selectively enable, disable, generate, and reset events. Finally, an accurate time-stamp based
shared global time has been implicitly assumed. This assumption is often not easily met, espec
for distributed systems, since it requires that clocks be synchronized.



Our software tools need to be developather, perhaps movinig the direction of a textual
implementation. One appealing approach is to take a language with object capabilities, such a
Ada95, and construciasss that provide TEH mechanisms.

7 Summary and Conclusions

Time-stamped event histories have been used in many areas of computing, but not directly in
programming. Our goslareto study their application for real-time programming, and to define
appropriate language and system support. We have outlined a programming and event notatic
accessing TEHs, shown by example their potential benefits, and described an implemehiztion
IS an extension of a state-based simulat@urrent and future work includes refining and extendini
thenotation,support and applications, as well as developing a programming style for TEHs. Fo
those programs and parts of programs that are applicable, the potential benefits include clean
more readable cogdand code that more closely resembles the required specifications.
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