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Abstract

Assertions on time-stamped event histories (TEHs) have been used in real-time theory for
specifying, analyzing, and verifying requirements and designs, and also have been proposed for
monitoring implementations. This paper investigates the direct use of TEHs for programming. We
define some language and system support mechanisms, show by example the potential benefits of
programming with TEHs, and describe an implementation that is an extension of a state-based
system. Benefits include cleaner and more readable code, and programs that more closely resemble
specifications.

1 Introduction

The behavior of a real-time system can be characterized by a set of traces or histories of its
interesting events over time. Each such time-stamped event history (TEH) may be represented by an
event sequence:

H = < X1, X2, . . . , Xi, . . . > .
The ith event, Xi, is a triple (Ei, Vi, Ti) where Ei is the name of the type or class of the event, Vi is
the data, if any, associated with the event, and Ti is the time of the event. Such traces have been
used for the assertional specification, reasoning, verifying, and monitoring of real-time systems,
mainly because many required and desired properties can be expressed conveniently in terms of
TEHs. However, there has been little or no language and system support for dealing directly with
TEHs in application programs.

The purpose of our work is to study the use of TEHs for writing real-time programs. Our proposal
is to provide support for accessing TEHs in programs, in addition to normal language and system
facilities; we are not suggesting that traces be used as a universal data object to the exclusion of all
others. Our contributions are to demonstrate by examples that there are real benefits in
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programming with TEHs, to define some basic associated programming mechanisms, and to report
on some software tools that implement these ideas.

In the next section, we survey some standard applications of TEHs in other areas. Section 3
presents our programming and event notation. Several examples comparing conventional programs
with ones using TEHs are discussed in Section 4. The subsequent section describes our supporting
software tools and initial experiments. We then describe in Section 6 some open research problems
and issues connected with this new approach.

2 Applications of TEHs

For many years TEHs, or related objects such as those that also include states in the traces, have
been employed in real-time theory for specifying, analyzing, and verifying requirements and designs.
Examples include logics such as Real-Time Logic (RTL) [Jahanian&Mok86] that deal directly with
timed events and histories, and also state and programming models such as Timed IO Automata
(i.e., [Attiya&Lynch89]) and Timed CSP [Reed&Roscoe86], respectively, where traces are the
underlying behavioral descriptions.

A more recent application has been the monitoring or checking of real-time systems
[Chodrow_et_al91, Jahanian_et_al94]. In these works,  timing constraints expressed in a language
based on RTL are checked at run-time by a separate monitoring component of the software. We
have used similar ideas for monitoring executable specifications in our Communicating Real-Time
State Machine (CRSM) notation [Raju&Shaw94]. Here, event-triggered timing specifications
expressed in an RTL variant are checked during simulation runs; the simulation and specification
code are each a separate component as in the other works discussed in this paragraph. These efforts
within the RTL framework have significantly influenced the research reported in this paper.

We have also been influenced by a new programming model, called time-sensitive objects (TSOs)
[Callison95], that develops a data-centered approach to specifying and building real-time systems.
The basic idea is to maintain histories of the values of data objects over time; operations are defined
for updating and accessing these histories. The TSO model is proposed as an alternative to the
conventional process model, for example, time-sensitive periodic objects replacing periodic
processes.

Another application area that uses TEH-like objects in an interesting way is parallel debugging
systems [McDowell&Helmbold89]. Many of these systems record event histories, sometimes with
time-stamps, as the principal debugging data. Parallel discrete event simulation languages also use
time-stamped event lists in a central way [Fujimoto90]. One example is the Rapide language which
provides an event pattern language for defining triggers for processes [Luckham&Vera95]; the
event patterns describe partially ordered sets of events.

TEHs are the objects of convenience or necessity in these other theoretical and practical
applications. However, we know of no language or system that supports their direct use for
programming real-time systems.
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3 Event and Programming Notation

As described in the introduction, each event Xi = (Ei, Vi, Ti) is a (name, value, time) triple, for
example:

X5 = (Temperature, 15o C, 10:00 AM) .

The history is ordered by time, so that Ti ≤ Ti+1 for all i. Several events from different classes could
occur simultaneously. For events of the same class or name, we require that they be strictly
separated in time;  e.g., if Ei = Ej and i ≠ j, then Ti ≠ Tj.

A time-stamped history that is stored during the execution of a program is of finite length and only
defined up to the most recent event that has occurred. If n events have occurred, then the stored
history is:

H = < X1, . . . , Xn > ,
where Xn is the most recent event. It is most convenient to reference these events starting from the
latest and working backwards. Following earlier works, including our own, we will use negative
indices:

H = < X-n, . . . , X-1 > ,
where for positive i, we have Xi = Xi-n-1. That is, the most recent event is X-1, the second most
recent is X-2, and the first event is X-n.

The identification of the most recent k events is given by the vector form E() = (C-k, ... , C-1) which
means E-i = C-i , for i = 1 to k. For example, E() = (down, up, timeout, down) is a short form for
E-4=down, E-3=up, E-2=timeout, and E-1=down. The symbol "~" preceding an event name means
that the event has not occurred at the indicated position. For example, E() = (~Temperature,
Pressure) is an abbreviation for E-2≠Temperature and E-1=Pressure. Finally, "•" is used as a "don't

care" or "wild card" indicator, such as in E() = (a, •, b) which specifies that E-2 could be any event.

A TEH H contains all of the events that have occurred. Most often, we will be interested in only a
subset of the events in each part of a program. This is accomplished by defining projections on H
that either include or eliminate designated event classes. The notation H | expr will denote the
projection or restriction on H as designated by the expression expr. In its simplest forms, expr could
be an event name C or it's "negation" ~C.  H | C and H | ~C mean, respectively, to include only the
events from C in the history and to exclude the events from C. For example, H | down restricts the
history to the down event class only. We also permit lists in the projections, so that H | (C1, ... , Ck)
restricts the history to only events C1, ... , Ck , and H | ~(C1, ... , Ck) excludes these events.

The program examples will use a conventional imperative notation with similarities to Ada and
CSP/Occam. This is essentially a textual version of our graphical CRSM language [Raju&Shaw94].
Guarded commands and non-determinacy are used where appropriate. A guarded command is of
the form guard → command. The symbol "[] " is used to separate guarded commands or lists of
guarded commands, that are candidates for non-deterministic selection.
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All events in our programs, including timeouts (see below), are input-output (IO) communication
events following the synchronous CSP model. To send a message expr on a channel C, a process
issues the command:

C(expr)! .
A receiving process on the same channel will give a command:

C(x)? .
If input-output occurs, it happens simultaneously. The effect at the receiver is the assignment:

x := expr .
Both sender and receiver then proceed. The corresponding IO event is the triple: (C, expr, T) ,
where T is the time IO occurred.

If events have no message fields, the parentheses are omitted. A possible timeout or delay is
described by the syntax:

Timer? [t] ,
where t is the delay interval. This is viewed as an input from a clock process on the Timer channel.

4 Example Programs With Comparisons

The purpose is to illustrate programming solutions to several real-time problems, comparing those
in a conventional programming language with ones that support TEHs. We choose particularly
simple problems, but with realistic features, so that we can expose some of the potential benefits of
TEHs.

Example 1: Recognizing Single Clicks from a Mouse Button

Consider a mouse input device with a single button. The computer can detect two events from the
button -- a down event, named D, corresponding to pressing the button and an up event U that is
triggered when the button is released. A single click, denoted SC, is recognized if the time between
a U and its preceding D is less than a given interval tsc. A single click recognizer will send an SC
message to a handler whenever this constraint is met.

A solution in a standard programming notation, with title subscripted by S for “standard”, is:

Single_ClickerS::
loop

D? // Wait for input D.
{

U?   SC! // Wait for U and then output SC;
[] Timer?[tsc]   U? // or timeout then wait for U.

}
end loop
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The “[]” indicates a selection between the U input statement before and the Timer input statement
after it, based on which occurs first. If a U occurs before the Timer IO occurs at time tsc, then the
SC signal is generated; otherwise, the program waits for U and returns to the top of the loop.

A TEH version, with title subscripted by H for “history”, is:

Single_ClickerH::
  loop

D?   U?
if ((T-1 − T-2) < tsc) then SC!

end loop

The program history contains the event classes D, U, and SC. No projections are required in the
solution. Now compare Single_ClickerS and Single_ClickerH. The TEH version has a direct and
straightforward specification of the SC property and very simple control structures inside the loop.
In the first program, it's not as obvious that the SC is generated correctly; a timeout is necessary
within a non-deterministic statement -- arguably more complex. (Of course, the TEH program also
incurs a cost in storing and accessing histories.)

Example 2: Part of a Traffic Light Controller

An intersection of a street and an avenue has two pairs of traffic lights that cycle through the normal
red-green-yellow sequence. If an ambulance approaches the intersection, all lights are turned red,
and the street or avenue direction of the ambulance is stored. A conventional state-based program
containing the ambulance processing appears in [Raju&Shaw94]. The traffic light events sr, sg, sy,
ar, ag, and ay  are associated with commands that turn the street and avenue lights red, green, and
yellow, respectively. An ambulance sensing event with a direction parameter, called
amb_approaching(), signifies that an ambulance is approaching the intersection. The code with
TEH for the ambulance detection and processing, i.e., ensuring that all lights are red, is:

AmbulanceH::
using H | (ag, ay, ar, sg, sy, sr)
amb_approaching(direction)?
case E-1 of

ag: ay!   Timer?[5]   ar!
ay: Timer?[5]   ar!
sg: sy!   Timer?[5]   sr!
sy: Timer?[5]   sr!
ar, sr: null

end case

The initial projection in the using statement restricts the history to only traffic light events.  The
case construct over the last event generates appropriate sequences to turn the street or avenue
lights red. For example, if the last event was sg thus turning the street lights green, IO commands
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are issued to turn the street light yellow (sy!), wait for 5 time units (Timer?[5]), and turn the street
lights red (sr!). The rest of the system is constructed so that, under normal operation, both lights are
red after any turn-red event (ar and sr).

Conventional code for this task also requires knowledge of the state of the traffic lights when the
amb_approaching event occurs. AmbulanceH obtains this state directly from E-1. Without TEH
support, one could distribute pieces of the above code through the traffic controller, as is done in
[Raju&Shaw94], encode the state through program variables, essentially storing the history, or
allow references to actual labeled states such as provided by the statechart specification language
[Harel87]. In the latter, a guard on a state transition could refer explicitly to the state of some other
component. Generally, access to TEHs allows a programmer to recreate relevant state.

Example 3: General Mouse Clicker Recognizer

Example 1 is generalized here to recognize single clicks, double clicks, and selections from a mouse
button. Let a single click (SC) be defined as above. A double click (DC) is two consecutive single
clicks separated by a time interval less than a given tdc. Single click signals are not generated if the
single click is part of a double click. If the separation between a D and the following U is greater
than or equal to tsc, then the D corresponds to a selection start (SS) and the U to a selection end
(SE); SS and SE events are generated. A state machine solution to this problem is presented in
[Shaw92].

A conventional program implementing the recognizer is:

Click_RecognizerS::
loop

D?
{

Timer?[tsc]  SS!  U?  SE! // Timeout after first D
[] U? // D U has been input
   {

Timer?[tdc]  SC! // Timeout after D U
[] D? // D U D recognized
   {

U?   DC! // D U D U means DC
[] Timer?[tsc]  SC!  SS!  U?  SE! // see below *.

   }
   }

}
end loop

A graphical state machine representation is easier to follow, because it does not have the deep
nesting of the above text. The most complex case is in the innermost clause (*) where the previous
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three button inputs, D U D, have indicated a possible double click, but the last U does not occur in
time; in this case an SC is sent for the first D U pair and then a selection is generated.

A TEH version follows below. In it, we request alarm clock timers ACsc and ACdc to send a
wakeup signal at some future time t relative to its call, using the output command:

ACi.Wake_Me(t)! ,
where i is either sc or dc. A wakeup signal, ACi.Wake_Up, is generated by the alarm clocks after
the interval expires. The alarm clocks also respond to Reset signals that terminate any outstanding
Wake_Me requests.

Click_RecognizerH::
using H | ~(Wake_Me, Reset)
loop

{
D?  ACsc.Wake_Me(tsc)!  ACdc.Reset!
[] U?  ACdc.Wake_Me(tdc)!  ACsc.Reset!
[] ACsc.Wake_Up?
[] ACdc.Wake_Up?

}
case E() of

(D, U, D, U): DC!
(D, U, ACdc.Wake_Up): SC!
(~D, ~U, D, ACsc.Wake_Up): SS!  U?  SE!
(D, U, D, ACsc.Wake_Up): SC!  SS!  U?  SE!
others: null

end case
end loop

The projection eliminates the alarm clocks’ Wake_Me and Reset events from consideration. This
example also illustrates the use of the vector notation, E(), for event lists. The nesting complexity
has been replaced by a simpler, but still somewhat difficult, event accepting part that involves
generating and resetting timing signals. The case statement separates the possible outputs into four
clear classes that are not too far removed from a formal specification. In order of appearance, these
are: the double click, the simple single click, the selection, and the more complicated single click
followed by a selection. For example, if E() = (D, U, D, U) then a DC message is output.

Example 4: Part of a Coolant Controller

This is a toy example in process control taken from [Jaffe_et_al91], that shows the use of all
components of the event triple as well as some history. The coolant temperature of a reactor tank is

controlled to maintain a temperature of Co Celsius by moving two rods. Whenever the temperature

changes by co Celsius, a sensor sends the temperature to the controller which checks on the validity
of the data; the check also ensures that the readings don't arrive too quickly. Let the temperature
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sensing event be (Temperature, degrees, time) over the IO channel Temperature(). The validity
checking and rod moving part of the controller can be coded using TEHs as follows:

Coolant_ControllerH::
using H | Temperature
loop

. . .
Temperature(d)?
valid := (d > −273) and (d ≤ 500) and (abs(V-1 − V-2) = c)

and ((T-1 − T-2) ≥ tmin)
{

((d < C) and valid) → Move_Rod(up)!
[] ((d ≥ C) and valid) → Move_Rod(down)!
[] ¬ valid → Error!

}
. . .

end loop

The projection restricts the history accesses to Temperature events only. Note that V-1=d in the
program. Without histories, one would typically declare and use variables such as old_temp,
new_temp, old_time, and new_time, in order to compute the value of valid. It would also require
the usual amount of error-prone switching of values each time through the loop, for example:

old_time := new_time .

5 Supporting Software Tools

In order to permit some early experimentation, we have extended our communicating real-time state
machine (CRSM) software [Raju&Shaw94] with TEH support. The resulting system, called
CRSM+H, consists of a graphical editor and a simulator. The editor permits the creation of general
state machines, where the transitions are guarded commands with time durations. A command can
be a CSP-like send or receive, or any C++ program. In addition, there is a novel set of timing
facilities that allow the specification of timing durations for transitions and provide access to clocks.
The TEH extensions implement mechanisms for storing and accessing event histories as discussed
below. Some of the TEH features and a small part of the code was borrowed from the assertion
checker component of the CRSM tools. The simulator executes a system of machines over
simulated time.

Each IO communication is an event. Global history is stored in an array of event records, so that an
event X(i) is the record (X(i).E, X(i).V, X(i).T) . For i ≥ 0, the reference is to the ith instance; if
i < 0, the reference is to the ith most recent instance as defined earlier. A finite size window of the q
most recent events on all IO channels is maintained in the array X. In our experiments to date, a q of
size 20 has been adequate. There is also an implementation of the vector E(), defined in Section 3,
as a Boolean function E(C-k, ... , C-1), which returns True if E-i  = C-i , for i = 1 to k, and False
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otherwise. The projection H | (C1, ... , Ck)  and the elimination projection H | ~(C1, ... , Ck) are
supported by global initialization functions H_Use (C1 , ... , Ck) and H_Not (C1, ... , Ck),
respectively. T(i) and V(i) return the time and value of event i on channels in the modified or
projected event history.

Several examples have been run, including the general click recognizer of Example 3 in the last
section (Click_RecognizerH). The sensor and integrator tasks presented as Ada programs in
[Corbett94] were also translated into both pure CRSM and CRSM+H machines and then simulated.
The TEH (CRSM+H) versions of the sensor and integrator seemed simpler than both the Ada and
pure CRSM versions, requiring fewer timeouts and following the specifications in a more
straightforward fashion.

6 Research and Issues

This work started in 1995 and is still in its early stages. However, it seems clear from our computer
and paper experiments that TEHs offer some real benefits for programming real-time applications.
What is not clear yet though is how to recognize those algorithms that can be beneficially
reformulated and how to do so.  Our examples in Section 4 required a surprising amount of
experimentation before we achieved satisfactory results, perhaps because the ideas were new to us.
Part of this is discovering or inventing an appropriate programming style. One approach to this
issue that we are pursuing is to develop solutions to common problems in a variety of different
event-based real-time languages, such as Ada95, Esterel, statecharts, and CRSMs, and compare
these with solutions with TEHs. In fact, the idea for TEHs came to the first author while comparing
programs in the above languages for the general click recognizer problem.

There are a number of open issues concerning programming and systems support for histories.
Various projections on histories are needed, but it's not yet evident whether the simple restrictions
given here are sufficient. For example, one could imagine something similar to regular expressions
(REs) or REs plus negation for defining the event classes of interest. However some care must be
taken to ensure that the complexity of computing the projections remains reasonable.

A related problem is the "scope" of histories and events. As presented, histories are global; it may
be desirable to have histories also at various local levels without resorting to projections, for
example, because of clock errors (see below). Both the experiments with assertion checking and
those reported here use a small window covering the most recent events; there may be useful
applications that require larger windows or that require some of the initial events in a history.  In
any case, we have not investigated in detail either the performance or predictabilty of the functions
for updating and accessing  histories.

Time-stamped events are potentially very general objects. We have concentrated on IO events only
and within a particular communication model. One might wish to declare new event classes, and to
selectively enable, disable, generate, and reset events. Finally, an accurate time-stamp based on a
shared global time has been implicitly assumed. This assumption is often not easily met, especially
for distributed systems, since it requires that clocks be synchronized.
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Our software tools need to be developed further, perhaps moving in the direction of a textual
implementation. One appealing approach is to take a language with object capabilities, such as
Ada95, and construct classes that provide TEH mechanisms.

7 Summary and Conclusions

Time-stamped event histories have been used in many areas of computing, but not directly in
programming. Our goals are to study their application for real-time programming, and to define
appropriate language and system support. We have outlined a programming and event notation for
accessing TEHs, shown by example their potential benefits, and described an implementation which
is an extension of a state-based simulation. Current and future work includes refining and extending
the notation, support and applications, as well as developing a programming style for TEHs. For
those programs and parts of programs that are applicable, the potential benefits include cleaner and
more readable code, and code that more closely resembles the required specifications.
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