
A Comparison of Input and Output Driven Routers

y

Melanie L. Fulgham

Lawrence Snyder

fmel, snyderg@cs.washington.edu

University of Washington

November 27, 1996

Abstract

Communication in parallel computers requires a low latency router. Once a suit-

able routing algorithm is selected, an implementation must be designed. Issues such

as whether the router should be input or output driven need to be considered. In this

paper, we use simulations to compare input driven and output driven routing algo-

rithms. Three algorithms, the Dally-Seitz oblivious router, the *-channels router, and

the minimal triplex algorithm are evaluated. Each router is implemented as both an

input and an output driven router. Experiments are run for each of the router imple-

mentations with seven di�erent tra�c patterns on both a 256-node two dimensional

mesh and torus networks. The results show that in almost all cases, the output driven

router matches or outperforms the input driven router. Furthermore, we �nd that

randomization of output bu�er selection in the input driven algorithm increases its

performance and substantially reduces the performance discrepancy between the input

and output driven algorithms. Although the �ndings apply to the routers considered,

we believe the results generalize to other routers.

1 Introduction

Communication in parallel computers continues to be a very di�cult problem. In this paper

we consider communication in multicomputer networks, networks with point to point con-

nections between processors. In this model, processors communicate by sending messages

through the network. Messages are forwarded at each node to their destination by a hard-

ware router that implements the routing algorithm, the rules of which specify the path a

message takes to reach its destination. Initially the communication bottleneck was the large

y

This work supported in part by NSF Grant MIP-9213469 and by an ARPA Graduate Research Fellow-

ship. A shorter version of this paper appears in Lecture Notes in Computer Science, volume 1123, pages

195-204, 1996.

1

software overhead for sending and receiving messages. Nevertheless, research has reduced

this overhead [vEDCGS92, Dal90, Kea94] and exposed the network interface. Designing low

latency network interfaces has become a hot topic for research [BLA

+

94, MBES94]. Even-

tually network interfaces will no longer overshadow the routing time in the network. Then,

both the routing algorithm and its implementation will have an impact on communication

performance.

In this paper, we experimentally compare two methods of implementing a particular

router, as an input driven or as an output driven algorithm. Although the two choices are

conceptually similar, they result in noticeable performance di�erences when compared with

each other. Three algorithms, the Dally-Seitz oblivious router, the *-channels router, and

the minimal triplex router, are simulated on a 256-node two dimensional (2D) mesh and

torus. Each algorithm is con�gured as both an input and an output driven router. The

output driven versions of the algorithms are almost always superior when the networks are

congested. This is the critical area of network performance, since communication is often

bursty and does not always present easy, light loads to the network.

The paper is organized as follows. Section 2 de�nes input and output driven routers.

The simulation methodology and the three routing algorithms are described in Section 3.

Results follow in Section 4, related work in Section 5, and �nally conclusions in Section 6.

2 Input versus Output Driven

Routers that make decisions based on local information can usually be classi�ed as either

input driven or output driven. The input driven algorithms make routing decisions from

an occupied input bu�er while the output driven algorithms select routes from an empty

output bu�er. Typically the input driven algorithms service the input bu�ers in round robin

order, and the output driven algorithms service the output bu�ers in round robin order,

After routing, the pointer to the current bu�er is advanced to the next dimension where

an interesting bu�er resides. For input driven algorithms an interesting input bu�er is one

that contains a ready message that needs an available output bu�er. For output driven

algorithms an interesting output bu�er is one that is empty and is wanted by some ready

input message.

An input driven router operates as follows. First it computes for the current input

message which output bu�ers the message needs. Then it selects one of the available output

bu�ers and routes the message to that output bu�er. Many of the routing algorithms in the

literature fall into this category. See Figure 1 for an example of an input driven router.

An output driven algorithm considers the current empty output bu�er. The router tries

to �nd a message in an input bu�er that needs to be routed to the current output bu�er.

If messages are found, it selects one to be routed to the current output bu�er. The Chaos

router is a good example of an output driven router [KS94]. See Figure 2 for an example of

an output driven router.

Many algorithms can be implemented as either input or output driven algorithms. For

these algorithms, it would be advantageous to implement the router with the best performing

2

S

input output

crossbar
N

E

S

W

deliveryinjection

E
 S

Figure 1: An example of an input driven router. The short arrow marks the current input

bu�er. The long arrows are the choices of empty output bu�ers for the message in the current

input bu�er. Messages can travel north (N), east (E), south (S), or west (W). Bu�ers that

are �lled in are not available, while the un�lled bu�ers are available.

S

input output

crossbar
N

E

S

W

deliveryinjection

E
 S

Figure 2: An example of an output driven router. The short arrow marks the current output

bu�er. The long arrows are from messages that are competing for the current empty output

bu�er. Messages can travel north (N), east (E), south (S), or west (W). Bu�ers that are

�lled in are not available, while the un�lled bu�ers are available.

3

routing mechanism. A later section shows that for the algorithms examined, the output

driven algorithm generally performs as well as, or better than the input driven algorithm.

Unfortunately some algorithms cannot easily be transformed into output driven algorithms,

for example algorithms that take probabilities over the possible output choices.

3 Methodology

Performance of input versus output driven routing algorithms is compared by experimen-

tation. Three algorithms are simulated as both input and then output driven routers: the

Dally-Seitz oblivious router [DS87], the *-channels router [BGPS92, Dua93], and the minimal

triplex router

1

[FS96] using a it-level simulator of 256-node 2D torus and mesh networks.

A node (x; y) in a 2D torus has 4 neighbors: (x + 1 mod k; y), (x � 1 mod k; y), (x; y +

1 mod k), and (x; y � 1 mod k), where k is the size of a dimension. Edges between nodes of

the form (k� 1; y) and (0; y) or (x; k� 1) and (x; 0) are called wrap edges. A mesh is a torus

without wrap edges.

The �rst algorithm, the Dally-Seitz oblivious router, provides no adaptivity and routes

messages by correcting the dimensions from lowest to highest (e.g. in the 2D case, x then y).

Unless speci�ed, the oblivious router uses two virtual lanes [Dal92] resulting in four virtual

channels per channel for the torus and two virtual channels for the mesh. When more than

one lane is available, the one with the most space is chosen. The *-channels algorithm

is a minimal fully adaptive algorithm which uses three (two) virtual channels per channel

for the torus (mesh). For the torus (mesh), two (one) of these virtual channels are (is)

used for oblivious dimension order routing and the other is used for minimal routing. The

minimal triplex router is a minimal fully adaptive version of the triplex router. It also uses

three (two) virtual channels per channel for the torus (mesh). The torus (mesh) algorithm

provides minimal adaptive routing on all three (two) virtual channels. All the algorithms

have routing restrictions that prevent deadlock.

The following describes the high level design and operation of the routers. Each router

has an injection bu�er, a delivery bu�er, and an input and an output bu�er for each virtual

channel in each dimension in each direction. This yields 26 (18) bu�ers per node for the

*-channels and triplex routers on the torus (mesh), since each uses an injection bu�er, a

delivery bu�er, and three (two) virtual channels per channel per direction. The oblivious

router is con�gured with four (two) virtual channels per channel per direction for the torus

(mesh) or 34 (18) bu�ers per node.

Transmission of a it over a channel from an output bu�er to a neighboring node's

input bu�er costs one cycle. The actual cycle time depends on the technology used for

implementation. Decoding and routing calculations are pipelined to allow the router cycle

time to match that of the channel. The more complex algorithms require a larger pipeline

depth. This study uses node latencies of three cycles for the oblivious router, and four cycles

1

An early implementation of the triplex router is used. Since then, performance has improved, though

the di�erences between the input and output driven routers should remain unchanged.

4

for the adaptive routers [Bol93]. To keep complexity manageable, the router connects at

most a single message from an input bu�er to an output bu�er per cycle.

Tra�c is dynamic. Messages are introduced at each node at every cycle with a probability

speci�ed by the applied load. For clarity, the applied load is normalized by the maximum

sustainable load when an average of half the messages cross the network bisection

2

, as with

uniform random tra�c. Thus, for a kxk-node network with an average message length of l

its, the maximum possible load is 1 message every kl=4 cycles for the torus and 1 message

every kl=2 cycles for the mesh. Messages are 20 its long and bu�ers can hold an entire

message exactly. In this case for a 256-node 2D torus (mesh), the maximum normalized

applied load (1.0) corresponds to the applied load of one message every 80 (160) cycles.

Virtual cut-through ow control is used [KK79]. This avoids store-and-forward latency

penalties. With virtual cut-through, a bu�er may contain parts of two distinct messages.

The tra�c patterns considered are found in the literature, and are generally thought to

be di�cult, useful, or both. The following describes the tra�c patterns simulated. Let the

binary representation of the source node be a

n�1

a

n�2

: : : a

0

, and let 0 = 1 and 1 = 0.

� Random - all destinations including the source are equally likely.

� Bit Reversal permutation - destination is a

0

a

1

: : : a

n�1

.

� Complement permutation - destination is to a

n�1

a

n�2

: : : a

0

.

� Perfect Shu�e permutation - destination is a

n�2

a

n�2

: : : a

0

a

n�1

.

� Transpose permutation - destination is a

n=2�1

a

n=2�2

: : : a

0

a

n�1

a

n�2

: : : a

n=2

.

� Hot spot - ten randomly selected nodes are four times more likely to be chosen as

destinations than the other nodes.

For the hot spot tra�c, two di�erent con�gurations were simulated. Assuming the nodes

are labeled in row major order from 0 to 255, the hot spot nodes for case 1 are 158, 186,

216, 236, 121, 86, 6, 152, 201, and 123. For case 2 they are 51, 92, 254, 140, 51, 70, 201, 155,

124, and 245.

The tra�c patterns illustrate di�erent features. As mentioned earlier the random traf-

�c is simply a standard benchmark used in network routing studies. The hot spot tra�c

models cases where references to program data, such as synchronization locks, bias packet

destinations towards a few nodes. The complement is a particularly di�cult permutation.

Given an imaginary x and y axis though the center of a mesh or torus network, the com-

plement destination is the composition of the x and y axis reection of the source. Perfect

shu�e communication occurs in ascend/descend algorithms [PV81] while the transpose and

bit reversal are important because they occur in practical computations.

The simulator is written in C and uses a batch means method [Mu~n91] for computing 95%

con�dence intervals for the expected values of network throughput and latency. The sources

2

The network bisection is the minimum number of channels cut to divide the network in half.

5

of randomness are provided by a prime-modulus, multiplicative congruential generator [LL74]

which is considered highly reliable for simulation studies [LO89].

4 Results

The results are presented in two parts. The �rst set of experiments compare output driven

routers to input driven routers that choose deterministically the �rst available output bu�er

from the set of needed output bu�ers. Any deterministic order su�ces, in this case the

routers search in dimension order. In the second set of experiments the input driven router

selects an available output bu�er at random from the set of needed output bu�ers. For this

set-up, the input driven router is very similar to the output driven router which chooses

messages from the input bu�ers at random. In both cases the output driven routers perform

as well as or better than the input driven routers for all but a few cases. As expected, the

results are more dramatic for the �rst case.

4.1 Fixed Order Output Bu�er Selection

The �rst set of experiments consider input driven routers with a �xed order output bu�er

selection policy. Table 1 speci�es the �rst normalized applied load, in increments of .05, at

which messages arrive faster then they can be injected and delivered by the 256-node torus

network. For all three algorithms and all tra�c patterns except one, the complement, the

point of saturation for the output driven router is at least as great as the saturation point of

the corresponding input driven router. The advantage ranges from zero to �fty-four percent

of the input driven saturation point.

Table 1: Minimum normalized applied load within .05 at which saturation is detected.

16x16 Torus Saturation, input driven is �xed order

Tra�c oblivious *-channels min triplex

input output input output input output

Random 0.80 0.80 0.85 0.95 0.80 0.85

Bit reversal 0.50 0.50 0.70 0.80 0.65 0.75

Complement 0.50 0.50 0.45 0.40 0.40 0.40

Perfect shu�e 0.50 0.50 0.50 0.50 0.40 0.45

Transpose 0.55 0.55 0.55 0.55 0.55 0.55

Hot Spot 1 0.65 0.65 0.70 0.90 0.65 0.85

Hot Spot 2 0.55 0.55 0.55 0.85 0.60 0.80

We conjecture that the output driven algorithms are better at balancing the load among

the channels because the empty output bu�ers are �lled by dimension in round-robin order

which naturally tries to keep all the physical channels busy. More speci�cally, when a message

has been routed to an empty output bu�er in a dimension, the router will consider the next

6

dimension that has an empty output bu�er. The input driven algorithm, however, routes a

message to the �rst available output bu�er it �nds. This bu�er may share the same physical

channel as a recently routed message. This cannot happen in an output driven router unless

all the other output bu�ers in the other dimensions are full, or all the messages in the input

bu�ers only need dimensions that are being used by previously routed messages.

Table 2 presents the saturation loads for the 256-node mesh and shows that output

driven routers are superior to input driven routers for the mesh also. The advantage ranges

from zero to thirteen percent. Again, the only exception is the complement tra�c for the

*-channels and minimal triplex adaptive routers.

Table 2: Minimum normalized applied load within .05 at which saturation is detected.

16x16 Mesh Saturation, input driven is �xed order

Tra�c oblivious (no vc) oblivious *-channels min triplex

input output input output input output input output

Random 0.90 0.90 0.95 0.95 0.95 0.95 0.90 0.90

Bit reversal 0.50 0.50 0.55 0.55 0.80 0.80 0.70 0.75

Complement 0.45 0.50 0.50 0.50 0.45 0.35 0.45 0.35

Perfect shu�e 0.75 0.80 0.90 0.90 0.90 0.95 0.80 0.90

Transpose 0.50 0.50 0.55 0.55 0.85 0.85 0.85 0.85

Hot Spot 1 0.75 0.75 0.80 0.80 0.80 0.85 0.75 0.85

Hot Spot 2 0.70 0.70 0.75 0.75 0.75 0.85 0.75 0.85

We expect the bene�t of output driven routers to be less pronounced or non-existent

in oblivious routers than in adaptive ones, since the two oblivious routers make the same

routing decisions. The oblivious routers may, however, move a message from an input to

an output bu�er at a di�erent time or select a di�erent lane to route a message to, though

the latter is unlikely to e�ect performance since lanes share the same underlying physical

channel. The data supports this hypothesis since there is almost no di�erence between the

saturation points of the input and the output driven oblivious routers on the torus and mesh.

Routing the complement permutation using the *-channels algorithm is the one case

where the output driven saturation point did not equal or exceed the input driven saturation

load for either topology. The complement is unusual since dimension order routing helps

prevent conicts in this tra�c pattern, i.e. when two messages compete for the same output

bu�er.

To see this, consider the following idealized scenario. Each node simultaneously injects

a single message destined for the bit complement of its source id. When routing is by a

synchronous, oblivious dimension order algorithm, there are no conicts for channels, as

explained in the following. With dimension order routing, every message m with source

(i; j) is routed in row i in exactly the same way as message m

0

with source (k; j) is routed

in row k. All messages move within the rows in lock step. Conicts can only occur when a

messages turns from its source row to its destination column. Messages from column j are

the only messages that need to travel in destination column

�

j. Messages m and m

0

arrive

7

at their destination column

�

j at the same time, and hence do not impede each other from

progressing to their respective destinations. Arbitrary injections are used in our routing

experiments, however, and they perturb the orderly ow of messages. Adaptive routing

further destroys this property by letting messages take any minimal path.

For the *-channels algorithm the input driven router has a slight advantage in exploiting

this phenomenon since it prefers the lowest dimension output bu�er needed, while the output

driven algorithm selects a random message that needs the current output bu�er. Neverthe-

less, the second set of experiments show this advantage disappears when the input driven

algorithm picks from the needed output bu�ers at random.

For the mesh, the oblivious algorithm was also simulated with no virtual channels (vc),

i.e. with no extra lanes. In this case, a message waiting in an input bu�er needs exactly

one output bu�er. Therefore, the input and output driven algorithms do not make di�erent

routing decisions or bu�er choices. Rather, the di�erence in performance is due to the

ordering of messages and the router's ability to keep the channels busy. As hypothesized,

the di�erence in saturation points between input and output driven routers is very modest,

non-existent in �ve tra�c patterns and within a normalized load of .05 for the two remaining

ones. For the two lane oblivious routers, there is no di�erence in the saturation points

between the input and output driven routers.

Figures 3{8 show the expected throughput and latency versus the normalized applied

load for each of the tra�c patterns on the 256-node torus and mesh. Throughput represents

messages delivered per cycle and is normalized to reect bandwidth limitations of the net-

work. Latency measures time in the network and does not include source queueing, since

after saturation, the source queue length is not well de�ned.

At low loads the input and output driven routers are indistinguishable. Nevertheless, the

output driven router achieves a higher or equivalent peak throughput than the corresponding

input driven router for all but one of the tra�c patterns and routers simulated. The peak

throughput of the output driven router on the torus (mesh) is up to 36 (13) percent better

than the input driven router with �xed order selection. See Tables 5{10 for details. As with

the saturation data, the complement tra�c is the only exception. For the minimal triplex

router on the mesh and torus, the peak throughput of the output driven router under the

complement tra�c does not quite reach that of the input driven router. The same is true

for *-channels on the mesh.

After saturation, the output driven router almost always maintains a higher throughput

than the input driven router, though there are three exceptions. The output driven router

degrades slightly more than the input driven router for a few of the applied loads for the

perfect shu�e and second hot spot case with the oblivious router on the torus and for the

second hot spot tra�c with *-channels on the mesh.

The latency curves have three phases. Initially the input and output schemes have

equivalent latencies. Any router and routing decision will do when the router is lightly

loaded. When the applied load is in the neighborhood of saturation and the network is

congested, the output driven routers almost always exhibit a lower or equivalent latency

(and latency variance) than the input driven router. This is apparent by observing that

8

the output driven routers experience a steep increase in latency at the same or higher load

than the input driven routers. We believe this is because the output driven router is doing a

better job at keeping the physical channels utilized. There are two exceptions. The adaptive

output driven routers show an increase in latency at a slightly lower load than the input

driven router for the complement on the torus and mesh and for random tra�c on the mesh.

After saturation the network cannot keep up with the message arrivals; and again, any

type of routing will do. Furthermore, the latency di�erences are less predictable, though they

tend to converge for many of the tra�c patterns. In two instances, bit reversal and transpose

on the torus, the oblivious input driven router shows a decrease in its after saturation latency.

In these cases, many fewer messages with distant destinations are injected into the network,

thereby lowering the expected latency of a message. This appears to be caused by the unfair

access each node has to a congested network. A similar phenomena occurs with bit reversal

tra�c at a load of .8 using input driven triplex routing.

4.2 Random Output Bu�er Selection

To validate our conjecture that the advantage of output driven routers is not from the non-

deterministic search for available output bu�ers, the following changes were made to make

the input driven routers as similar as possible to the output driven routers. Each input driven

router was modi�ed so that it selects a needed output bu�er at random, instead of choosing

the lowest dimension output bu�er available. The output driven routers were unchanged and

choose messages from the input bu�ers at random. Experiments showed the modi�ed input

driven algorithms to have better channel utilization resulting in improved performance

3

.

Tables 3 and 4 compare the saturation points of the input and the output driven routers

for the torus and mesh. The change from �xed order to random output bu�er selection does

not change the bu�er selection of the oblivious routers, and hence the results for input driven

routing with random selection are the same as those with �xed order bu�er selection.

For the adaptive routers the di�erence between the saturation points of the input and

output driven algorithms on the mesh and torus has nearly been eliminated for almost all

the tra�c patterns. The output driven advantage ranges from zero to 14 percent of the

input driven saturation point for the torus and to 13 percent for the mesh. The input

driven routers with random output bu�er selection are superior to those with �xed order

output selection, since removing the bias of �xed order selection improves the utilization of

the physical channels of a node. The only exception is the complement. The complement

saturates at a lower load than previously for both adaptive routers on the mesh and torus.

This is because the �xed order input selection prefers the dimension order route if available;

and as mentioned earlier, the complement prefers dimension order routing.

For the mesh hot spot tra�c, the *-channels input driven router with random selection

has a higher saturation point than the output driven router, even though the output driven

3

It is possible that round-robin selection could approximate this improvement without the use of ran-

domization, since deterministically spreading the outgoing messages among the various channels would still

help channel utilization.

9

Table 3: Minimum normalized applied load within .05 at which saturation is detected.

16x16 Torus Saturation, input driven is random

Tra�c *-channels min triplex

input output input output

Random 0.95 0.95 0.85 0.85

Bit reversal 0.80 0.80 0.70 0.75

Complement 0.40 0.40 0.35 0.40

Perfect shu�e 0.50 0.50 0.45 0.45

Transpose 0.55 0.55 0.55 0.55

Hot Spot 1 0.85 0.90 0.80 0.85

Hot Spot 2 0.75 0.85 0.75 0.80

Table 4: Minimum normalized applied load within .05 at which saturation is detected.

16x16 Mesh Saturation, input driven is random

Tra�c *-channels min triplex

input output input output

Random 0.95 0.95 0.90 0.90

Bit reversal 0.80 0.80 0.75 0.75

Complement 0.35 0.35 0.35 0.35

Perfect shu�e 0.95 0.95 0.90 0.90

Transpose 0.80 0.85 0.75 0.85

Hot Spot 1 0.90 0.85 0.85 0.85

Hot Spot 2 0.90 0.85 0.85 0.85

10

router nearly achieves the same throughput. The input driven router is able to prevent

congestion around the hot spots from spreading as quickly into the whole network compared

to the output driven router. The reasons for this are unclear, but most likely related to the

lack of wrap edges in the mesh since the torus does not exhibit this behavior.

Figures 9{14 compare the expected throughput and latency of the input and output

driven algorithms on the torus and mesh. The oblivious comparisons are identical to the

previous ones.

The adaptive input driven routers improve their maximum achieved throughput, and in

some cases now match the throughput of the corresponding output driven routers, as with bit

reversal and random tra�c with *-channels routing and random tra�c using triplex routing

on the torus. For the mesh, random selection closed the gap between input and output

driven performance with triplex on the bit reversal, random, perfect shu�e, and both hot

spot cases, as well as for the perfect shu�e tra�c pattern with the *-channels algorithm. In

addition, random selection sometimes results in less throughput degradation for the adaptive

algorithms on the mesh, as with the perfect shu�e tra�c pattern.

The output driven router achieves up to an 11 (6) percent greater peak throughput than

the input driven router on the torus (mesh). The two exceptions, as with the saturation

points, are the hot spot cases where the *-channels input driven algorithm achieves a slightly

higher peak throughput than the output driven algorithm. See Tables 5{10 for details.

There are also latency improvements for the adaptive routers with many of the tra�c

patterns. In these cases, the steep increase in latency occurs at a higher load and after

saturation latency is also smaller. In a few cases however, throughput degradation causes an

increase in latency. See Figures 15{20 in the Appendix for direct comparisons between the

two input driven schemes for both the mesh and torus.

5 Related Work

Most of the work in routing algorithms has been in developing deadlock-free algorithms.

Numerous frameworks have been presented for developing deadlock-free algorithms with

varying complexity, resource requirements, and switching techniques [DS87, LH91, Dua93,

Dua95, GN94, CK92, SJ95, LC94]. Each of these factors inuences the overall performance

of the router. Nevertheless, only a few studies have been devoted to improving performance

or comparing various implementations of a routing algorithm. Dally increased throughput

of wormhole algorithms by adding virtual channels to separate the bu�ering resources from

the transmission resources of the router [Dal92]. Konstantinidou reduced overall message

latency in bimodal length tra�c by introducing segment routing [Kon94]. Segment routing

provides a separate bu�er for large messages, allowing small messages to pass larger ones.

Cherkasova and Rokicki replaced FIFO injection, the traditional method of introducing mes-

sages into the network, with alpha scheduling [CR94]. With variable length messages, alpha

scheduling approximates the optimal average message latency of shortest �rst scheduling

without introducing starvation. Finally, a study by Glass and Ni compared the performance

of various policies for selecting input and output bu�ers for two di�erent routing algorithms

11

on the mesh [GN92].

6 Conclusions

We have experimentally compared the performance of input and output driven algorithms

on the mesh and torus. Although the two are conceptually similar, for almost all the cases

examined, the performance of the output driven algorithms is equivalent, or superior to that

of the input driven algorithms. The di�erence is diminished when randomization is added to

the output bu�er selection of the input driven algorithm. Although the �ndings presented

only apply to the routers considered, we believe that the results can be generalized to routers

where the designer is indi�erent to which approach to use. Future work may compare input

and output driven routers using longer messages or a non-minimal router.

References

[BGPS92] P.E. Berman, L. Gravano, G. Pifarr�e, and J.L.C. Sanz. Adaptive deadlock-

and livelock-free routing with all minimal paths in torus networks. In Proc. of

the Sym. of Parallel Algorithms and Architectures, 1992.

[BLA

+

94] M.A. Blumrich, K. Li, R. Alpert, C. Dubnicki, and E.W. Felten. Virtual

memory mapped network interface for the SHRIMP multicomputer. In Proc.

of the Intl. Sym. on Computer Arch., pages 142{153, 1994.

[Bol93] Kevin Bolding. Chaotic Routing: Design and Implementation of an Adaptive

Multicomputer Network Router. PhD thesis, University of Washington, Seattle,

July 1993.

[CK92] A.A. Chien and J.H. Kim. Planar-adaptive routing: Low-cost adaptive net-

works for multiprocessors. In Proc. of the Intl. Sym. on Computer Architecture,

pages 268{277, 1992.

[CR94] L. Cherkasova and T. Rokicki. Alpha message scheduling for packet-switched

interconnects. Technical Report TR HPL-94-72, Hewlett-Packard Labs, 1994.

[Dal90] W.J. Dally. The J-machine system. In P.Winston and S. Shellard, editors,

Arti�cial Intelligence at MIT: Expanding Frontiers. MIT Press, 1990.

[Dal92] W. Dally. Virtual-channel ow control. IEEE Transactions on Parallel and

Distributed Systems, 3(2):194{205, March 1992.

[DS87] W. Dally and C. Seitz. Deadlock-free message routing in multiprocessor in-

terconnection networks. IEEE Transactions on Computers, C-36(5):547{553,

May 1987.

12

[Dua93] J. Duato. A new theory of deadlock-free adaptive routing in wormhole net-

works. IEEE Transactions on Parallel and Distributed Systems, 4(4):466{475,

April 1993.

[Dua95] J. Duato. A necessary and su�cient condition for deadlock-free adaptive rout-

ing in wormhole networks. IEEE Transactions on Parallel and Distributed

Systems, 6(10), October 1995.

[FS96] M. Fulgham and L. Snyder. Triplex router: a versatile torus routing algorithm.

Technical Report UW-CSE-96-01-11, Univ. of Washington, Seattle, 1996.

[GN92] C.J. Glass and L.M. Ni. Adaptive routing in mesh-connected networks. In

Proc. of the Intl. Conf. on Distributed Computing Systems, pages 12{19, 1992.

[GN94] Christopher J. Glass and Lionel M. Ni. The turn model for adaptive routing.

JACM, 41(5):874{902, 1994.

[Kea94] J. Kuskin and et al. The Stanford FLASH multiprocessor. In Proc. of ISCA,

pages 302{313, 1994.

[KK79] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer commu-

nication switching technique. Computer Networks, 3:267{286, 1979.

[Kon94] S. Konstantinidou. The segment router: a novel router design for parallel

computers. In Proc. of the Sym. of Parallel Algorithms and Architectures,

pages 364{373, 1994.

[KS94] S. Konstantinidou and L. Snyder. The chaos router. IEEE Transactions on

Computers, 43(12):1386{97, December 1994.

[LC94] Z. Liu and A.A. Chien. Hierarchical adaptive routing: A framework for fully

adaptive and deadlock-free wormhole routing. In Sym. on Par. and Distr.

Processing, pages 688{695, 1994.

[LH91] D. H. Linder and J. C. Harden. An adaptive and fault tolerant wormhole

routing strategy for k-ary n-cubes. IEEE Transactions on Computers, C-

40(1):2{12, January 1991.

[LL74] G.P. Learmonth and P.A.W. Lewis. Statistical tests of some widely used and

recently proposed uniform ran dom number generators. In Proc. of the 7th

Conf. on Comp. Sci, and Stats. Interface, 1974.

[LO89] P.A.W. Lewis and E.J. Orav. Uniform Pseudo-Random Variable Generation.

Wadsworth Brooks/Cole, 1989.

13

[MBES94] N. McKenzie, K. Bolding, C. Ebeling, and L. Snyder. CRANIUM: An interface

for message passing on adaptive packet routing networks. In Lecture Notes in

Computer Science, volume 853, pages 266{80, 1994.

[Mu~n91] David Mu~noz. Multivariate standardized time series in the analysis of simu-

lation out put. Technical Report TR-68, Operations Research, Stanford Uni-

versity, Palo Alto, CA, April 1991.

[PV81] F. Preparata and J. Vuillemin. The cube-connected cycles: a versatile network

for parallel computation. Communications of the ACM, 24(5):300{309, 1981.

[SJ95] L. Schwiebert and D.N. Jayasimha. A universal proof technique for deadlock-

free routing in interconnection networks. In Proc. of the Sym. on Par. Alg.

and Arch., pages 175{184, 1995.

[vEDCGS92] T. von Eicken D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active mes-

sages: a mechanism for integrated communication and computation. In Proc.

of the Intl. Sym. on Computer Arch., pages 256{266, May 1992.

A Appendix

Tables 5{10 contain the peak normalized throughput, rounded to the nearest whole number,

achieved by each of the routers for the various tra�c patterns.

Table 5: Shows the normalized applied load (load) at which the maximum normalized

throughput (xput) is achieved by the tra�c pattern. The percent error (error) is also shown.

16x16 Torus, oblivious

Tra�c output input �xed or random

load xput error load xput error

Random 0.80 78 0.3 0.80 77 0.4

Bit reversal 1.00 46 0.2 0.60 44 0.3

Complement 0.45 45 0.2 0.45 44 0.3

Perfect shu�e 0.45 45 0.4 0.45 45 0.3

Transpose 0.55 50 0.1 0.60 50 0.1

Hot Spot 1 0.65 63 1.1 0.65 63 1.1

Hot Spot 2 0.50 50 0.2 0.55 51 2.6

14

Table 6: Shows the normalized applied load (load) at which the maximum normalized

throughput (xput) is achieved by the tra�c pattern. The percent error (error) is also shown.

16x16 Torus, *-channels

Tra�c output input �xed input random

load xput error load xput error load xput error

Random 0.90 89 0.2 0.80 70 1.3 0.90 90 0.2

Bit reversal 0.75 70 0.2 0.65 61 0.3 0.75 70 0.2

Complement 0.40 39 0.3 0.40 40 0.3 0.40 39 0.4

Perfect shu�e 0.45 45 0.3 0.45 45 0.6 0.45 45 0.3

Transpose 0.55 50 0.1 0.55 50 0.1 0.55 50 0.2

Hot Spot 1 0.85 85 0.4 0.80 70 2.1 0.80 80 0.2

Hot Spot 2 0.80 80 1.2 1.00 59 2.2 0.75 72 1.9

Table 7: Shows the normalized applied load (load) at which the maximum normalized

throughput (xput) is achieved by the tra�c pattern. The percent error (error) is also shown.

16x16 Torus, minimal triplex

Tra�c output input �xed input random

load xput error load xput error load xput error

Random 0.80 80 0.2 0.75 74 0.2 0.80 80 0.2

Bit reversal 0.70 66 0.2 0.60 56 0.3 0.65 61 0.3

Complement 0.40 36 0.6 0.40 40 0.5 0.35 34 0.5

Perfect shu�e 0.45 44 0.6 0.40 39 1.2 0.40 40 0.3

Transpose 0.55 50 0.1 0.55 50 0.2 0.55 50 0.1

Hot Spot 1 0.80 80 0.3 0.65 61 3.7 0.75 74 0.2

Hot Spot 2 0.75 75 0.5 0.55 55 2.2 0.70 70 0.2

Table 8: Shows the normalized applied load (load) at which the maximum normalized

throughput (xput) is achieved by the tra�c pattern. The percent error (error) is also shown.

16x16 Mesh, oblivious

Tra�c output input �xed or random

load xput error load xput error

Random 0.95 93 0.4 1.00 94 0.5

Bit reversal 1.00 61 0.2 1.00 61 0.2

Complement 0.45 44 0.5 0.45 45 0.5

Perfect shu�e 0.90 86 0.7 0.90 86 0.9

Transpose 1.00 72 0.2 1.00 72 0.2

Hot Spot 1 0.80 76 0.8 0.80 77 0.9

Hot Spot 2 0.75 71 1.2 0.75 71 1.2

15

Table 9: Shows the normalized applied load (load) at which the maximum normalized

throughput (xput) is achieved by the tra�c pattern. The percent error (error) is also shown.

16x16 Mesh, *-channels

Tra�c output input �xed input random

load xput error load xput error load xput error

Random 1.00 93 0.4 1.00 92 0.5 0.95 92 0.4

Bit reversal 0.90 77 0.3 0.80 74 0.6 0.90 75 0.4

Complement 0.40 36 0.9 0.40 40 0.5 0.35 34 0.4

Perfect shu�e 0.90 89 0.4 0.85 84 0.6 0.90 89 0.5

Transpose 0.95 81 0.3 1.00 76 0.9 1.00 78 0.2

Hot Spot 1 0.95 87 0.8 0.95 87 0.8 0.90 89 0.6

Hot Spot 2 1.00 83 0.8 0.90 83 1.0 0.85 85 0.3

Table 10: Shows the normalized applied load (load) at which the maximum normalized

throughput (xput) is achieved by the tra�c pattern. The percent error (error) is also shown.

16x16 Mesh, minimal triplex

Tra�c output input �xed input random

load xput error load xput error load xput error

Random 0.90 89 0.3 0.85 85 0.3 0.90 88 0.8

Bit reversal 0.70 65 0.4 0.65 61 0.4 0.70 65 0.7

Complement 0.35 34 0.5 0.40 40 0.5 0.35 32 2.8

Perfect shu�e 0.90 85 1.3 0.75 75 0.3 0.85 84 0.3

Transpose 1.00 82 0.2 0.90 76 0.6 1.00 78 0.2

Hot Spot 1 0.80 80 0.3 0.75 72 3.4 0.80 80 1.7

Hot Spot 2 0.80 80 0.3 0.75 71 2.7 0.80 80 0.3

16

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Random

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Random

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Bit Reversal

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

 L
at

en
cy

 (
cy

cl
es

)

 Bit Reversal

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

Figure 3: Throughput and latency on a 256-node 2D torus with �xed output bu�er selection.

17

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100
 T

hr
ou

gh
pu

t (
Pe

rc
en

t)

 Complement

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

2000

 L
at

en
cy

 (
cy

cl
es

)

 Complement

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Perfect Shuffle

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

1000

2000

3000
 L

at
en

cy
 (

cy
cl

es
)

 Perfect Shuffle

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Transpose

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Transpose

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

Figure 4: Throughput and latency on a 256-node 2D torus with �xed output bu�er selection.

18

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Hot Spot 1

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Hot Spot 1

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Hot Spot 2

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Hot Spot 2

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

Figure 5: Throughput and latency on a 256-node 2D torus with �xed output bu�er selection.

19

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Random

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Random

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Bit Reversal

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

2000

 L
at

en
cy

 (
cy

cl
es

)

 Bit Reversal

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

Figure 6: Throughput and latency on a 256-node 2D mesh with �xed output bu�er selection.

20

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100
 T

hr
ou

gh
pu

t (
Pe

rc
en

t)

 Complement

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

1000

2000

3000

4000

5000

 L
at

en
cy

 (
cy

cl
es

)

 Complement

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Perfect Shuffle

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

2000
 L

at
en

cy
 (

cy
cl

es
)

 Perfect Shuffle

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Transpose

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Transpose

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

Figure 7: Throughput and latency on a 256-node 2D mesh with �xed output bu�er selection.

21

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Hot Spot 1

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

 L
at

en
cy

 (
cy

cl
es

)

 Hot Spot 1

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Hot Spot 2

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

 L
at

en
cy

 (
cy

cl
es

)

 Hot Spot 2

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

Figure 8: Throughput and latency on a 256-node 2D mesh with �xed output bu�er selection.

22

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Random

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Random

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Bit Reversal

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

 L
at

en
cy

 (
cy

cl
es

)

 Bit Reversal

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

Figure 9: Throughput and latency on a 256-node torus with random output bu�er selection.

23

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100
 T

hr
ou

gh
pu

t (
Pe

rc
en

t)

 Complement

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

2000

 L
at

en
cy

 (
cy

cl
es

)

 Complement

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Perfect Shuffle

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

1000

2000

3000
 L

at
en

cy
 (

cy
cl

es
)

 Perfect Shuffle

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Transpose

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Transpose

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

Figure 10: Throughput and latency on a 256-node torus with random output bu�er selection.

24

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Hot Spot 1

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Hot Spot 1

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Hot Spot 2

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Hot Spot 2

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

Figure 11: Throughput and latency on a 256-node torus with random output bu�er selection.

25

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Random

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

 L
at

en
cy

 (
cy

cl
es

)

 Random

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Bit Reversal

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

2000

 L
at

en
cy

 (
cy

cl
es

)

 Bit Reversal

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

Figure 12: Throughput and latency on a 256-node mesh with random output bu�er selection.

26

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100
 T

hr
ou

gh
pu

t (
Pe

rc
en

t)

 Complement

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

1000

2000

3000

4000

5000

 L
at

en
cy

 (
cy

cl
es

)

 Complement

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Perfect Shuffle

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

2000
 L

at
en

cy
 (

cy
cl

es
)

 Perfect Shuffle

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Transpose

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Transpose

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

Figure 13: Throughput and latency on a 256-node mesh with random output bu�er selection.

27

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Hot Spot 1

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

 L
at

en
cy

 (
cy

cl
es

)

 Hot Spot 1

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Hot Spot 2

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

 L
at

en
cy

 (
cy

cl
es

)

 Hot Spot 2

oblivious output
oblivious input
*-channels output
*-channels input
triplex output
triplex input

Figure 14: Throughput and latency on a 256-node mesh with random output bu�er selection.

28

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Random

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Random

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Bit Reversal

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

 L
at

en
cy

 (
cy

cl
es

)

 Bit Reversal

*-channels input fixed
*-channels input
triplex input fixed
triplex input

Figure 15: Throughput and latency on a 256-node torus comparing input driven routing

with �xed and random selection.

29

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100
 T

hr
ou

gh
pu

t (
Pe

rc
en

t)

 Complement

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

2000

 L
at

en
cy

 (
cy

cl
es

)

 Complement

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Perfect Shuffle

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

2000
 L

at
en

cy
 (

cy
cl

es
)

 Perfect Shuffle

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Transpose

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Transpose

*-channels input fixed
*-channels input
triplex input fixed
triplex input

Figure 16: Throughput and latency on a 256-node torus comparing input driven routing

with �xed and random selection.

30

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Hot Spot 1

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Hot Spot 1

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Hot Spot 2

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Hot Spot 2

*-channels input fixed
*-channels input
triplex input fixed
triplex input

Figure 17: Throughput and latency on a 256-node torus comparing input driven routing

with �xed and random selection.

31

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Random

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

 L
at

en
cy

 (
cy

cl
es

)

 Random

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Bit Reversal

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

2000

 L
at

en
cy

 (
cy

cl
es

)

 Bit Reversal

*-channels input fixed
*-channels input
triplex input fixed
triplex input

Figure 18: Throughput and latency on a 256-node mesh comparing input driven routing

with �xed and random selection.

32

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100
 T

hr
ou

gh
pu

t (
Pe

rc
en

t)

 Complement

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

1000

2000

3000

4000

5000

 L
at

en
cy

 (
cy

cl
es

)

 Complement

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Perfect Shuffle

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

2000
 L

at
en

cy
 (

cy
cl

es
)

 Perfect Shuffle

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Transpose

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Transpose

*-channels input fixed
*-channels input
triplex input fixed
triplex input

Figure 19: Throughput and latency on a 256-node mesh comparing input driven routing

with �xed and random selection.

33

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Hot Spot 1

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

 L
at

en
cy

 (
cy

cl
es

)

 Hot Spot 1

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Hot Spot 2

*-channels input fixed
*-channels input
triplex input fixed
triplex input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

 L
at

en
cy

 (
cy

cl
es

)

 Hot Spot 2

*-channels input fixed
*-channels input
triplex input fixed
triplex input

Figure 20: Throughput and latency on a 256-node mesh comparing input driven routing

with �xed and random selection.

34

