
Optimization of Linear Max-Plus Systems

with Application to Timing Analysis

by

Elizabeth A. Walkup

A dissertation submitted in partial ful�llment of

the requirements for the degree of

Doctor of Philosophy

University of Washington

1995

Approved by

(Chairperson of Supervisory Committee)

Program Authorized

to O�er Degree

Date

In presenting this dissertation in partial ful�llment of the requirements for the Doc-

toral degree at the University of Washington, I agree that the Library shall make

its copies freely available for inspection. I further agree that extensive copying of

this dissertation is allowable only for scholarly purposes, consistent with \fair use"

as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of

this dissertation may be referred to University Micro�lms, 1490 Eisenhower Place,

P.O. Box 975, Ann Arbor, MI 48106, to whom the author has granted \the right

to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed

copies of the manuscript made from microform."

Signature

Date

University of Washington

Abstract

Optimization of Linear Max-Plus Systems

with Application to Timing Analysis

by Elizabeth A. Walkup

Chairperson of the Supervisory Committee: Professor Gaetano Borriello

Department of Computer Science

and Engineering

This work provides a joint solution to two di�erent problems | the temporal

veri�cation of hardware interface logic, and the solution and optimization of linear

max-plus systems.

The interface timing veri�cation problem seeks to determine the maximum time

separations possible among the input and output signal changes of two or more inter-

connected hardware modules. These possible separations are then compared against

the time separations allowed by the hardware modules' communication protocols.

We present here the ShortCircuit algorithm, which is the �rst correct algorithm for

this problem. In addition, we discuss the di�culties inherent in solving the inter-

face hardware timing synthesis problem, which asks us to choose time separations

between signal transitions to ensure that the timing requirements of all hardware

modules' communication protocols are met.

The ShortCircuit algorithm leads to the �rst reasonable method for solving ar-

bitrarily sized systems in the linear max-plus algebra. The linear max-plus algebra

is similar to the familiar linear algebra except that the binary maximum and scalar

addition operations take the place of addition and scalar multiplication.

The linear max-plus system solution employs an iterative technique in which the

system is re-phrased with a system of simpler constraints. Maximum solutions to

special subsets of these constraints are then found using the max-plus matrix closure

operation. Each such maximum solution bounds the system's maximum solution

from above, and guides the search for a new subset which yields a tighter bound on

the system's solution. The technique is easily extended to maximize and minimize

linear max-plus expressions over a linear max-plus system and is thus the max-plus

analogue of linear programming.

While the practical motivation and examples discussed in this work are drawn from

the realm of hardware interface logic, the solutions provided apply to any system

of events whose temporal relationships can be described as a combination of two

primitives: synchronization and bounded delay. An event synchronizes a set of events

if it occurs immediately after all events of the set have occurred. Two events have

a bounded delay relationship if one always happens within a speci�ed bounded time

interval after the other.

Table of Contents

List of Figures v

List of Tables viii

Part I Introduction to Timing Analysis 1

Chapter 1: Conceptual Introduction 2

1.1 Thesis Organization : 5

Chapter 2: Systems of Synchronizations and Bounded Delays 7

2.1 Synchronization of Independent Bounded-Delay Processes : : : : : : : 7

2.2 Veri�cation of I-BDS's : 11

2.3 Synchronization of Dependent Bounded-Delay Processes : : : : : : : 12

2.3.1 I-BDS and D-BDS are not identical : : : : : : : : : : : : : : : 17

2.4 Simulation of I-BDS's and D-BDS's : : : : : : : : : : : : : : : : : : : 19

2.5 Timing Synthesis of Bounded Delay Processes : : : : : : : : : : : : : 20

2.6 Summary : 23

Part II Interface Timing Fundamentals 24

Chapter 3: Interface Timing Veri�cation and Synthesis 25

3.1 Hardware Module Communication Protocols : : : : : : : : : : : : : : 25

3.1.1 Connecting Hardware Modules : : : : : : : : : : : : : : : : : 28

3.2 A Formal Model for Interface Timing : : : : : : : : : : : : : : : : : : 30

3.2.1 Interface Timing Veri�cation : : : : : : : : : : : : : : : : : : : 33

3.2.2 Interface Timing Synthesis : 35

3.3 Summary : 37

Chapter 4: Interface Timing Veri�cation Algorithms 38

4.1 Early Research in Timing Veri�cation : : : : : : : : : : : : : : : : : : 38

4.2 General Timing Veri�cation Algorithms : : : : : : : : : : : : : : : : : 40

4.3 Veri�cation Algorithms for D-BDS Systems : : : : : : : : : : : : : : : 43

4.3.1 McMillan and Dill's Algorithm : : : : : : : : : : : : : : : : : 43

4.3.2 The Short-Circuit Algorithm : : : : : : : : : : : : : : : : : : : 47

4.3.3 Yen et. al.'s Algorithm : 51

Part III Linear Max Plus Systems 53

Chapter 5: Dioids and Dioid Closure: The Max-Plus Algebra and

Longest Paths 54

5.1 Dioids : 54

5.1.1 Example { The Max-Plus Dioid : : : : : : : : : : : : : : : : : 56

5.2 Linear Expressions and Equations over Dioids : : : : : : : : : : : : : 57

5.2.1 Canonical Form for Linear Max-Plus Expressions and Equations 59

5.3 Dioid Matrices : 60

5.4 Dioid Closure : 62

5.4.1 Closure of a Single Variable : : : : : : : : : : : : : : : : : : : 62

5.4.2 Max-Plus Matrix Closure and Longest Paths : : : : : : : : : : 64

5.4.3 Closure for Matrix Dioids : 67

Chapter 6: Max-Plus Solution of UBCs 69

6.1 Upper Bound Constraints : 71

6.1.1 Graph-theoretical representation of systems of UBCs : : : : : 72

6.1.2 Matrix representation of systems of UBCs : : : : : : : : : : : 73

6.2 Bounding Systems of UBCs with Closure : : : : : : : : : : : : : : : : 74

6.3 Generating successively smaller upper bounds : : : : : : : : : : : : : 82

6.4 Generating an Initial Safe Targeting Subset : : : : : : : : : : : : : : 88

6.5 Identifying Inconsistent Systems : 90

6.6 The UBCsolv Algorithm : 92

6.6.1 Convergence of UBCsolv Within Finite Time : : : : : : : : : : 92

ii

6.6.2 Correctness of the UBCsolv : : : : : : : : : : : : : : : : : : : 94

Chapter 7: General Linear Max-Plus Optimization 96

7.1 UBC-Based Solution of General Linear Max-Plus Systems : : : : : : 96

7.1.1 Time Complexity of UBC-Based General Solution : : : : : : : 98

7.2 Previous Solutions for Speci�c Cases : : : : : : : : : : : : : : : : : : 98

7.2.1 Zimmermann's Max-Plus Minimization Technique : : : : : : : 98

7.2.2 Baccelli et.al's Max-Plus Symmetrization Technique : : : : : : 99

7.3 A Computationally Expensive General Solution : : : : : : : : : : : : 100

7.4 Optimization of General Linear Max-Plus Systems : : : : : : : : : : : 100

7.4.1 Maximum Solutions : 100

7.4.2 Minimum Solutions : 101

7.5 Applying the Max-Plus Technique to other Algebras : : : : : : : : : : 101

Part IV Practical Algorithmic Solutions: Timing Veri�-

cation and on Toward Timing Synthesis 103

Chapter 8: The ShortCircuit Algorithm 104

8.1 Proof of Correctness for the ShortCircuit Algorithm : : : : : : : : : 108

8.2 Practical Advantages of ShortCircuit over UBCsolv : : : : : : : : : 122

8.3 A Worst-Case Example : 122

8.3.1 Comparison of ShortCircuit with MaxSeparation : : : : : : 125

8.4 Run-time Results : 126

Chapter 9: Towards Developing Practical Timing Synthesis Proce-

dures 127

9.1 Borriello's Interface Transducer : 128

9.2 A Taxonomy for Interface Synthesis : : : : : : : : : : : : : : : : : : : 128

9.3 Max-Plus Synthesis Problems : 130

9.4 I-BDS Synthesis Problems : 131

9.5 D-BDS Synthesis Problems : 134

9.6 Valid Synthesis Problems : 136

iii

9.7 Summary : 137

Part V Conclusions and Related Work 138

Chapter 10: Conclusions 139

10.1 Contributions : 139

10.1.1 Hardware Interface Timing : 139

10.1.2 Linear Max-Plus Systems : 140

10.2 Open Problems : 141

Chapter 11: Other Related Work 144

11.1 Related Arti�cial Intelligence Problems : : : : : : : : : : : : : : : : : 144

11.2 Timed Petri Nets : 145

11.2.1 Time Separations Bounds for Concurrent Systems : : : : : : : 149

11.3 Min-Max-Plus Systems : 150

Bibliography 151

Appendix A Mc Millan and Dill's Algorithms 159

Appendix A.1: Max-Only Constraints 160

Appendix A.2: Generalized Max-Only Constraints 162

Appendix B Generalization of Max-Plus Properties 164

Appendix B.3: Pseudoring Properties 165

iv

List of Figures

1.1 Chapter ordering dependencies. : 6

2.1 A morning carpool plan. : 8

2.2 Graphical representation of the carpool of Figure 2.1. : : : : : : : : : 9

2.3 Equations corresponding to Figure 2.2. : : : : : : : : : : : : : : : : : 10

2.4 Graphical representation of carpooling arrangement with additional

constraint information. : 13

2.5 Graphical representation of carpooling arrangement with inconsistent

additional constraint information. : 14

2.6 Graphical representation of carpooling arrangement with incomplete

causal structure. : 15

2.7 UBC representation of carpooling arrangement : : : : : : : : : : : : : 16

2.8 UBC representation of carpooling arrangement of Figure 2.2. : : : : : 17

2.9 A nearly I-BDS representation. : 18

2.10 Timing behavior which cannot be expressed with an I-BDS. : : : : : 19

2.11 Graphical representation of two revised carpooling arrangements. : : 21

2.12 Graphical representation carpool arrangement with synthesis variables. 21

2.13 Graphical representation of revised carpooling arrangement. : : : : : 22

2.14 A nonsensical synthesis problem. : 23

3.1 Signal level changes as depicted in timing diagrams. : : : : : : : : : : 27

3.2 Databook entries for a simpli�ed memory controller. : : : : : : : : : : 29

3.3 Databook read-from-device protocol for a simpli�ed bus. : : : : : : : 30

3.4 UBC representation of the interface of bus and memory read opera-

tions. Black arcs are supplied by the memory's protocol, gray by the

bus' protocol. : 34

3.5 Bus timing parameter variation. : 35

v

4.1 Gahlinger's three constraint types. : : : : : : : : : : : : : : : : : : : 40

4.2 An example of McMillan and Dill's 3-SAT transformation for the for-

mula (a + b + c)(a

0

+ b

0

+ d). Square nodes indicate max events and

circular nodes indicate min events. : : : : : : : : : : : : : : : : : : : 41

4.3 McMillan and Dill's algorithm modi�ed to determine maximum time

separations relative to a single event. : : : : : : : : : : : : : : : : : : 44

4.4 Progress of McMillan and Dill's algorithm on a set of example con-

straints. Cycles described by the darker arcs in each graph correspond

to the maximum terms occurring in repeatedly applied constraints dur-

ing passes 2-92 (graph b) and 93-101 (graph c) through the Do-loop. : 45

4.5 Constraint set for which McMillan and Dill's algorithm fails. : : : : : 47

4.6 Progress of the ShortCircuit algorithm on the constraints of Fig-

ure 4.4. Dark arcs in diagram (a) correspond to constraints active

after the �rst fourMD rounds, those in (b) correspond to active con-

straints for the second set ofMD rounds. : : : : : : : : : : : : : : : 48

4.7 Progress of ShortCircuit on the constraints of Figure 4.5. : : : : : : 50

5.1 Equations of Figure 2.7 in Max-Plus form. : : : : : : : : : : : : : : : 57

6.1 A set of constraints and the graph and matrix representations they

induce. : 73

6.2 A targeting subset, its induced graph, and targeting matrix. : : : : : 77

6.3 An unsafe targeting subset of the constraints in Figure 6.1 and the

sub-graph they induce. : 79

6.4 Diagram supporting the argument for Lemma 6.4. : : : : : : : : : : : 84

8.1 McMillan and Dill's algorithm modi�ed to determine maximum time

separations relative to a single event. : : : : : : : : : : : : : : : : : : 104

8.2 The Short-circuit algorithm : 105

8.3 Two di�erent short-circuits of the same safe targeting subset. : : : : : 107

8.4 The diagrams of Figure 8.3 using the symbols of De�nition 8.2. : : : 116

8.5 The two cases in the proof of Lemma 8.5. : : : : : : : : : : : : : : : : 117

8.6 The two cases in the proof of Lemma 8.6. : : : : : : : : : : : : : : : : 119

vi

8.7 Pathological example of size O(k). Arcs without labels should be con-

sidered to have scalar o�sets of 0. : 123

9.1 Taxonomy of interface constraint types. : : : : : : : : : : : : : : : : : 129

9.2 IBDS-synthesis diagram for the case in which Ernie must be ready

when Bert arrives. The dotted arc indicates a constraint which should

be satis�ed by the assignment of a value to
. : : : : : : : : : : : : : 131

9.3 The size n = 4 instance of the �(n

2

) size I-BDS for which there are

�

�

2

2n

p

n

�

paths from y to x. : 133

9.4 A D-BDS synthesis problem which produces disjoint solutions. : : : : 135

9.5 A nonsensical synthesis problem. : 137

11.1 A timed event graph with deterministic durations for places. Small

dark circles represent tokens in the original marking; hollow bars rep-

resent the number of delay units per place. : : : : : : : : : : : : : : : 146

A.1.1McMillan and Dill's Maximum Time Separations Algorithm for I-BDS

Systems. : 161

A.2.1McMillan and Dill's Maximum Time Separations Algorithm for D-BDS

Systems. : 163

vii

List of Tables

2.1 Time separations for events in carpooling arrangement. : : : : : : : : 11

3.1 Time separations for a subset of the events in Figure 3.4. : : : : : : : 35

9.1 Time Separations for the Diagram of Figure 9.2 : : : : : : : : : : : : 132

viii

ACKNOWLEDGMENTS

This work would never have come about without the support and guidance of

many persons, only some of whom I have listed below.

I thank Lynn Friesen, John Hackwell, and the late Charles Randall, all of the

Aerospace Corporation, for getting me started doing some real science.

I thank my advisor, Gaetano Borriello, the other members of my committee |

Paul Beame, Steven Burns, Carl Ebeling, and Ted Klastorin | and faculty members

Martin Tompa and Vic Klee of the University of Washington, and Andrew Kahng of

UCLA for their academic and technical guidance.

I thank my family, without whose support and encouragement this could not have

been attempted.

And I thank just a few of the friends | Ronelle Coburn, Suzanne Bunton, Alex

Klaiber, Eric Koldinger, Raj Vaswani, Dylan McNamee, Radhika Thekkath, David

\Paco" Hubbell, David \Pardo" Keppel, David \Pablo" Cohn, Devon Wiel, Diana

Allen, Scott Hauck, Pai Chou, Ross Ortega, Soha Hassoun, Lauren Bricker, Matthew

Bricker-Mounts, Kevin Mounts, Miche, Bruce and Gri�n Baker-Harvey, Melanie

Lewis Fulgham, and Greg Barnes | who over the past several years have provided

me with all the extras I needed to continue, whether it was scintillating conversation,

hot meals, C++ programming tips, or a sympathetic ear.

ix

Part I

Introduction to Timing Analysis

2

Chapter 1

CONCEPTUAL INTRODUCTION

One approach to verifying the correct behavior of complex systems is to model

such systems as a collection of simpler sub-systems. Such a technique may be required

when the veri�cation task is to be shared among several persons or organizations, and

may be desirable when di�erent veri�cation techniques are best suited to di�erent

portions of the system. In some cases such a technique may be applied repeatedly,

resulting in a hierarchy of sub-systems.

Once the veri�cation tasks corresponding to each sub-system are completed, their

results must be combined and interpreted as they apply to the entire system. De-

pending on both the choices which were made when partitioning the system into

sub-systems and the properties being studied, some information about the system

may be lost. While an attempt is made to prevent this as much as possible, generally

speaking, there is a tradeo� between how accurate the �nal model is and how long it

takes both to verify the individual sub-systems and to combine their information to

model the whole.

While there are many system properties which may be veri�ed in this manner,

this work is concerned with temporal properties of systems. In particular, we are

interested in determining the possible ranges of timing separations between duration-

less discrete events occurring in a system. In our study, we will use discrete events

to mark the beginning and ending points of activities carried out by a system.

Determining the time separations between events in our systems is an example of

the \recombining" of sub-system information. In our case we wish to e�ciently and

correctly determine the possible relative times of pairs of discrete events in a system

with the following four properties:

(1) each sub-system is a single activity with discrete start and completion events,

(2) each sub-system activity requires an unknown but bounded time to complete,

(3) the times of individual activities are independent of each other, and

(4) the activities are partially ordered.

3

It is this last item, the partial ordering of activities, which makes this problem useful,

as it allows us to represent concurrent behavior. It is also what makes the problem

di�cult since two activities which have no apparent ordering may be forced into a

temporal relationship based on their relationships to other activities.

There are a wide variety of applications and domains in which temporal knowledge

is desired and in which the sub-system processes meet the above requirements. Appli-

cations of this sort may range from the planning and management of large projects,

as done with PERT charts [SPO58, HM61], where the individual jobs comprising

the project have durations measured in weeks or months, to the design and veri�ca-

tion of computer hardware interfaces, for which the basic operations have durations

measured in nanoseconds.

This second application, the veri�cation and synthesis of timing properties of

hardware interface logic, occurs when one wishes to interconnect two or more o�-the-

shelf hardware devices. These devices follow speci�c protocols that precisely de�ne

two things: the desired timing behavior of the environment into which the device

will be connected, and the responses of the hardware to changes of the values of its

inputs. The speci�ed behavior of the device is guaranteed only if its environment |

those devices with which it interacts | meets the given timing speci�cation.

In order to more correctly model the behavior of hardware interfaces, we extend

our system model to include additional timing information which may span di�erent

sub-systems. We can then model any system whose behavior can be represented as

the combination of two primitives | bounded delay and synchronization. For

two events e

i

and e

j

occurring at times t

i

and t

j

a bounded delay relationship

between them is expressed as the pair of inequalities

t

i

+ � � t

j

� t

i

+�: (1:1)

This indicates that event e

j

happens between � and � time units after event e

i

. When

an event happens just as soon as all events in a set of two or more occur, we say that

that event is the synchronization of the others. That e

k

synchronizes events e

i

and e

j

is represented with the single equation

t

k

= max(t

i

; t

j

): (1:2)

For systems whose temporal behavior is expressed with the synchronization and

bounded delay primitives, we can express both of the following fundamental problems:

4

� timing veri�cation problems: Does a given system respect a set of restric-

tions made upon the relative times of its events, and

� timing synthesis problems: Can such restrictions be met by altering the

ordering or duration of speci�c activities represented by the system?

A key contribution of this work is the ShortCircuit algorithm. Developed to verify

the temporal behavior of hardware interface logic, this algorithm provides the �rst

correct method for solving these timing veri�cation problems. This is particularly

useful since, as mentioned above, the synchronization and bounded delay primitives

can express the temporal behavior of systems other than interface hardware.

A sizable body of research in control theory studies themax-plus algebra. Many

interesting problems, including the timing veri�cation problem for systems whose be-

havior is described with the synchronization and bounded delay primitives, can be ex-

pressed using systems of equations over the linear max-plus algebra. This algebra

has form similar to the familiar linear algebra, except that the binarymaximum and

scalar addition operations replace addition and scalar multiplication. Previous

research results for the max-plus algebra [CMQV89, BCOQ92] have concentrated on

properties that result from its being a member of the larger class of dioid algebras.

Dioids are structures composed of twomonoids with an idempotent �rst operation.

However, the max-plus algebra has useful properties not common to all dioids. We

will exploit these additional properties to develop the �rst practical method for solv-

ing arbitrary linear max-plus systems and show that solving this problem is equivalent

to solving the same interface hardware timing problems ShortCircuit solves.

The timing synthesis problem mentioned above is, unfortunately, much more dif-

�cult than timing veri�cation. This is not surprising since the synthesis problem asks

us not simply to determine how a given system behaves, but instead to modify a given

system so that it produces the desired temporal behavior. Even when the allowed

range of system modi�cations is quite small, such modi�cations combine to interact

throughout the system so that a local change may have global system repercussions.

In addition, it is easy to de�ne many di�erent classes of synthesis problems based

on the types of system modi�cations which are allowed. We will show that even the

most straightforward and simple timing synthesis problems are NP-hard.

Together the timing veri�cation and synthesis problems presented and solved in

5

this work not only provide a further re�nement of the techniques available for the

synthesis of interface glue logic, but provide a greater understanding of the max-

plus algebra and a fundamental algorithm for the solution and optimization of linear

max-plus systems.

1.1 Thesis Organization

This thesis consists of �ve major parts, whose dependencies are pictured in Figure 1.1.

The �rst part, Introduction to Timing Analysis, consisting of this chapter and the

next, is intended to give the reader a practical, intuitive grasp of the fundamental

mathematical problems studied here without requiring any speci�c knowledge of an

application domain such as interface timing veri�cation or synthesis.

Part II, Interface Timing Fundamentals, consists of Chapter 3, in which we de�ne

and discuss the interface timing veri�cation and synthesis problems, and Chapter 4,

which covers previous solutions to the interface logic veri�cation problem and intro-

duces the ShortCircuit algorithm for interface timing veri�cation.

Part III, Linear Max-Plus Systems, reviews the max-plus algebra, and provides a

general solution technique for linear max-plus systems. The basis for this technique is

the UBCsolvmethod for solving a restricted class of linear max-plus systems analogous

to the interface timing veri�cation problems solved by ShortCircuit. An extension

to UBCsolv allows for the solution and optimization of linear max-plus systems. Since

this material is of more general interest and applicability, it is described independently

of interface timing.

Part IV, Practical Algorithmic Solutions, consists of Chapter 8 in which the

ShortCircuit algorithm is discussed in greater detail than in Chapter 4, and Chap-

ter 9 which discusses the requirements of interface timing synthesis algorithms and

gives preliminary results towards developing practical timing synthesis algorithms.

Part V, Conclusions and Related Work, concludes with a discussion of future work

and open problems and places this work within a greater context of related work than

earlier chapters do.

6

Part I: Introduction

Ch. 1: overview

Ch. 2: problem intuition

Part II: Interface Timing

Ch. 3: problem statement

Ch. 4: veri�cation solutions

Part III: Linear Max-Plus Systems

Ch. 5: dioids & max-plus

Ch. 6: UBCsolv technique

Ch. 7: general max-plus solution

Part IV: Practical Algorithms

Ch. 8: the short-circuit algorithm

Ch. 9: timing synthesis requirements

Part V: Conclusion

Ch. 10: summary & open problems

Ch. 11: other related work

Appendix A.1:

a restricted

veri�cation

algorithm

Appendix A.2:

McMillan &

Dill's algorithm

Appendix B:

pseudoring properties

@

@

@

@

@

@

@R

�

�

�

�

�

�

�

�

�	

@

@

@

@

@

@

@

@

@R

?

A

A

A

A

A

A

A

A

A

A

A

A

AU

�

�

�

�

�

�

�

�

�

�

��

?

?

Figure 1.1: Chapter ordering dependencies.

7

Chapter 2

SYSTEMS OF SYNCHRONIZATIONS AND BOUNDED

DELAYS

As stated in Chapter 1, this work concerns itself with determining and manipulat-

ing the timing properties of systems whose temporal behavior can be described using

only the bounded delay and synchronization primitives of Equations 1.1 and 1.2. This

chapter is intended to give the reader an intuitive feel for the types of systems these

primitives can represent. To this end, we will de�ne two classes of systems built from

the synchronization and bounded delay primitives. The �rst, and more intuitive,

will include only the four initial properties listed in Chapter 1, and the second will

model the full range of behavior allowed by the synchronization and bounded delay

primitives.

Throughout this chapter we will employ an example modeling a two-person morn-

ing carpool. Within this framework, we will be able to de�ne and give motivation

for the timing veri�cation and timing synthesis problems as they apply to the

two classes of systems. In addition, we will introduce a general constraint form, the

upper bound constraint (UBC), and its corresponding graph-theoretical repre-

sentation. UBCs are capable of describing all of the systems studied in this work,

and are a key structure underlying the UBCsolv method of Part III and its proof of

correctness.

2.1 Synchronization of Independent Bounded-Delay Processes

We begin by introducing a basic class of systems of synchronizing processes. This class

is well known, corresponding to both PERT charts, an Operations Research construct

used to plan the Polaris missile project [SPO58, HM61], and Vanbekbergen's \Type

II" constraints [Van93] for digital logic. While this class can express a varied range of

system behaviors, it is insu�cient to represent the interface timing veri�cation and

synthesis problems. In Section 2.3 we will build upon this class to produce the system

model we require.

8

Morning Commute

Process Description Duration Predecessor Relations

in minutes

B1 Bert showers, dresses, and calls Ernie [35,45] B1 � B2

E Ernie showers, dresses, and eats [50,60] B2 � B3

B2 Bert eats breakfast [10,15] B3 � BE

B3 Bert drives to Ernie's home [15,20] B1 � E

BE Bert and Ernie drive to work [30,40] E � BE

Figure 2.1: A morning carpool plan.

The systems we �rst wish to discuss are most intuitively thought of as a

set of partially-ordered independently-executing bounded-time processes. Here a

bounded-time process is simply an activity which takes some unknown but

bounded positive time to complete. More formally speaking, a bounded-time pro-

cess, p

i

, has associated with it a pair [�

i

;�

i

] where 0 � �

i

� �

i

. Whenever process

p

i

is initiated it completes in some time d

i

, where �

i

� d

i

� �

i

. The duration d

i

may

either vary within the bound [�

i

;�

i

] for di�erent executions of the process, or may

take an exact time which is unknown beyond the tolerance of the bound.

When a system is composed of several bounded-delay processes, they are said to

be independent if the knowledge of the exact execution times d

i

corresponding to

any set of processes p

i

cannot narrow the bounds of [�

j

;�

j

] on the value of d

j

for

any p

j

not in that set. Another way of saying this is that a valid simulation of the

system exists for d

i

's chosen independently within their respective bounds [�

i

;�

i

].

In any interesting system of processes, it will be the case that some processes

must require that other processes complete before they begin. We can express this

with the predecessor relation, \�," on the processes, where p

i

� p

j

indicates that

process p

i

must complete before p

j

begins. In order for the predecessor relation to be

valid, it must result in the processes being partially ordered. This corresponds to

making sure that no process must precede itself in order to satisfy the local ordering

information of the � relation.

Figure 2.1 summarizes one such system { a morning carpool for two persons,

Ernie and Bert. When Bert wakes he showers, dresses and then calls Ernie, who then

9

~ ~ ~ ~ ~ ~

~

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

@

@

�

�

�

�

@

@

�

�

�

�

�

�

�

wake phone leave arrive meet work

ready

B1:[35; 45] B2:[10; 15] B3:[15; 20] [0; 0] BE:[30; 40]

E:[50; 60] [0; 0]

Figure 2.2: Graphical representation of the carpool of Figure 2.1.

begins to get ready for work. While Ernie gets ready, Bert eats breakfast and drives

to Ernie's house, from which location they drive to work together. The left hand side

of the table in Figure 2.1 gives a list of the events and processes that each of the

carpoolers participate in, with the minimum and maximum time ranges required to

complete each activity. The right hand side of the �gure lists the necessary orderings

of the activities.

Although the time bounds on the activities and their partial ordering are su�cient

to represent this commute, it is convenient to include events in our representation.

Events are durationless and serve to mark the \points of interest" where processes

begin and end.

Figure 2.2 gives a graph-theoretical representation of the information in Figure 2.1.

Events are represented as nodes in the graph, and processes, or activities, are rep-

resented with directed arcs. Each process arc originates at the event at its tail,

concludes with the event at its head, and is labeled with its duration bounds. The

partial ordering of the processes is determined by the arcs' entrance into and exit

from the event nodes { events happen once all processes entering them complete, and

processes cannot happen until the event whose node they leave occurs. Since the

times at which Ernie becomes ready and at which Bert arrives at Ernie's home may

be of interest to us | perhaps we wish to determine how long each might wait for

the other | they each have their own event, respectively ready and arrive. Incor-

porating the arc representing their drive to work might then seem problematic, since

it must follow both events, but this is easily remedied here by inserting zero-length

dummy activities leading from each event to the event describing their departure

10

Original Equations

wake + 35 � phone � wake + 45

phone + 10 � leave � phone + 15

leave + 15 � arrive � leave + 20

phone + 50 � ready � phone + 60

max(arrive, ready) � meet � max(arrive, ready)

meet + 30 � work � meet + 40

Figure 2.3: Equations corresponding to Figure 2.2.

together. This event, meet can then be seen to synchronize the two commuters.

If we assume that once a process can begin it does so immediately, then it is easy

to represent the possible relative times of the events in the system with a simple set

of inequalities. For the system in Figure 2.2, these equations are given in Figure 2.3.

We are now ready to formalize the systems discussed above with the following

de�nition.

De�nition 2.1 A system of independent bounded-delay synchronizations, ab-

breviated I-BDS, is a 5-tuple hN;A;B; P; Ii where

� N is a set of nodes, also called events, and jN j, the size of N is n.

� A is a set of activities, also called processes,

� B is a function bounding the duration of the activities. It is given as B : A !

R

+

� R

+

where R

+

is the set of non-negative real numbers, and for all a 2 A,

if B(a) = [�(a);�(a)], then 0 � �(a) � �(a),

� P : N ! 2

A

is the event predecessor function indicating which activities in A

terminate with a given event in N ,

� I : A ! N is the activity predecessor function; it indicates which event in N

initiates, or is at the tail of a given activity in A.

For a given I-BDS, with N = fe

0

; e

1

; : : : ; e

n�1

g a valid timing, t is any function

t : N ! R such that there exists a value d(a) for each activity a so that for every

11

Table 2.1: Time separations for events in carpooling arrangement.

Time Separations

from to wake phone leave arrive ready meet work

wake 0 45 60 80 105 105 145

Q2

phone -35 0 15 35 60 60 100

leave -45 -10 0 20 50 50 90

arrive -60 -25 -15 0 35 35 75

ready -85 -50 -35 -15

Q4

0 0 40

meet -85 -50 -35 -15 0 0 40

work
-115

Q1

-80
-65

Q3

-45 -30 -30 0

event e

i

2 N

t(e

i

) = max

a2P (e

i

)

(t(I(a)) + d(a)); (2:1)

where d(a) satis�es �(a) � d(a) � �(a): The value of d(a) represents any possible

duration of activity a within its given bounds [�(a);�(a)].

2.2 Veri�cation of I-BDS's

Using the graphical or constraint data in Figures 2.2 and 2.3, it is possible to ask

questions about the relative times of the events represented. Assuming that Bert

wakes at 7am and that once he arrives at Ernie's home he waits patiently in the

car for him, you might ask the following questions, which are given here with their

answers:

Q1 : What is the earliest time they get to work? 8:55

Q2 : What is the latest time they get to work? 9:25

Q3 : What is the least amount of time Bert spends in the car? 65 minutes

Q4 : Will Ernie ever be ready when Bert arrives? No.

These are all called timing veri�cation questions. In general, they ask whether

certain restrictions on the relative times of events hold in a given system. For now,

we will con�ne ourselves to asking what is the maximum or minimum time separation

possible between two events in a given system.

12

Each of these questions can be answered by calculating themaximum time sep-

arations between each pair of events in the system. The maximum time separation

between the times t(e

i

) and t(e

j

) of two events e

i

and e

j

is de�ned as the maximum

value of

t(e

j

)� t(e

i

) (2:2)

occurring in any valid timing of the system as de�ned in De�nition 2.1. Although

question Q1 above asks for the value of

min(t(work)� t(wake)); (2:3)

this is equivalent to

�max(t(wake)� t(work)); (2:4)

and thus may be readily obtained from the maximum separation between work and

wake. The separations between all pairs of events in the carpooling arrangement

of Figure 2.1 are given in Table 2.1, with the speci�c separations answering each

question surrounded by a labeled box.

Note how synchronization comes into play here | although the total driving time

from Bert's home to work via Ernie's home is between 45 and 65 minutes, it will

always take Bert at least 65 minutes and may take as long as 95 minutes to get to

work once he leaves home.

An e�cient algorithm, due to McMillan and Dill [MD92], for determining abso-

lute bounds on the relative times of pairs of events in an I-BDS can be found in

Appendix A.1.

2.3 Synchronization of Dependent Bounded-Delay Processes

While the I-BDS model of synchronizing processes with independent bounded delay

can model a wide variety of systems, there are several obvious and appealing exten-

sions which it cannot model. In this section we discuss and motivate some of those

extensions, and introduce a new model, Dependent Bounded-Delay Synchro-

nizations (D-BDS), in which certain types of dependencies among the execution

times of di�erent processes are allowed. We will also introduce the upper bound

constraint type (UBC), which gracefully represents the relative times of events in a

13

~ ~ ~ ~ ~ ~

~

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

@

@

�

�

�

�

@

@

�

�

�

�

�

�

�

wake phone leave arrive meet work

ready

[35; 45] [10; 15] [15; 20] [0; 0] [30; 40]

[50; 60] [0; 0]

�

�

� @

@

@R

[50; 55]

Original Equations

wake + 35 � phone � wake + 45

phone + 10 � leave � phone + 15

leave + 15 � arrive � leave + 20

phone + 50 � ready � phone + 60

max(arrive , ready) � meet � max(arrive, ready)

meet + 30 � work � meet + 40

Additional Equations

wake + 50 � leave � wake + 55

Figure 2.4: Graphical representation of carpooling arrangement with additional con-

straint information.

D-BDS system, and which comprises the core structure underlying the methods and

proofs of Part III.

An example of the sort of additional system behavior we might like to model can

be found if we consider Bert's �rst two activities in Figure 2.1. Suppose, that although

Bert takes 35 to 45 minutes to dress, and 10 to 15 minutes to eat breakfast, it never

takes him less than 50 or more than 55 minutes to complete these two activities in

series. Under the I-BDS model the times for both activities are independent, and

we must assume, given the data in Figure 2.1 that it may take Bert as few as 45

or as many as 60 minutes to perform both. If we allow ourselves to add additional

constraints to the diagram, we might express our new knowledge with the additional

thin arc shown in Figure 2.4. This thin arc indicates a constraint independent of the

other constraints in the �gure. The equations represented by the full set of arcs are

given at the bottom of the �gure.

This new relationship between the wake, and leave events could not be repre-

sented by adding an IBDS process with duration [50; 55] between the two events.

14

~ ~ ~ ~ ~ ~

~

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

@

@

�

�

�

�

@

@

�

�

�

�

�

�

�

wake phone leave arrive meet

work

ready

[35; 45] [10; 15] [15; 20] [0; 0] [30; 40]

[50; 60] [0; 0]

�

�

� @

@

@R

[50; 60]

Figure 2.5: Graphical representation of carpooling arrangement with inconsistent

additional constraint information.

While such an addition would assure that leave never happens earlier than 50 min-

utes after wake, it would still allow the two events to be 60 minutes apart, as occurs

when all process require their maximum times.

It is crucial to recognize that adding a constraint with bound of [50; 60] from the

time Bert leaves until the time the two arrive at work, as is shown in Figure 2.5,

expresses something other than a total driving time of 50 to 60 minutes. Such con-

straints should be interpreted as a guarantee on the time separation between the

events it relates. This interpretation of the added constraint, coupled with the other

information as given in Figure 2.5 leads to what must be an inconsistent system. The

information that Bert arrives at work no later than 60 minutes after he leaves home

yet takes at least 30 minutes to get from Ernie's home to work combine to require

that the two meet no later than 30 minutes after Bert leaves home. Similarly, since

Ernie is ready no fewer than 50 minutes after Bert's call, he must be called at least 20

minutes before Bert leaves. However, we know that Bert leaves home no later than

15 minutes after the phone call.

Even when such extensions are neither desired nor required, it is sometimes useful

to abstract away some of the information about the individual processes, as in the

system diagram of Figure 2.6. Here we do not know the times of the individual

processes, but instead have been given bounds on the relative times of some of the

system events. We refer to the graph in Figure 2.6 as being causally incomplete

because we do not know the activities which cause each of the events to occur. This

can be useful when the underlying I-BDS structure of the system is quite large, and

15

~ ~ ~~

~

@

@

@

@

�

�

�

�

�

�

@

@

�

�

�

�

�

�

�

wake arrive meet work

ready

[0; 0] [30; 40]

[0; 0]

[60; 80]

-

@

@

@

@

@

[85; 105]

-

�

�

�

?

[15; 35]

Equations

wake + 60 � arrive � wake + 80

wake + 85 � ready � wake + 105

arrive + 15 � ready � arrive + 35

max(arrive, ready) � meet � max(arrive, ready)

meet + 30 � work � meet + 40

Figure 2.6: Graphical representation of carpooling arrangement with incomplete

causal structure.

may be required when working with systems others have built since it is common

practice in some application areas to hide the implementation details of the system

from the user and only summarize their behavior.

To handle both of these situations, we now introduce dependent bounded-delay

synchronizations (D-BDSs) and their associated constraint type, the upper bound

constraint. Section 2.3.1 will demonstrate that the two classes, I-BDSs and D-BDSs,

are not equivalent.

De�nition 2.2 A system of dependent bounded-delay synchronizations, ab-

breviated D-BDS, is a set of m equations over n variables ft

0

; : : : t

n�1

g, where each

equation is of the form

t

i

� max(t

0

+ a

0

; t

1

+ a

1

; : : : t

k

+ a

k

): (2:5)

Each t

i

can be taken to indicate the time of an event e

i

. The a

i

's are reals and may

be negative, and not all t

i

terms need be present in the right hand side of the equation.

We call these constraints upper bound constraints (UBCs).

Note that all the equations we've seen in Figures 2.3, 2.4, and 2.6 can be expressed

in the form of Equation 2.5. Figure 2.7 gives the UBC translation of the equations

16

UBC Equations

wake � phone - 35 phone � wake + 45

phone � leave - 10 leave � phone + 15

leave � arrive - 15 arrive � leave + 20

phone � ready - 50 ready � phone + 60

arrive � meet meet � max(ready, arrive)

ready � meet

meet � work - 30 work � meet + 40

wake � leave - 50 leave � wake + 55

Figure 2.7: UBC representation of carpooling arrangement

in Figure 2.4. For example, the equation

max(arrive; ready) � meet (2:6)

is split into two UBCs,

arrive � meet and (2.7)

ready � meet; (2.8)

since if meet happens later than the maximum of two events, it naturally happens

later than each of them individually. Whenever a constant o�set appears on the left

hand side of such an equation, it can be subtracted from both sides of the equa-

tion to maintain the UBC form. This is expressed more formally with the following

proposition.

Proposition 2.1 Any I-BDS hN;A;B; P; Ii can be expressed using the following

UBCs:

� For every e

i

2 N

t(e

i

) � max

a2P (e

i

)

(t(I(a)) + �(a)); (2:9)

� and for every combination of e

i

2 N and a 2 P (e

i

),

t(I(a)) � t(e

i

)� �(a): (2:10)

17

wake phone leave

arrive

ready

meet work

t t t t

t

t t

- - -

P

P

P

P

P

P

P

P

P

P

Pq

H

H

H

H

H

H

H

Hj

@

@

@

@

@

@

@

@R -

H

H

H

H�

�

�

�� H

H

H

H�

�

�

�� H

H

H

H�

�

�

��

H

H

H

H�

�

�

��

@

@

@

�

�

�@

@

@

@

@I

@

@

@

@I

�

�

-35

45

-10

15

-15

20

60-50

0 0

0 0

40

-30

Figure 2.8: UBC representation of carpooling arrangement of Figure 2.2.

For a system of upper bound constraints, there is a natural graph-theoretical

representation as follows:

� for each event e

i

in the system, there is a corresponding node, labeled e

i

,

� for each UBC bounding t(e

i

) from above, there is a set of arcs, one for each

term t(e

j

) + a

j

. Each such arc

� is directed from node e

j

to node e

i

, and

� has label a

j

,

� arcs arising from the same UBC are grouped together by a single bar passing

through all such arcs near their heads.

Figure 2.8 gives the graph-representation corresponding to the diagram and equations

of Figure 2.2.

Previous attempts to develop methods for determining the maximum time sep-

arations of D-BDSs are the subject of Chapter 4 and Appendix A.2, with Part III

providing our new method.

2.3.1 I-BDS and D-BDS are not identical

One of the most notable di�erences between the I-BDS and D-BDS classes is that

D-BDS allows the use of negative a

i

terms in any UBC. This allows one to express

what appear to be nonsensical causalities. For example, the relationship among the

18

~ ~ ~ ~ ~ ~

@

@

@

@

�

�

�

�

@

@

@

@

�

�

�

�

wake phone leave wake leave phone

[50; 55] �15;�10][35; 45] [10; 15]

�

�

� @

@

@R

[50; 55]

Figure 2.9: A nearly I-BDS representation.

events wake, phone and leave in Figure 2.4, while not expressible as an I-BDS, can

be correctly related as shown in Figure 2.9.

One might therefore be tempted to suppose that allowing negative terms in the

bounds [�;�] of an I-BDS would allow one to model UBC-based systems as I-BDS

systems and exploit existing e�cient methods for determining maximum time sepa-

rations in I-BDSs. However, it turns out that there are UBC-based systems which

cannot be modeled using this extension.

Figure 2.10 gives an example of a system which can be expressed with UBCs

but not as an I-BDS. Here we assume that we wish to model a system in which in

response to an event z at time zero, events x and y occur throughout the range of

times expressible with the equations in the table at the top left corner of the �gure.

This behavior is shown as the shaded area in the diagram at top right. This can be

done by creating the system with the four events, fw; x; y; zg pictured at the bottom

left of the �gure. The bottom right of the �gure gives the system's UBC description.

No I-BDS, no matter what size, and no matter whether its bounds [�(a);�(a)]

may contain negative values or not, can model this same behavior. To demonstrate

this, we note that since the behavior is in response to event z, the I-BDS graph must

have no activity preceding z and all events must be produced through some partial

ordering of activities which begins with z. If this is the case, then when all bounds

d(a) on all activities a occur at their minimum values, �(a), we will have the earliest

possible times of x and y relative to z. If the I-BDS can achieve the full range of

values indicated for x and y, then these minimum values must both be 0. However,

we should not have both x � z and y � z equal to 0 at the same time and thus an

I-BDS cannot model this system.

19

Original Equations

z � x � z + 2

z � y � z + 2

z + 1 � max(x; y)

21

1

2

0 x

y

~ ~

~ ~

@

@

@

@

�

�

�

�

�

�

�

�

@

@

@

@

y w

z x

[0; 0]

[0; 2]

[0; 2] [0; 0]

@

@

@

@

[1; 2]

@

@

@R

UBC Equations

x � z + 2 y � z + 2

z � x z � y

w � max(x; y) w � z + 2

x � w z � w � 1

y � w

Figure 2.10: Timing behavior which cannot be expressed with an I-BDS.

2.4 Simulation of I-BDS's and D-BDS's

While the main focus of this work is the analytical study of the possible time separa-

tions between events in certain classes of systems, it is important to note that many

applications require not only an analytical solution, but the ability to simulate the

behavior of a system. There are several reasons why this may be the case including:

� the BDS system may interact with other systems which have been or can only

be modeled as simulations, or

� the system designers may wish to study the simulated system behavior to deter-

mine if their speci�ed system requirements actually produce the behavior they

desire.

20

Because the times of the individual activities of an I-BDS are de�ned to be inde-

pendent, chosing a wide variety of feasible times for the events is quite straightforward

| this may be easily accomplished simply by randomly choosing a time for each ac-

tivity within its given bound, and then calculating the times at which the events

occur.

In the case of D-BDS systems, the problem is more complicated | a choice of

time for one activity may restrict the feasible times for another. An example of this

is found in Figure 2.4, in which the separation between the events wake and phone

may be as great as 45 minutes, and the separation between phone and leave may

be 15 minutes, but both pairs cannot exhibit their maximum separations in the same

simulation. The simplest way to assure feasible times is to choose a time for one

activity, calculate the possible maximum and minimum time separations relative to

it, and then choose a time for a new activity such that it falls within its allowed

ranges. This procedure is then repeated for each successive event. Related work in

this area can be found in [KDC

+

93, KDC91, Org91], which describe methods for

simulating systems described with timing diagrams.

2.5 Timing Synthesis of Bounded Delay Processes

Recall from Chapter 1 the timing synthesis question, which asks, given a desired

relationship among the time separations of a group of events, how can one manipulate

the activities modeled by that system to yield that desired separation? Many di�erent

timing synthesis problems may occur, varying both in the type of systems to which

they apply (I-BDS or D-BDS for example) and in how the relative timing and ordering

of the activities may be altered.

For instance, for the carpool of Figure 2.1, given a wake-up time of 7am and that

the driving times cannot be shortened, nor the order of activities be changed, how can

Bert assure that he gets to work by 9am each day? In this case, note that there are

several ways in which this can be accomplished without changing the partial ordering

of activities. Two possible revisions are given in Figure 2.11.

In the �rst, Bert takes less time to dress and shower so that Ernie is telephoned

earlier in the morning; in the second, Ernie makes changes to his morning routine

to allow him to be ready within thirty minutes of Bert's call. Note that while the

maximum separation between the time Bert wakes and the two of them arrive at

21

~ ~ ~ ~ ~ ~

~

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

@

@

�

�

�

�

@

@

�

�

�

�

�

�

�

wake phone leave arrive meet work

ready

[15; 20] [10; 15] [15; 20] [0; 0] [30; 40]

[50; 60] [0; 0]

~ ~ ~ ~ ~ ~

~

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

@

@

�

�

�

�

@

@

�

�

�

�

�

�

�

wake phone leave arrive meet work

ready

[35; 45] [10; 15] [15; 20] [0; 0] [30; 40]

[25; 30] [0; 0]

Figure 2.11: Graphical representation of two revised carpooling arrangements.

work is 120 minutes in both cases, Bert may prefer the second arrangement since

under the �rst, he will always spend from 15 to 35 minutes waiting at Ernie's house,

while under the second arrangement, he need only wait a maximum of 5 minutes, and

sometimes Ernie will wait 10 minutes for him.

More generally, this problem can be represented as given in Figure 2.12 in which

the variables �; �, and
 represent the times of the changeable, or \un-synthesized"

~ ~ ~ ~ ~ ~

~

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

@

@

�

�

�

�

@

@

�

�

�

�

�

�

�

wake phone leave arrive meet work

ready

[�; �] [�; �] [15; 20] [0; 0] [30; 40]

[
;
] [0; 0]

Figure 2.12: Graphical representation carpool arrangement with synthesis variables.

22

~ ~ ~ ~ ~

~

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

@

@

�

�

�

�

@

@

�

�

�

�

�

�

�

wake & phone leave arrive meet work

ready

[50; 55] [15; 20] [0; 0] [30; 40]

[50; 60] [0; 0]

Figure 2.13: Graphical representation of revised carpooling arrangement.

activities. The maximum time separation between Bert waking and arriving at work

is then

� +max(� + 20;
) + 40; (2:11)

and if we wish to meet the 120 minute constraint we must �nd a solution for which

� + � � 60 and (2.12)

� +
 � 80; (2.13)

simultaneously.

The synthesis methods we will discuss in Chapter 9 are all for systems such as these

in which where we are not allowed to re-arrange the order of activities. However, it

should be noted that for many practical problems, including our commuting example,

solutions in which we re-arrange the partial order of processes may in fact be worth

investigating. The situation of Figure 2.13 may be desirable, since it does not require

either party to revise the timing of his morning activities.

When revising the order of activities it is important to note that the relative

orderings of some activities are required by their functions, but some relative activity

orderings are the product of scheduling decisions and may be changed. An example

of a required ordering is that Bert must drive to Ernie's house before they drive to

work together, while an example of an arbitrary ordering is the order in which Bert

dresses and eats breakfast. In general, the types of changes that are allowed in a

synthesis problem depend intimately upon the application domain and tend to re
ect

functional information which is lost in the purely temporal abstraction given here.

23

~ ~ ~ ~ ~ ~

~

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

@

@

�

�

�

�

@

@

�

�

�

�

�

�

�

wake phone leave arrive meet work

ready

[�; �] [�; �] [15; 20] [0; 0] [30; 40]

[
;
] [0; 0]

�

�

� @

@

@R

[50; 55]

Figure 2.14: A nonsensical synthesis problem.

In addition, problems can be posed which make little physical sense | one is

unlikely to see additional timing information as found in Figure 2.4 relating events

whose times one is able to change through synthesis. Figure 2.14 gives an example

of just such a nonsensical problem { we are allowed to choose any values for � and �

and yet we are guaranteed that Bert will leave the house within 55 minutes of waking.

2.6 Summary

In this chapter, we have introduced two di�erent classes of systems for modeling

timing relationships between discrete events. The �rst, and simpler class, I-BDS

systems, consists of a set of partially ordered activities requiring bounded time to

complete; the second, D-BDS systems are an extension of I-BDS systems which allow

additional constraints of the form e

i

� e

j

+� to relate the times of the events marking

the start and �nish of the activities. The two classes were shown to be inequivalent.

In the context of these two system classes, we discussed the timing veri�cation and

timing synthesis problems and gave examples of each.

Part II

Interface Timing Fundamentals

25

Chapter 3

INTERFACE TIMING

VERIFICATION AND SYNTHESIS

The interface timing veri�cation and synthesis problems �rst mentioned in Chap-

ter 1 are two of numerous problems that arise when assuring that hardware modules

are correctly interconnected. Each hardware module has a set of communication

protocols specifying the manner in which it may communicate with its environment.

When two hardware modules are connected or interfaced to each other, each acts as

the other's environment. If the two modules' protocols are complementary, then each

will satisfy the other's restrictions on its environment. Should two such hardware

modules not have complementary communication protocols, it is necessary to intro-

duce interface glue logic between the two modules to \translate" communications

between them.

Two fundamental problems in interface timing design are discussed in this chap-

ter: interface timing veri�cation and interface timing synthesis. Interface timing

veri�cation is the simpler of the two | given the communication protocols of two

hardware modules and the interface circuitry connecting them, the goal is to check

whether each device satis�es the other's timing requirements on the communication.

Interface timing synthesis, which requires the design of an interface that will meet all

such timing requirements, is much more di�cult.

This chapter begins with a practical discussion and example of the speci�cation

of hardware module communication protocols and the design of interface glue logic,

and �nishes with a formal model of interface event timing.

3.1 Hardware Module Communication Protocols

In most cases, a hardware module is intended to communicate with other hardware

modules, and thus its design must include a protocol for implementing that commu-

nication with those modules. A hardware module's interface protocol describes the

what, where and when of communicating with it. Ideally, a module's protocol will

26

require of its environment only those inputs and outputs which are inherent in an

abstract description of the module's functionality. This protects the user from having

to know about the inner structure of the module, and allows the module to be used

in as general a fashion as possible.

For example, we begin with the following abstraction of a Read protocol for a

simpli�ed memory controller chip. The functional description of a memory read

operation is that an Address is provided and the corresponding Data are returned to

the user. Thus, at a minimum, the Address and Data are the what of the protocol.

Furthermore, assuming the memory also has a Write operation, it is necessary to have

an additional control input to indicate whether the requested operation is a read or

a write. The where are the chip pins through which the address and operation

selection enter the module and the data leave it. Assuming the user selects the Read

option and provides the memory with an address, it must also know when the pins

from which it will read data values are guaranteed to be driving the data value stored

in memory at the given address.

In order to communicate this information, hardware designers use databooks to

describe the behavior of hardware modules. Along with other physical information

about the chip such as its dimensions, temperature and voltage tolerances and typical

power consumption, a hardware module's databook entry describes the protocol suite

for communicating with the hardware module. The databook entry for a given proto-

cols is built using a simple vocabulary of signal level changes and timing constraints.

Figure 3.1 gives examples of these signal level changes and timing constraints as

they are depicted in timing diagrams. At the top of the �gure is a signal shown

transitioning (left to right) from the states valid (V) to low (L) to high (H). The

states low and high indicate logic levels of zero and one, respectively, while valid is

used to describe a logic level that is known to be either zero or one. At the middle of

Figure 3.1 we see a signal transitioning from high impedance (Z) to invalid (I)

to valid and back to invalid and then high impedance. The high impedance value

indicates that no device is driving a value onto a given signal. This is used when

one of several devices may provide the value on a signal wire. A common example of

this can be found in those memories and busses that take in input data for a Read

operation and provide output data from a Write operation through the same ports.

In these cases the invalid signal level is used to indicate that a device is currently

27

V L H

Z I V I Z

[15,25] tResponse
A

B

Figure 3.1: Signal level changes as depicted in timing diagrams.

driving the signal to some logic level, but that that level may not yet have reached

the desired logic level.

At the bottom of Figure 3.1 we see how timing diagrams relate information about

the relative times of signal level transitions. From the H ! L transition on signal A

to the H ! L transition on signal B, there is an arc with label [15; 25]. This indicates

that B's transition happens within 15 to 25 time units (generally nanoseconds) of A's.

These time ranges may also be represented by a variable such as tResponse, whose

bounds would be expressed in a table given with the timing diagram.

While engineers have used timing diagrams for decades to describe the timing

behavior of electronic devices, their use as a speci�cation method for CAD problems

is a more recent invention. This is largely due to the fact that timing diagrams as they

have been published in databooks require a high level of contextual information in

order to be rendered unambiguous. The �rst attempt to formalize the timing diagram

and thus make it suitable for use as input to CAD tools was due to Borriello [Bor88,

Bor92]. Others have since used them to represent and study the timing properties of

hardware interfaces [Gah90, BGM91, WB94a], hardware-software interfaces [WB93a,

CWB94], and to specify system behavior for simulation [KDC91, KDC

+

92, KDC

+

93,

Org91]. In addition, commercial products which facilitate the creation, editing, and

28

constraint satisfaction of timing diagrams are now available [Gla93].

Figure 3.2 gives a sample databook entry for our abstract memory controller. Its

databook entry consists of a pin diagram for the chip, timing diagrams for the

Read and Write operations, and a table of time separations for the timing diagrams.

Each timing diagram, along with the table of timing separations provides a partial

ordering of the signal transitions, or events, of an interface protocol for the module.

In this case, the Read protocol consists of the following events:

� user provides a memory address on pins Addr:0 through Addr:7,

� user drives R/W, the operation selector, low,

� user drives Request low, activating the operation

� user waits until it detects the low pulse on Ready,

� user reads data from pins Data:0 through Data:7, and

� user drives pin Request high, indicating it has �nished reading the data.

Note that this protocol is a bit more complex than the one we sketched above. The

additional signal Request allows the user to \pause" the memory while it changes

other inputs, and to force the memory to hold its internal state, and therefore the

output data value, constant for as long as the user requires. Similarly, the Ready

signal allows the memory to indicate when its outputs are valid. Such an indication

could come either from a single bit control output, as given here, or a guarantee that

data are always valid within some time interval after the operation is initiated.

3.1.1 Connecting Hardware Modules

Consider the problem of connecting a memory controller to a bus. Both the controller

and the bus have protocols for reading and writing data, but the two protocols may

not �t together precisely. If it can be determined that together the memory's and

bus's read protocols satisfy each others' requirements, then the two may be interfaced

without additional hardware.

Figure 3.3 gives the read protocol a bus read operation we might wish to inter-

face with the memory read operation of Figure 3.2. In order to determine if the

two will interface properly, we must formally de�ne the requirement, delay, and

guarantee types of timing parameters appearing in the tables within each of the

Figures 3.2 and 3.3. We do this in the next section, which shows that this problem

may be phrased as a maximum timing separation problem over a D-BDS system.

29

D0

D1

D2

D3

D4

D5

D6

D7

Ready

Request

R/W

Gnd

A0

A1

A2

A3

A4

A5

A6

A7

Vdd

Timing Parameters for Memory

constraint Min Max type

ADDRsetup 25 { requirement

ADDRhold 15 { requirement

R/Wsetup 25 { requirement

R/Whold 15 { requirement

DATAsetup 25 { requirement

DATAhold 15 { requirement

tReqResponse 0 { requirement

tReadyResponse 35 80 delay

tDataValid 40 90 delay

tDataDriven 5 { guarantee

tDataInvalid 0 { guarantee

tDataZ 0 5 guarantee

ReadyPulseWidth 30 60 guarantee

DATAread { 90 guarantee

tReset { 30 guarantee

ADDRsetup ADDRhold

R/Wsetup
R/Whold

tDataDriven tDataInvalid
tDataZ

ReadyPulseWidthReadyPulseWidth
tReadyResponse

tDataValid

Addr

R/W

Request

Ready

Data

Read Operation

ADDRsetup ADDRhold

R/Wsetup
R/Whold

DataSetup tReqResponse

DataHold

DATAread tReset

Addr

R/W

Request

Ready

Data

Write Operation

Figure 3.2: Databook entries for a simpli�ed memory controller.

30

Timing Parameters for Bus

constraint Min Max type

tDataInvalid 140 { requirement

tDataValid { 100 requirement

ReadyDelay 30 { requirement

ReadyLRequest 150 180 delay

ReadyHRequest 10 30 delay

ADDRsetup 30 { guarantee

ADDRhold 20 { guarantee

R/Wsetup 30 { guarantee

R/Whold 20 { guarantee

ReadyDelay

tDataValid
tDataInvalid

ADDRsetup ADDRhold

R/Wsetup
R/Whold

ReadyLReq
ReadyHReq

Addr

R/W

Request

Ready

Data

Read Operation

Figure 3.3: Databook read-from-device protocol for a simpli�ed bus.

3.2 A Formal Model for Interface Timing

In Chapter 2, we introduced the upper bound constraint form (UBC) and indicated

that we would later show how to solve an arbitrary system of such UBCs with the

UBCsolv technique. In this section, we will show that UBCs are adequate to represent

both the timing relationships and events required for the analysis and synthesis of

interface timing.

We de�ne our events to be transitions of signal values. These events can be

explicit changes in signal values, as when the Ready signal of the read protocol in

Figure 3.3 changes from high to low to indicate that memory has received the request,

31

or implicit changes, such as the change of data values from invalid to valid in the same

protocol. While it is quite probable that at least some of the invalid data bits will

actually be correct, and thus not make a transition, we use this notion of \transition"

to indicate the time at which the data are known to be correct.

The timing separations in the table at the top of Figures 3.2 and 3.3 are used to

specify the relative times of protocol events and come in three types: requirements,

guarantees, and delays. All three types are generally represented as a pair of min

and max constants, [�;�], which apply from one event to another.

The most common example of a timing requirement is a setup constraint. An

example of this can be found in the Read and Write operations of Figure 3.2 | in

each operation the min value of 25 for the variable ADDRsetup tells us that the address

provided to the memory must be stable for at least 25ns before the Request line is

lowered. More generally, a requirement of [�;�] from event a to event c requires

that t

a

and t

c

, the relative times of events a and c, satisfy the equation

t

a

+ � � t

c

� t

a

+�; (3:1)

if the hardware module is to respond correctly. When min, max pairs of the form

[�;�] and [�;�] occur, they indicate that only the right or left inequality is required.

One may also think of the pair [�;�] as [�1;�] and of [�;�] as [�;+1].

Similarly, a guarantee of [�;�] from a to c indicates that the hardware guarantees

that its responses will satisfy the timing relationship

t

a

+ � � t

c

� t

a

+� (3.2)

as long as all requirements are met.

Delay relationships are slightly more complex, as they are used to represent the

causal structure of events. A delay of [�

a

;�

a

] from a to c has the same semantics as

an I-BDS activity with bounds [�

a

;�

a

], initiated by event a, and terminating with

event c. If this is the only delay to c, then the semantics are

t

a

+ �

a

� t

c

� t

a

+�

a

; (3:3)

as with a guarantee. However, if there is another delay to c, say [�

b

;�

b

] from b to c,

then the timing relationship is

max(t

a

+ �

a

; t

b

+ �

b

) � t

c

� max(t

a

+�

a

; t

b

+�

b

): (3.4)

32

In general, if there are k delays from events 1 through k to event a, then all delays

are combined into a single pair of inequalities as

max(t

1

+ �

1

; t

2

+ �

2

; : : : ; t

k

+ �

k

) � t

a

� max(t

1

+�

1

; t

2

+�

2

; : : : ; t

k

+�

k

): (3:5)

where [�

i

;�

i

] is the original delay range from event i to event a.

Some of the interface timing veri�cation methods discussed in the next chapter

add another constraint type similar to the delay, but with the following semantics:

min(t

1

+ �

1

; t

2

+ �

2

; : : : ; t

k

+ �

k

) � t

a

� min(t

1

+�

1

; t

2

+�

2

; : : : ; t

k

+�

k

): (3:6)

As we will see in Section 4.2, the timing veri�cation problem over events related with

guarantees, delays, and this additional \min-delay" constraint type was proven by

McMillan and Dill [MD92] to be NP-complete. We do not include the min-delay type

in our study for two reasons: many hardware interface protocols can be modeled

without them, and when they do occur in a protocol there are generally far fewer

of them than delays, thus making a branch and bound technique based upon the

problem without min-delays a good choice for solving the NP-complete problem.

Note that the three timing constraint types given above in Equations 3.1, 3.2

and 3.4 are easily expressed with UBCs. Each requirement and guarantee as given in

Equations 3.1 and 3.2 becomes the two inequalities

t

c

� t

a

+� and (3.7)

t

a

� t

c

� �: (3.8)

Although they contain no max term, these inequalities are still UBCs, since the max

of one term t

i

+ �

i

is always itself. Translating delay inequalities into this form is

nearly as easy. The delay relationship expressed in Equation 3.4 becomes the three

equations:

t

c

� max(t

a

+�

a

; t

b

+�

b

); (3.9)

t

a

� t

c

� �

a

; (3.10)

t

b

� t

c

� �

b

: (3.11)

The second two inequalities follow since if max(t

a

+ �

a

; t

b

+ �

b

) � t

c

, it must be the

case that t

c

is larger than each term t

i

+ �

i

on the left hand side of the inequality. A

33

delay relationship combining k terms results in k + 1 UBCs: one expressing the max

of k terms t

i

+ �

i

, and k UBCs with a single t � �

i

on their right hand side as in

Equation 3.11.

3.2.1 Interface Timing Veri�cation

Given a system of events and the delay and guarantee relationships which govern

their relative times, the interface timing veri�cation problem asks whether these rela-

tionships guarantee that the time separations between pairs of events will fall within

the range of all requirements between them. As in Section 2.2, we de�ne the maxi-

mum time separation, or maximum skew, of event b relative to event a to be the

maximum value of t

b

� t

a

subject to all timing guarantees and delays. Once these

skews are calculated for every pair of events, we check whether for all requirements

[�;�] from event a to event b,

t

b

� t

a

� � and (3.12)

t

a

� t

b

� ��: (3.13)

Generally we say that determining these maximum separations is su�cient, since

checking them is straightforward.

Figure 3.4 gives the graphical UBC representation of the interface of the bus and

memory read operations of Figures 3.3 and 3.2. Guarantees and delays supplied

by the memory's protocol are shown in black, while those of the bus are shown in

gray. The zero-length arcs from Data valid to Data driven and from Data Z to

Data invalid are an example of constraints which are obtained from contextual

knowledge of the device. They indicate that data may only be valid while the line is

being driven.

Three of the memory's requirements | ADDRsetup, R/Wsetup, and R/Whold| are

easily veri�ed by comparing the required values in Figures 3.2 to the corresponding

single arc lengths in Figure 3.4. However, it is not as straightforward to check the

bus' requirement that the returned data not become invalid for at least 140ns after

the Ready signal is lowered. The memory makes its corresponding guarantee relative

to the time at which the Request signal is raised, requiring that we determine what

the possible time separations of the lowering of the Request and Ready signals are.

34

Address invalidAddress valid

R/W valid R/W invalid

-30 -30 -20
-20

Data driven

80
-150

-30

30

-10

0
0 5

Data Z
Data valid Data invalid

Ready high

Request low

Ready low

-35
60

180

Request high

90-40-5

0 0

Figure 3.4: UBC representation of the interface of bus and memory read operations.

Black arcs are supplied by the memory's protocol, gray by the bus' protocol.

We check the interface's timing requirements using a table of timing separations

as we did in Table 2.1 The corresponding time separations for a subset of the events

are given in Table 3.1. Those separations which must be compared to bus or mem-

ory timing requirements are outlined with a box. The timing separations pictured

here can be compared to the bus' timing requirements and the memory's ADDRhold

requirement. The maximum separation of �205ns from Addr invalid to Request

low indicates a minimum 205ns hold on the Addr line, and thus that the memory's re-

quirement of a minimum 15ns separation from Request low to Addr invalid is met.

Similarly, the bus' requirements of a minimum 140ns for tDataInvalid, maximum

of 100ns for tDataValid, and minimum of 30ns for ReadyDelay are also satis�ed.

35

Table 3.1: Time separations for a subset of the events in Figure 3.4.

Time Separations

from to Addr I Req L Req H Ready L Ready H Data V Data I

Addr I 0
�205

�20 �170 �110 �80 �15

Req L 1 0 260 80 140 170 265

Req H 1 �185 0 �150 �90 �60 5

Ready L 1 �35 180 0 60 90 185

Ready H 1 �65 150 �30 0 60 155

Data V 1 �75 140 �40 20 0 145

Data I 1 �185 0
�150

�90 �60 0

3.2.2 Interface Timing Synthesis

Before we can verify that an interface is correct, we must have an interface, even if

it is a trivial interface in which pins of the two modules are directly connected to

each other as was the case for the memory and bus example above. Many properties

of the interface such as which signals are connected to which ports and how, and

the calculation of any intermediate signals generated are determined by the intended

functionality of the hardware. Once this functionality is determined, however, it

is possible to insert elements which, by delaying the times at which various signals

appear to the hardware modules, alter the relative times of events in the interface

circuitry. These alterations may be required whenever the relative timings of two

hardware module protocols do not agree, and will insert additional events and timing

relationships into the system.

Timing Parameters for Bus

constraint Min Max type

tDataInvalid 120 { requirement

tDataValid { 75 requirement

ReadyDelay 30 { requirement

Figure 3.5: Bus timing parameter variation.

36

For example, suppose that the bus requirements given in Figure 3.3 are replaced

with those of Figure 3.5. This requires that the maximum time from Ready low to

Data valid is 75ns, but as Table 3.1 shows, this time separation could be as great

as 90ns. The easiest way to �x this is to maintain two Ready signals | one from the

memory itself, and another which is the same signal delayed by 20ns. The delayed

signal is then used as the bus' Ready input and thus from the bus' point of view, the

data are guaranteed to be valid from 70ns to 130ns after the Ready signal is lowered.

In the case above, simply delaying the time at which a signal propagates across

the interface is su�cient to assure the modules' correct interaction. However, it is

sometimes the case that more sophisticated transformations are required. Suppose

that we return to the bus timing requirements of Figure 3.3 and memory timing delays

and guarantees of Figure 3.2 except that the memory's guarantee of a minimum of

0ns for tDataInvalid is instead replaced with a minimum guarantee of 120ns from

the time Ready goes low. In this case, simply delaying the Ready signal will not work

| the data can only be assumed to be valid for a period of 30ns, yet the period the

bus requires is 40ns long. In this case we must insert hardware into the interface that

will latch, or write into a register, the valid data the memory outputs, and the bus

must read the data from the latch.

When we discuss timing synthesis in Chapter 9, we assume that only transforma-

tions of the �rst type above | determining allowable delay values | will be required

of our synthesis method. When transformations of the second type are required, we

assume that a separate tool evaluates a simpler interface's timing violations and pro-

vides us with a skeleton structure matching the required transformation, with some

designated timing delays unspeci�ed. Our problem then becomes, \given a system

of events which includes some delay relationships which are not assigned bounds,

determine delay ranges for those unassigned bounds, such that the maximum timing

separations of all events, subject to system timing requirements and delays plus the

new delay elements are within the timing requirements given." It should be noted,

however, that the usefulness of this technique goes beyond such assumptions. For

example, a synthesis tool could supply the timing synthesizer with a set of such tim-

ing skeletons and then use the delay synthesis results to guide its search for an easily

synthesizable solution.

37

3.3 Summary

In this chapter we have de�ned the timing veri�cation problem for hardware interface

logic and brie
y introduced the problem of interface hardware timing synthesis. As

presented here the interface timing veri�cation problem consists of determining for

every pair of events a and b, with each event corresponding to a signal level transition,

the maximum time separation from a to b

t

b

� t

a

; (3:14)

when the times of the events are governed by a systems of equations of the form

t

a

� max(t

1

+ �

1

; : : : ; t

k

+ �

k

): (3:15)

38

Chapter 4

INTERFACE TIMING VERIFICATION ALGORITHMS

As shown in the previous chapter, timing diagrams can represent a wide variety

of timing behaviors. However, while timing diagrams have been used for decades

to describe the interface behavior of digital circuits, the earliest e�orts to automate

the generation of correct hardware interfaces did not directly employ them. Instead,

hardware description languages were augmented so that behavioral descriptions of

the circuits being synthesized could include a description of their interface with other

hardware. Section 4.1 gives a brief overview of these hardware language extensions.

Sections 4.2 and 4.3 discuss algorithms for timing veri�cation as divorced from ques-

tions of logic synthesis or functional behavior, with Section 4.2 providing an overview

of timing veri�cation for a range of primitives more general than the requirement,

guarantee, and delay as given in Section 3.2, and Section 4.3 covering algorithms for

the interface timing veri�cation problem as described in Section 3.2.1. One of these

algorithms is the ShortCircuit algorithm [WB93b, WB94a], which is the subject of

Chapter 8.

4.1 Early Research in Timing Veri�cation

As mentioned above, the �rst explorations into the automation of interface timing

veri�cation grew from e�orts to accommodate the descriptions of interface timing pro-

tocols in hardware description languages [PP87]. Such augmentation was necessary

because the existing circuit synthesis tools could not describe the timing behavior

and requirements of o�-the-shelf hardware as expressed by timing diagrams. In gen-

eral, the range of timing behaviors these interface description languages allowed were

quite restricted. For example, at its lowest level the SLIDE language [PW81] de-

scribes interface behavior with assignments to signals, actions in response to signal

values or changes in signal values, and quanti�ed delays. These actions are embedded

textually into what amounts to a series-parallel graph, a structure which is funda-

mentally mismatched with timing diagrams since the former cannot represent the

39

full range of partial orderings expressible by the latter. Another example [Vis76]

expresses interface timing relationships with state machines. While state machines

are useful for describing series of interface actions as they occur in practice, they

cannot e�ciently represent protocols in which several independent series of events

happen in parallel. However, the BSI/ISPS language [NT86] allowed true partial or-

derings of events by attaching labels to events and allowing simple timing constraints

to be expressed between them. These constraints were of the form found in Equa-

tions 3.1 or 3.2. Additionally, although these early interface descriptions were written

to describe hardware being synthesized to correctly interact with a target device, the

temporal properties of the target device are not explicitly represented, and design

decisions had to be made at the time the description was written in order to assure

that the interface would be correct. Timing guarantees of the target device might be

lost in the translation and therefore result in less e�cient interfaces.

The work of Borriello [Bor88] took these speci�cations to a more sophisticated

level: synthesizing interface logic to correctly interconnect two or more devices whose

behavior and requirements are described with timing diagrams. Rather than specify-

ing the interface events in a hardware description language format, he speci�ed them

with a formalized timing diagram. This format, which is essentially the timing

diagram introduced in the previous chapter, not only allows events to be speci�ed in

any partial ordering, but allows both requirements and guarantees, as described

in the previous chapter, to be expressed. Included in this work is an e�cient algo-

rithm for verifying the timing behavior of such a system of constraints. The solution

is an all-pairs shortest paths algorithm that uses a priority-queue based algorithm

originally developed for circuit layout compaction [LW83, BN86]. In addition, as is

discussed in Chapter 9, there is also performed timing synthesis | the addition

of delay elements to a skeletal interface circuit so that timing constraints are met.

As with previous interface timing solutions, his work contains solutions to a wider

variety of interface design problems including the logic synthesis component of the

problem as well as issues that arise in the composition of timing diagrams to create

state-based behavior.

While the timing veri�cation algorithm presented by Borriello is only a small por-

tion of the material in his Ph.D. thesis [Bor88], others have continued on to explore

the problems of timing veri�cation of interface hardware. Related research spans

40

~

~ ~

@

@

�

�

�

�

@

@

x

1

y

x

2

[�

1

;�

1

]

[�

2

;�

2

]

Gahlinger's Constraint Types

type equations

general max(x

1

+ �

1

; x

2

+ �

2

) � y

or linear min(x

1

+�

1

; x

2

+�

2

) � y

early min(x

1

+ �

1

; x

2

+ �

2

) � y

or min min(x

1

+�

1

; x

2

+�

2

) � y

late max(x

1

+ �

1

; x

2

+ �

2

) � y

or max max(x

1

+�

1

; x

2

+�

2

) � y

Figure 4.1: Gahlinger's three constraint types.

from practical approaches to deeply mathematical approaches. The practical tools

include the enVision timing resolver [Org91] and Khordoc et.al.'s Timing Diagram

Interpreter [KDC91, KDC

+

93], both of which generate testing simulation data con-

sistent with timing diagrams, the TDS expert system for timing synthesis [KRK88],

and Timing Designer [Gla93], a commercial timing diagram editor with veri�cation

facilities intended to facilitate exploration of the timing design space. Mathematical

approaches include Tiedemann's process calculus formulation [Tie91], temporal logic

approaches such as trio [CPMS91], which integrates timing and logic behavior, and

Cingel's technique for using an automated theorem prover [Cin93].

4.2 General Timing Veri�cation Algorithms

The �rst e�ort to expand and rigorously de�ne the timing properties of hardware

interfaces as separate from logical functionality is due to Gahlinger [Gah90]. His

Ph.D. thesis is concerned with answering two timing veri�cation problems:

� is a given timing description consistent; and

� does the composition of two devices, each with its own consistent timing de-

scription meet all timing requirements of the combination?

In addition, the range of allowed timing constraints is extended beyond delays, guar-

antees, and requirements to include relationships as given in Equation 3.6.

41

Gahlinger's three di�erent timing constraints are modeled in Figure 4.1. These

constraint systems can be thought of as having an I-BDS style description with the

following augmentation: each node has a type that is one of general, early, or

late which modi�es the way in which when each event's time is described relative to

its immediate predecessors in the graph. These semantics are given in the table at

the right of Figure 4.1. Note that under this description, an I-BDS system consists

of events which are all of type late. Since Gahlinger's system requires that the

underlying graph be acyclic and each graph node be of only one type, it cannot

describe all systems that a D-BDS can | in a D-BDS system it is perfectly legal to

produce a graph in which cycles are formed through the max constraints. Similarly,

D-BDS systems cannot express the range of systems Gahlinger can, since they cannot

express the early constraints.

As McMillan and Dill have shown [MD92], accurately determining the maximum

time separations of events which are built from these constraint types is NP-complete.

They provide a reduction of the problem to 3-SAT, and example of which is given in

Figure 4.2 for the formula

(a + b+ c)(a

0

+ b

0

+ d): (4:1)

Square nodes indicatemax events (late events in Gahlinger's taxonomy) and circular

nodes indicate min events (early events in Gahlinger's taxonomy). The maximum

separation between nodes q and r is 1 if and only if there exists an assignment of

values to the variables such that q happens 0 time units after s, and r happens 1 time

unit after s. To see this, note the following:

� All events happen within 0 to 1 time units after s;

� Node q only happens at time 0 if for all formula variables x, at least one of x

or x

0

is 0;

� Each term t

i

is set to be equal to the value of a single 3-SAT term by constraining

it to be the max of the values of all literals in the term; and

� r is 1 if and only if all terms t

i

happen at time 1.

Gahlinger's solution to verifying such a system is (with some exceptions) to only

propagate timing information forward in the graph along the graph arcs starting at

a single source node. In the case of his early type arcs, it must be decided when

their target node is �rst encountered, which arc provides the lower bound. Once

that decision is made, it will not change. Thus, under Gahlinger's scheme, when the

42

a’

a

ma

b’

b

mb

c’

c

mc

d’

d

md

q

t2

r

t1

s

All arc lengths
[0,1]

All arc lengths [0,0]

Figure 4.2: An example of McMillan and Dill's 3-SAT transformation for the formula

(a+ b+ c)(a

0

+ b

0

+d). Square nodes indicate max events and circular nodes indicate

min events.

node ma is �rst reached, one of a or a

0

is arbitrarily picked to provide ma's lower

bound, and the separation between q and r can then only be 1 if the choice of a

or a

0

for ma's lower bound corresponds to the assignment of that variable to 0 in a

satisfying assignment. McMillan and Dill accurately solve this problem using a branch

and bound method based on an algorithm which solves systems of max and linear

(general in Gahlinger's taxonomy) constraints, but which does not include the min

constraints. The combined max and linear algorithm is discussed in Section 4.3.1.

More recently, Yen et. al. [YICW94] have also developed an algorithm which solves

the problem using a branch and bound method built upon a solution technique for

the problem without min constraints. As with Gahlinger's approach, their input is

a directed, acyclic graph in which each arc has associated with it a lower and upper

time bound. As with McMillan and Dill's technique, instead of assigning a type to

43

each node, each arc is of type linear, max, or min. Section 4.3.3 discusses this

algorithm as it applies to linear and max constraints only.

In the context of interface timing veri�cation and synthesis with an emphasis

on asynchronous behavior Vanbekbergen [Van93] considers two problems somewhat

less complicated than the combination of linear, max, and min constraints, which

Vanbekbergen refers to as types I, II, and III, respectively. The �rst, type II only, is

precisely the I-BDS veri�cation problem. Although an algorithm is given in [Van93],

it was later shown to be incorrect, with a correct algorithm given by McMillan and

Dill [MD92] and reproduced here in Appendix A.1. The need for an algorithm to solve

combination type I and II systems, which are expressible as D-BDS systems is also

mentioned, although Vanbekbergen found no satisfactory method for this problem.

4.3 Veri�cation Algorithms for D-BDS Systems

In this section we discuss algorithms for determining maximum time separations in

D-BDS systems. All of these algorithms were developed for use in interface timing

veri�cation. McMillan and Dill give the �rst such algorithm [MD92], which they refer

to as the generalized max-only constraint problem, and which includes systems which

may also be referred to as mixed type I & type II systems (Vanbekbergen) or mixed

general & late systems (Gahlinger). As we will see in Chapter 6, this problem is

expressible in the max-plus algebra, but for the moment, we concentrate on the basic

algorithmic structure of the problem as it relates to interface timing.

4.3.1 McMillan and Dill's Algorithm

In this section we discuss McMillan and Dill's solution to the timing veri�cation prob-

lem for D-BDS systems, which they refer to as the \generalized max-only constraint

problem," and which we will sometimes refer to as theMD algorithm.

Given constraints relating n events fx

0

; : : : ; x

n�1

g, theMD algorithm calculates

the maximum value of all n

2

node separations x

j

� x

i

. We present in Figure 4.3 a

simpli�ed version of the algorithm in which only the n maximum separations relative

to the single event x

0

are calculated. In order to determine all n

2

separations the al-

gorithm of Figure 4.3 must be run n times with each x

i

taking on the role of x

0

. Some

e�ciency is lost in this variation, and thus the original is provided in Appendix A.2.

44

McMillan & Dill's algorithm in UBC terms

Inputs: a system of m UBCs over n variables x

0

through x

n�1

Outputs: maximum possible value for each x

i

when x

0

= 0

x

0

 0

Forall x

i

if i 6= 0 then x

i

 1

Do:

For each UBC u

i

: x

�(i)

� max

j

(x

j

+ �

i;j

; : : :) in sequence do:

If x

�(i)

> max

j

(x

j

+ �

i;j

; : : :) then

x

�(i)

 max

j

(x

j

+ �

i;j

; : : :)

If x

0

< 0 then

Report constraints inconsistent and exit algorithm

Until no x

i

changes

Report values of all x

i

.

Figure 4.3: McMillan and Dill's algorithm modi�ed to determine maximum time

separations relative to a single event.

However, the forthcoming discussion of theMD algorithm as presented here applies

to the original algorithm as well. In both cases, we phrase the algorithm in terms

of UBCs rather than using the two constraint forms McMillan and Dill employ, but

translation between the two is simple.

The table at the bottom of Figure 4.4 shows how the algorithm of Figure 4.3

determines the maximum time separations relative to event x

0

for the constraints

pictured at the top of the �gure. We begin by using the constraints x

1

� x

0

+ 10

and x

2

� x

0

+ 100 to change the upper bounds on x

1

and x

2

from 1 to 10 and 100,

respectively. At �rst, no other constraint may be used to decrease x

1

's upper bound,

since x

2

is greater than x

0

+ 10. However, the two constraints

x

2

� max(x

0

; x

3

) and (4.2)

x

3

� max(x

1

� 2; x

2

� 1) (4.3)

are then applied repeatedly one after the other, decreasing the bounds on x

2

and x

3

by 1 on each trip through the Do-loop in Figure 4.3, until the beginning of the 93rd

45

x

1

� x

0

+ 10

x

1

� x

2

x

2

� x

0

+ 100

x

2

� max(x

3

; x

0

)

x

3

� max(x

1

� 2; x

2

� 1)

x

3

� x

1

+ 500

0-1

x0

x3

x2x1

10 100 0

500

-2

0

(b)

0

0

-1

x0

x3

x2
-2

x1

10 100 0

500

(c)

variable start pass 1 pass 2 pass 0 < k � 92 pass 93 � k � 101 pass 102

x

0

0 0 0 0 0 0

x

1

1 10 10 10 102� k 0

x

2

1 100 99 101 � k 101� k 0

x

3

1 99 98 100 � k 100� k -1

Figure 4.4: Progress of McMillan and Dill's algorithm on a set of example constraints.

Cycles described by the darker arcs in each graph correspond to the maximum terms

occurring in repeatedly applied constraints during passes 2-92 (graph b) and 93-101

(graph c) through the Do-loop.

iteration of the loop, at which point x

2

= 9, and the constraint x

1

� x

2

applies.

Once the constraint x

1

� x

2

applies, we again see a pattern of repeated constraint

application, this time using the three constraints

x

1

� x

2

(4.4)

46

x

2

� max(x

0

; x

3

) and (4.5)

x

3

� max(x

1

� 2; x

2

� 1) (4.6)

for passes 93 through 102 through the do loop. After the 102nd pass, the algorithm

terminates since no constraint may be applied to reduce any of the variables' bounds.

The reader may notice that the algorithm of Figure 4.3 is performing a calculation

very much like the single source shortest paths from x

0

. The di�erence, of course, is

that whereas the input to the shortest paths problem consists of single edge lengths

which can be expressed with inequalities of the form

x

i

� x

j

+ �

i;j

; (4:7)

the maximum operation of upper bound constraints may bind together several graph

edges into a single constraint. Thus the existence of negative weight cycles (the darker

arcs in Figure 4.4(b) and (c)) among the constraints does not necessarily indicate

that the system of constraints is inconsistent. Instead, it indicates that among the

constraints inducing arcs along a negative weight cycle, at least one constraint must

have its maximum term correspond to an arc not on that cycle. The re-application of

constraints continues until the maximum term of one of the active constraints changes

| in this case when the term x

1

� 2 becomes larger than x

2

� 1 in Equation 4.3.

Note that the number of passes required for convergence depends on the coe�cient

in the constraint

x

2

� x

0

+ 100: (4:8)

If the constraint o�set were changed from 100 to 1000, the process would take nearly

ten times as long, since the value of x

2

would then have to decline from a value of

1000 to 9 before the constraint of Equation 4.4 would apply to x

1

.

This is the �rst of two key problems with McMillan and Dill's approach { the

time to calculate all n

2

maximum separations is

O(n

3

�

X

i

j�

i

j); (4:9)

where n is the number of variables and the �

i

's are the values of the constant terms

in the constraints. This is intimately dependent on those constraint values, and

undesirable since many instances of practical timing veri�cation problems include a

wide range of values in their scalar terms.

47

x

1

� x

2

x

1

� x

0

+ 10

x

2

� max(x

3

; x

0

)

x

3

� max(x

1

� 2; x

2

� 1)

0-1

x0

x3

x2x1

0

-2

10

0

Figure 4.5: Constraint set for which McMillan and Dill's algorithm fails.

The second problem is illustrated by the constraint set in Figure 4.5. The con-

straints x

1

� x

0

+ 10, x

2

� x

0

+ 100, and x

3

� x

2

+ 500 in Figure 4.4 are not tight

and are therefore their removal from the constraint set should not a�ect the �nal

values of the maximum separations. However, when the constraints x

3

� x

1

+ 500

and x

2

� x

0

+ 100 are removed from the set, as pictured in Figure 4.5, the MD

algorithm cannot �nd tighter bounds than 1 for x

2

and x

3

relative to x

0

. To see

how this happens, note that when x

2

, and x

3

have upper bound 1, the equation

x

3

� max(x

1

� 2; x

2

� 1) does not change x

3

's value since 1� 1 =1.

4.3.2 The Short-Circuit Algorithm

One of the main contributions of this work is the ShortCircuit algorithm [WB93b,

WB94a, WB94b], which is the subject of Chapter 8. This algorithm solves the two

problems given above for McMillan and Dill's algorithm. The techniques for achieving

this rely on two innovations which we discuss here for the example given in Figure 4.4.

Recall that during passes 1-92 of McMillan and Dill's algorithm, the same con-

straints (whose maximum terms correspond to the dark arcs in Figure 4.4(b)) are

re-applied, causing the values along the cycle x

2

! x

3

! x

2

to decrease with each

pass. As we will show in Chapter 8, whenever there is a negative weight directed cy-

cle in the graph induced by the constraints most recently used to update each nodes'

bound, the values of all nodes on such cycles will continue to decrease until some

48

0-1

x0

x3

x2x1

100

500

0

0

-2

10

(a)

0-1

x0

x3

x2x1

100

500

0

-2

10

0

(b)

variable start MD rounds short circuit MD rounds short-c regular

x

0

0 0 0 0 0 0 0 0 0 0 0 0

x

1

1 10 10 10 10 10 9 8 7 6 1 0

x

2

1 100 99 98 97 9 8 7 6 5 0 0

x

3

1 99 98 97 96 8 7 6 5 4 -1 -1

Figure 4.6: Progress of the ShortCircuit algorithm on the constraints of Figure 4.4.

Dark arcs in diagram (a) correspond to constraints active after the �rst four MD

rounds, those in (b) correspond to active constraints for the second set ofMD rounds.

node on the cycle has its value set equal to the maximum term corresponding to an

arc exterior to that cycle.

Thus, after four passes through the Do-loop of theMD algorithm, we may deduce

that the constraints of Equations 4.2 and 4.3 may be reapplied until either x

2

= 0

(the current value of x

0

) or x

3

= 8 (the current value of x

1

� 2).

Suppose that all values of nodes on the negative cycle can be shown to decrease

together at an even rate. Since the current values of x

2

and x

3

are 97 and 96,

respectively, the cycle will be \broken" when x

3

= 8 since x

2

must decrease by 97

to break the cycle, while x

3

need only decrease by 88. Chapter 8 shows that while

applying constraints directly might not result in such an even decrease in node bounds,

such a decrease is consistent with the constraints. Therefore, we may short-circuit

the process by setting x

3

to 8 and x

2

to 9.

In general, the ShortCircuit algorithm proceeds as follows:

49

� Perform n rounds of theMD algorithm, keeping track of which constraint was

last applied to reduce each node's bound,

� Short-circuit each negative weight directed cycle in the graph induced by those

most recently used constraints:

� repeat the process of performing n rounds of theMD algorithm and then short-

circuiting until either

� the node values converge or

� a directed negative weight cycle is found that has no exterior arcs, indicat-

ing that the constraints can be reapplied until the node bounds fall below

any �nite value and thus the set is unsatis�able.

The short-circuiting process itself consists of the following steps:

� on a given negative weight cycle in the graph induced by the most recently

used constraints, �nd all nodes to which there is one or more directed arc from

a node not on that cycle

� determine what each node's value would be if the maximum among only those

terms corresponding to such \exterior" arcs were used to update its bound

� �nd the node with the smallest di�erence between its current bound and the

bound calculated from the \exterior" arcs only

� subtract that smallest di�erence from all nodes on the cycle.

Because several negative cycles may overlap, the short-circuiting portion of the

algorithm is actually applied not to simple cycles, but instead to each strongly con-

nected component (SCC), with node value di�erences calculated only for those nodes

to which there are arcs directed from outside the SCC. An example of this is given

in Figure 4.6(b), in which there are two overlapping negative weight cycles. The �rst

corresponds to the cycle in Figure 4.4(a), and indicates that for the constraint set to

50

be consistent, either

x

3

> x

2

� 1 or (4.10)

x

2

> x

3

; (4.11)

since otherwise all arcs on that cycle correspond to the maximum terms in their

corresponding constraints. The second is the cycle x

1

! x

3

! x

2

and similarly

indicates that for the constraint set to be consistent, either

x

3

> x

1

� 2 or (4.12)

x

2

> x

3

: (4.13)

Now, we know that Equations 4.4 through 4.6 must hold for any solution to the whole

system. Equation 4.6 tells us that Equations 4.10 and 4.12 cannot both be satis�ed,

and thus one of Equations 4.11 and 4.13 must hold. Since these two equations are

identical, we know that both must hold and therefore since Equation 4.5 must hold,

and we may therefore deduce that x

2

� 0, thus breaking both cycles.

As we will see in Chapter 8, the worst case run time of ShortCircuit can be

expressed independently of the values of the constant constraint o�set terms. The

method above solves the �rst de�ciency of McMillan and Dill's algorithm | run

time intimately dependent on constraint values | but another addition is required

to solve the problem exhibited in Figure 4.5. Recall that the problem arose because

we cannot compare values such as1�1 and1, but initial upper bounds on all node

values are 1. We solve the problem by noting that any single consistent assignment

of node values has a largest node value. We use the value V to represent that value,

and then use V as an upper bound on all node values in that particular solution. If

we can obtain upper bounds independent of V for all events in the system, then we

know that that bound applies to any instance of the events.

Figure 4.7 shows how the algorithm would progress for the constraints in Fig-

ure 4.5. In the �rst short circuiting round, the values x

2

= V � 3 and x

3

= V � 4

are compared with possible cycle breaking values 0 and 8, respectively. Although we

do not know the value of V, we do know that (V � 4) � 8 = V � 12 is smaller than

(V � 3) � 0 = V � 3, and thus subtract V � 12 from both x

2

and x

3

at the end of

the �rst short circuiting round. This removes all V-terms from the problem, and the

algorithm then proceeds as before.

51

0-1

x0

x3

x2x1
0

0

-2

10

(a)

0-1

x0

x3

x2x1

0

-2

10

0

(b)

variable start MD rounds short-c MD rounds short-c MD

x

0

0 0 0 0 0 0 0 0 0 0 0 0

x

1

V 10 10 10 10 10 9 8 7 6 1 0

x

2

V V V � 1 V � 2 V � 3 9 8 7 6 5 0 0

x

3

V V � 1 V � 2 V � 3 V � 4 8 7 6 5 4 -1 -1

Figure 4.7: Progress of ShortCircuit on the constraints of Figure 4.5.

4.3.3 Yen et. al.'s Algorithm

Since the ShortCircuit algorithm was �rst presented [WB93b], Yen et. al. have

proposed an interface timing veri�cation algorithm, MaxSeparation [YICW94], for

combined linear andmax timing constraints. The algorithm appears promising, but

no proof of correctness has yet been published.

As mentioned above, the input is a directed, acyclic graph in which each arc has

associated with it a both lower and upper time bounds, as well as a constraint type

of linear or max. Like the ShortCircuit algorithm, this algorithm �nds maximum

time separations for all events relative to a single �xed event, and thus must be

performed n times to obtain the full set of n

2

maximum time separations.

The MaxSeparation algorithm di�ers from the MD and ShortCircuit algo-

rithms in that it bounds the maximum separations from below and then increases

them until it converges upon a maximum. The method begins by �rst determining

the minimum solution solving all linear constraints and all lower bounds of the max-

52

imum constraints. It then engages in a iterative process in which the maximum

slack | the maximum amount by which each variable may increase without violat-

ing any currently satis�ed constraints | is found for each variable and then added

to the variables current value. As with the ShortCircuit method, the process is an

iterative one, calculating new maximum slacks based on the updated lower bounds

on the variable's maximum separations.

As did McMillan and Dill, Yen et. al. also give results for the min-max-linear

time problem as solved using branch and bound with their max-linear algorithm as

a subroutine.

Part III

Linear Max Plus Systems

54

Chapter 5

DIOIDS AND DIOID CLOSURE:

THE MAX-PLUS ALGEBRA AND LONGEST PATHS

In this chapter, we introduce the max-plus algebra, which formalizes the synchro-

nization and delay primitives introduced in Chapter 1. The material covered in this

chapter is a review of the previous results of other researchers, upon which a technique

for the solution and optimization of linear max-plus systems will be built. The max-

plus algebra was �rst used to describe longest path problems [GM77] in Operations

Research, and has more recently been of interest to those studying synchronizing

systems [CMQV89, BCOQ92].

5.1 Dioids

The max-plus algebra is one of many algebraic structures which are called dioids.

This is a structure which does not include an inverse for its \addition" operation, but

otherwise has what is essentially the structure of a ring. For our purposes here, the

important feature of dioids is that the \plus" operation is idempotent. That is, a

plus a always equals a. We begin by introducing the monoid, the simple algebraic

unit from which a dioid is built.

De�nition 5.1 A monoid, (M;�) is an algebraic structure consisting of a set of

elements,M and an operation � on the elements ofM such that:

� M is closed with respect to �,

[a; b 2 M^ a� b = c]) c 2 M: (5.1)

� M is associative with respect to �,

8a; b; c 2 M : (a� b)� c = a� (b� c): (5.2)

55

� M has a zero or identity element, � 2 M such that

8a 2 M : �� a = a� � = a (5.3)

A commutative monoid, (M;�) is a monoid in which

8a; b 2 M : a� b = b� a: (5.4)

De�nition 5.2 A dioid, (D;�;
) is an algebraic structure consisting of a set D

with a pair of associated operations � and
 such that

� (D;�) is a commutative monoid with identity element �.

� (D;
) is a monoid with identity element e.

� � (the identity element for �) is absorbing for

8a 2 D : a
 � = �
 a = �: (5.5)

�
 is both left and right distributive over �

8a; b; c 2 D : c
 (a� b) = (c
 a)� (c
 b) (5.6)

8a; b; c 2 D : (a� b)
 c = (a
 c)� (b
 c) (5.7)

� � is idempotent.

8a 2 D : a� a = a: (5.8)

When the
 operation is commutative, we say that the dioid (D;�;
) is a com-

mutative dioid. When a dioid is closed for in�nite series of � operations and the

left and right distributive properties apply to these in�nite series, we say that it is a

complete dioid.

56

We will be using this de�nition of a dioid, which is due to Baccelli et. al.

[BCOQ92] and which is a somewhat more restrictive de�nition than that of Gondran

and Minoux [GM84]. Rather than require idempotency (Equation 5.8), Gondran and

Minoux's de�nition requires the following:

a = b� c and b = a� d) a = b: (5.9)

In either case, � induces an ordering, � on the elements of D as follows:

a � b , a = a� b; (5.10)

for the idempotent case, and

a � b , 9c 2 D : a = b� c; (5.11)

for the less stringent requirement. In either case, the relation � must be a partial

ordering (i.e. a � b and b � a) a = b, and � is transitive), and we will use a � b

and b � a interchangably. One can see that the more general de�nition only requires

that a� a � a instead of a� a = a. This weaker de�nition classi�es (R

+

;+;�) as a

dioid.

5.1.1 Example { The Max-Plus Dioid

We now introduce a dioid which can express the D-BDS systems of Chapter 2, and

therefore the timing veri�cation problem of Chapter 4 | the max-plus algebra.

De�nition 5.3 The max-plus or fmax;+g algebra is the dioid (R [�;max;+)

with identity elements � = �1 for \max" and e = 0 for \+".

As we will discover in the next chapter, the max-plus algebra has several useful

properties which are not necessarily present in all dioids. Since our solution technique

for the max-plus algebra will apply to all algebras of that more restricted class, we will

use the � and
 operators and � rather than \max", \+", and �1, respectively. This

will then keep the form of our max-plus equations similar to that of the general case.

However, we may sometimes use 0 as well as e as the identity for
. As is the case

for the familiar multiplication, juxtaposition of terms a and b implies the presence of

57

UBC Equations

wake � �35
 phone phone � 45
 wake

phone � �10
 leave leave � 15
 phone

leave � �15
 arrive arrive � 20
 leave

phone � �50
 ready ready � 60
 phone

arrive � meet meet � arrive� ready

ready � meet

meet � �30
 work work � 40
meet

wake � �50
 leave leave � 55
 wake

Figure 5.1: Equations of Figure 2.7 in Max-Plus form.

the
 operator. Hence, ab = a
 b. In equations with ambiguous parenthesization,

the
 operation should be considered to have priority over �.

One of these useful additional properties of the max-plus algebra is that the

operation, \+", is invertible for all a 6= �. We may often �nd it easier to represent the

 inverse of a value such as 35 as �35 rather than 35

�1

. This makes the translation

between the max-plus and more usual form of our equations a bit more obvious, and

should not cause too much confusion as there is no � inverse here.

We now re-phrase the equations of Figure 2.7 in max-plus form. They are pictured

in Figure 5.1. Note that while we have written the UBC

wake � phone� 35 (5:12)

as

wake � �35
 phone; (5:13)

the dioid ordering relation of Equation 5.10 allows us to express such inequalities as

equalities, in this case as

� 35
 phone = (�35
 phone)� wake: (5:14)

5.2 Linear Expressions and Equations over Dioids

The expressions on the right hand side of each UBC in Figure 5.1 are linear max-

plus expressions, a speci�c example of linear dioid expressions. Linear dioid

58

expressions and linear dioid equations have forms analogous to those of normal linear

algebraic expressions and equations. As with regular linear systems, the existence of

a set of n variables, X = fx

0

; x

1

; : : : ; x

n�1

g is assumed.

De�nition 5.4 A linear expression over dioid D is the �nite � of terms b

i

and

a

i

x

i

where the a

i

's and b

i

's are elements of D and the terms x

i

are drawn from X .

Proposition 5.1 Any linear expression over dioid D can be written as

a

0

x

0

� a

1

x

1

� : : :� a

n�1

x

n�1

� b; (5:15)

or equivalently as

2

4

i=n�1

M

i=0

a

i

 x

i

3

5

� b (5:16)

where b and all a

i

are members of D.

Proof: Note that since a

i

and b may equal �, any linear dioid expression which

does not contain a term b or a term a

i

 x

i

for a given i still may be expressed as in

Equation 5.15, by setting the value of b or a

i

to � and applying the absorbing property

as given in Equation 5.5. Additionally, any expression containing a �nite number, k,

of terms a

j

x

i

for a given i may be written

y � a

1

x

i

� a

2

x

i

� � � � � a

k

x

i

; (5:17)

where y includes all terms not including x

i

, since � is commutative. We then apply

the distributive rule (Equation 5.6), resulting in

y � (a

1

� a

2

� � � � � a

k

)x; (5:18)

and then consolidate the a

j

's into a single term, a

0

, resulting in

y � a

0

x

i

: (5:19)

The same applies for multiple terms b

i

as a special case when x = e. 2

59

De�nition 5.5 A linear equation over dioid D is the equation of two linear dioid

expressions, and thus has form

2

4

i=n�1

M

i=0

a

i

 x

i

3

5

� b =

2

4

i=n�1

M

i=0

c

i

 x

i

3

5

� d; (5:20)

where b, d, and all a

i

and c

i

are members of D.

Unlike a linear expression in the more usual algebra, a linear dioid equation must

allow for a full complement of terms on both sides of the equality. This is a direct

result of the fact that in this algebra there are no inverses to the � operation.

5.2.1 Canonical Form for Linear Max-Plus Expressions and Equations

Although Proposition 5.1 shows that the form given in Equation 5.15 is the canonical

form for linear dioid expressions, the linear dioid equation as given in Equation 5.20

is not a canonical form. To see this we need only note that for the max-plus algebra

the two equations

x = (�2
 x)� 4 and (5.21)

x = (�3
 x)� 4 (5.22)

are equivalent, and are both solved only when x = 4. We begin by noting that in

both equations, it must be the case that x � 4 since the right hand side of both

equations is at least as large as 4. Furthermore, for the �rst equation, we know that

since x 6= �, x is strictly greater than x � 2, and thus the term �2
 x may safely

be dropped from the right hand side of the equation. The same argument applies to

the second equation. This process of dropping unnecessary terms is the basis for the

following de�nition of a canonical linear max-plus equation, due to Baccelli et. al.

[BCOQ92].

De�nition 5.6 A linear max-plus equation in canonical form is a linear max-plus

equation of the form

2

4

i=n�1

M

i=0

a

i

 x

i

3

5

� b =

2

4

i=n�1

M

i=0

c

i

 x

i

3

5

� d (5:23)

where if a

i

6= c

i

then either a

i

= � or c

i

= �, and similarly if b 6= d then either b = �

or d = �.

60

Proposition 5.2 (Baccelli et al [BCOQ92], De�nition 3.15) Any linear max-

plus equation may be written in the canonical form of De�nition 5.6.

It is important to note that this de�nition of a canonical linear max-plus equation

does not apply to all dioids. For example in the dioid whose elements are pairs [a; b]

with a; b 2 fR[�g with the � and
 operation being the point-wise max and addition

functions, we �nd that the set of solutions to the equation

[0; 1]x = [1; 0]x (5:24)

is true precisely for those x of the form [a; a] while the equations

[0; 1]x = [�; �] and (5.25)

[1; 0]x = [�; �] (5.26)

are not. The canonical form of Equation 5.23 is possible due to the fact that the

elements of the max-plus dioid are totally ordered.

5.3 Dioid Matrices

The systems we wish to study are generally expressed with a group of several equa-

tions over a single set of variables. A group of linear dioid equations over the same

variables is called a linear dioid system. One convenient way to represent such a

system is with matrices whose entries are members of the dioid.

De�nition 5.7 The additive operation, � for m � n matrices A and B with

entries from D is A� B = C where

8i; j : [0 � i < m and 0 � j < n]) c

i;j

= a

i;j

� b

i;j

: (5.27)

De�nition 5.8 The multiplicative operation,
 for m � n matrix A and n � p

matrix B with entries from D is A
B = C where

8i; j : [0 � i < m and 0 � j < p] ! c

i;j

=

n�1

M

k=0

a

i;k

 b

k;j

(5.28)

61

Whenever (D;�;
) is a dioid, D

n�n

, the set of n�n matrices with entries in D is

a dioid as well [CMQV89]. The addition and multiplication de�nitions are included

in the de�nitions above, but we must de�ne the �- and
-identities for D

n�n

.

De�nition 5.9 The additive identity for matrices of size n� n with entries from

D is the n� n matrix with every entry equal to �.

De�nition 5.10 The multiplicative identity for matrices of size n�n is the n�n

matrix E in which E

i;i

= e for all 0 � i < n and all other E

j;k

= �. For a speci�c n,

this matrix may sometimes be referred to here as E

n

.

Note however, that as with our more familiar matrix algebra, the matrix dioid is

not in general commutative. A simple example is given below.

Example 5.1 Below are given two 2� 2 matrices whose max-plus products demon-

strate that max-plus multiplication is not commutative.

2

4

0 �

1 �

3

5

2

4

0 1

� �

3

5

=

2

4

0 1

1 2

3

5

(5.29)

2

4

0 1

� �

3

5

2

4

0 �

1 �

3

5

=

2

4

2 �

� �

3

5

: (5.30)

Based on these de�nitions, we can now completely de�ne a linear dioid system.

De�nition 5.11 A linear dioid system of size m�n is a set of m equations, such

that the i-th equation is a linear dioid equation (Equation 5.20) of form

2

4

n�1

M

j=0

a

i;j

 x

j

3

5

� b

i

=

2

4

n�1

M

j=0

c

i;j

 x

j

3

5

� d

i

: (5:31)

These systems can also be expressed as the equation

A
 x� b = C
 x� d; (5:32)

where A and C are m� n matrices over D, b and d are m� 1 matrices over D, and

x is the n� 1 column vector of variables [x

0

; : : : ; x

i

; : : : ; x

n�1

]

T

.

62

5.4 Dioid Closure

One natural endeavor is to categorize the types of dioid equations which can be eas-

ily solved. The notion of dioid closure [BCOQ92], also called the quasi-inverse

[GM84], for single variable equations and for matrix equations, which are both de-

�ned below, arises from this e�ort. As we will see below, max-plus matrix closure

corresponds to determining the length of the longest paths in a directed graph. This

graph-based model of max-plus closure will form the basis for the solution technique

given in Chapter 6.

5.4.1 Closure of a Single Variable

Consider the possible solutions for the variable x in the equation

x = (a
 x)� e; (5:33)

where e is the identity element for
. By substituting the right hand side of this

equation into itself, we see that

x = (a
 [(a
 x)� e])� e = a

2

x� a� e; (5:34)

where a

2

is de�ned as immediately below.

De�nition 5.12 For a 2 D, a

k

is the
 of k a terms, the natural extension of

multiplication to powering.

If we repeatedly substitute the right hand side of this equation into itself, and if

the dioid is complete, we arrive at the following formula for x:

x = e� a� a

2

� a

3

� � � � : (5:35)

It should be clear that for e � a, a

i

� a

i+1

, and therefore x = e.

Since the max-plus dioid as we have de�ned it is not complete, we cannot freely

use such an in�nite object. One can easily make the max-plus dioid complete by

adding to it the element 1, which is absorbing for �. In the next Chapter we will

not use this augmented max-plus dioid, but will instead only make use of closure

when it can be described �nitely, as is done in the proof of Theorem 6.1.

63

De�nition 5.13 For a 2 D, the closure of a denoted a

�

, is

e� a� a

2

� a

3

� � � � =

M

k�0

a

k

; (5:36)

which is the minimum solution to the equation x = ax� e.

An example of an equation with more than one solution is

x = x� e; (5:37)

which is true for all x � e, but must have minimum solution x = e. On the other

hand, in the max-plus dioid the equation

x = ax� e (5:38)

has no minimum solution when a � e but a 6= e and so we describe the minimum

solution set as 1. It is important to note that \minimum" may deviate from its

common meaning when the operation � changes | for example, in the dioid (R [

1;min;+), the \minimum" element is actually 1. To see this, note that when

� = min the relation \a � b" of Equation 5.10 would actually indicate that a is

smaller than b in the familiar sense.

We may also use the closure technique above to solve the more sophisticated

equation

x = (a
 x)� b: (5:39)

Instead of Equation 5.34 the expansion of Equation 5.39 becomes

x = (a
 [(a
 x)� b]� b = a

2

x� ab� b: (5:40)

This generalizes to

x = b� ab� a

2

b� a

3

b� � � � (5:41)

and leads to a �nal solution of

x = a

�

b (5:42)

for x.

64

5.4.2 Max-Plus Matrix Closure and Longest Paths

The closure operation on complete matrix dioids D

n�n

can be de�ned easily by ex-

tending the de�nition of single variable closure to matrices using the corresponding

matrix operations and solving the equation

X = (A
X)� E

n

(5:43)

where X, A, and E

n

are n � n matrices and E

n

is the matrix identity for
 as in

De�nition 5.10.

In the case of matrices over the max-plus dioid, there is a physical model for

matrix closure that will provide useful intuition for the techniques to follow in the next

chapter. This model is the maximum path length problem over directed graphs

described by Gondran and Minoux [GM77]. In this section, we review the max-plus

closure operation on matrices in light of this graph model, and then give the derivation

for the more general dioid closure of matrices. More thorough treatments may be

found in the works of Gondran & Minoux and Baccelli et. al. [GM77, BCOQ92].

Suppose we have an n-vertex graph, G, with weighted, directed edges, and wish

to �nd the maximum total weight of all directed paths between all pairs of vertices

in the graph. We may assume that from vertex x

j

to vertex x

i

there is only one

or no directed edge since only the length of the longest such directed edge need be

considered in any longest path. Such a graph may be represented by the n�n matrix,

A where A

i;j

= w if and only if there is a directed edge from x

j

to x

i

with weight w,

and A

i;j

= � otherwise.

The ordering of indices here may seem to be the reverse of the natural ordering,

but it is a natural consequence of writing our matrix equations as X = AX � E

rather than X = XA� E. In our later study of linear dioid systems, this will allow

us to write the system variables as a column vector, and each system equation more

identi�ably as a row of the matrix rather than a column.

If p

h

i;j

is the set of all paths to x

i

from x

j

traveling along a series of h or fewer

directed edges, then m

h

i;j

, the length of the longest total path weight among paths in

p

h

i;j

, can then be de�ned recursively as

m

h

i;j

= max

�

m

h�1

i;j

;max

k

(A

i;k

+m

h�1

k;j

)

�

: (5:44)

65

The expression

max

k

(A

i;k

+m

h�1

k;j

) (5:45)

takes the maximum weight of all paths which can be described as a path of h� 1 or

fewer directed edges to an intermediate vertex, x

k

, plus a single directed edge from

x

k

to x

i

. Recall that where there is no edge from x

k

to x

i

, A

i;k

= � and that �+a = �

for all a, and thus we may take the maximum over all such terms, rather than just

those for which there is an edge from x

k

to x

i

.

Nearly all paths in p

h�1

i;j

are also considered in Expression 5.45, which includes

the maximum over all paths that can be expressed as an element of p

h�2

k;j

plus an

additional edge from x

k

to x

i

. The only paths of h� 1 edges or fewer from x

j

to x

i

which are not accounted for by Equation 5.45 are null-length paths, and so we can

also express the relationship in Equation 5.44 as:

m

h

i;j

=

2

4

M

k

A

i;k

m

h�1

k;j

3

5

�m

0

i;j

(5.46)

where m

0

i;i

= 0 and m

0

i;j

= � for i 6= j.

Note that the term inside the square brackets in Equation 5.46 corresponds to the

de�nition of the
 operator for max-plus matrix systems (Equation 5.28) and so we

can represent Equation 5.46 with the matrix equation

M

h

=

h

A
M

h�1

i

�M

0

; (5:47)

where M

h

has m

h

i;j

as its (i; j)th entry. Then M

1

, representing the longest paths in

G, satis�es the following equation:

M

1

= [A
M

1

]� E

n

; (5:48)

where M

0

= E

n

which is the
 identity for max-plus matrix multiplication. This is

exactly the matrix analogue of Equation 5.46, and matches the form of Equation 5.33.

Thus, if the minimum solution for M

1

is the solution to the maximum path length

problem, we can use the max-plus matrix closure of A to solve for M

1

.

Example 5.2 Intuition that the minimum solution to Equation 5.48 gives the max-

imum path lengths can be found by looking at a simple graph with two nodes and two

66

directed edges. In this graph there is a directed edge of weight b from x

0

to x

1

, and

one of weight 0 from x

1

to itself. The corresponding equation,

x

1

= x

1

� bx

0

; (5.49)

has matrix form

M

1

=

2

4

� �

b 0

3

5

M

1

� E: (5:50)

Although the minimum solution is

M

1

=

2

4

0 �

b 0

3

5

; (5:51)

there are in�nitely many solutions, all of the form

2

4

0 �

c 0

3

5

; (5:52)

where c � b, yet clearly, the longest path from x

0

to x

1

has length b.

More formally, we can show that the value of the longest path to x

i

from x

0

is

never bigger than the value of x

i

in the minimum solution to the system. To see this

we note the following:

� If the length of the longest path to x

i

is �, then the minimum solution to the

system cannot be smaller since � is our smallest element.

� The length of the longest path to x

i

is in�nite if and only if there is a positive

cycle in the graph, but in this case M

1

i;0

must also have no upper bound since

M

n

i;i

> 0 for all x

i

on that cycle.

� If the length of the longest path to x

i

is some � 2 R then we may assume that

path is simple, since following a negative or zero weight cycle on the path would

make the path to x

i

no longer than the same path with the cycle removed, and

the existence of a positive weight requires the maximum path weight be in�nite.

However, the existence of such a path requires that the minimum solution for

x

i

be at least as large as the path weight.

67

5.4.3 Closure for Matrix Dioids

De�nition 5.14 As with single variable closure, a matrix A's matrix closure is

commonly denoted A

�

.

Lemma 5.1 Baccelli et. al. ([BCOQ92], Lemma 4.101) Matrix closure can be

calculated using the following recursive formulation.

2

4

W X

Y Z

3

5

�

=

2

4

W

�

�W

�

X(YW

�

X � Z)

�

YW

�

W

�

X(YW

�

X � Z)

�

(YW

�

X � Z)

�

YW

�

(YW

�

X � Z)

�

3

5

: (5.53)

Proposition 5.3 The max-plus closure can be determined using calculation method

given in Lemma 5.1 in time O(n

3

) for an n� n matrix.

Proof Sketch: We do not give the full proof of Proposition 5.3 here, but note that

it is easily proved for matrices in which n = 2

k

for some integer k using the formula

T (n) = 2 � T (

n

2

)

| {z }

closure operations

+ O(n

2

)

| {z }

matrix adds

+ O(n

3

)

| {z }

matrix

multiplications

;

(5:54)

giving us

T (n) = 2 � T (

n

2

) +O(n

3

): (5:55)

Combined with the fact that T (1) = 1, this can be easily shown to yield T (n) in

O(n

3

). 2

We can relate Equation 5.53 intuitively to the longest paths formulation above

with the following observation. The division of the matrix A into the four parts

W;X; Y and Z can be thought of as dividing the graph G's vertices, V , into one of

two disjoint sets of vertices, V

1

and V

2

such that sub-matrices W and Z represent all

edges within V

1

and V

2

respectively, while X represents all edges into V

1

from V

2

and

Y represents all edges into V

2

from V

1

. Thus the expression

(YW

�

X � Z)

�

(5:56)

describes all paths which originate and end in V

2

as being some number of concatena-

tions (the outer

�

) of paths which either stay entirely in V

2

(denoted by Z), or travel

to V

1

(X), move about in V

1

only (W

�

) and then come back to V

2

from V

1

(Y).

68

Equation 5.53 is easily obtained using the equations

2

4

W X

Y Z

3

5

�

=

2

4

v

11

v

12

v

21

v

22

3

5

=

2

4

W X

Y Z

3

5

2

4

v

11

v

12

v

21

v

22

3

5

�

2

4

e �

� e

3

5

; (5.57)

to generate the four equations

v

11

=Wv

11

� Xv

21

� e (5.58)

v

12

=Wv

12

� Xv

22

(5.59)

v

21

= Y v

11

� Zv

21

(5.60)

v

22

= Y v

12

� Zv

22

� e: (5.61)

Then using the solution technique of Equations 5.39 and 5.42, Equation 5.58 becomes

v

11

= W

�

(Xv

21

� e) (5:62)

and Equation 5.59 becomes

v

12

= W

�

Xv

22

: (5:63)

These two expressions may then be substituted into Equations 5.60 and 5.61, to

obtain values for v

21

and v

22

from which the �nal values for v

11

and v

12

may be

obtained.

69

Chapter 6

MAX-PLUS SOLUTION OF UBCS

In this chapter, we will describe and prove correct the UBCsolv method for �nding

the maximum solution to a system of inequalities in which linear max-plus expressions

provide upper bounds for single variables. These inequalities are the upper bound

constraints originally introduced in Chapter 2 and which will be de�ned again in

Section 6.4. When combined with the material in Chapter 7, this chapter will provide

the MPsolv method for �nding the maximum solution to any linear max-plus system.

The presentation of UBCsolv and MPsolv in this chapter and the next expands upon

a previously published version of these techniques [WB95]. MPsolv consists of three

steps:

� translating each linear max-plus equation into a small set of upper bound con-

straints [Chapter 7],

� choosing a subset of these constraints whose maximum solution is easily calcu-

lated using the dioid closure operation [Sections 6.2 and 6.4], and

� using that subset's maximum solution to guide the choice of a new constraint

subset with a smaller maximum solution [Section 6.3].

The last two steps above are repeated until either the process converges upon a

solution which meets all the initial constraints, or it is found that the system only

has solutions that include at least one variable with value �. Such systems are called

inconsistent.

De�nition 6.1 A system of linear max-plus equations over the variables

fx

0

; : : : ; x

n�1

g is consistent if it has at least one solution for which no x

i

= �.

If a system of linear max-plus equations is not consistent, it is called inconsistent

The UBCsolv solution technique will rely on our ability to distinguish ordered,

but possibly identical elements, from ordered but distinct elements. We make such a

distinction through use of the \>" relation.

70

De�nition 6.2 For all dioids (D;�;
) we say a is strictly greater than b, denoted

a > b, for a; b 2 D if and only if a � b and a 6= b. The expressions a > b and b < a

are equivalent.

We may also extend this relationship to vectors of bounds.

De�nition 6.3 Given l = [l

0

; l

1

; : : : ; l

n�1

]

T

and l

0

= [l

0

0

; l

0

1

; : : : ; l

0

n�1

]

T

, we say that

vector l is greater than or equal to vector l

0

, written l � l

0

precisely when l� l

0

= l.

Vector l is strictly greater than vector l

0

, written l > l

0

, if l � l

0

and l 6= l

0

.

While this chapter and the next discuss the solution of linear max-plus systems,

the techniques presented here apply to any linear system over a commutative dioid,

D, for which the following two additional properties hold:

� the structure (D n f�g;
), is a group, indicating that for all a 2 D n f�g, there

exists an element, a

�1

such that a
 a

�1

= e, and

� the � operation induces a total ordering on the elements of D | for any a

and b in D,

a = a� b or b = a� b: (6.1)

Such a dioid has been termed a pseudoring by Wagneur [Wag91] and has the

following property of which we will make extensive use in this chapter.

Proposition 6.1 For all totally ordered dioids (D;�;
) one of the following is true

for any pair a; b 2 D:

� a > b,

� a = b, or

� b > a.

Proof: This follows directly since by Equation 6.1 and De�nition 6.2 for all a; b 2 D

either a � b or b � a 2

71

6.1 Upper Bound Constraints

We now give the formal de�nition of a generalized upper bound constraint, as origi-

nally introduced in Section 2.3.

De�nition 6.4 An upper bound constraint (UBC) is a linear inequality of the

form

x

k

� a

0

x

0

� a

1

x

1

� � � � � a

n�1

x

n�1

;

where the x

i

terms are variables and the a

i

terms are constants from D. In a system

of m UBCs over n variables fx

0

; x

1

; : : : ; x

n�1

g, the ith such UBC, u

i

, is written

x

� (i)

�

n�1

M

j=0

a

i;j

 x

j

(6:2)

where x

� (i)

is said to be the target of the equation, and the function �(i) indexes the

target of the ith such UBC.

It is important to realize that for interesting linear max-plus systems, we often

have more than one UBC targeting a single x

i

, thus requiring the indexing function

� .

Several of the proofs in this chapter rely upon expressing the right hand side of a

UBC targeting a given x

i

independently of x

i

. To accomplish this we introduce the

following proposition.

Proposition 6.2 For any given system, U , of m UBCs over n variables either U

is inconsistent or there exists an equivalent system, U

0

, of m or fewer UBCs over n

variables in which every a

i;�(i)

= �.

Proof: This proposition is a direct consequence of Proposition 5.2, which states that

any linear max-plus equation may be written in canonical form as in Equation 5.23.

Suppose we have u

i

2 U , for which a

i;�(i)

6= �. Then we may write u

i

as

x

� (i)

� [a

i;�(i)

 x

� (i)

]�

2

4

M

j 6=� (i)

a

i;j

 x

j

3

5

: (6:3)

72

Applying the de�nition of \�" (Equation 5.10) we get

[(0� a

i;�(i)

)
 x

� (i)

]�

2

4

M

j 6=� (i)

a

i;j

 x

j

3

5

= [a

i;� (i)

 x

� (i)

]�

2

4

n�1

M

j 6=� (i)

a

i;j

 x

j

3

5

: (6:4)

We may then put this equation into canonical form and make the following obser-

vations: if 0 > a

i;�(i)

, then we may convert the equation back into UBC form with

a

i;�(i)

= �; otherwise 0 � a

i;�(i)

= a

i;�(i)

and both sides of the equation are identi-

cal. Then u

i

may be removed from the system since it is always satis�ed for any

assignment of values to the system variables. 2

Throughout this chapter it will be convenient to speak about UBCs using one of

two di�erent representations. The �rst is the graph-theoretical representation �rst

introduced in Chapter 2. This graph representation will allow us to take advantage

of the longest path description of matrix closure given in Section 5.4.2 as an intuition

behind the technique that follows. The second is a matrix representation of a system

of UBCs, which will be used to calculate the max-plus closure corresponding to the

longest paths in the graphs.

6.1.1 Graph-theoretical representation of systems of UBCs

De�nition 6.5 A system of upper bound constraints induces a graph as follows:

� for each variable, x

i

, in the system, there is a single node labeled x

i

.

� for each upper bound constraint, x

� (i)

�

L

n�1

j=0

a

i;j

 x

j

there is a set of arcs,

one for each term a

i;j

 x

j

such that a

i;j

6= �. Each such arc

� is directed from x

j

to x

� (i)

, and

� has label a

i;j

.

All arcs arising from terms on the right hand side of a single UBC are bundled

together by a line crossing through those arcs at the arrow head.

Figure 6.1 illustrates a set of max-plus upper bound constraints and the graph

they induce. Note the use of the arc bundling convention to distinguish the pairs of

UBCs targeting x

2

and x

3

. Bundling is not required for the constraints targeting x

1

since each of them contains only one non-� a term on its right hand side.

73

6.1.2 Matrix representation of systems of UBCs

In addition to the graph-theoretical representation shown in Figure 6.1, there is also

a matrix representation for the given system of UBCs. This matrix representation is

de�ned below and will be of use both in relating matrix closure to our problem and

in the proofs of Section 6.3.

De�nition 6.6 The matrix formulation of a system of m UBCs over n variables

as given in De�nition 6.2 is the matrix equation

(J � A)
 x = A
 x; (6:5)

where A is the m� n matrix of entries a

i;j

, x is the column vector of n variables x

i

,

and J is the m � n matrix with entries j

i;�(i)

= 0 and all other entries equal to �.

x

1

� 10
 x

0

x

1

� x

2

x

2

� 100
 x

0

x

2

� x

0

� x

3

x

3

� 500
 x

1

x

3

� (�2
 x

1

)� (�1
 x

2

)

0-1

x0

x3

x2x1

10 100 0

0

-2

500

0

B

B

B

B

B

B

B

B

B

B

B

B

@

2

6

6

6

6

6

6

6

6

6

6

6

6

4

� 0 � �

� 0 � �

� � 0 �

� � 0 �

� � � 0

� � � 0

3

7

7

7

7

7

7

7

7

7

7

7

7

5

�

2

6

6

6

6

6

6

6

6

6

6

6

6

4

10 � � �

� � 0 �

100 � � �

0 � � 0

� 500 � �

� �2 �1 �

3

7

7

7

7

7

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

C

C

C

C

A

2

6

6

6

6

6

6

4

x

0

x

1

x

2

x

3

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

4

10 � � �

� � 0 �

100 � � �

0 � � 0

� 500 � �

� �2 �1 �

3

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

x

0

x

1

x

2

x

3

3

7

7

7

7

7

7

5

Figure 6.1: A set of constraints and the graph and matrix representations they induce.

74

Thus, the i-th UBC

x

� (i)

�

n

M

j=0

a

i;j

 x

j

(6:6)

is expressed as

x

� (i)

�

2

4

n

M

j=0

a

i;j

 x

j

3

5

=

n

M

j=0

a

i;j

 x

j

: (6:7)

6.2 Bounding Systems of UBCs with Closure

In this section we will demonstrate that for any UBC system, U , the vector made up

of the maximum possible solutions for each of the variables x

i

when x

0

= 0 is itself a

solution to U . Furthermore, we will show that there exist certain special subsets S of

U whose maximum solution when x

0

= 0 is easily calculated using max-plus closure.

Proposition 6.3 For a consistent UBC system, U , if l

i

is the maximum possible

value for a given x

i

when x

0

= 0, then the vector l = [l

0

; l

1

; : : : ; l

n�1

]

T

is a solution

to U .

Proof: Clearly there can be no solution to U which has any variable larger than l

i

and so we need only show that l solves U . If l does not satisfy U , then there must be

some UBC u

i

2 U , written

x

� (i)

�

n�1

M

j=0

x

j

+ a

i;j

(6:8)

such that

l

� (i)

>

n�1

M

j=0

l

j

+ a

i;j

: (6:9)

Since the l

j

terms in the right-hand side of Equation 6.9 bound from above their

values in any solution, we have violated the given that l

� (i)

is the maximum possible

value of x

� (i)

in any solution to U . Thus l must be a solution to U 2

De�nition 6.7 For a consistent UBC system, U with l

i

the maximum possible value

for a given x

i

, we call the vector l = [l

0

; l

1

; : : : ; l

n�1

]

T

the maximum solution to U .

By the following proposition we know that such a maximum solution to any subset

S of U must bound the solutions to U from above.

75

Proposition 6.4 If m = [m

0

; : : : ; m

n�1

]

T

and l = [l

0

; : : : ; l

n�1

]

T

are the maximum

solutions to systems U and S where S � U , then for all x

i

, l

i

� m

i

.

Proof: Suppose there exists some i with l

i

< m

i

. If this is the case then m

i

is not a

solution for x

i

in U because it does not satisfy all of the constraints in S and therefore

cannot satisfy all of the constraints in U . 2

De�nition 6.8 Given a system U of m upper bound constraints over n variables, a

targeting subset of U is an n � 1 element UBC subset, S, in which each variable

x

i

except x

0

is the target of exactly one constraint.

Example 6.1 For the set of UBCs in Figure 6.1, the eight targeting subsets are:

� x

1

� 10x

0

; x

2

� 100x

0

; x

3

� 500x

1

� x

1

� 10x

0

; x

2

� 100x

0

; x

3

� �2x

1

��1x

2

� x

1

� 10x

0

; x

2

� x

0

� x

3

; x

3

� 500x

1

� x

1

� 10x

0

; x

2

� x

0

� x

3

; x

3

� �2x

1

��1x

2

� x

1

� x

2

; x

2

� 100x

0

; x

3

� 500x

1

� x

1

� x

2

; x

2

� 100x

0

; x

3

� �2x

1

��1x

2

� x

1

� x

2

; x

2

� x

0

� x

3

; x

3

� 500x

1

� x

1

� x

2

; x

2

� x

0

� x

3

; x

3

� �2x

1

��1x

2

Naturally, there may sometimes be UBC systems in which some variable x

i

with

i 6= 0 has no UBC which targets it. If this is the case, then there is no maximum

solution for x

i

. Section 6.4 discusses how to handle this situation. For the moment

we will assume that there are constraints targeting each x

i

.

We can describe each of these targeting subsets in matrix form by using a special

selector matrix, �rst described for this problem by Burns [Bur94], to pick out from

the matrix expression (J � A)
 x = A
 x only those rows corresponding to UBCs

in the targeting subset.

Conceptually, we de�ne a selector matrix, P, to be an (n� 1)�m such that each

row of P contains exactly one 0 entry and m� 1 � entries.

In order to assure that only one UBC is chosen to target each variable, we must

also require that the product PJ has no more than one 0 in each column, since that

assures that each x

i

is the target of no more than one UBC. In practice, we want the

product PA to be a square matrix so we can perform matrix closure on it and so we

get the following slightly altered de�nition.

76

De�nition 6.9 Given a system U of m UBCs in matrix form, a targeting selector

of U is an n �m matrix P such that each row except the 0th of P contains exactly

one 0, all other entries are �, and

P
 J =

^

E

n

; (6:10)

where

^

E

n

is the n� n matrix identical to E

n

except that (

^

E

n

)

0;0

= �.

When applied to the the matrix expression (J � A)
 x = A
 x, a 0 in the jth

column of the ith row of P selects the jth UBC of the system U as the ith UBC of

sub-system S. P, can then be used to express the constraints of a targeting subset

in matrix form by multiplying both sides of Equation 6.5 on the left. The top row

of the matrix P and its products P
 J and P
 A are always all �-terms. This is

because while x

0

is not the target of any constraint in the targeting subset, we will

later apply dioid closure to the matrix PA, and this operation will require a square

matrix.

Example 6.2 Given the matrix expression in Figure 6.1, the targeting selector, P,

for the last targeting subset of Example 6.1 above is

P =

2

6

6

6

6

6

6

4

� � � � � �

� 0 � � � �

� � � 0 � �

� � � � � 0

3

7

7

7

7

7

7

5

; (6:11)

and the sub-system equation resulting from multiplying both left hand sides of the

original system equations by P is

0

B

B

B

B

B

B

@

2

6

6

6

6

6

6

4

� � � �

� 0 � �

� � 0 �

� � � 0

3

7

7

7

7

7

7

5

�

2

6

6

6

6

6

6

4

� � � �

� � 0 �

0 � � 0

� �2 �1 �

3

7

7

7

7

7

7

5

1

C

C

C

C

C

C

A

2

6

6

6

6

6

6

4

x

0

x

1

x

2

x

3

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

� � � �

� � 0 �

0 � � 0

� �2 �1 �

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

x

0

x

1

x

2

x

3

3

7

7

7

7

7

7

5

(6:12)

De�nition 6.10 For a given targeting selector, P and UBC system U in matrix form

(J � A)
 x = A
 x as in De�nition 6.6 above, the expression

P
 A; (6:13)

77

x

1

� x

2

x

2

� x

0

� x

3

x

3

� (�2
 x

1

)� (�1
 x

2

)

0-1

x0

x3

x2x1

0

0

-2

2

6

6

6

6

6

6

4

� � � �

� � 0 �

0 � � 0

� �2 �1 �

3

7

7

7

7

7

7

5

Figure 6.2: A targeting subset, its induced graph, and targeting matrix.

is the target matrix for the targeting subset corresponding to P.

Example 6.3 Figure 6.2 gives the equations, graph, and targeting matrix for a single

targeting subset of the example in Figure 6.1.

The targeting matrix PA above allows us to write a targeting subset, S, of UBC

system U as the n� 1 UBCs

x

i

�

n�1

M

j=0

(PA)

i;j

 x

j

; (6:14)

for 1 � i � n � 1. By Proposition 6.4, the maximum solution to the system of

Equation 6.14 when x

0

= 0 bounds from above the values of all variables in the

maximum solution to U when x

0

= 0.

Recall from Section 5.4.3 that for a complete dioid, the closure operation allows

us to calculate the minimum solution for X in the equation

X = (PA)X � E

n

(6:15)

78

for n� n matrix X.

By exploiting the de�nition of max-plus matrix multiply we see that in a complete

dioid the 0th column of (PA)

�

must be the minimum solution to the system

2

6

6

6

6

6

6

4

x

0

x

1

.

.

.

x

n�1

3

7

7

7

7

7

7

5

= (PA)

2

6

6

6

6

6

6

4

x

0

x

1

.

.

.

x

n�1

3

7

7

7

7

7

7

5

�

2

6

6

6

6

6

6

4

0

�

.

.

.

�

3

7

7

7

7

7

7

5

: (6:16)

Since the 0th row of (PA) consists of all � entries, Equation 6.16 is equivalent to

x

0

= 0 plus the n� 1 equations

x

i

=

n�1

M

j=0

(PA)

i;j

 x

j

; (6:17)

for 1 � i � n� 1 when x

0

= 0.

We would like to build a solution for the system of Equation 6.14 when x

0

= 0

using the solution of Equation 6.17, but there are three obstacles to overcome:

(1) the max-plus dioid as given here is not complete,

(2) the Equation 6.17 is more restrictive than Equation 6.14, and

(3) the closure-derived solution to the system of Equation 6.17 is the minimum such

solution, and we require the maximum such solution in order to safely bound

our solutions from above.

Luckily, it happens that if we choose our targeting selector P carefully, we can assure

that performing closure as a series of substitutions as in Equation 5.34 does not

require in�nite series of � operations, and that the minimum solution to the system

of Equation 6.17 will be the maximum solution to the system of Equation 6.14. We

begin this e�ort with the following de�nitions.

De�nition 6.11 For any directed path p from x

i

to x

j

, the
-generalized path

weight from x

i

to x

j

is the
 of all arc weights along the path. When the directed

path is a simple cycle, we refer to its
-generalized simple cycle weight.

Throughout this chapter whenever path or cycle weights are mentioned, they

should be assumed to be the
-generalized path and cycle weights.

79

x

1

� x

2

x

2

� x

0

� x

3

x

3

� 500
 x

1

0

x0

x3

x2x1

0

0

500

Figure 6.3: An unsafe targeting subset of the constraints in Figure 6.1 and the sub-

graph they induce.

De�nition 6.12 Given a system U of upper bound constraints over n variables, a

safe targeting subset of U is a targeting subset of U in which all directed simple

cycles in the induced graph have
-generalized simple cycle weights strictly less than

0. When this is true, P, is said to be a safe targeting selector of the system.

Example 6.4 For the set of UBCs in Figure 6.1, the only unsafe targeting subset

listed in Example 6.1 is

� x

1

� x

2

; x

2

� x

0

� x

3

; x

3

� 500x

1

,

which is pictured in Figure 6.3. All other targeting subsets are safe.

Luckily, the following theorem removes obstacles 1 and 3 above.

Theorem 6.1 Baccelli et. al. ([BCOQ92], Theorem 3.17) For matrix A with

induced graph G(A), if the cycle weights in G(A) are all negative then there is a unique

solution to the equation x = Ax� b, which is given by x = A

�

b.

Proof: We give here the somewhat simpli�ed proof with b = E

n

. Recall that A

�

, the

closure of A is de�ned as the minimum solution for x in the equation x = Ax� E

n

,

which expands as in Equation 5.34 to

x = A

k

x�

h

A

k�1

� � � � � A� E

n

i

(6:18)

80

for any k � 1. We then know that

x = A

n

x�

n�1

M

j=0

A

j

; (6:19)

for the special case when k = n and that if we sum together the left and right hand

sides of Equation 6.18 for values of k between 0 and n� 1 we can obtain

x =

n�1

M

k=0

2

4

A

k

x�

k�1

M

j=0

A

j

3

5

: (6:20)

By the idempotent and commutative properties of the matrix � operation, we can

rephrase Equation 6.20 as

x =

2

4

n�1

M

k=0

A

k

3

5

x�

2

4

n�1

M

k=0

A

k

3

5

: (6:21)

Together Equations 6.19 and 6.21 then yield

[A

n

x]�

n�1

M

k=0

A

k

=

2

4

n�1

M

k=0

A

k

3

5

x�

2

4

n�1

M

k=0

A

k

3

5

: (6:22)

Now, since A

n

represents all paths of exactly n edges in G(A), and there are n nodes

in G(A), these paths all must contain negative cycles. Therefore, for all indices i and

j of A,

A

n

i;j

<

n�1

M

k=0

A

k

i;j

: (6:23)

We may therefore remove the term A

n

x from Equation 6.22, leaving us

n�1

M

k=0

A

k

;=

2

4

n�1

M

k=0

A

k

3

5

x�

2

4

n�1

M

k=0

A

k

3

5

: (6:24)

We then use Equation 6.21 to substitute x for the right hand side of Equation 6.24,

obtaining

x =

n�1

M

k=0

A

k

: (6:25)

This is an exact formula for x, which must therefore admit no other solution and

which does not require a complete dioid for calculation. 2

81

Theorem 6.1 then tells us that when P is safe there is only one solution to Equa-

tion 6.17, and therefore it is both minimum and maximum, and we need only show

that the solution to the system of Equation 6.17 is the maximum solution to the

system of Equation 6.14.

Lemma 6.1 For any UBC system U with safe targeting subset S consisting of the

upper bound constraints

x

i

�

n�1

M

j=0

(PA)

i;j

 x

j

;

the vector

l = [l

0

= 0; l

1

; l

2

; : : : ; l

n�1

]

T

where l

i

= (PA)

�

i;0

is a solution to S when x

0

= 0.

Proof: By the de�nition of dioid closure, we know that

(PA)

�

= (PA)
 (PA)

�

� E

n

; (6:26)

and therefore

l = (PA)
 l � e

0

; (6:27)

where e

0

is the n element vector

e

0

= [0; �; : : : ; �]

T

: (6:28)

For i 6= 0 this gives us

l

i

=

n�1

M

j=0

(PA)

i;j

 l

j

(6:29)

which certainly meets the looser constraints

x

i

�

n�1

M

j=0

(PA)

i;j

 x

j

; (6:30)

and we know that l

0

= 0 since the top row of (PA) is constrained to contain only �

entries. 2

Lemma 6.2 A maximum solution to any safe targeting subset, S, when x

0

= 0 exists

and is the solution given in Lemma 6.1.

82

Proof: Theorem 6.1 tells us that there is a maximum solution, m =

[m

0

; m

1

; : : : ; m

n�1

] to the system of Equation 6.17, and Lemma 6.1 tells us that

that maximum solution satis�es S. Thus we need only show there cannot exist l, a

solution to S with x

0

= 0 such that l

i

> m

i

for some x

i

.

Suppose there is a solution, l

0

= [l

0

0

; : : : ; l

0

n�1

]

T

with l

0

= 0 to S such that for some

i 6= 0

l

0

i

<

n�1

M

j=0

(PA)

i;j

 l

0

j

: (6:31)

If this is the case, then we may form a new solution, l

00

with l

00

j

= l

0

j

for j 6= i and

l

00

i

=

L

n�1

j=0

(PA)

i;j

 l

00

j

: This solution has l

00

i

> l

0

i

and therefore l

0

is not a maximum

solution. 2

Lemma 6.3 Given a safe targeting matrix, (PA), corresponding to a safe targeting

subset S of UBC system U , the maximum solution to S when x

0

= 0 is the vector

h

(PA)

�

0;0

; : : : ; (PA)

�

i;0

; : : : ; (PA)

�

n�1;0

i

T

(6:32)

where (PA)

�

is the closure of (PA).

Proof: This follows directly from De�nition 6.10, Lemma 6.2, and De�nition 5.14

(matrix closure). 2

6.3 Generating successively smaller upper bounds

Lemma 6.3 tells us that if we can �nd a safe targeting subset S of a system of UBCs

U , S's maximum solution when x

0

= 0 is easy to calculate. By Proposition 6.4, the

maximum solution to S when x

0

= 0 provides upper bounds for maximum solution

to each of the values of the x

i

in U when x

0

= 0. We would now like to show how,

given a safe targeting subset S and its associated maximum solution, we can �nd

another safe targeting subset, S

0

, which generates a tighter bound.

Given a safe targeting subset, S, and its associated bound, l, a new safe targeting

subset S

0

producing a tighter upper bound, l

0

, can be found by individually evaluating

the bounds produced by each UBC in the entire system. For each UBC in the original

system, we test the upper bound it gives its target when the variables in that UBC's

right hand side take on the values in l. If any UBC produces a bound for its target,

83

x

� (i)

, which is less than the current bound l

� (i)

, then it can be exchanged with the

UBC currently targeting x

� (i)

, and the resulting targeting subset will be safe and

produce a tighter bound.

In order to prove this we will need to show both that such an exchange results in

a safe targeting subset and that the corresponding bound is lower. To this end, we

now introduce the following de�nition and lemmas.

De�nition 6.13 If U is the set of all UBCs in a system, then given a UBC, u

i

2 U ,

u

i

: x

� (i)

�

n�1

M

j=0

a

i;j

 x

j

; (6:33)

and a vector l = [l

0

; : : : ; l

n�1

]

T

of values bounding the variables X of a system, u

i

(l),

the value of u subject to l is the value

u

i

(l) =

n�1

M

j=0

a

i;j

 l

j

: (6:34)

Lemma 6.4 Given a safe targeting subset S of UBC system U , with maximum solu-

tion l, UBC v 2 S targeting x

� (i)

and an additional UBC u 2 U also targeting x

� (i)

,

if u(l) < l

� (i)

then S

0

= S [fug � fvg is also a safe targeting subset.

Proof: Clearly S

0

is a targeting subset since one UBC targeting x

� (i)

has been

exchanged for another. S

0

is safe so long as the
-generalized weights of all cycles

in its induced subgraph are less than 0. Thus, we assume that a cycle of weight 0 or

greater does exist in S

0

and then show this contradicts the hypothesis that u(l) < l

� (i)

.

If the exchange of u for v introduces a cycle of weight ! � 0 into the induced graph,

it must be the case that that cycle includes one of the arcs induced by constraint u. Let

x

j

be at the tail end of that arc, and let a

i;j

be the weight of that arc. Furthermore,

let � be the
-weight of the path from x

� (i)

to x

j

along the corresponding \bad"

cycle. All the arcs which are present in � are present in the graphs induced by both

S and S

0

, since only the edges directed to x

� (i)

have changed. Since the cycle in S

0

has weight ! � 0, it must be the case that

0 � ! = �
 a

i;j

: (6:35)

A picture of this situation is given in Figure 6.4.

84

'

&

$

%

s?

s�s

A

A

A

AU

�

x

k

a

i;k

a

i;j

x

� (i)

x

j

Figure 6.4: Diagram supporting the argument for Lemma 6.4.

Consider now what this means for the values in l. The longest path from x

� (i)

to

x

j

in the graph induced by S must have weight � � since all directed edges along

that �-weight path are in S. Therefore

l

j

� �
 l

� (i)

: (6:36)

We also know that

u(l) � a

i;j

 l

j

(6:37)

since u(l) was the � of several terms including this one. Together, Equa-

tions 6.36 and 6.37 give us

u(l) � a

j

 �
 l

� (i)

: (6:38)

Now since �
 a

j

� 0 this means that u(l) � l

� (i)

, which directly contradicts the

given that u(l) < l

� (i)

, and so S

0

must be a safe targeting subset of U . 2

Lemma 6.5 Let S and S

0

be safe targeting subsets of UBC system U such that S

and S

0

di�er only in that UBC v targets x

i

in S and u targets x

i

in S

0

. Then if S

and S

0

have maximum solutions l and l

0

respectively, with u(l) < l

i

, it must be the

case that l

0

< l.

Proof: The proof of this lemma relies upon the following observation: when

calculating the maximum solutions for S and S

0

, the matrix upon which we perform

the closure operation di�ers only in the row corresponding to x

i

's target. We may

then examine the two resulting closure matrices using a recursive de�nition as in

85

Equation 5.53, in which the matrices are unevenly divided so as to make more evident

the similarities between the two.

Suppose, without loss of generality, that x

i

, the variable targeted by u and v, is

the highest numbered variable, x

n�1

. If not the variables can be reordered to achieve

this. In this case, the target matrices C = PA and C

0

= P

0

A corresponding to S and

S

0

respectively have form

C =

2

4

W X

Y Z

3

5

; and C

0

=

2

4

W X

Y

0

Z

0

3

5

; (6:39)

where W is an (n � 1) � (n � 1) matrix, X is an (n � 1) � 1 matrix, Y and Y

0

are

1� (n� 1) matrices, and Z and Z

0

are 1� 1 matrices. In order to show that l

0

< l,

we will show that l

0

i

� l

i

for all i 6= n� 1, and that l

0

n�1

< l

n�1

.

We begin with the following two claims which demonstrate the similarity of C and

C

0

.

Claim:Z = � and Z

0

= �. This is achieved as a direct result of Proposition 6.2,

which tells us that the UBC targeting x

n�1

does not include a term a
 x

n�1

for

a 6= �.

Claim:(Y W

�

X � Z)

�

= 0 and (Y

0

W

�

X � Z

0

)

�

= 0: This follows from the maxi-

mum length path description (Section 5.4.2) of max-plus closure. Both expressions

measure the longest path from x

n�1

to itself. We know that the zero edge path from

x

n�1

to itself is 0, giving this expression a lower bound of 0. Any path along one or

more edges from x

n�1

to itself can be broken into a (possibly in�nite) concatenation

of simple cycles, but since all such cycles have negative weight, the maximum total

path weight is less than 0.

We can now see that C

�

and C

0

�

are simpli�ed by these observations so that by

applying Equation 5.53 we get

C

�

=

2

4

W

�

�W

�

XYW

�

W

�

X

YW

�

0

3

5

; C

0

�

=

2

4

W

�

�W

�

XY

0

W

�

W

�

X

Y

0

W

�

0

3

5

; (6:40)

We can now show that l

0

< l. To do this we de�ne F

n

and F

n�1

to be (respec-

tively) the n � 1 and (n � 1) � 1 column vectors with � entries everywhere except

that (F

n

)

0

= 0 and (F

n�1

)

0

= 0. Thus C

�

F

n

extracts from C

�

the column vector

h

C

�

0;0

; : : : ; C

�

i;0

; : : : ; C

�

n�1;0

i

T

, which, by Lemma 6.3 is the maximum solution to the

UBC subset S when x

0

= 0.

86

Claim:l

0

n�1

< l

n�1

. First, we note that we have been given

u(l) < l

n�1

: (6:41)

By de�nition

u(l) = [Y

0

Z]
 l = [Y

0

Z]

2

4

W

�

�W

�

XYW

�

W

�

X

YW

�

0

3

5

 F

n

; (6:42)

which is equivalent to

u(l) = [Y

0

Z]

2

4

W

�

�W

�

XYW

�

YW

�

3

5

 F

n�1

; (6:43)

since both F

n

and F

n�1

select out only the �rst column of the matrices to which they

are applied. Next, note that since Z = �, Equation 6.43 is equivalent to

u(l) = Y

0

 (W

�

�W

�

XYW

�

)
 F

n�1

: (6:44)

By distributing through the F and Y

0

terms on the right and left hand sides of the

above equation, we can see that

u(l) = Y

0

W

�

F

n�1

� Y

0

W

�

XYW

�

F

n�1

; (6:45)

which in turn yields

u(l) � Y

0

W

�

F

n�1

; (6:46)

by the de�nition of \�". By inspecting the matrix C

0

in Equation 6.40 we can verify

that

l

0

n�1

= Y

0

W

�

F

n�1

: (6:47)

So together, Equations 6.41, 6.46 and 6.47 yield

l

0

n�1

< l

n�1

: (6:48)

Claim:l

0

< l Since we have shown that l

0

n�1

< l

n�1

, it only remains to show that

l

0

� l. This amounts to showing that

2

4

W

�

�W

�

XY

0

W

�

W

�

X

Y

0

W

�

0

3

5

 F

n

�

2

4

W

�

�W

�

XYW

�

W

�

X

YW

�

0

3

5

 F

n

; (6:49)

87

which is reduced to showing that

2

4

W

�

�W

�

XY

0

W

�

Y

0

W

�

3

5

F

n�1

�

2

4

W

�

�W

�

XYW

�

YW

�

3

5

 F

n�1

; (6:50)

as was done in Equation 6.43. Since we already know that l

0

n�1

< l

n�1

, Equation 6.47,

plus the similarly derived

l

n�1

= YW

�

F

n�1

: (6:51)

give us

Y

0

W

�

F

n�1

< YW

�

F

n�1

; (6:52)

and we need only show that

[W

�

�W

�

XY

0

W

�

]
 F

n�1

� [W

�

�W

�

XYW

�

]
 F

n�1

: (6:53)

However, it is straightforward to obtain Equation 6.53 from Equation 6.52 | we

simply
 both sides of the inequality with W

�

X on their left hand sides, and then

perform � with W

�

F

n�1

to both, yielding Equation 6.53. 2

Lemma 6.6 Given U , a consistent UBC system, S a safe targeting subset of U ,

and l, the maximum solution to S when x

0

= 0, if there exists UBC u

i

2 U with

u

i

(l) < l

� (i)

and x

� (i)

is the target of u

i

, then the UBC subset S

0

= fu

i

g [S n fvg

where v is the constraint targeting x

� (i)

in S is a safe targeting subset of U and the

maximum solution to S

0

when x

0

= 0 is strictly less than l.

Proof: This follows directly from Lemmas 6.4 and 6.5. 2

Lemma 6.6 gives us what will be the key feature of the UBCsolv technique: given

a safe targeting subset, S, we may �nd a new safe targeting subset by applying each

of the UBCs of the system to the maximum bound of S. If a u is found targeting x

i

such that u(l) is smaller than l

i

we exchange the UBC targeting x

i

in S with u and

calculate the new maximum solution. For a consistent UBC system, this continues

until a solution is converged upon. In order to make this technique we must do two

additional things:

� show how to determine an initial safe targeting subset S, and

� show how to handle inconsistent systems.

88

6.4 Generating an Initial Safe Targeting Subset

Although we have shown how to obtain one safe targeting subset from another, we

must �rst have an initial safe targeting subset. If we know that U has a maximum

solution in which no variable has value greater than V, we could simply augment U

with n� 1 constraints

x

i

� x

0

 V:

These additional constraints would not change the solution space of U and would

form a targeting subset containing no cycles.

While we cannot assume that for any UBC system U there is a maximum solution,

we note that for any speci�c solution to U with x

0

= 0, there must be some largest

x

i

. If V is greater than the largest such x

i

in a given solution, then augmenting the

system with these constraints does not change the validity of that solution.

Unfortunately, V may vary for di�erent solutions to the system, so we do not know

a priori a suitable value for it. Instead we treat V as a �nite but very large element

of D, obeying both the required properties of dioids and the additional properties

listed at the beginning of Chapter 6 except:

� V
 V is unde�ned, and

� V has no inverse for
.

In addition, we assume V
 a > b for all a 6= �; b 2 D.

Luckily, the dioid closure operation does not require
 inverses, and we never

need to calculate V
 V. If we begin with the initial target matrix

V =

2

6

6

6

6

6

6

4

� � � � � �

V � � � � �

.

.

.

.

.

.

.

.

.

.

.

.

V � � � � �

3

7

7

7

7

7

7

5

; (6:54)

then the initial closure matrix, V

�

, has form

V

�

=

2

6

6

6

6

6

6

4

0 � � � � �

V 0 � � � �

.

.

.

.

.

.

.

.

.

.

.

.

V � � � � 0

3

7

7

7

7

7

7

5

: (6:55)

89

As we replace equations x

i

� V
x

0

with equations not containing a V term, we need

to calculate the closure of matrices which can be written

2

4

V �

Y Z

3

5

(6:56)

where if V is a k�k sub-matrix it has entries V

i;0

= V for 1 � i < k, and � everywhere

else, while the sub-matrix denoted \�" above has all entries equal to �. The closure

of this matrix can then be seen to be

2

4

V

�

�

Z

�

Y V

�

Z

�

3

5

; (6:57)

where V and V

�

are related as in Equations 6.54 and 6.55.

Lemma 6.7 Should the process converge to a consistent solution, l, while some x

i

are still bounded with an expression that includes a V-term then those x

i

have no

maximum solution.

Proof: We prove this lemma by demonstrating that there is some r 2 R such that

all assignments to V � r solve the system.

Let r = m
 (�

�1

� 0) where m is the maximum non-V-term bound in l and �

is the smallest non-� coe�cient in the UBC system. We know that when UBCsolv

converges, for every UBC u

i

u

i

: x

� (i)

�

n�1

M

j=0

A

i;j

 x

j

(6:58)

in U , u

i

is satis�ed if and only if

l

� (i)

� a

i;j

 l

j

(6:59)

for some j. We substitute r for V and note how this a�ects Equation 6.59.

By our de�nition of V, it cannot be the case that l

� (i)

contains a V-term while l

j

does not. If either l

� (i)

and l

j

both contain a V term, or neither l

� (i)

nor l

j

contains

a V-term, then the relative values of l

� (i)

and l

j

are unchanged when we substitute r

90

for V, and Equation 6.59 still holds true. If l

j

is V
 a and l

� (i)

contains no V-term

then l

j

becomes r
 a = m
 a
 (�

�1

� 0) while l

� (i)

does not change. Suppose

l

� (i)

> m
 a
 (�

�1

� 0); (6:60)

thus violating Equation 6.59. Since l

� (i)

� m, we then have

m > m
 a
 (�

�1

� 0); (6:61)

which then yields

0 > (a
 �

�1

)� a: (6:62)

By the de�nition of �, a
 � � 0 and thus Equation 6.59 must be satis�ed. Thus

substituting r for V provides a solution to the system. Now, we need only note that

the above also holds for any r

0

� r, since, in the only interesting case above, this

results in the right hand side of Equation 6.60 increasing while its left-hand side stays

constant. 2

Thus, for systems with no maximum solution, we are able to give, through the

relative values of the V-bounds, a description of an in�nite family of solutions to the

system U . Note, however, that there may be many other such families of in�nite

solutions to the system.

6.5 Identifying Inconsistent Systems

If at any time during the process of choosing successive safe targeting subsets and

calculating their induced bounds an upper bound of � is discovered for any variable,

the process stops and declares that the set of UBCs is inconsistent.

Lemma 6.8 If, for a given UBC system, there exists a safe targeting subset in whose

induced graph there is no path from x

0

to x

i

for 0 6= i then that UBC system is

inconsistent.

Proof: If there is no path from x

0

to x

i

in the given safe targeting subset then we

may divide the variables into two non-empty subsets: V

1

, consisting of those x

j

to

which there is a path from x

0

, and V

2

, consisting of those x

j

to which there is no

path from x

0

. Then without loss of generality we may order the variables so that

(x

j

2 V

1

) ^ (x

k

2 V

2

)) j < k: (6:63)

91

We may then write the safe targeting matrix as

2

4

W X

� Z

3

5

(6:64)

with the matrix divisions corresponding to V

1

and V

2

as in Equation 5.57, and where

� consists of all � entries as de�ned for Equation 6.56, indicating there are no paths

from V

1

to V

2

. Using Equation 5.53, we see that the closure of this matrix is

2

4

W

�

W

�

XZ

�

� Z

�

3

5

; (6:65)

indicating that no variable in V

2

may be given an assignment that satis�es the safe

targeting subset. 2

In order to make sure that the constraint set is consistent, we must also examine

any constraints of the form

x

0

�

n�1

M

j=0

(PA)

0;j

 x

j

(6:66)

to make sure they cannot reduce the bound of x

0

= 0 any lower. If they can then we

must declare the constraint set inconsistent since this indicates that the maximum

solution to the system when x

0

= 0 requires x

0

< 0.

Lemma 6.9 If there exists a safe targeting subset S of U with corresponding maxi-

mum solution l = [l

0

; : : : ; l

n�1

]

T

and a UBC

u

i

: x

0

�

n�1

M

j=0

(PA)

0;j

 x

j

(6:67)

such that

0 >

n�1

M

j=0

(PA)

0;j

 l

j

(6:68)

then the UBC system is inconsistent.

Proof: The system must be inconsistent because S's maximum solution and u

i

together require that the maximum solution when x

0

= 0 be strictly less than 0. 2

92

6.6 The UBCsolv Algorithm

De�nition 6.14 The UBCsolv algorithm for a system U of m UBCs over n variables

consists of the following steps:

� augment U with the n�1 additional constraints x

i

� x

0

+V for every 0 < i < n

and create an initial safe targeting subset, S with upper bound l = [0;V; : : : ;V]

T

� Do the following

� Search through U to �nd a constraint u targeting some x

i

such that u(l) < l

i

� If u targets x

0

declare U inconsistent and exit the algorithm

� Exchange u for the UBC targeting x

i

in S

� Calculate (PA)

�

, the closure of S's target matrix

� Replace each l

i

with (PA)

�

i;0

� If any l

i

= �, declare U inconsistent and exit the algorithm

until no UBC is found which can decrease the bound l.

� Report the values in l as the maximum solution to U . If any l

i

has a maximum

bound containing a V term, it reports the bounds in terms of the V-expressions

and a value for r, as given in Lemma 6.7 that satis�es them.

6.6.1 Convergence of UBCsolv Within Finite Time

If at any time, no UBC can be applied to the current variable bounds and reduce

them, then all UBCs have been satis�ed and the current upper bound is the maximum

solution to the entire system of UBCs. We now show that within �nite time, either

this method will declare the UBC system inconsistent, or will converge upon an

answer.

De�nition 6.15 For a system of m UBC's over n variables, t, the number of terms

is the total number of non-� terms in the right hand sides of all UBCs.

Lemma 6.10 Given a UBC system U of �nite size, the number of safe targeting

subsets encountered during UBCsolv is �nite.

93

Proof: The number of safe targeting subsets encountered is bounded from above

by the number of possible targeting subsets. For a given system of m UBCs over n

variables, each of n � 1 variables x

i

with i 6= 0 may be the target of at most any of

the m original UBCs plus the additional UBC x

i

� x

0

+ V. This gives us a loose

upper bound of

(m + 1)

n�1

(6:69)

distinct safe targeting subsets appearing during the algorithm. Since by Lemma 6.2

each safe targeting subset has a maximum solution, and by Lemma 6.5 each successive

safe targeting subset we encounter has maximum solution smaller than the previous

one, we may only encounter each safe targeting subset once. 2

Lemma 6.11 The time required by UBCsolv to �nd the maximum solution of a given

safe targeting subset and use that solution to �nd a new safe targeting subset with a

smaller maximum solution is O(t+ n

3

).

Proof: Finding a new constraint to exchange takes at most as much time as it takes

to evaluate each constraint and compare the value to the current value. Assuming

that additions and compares are each one step the total work is

t

|{z}

calculating

a

i

 x

i

+ (t�m)

| {z }

comparisons

within a UBC

+ m

|{z}

compare UBC to

current value

= 2t; (6:70)

where the �rst term represents all additions performed, the second represents all com-

parisons made in evaluating individual UBCs, and the last represents all comparisons

between current values and the calculated values. By Proposition 5.3, the time to

calculate a new closure matrix is

O(n

3

): (6:71)

This combines with Equation 6.70 to give a total running time of

O(t+ n

3

): (6:72)

2

Burns has suggested [Bur95] that for sparse safe targeting subsets Johnson's

O(t

2

log t + nt) all pairs shortest paths algorithm [Joh77, CLR90] be modi�ed to

94

perform the longest paths calculation instead of using the recursive de�nition of clo-

sure given in Equation 5.53. Similarly, the Bellman-Ford O(nt) algorithm [CLR90]

may be used as well. Both algorithms �nd the shortest paths in a directed graph

with no negative-weight cycles. For the max-plus case this corresponds to a targeting

subset with no positive-weight cycles.

Lemma 6.12 Given a UBC system of �nite size, UBCsolv converges or declares the

system inconsistent in �nite time.

Proof: This follows directly from the fact that each of the �nitely many safe target-

ing subsets (Lemma 6.10) has its maximum solution calculated only once, and that

calculation plus �nding the next safe targeting subset takes �nite time (Lemma 6.11).

2

6.6.2 Correctness of the UBCsolv

Lemma 6.13 If UBCsolv converges upon a solution to UBC system U then either

that solution is the maximum solution to U when x

0

= 0, or U has no maximum

solution and UBCsolv describes an in�nite family of solutions to U with increasing

maximum variable value.

Proof: Since the technique will not converge upon a solution unless all UBCs are

satis�ed, we know that when it �nds a solution is solves the UBC system with x

0

= 0.

To see that this is the maximum solution we note that by Lemma 6.2 the solution

bounds it maintains are always the maximum solution to a safe targeting subset for

which they are calculated. Lemma 6.7 covers the case when there is no maximum

solution but the system is soluble. 2

Lemma 6.14 If UBCsolv declares a UBC system inconsistent then it is inconsistent.

Proof: Since by Lemma 6.13 the technique cannot claim to �nd a maximum solution

if all UBCs are not satis�ed, we need only show that it never erroneously declares

a UBC subset inconsistent. Lemma 6.8 tells us that any time we declare a system

inconsistent because we have determined an upper bound of x

i

= � for some i 6= 0,

we have made the correct choice. Lemma 6.9 handles the case for x

0

< 0. 2

95

Theorem 6.2 The UBCsolv algorithm for determining the maximum solution to a

UBC system U when x

0

= 0 always converges within �nite time to the correct answer.

Proof: By Lemma 6.12 we know that UBCsolv must terminate in �nite time. By

Lemmas 6.13 and 6.14 we know that UBCsolv correctly determines either the maxi-

mum solution or that the system is inconsistent. 2

96

Chapter 7

GENERAL LINEAR MAX-PLUS OPTIMIZATION

In this chapter we show how a simple transformation allows us to use the UBCsolv

technique of Chapter 6 to solve an arbitrary linear max-plus system, as well as to

optimize linear max-plus expressions over such a system. We refer to this general

max-plus linear system solution and optimization technique as MPsolv.

7.1 UBC-Based Solution of General Linear Max-Plus Systems

The solution technique discussed in Chapter 6 works with UBCs in the form given by

Equation 6.2. In contrast, a general max-plus linear system as given in Equation 5.32

can be described as a set of m equations of the form:

2

4

n�1

M

j=0

A

i;j

 x

j

3

5

� b

i

=

2

4

n�1

M

j=0

C

i;j

 x

j

3

5

� d

i

: (7.1)

We can express these equations with upper bound constraints by taking advantage

of the following simple Lemma.

Lemma 7.1 For a and b in any dioid,

[a � b ^ b � a] , a = b: (7.2)

Proof: This follows directly from Equation 5.10.

2

The transformation to UBCs is as follows:

� We create a new set of variables X = fx

0

; : : : ; x

n�1

g [fx̂

0

; : : : ; x̂

m�1

g [fx

;

g

where the x

i

terms represent each of the original x

i

terms in the equations,

and there is a x̂

i

term for each of the m rows in the matrix A. The value 0 is

represented by the variable x

;

.

97

� For each row i of a system as given above in Equation 7.1 we create several

upper bound constraints which will force each x̂

i

to be equal to both sides of

the equation it represents.

� To bound each x̂

i

from above we add the equations:

x̂

i

�

2

4

n�1

M

j=0

A

i;j

 x

j

3

5

� [x

;

 b

i

] (7.3)

x̂

i

�

2

4

n�1

M

j=0

C

i;j

 x

j

3

5

� [x

;

 d

i

] : (7.4)

� We cannot bound each x̂

i

from below so easily since the \�" relation faces

the wrong direction. However, by the total ordering on elements of the

max-plus algebra we know that the equations

2

4

n�1

M

j=0

A

i;j

 x

j

3

5

� [x

;

 b

i

] � x̂

i

(7.5)

2

4

n�1

M

j=0

C

i;j

 x

j

3

5

� [x

;

 d

i

] � x̂

i

(7.6)

(7.7)

are equivalent to saying that x̂

i

is greater than or equal to each of the terms

on the left hand side of the inequalities, and so we use the inequalities

x

j

� �A

i;j

 x̂

i

; for all (i; j) pairs such that A

i;j

> �

x

j

� �C

i;j

 x̂

i

; for all (i; j) pairs such that C

i;j

> �

x

;

� �b

i

 x̂

i

for all i such that b

i

> �

x

;

� �d

i

 x̂

i

for all i such that d

i

> �;

where a minus sign indicates the familiar additive inverse, which is the

inverse in this scheme.

A solution to the original system can then be found by �nding the maximum solution

to the new system when x

;

= 0.

98

7.1.1 Time Complexity of UBC-Based General Solution

The time required to transform a linear system into UBCs is polynomial in the size

of the original problem. Unfortunately, as noted in Section 6.6.1 the process of

solving the resulting UBC system, while requiring �nite time, is not known to have

a polynomial time bound.

De�nition 7.1 Similar to De�nition 6.15, for a linear max-plus system of m equa-

tions over n variables the number of terms, t, is the total number of non-� entries

in the matrices A, b, C, and d.

Lemma 7.2 The process of translating a linear max-plus system of t terms over m

equations and n variables results in a UBC system with at most m+ n+ 1 variables,

2m+ t UBCs, and 2t terms among the right hand sides of all UBCs.

Proof: We begin with n variables and add m more, one for each equation, plus

another for x

;

, giving us n+m+ 1 total variables. For each equation in the original

system, we have two equations of the form x̂ �

L

n�1

i=0

a

i

 x

i

, plus as many equations

of the form x

j

� �a

i;j

 x̂

i

as there are non-� entries in the given equation, giving

us 2m + t total equations. Each entry in the original equation appears on the right

hand side of one UBC, and also forces an equation with a single entry on its right

hand side, giving us 2t terms. 2

7.2 Previous Solutions for Speci�c Cases

There are two previous solutions for more specialized problems within the domain of

linear max-plus solution which are worth mention here.

7.2.1 Zimmermann's Max-Plus Minimization Technique

For the special case of max-plus systems which may be written

A
 x � b (7:8)

for m� n matrix A, and m-entry column vector b with entries in R[�, and n-entry

column vector of variables x, we may apply the technique of Zimmermann ([Zim81],

99

Chapter 10) for minimizing the expression

c
 x; (7:9)

where c is an n-element row vector. This is phrased as a general technique which

requires only that the operation � induces a total order, and that (R;
) is a group.

In this case, the solution is given as

sup

i2M

"

b

i

 inf

j2N

�

c

j

 a

�1

i;j

�

#

; (7:10)

where M is the set of rows and N is the set of columns in Equation 7.8.

7.2.2 Baccelli et.al's Max-Plus Symmetrization Technique

In the special case of max-plus systems when the matrices A and C of Equa-

tion 5.32 are square, the Max Plus working group at INRIA [Plu90] and Baccelli

et.al. [BCOQ92] give an elegant technique for solving such equations, which is based

on Cramer's rule for solving linear systems.

In order to accomplish this, they �rst introduce a new algebra of max plus

balances which has elements of three types:

� \positive" elements a = (a; �),

� \negative" elements 	a = (�; a), and

� \balanced" elements a

�

= (a; a),

with the following rules for the operations � and
:

(x

1

; x

2

)� (y

1

; y

2

) = (x

1

� y

1

; x

2

� y

2

) (7.11)

(x

1

; x

2

)
 (y

1

; y

2

) = (x

1

y

1

� x

2

y

2

; x

1

y

2

� x

2

y

1

); (7.12)

and identity and zero elements e = (0; �) and � = (�; �). Two elements, x = (x

1

; x

2

)

and y = (y

1

; y

2

) are said to balance each other, written xry if x

1

� y

2

= x

2

� y

1

.

Assuming the matrices in Equation 5.32 are in canonical form, we create new

matrices A

0

and b

0

such that A

0

i;j

= (A

i;j

; C

i;j

) and b

0

i

= (d

i

; b

i

), and express Equa-

tion 5.32 as

A

0

xrb

0

: (7:13)

100

The determinant of A

0

is de�ned to be

M

�

sgn(�)

n�1

O

i=0

A

0

i;�(i)

; (7:14)

where � ranges over all permutations of the integers f0; 1; : : : ; n� 1g, and sgn(�) = e

when � is an even permutation, and 	e when � is odd. A solution for x

i

can then

be found by �nding the determinant of A

0

when the ith column is replaced by b

0

, and

\dividing" (i.e. the inverse of the
 operation for the balance elements | dividing

by (t; �) is equivalent to
-ing by (�t; �)) by the determinant of A

0

. When all x

i

have

\positive" solutions x

i

= (t

i

; �) then the solution with all x

i

= t

i

is a solution to the

original system.

Unfortunately, a non-square system cannot be padded with � terms to apply this

method, as this results in an � determinant for A

0

, making A

0

non-invertible.

7.3 A Computationally Expensive General Solution

In his thesis, Gaubert [Gau92] shows that the max-plus balances technique above

may also be applied to solve rectangular systems

A
 x = C
 x (7:15)

when the matrices A and C have dimensions m � n for m > n. However, this

\brute force" technique is computationally very expensive as it requires calculating

the determinants of every one of the (n � 1)� (n � 1) sub-matrices of A

0

, where A

0

is as given in the corresponding max-plus balance equation, A

0

xr�.

7.4 Optimization of General Linear Max-Plus Systems

In this section we discuss minimizing and maximizing max-plus expressions over max-

plus systems. In both cases the problem is solved by adding a single variable and

no more than n + 1 UBCs containing a total of 2n non-� terms, and thus the time

complexity is similar to that of determining the maximum solution alone.

7.4.1 Maximum Solutions

Finding the maximum solution to a linear max-plus expression subject to the con-

straints of a linear max-plus system is straightforward. One need only �nd the max-

101

imum solution to the system, and then calculate the value of the expression subject

to those values.

Lemma 7.3 The maximum value of a linear max-plus expression subject to the con-

straints of a linear max-plus system occurs at the maximum solution to the system.

Proof: This follows naturally from the maximum solution since no variable can have

a larger value, and all linear max-plus expressions monotonically decrease with a

decrease in any of its variables. 2

7.4.2 Minimum Solutions

As noted in Chapter 2, we naturally phrase time separation problems as \what is the

maximum value of x

j

when x

i

is 0?" The question of minimum separation is easily

answered by �nding the maximum time of x

i

when x

j

is 0 and then
ipping its sign.

Thus, if we wish to �nd the minimum value of a given expression, it is quite easy to

do so as follows:

� Create a new variable, x

�

with additional UBCs setting it equal to the expres-

sion to be minimized.

� Find maximum value of x

;

when x

�

is 0.

� take the
 inverse of the value.

Thus while our normal problem generally maximizes the quantity

x

i

� x

;

(7:16)

for all x

i

, we now maximize

x

;

� x

�

; (7:17)

and then change the sign of the result.

7.5 Applying the Max-Plus Technique to other Algebras

As mentioned in Chapter 6 the UBC-based technique will work for a subclass of dioid

algebras (D;�;
) in which the elements of D are totally ordered with respect to the

� operation, and the
 operation forms a group on D n f�g where � is the identity

element for the � operation.

102

The proofs and techniques of Chapters 6 and 7 still apply as long as we note the

following changes:

� the notion that two elements of D, d

1

and d

2

, satisfy the relationship d

1

�

d

2

may di�er from intuition | in the min-times algebra, 2 � 3 is a correct

statement, and

� the identity elements � and 0 may di�er from algebra to algebra | for example

in the min-times algebra, the �-identity is +1 and the
-identity is 1.

As a result, in the min-times algorithm safe targeting subsets are not targeting subsets

whose cycles negative total edge weight, but instead have cycles whose edge weights

when multiplied together (in the usual algebra) result in a value of 1 or more.

In order to use the general form of Proposition 6.2 we must de�ne and prove canon-

ical a more general notion of canonical representation than found in Equation 5.23.

This is de�ned and proved correct in Appendix B

Part IV

Practical Algorithmic Solutions:

Timing Veri�cation and on

Toward Timing Synthesis

104

Chapter 8

THE SHORTCIRCUIT ALGORITHM

In this section we present the ShortCircuit algorithm for determining the max-

imum possible time separations between events whose temporal relationships are ex-

pressed solely with UBCs. The algorithm overcomes both of the problems noted for

McMillan and Dill's algorithm in Section 4.3.1. Figure 8.1 repeats the simpli�ed

version of McMillan and Dill's algorithm originally given in Figure 4.3.

Figure 8.2 gives the text of the ShortCircuit algorithm [WB93b, WB94a]. The

algorithm calculates the maximum value of all variables fx

0

; : : : ; x

n�1

g relative to a

distinguished variable, x

0

, and thus for interface timing veri�cation problems must

be run n times to calculate the full n

2

separations between n events.

McMillan & Dill's algorithm in UBC terms

Inputs: a system of m UBCs over n variables x

0

through x

n�1

Outputs: maximum possible value for each x

i

when x

0

= 0

x

0

 0

Forall x

i

if i 6= 0 then x

i

 1

Do:

For each UBC u

i

: x

�(i)

� max

j

(x

j

+ �

i;j

; : : :) in sequence do:

If x

�(i)

> max

j

(x

j

+ �

i;j

; : : :) then

x

�(i)

 max

j

(x

j

+ �

i;j

; : : :)

If x

0

< 0 then

Report constraints inconsistent and exit algorithm

Until no x

i

changes

Report values of all x

i

.

Figure 8.1: McMillan and Dill's algorithm modi�ed to determine maximum time

separations relative to a single event.

105

The Short-circuit algorithm

Inputs: a system of m UBCs over n variables x

0

through x

n�1

Outputs: maximum possible value for each x

i

when x

0

= 0

Initialization:

x

0

 0

Forall x

i

with i 6= 0 do:

x

i

 V

Associate the UBC x

i

� x

0

+ V with x

i

Do:

Updating Phase:

Do n times:

For each UBC u

i

: x

�(i)

� max

j

(x

j

+ �

i;j

) in sequence do:

If x

�(i)

> max

j

(x

j

+ �

i;j

) then

If �(i) == 0 then

Report constraints inconsistent and exit algorithm

x

�(i)

 max

j

(x

j

+ �

i;j

)

Mark x

�(i)

as having changed value during this phase

Change x

�(i)

's associated UBC to u

i

Short-circuiting Phase:

Perform strongly connected components analysis on graph edges

induced by the UBCs associated with those x

i

who are marked

as changing value during the most recent updating phase

Foreach strongly connected component C do in parallel:

Foreach x

�(i)

in C do:

y

�(i)

 max

j

(F

C

(x

j

) + �

i;j

) where

F

C

(x

j

) = �1 if x

j

is in C and

F

C

(x

j

) = x

j

if x

j

is not in C

If all y

i

2 C are �1 then:

Report the constraints inconsistent and exit algorithm

Among those x

i

2 C with y

i

6= �1

Let � be the minimum value of x

i

� y

i

If � > 0 then

Forall x

j

in C do: x

j

 (x

j

� �)

Until no x

i

changes

Report values of all x

i

.

Figure 8.2: The Short-circuit algorithm

106

The ShortCircuit algorithm consists of three di�erent sections of code: the

Initialization section, in which for each i 6= 0, the variable x

i

is set to the symbolic

value V discussed in Sections 4.3.2 and 6.4; the Updating phase in which each of

the UBCs in the system is applied to update variable bounds where possible; and

the Short-circuiting phase in which the e�ects of repeated patterns of constraint

application are deduced and applied to the variables. The initialization phase is

executed once at the start of the algorithm and from then on the updating and short-

circuiting phases alternate. Our proofs of correctness for the ShortCircuit algorithm

will rely upon relating the actions occurring in di�erent executions of the updating

and short-circuiting phases and so we make the following de�nitions.

De�nition 8.1 The i-th occurrence of an updating or short-circuiting phase refers

to the i-th time that phase is run. Any particular occurrence of the updating phase

is subdivided into n rounds, one for each iteration within the \Do n times" loop of

the updating phase.

During the updating and short-circuiting phases, each variable x

i

has a single UBC

associated with it. The updating phase applies the same constraints as in the Do-

loop of McMillan and Dill's algorithm, but whenever an variable's maximum value

is decreased, the ShortCircuit algorithm changes the UBC associated with that

variable to re
ect the constraint used to decrease it. In addition, the ShortCircuit

algorithm keeps track of which variables x

i

had their values updated during the most

recent occurrence of the updating phase.

Figure 8.3 gives an example of ShortCircuit operating on the UBC system given

at the top of the �gure. After n trips through the list of UBCs, ShortCircuit

proceeds on to the short-circuiting phase. At this point the bounds on the variables

x

i

are as given in the �fth data column of Figure 8.3(d). The graphical representation

of the constraint set is pictured in Figure 8.3(b). As was done in Section 4.3.2,

black constraint arcs represent those constraints associated with a given node, and

gray constraint arcs represent all other constraints. In Figure 8.3(b), all constraints

associated with nodes at the end of the �rst occurrence of the updating phase were

used during that occurrence, and so in the �rst short-circuiting phase we perform

the strongly connected component analysis on the black arcs in Figure 8.3(b). We

note that x

1

must decrease from 98 to 10 to meet its exterior bound, while x

2

must

107

x

1

� max(x

0

+ 10; x

2

)

x

2

� max(x

0

; x

3

)

x

2

� x

0

+ 100

x

3

� max(x

1

� 20; x

2

� 1)

(a)

0-1

x0

x3

x2x1

100 010

-20

0

(b)

0-1

x0

x3

x2x1

100 010

-20

0

(c)

variable start MD rounds short-c MD rounds short-c

x

0

0 0 0 0 0 0 0 0 0 0 0

x

1

V V 100 99 98 10 10 10 10 10 10

x

2

V 100 99 98 97 9 8 7 6 5 0

x

3

V 99 98 97 96 8 7 6 5 4 -1

(d)

Figure 8.3: Two di�erent short-circuits of the same safe targeting subset.

decrease from 97 to 0 to do so. Clearly x

1

's decrease is the smaller and so we decrease

all of x

1

, x

2

, and x

3

by 88.

Note that the arcs pictured in black in Figure 8.3(b) are a safe targeting sub-

set (De�nition 6.12). As we will show in Section 8.1, during each step of the

ShortCircuit algorithm, the set of constraints associated with the variables is a

108

safe targeting subset. For the example of Figure 8.3, the result of the �rst short-

circuiting round is not the maximum solution to that safe targeting subset. A second

pass through both phases is required even though the set of constraints associated

with the variables does not change between the two occurrences of the short-circuiting

phase. However, the constraint x

1

� max(x

0

+ 10; x

2

) is not applied during the sec-

ond occurrence of the short-circuiting phase. When the constraint associated with

a speci�c x

i

is not used during the most recent updating phase, we represent it as

in Figure 8.3(c) with dashed black arcs. The strongly connected components anal-

ysis is performed on the black arcs only with results as given in the last column of

Figure 8.3(d).

8.1 Proof of Correctness for the ShortCircuit Algorithm

In this section we show that ShortCircuit and UBCsolv obtain the same maximum

solutions for a set of variables x

i

relative to a distinguished x

0

. Since Theorem 6.2

has already proved UBCsolv correct, this will prove ShortCircuit correct as well. To

do this we show several things:

� that the set of constraints associated with each x

i

always forms a safe targeting

subset,

� that the process of short-circuiting components within a safe targeting subset S

always results in variable bounds greater than or equal to the maximum solution

to S, and

� that short-circuiting process is applied to a given targeting subset S at most n

times.

Our arguments below depend on the UBCs having the property that for UBC

u

i

: x

� (i)

� max

j

(x

j

+ a

i;j

) (8:1)

targeting x

� (i)

, the value of a

i;�(i)

is �1. As was shown in Proposition 6.2, any

system of UBCs may be changed into an equivalent set of UBCs with this property.

Proposition 8.1 During every step of the ShortCircuit algorithm the set of UBCs

associated with the variables fx

0

; : : : ; x

n�1

g is a targeting subset.

Proof: Recall from De�nition 6.8 that a targeting subset of a system of UBCs over

n variables is a set of n� 1 UBCs such that all variables except x

0

are the target of

109

a single constraint. As we begin the ShortCircuit algorithm, each x

i

with i 6= 0 is

associated with a single UBC, thus giving us a targeting subset. From that point on,

an individual x

i

's targeting UBC may change, but each x

i

where i 6= 0 always has

one. Note that we never associate a UBC with x

0

since to do so would require a UBC

capable of decreasing the bound on x

0

, but this causes the algorithm to terminate

immediately indicating that the constraint set is inconsistent. 2

We would now like to show that such a targeting subset is always safe. To do so,

we �rst demonstrate that the following local property holds for all constraints in the

targeting subsets present during the ShortCircuit algorithm. We begin by recalling

the method for referring to a targeting subset of UBCs as consisting of n�1 equations

x

i

� max

j

(x

j

+ (PA)

i;j

) (8:2)

where P is a targeting selector for the UBC system as originally given in De�nition 6.9.

Throughout the rest of this chapter, we will use the bold term x

i

in equations which

describe the UBCs of U constraining the value of variable x

i

, and the italic term x

i

to represent its current value.

Lemma 8.1 Immediately after every change in a variable's bound during the updat-

ing phase and at the end of any occurrence of the short-circuiting phase, if

x

i

� max

j

(x

j

+ (PA)

i;j

) (8:3)

is the UBC associated with x

i

, then

x

i

� x

j

+ (PA)

i;j

(8:4)

for all j.

Proof: It should be obvious that this is the case at the end of the initialization

phase since at that point each x

i

with i 6= 0 is associated with the constraint x

i

�

x

0

+ V and x

0

= 0 while x

i

= V for i 6= 0. The remainder of the proof is then an

induction argument in which it is argued that if the property holds just before any

of the operations which change some x

i

's value, it must also hold immediately after

the change.

110

Suppose the algorithm is in the updating phase and at the moment Lemma 8.1

holds, and some variable x

i

is about to have its bound decreased. Before that decrease

occurs we have

x

i

� x

j

+ (PA)

i;j

(8:5)

for all j. When x

i

's value changes it becomes the new value x

0

i

with

x

0

i

< x

i

; (8:6)

and the targeting selector P changes to P

0

to re
ect the possible change in the

constraint targeting x

i

. Immediately after that update, we have

x

0

i

= max

j

(x

j

+ (P

0

A)

i;j

); (8:7)

which satis�es

x

0

i

� x

j

+ (P

0

A)

i;j

; (8:8)

for all j. The question then remains whether the decrease in from x

i

to x

i

may

invalidate the property for some other UBC x

k

� max

j

(x

j

+ (P

0

A)

k;j

) with k 6= i. If

this is the case, then we must have that

x

k

� x

i

+ (PA)

k;i

; (8:9)

while

x

k

< x

0

i

+ (P

0

A)

k;i

: (8:10)

Now, since in the change from P to P

0

, the UBC targeting x

k

did not change, Equa-

tion 8.10 implies that

x

k

< x

0

i

+ (PA)

k;i

: (8:11)

Combining Equations 8.9 and 8.11, we get

x

0

i

+ (PA)

k;i

> x

i

+ (PA)

k;i

; (8:12)

which is impossible since it directly contradicts Equation 8.6.

For value changes during short-circuiting we note that since the set of associated

UBCs do not change we need show that for every UBC x

i

� max

j

(x

j

+(PA)

i;j

), with

x

i

� x

j

+ (PA)

i;j

(8:13)

111

holding before the short-circuiting steps it follows that

x

0

i

� x

0

j

+ (PA)

i;j

; (8:14)

where x

0

i

and x

0

j

are the new values of the variables after short-circuiting. If x

i

and

x

j

are both in the same strongly connected component, then since both decrease by

the same amount, Equation 8.13 implies that Equation 8.14 holds. If x

i

and x

j

are

not in the same strongly connected component, then the arc from x

j

to x

i

is exterior

to the component x

i

is in, and thus after short-circuiting

x

0

i

� x

j

+ (PA)

i;j

; (8:15)

since by the way the � values are calculated by ShortCircuit, no node with exterior

arc decreases below the value provided by that arc. Since x

0

j

< x

j

, Equation 8.15

yields Equation 8.14. 2

We are now ready to show that the local property of Lemma 8.1 implies that the

targeting subsets present at every step of the ShortCircuit algorithm are indeed

safe targeting subsets.

Lemma 8.2 At every step of the ShortCircuit algorithm, the set of UBCs associ-

ated with the variables x

i

is a safe targeting subset.

Proof: By Proposition 8.1, we know that such a UBC subset is a targeting subset.

Consider any cycle in the graph induced by such a targeting subset. By Lemma 8.1,

we know that in this graph, for all arcs from x

j

to x

i

with arc weight (PA)

i;j

, it

is the case that x

i

� x

j

+ (PA)

i;j

. Assume without loss of generality that the

cycle in question consists of the nodes fx

1

; : : : ; x

k

g with arcs of weight �

i

from x

i

to

x

(imodk)+1

. We then have by Lemma 8.1 that

x

(imodk)+1

� x

i

+ �

i

(8:16)

and that the total cycle weight is

k

X

i=1

�

i

: (8:17)

Since the graph induced by the safe targeting subset present at initialization contains

no cycles, it must be the case that one arc along this current cycle was the most

112

recently introduced into the graph. Suppose that was the arc from x

k

to x

1

and that

at that time the value of x

1

was updated from x

1

to x

0

1

. We know then that

x

0

1

< x

1

(8:18)

and that both

x

k

� x

1

+

k�1

X

i=1

�

i

(8:19)

and

x

0

1

� x

k

+ �

k

: (8:20)

By Equations 8.19 and 8.20 we therefore have

x

0

1

� x

1

+

k

X

i=1

�

i

: (8:21)

Note that the only way Equation 8.21 can be consistent with Equation 8.18 is if

0 >

k

X

i=1

�

i

; (8:22)

and therefore the weight of any cycle must be negative. 2

Lemma 8.3 If S is the safe targeting subset associated with a given step of

ShortCircuit then the bounds on the values of the variables x

i

during that step

are not less than the maximum solution to S when x

0

= 0.

Proof: By Lemma 8.1 we know that at every step of the ShortCircuit algorithm

x

0

= 0, and the equations

x

i

� max

j

(x

j

+ (PA)

i;j

) (8:23)

hold for every variable x

i

. In comparison, the maximum solution to S solves the n�1

equations

x

i

= max

j

(x

j

+ (PA)

i;j

) (8:24)

for x

0

= 0. Thus we need only prove that in any solution to the system of Equa-

tion 8.23, the variable values are no less than those of the solution to Equation 8.24.

113

Let m

i

be the solution for each variable x

i

to the system of Equation 8.24, which

is unique by Theorem 6.1, and let l

i

be a solution for each variable x

i

to the system

of Equation 8.23. If the lemma is not true then there must be some l

i

such that

m

i

> l

i

: (8:25)

Now by Equation 8.24, the total ordering property and Proposition 6.2, we know that

there exists at least one j 6= i such that

m

i

= m

j

+ (PA)

i;j

: (8:26)

Furthermore, by Equation 8.23 we also know that

l

i

� l

j

+ (PA)

i;j

: (8:27)

Together, Equations 8.25, 8.26 and 8.27 give us m

j

+(PA)

i;j

> l

j

+(PA)

i;j

, and thus

m

j

> l

j

(8:28)

We may then apply the same argument to �nd a k with

m

j

= m

k

+ (PA)

j;k

(8:29)

and

m

k

> l

k

: (8:30)

By repeatedly applying this argument we �nd that one of two things may occur

within n applications of this argument: either we discover that

m

0

> l

0

; (8:31)

or we �nd a series of variables (without loss of generality) fx

1

; x

2

; : : : ; x

k

g such that

for 1 � i � k

m

i

= m

1+(imodk)

+ (PA)

i;[1+(imodk)]

(8:32)

and

m

i

> l

i

: (8:33)

114

In the �rst case, we then have that l

0

< 0. However, the ShortCircuit algorithm

never decreases the value of x

0

, so this cannot happen.

In the second case, we use Equation 8.32 as in Lemma 8.2 above resulting in the

equation

m

1

= m

1

+

k

X

i=1

(PA)

i;[1+(imodk)]

: (8:34)

Since the corresponding safe targeting subset has only negative cycles, this is equiv-

alent to

m

1

= m

1

+ ! (8:35)

where ! < 0. This forces m

1

= �1, which is impossible since it violates Equa-

tion 8.25. 2

We have now shown that ShortCircuit never undercuts the values obtained by

UBCsolv for a consistent system, but it remains to answer:

� whether ShortCircuit converges in a �nite number of steps,

� whether ShortCircuit and UBCsolv converge to the same bounds, and

� whether ShortCircuit and UBCsolv declare the same systems inconsistent.

We answer the �rst question by demonstrating that while the safe targeting subset

associated with each iteration of short-circuiting may occur more than once, the

strongly connected components that are examined are always properly contained

within the components short-circuited the last time that particular safe targeting

subset was short-circuited. Figure 8.3 includes an example of this phenomenon. The

next few lemmas will demonstrate that this is always the case, and thus the same

safe targeting subset may be short-circuited at most n times.

Lemma 8.4 At any point in the ShortCircuit algorithm, if all nodes in any strongly

connected component, C, contained in the current safe targeting subset, S satisfy their

target UBC,

x

i

� max

j

(x

j

+ (PA)

i;j

) (8:36)

then at least one node x

i

has value

x

i

= x

j

+ (PA)

i;j

(8:37)

where x

j

is not a member of C.

115

Proof: By Lemma 8.1 we know that for every x

i

x

i

� x

j

+ (PA)

i;j

(8:38)

for all j, and therefore Equation 8.36 indicates that for every x

i

in C, Equation 8.37

must hold for some x

j

which may or may not be in C.

If Equation 8.37 applies for an x

j

not in C, we have proved the lemma. Otherwise,

Equation 8.37 applies only to pairs x

i

and x

j

in the same strongly connected com-

ponent then the arcs corresponding to those pairs must form one or more directed

cycles within the component. Applying Equation 8.37 for all nodes on one such cycle

gives us an argument similar to that in Lemma 8.3 that

x

k

= x

k

+ ! (8:39)

for negative ! as in Equation 8.35. This indicates that x

k

= �1 for some node x

k

in

the component. However, this satis�es Equation 8.37 since �1 � x

j

+(PA)

i;j

) for all

x

j

whether it is in the same component or not, and any subgraph of a safe targeting

subset includes nodes in at least two di�erent strongly connected components since

no arc points towards x

0

. 2

De�nition 8.2 At the termination of any occurrence of the updating phase, the nodes

of the induced graph are one of three types:

� nodes whose values are equal to the maximum solution to the safe targeting

subset, S, present at the end of this occurrence of the updating phase, called

valid nodes, and denoted in graphs with a 2,

� nodes that are not valid nodes and whose values changed during the current

iteration of the updating phase, called changed nodes, and denoted in graphs

with a �, and

� nodes that are not valid nodes and whose values have not changed during the

current iteration of the updating phase, called unchanged nodes, and denoted

in graphs with a �,

Figure 8.4 gives the diagrams of Figure 8.3 using these node symbols.

116

0-1

x0

x3

x2x1

100 010

-20

0

(b)

0-1

x0

x3

x2x1

100 010

-20

0

(c)

Figure 8.4: The diagrams of Figure 8.3 using the symbols of De�nition 8.2.

Lemma 8.5 If S is a safe targeting subset present at the end of an updating phase

then any variable bound x

i

that did not change in that updating phase is at its maxi-

mum solution value in S.

Proof: We consider the graph corresponding to the safe targeting subset at the end

of the updating phase, and the types of its nodes according to De�nition 8.2, and will

prove that unchanged nodes cannot exist in that graph. We examine the placement

of unchanged nodes in the graph corresponding to the full safe targeting subset,

minus those arcs used to short-circuit at a particular phase. That is, we examine the

subgraph made up of all node types but only dashed lines as in Figure 8.4. In such

a graph of dashed arcs we �nd any topologically �rst strongly connected component.

Since x

0

is never an unchanged node, a topologically �rst component must either

be a single node which has no unchanged nodes as parents, or a strongly connected

component of size 2 or more unchanged nodes with no unchanged nodes entering it,

since otherwise it is not topologically �rst.

Figure 8.5(a) gives a diagram of the �rst case. Arcs are shown dashed since they

have not been used during the most recent updating phase. Suppose our designated

unchanged node is x

i

, and has associated UBC

x

i

� max

j

(x

j

+ (PA)

i;j

): (8:40)

117

(a) (b)

Figure 8.5: The two cases in the proof of Lemma 8.5.

We may re-write this UBC instead as

x

i

� max[max

p

(x

p

+ (PA)

i;p

);max

q

(x

q

+ (PA)

i;q

)] (8:41)

where among those x

j

with terms (PA)

i;j

6= �1, p ranges over variables x

p

which

have valid values and q ranges over variables x

q

which have changed values. At the

end of the updating phase, we claim it must be the case that

x

i

> max(max

p

[x

p

+ (PA)

i;p

];max

q

[x

q

+ (PA)

i;q

]): (8:42)

To see this, note that

x

i

> max

p

(x

p

+ (PA)

i;p

); (8:43)

else x

i

would have to be a node of valid type, and

x

i

> max

q

(x

q

+ (PA)

i;q

); (8:44)

since the values of all such nodes x

q

have changed since the last time x

i

changed

value. Furthermore, at least one of the nodes x

q

changed for the �rst time during the

nth and �nal round of the updating phase, since otherwise, applying the constraint in

Equation 8.40 would have been updated x

i

during updating. Now, applying the same

argument, if that same x

q

didn't change until the nth round of the current updating

phase, then it must have depended on some x

q

0

which changed for the �rst time no

118

earlier than the n� 1st round. We continue this argument and �nd that there must

be n distinct nodes, none of them x

i

, each of which changed value for the �rst time

in this updating phase no earlier than the k-th round for 1 � k � n. That, however,

is impossible since that would indicate our system has at least n + 1 distinct nodes,

and we have precisely n.

Figure 8.5(b) gives a diagram of the second case. Here we argue that since the

values of the nodes in the strongly connected component cannot all satisfy their

associated constraints without meeting the bound of some exterior arc (Lemma 8.4),

either one of the nodes in that component has changed during updating or it must

have bound equal to that provided its associated set of exterior arcs. By the same

argument as above, all such exterior bounds either must provide a valid bound to a

node in the component or must change during the �rst n�1 rounds within the current

updating phase. If the component has no exterior arcs, it must contain at least one

node with value �1, but ShortCircuit never sets any x

i

to �1. Therefore some

unchanged arc must change in the nth round or sooner in order to satisfy Lemma 8.4.

2

Lemma 8.6 The ShortCircuit algorithm may short-circuit using the same safe tar-

geting subset, S, a maximum of n times.

Proof: Similar to Lemma 8.5, we will now show that in every instance where strongly

connected components of a given safe targeting subset, S, are short-circuited, at least

one node that was not previously at its correct maximum value for that safe targeting

subset achieves that maximum value. Since there are only n nodes in the graph, and

since Lemma 8.2 tells us that the values of nodes are never lower than their upper

bounds according to the current safe targeting subset this can happen no more than

n times per safe targeting subset.

We examine the placement of changed nodes in the graph of the safe targeting

subset. This time we �nd a topologically �rst changed node or strongly connected

component of changed nodes among the strongly connected components examined by

ShortCircuit.

Clearly the situation in Figure 8.6(a) cannot occur since in the �rst round of the

preceding updating phase, the changed node must have reached its valid value with

one application of its target constraint. For the case of Figure 8.6(b) we simply note

119

(a) (b)

Figure 8.6: The two cases in the proof of Lemma 8.6.

that the short-circuiting process always brings some node in the component to meet

the value provided by its exterior arcs. Whichever node that is, its targeting UBC

can be written

x

i

� max[max

p

(x

p

+ (PA)

i;p

);max

q

(x

q

+ (PA)

i;q

)] (8:45)

where the x

p

range over the nodes with valid values and the x

q

range over the nodes

with changed values. After short-circuiting, some x

i

therefore has value

max

p

(x

p

+ (PA)

i;p

) (8:46)

which must be the valid value of x

i

. Hence, at least one changed node becomes valid

for a given safe targeting subset each time that subset appears in the short-circuiting

phase. 2

Lemma 8.7 The ShortCircuit algorithm converges in a �nite number of steps

through its outer Do-loop.

Proof: This is a direct result of the fact that there are only a �nite number of safe

targeting subsets for a given system of UBCs (Lemma 6.10), a single safe targeting

subset is associated with the ShortCircuit algorithm each time it enters the short-

circuiting phase, and the fact that the ShortCircuit algorithm enters the short-

circuiting phase at most n times for each such safe targeting subset (Lemma 8.6).

2

120

Combined with the upper bound on the number of possible targeting subsets given

in Lemma 6.10 this gives us a bound of

O(n � nt � (m+ 1)

n�1

) (8:47)

on the time for ShortCircuit to converge for a system of m UBCs consisting of t

terms over n variables. Unlike the bound on McMillan and Dill's algorithm, this

bound is expressible independently of the values of the coe�cients of the constraint

terms. A rather smaller bound for ShortCircuit is conjectured at the end of this

section.

Lemma 8.8 The ShortCircuit and UBCsolv algorithms declare the same UBC sys-

tems inconsistent.

Proof: By Lemmas 8.7 and 6.10 we know that the ShortCircuit algorithm cannot

�nd consistent a set of bounds which UBCsolv declares inconsistent. To see this,

note that if ShortCircuit terminates with a solution it declares consistent then all

UBCs in the system are satis�ed by that solution and UBCsolv cannot �nd the system

inconsistent. Suppose instead that the ShortCircuit algorithm �nds a UBC system

inconsistent while UBCsolv does not. ShortCircuit algorithm may declare a UBC

system inconsistent in one of two ways:

� it �nds a UBC which forces the value of x

0

below 0, or

� among the strongly connected components found during the short-circuiting

phase, there is at least one which has no recently-used arcs entering it.

In the �rst case we consider the bounds l

i

that the ShortCircuit algorithm

has for each of the variables x

i

just before the constraint reducing x

0

's bound is

found. By Lemma 8.3, UBCsolv's solutions, m

i

, must be no larger, and therefore the

constraint which decreases x

0

below when applied to the values l

i

in ShortCircuit

must certainly decrease x

0

when applied to the values m

i

by UBCsolv.

In the second case, it must be true that in the safe targeting subset containing

that component there is no path from x

0

to all x

i

in the component. To see this, we

note that the components to be short-circuited are determined based on whether the

nodes in them have been updated in the most recent updating phase. Among all arcs

121

in the safe targeting subset, all of those pointing to one of those recently updated

nodes are included in the components and thus all paths to nodes in the component

originate in the component. By Lemma 6.8 this indicates that the UBC system is

inconsistent. 2

Theorem 8.1 The ShortCircuit algorithm converges upon the correct maximum

solution to a UBC system U within a �nite number of steps.

Proof: This is easily proved by showing that the ShortCircuit algorithm con-

verges upon the same answer as UBCsolv in a �nite number of steps. From Lem-

mas 8.7 and 8.3, we know that ShortCircuit converges within a �nite amount of

time to values which are no smaller than those obtained by UBCsolv. However,

ShortCircuit may only terminate under two conditions: the UBC system is incon-

sistent, or no UBCs may be applied to reduce any variable's bound. By Lemma 8.8,

we know that whenever ShortCircuit declares a UBC system inconsistent, UBCsolv

will do so as well and vice versa. However, if the ShortCircuit algorithm cannot

apply any more constraints, then the values it converges upon must satisfy the UBC

system. None of the variables may have value larger than in UBCsolv's solution,

since UBCsolv has been proven to �nd the largest solution to the UBC system (The-

orem 6.2). 2

Lemma 8.9 Each round of the ShortCircuit algorithm requires time at most O(nt)

where n is the number of variables in the system and t is the number of terms not

equal to �1 among the right hand sides of the UBCs.

Proof: During the updating phase, each of the n passes through the constraints

requires t additions and t max comparisons for a total of 2nt operations. The strongly

connected components analysis takes time O(max(n; t

0

)) ([Baa88], Chapter 4.6) where

t

0

is the maximum number of edges in the graph induced by a targeting subset and

is therefore no larger than n

2

. 2

Conjecture 8.1 The worst-case number of occurrences of the updating and short-

circuiting phases of ShortCircuit for UBC system of m constraints with t terms not

equal to �1 in the constraints' right hand sides over n variables is between n and t.

This then would give a worst case time to convergence between O(n

2

t) and O(nt

2

).

122

8.2 Practical Advantages of ShortCircuit over UBCsolv

Examples such as that in Figure 8.3 above in which multiple occurrences of the short-

circuiting phase operate on the same safe targeting subsets may initially lead one to

believe that ShortCircuit is less practical than UBCsolv. However there are two

ways in which ShortCircuit has an advantage over UBCsolv.

The �rst is that the data structures required for ShortCircuit are smaller than

those for UBCsolv. Both require some representation of the individual UBCs, but the

closure technique requires that we calculate an O(n

2

) size closure matrix, while the

ShortCircuit algorithm requires a stack of size O(n) and O(n) additional variables

for the strongly connected components algorithm, plus for each x

i

, variables contain-

ing the current value, associated constraint, and a
ag indicating if the corresponding

variable's bound was updated during the current updating phase.

The second advantage is that the the time to perform one pass through the

ShortCircuit algorithm is O(nt) as opposed UBCsolv's O(t + n

3

). Although it is

not di�cult to come up with problems in which the ShortCircuit algorithm is more

time-consuming, these do not correspond to practical timing problems.

8.3 A Worst-Case Example

Figure 8.7 gives an example system with O(k) UBCs which takes UBCsolv O(k

4

) and

ShortCircuit O(n

3

) time to solve for all separations relative to the single variable

Z.

To analyze UBCsolv's progress, we note that each time a new safe targeting subset

S

0

is chosen from the previous S, only one UBC targeting a single variable is changed.

Thus we may bound UBCsolv's time to convergence by counting the number of times

each UBC may be exchanged into or out of the new safe targeting subset.

� the k constraints of the form A

i

� 3k

2

(i + 1) + Z may only be switched into

the constraint subset once since the value they provide to their target node is

relative to the value of Z, which does not change, and thus they contribute at

most k rounds to the constraint set updating process;

� similarly, the k+1 non-V constraints targeting A

k

and the B

i

terms may only be

switched into the constraint subset once since each of these nodes has only one

123

�

�

�

�

�

�	t

@

@

@

@

@

@Rt

�

�

�

�

�

�	t

@

@

@

@

@

@Rt

�

�

�

�

�

�	t

@

@

@

@

@

@Rt

�

�

�

�

�

�	t

@

@

@

@

@

@Rt

-1

3k

2

6k

2

3k

3

� 3k 3k

3

t

Z

A

0

A

1

A

k�2

A

k�1

t

A

k

B

0

B

1

B

k�2

B

k�1

�

�

�

�

�

�	� ppppppppppppppppppp� � �

-p p p p p p p p p p p p p p p p p p p- -

@

@

@I

�

�

�

�

�

�

�

�

�

enumerator max-plus equation regular equation

for i = 0 to k A

i

� V
 Z A

i

� V + Z

for i = 0 to k � 1 B

i

� V
 Z B

i

� V + Z

for i = k � 2 down to 0 A

i

� A

i+1

A

i

� A

i+1

for i = k � 1 downto 0 A

i

� (1
 i)

3

k

 Z A

i

� 3k

2

(i+ 1) + Z

for i = k � 1 downto 1 B

i

� B

i�1

� A

i

B

i

� max(B

i�1

; A

i

)

B

0

� A

0

B

0

� A

0

A

k�1

� �1
 A

k

A

k�1

� �1 + A

k

A

k

� B

k�1

� Z A

k

� max(B

k�1

; Z)

Figure 8.7: Pathological example of size O(k). Arcs without labels should be consid-

ered to have scalar o�sets of 0.

non-V constraint targeting it, and when a V-constraint is swapped out the value

of the node it targets becomes less than V, thus preventing the V-constraint

from being swapped in again; and

� the k� 1 constraints of the form A

i

� A

i+1

plus the constraint A

k�1

� A

k

� 1

may only be switched out once by the A

i

� 3k(i+1)+Z constraints, and then

may switch in only one more time, and hence they contribute at most 2k rounds

to the constraint set updating process.

Thus UBCsolv requires at most k + (k + 1) + 2k = 4k + 1 rounds to converge, and a

total time of O(k

4

) to solve the system. The constraint ordering given in the table

124

at the bottom of Figure 8.7 results in time �(k

4

) to convergence.

For this example, the ShortCircuit algorithm is somewhat quicker than UBCsolv

requiring only time O(k

3

) to complete.

For this same example, the time complexity of McMillan and Dill's algorithm

([MD92], in Appendix A) is quite di�erent. Their algorithm begins by �lling the

entries of an n � n matrix, S, such that S

i;j

is the current upper bound on the

maximum value of x

i

� x

j

. The algorithm begins by initializing the values of all S

i;i

to 0 and all other S

i;j

to1. Constraints of the form x

i

� x

j

+� (i.e. those containing

no max term) are entered directly into the matrix as S

i;j

= �. The algorithm then

proceeds to loop through the matrix entries updating

S

i;j

 S

i;k

+ S

k;j

(8:48)

whenever the quantity on the right hand side of the \ " is smaller than the current

value of S

i;j

. Constraints containing a max term cannot be directly entered into

the matrix, but their e�ect on the values S

i;j

is entered into the matrix at regular

intervals.

When the MD algorithm is applied to the constraints of Figure 8.7, it quickly

discovers that the maximum value relative to A

k

of each of the other nodes A

i

and B

i

is �1, and the max constraints targeting the B

i

are no longer consulted during the

matrix updating phase. However, when this happens, the value of A

k

relative to Z

is still nearly 3k

3

, and can only be reduced by repeated application of the constraint

A

k

� max(Z;B

k�1

) to the values of Z and B

k�1

relative to Z. With each such

application, and the resulting updates in the matrix, the value of all nodes (except

Z) relative to Z declines by 1, thus requiring a total time of O(k

6

) to discover all n

2

time separations in the system |O(k

3

) time to update the matrix times O(k

3

) matrix

updates during which the value of A

k

relative to Z declines by only 1. Note, however

that any increase in the coe�cient of the constraint A

k�1

� 3k

3

+ Z results in an

increase of the running time, and as discussed in Section 4.3.1, were the constraints

A

i

� 3k

2

(i + 1) + Z removed, their algorithm would erroneously state that the

maximum time separation of all other nodes relative to Z was 1.

125

8.3.1 Comparison of ShortCircuit with MaxSeparation

As �rst mentioned in Section 4.3.3, since the introduction of ShortCircuit, Yen

et. al. have proposed the MaxSeparation algorithm. As with ShortCircuit,

MaxSeparation is an iterative technique consisting of repeated relaxation of con-

straints. The time to perform one relaxation round of MaxSeparation is

O(E + V log V); (8:49)

when run on an acyclic graph with V nodes and E constraints. The authors conjecture

a total running time of

O(V E + V

2

log V); (8:50)

based on a maximum of V + 1 required relaxation rounds. The time for one

ShortCircuit, iteration, on the other hand is

O(nt); (8:51)

with a conjectured total run time falling between

O(n

2

t) (8:52)

and

O(nt

2

) (8:53)

for a system of UBCs containing t non-� terms over n variables. MaxSeparation's

constraint form only allows one max type constraint to bound each variable from

above and thus there are UBC systems in which each of n variables is targeted by

O(n) constraints with O(1) constraint terms each for a total of n nodes and O(n

2

)

terms while the MaxSeparation algorithm must have the problem expressed with a

total of O(n

2

) edges and O(n

2

) nodes | each UBC with more than one non-� term

is given its own node and all such nodes corresponding to constraints with the same

original target are set equal with a set of O(n) linear constraints with bounds [0; 0].

However, for practical problems, the values of n and V and t and E for the two should

be comparable. Should a proof of correctness for MaxSeparation be produced, it may

very well become the technique of choice for interface timing veri�cation.

126

8.4 Run-time Results

We have implemented the algorithm and run both practical examples [Mye93, MD92]

and randomly generated larger examples built to look like practical examples. In all

cases no more than three short circuiting phases were required to �nd maximum

skews relative to a single event. Running times were on the order of 20 seconds on a

DEC station 5000 to �nd all n

2

maximum skews for a dense constraint graph with

80 nodes.

127

Chapter 9

TOWARDS DEVELOPING PRACTICAL TIMING

SYNTHESIS PROCEDURES

With the exception of the examples of timing synthesis problems given in Sec-

tion 2.5, this work has concentrated on problems of timing veri�cation rather than

timing synthesis. It is natural, however, that whenever there is a need for the veri-

�cation of the correct temporal behavior of a system, there must �rst have been the

construction of that system. At the time a system is constructed, whether built from

scratch or assembled from modules, decisions are made about the functional and tem-

poral dependencies of its sub-parts. Once functional dependencies are assigned there

may still be some freedom in how quickly each sub-system completes its given task.

Allotting time to each of these sub-systems is timing synthesis. When the system

under construction has several input and output events with timing constraints on

their relative occurrence times, timing synthesis may not be trivial.

With the exception of the review of Borriello's work found in the next section,

the rest of this chapter will concern itself with timing synthesis problems for which

a suitable synthesis skeleton, or partial ordering of activities has been provided.

This skeleton removes all information about the functional structure of the system

and relates events through simple timing relationships. Figures 2.12 and 2.13 give

di�erent skeletons for the same problem, one with synthesis variables and one with

delays already chosen. In any skeleton, the events which will be related to each other

are already determined, but the coe�cient terms of those constraints are not yet

set. In general, the problem of determining a suitable synthesis skeleton is di�cult

and requires knowledge of the functional relationships among events as well as their

temporal relationships. We note that while we require a skeleton for our problem, the

process of creating synthesis skeletons might very well utilize a skeleton-dependent

timing synthesis tool to determine which skeletons and sub-skeletons are feasible.

128

9.1 Borriello's Interface Transducer

In this section we review the Janus interface transducer tool of Borriello's Ph.D.

thesis [Bor88]. Of key interest here is the Suture algorithm which given a timing

diagram representing an interface produces the logic that realizes it. Suture performs

a breadth-�rst search of the event graph | the graph-theoretic realization of the

formalized timing diagram introduced in Section 4.1 | using a template-matching

procedure to determine the logic necessary to generate all required interface events. In

this case, the logic generated determines the synthesis skeleton as the timing synthesis

decisions are made. In order to assure that all minimum timing constraints from

one event to a succeeding event are met, the algorithm may synthesize the logic for

the following event to \wait" for an appropriately delayed signal from the preceding

event. Following this restriction, events are generated as soon as possible to encourage

the construction of an interface capable of handling higher bandwidth. However,

generating an event at its earliest allowable time relative to its predecessors may cause

a maximum constraint to a succeeding event to be violated. The priority queue based

all pairs shortest paths timing veri�cation algorithm [LW83, BN86] �rst mentioned

in Section 4.1 is used to determine more conservative minimum time separations for

all pairs of events. This method applies because the timing constraints present are

all treated as guarantees and requirements. As we will see in Section 9.5, this

approach is not tractable for all systems that include delay relationships among their

events.

9.2 A Taxonomy for Interface Synthesis

Although delays, guarantees, and requirements as given in Chapter 3 represent the

timing properties of interface hardware, in practice, the correct temporal synthesis

of interface logic is better served by a more re�ned set of primitives. We partition

the delays, guarantees, and requirements encountered during the synthesis procedure

into the following three orthogonal categories:

Environment vs. Synthesis Object In general, we divide the problem into

the environment | those aspects of timing behavior which are provided to us | and

the synthesis object, which we are designing.

129

Specification Semantics Constrainable Unconstrainable

Propagation Delays: incompletely synthesized

activities

fully synthesized

activities

Guarantees: modifyable environment behavior of environment

Requirements: all performance constraints do not exist

Figure 9.1: Taxonomy of interface constraint types.

Propagation Delays vs. Timing Constraints: Both circuit and environment

may include structural timing information in the form of propagation delays. The

environment may include timing requirements which indicate the allowable time sep-

arations of inputs to the environment and timing guarantees which summarize its

temporal behavior. Section 3.2 discusses these divisions more thoroughly.

Constrainable vs. Unconstrainable ranges: Constrainable delays and per-

formance measures indicate time ranges which may be further constricted, as needed,

to create a consistent circuit-environment combination; unconstrainable ranges repre-

sent elements for which the circuit must function correctly for arbitrary delay behavior

anywhere within the given range.

Figure 9.1 gives a summary of these categories, which are here more completely

described from top to bottom.

� Constrainable Propagation Delays represent propagation delays which may

be adjusted. This may indicate a component which is not completely synthe-

sized, as in the case of interface circuitry, or an environment whose timing

behavior can be modi�ed, whether it is done through an adjustment of the part

or by selecting one from among a family of parts.

� Unconstrainable Propagation Delays represent the unalterable causal

structure of a device.

� Constrainable Timing Guarantees are similar to constrainable propagation

delays, but in this case no explicit structural information is provided.

� Unconstrainable Timing Guarantees represent components whose timing

130

behavior cannot be adjusted and for which no explicit structural information is

provided.

� Constrainable Timing Requirements represent all timing requirements

since performance requirements may always be over-met.

� Unconstrainable Timing Requirements do not exist.

Under this taxonomy, the veri�cation problem consists of checking that a fully

speci�ed system (no portions still represented with constrainable propagation de-

lays or constrainable guarantees) meets all of its performance requirements, and the

synthesis problem consists of constraining all constrainable propagation delays and

constrainable guarantees until they, in conjunction with their unconstrainable coun-

terparts meet all of the timing requirements.

9.3 Max-Plus Synthesis Problems

The key feature of any timing synthesis problem is that the timing behavior of the

synthesized system must fall within a given set of constraints. We can demonstrate

that this is the case by showing that the space of the solution is contained within the

space of the constraints. The de�nition of containment below follows the notation of

Gahlinger [Gah90].

De�nition 9.1 Let C be a set of UBCs as given in De�nition 6.4, then S(C) is the

space of C, and is de�ned as all vectors x over X such that x satis�es all constraints

in C simultaneously. For any such x, we say that x 2 S(C), and that

[x 2 S(C)! x 2 S(C

0

)] , S(C) � S(C

0

) (9.1)

Using this notation, we can de�ne the generic max-plus synthesis problems as

follows.

De�nition 9.2 Given two sets of max plus constraints, the given G, and the target,

T , the generic max-plus synthesis problem asks if it is possible to �nd a new

set of max-plus equations, C such that

; 6= G \ C � T (9:2)

131

~ ~ ~ ~ ~ ~

~

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

@

@

�

�

�

�

@

@

�

�

�

�

�

�

�

wake phone leave arrive meet work

ready

[35; 45] [10; 15] [15; 20] [0; 0] [30; 40]

[
;
 + 5] [0; 0]

p

p

p

p

p

p

p

p

p

p

p

p

p

p

[�; 0]

Figure 9.2: IBDS-synthesis diagram for the case in which Ernie must be ready when

Bert arrives. The dotted arc indicates a constraint which should be satis�ed by the

assignment of a value to
.

Naturally, if G\T 6= ;, then the easiest answer to this question is C = T . However,

problems based on practical situations generally have some tight restrictions on the

form of C, and sometimes on G and T as well. A few such problems will be given in

the following sections.

9.4 I-BDS Synthesis Problems

Recall from Chapter 2 the problem of choosing a revised carpooling arrangement so

that the parties involved would be at work by 9:00 in the morning. Suppose that

Bert has determined that the best solution to the problem is to drive from his home

to Ernie's home, but never to wait if Ernie is not ready when he arrives. If we know

that Ernie may under-estimate how quickly he will be ready by as much as 5 minutes,

then we must �nd a value of
 for the system pictured in Figure 9.2 such that

max(ready� arrive) � 0: (9:3)

Determining how much time Ernie may take to get ready is \synthesizing" Ernie's

temporal behavior to meet Bert's requirements.

Figure 9.2 is one instance of an I-BDS synthesis problem: the system behavior is

expressed as an I-BDS diagram in which some time bounds may be variables, plus

some additional bounds on how far apart events ought to occur.

132

Table 9.1: Time Separations for the Diagram of Figure 9.2

Time Separations

from to wake phone leave arrive ready meet work

wake 0 45 60 80 50
 80� 50
 120� 90

phone �35 0 15 35 5
 35� 5
 75� 45

leave �45 �10 0 20 (�5)
 20� (�5)
 60� 35

arrive �60 �25 �15 0 (�20)
 0� (�20)
 40� 20

ready (�35)(�
) �
 15(�
) 35(�
) 0 35(�
)� 0 75(�
)� 40

meet (�35)(�
); �
; 15(�
); 35(�
); 0; 0 40

�60 �25 �15 0 (�20)

work �65(�
); �30(�
); �15(�
); 5(�
); �30; �30 0

�90 �55 �45 �30 (�50)

De�nition 9.3 An I-BDS synthesis problem consists of a set of desired time

separations, T , and an I-BDS system, I, which meets all of the requirements for

an I-BDS system(Section 2.1), except that for a given activity, a, the lower and

upper bounds �(a) and �(a) on a's duration may be parameterized with variables as

�(a) =

a

, and �(a) =

a

+ x for non-negative x.

As in the veri�cation problem, we can calculate the maximum separations be-

tween two events by carrying the variables
 into our calculations as necessary. The

separations corresponding to Figure 9.2 are given in Table 9.1. Note that sometimes

there may be more than one possible bound on the separation, since we cannot always

tell which of two bounds is tightest when one or more of them contains a variable.

In this example, there are two possible separations from the events work and meet

to events which precede meet in the graph because there are two distinct backwards

paths through the node meet, one including a
 term and one not, between all such

pairs of events. For those separations which include two possible terms, the expres-

sions at the top of a given table entry correspond to the case in which Ernie is not

ready before Bert arrives and the bottom corresponds to the case in which Ernie is

ready.

In order to assure that Ernie is ready before Bert arrives, we must make sure that

the separation from Bert's arrival to Ernie being ready is less than or equal to 0. We

133

{ { { {

{ { { {

{ { { {

{ { { {

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x

y

Figure 9.3: The size n = 4 instance of the �(n

2

) size I-BDS for which there are

�

�

2

2n

p

n

�

paths from y to x.

examine the table and determine that this separation has value (�20)
. Thus as long

as
 is no more than 20, the constraint will always be met. If we substitute 20 for

throughout Table 9.1, we see that the second item in each table entry is clearly the

tightest bound on the time separation for that pair, and corresponds to the \Ernie is

ready on time" possibility.

When there are few unbound variables and few sets of such alternate paths, this

approach of calculating the separations for all possible path bounds may be a rea-

sonable solution. Unfortunately, there are very simple examples for which the total

number of such expressions grows too quickly to make this method be of practical

use. Figure 9.3 gives the n = 4 instantiation of the example in which there are �(n

2

)

events and activities, but �(

2

2n

p

n

) possible maximum time separations of x relative to

y.

To see this, we note that each maximum separation of x relative to y corresponds

to a single \backwards" path from y to x. If all (n � 1)

2

activity bounds are to be

synthesized, we then have �(n

2

) variables. Each path from y to x has n� 1 arcs to

the left, and n � 1 arcs directed upwards. These arcs can occur in any order, thus

134

giving us

�

2n�2

n�1

�

di�erent paths. Using Stirling's approximation [Sti30, Knu73] of

n! �

p

2�n �

�

n

e

�

n

(9:4)

we get a total number of paths which is

�

2

2n

p

n

!

: (9:5)

Similarly, any expression for the maximum time of y relative to x must contain as

many terms if it is factored out into standard linear form.

It is important to note that this does not guarantee that the IBDS-synthesis

problem cannot be solved in polynomial time, but rather that it cannot be quickly

solved in the manner outlined above.

9.5 D-BDS Synthesis Problems

While the method in the above section is useful for systems in which one knows

the causal structure of all activities in the system, it is not adequate for the task

of interface timing synthesis. Recall that, in general, a databook entry describing

a device's timing behavior does not provide us with a full causal description of the

device. Instead, causal constraints which match the form of I-BDS relations may be

augmented with simple timing guarantees of the form

x

j

+ �

i;j

� x

i

� x

j

+�

i;j

; (9:6)

where �

i;j

� �

i;j

, and value assignments �

i;j

= �1 and �

i;j

=1 are used to indicate

the absence of the lower and upper bound constraints respectively on x

i

. Synthesis

problems over such systems are called D-BDS synthesis problems.

De�nition 9.4 A D-BDS synthesis problem is an I-BDS synthesis problem to

which there may be added events and timing guarantees of the form of Equation 9.6.

D-BDS synthesis problems are depicted as I-BDS synthesis problems, except that

these additional guarantees are represented with thin arcs. Figure 9.4 gives a repre-

sentative system.

135

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

@

@

@

@

@

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

@

@

@

@

@

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

@

@

@

@

@

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

@

@

@

@

@

y

y

y

y

w

z = 0

y

x

[y; y][x; x]

[0; 0][0; 0]

y

t

�

�

�

�

�

��

H

H

H

H

H

Hj

[�1; 0] [�1; 0]

Desired System Behavior

2 � w � z � 3

0 � t� z � 1

Time Separations

from to z x y t w

z 0 x y x; x� y

y

x �x 0 y � x 0; 0� (y � x)

y � x

y �y x� y 0 x� y; 0� (x� y)

0

t 1 1 1 0 1

w �y x� y 0 x� y; 0

�x 0 y � x y � x

3

2

1

0
1 2 3

x

y

Figure 9.4: A D-BDS synthesis problem which produces disjoint solutions.

If we apply the timing veri�cation algorithm to the constraints pictured in the

diagram on the top left hand side of Figure 9.4, we get the time separations as pictured

in bottom left of Figure 9.4. As was the case with the timing separations pictured

in Table 9.1, when the algorithm is applied we come up with time separations which

may be expressed with one of two di�erent formulae. In the table, those separations

for which there are two entries may be grouped into two categories | the top and

the bottom entries, each of which bounds a consistent set of time separations. The

top and bottom separations correspond to the two synthesis possibilities, x � y and

x � y, respectively.

The diagram at the bottom right of Figure 9.4 represents the e�ect of the desired

system behavior on the values of x and y as the intersection of two regions. The

136

lightest gray region corresponds to those values of x and y for which the equation

0 � t� z � 1 (9:7)

is guaranteed to be satis�ed, and the region of middle gray color corresponds to the

the values of x and y for which the equation

2 � w � z � 3 (9:8)

is satis�ed. The area where the two regions overlap is denoted with the darkest shade

of gray. These two non-overlapping regions correspond to the solutions for x � y and

x � y, and are disjoint.

Note that if our set of desired system behaviors were expressed by the four equa-

tions

0 � x� z � 1 (9.9)

0 � y � z � 1 (9.10)

1 � w � z (9.11)

t� z � 0; (9.12)

the only two possible solutions would be x = 0; y = 1 and x = 1; y = 0. This

allows us to create a small synthesis sub-problem in which x and y are the boolean

complement of each other. We could then use McMillan and Dill's NP-completeness

reduction (Figure 4.2) to show that D-BDS synthesis is NP-hard.

9.6 Valid Synthesis Problems

Recall the nonsensical synthesis problem presented in Figure 2.14, in which a guaran-

tee was made about the time relationships across events whose timing relationships

have not yet been synthesized. A more basic version of this problem is depicted at

the left hand side of Figure 9.5. We are asked to choose a value for variable �, but

yet we are promised that no matter how far apart the events x and y occur, z will

happen within 15 to 30 time units after x. Clearly, if we chose � > 20, there is no

consistent assignment of event times for the system. Without a explicitly speci�ed

137

~ ~ ~ ~ ~ ~

@

@

@

@

�

�

�

�

@

@

@

@

�

�

�

�

x xy yz z

[�; �] [�; �][10; 20] [10; 20]

�

�

�

�

�

�@

@

@R

@

@

@R

[15; 30] [15;�]

Figure 9.5: A nonsensical synthesis problem.

requirement that we choose a value of � which is less than 20, we must assume that

the system has been incorrectly speci�ed.

The interpretation of the diagram at the left of Figure 9.5 is somewhat more

di�cult. If we were to choose a value of 0 for �, we would expect z to happen as

early as 10 time units after x. The guarantee of a minimum separation of 15 is open

to several interpretations including:

� the diagram given is a simpli�cation of the actual system and in reality time

separations within the bound of [10; 20] from y to z do not occur randomly, but

are somehow relative to the time of event x, and

� the bound of [10; 20] from y to z is not tight, but should instead be [15; 20] or

tighter.

When we consider the e�ects that these two di�erent interpretations might have when

propagated throughout a larger system, it becomes clear that we must agree upon a

consistent interpretation.

9.7 Summary

In this Chapter we have discussed timing synthesis problems both in general and as

they apply to interface hardware synthesis. We introduced a taxonomy for practical

interface hardware synthesis and showed that the natural timing synthesis problems

for I-BDS and D-BDS systems are respectively likely and certainly NP-hard.

Part V

Conclusions and Related Work

139

Chapter 10

CONCLUSIONS

10.1 Contributions

In this work we have brought together and solved problems in two di�erent domains:

hardware interface timing and the max-plus algebra.

10.1.1 Hardware Interface Timing

The �rst area is concerned with assuring that interconnected hardware modules will

communicate successfully. Each hardware module has a protocol describing the way

it may communicate with its environment, and that protocol has temporal require-

ments it makes of the other modules with which it communicates. These require-

ments are generally constraints of the form

t

j

+ � � t

i

� t

j

+� (10:1)

where t

i

and t

j

are times of the events | or signal level changes | in the protocol

and [�;�] with � � � is a time interval. In turn that same hardware module protocol

makes promises on the time ranges within which it will respond to changes on its

inputs. These promises come in two forms, guarantees

t

j

+ � � t

i

� t

j

+� (10:2)

which relate absolute bounds between events in the interface and delay relationships

max

j2pred(e

i

)

t

j

+ �

j

� t

i

max

j2pred(e

i

)

t

j

+�

j

(10:3)

where event e

i

is dependent on the events in pred(e

i

), and happens only after every

such predecessor event e

j

plus some bounded delay has occurred. We considered

two di�erent types of timing problems that occur in this domain, and which ask the

following questions about a hardware interface:

140

� timing veri�cation problems: Does a given system respect a set of restric-

tions made upon the relative times of its events, and

� timing synthesis problems: Can such restrictions be met by altering the

ordering or duration of speci�c activities represented by the system?

Contributions of this work in the area of hardware interface logic timing include:

� a detailed exploration of the timing veri�cation and timing synthesis problems

and the di�erences between them;

� the ShortCircuit algorithm, the �rst correct algorithm for �nding the maxi-

mum time separations between pairs of events subject to a system of equations

of the form given in Equations 10.2 and 10.3; and

� a preliminary discussion of the requirements of an automated method to perform

timing synthesis for hardware interfaces.

10.1.2 Linear Max-Plus Systems

Equations 10.3 and 10.2 above are speci�c examples of primitives expression syn-

chronization and bounded delay relations, which can be used to model the timing

behavior of a wide variety of systems ranging from from the planning and manage-

ment of large projects, as done with PERT charts [SPO58, HM61], to the design and

veri�cation of computer hardware interfaces, as mentioned above.

The max-plus algebra [GM77, CMQV89, BCOQ92], which is the subject of

much research in control theory is naturally suited to representing the more general

representations of the synchronization and bounded delay primitives respectively as

t

i

=

M

j

(t

j

 �

i;j

) (10:4)

and

t

j

 (��

j

) � t

i

� t

j

�

j

(10:5)

where � is the operation \max",
 is the operation \+", each �

i;j

is drawn from

R [�1.

141

Due to their ability to express many problems including the interface timing ver-

i�cation problem above, linear max-plus systems are a popular subject of study.

The consist of a set of m equations over n variables fx

0

; : : : ; x

n�1

g where the ith such

equation has form

a

i

�

2

4

n�1

M

j=0

(C

i;j

 x

j

)

3

5

= b

i

�

2

4

n�1

M

j=0

(D

i;j

 x

j

)

3

5

: (10:6)

A fundamental de�ciency in the study of linear max-plus which was remedied by

this work was the lack of a reasonable method for solving linear max-plus systems.

A previous brute-force method due to Gaubert [Gau92] was extremely expensive

computationally.

Contributions of this work to the study of the max-plus and related algebras

include the following:

� the MPsolv algorithm for solving any linear max-plus system of equations;

� the extension of MPsolv to maximizing and minimizing linear max-plus expres-

sions subject to an arbitrary max-plus system; and

� that the MPsolv technique applies to any dioid (D;�;
) in which the � oper-

ation induces a total order and (D n f�g;
) is a group.

The ShortCircuit and MPsolv methods and the problems they solve are shown to

be equivalent, with both methods binding from above the maximum solution to the

system when some variable x

0

= 0. Both methods rely upon phrasing the system

equations with the upper bound constraint (UBC) also introduced here.

10.2 Open Problems

While several questions have been answered by this work, still others have been left

unanswered or have been raised. They include the following open problems.

Open Problem 10.1 What is the worst-case time complexity of the ShortCircuit

and MPsolv algorithms?

142

Because of its use in practical applications, we would like to know what the

worst case time for the ShortCircuit algorithm is so we may compare it with other

techniques.

Should both ShortCircuit and Yen et. al.'s MaxSeparation algorithms be shown

to have non-polynomial worst case performance, it still remains to be determined what

the worst case complexity is for the solution of linear max-plus systems.

Open Problem 10.2 What is the worst-case time complexity for �nding the maxi-

mum solution to an arbitrary linear max-plus system of m equations over n variables?

Because of its similarity to regular linear programming we make the following

conjecture.

Conjecture 10.1 The worst-case time complexity for �nding the maximum solution

to an arbitrary linear max-plus system of m equations over n variables, and there-

fore the worst case time complexity for minimizing or maximizing a linear max-plus

expression subject to a linear max-plus system, is polynomial in m and n.

While we have shown that the MPsolv technique can solve systems of equations

in a pseudoring, there are many dioids which are not pseudorings. This leads to the

following open problem.

Open Problem 10.3 Does MPsolv give any insight into the techniques that may be

developed to solve arbitrary linear dioid systems?

Recall from Chapter 2 that for any I-BDS the time d(a) required for activity a

was within the interval [�

a

;�

a

], but that the activity times were independent of each

other. For many real-world problems, this assumption is incorrect. The ranges given

for the delays of interface hardware are often correlated. There may be, for example,

variations in delay times that are dependent on properties inherent in the physical

process that produces the chip. This may result in there being a range of behaviors for

di�erent hardware modules fabricated at di�erent times while individual modules will

have delay values occurring at one end of the speci�ed range or the other throughout

the chip. We call this phenomenon delay tracking.

143

Open Problem 10.4 Are there practical methods for solving the interface timing

veri�cation problem when guarantees and delays may be built from bounds [� ��;� ��]

where the � and � values are scalar coe�cients as before but the �'s are bounded

variables used to express the fact that time bounds for parts within a device may track

with each other?

During the process of timing synthesis, the max-plus constraints of the incom-

pletely synthesized skeleton describe a space of possible temporal behaviors for the

system. The process of choosing delay values for the synthesis variables restricts that

space, and our goal is to restrict the space until it lies within some given desirable

temporal space. One can easily conceive of a slight variation of this problem in which

the desired timing behaviors are already met, but one wishes instead to choose sep-

arations which optimize some other function such as the area required by interface

hardware or the cost of the components. These functions will not necessarily be

expressible as linear max-plus functions but instead are more likely to be linear or

quadratic in our familiar linear algebra.

Open Problem 10.5 Can the optimization technique as performed with MPsolv be

extended to optimize more sophisticated expressions subject to a linear max-plus sys-

tem?

As we demonstrated in Chapter 9, the obvious timing synthesis problem for hard-

ware interface logic is NP-hard. However, it is not clear that practical interface timing

synthesis problems are truly that di�cult.

Open Problem 10.6 Are there models of timing synthesis which are both useful for

interface timing synthesis and tractable?

144

Chapter 11

OTHER RELATED WORK

Although not directly concerned with interface timing problems or the solution

of linear max-plus systems, there are several problem domains which are related and

may be of interest. Several, but by no means all, are presented below.

11.1 Related Arti�cial Intelligence Problems

While much arti�cial intelligence research can be said to fall in the area of determining

the temporal separations among a set of events, in practice most such research is

concerned with rather more di�cult problems than the I-BDS and D-BDS problems

presented in Chapter 2. Examples include Allen's work [All83] in which relationships

among time intervals are expressed qualitatively with primitives such as \interval a

is before interval b" and \interval c overlaps d", and the goal is to deduce similar

relationships between intervals not directly related, and the work of Dean and Boddy

[DB88] in which establishing possible relative orderings of events which are subject

to constraints dependent on non-temporal state variables is the goal.

Dechter et. al. [DMP91] discuss temporal constraint satisfaction problems.

In the simplest version of this problem, the times of pairs of events are related with

intervals so that the interval [�;�] from event a to b indicates that

� � t

b

� t

a

� � (11:1)

which is easily seen to be solvable as an all pairs shortest paths problem as discussed

in Section 9.1. As shown by Gondran and Minoux [GM77], this can also be solved

using the min-plus closure of the matrix M whose (i; j)th entry is the upper bound

on t

i

� t

j

. Dechter et. al. then extend the problem to apply to pairs of events (a; b)

related by a set of time intervals with the understanding that any one of the intervals

may apply to the events' relationship. They state the problem algebraically, so that

if T

i;j

is the set of intervals expressing the possible time separations between events

145

i and j, it should be the case that

T

i;j

= T

i;j

� (T

i;k

 T

k;j

); (11:2)

where � takes the intersection of possible values within two sets of intervals and

is the composition of intervals, with value r allowed in T

1

 T

2

only if there exist r

1

in T

1

and r

2

in T

2

such that r = r

1

+ r

2

.

11.2 Timed Petri Nets

While we have so far concerned ourselves with relating the times of a �nite set

of events, there are many max-plus and related algebra problems that concern

themselves with the temporal relationships among possibly in�nitely repeating se-

quences of events. Such systems of events may be modeled with timed event

graphs such as the one pictured in Figure 11.1. Timed event graphs are a sub-

class of Petri nets [Pet62, Mur89], of which there are many timed variations

[Ram74, Mer74, Chr85, TPN85, BRR87, And91].

The Petri nets discussed here have the following properties:

� the larger vertical bars, called transitions, and labeled here with one of

fu

1

; u

2

; x

1

; x

2

; x

3

; yg represent each of the events that occurs in the Petri net.

� the larger circles, called places, and labeled P

t

1

;t

2

for certain pairs of transitions

t

1

and t

2

in Figure 11.1, represent various conditions that may hold during an

execution of the Petri net. For a given place P

i

, we say that any transition T

j

with a directed edge to P

i

is an input transition of P

i

and any transition T

k

with a directed edge from P

i

is an output transition of P

i

. Input places

and output places are de�ned similarly for any transition T

i

.

� A solid circle inside a place, called a token, indicates that the associated condi-

tion currently holds. Transition T

i

is enabled, or allowed to occur, only when

each of its input places contain a token. When such a transition occurs, we say

it �res. The result is that a token is added to each of the output places of the

transition and removed from each input place of the transition.

146

u1

u2

x1

x3

y

p(u2,x1)

p(u1,x1)

p(x1,x2)

p(x2,x1)

p(x3,x3)

p(x3,y)

p(x2,y)

p(x1,x3)

x2

Figure 11.1: A timed event graph with deterministic durations for places. Small dark

circles represent tokens in the original marking; hollow bars represent the number of

delay units per place.

It is possible to construct a net such that more than one transition has the same

place P

i

as an input. In such cases, we say that the net has choice. If both transitions

are simultaneously enabled, then they are in con
ict with each other since only one

can remove the enabling tokens. Con
ict may be resolved arbitrarily, by assigning

relative probabilities to the given choices, or by assigning priorities to choices. When

states are changed due to a transition �ring, transitions not in con
ict with the �ring

transition continue to remain enabled.

A marked graph or event graph is a Petri net in which each place has exactly

one input transition and one output transition and therefore no choice. Figure 11.1 is

a timed event graph. Each place is assigned a duration, here represented by zero

to three bars in each place, indicating that a token in that place enables its output

transition only after it has been in the place for as many time units as there are

bars in the place. Transitions are assumed to �re instantaneously as soon as they are

enabled.

Cohen et. al. [CMQV89], demonstrate that a somewhat more sophisticated dioid

than the max-plus dioid can be used to completely represent the input/output and

147

transition behavior of such a timed event graph. For the event graph in Figure 11.1,

with initial marking as shown, we note that the time of the n-th occurrence of tran-

sition x

3

, denoted as (x

3

)

n

is related to the n-th transition x

1

and the next earliest

occurrence of x

3

as:

(x

3

)

n

= max((x

1

)

n

; (x

3

)

n�1

+ 2) (11:3)

or, in max-plus notation

(x

3

)

n

= (x

1

)

n

� 2(x

3

)

n�1

: (11:4)

Note that these equations relate the times of occurrences of event x as a function of

n, the event occurrence number. In order to invert these relations, one must also be

able to express the event number of x

3

at time t, or [x

3

]

t

as a function of t, this time

using the min-plus dioid equation

[x

3

]

t

= [x

1

]

t

�

0

1[x

3

]

t�2

(11:5)

where \�

0

" represents the binary minimum operation. This means that the most

recent event number for x

3

at time t is the minimum of the most recent event number

for x

1

at time t and one plus the most recent event number of x

3

at time t� 2. Al-

though it is true that min(x; y) = �max(�x;�y), this is not a linear transformation

in either dioid and we cannot readily express both equation types in either dioid.

This is because terms of the form �� are multiplicative inverses in these dioids.

Cohen et. al.'s solution is to instead create a system variables

n

�

t

such that the

assignment x =

n

�

t

has the meaning \occurrence number n of event x happens no

earlier than time t". They then demonstrate that these

n

�

t

's can be thought of as

both the piece of information \event number n happens no earlier than t", about

a given event x

i

, and the shift operator relating two events x

i

and x

j

. Applying

a shift operator

n

�

t

from x

i

to x

j

, to the information x

i

=

n

0

�

t

0

results in the

information x

j

=

n

0

+n

�

t

0

+t

for x

j

. In order to combine both meanings, all variable

assignments x =

n

�

t

are considered to be instances of the single variable x =

0

�

0

operated upon by the shift operator

n

�

t

. The
 operator is used to apply shift

operators and the � is used to take the union of the resulting information.

These observations result in the dioid (MinMax hh
; �ii;�;
), with identities

+1

�

�1

for � and

0

�

0

for
 such that

� Elements of MinMax hh
; �ii are (possibly in�nite) unions of terms

n

�

t

with

this union expressed by �

148

�

i

�

j

i

0

�

j

0

=

i+i

0

�

j+j

0

and
 distributes over in�nite sequences of �

� Additionally,

n

�

t

�

n

�

t

0

=

n

�

max(t;t

0

)

and

n

�

t

�

n

0

�

t

=

min(n;n

0

)

�

t

. The

intuition for this is that if we have two bounds, t and t

0

on the earliest time

for the n-th occurrence of a given event, then the larger of ft; t

0

g includes the

other, and similarly for the smaller of two di�erent event occurrence numbers

with the same time value.

The e�ect of equations 11.4 and 11.5 above can then be represented in the single

equation

x

3

=

�

x

1

0

�

0

�

�

�

x

3

1

�

2

�

: (11:6)

This expresses that the the n-th occurrence of x

3

can happen no earlier than t only

if either the n-th occurrence of x

1

can happen no earlier than t or the (n � 1)-th

occurrence of x

3

can happen no earlier than t� 2.

In the case of �gure 11.1, we can use this dioid to represent the input, output,

and transition behavior of the timed event graph as

2

6

6

6

4

x

1

x

2

x

3

3

7

7

7

5

=

2

6

6

6

4

0
 0

�

3

0 0

1 0
�

2

3

7

7

7

5

2

6

6

6

4

x

1

x

2

x

3

3

7

7

7

5

�

2

6

6

6

4

� �

2

0 0

0 0

3

7

7

7

5

2

4

u

1

u

2

3

5

(11:7)

h

y

i

=

h

0 � �

2

i

2

6

6

6

4

x

1

x

2

x

3

3

7

7

7

5

; (11:8)

where 0 is the � identity,

+1

�

�1

and 1 is the
 identity,

0

�

0

.

In general, for a timed event graph with internal transitions X, inputs U and

outputs Y , we wish to solve the equations

X = AX � BU (11.9)

Y = CX (11.10)

where U ,Y and X are column vectors of dimension i� 1, j� 1,and k� 1 respectively

representing the inputs, outputs and internal transitions of the system. The k � k

matrix A represents the shift operators between all internal transitions with an entry

A

i;j

=

k

�

t

indicating that in the original net there is a place containing k tokens

and having delay t between transitions i and j. The k� i matrix B and j� k matrix

149

C represent similar relationships between the internal transitions and the inputs and

outputs, respectively.

It is shown that solutions to the above systems of equations are of the form

X = AX �BU = X(AX � BU)�BU = � � � = A

�

B
 U (11:11)

Y = CX = C
 A

�

 B
 U: (11:12)

Note that if we wish to represent all behavior of the system over time, the elements of

X,U and Y must represent the in�nite behavior of each of their respective transitions.

The solution to the system in Figure 11.1 is

2

6

6

6

4

x

1

x

2

x

3

3

7

7

7

5

=

2

6

6

6

4

�

�

�

3

�

�

�

2

�

�

3

�

�

�

4

�

�

3

�

�

�

5

�

�

3

�

�

�

�

�

3

�

�

�

2

�

�

3

�

�

3

7

7

7

5

2

4

u

1

u

2

3

5

(11.13)

h

y

i

=

h

�

5

�

�

3

�

�

�

6

�

�

3

�

�

i

2

4

u

1

u

2

3

5

(11.14)

Using values of

�

�

0

=

0

�

0

= 1 for the inputs u

1

and u

2

to represent in�nitely many

tokens becoming ready at the inputs at time 0, we get a �nal solution of

y =

�

�

5

�

6

�

 (
�

3

)

�

= �

6

(
�

3

)

�

(11:15)

which is interpreted as \the 0

th

token output arrives at time 6, and thereafter one

token arrives every 3 time units." In general, a solution of the form

i

�

j

(

p

�

q

)

�

(11:16)

indicates that the i

th

token arrives at time j and thereafter p tokens arrive every q

time units. A net can be simulated on any input that can be expressed in the form

M

0�k

i

k

�

j

k

: (11:17)

11.2.1 Time Separations Bounds for Concurrent Systems

Similar to the problem above is the task of determining the maximum possible time

separations [HB

+

95a] between events in a process graph, which is similar to the

150

timed event graph in the de�nition above except that there are no input or output

transitions and the time a token spends at a given place before it enables its output

transitions is expressed with a bounded interval. This problem asks \what is the

maximum possible time di�erence

(x

i

)

n+�

� (x

j

)

n

(11:18)

for �xed events x

i

and x

j

over all occurrences n + � and n separated by a �xed �.

The technique presented by Hulgaard et. al. [HB

+

95a] relies upon mathematically

\unfolding" the process graph until it can represent all occurrences of (x

i

)

n+�

and

(x

j

)

n

for any n. There are in�nitely many such n, but for any �nite n, the graph may

be represented as the concatenation RS

k

T of graphs where R represents the initial

portion of the unfolded graph, T represents the �nal portion of the unfolded process

graph, and S

k

is a repeating sub-graph within the unfolded process graph. These

subgraphs can be represented using a matrix form similar to that in Section 5.4.2.

Then S

�

, the closure of the matrix S can be used to represent all of the possible

repeating portions of the graph. A re�nement of the technique which handles certain

types of choice in the original process graph has also been developed [HB95b].

In a similar vein, work on a second-order theory of linear max-plus and min-plus

systems [Plu91, CGQ93] concentrates on determining the maximum number of tokens

which may be present in a place of a timed event graph and how long they may reside

there.

11.3 Min-Max-Plus Systems

Recall from Section 4.2 that if P 6= NP, there can be no polynomial-time algorithm

for determining maximum time separations for systems of events related with guar-

antees, delays, and min-type delays, it is still sometimes desirable to do so. Research

into the solution of many di�erent types of systems which include min, max, and

addition operations [CG79, CGM80, Ols91, Ols94] is also quite active and may lead

to new solutions in this area.

Bibliography

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Com-

munications of the ACM, 26(11):832{843, Nov 1983.

[And91] Charles Andre. Delays in synchronized elementary net systems. In

G. Rozenberg, editor, Advances in Petri Nets 1991, number 524 in Lec-

ture Notes in Computer Science. Springer{Verlag, 1991.

[Baa88] Sara Baase. Computer Algorithms: Introduction to Design and Analysis.

Addison-Wesley, 1988.

[BCGZ84] R.E. Burkard, R.A. Cuninghame-Green, and U. Zimmermann, editors.

Algebraic and Combinatorial Methods in Operations Research. Number 19

in Annals of Discrete Mathematics. North-Holland, 1984.

[BCOQ92] Francois Louis Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre

Quadrat. Synchronization and Linearity: an algebra for discrete event

systems. John Wiley & Sons, 1992.

[BGM91] J.A. Brzozowski, Tony Gahlinger, and F. Mavaddat. Coherence and sat-

is�ability of waveform timing speci�cations. Networks, 21(1):91{107, Jan

1991.

[BN86] J. Burns and A. Newton. SPARCS: a new constraint-based ic symbolic

layout spacer. In Proceedings of the Custom Integrated Circuits Confer-

ence, 1986.

[Bor88] Gaetano Borriello. A New Interface Speci�cation Methodology and its

Application to Transducer Synthesis. PhD thesis, University of California,

May 1988. Report No. UCB/CSD 88/430.

[Bor92] Gaetano Borriello. Formalized timing diagrams. In Proceedings of the

European Design Automation Conference, March 1992.

152

[BRR87] W. Brauer, W. Reisig, and G. Rozenberg, editors. Advances in Petri

Nets 1986. Number 254 in Lecture Notes in Computer Science. Springer{

Verlag, 1987. Part I: Petri Nets: Central Models and their Properties

Part II: Petri Nets: Applications and Relationships to Other Models of

Concurrency.

[Bur94] Steven M. Burns. August 1994. Personal communication.

[Bur95] Steven M. Burns. September 1995. Personal communication.

[CG79] R. A. Cuninghame-Green. Minimax Algebra. Number 166 in Lecture

Notes in Computer Science. Springer-Verlag, Berlin, 1979.

[CGM80] R. A. Cuninghame-Green and P. F. J. Meijer. An algebra for piecewise-

linear minimax problems. Discrete Applied Mathematics, (2):267{294,

1980.

[CGQ93] G. Cohen, S. Gaubert, and J.P. Quadrat. From �rst to second-order

theory of linear discrete event systems. In Proceedings of the IFAC 12th

Triennial World Congress, volume 1, pages 679{682, 1993.

[Chr85] Philippe Chretienne. Timed event graphs: A complete study of their

controlled excecutions. In [TPN85], pages 47{54, 1985.

[Cin93] Viktor Cingel. A graph-based method for timing diagrams representation

and veri�cation. Number 683 in Lecture Notes in Computer Science,

pages 1{14. Springer-Verlag, May 1993.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-

duction to Algorithms. M.I.T. Press, 1990.

[CMQV89] Guy Cohen, Pierre Moller, Jean-Pierre Quadrat, and Michel Viot. Al-

gebraic tools for the performance evaluation of discrete event systems.

Proceedings of the IEEE, 77(1):39{57, January 1989.

153

[CPMS91] Alberto Coen-Porisini, Angelo Morzenti, and Donatella Sciuto. Speci�-

cation and veri�cation of hardware systems using the temporal logic lan-

guage TRIO. In Dominique Borrione and Ronald Waxman, editors, Com-

puter Hardware Description Languages and their Applications, pages 43{

62. North-Holland, April 1991. Proceedings of the IFIP WG 10.2 Tenth

International Symposium on Computer Hardware Description Languages

and their Applications.

[CWB94] Pai Chou, Elizabeth A. Walkup, and Gaetano Borriello. Scheduling for

reactive real-time systems. IEEE Micro, July 1994.

[DB88] Thomas Dean and Mark Boddy. Reasoning about partially ordered

events. Arti�cial Intelligence, 36:375{399, Dec 1988.

[DMP91] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks.

Arti�cial Intelligence, 49:61{95, 1991.

[Gah90] Tony Gahlinger. Coherence and Satis�ability of Waveform Timing Spec-

i�cations. PhD thesis, University of Waterloo, 1990. Research Report

CS-90-11.

[Gau92] St�ephane Gaubert. Th�eorie des Syst�emes Lin�eaires dans les Dio

�

ides.

PhD thesis, L'

�

Ecole Nationale Sup�erieure des Mines de Paris, July 1992.

[Gla93] Bruce Gladstone. Speci�cation of timing in a digital system. ASIC and

EDA, pages 46{52, August 1993.

[GM77] Michel Gondran and Michel Minoux. Graphs and Algorithms. John Wiley

and Sons, 1977. English Edition 1984, translated by Steven Vajda.

[GM84] Michel Gondran and Michel Minoux. Linear algebra in dioids. In R.E.

Burkard, R.A. Cuninghame-Green, and U. Zimmermann, editors, Alge-

braic and Combinatorial Methods in Operations Research, number 19 in

Annals of Discrete Mathematics. North-Holland, 1984.

154

[HB

+

95a] Henrik Hulgaard, Steven M. Burns, , Tod Amon, and Gaetano Borriello.

An algorithm for exact bounds on the time separation of events in con-

current systems. IEEE Transactions on Computers, Nov 1995. to appear.

[HB95b] Henrik Hulgaard and Steven M. Burns. E�cient timing analysis of a class

of petri nets. In Computer Aided Veri�cation, 1995.

[HM61] L.P. Hartung and J.E. Morgan. PERT/PEP | a dynamic project control

method. Technical Report 61-816-2005, IBM Space Guidance Center,

1961.

[HP89] Sally Hayati and Alice Parker. Automatic production of controller seci�-

cations from control and timing behavioral descriptions. In Proceedings of

the 26th ACM/IEEE Design Automation Conference, pages 75{80, june

1989.

[Joh77] Donald B. Johnson. E�cient algorithms for shortest paths in sparse

networks. Journal of the ACM, 24(1):1{13, 1977.

[KDC91] Karim Khordoc, Mario Dufrense, and Eduard Cerny. A stimu-

lus/response system based on hierarchical timing diagrams. In 1991

IEEE International Conference on Computer-Aided Design, pages 358{

361. IEEE Computer Society Press, November 1991.

[KDC

+

92] Karim Khordoc, Mario Dufrense, Eduard Cerny, Philippe-Andre

Babkine, and Allan Silburt. Integrating behavior and timing in exe-

cutable speci�cations. Technical report, Universite de Montreal, Dept

d'informatique et recherche operationelle, October 1992.

[KDC

+

93] Karim Khordoc, Mario Dufrense, Eduard Cerny, Philippe-Andre

Babkine, and Allan Silburt. Integrating behavior and timing in exe-

cutable speci�cations. In 11th IFIP WG10.2 International Conference

on Computer Hardware Description Languages and their Applications -

CHDL'93, volume A-32, pages 399{416, April 1993.

155

[Knu73] Donald E. Knuth. Fundamental Algorithms, volume 1. Addison-Wesley,

2 edition, 1973.

[KRK88] Atsushi Kara, Ravi Rastogi, and Kazuhiko Kawamura. An expert system

to automate timing design. IEEE Design and Test, 5(4):28{40, 1988.

[LW83] Y. Z. Liao and C. K. Wong. An algorithm to compact a vlsi symbolic

layout with mixed constraints. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2(2):62{69, 1983.

[MD92] Kenneth McMillan and David Dill. Algorithms for interface timing veri�-

cation. In Proceedings of the IEEE International Conference on Computer

Design: VLSI in Computers and Processors, 1992.

[Mer74] P. Merlin. A study of the recoverability of computer systems. PhD thesis,

University of California, 1974.

[MLC90] Alan R. Martello, Steven P. Levitan, and Donald M. Chiarulli. Timing

veri�cation using hdtv. In Proceedings of the 27th ACM/IEEE Design

Automation Conference, pages 118{123, june 1990.

[Mur89] T. Murata. Petri nets: properties, analysis, and applications. Proceedings

of the IEEE, 77(4):541{580, April 1989.

[Mye93] Chris Myers. Synthesis of timed asynchronous circuits. IEEE Transac-

tions on VLSI Systems, June 1993.

[NT86] J. Nestor and D. Thomas. Behavioral synthesis with interfaces. In

Proceedings of the International Conference on Computer-Aided Design,

November 1986.

[Ols91] Geert Jan Olsder. Eigenvalues of dynamic max-min systems. Discrete

Event Dynamic Systems: Theory and Applications, 1:177{207, 1991.

156

[Ols94] Geert Jan Olsder. On structural properties of min-max systems. In

Proceedings of the 11th international conference on the analysis and opti-

mization of systems, pages 237{246. Springer-Verlag, 1994. Also appears

as TU Delft Faculty of Technical Mathematics and Informatics technical

report 93-95.

[Org91] Don Organ. The enVision timing resolver. In 1991 IEEE International

Test Conference, 1991.

[Pet62] C. A. Petri. Kommunikation mit automaten. Technical report, Institut

fur Instrumentelle Mathematik, 1962. Schriften des IIM Nr. 3.

[Plu90] Max Plus. Linear systems in (max,+) algebra. In Proceedings of the 29th

IEEE Conference on Decision and Control, Dec 1990.

[Plu91] Max Plus. Second order theory of min-linear systems and its application

to discrete event systems. In Proceedings of the 30th IEEE Conference

on Decision and Control, Dec 1991.

[PP87] Alice C. Parker and Nohbyung Park. Interface and I/0 protocol descrip-

tions. In R. W. Hartenstein, editor, Hardware Description Languages,

volume 7, chapter 3.3, pages 111 { 136. Elsevier Science Publishers, B.V.

(North-Holland), 1987.

[PW81] Alice Parker and J. Wallace. SLIDE: An I/O hardware description lan-

guage. IEEE Transactions on Computers, C-30(6), june 1981.

[Ram74] C. Ramchandani. Analysis of asynchronous concurrent systems by Petri

nets. Technical Report Project MAC TR-120, M.I.T., Cambridge, MA,

1974.

[SPO58] Bureau of Naval Weapons Special Projects O�ce. PERT summary phase

report. Technical report, Department of the Navy, July 1958.

[Sti30] James Stirling. Methodus Di�erentialis. 1730. page 137.

157

[Tie91] Wolf-Dieter Tiedemann. Bus protocol conversion: from timing diagrams

to state machines. In F. Pichler and R. Moreno D��az, editors, Computer

Aides Systems Theory { EUROCAST'91. Springer-Verlag, April 1991.

[TPN85] International Workshop on Timed Petri Nets. IEEE Computer Society

Press, July 1985.

[Van93] Peter Vanbekbergen. Synthesis of Asynchronous Controllers from Graph-

Theoretic Speci�cations. PhD thesis, Katholieke Universiteit Leuven,

September 1993.

[VGD92] Peter Vanbekbergen, Gert Goossens, and Hugo De Man. Speci�cation

and analysis of timing constraints in signal transition graphs. In Proceed-

ings of the European Design Automation Conference, March 1992.

[Vis76] C. Vissers. Interface, a dispersed architecture. In Proceedings of the Third

Annual Symposium on Computer Architecture, pages 98{104, 1976.

[Wag91] Edouard Wagneur. Moduloids and pseudomodules: 1. dimension theory.

Discrete Mathematics, 98:57{73, 1991.

[WB93a] Elizabeth Walkup and Gaetano Borriello. Automatic synthesis of device

drivers for hardware/software co-design. In Proceedings of the Interna-

tional Workshop on Hardware-Software Co-design, October 1993.

[WB93b] Elizabeth Walkup and Gaetano Borriello. Interface timing veri�cation

with combined max and linear constraints. In Proceedings of the ACM

International Workshop on Timing Issues in the Speci�cation and Syn-

thesis of Digital Systems, September 1993.

[WB94a] Elizabeth Walkup and Gaetano Borriello. Interface timing veri�cation

with application to synthesis. In Proceedings of the 31st Design Automa-

tion Conference, June 1994.

158

[WB94b] Elizabeth A. Walkup and Gaetano Borriello. Interface timing veri�cation

with combined max and linear constraints. Technical Report 94-03-04,

University of Washington Department of Computer Science, March 1994.

[WB95] Elizabeth A. Walkup and Gaetano Borriello. A general linear max-plus

solution technique. In Proceedings of the BRIMS Workshop on Idempo-

tency. Cambridge University Press, 1995. To appear.

[YICW94] Ti-Yen Yen, Alex Ishiii, Al Casavant, and Wayne Wolf. E�cient al-

gorithms for interface timing veri�cation. In Proceedings of the 1994

Euro-DAC, pages 34{39. IEEE Computer Society Press, september 1994.

[Zim81] Uwe Zimmermann. Linear Combinatorial Optimization in Ordered Alge-

braic Structures. Number 10 in Annals of Discrete Mathematics. North-

Holland, 1981.

Appendix A

Mc Millan and Dill's Algorithms

160

Appendix A.1

MAX-ONLY CONSTRAINTS

Pictured in Figure A.1.1 is McMillan and Dill's algorithm [MD92] for �nding the

maximum time di�erence between any pair of events in an I-BDS system. Their

algorithm works for an equivalent, but distinct de�nition of an I-BDS system (De�-

nition 2.1) for which the following information is required:

� for a given event, j, event i is a predecessor of j if there exists an activity, a

such that activity a is a predecessor of j and i is the initiator of a (i.e. a 2 P (j)

and I(a) = i),

� for a given event, i, event j is a successor of i if and only if i is a predecessor

of j, and

� for event i with successor j, �

i;j

and �

i;j

are the upper and lower bounds for

the activity a initiated by i and which is a predecessor of j.

We speak of i being an ancestor of j if i is a predecessor of j or i is a predecessor of

an ancestor of j. If i is an ancestor of j then j is a decendant of i.

While their algorithm is structured to cache intermediate values and only examine

those time separations necessary to calculate a desired time separation between a

particular pair of events, i and j, it is easier to understand the method if we examine

it from the point of view of calculating all n separations of events j relative to a

single i. The algorithm consists of two procedures, P , and S. Since P does not call

S and does not examine the bounds s

i;j

calculated by S, we can think of P as �rst

calculating bounds on the separations between all i and j and S then using those

bounds.

P (i; j) determines an upper bound, p

i;k

on the time separation from i to j as

the negative of the minimum time from j to i for j a predecessor of i. We can

think of P (i; j) as sweeping back through the I-BDS graph by following each of its

arcs backwards. If P (i; k) has been calculated and there is an activity with bounds

161

McMillan and Dill's I-BDS algorithm

P (i; j) subroutine:

if p

i;j

has not already been de�ned then

if i = j then p

i;i

= 0

else p

i;j

= min

k2succs(j)

(P (i; k) � �

j;k

)

return p

i;j

S(i; j)

if s

i;j

has not already been de�ned then

if i = j then s

i;i

= 0

else s

i;j

= min(max

k2preds(j)

(S(i; k) + �

k;j

); P (i; j))

return s

i;j

Figure A.1.1: McMillan and Dill's Maximum Time Separations Algorithm for I-BDS

Systems.

[�

j;k

;�

j;k

] from j to i then P (i; j) is no more than P (i; k)� �

j;k

. This characterizes

the minimum time from j to i as being at least as large as �

j;k

plus the minimum

time from k to i.

While P (i; j) is an upper bound on the maximum time separation from i to j, it

is not necessarily a tight bound. To obtain the tight bounds, S begins with bounds

s

i;j

= p

i;j

and then sweeps forward in the graph, tightening the bound to a given j

as the maximum of s

i;k

+�

k;j

for all predecessors k of j.

162

Appendix A.2

GENERALIZED MAX-ONLY CONSTRAINTS

Figure A.2.1 gives McMillan and Dill's algorithm [MD92] for \generalized max-

only" constraint sets which consist of constraints corresponding to both the delays

and guarantees of Section 3.2. The algorithm as given here di�ers from the original

only in that both constraint types are represented with UBCs.

163

McMillan & Dill's original algorithm in UBC terms

Inputs: a system of m UBCs over n variables x

0

through x

n�1

Outputs: s

i;j

contains maximum possible value for x

j

when x

i

= 0

for i := 0 to n� 1 do:

for j := 0 to n� 1 do:

s

i;j

=1

s

i;i

= 0

for every UBC of the form x

j

� x

i

+ � do:

if s

i;j

> � then:

s

i;j

 �

Do:

for i := 0 to n� 1 do:

for j := 0 to n� 1 do:

for k := 0 to n� 1 do:

if s

i;k

+ s

k;j

< s

i;j

then: s

i;j

 s

i;k

+ s

k;j

if 9 UBC x

j

� max

p

(x

p

1

+ �

p

1

; x

p

2

+ �

p

2

; : : :) then:

if x

i;j

> max

p

(x

i;p

1

+ �

p

1

; x

i;p

2

+ �

i;p

2

; : : :) then:

x

i;j

 max

p

(x

i;p

1

+ �

p

1

; x

i;p

2

+ �

i;p

2

; : : :)

If s

i;i

< 0 then

Report constraints inconsistent

Exit algorithm

Until no s

i;j

changes

Figure A.2.1: McMillan and Dill's Maximum Time Separations Algorithm for D-BDS

Systems.

Appendix B

Generalization of Max-Plus

Properties

165

Appendix B.3

PSEUDORING PROPERTIES

In Chapter 5, we introduced the dioid, and showed that the max-plus algebra

is such an object. However, as discussed in Chapter 6 the max-plus algebra, (R [

�;�;
), is totally ordered and (R;
) is a group. These properties make it easier to

solve systems of max-plus equations and allow the UBCsolv and MPsolv techniques

to be applied to any algebraic structure with the same properties.

De�nition B.3.1 [Wagneur, ([Wag91], page 60)] A pseudoring, abbreviated

pseudoring, is a dioid, (D;�;
), with the following additional properties:

� D is a commutative dioid |
 is commutative;

� D is totally ordered | for any a and b in D,

a = a� b or b = a� b; (B.3.1)

� the structure (Dnf�g;
), is a group, indicating that for all a 2 Dnf�g, there

exists an element, a

�1

such that a
 a

�1

= e.

We may also describe a pseudoring as being \almost" a �eld. The di�erence is

that pseudoring exchange the total order property of the � operator for the required

�-inverses of a �eld. There are several natural consequences of the de�nitions of

pseudoring and > which will be very useful for deducing the relative orderings of

expressions, and which were used implicitly in Chapters 6 and 7. The proof of this

next lemma makes extensive use of Proposition 6.1, which stated that for a and b in

a pseudoring, one of the three relationships a > b, a = b, or a < b must hold.

Lemma B.3.1 The following properties hold for all a; b; c; x 2 D, where D is a

pseudoring.

1. a � b) ax � bx,

166

2. [ax = bx and x 6= �]) a = b,

3. [a > b and ax = bx]) x = �,

4. [a > b and x 6= �]) ax > bx,

5. [a > b and b � c]) a > c, and [a � b and b > c]) a > c,

6. [a > b and a� x = b� x]) x � a,

7. [a > b and a� x = b� x]) x > b,

8. e > a) a

�

= e,

Proof:

1. This is true for all dioids and follows directly from the de�nition of � (Equa-

tion 5.10).

2. Since x 6= �, we know it has an inverse and therefore we get

ax = bx (B.3.2)

axx

�1

= bxx

�1

(B.3.3)

a = b (B.3.4)

3. This follows directly from Lemma B.3.1(2) since by de�nition, a > b) a 6= b.

4. Lemma B.3.1(3) tells us that if a > b and x 6= �, it must be the case that

ax � bx. It also indicates that ax 6= bx and we therefore know that ax > bx.

5. If we assume c � a in either case, we get

a � b � c � a; (B:3:5)

which yields

a = b = c; (B:3:6)

in contradiction to both formula's antecedents.

167

6. Suppose that the antecedent holds, but that a > x. Then by de�nition of \>",

we have

a = a� x: (B:3:7)

If we combine this with the antecedent a� x = b� x, we get

a = b� x; (B:3:8)

which by the total order property indicates either a = b or a = x. The �rst

contradicts our given and the second contradicts our assumption that a > x,

and therefore x � a.

7. This follows immediately from Lemma B.3.1(6).

8. If a = �, then by the de�nition of closure, we have that a

�

solves the equation

x = �� e and therefore a

�

= e. Otherwise, since e > a, by Lemma B.3.1(4) we

have

a

i

> a

i+1

(B:3:9)

for any �nite i � 0. Thus we have

x > ax (B:3:10)

for any x 6= �. Now a

�

is the solution to x = ax � e, but x = � is impossible

since by the de�nition of �, x � e. Thus Equation B.3.10 yields

x = e: (B:3:11)

2

De�nition B.3.2 Linear pseudoring expressions, linear pseudoring equa-

tions, and linear pseudoring systems are de�ned to be, respectively linear dioid

expressions (Equation 5.15), linear dioid equations (Equation 5.20), linear dioid sys-

tems (Equations 5.31 and 5.32), with entries taken from a pseudoring. A linear

pseudoring equation in canonical form is a pseudoring equation of the form

2

4

i=n�1

M

i=0

a

i

 x

i

3

5

� b =

2

4

i=n�1

M

i=0

c

i

 x

i

3

5

� d (B:3:12)

168

where if a

i

6= c

i

then either a

i

= � or c

i

= �, and similarly if b 6= d then either b = �

or d = �.

That this form is achievable for the max-plus algebra is given in [BCOQ92]. It is

proved below for the more general pseudoring case.

Proposition B.3.1 Any linear pseudoring equation can be represented in the canon-

ical form of Equation B.3.12.

This proposition is proved by the following lemmas.

Lemma B.3.2 For a, b, c, and x in pseudoring D

ax� c = c) ax� bx� c = bx� c: (B.3.13)

Proof: This follows directly by �-ing a term bx to either side of the original equation.

2

Lemma B.3.3 For a, b, c, and x in pseudoring D

[ax� bx� c = bx� c and a > b]) ax� c = c: (B.3.14)

Proof: Since the proof is trivial when x = �, we need only prove it for x 6= �. To

do this, we assume that ax � c 6= c and show that this leads to a contradiction. For

ax� c 6= c, we must either have

� ax� c < c which is impossible since it violates ax� c = c, or

� ax� c > c. We then note that the antecedent may be written

(ax� c)� bx = c� bx: (B:3:15)

We apply Lemma B.3.1(6), yielding

bx � ax� c; (B:3:16)

and therefore

bx � ax: (B:3:17)

However, since a > b, Lemma B.3.1(1) requires that ax � bx, indicating that

ax = bx, in direct opposition to the operation of Lemma B.3.1(3), the fact that

a > b, and our assumption that x 6= �. Thus ax� c must equal c

169

2

Lemma B.3.4 Any equation ax � c = bx � c for which a > b is equivalent to the

equation ax� c = c.

Proof: This is a direct result of Lemmas B.3.2 and B.3.3. 2

Vita

Elizabeth A. Walkup was born in Seattle, Washington. She attended the University

of California, San Diego from 1984 through 1989, and graduated with Bachelor of

Arts degrees in Computer Science and Theatre. She received a Master of Science

degree in Computer Science from the University of Washington in 1993.

