
On the Use and Performance of Explicit Communication Primitives

in Cache-coherent Multiprocessor Systems

Xiaohan Qin and Jean-Loup Baer

Department of Computer Science and Engineering, Box 352360

University of Washington, Seattle, Wa 98195-2350

fbaer,xqing@cs.washington.edu

July 16, 1996

Abstract

Recent developments in shared-memory multiprocessor systems advocate using o�-the-shelf

hardware to provide basic communication mechanisms and using software to implement cache

coherence policies. The exposure of communication mechanisms to software opens many oppor-

tunities for enhancing application performance.

In this paper we propose a set of communication primitives that are absent from pure

cache coherent schemes. The communication primitives, implemented on a communication

co-processor, introduce a avor of message passing and permit protocol optimization, without

sacri�cing the simplicity of the shared memory systems.

To assess the overhead of the software implementation of the primitives and protocols, we

compare, via simulation, the execution of three programs from the SPLASH-2 suite on four

environments: a PRAM model, a hardware cache coherence scheme, a software scheme imple-

menting only the basic cache coherence protocol, and an optimized software solution supporting

the additional communication primitives and running with applications annotated with those

primitives. With the parameters we chose for the communication processor, the overall memory

system overhead of the basic software scheme is at least 50% higher than that of the hardware

implementation. With the adequate insertion of the communication primitives, the optimized

software solution has a performance comparable to that of the hardware scheme.

These results show that the trend towards software-controlled cache coherence is justi�ed

since there is no loss in performance and the software solution is more exible and scalable.

Keywords: communication primitives, software-controlled cache coherence, performance evalua-

tion, shared-memory multiprocessors

1

1 Introduction

The performance of parallel processing systems is highly dependent on the communication to com-

putation ratio. Some of the communication costs are intrinsic to the algorithm, for example barrier

synchronization or producer-consumer relationships. Other communication costs are directly linked

to technology, e.g., memory latency or interconnect bandwidth. In addition, there are some com-

ponents of the communication costs that depend on the policies chosen for data exchange between

processes, and on the mechanisms used to implement these policies.

Our focus is on cache-coherent shared-memory multiprocessor systems (CC-NUMA) and on the

communication costs incurred in such systems. The vast majority of shared-memory multiproces-

sors use a cache coherence policy implemented in hardware. Most optimizations geared at reducing

communication costs, such as improvements in the protocols, weak memory models, and stream

bu�er prefetching among others, require non-trivial hardware modi�cations. The exibility and

the scalability of both the hardware cache coherence policies and of their optimizations are open

to question.

All cache coherence policies rely on a basic communication primitive, namely, a high performance

message passing substrate optimized for small messages. These messages are either control messages

e.g., invalidate, or messages to transmit a small amount of data, a cache line. The optimizations

that we listed above either reduce the number of messages (improvements in protocols) or schedule

their occurrences so that they can overlap with computation (weak memory models, prefetching).

Nonetheless, the rigidity of the hardware implementations prevents the policies and optimizations

to be adapted to the needs of a given application. A separation of the coherence policy and of

the communication primitives to support it requires a set of communication and memory-system

mechanisms that can be used at run-time to implement application-speci�c coherence policies. The

usage of such primitives can be directed by the user or the compiler [7], or can be detected by some

monitoring device. The implementation of these primitives requires some programmable network

interface [22].

In this paper, we propose a set of communication primitives that will allow the user to take advan-

tage of features common in message-passing systems. More precisely, we will provide the user with

primitives such as transfer of multiple cache lines, multicast of cache lines, prefetch, and post-store

in either cache or memory that remove some of the drawbacks of the cache coherence mechanisms.

In addition some primitives can tailor the cache coherence policy to the application. The di�erence

with message-passing systems is that we retain the shared-memory global addressing paradigm

and the underlying cache coherency support. Implementation of these primitives a�ects only the

performance of the system, not the correctness of the computations. The software implementation

of these communication primitives will result in an additional overhead. The goal of this paper is

to quantify this overhead and to show that the resulting performance is competitive with that of

a straightforward, but rigid, hardware implementation. At equal performance, we will have gained

exibility, ease of scalability, and enhanced opportunities for further optimizations.

The remainder of the paper is organized as follows: In Section 2, we introduce the communication

primitives that we propose and their semantics. In Section 3, we discuss the architectural model

of the network interface and highlight a possible software implementation of the communication

primitives and cache coherence protocols. Section 4 describes the experimental methodology: selec-

2

tion of benchmarks, baseline architecture, and simulation environment. In Section 5, we show how

the benchmarks were modi�ed with the introduction of the communication primitives and present

results of simulation of the proposed scheme and the baseline. Finally, we summarize the related

work in Section 6, and conclude the paper in Section 7.

2 Communication Primitives

In this section, we present the communication primitives that can be used by the programmer or

compiler in order to enhance the performance of CC-NUMA systems. Under usual cache coherence

policies, fetching of data is performed on demand only, i.e., when a cache miss occurs. Similarly,

storing of data in memory is done only when a replacement is needed (most of the lower level caches

in the memory hierarchy follow a write-back policy). The primitives that we propose extend, under

programmer or compiler control, these basic data movement operations. Each primitive is a non-

blocking operation and multiple requests can be outstanding.

Primitives Semantics

get(addr; size) fetch the data into the requesting processor cache

getex(addr; size) fetch the data with ownership

put(pid; addr; size) place the data in the cache of the processor pid

putex(pid; addr; size) transfer the data with ownership to processor pid

multicast(pids; addr; size) disseminate the data to a set of processors

putmem(addr; size) return data to memory

writemem(mode; addr; size) set the write policy for the data

Table 1: Communication primitives. addr is the starting address of a block of data. size is its size

in bytes. pid is a processor number. pids is a mask indicating a list of processors. mode is either

write-back (wb) or write-through (wt)

The primitives and their semantics are shown in Table 1. The �rst two, get(addr; size) and

getex(addr; size), allow the programmer to fetch, or rather prefetch, a set of consecutive cache

lines and to request that these lines be either in shared or exclusive state. Granting ownership to

the receiving processor can signi�cantly reduce write latency in subsequent accesses to that data.

Note that the get operations are not equivalent to page migration or DMA transfers since the data

is transferred in the cache of the requester and cache coherency is maintained.

While the get primitives are consumer oriented, the next two primitives, put(pid; addr; size) and

putex(pid; addr; size), are producer oriented. These operations, akin to an asynchronous send in

message-passing, can be used when the producer knows the identity of the consumer. By using a

put operation, the producer process can store a set of cache lines, in a given state, in the cache

of the processor running the consumer process. When there is more than one consumer and their

identities are known, the multicast(pids; addr; size) primitive can be used. When the producer

knows that it will not use the data any longer but does not know what process will consume it,

the data can be stored in memory with the putmem(addr; size) primitive. This may save half of

3

the request-reply bandwidth in the network when the data will be used next. A similar e�ect can

be achieved on a word per word basis by changing the default write-back policy to a write-through

one. The writemem primitives can restrict this policy to a range of addresses, or if the addr and

size are both null, it can be applied to all write misses. By selecting the mode, the user has the

choice of alternating between the two write policies.

When used appropriately, these primitives will bene�t the application since they allow:

1. Overlap of communication with computation; this overlap can be extensive since the opera-

tions dictated by the communication primitives are non-blocking and multiple requests can

be outstanding.

2. Bulk data transfers; the network can be better utilized by pipelining transmissions.

3. Tailoring the cache coherence protocols; for example, superuous data transfers, present in

write-update protocols, can be avoided, or early requests for ownership, in write-invalidate

protocols, can reduce the number of control messages in migratory-like patterns.

However, there are dangers in using these primitives unwisely. These dangers are the same as

those that exist when using prefetching or post-storing too aggressively, namely cache pollution,

increase in coherence tra�c, and saturation of the network. It is up to the programmer/compiler

to make sure that the use of the primitives will be bene�cial. Similarly, it is up to the system

implementation to determine whether data transfers should actually happen or not. For example,

if the system detects that the processor issuing a get already has the data in its local cache, it can

simply acknowledge the request without sending the data. The system may also further require

that the processor issuing put, putex, or multicast have the ownership of the data, otherwise no

data will be transferred upon such requests.

In summary, the communication primitives give to the user some advantageous features of asyn-

chronous message-passing while keeping the simplicity and correctness qualities of the cache coher-

ent global address space paradigm.

3 Architectural Model

Figure 1 shows the general architecture of a Flash-like [22] CC-NUMA where each node consists

of a compute processor, its cache hierarchy and associated controllers, a communication processor,

and memory. The memory is used to store not only private and shared variables but also the

coherence directory for the memory blocks that it contains and the data structures of the commu-

nication processor that do not �t in the latter's cache. In this section we expand on the design of

the communication processor and on the implementation of the communication primitives of the

previous section.

4

Memory

Cache

Comp
Processor

Processor
Comm

Memory

Cache

Comp
Processor

Processor
Comm

. . . Memory

Cache

Comp
Processor

Processor
Comm

Interconnection Network

Figure 1: The architectural model

3.1 Communication Processor

Figure 2 depicts the model of the communication processor and its interfaces with the compute

processor, the memory, and the network. The function of the communication processor is to

handle network and memory related transactions. The communication processor integrates a pro-

cessor/cache interface (PI), a network interface (NI), and a programmable protocol processor with

instruction and data caches. In contrast with the MAGIC processor in the Flash system [22], which

uses hardware to schedule and dispatch messages to the protocol processor, in our model both tasks

are performed in software. The motivation for this choice is that a software implementation adds

exibility. The types and the formats of the messages may change as the system evolves; software

scheduling and message dispatching allow the system to adjust to such changes more easily.

Communication between the communication processor and the compute processor is through the

PI interface. Similarly, the communication processor communicates with the network through the

NI interface. There are two queues in each of PI and NI. The input queue of PI receives cache

miss requests, user-initiated communication requests, and writes to memory, either write-through

or replacements. The output queue of PI is used to forward miss data to the compute processor's

cache, and to issue cache invalidation/purge requests. The input and output queues of NI receive

the same types of messages intended for or coming from other nodes in the CC-NUMA system.

Additional bu�ers, to save data in transit, are included in the communication processor.

Since message processing is one of the most time critical functions of the communication processor,

the processor architecture is optimized to handle it e�ciently. When a message arrives, it interrupts

the protocol processor. The interrupt handler dispatches the message to an appropriate message

handler based on the message type (see below). The message handler either executes the message

directly or moves the message from PI or NI to the software message queues, just as in Active

Messages [31]. However, on a conventional processor, an active message handler still results in too

high an overhead for a communication processor maintaining cache coherency at the granularity of

a cache line. In order to achieve high-performance message passing, we choose to use a processor

architecture that supports rapid interrupt handling and context-switch. The processor needs to

have only two hardware contexts, one of which is dedicated to the message interrupt handler

which dispatches the messages to the corresponding message handlers. In an optimized design, the

5

E
M
O
R
Y

Interconnection
Network

.

..

.

..

.

..

M

Network Interface

.

..

Comp Processor
& Cache

Protocol
Processor &
Cache

Processor/Cache Interface

Figure 2: The communication processor

overhead of interrupt handling and context switch can be minimized to just a few instructions [1].

Finally, in our architectural model, we let the private references bypass the communication pro-

cessor to avoid unnecessary processing overhead. To that e�ect, the compute processor is directly

connected to the memory module. In our current model, both private and shared read misses block

the compute processor. We operate under a sequentially consistent model and therefore shared

write misses will also block the compute processor. We will use a write bu�er for private write

misses.

3.2 Message Handlers

As mentioned above, message processing in the communication processor must be performed ef-

�ciently. Moreover, the messages whose incompletion blocks the progress of a compute processor

should be given highest priority. The messages corresponding to the communication primitives

generated by the user will be given low priority and their corresponding message handlers will be

interruptible by messages of high priority.

High priority messages are executed as soon as the communication processor is not processing

another high priority message. The message handler can either process the message to completion

if all actions can be taken in the node (e.g., invalidation or when receiving data that was requested)

or process partially the message if other nodes of the system are needed (e.g., cache miss on a

shared variable). In that latter case, the message handler will create a thread to be awakened upon

receiving the right acknowledgment.

6

Low priority messages are removed from the PI and NI interfaces and stored in message queues

in memory, most often the communication processor's cache. When the communication processor

becomes idle, it polls the (software) message queues to see if there is any pending message. If there

is, the message is handled but it can be interrupted for the processing of high priority messages,

hence the need for a fast context-switch.

One of the major issues in implementing the message handlers for the communication primitives is

to �lter out wasteful data transfers. One plausible implementation would be to �lter the user's call

at the processor on which the call is being initiated. For example, if the data is already present in

the local cache in the case of a get operation, then the operation would be ignored. This approach

has the advantage of �ltering out useless operations at the earliest possible stage. However, if

the operation is useful it will incur double overhead since there is a need to consult again the

directory status at the home node in order to determine the appropriate action to take. This is

necessary because (1) the local cache status checking cannot guarantee completely the legality of

the operation and (2) cache state may have changed from the time the local checking is performed

to the time the forwarded request is processed by the home node.

We chose the alternative, namely to always forward the user generated calls to the home node. If

no action is to be taken, then the only price we pay is a waste of communication processor time and

of network bandwidth. On the other hand, we do not disturb the progress of the compute processor

with local checking. If the action is useful, then it will be completed faster. In the case of transfers

larger than a single cache line, the directory information is consulted line by line to determine

whether the requested data transfer is necessary. Finally, since communication primitives are only

performance hints, there is no need to retry a data transfer if it had to be aborted (e.g., if the cache

line is being processed by another message handler). This is in contrast with cache miss requests

that need to be performed to completion.

4 Experimental Methodology

4.1 Applications and Experiments

For our experiments, we selected three kernel applications, FFT, LU factorization, and RADIX

sort from the SPLASH-2 benchmark suite [32, 33]. These applications have been coded with a

CC-NUMA system in mind, thus they already have some communication optimizations embedded

in them. They also exhibit coarse grain regular communication patterns that can be exploited by

the proposed communication primitives. Table 2 summarizes some pertinent statistics about the

applications: problem size, number of instructions, number of read and write references to shared

data.

The execution time

1

of an application running on a parallel system can be divided into four com-

ponents:

� Computation time (labeled Processor busy in the �gures in Section 5)

1

In our measurements, we exclude the initialization time from the execution time because the way initialization

is performed is not always realistic.

7

Program Problem size Total instr(M) Shared read(M) Shared write(M)

FFT 64k points 33.32 6.00 5.73

LU 256x256 matrix, 16x16 block 64.20 23.11 11.19

RADIX 0.5M integers, 1024 radix 29.55 5.64 3.46

Table 2: Applications: problem sizes, number of instructions executed (in millions), number of

shared read references (in millions), number of shared write references (in millions).

� Synchronization due to the intrinsic properties of the algorithm, e.g., producer-consumer

relationships, serial sections of the program, load imbalance (labeled Synchro-Algorithm)

� Communication time due to the memory latency (Memory latency)

� Extra synchronization time due to the e�ects of the memory latency (Synchro-Memory)

These four components are not independent. For example, a mismatch between the partitioning of

computation and partitioning of data can easily cause excessive communication overhead. Likewise,

an ine�cient memory system exacerbates load imbalance. Since our goal is to test the e�ciency

of the communication primitives with respect to a hardware implementation, we will isolate the

contributions of each component and compare the performance of the applications, via simulation,

in four experimental environments.

� Case 1: A machine with a perfect memory system (PRAM model).

� Case 2: A hardware-based cache-coherent (full directory [5]) system.

� Case 3: A system that uses a communication processor/node with the communication pro-

cessor implementing the coherence protocol (software implementation).

� Case 4: A system as in case 3, with, in addition, the communication processor being able to

handle the user-based communication primitives (optimized software implementation).

The di�erence between case 1, where only the �rst two components are taken into account, and case

2 displays how much of the parallel e�ciency is lost due to memory latency and cache coherence

minimized as much as possible by the best hardware implementation. The di�erence between cases

2 and 3 shows the additional overhead brought by a software implementation. Case 4 reveals the

potential performance gains obtained by supporting various communication optimization schemes

on top of a exible software infrastructure.

The systems we simulated had 16 processors and, except for the PRAM case, we considered 5

combinations of cache size and associativity: in�nite cache, large (256 KB) direct-mapped and

2-way set-associative caches, and small (32 KB) direct-mapped and 2-way set-associative caches.

The cache line size was set at 32 bytes.

8

4.2 Simulation Parameters

We use Mint [30] as our simulation tool since our interest is primarily in the performance aspects

of the memory system. Mint is a software package that emulates multiprocessing execution en-

vironments and generates memory reference events which drive a memory system simulator. In

addition to memory references, Mint provides an interface to trigger any user speci�ed event. We

make use of this interface for specifying the communication primitives in the applications. When

encountering such primitives in the execution, Mint will generate special types of events that invoke

the simulation back-end.

We assume perfect pipelining in the compute processor. This assumption a�ects only the Processor

busy time, which remains essentially the same for the four environments, and thus does not bias

the results. The memory system simulator models the operations of the communication processor

in detail. This includes the interrupt overhead of message reception with the context switch, if

needed, and moving the message from the PI and NI input queues either to be executed directly

or to be stored in (software) queues, the time to package and write messages to the PI and NI

output queues, and the manipulation of the directory data structure. Table 3 shows a list of major

architectural parameters speci�ed to the simulator.

Parameters Value

Interrupt and context switch 8 cycles

Processor interface (inbound) 2 cycles

Processor interface (outbound) 4 cycles

Network latency (one way) 24 cycles

Network interface (in & out) 12 cycles

Retrieving data from memory (�rst word) 15 cycles

Retrieving data from compute proc. cache (�rst word) 12 cycles

Size of bu�ers (PI, NI) in�nite

Max. number of pending requests 10

Table 3: Principal parameters of the communication processor and associated values.

To illustrate the overhead of the software implementation, we show in Table 4 the timing di�erences

between the hardware and software implementations of a shared read miss. The data is assumed

to be in a non-exclusive state (i.e., one hop is su�cient). As can be seen, in ideal conditions (no

contention) the software implementation is 54% slower. While this is the slow-down e�ect that we

will use in our simulations, it is in fact quite favorable to the hardware implementation because

we have not tried to optimize the communication processor as much as we could; we want to

keep it a exible, programmable resource. Furthermore, with current technological trends, network

and memory latencies and bandwidths will not progress as fast as processor speed; the software

implementation will su�er less from this widening gap. For example doubling only the network

latency would reduce the 54% factor above to 39%. Finally, the software implementation latency

will su�er less from expansion of the system; there will be no need to change the full directory

structure into a partial one since all the directory look-ups are handled in software.

9

Software Hardware

Action Resource latency latency

Miss detection Comp. processor 6 6

PI processing (inbound) PI 2 2

Receiving and forwarding request Comm. processor 17 4

or hard logic

Network latency (including NI) network & NI 36 36

Home node handling Comm. processor 55 24

or hard logic

and memory

Network latency (including NI) network & NI 36 36

Processing data Comm. processor 26 8

or hard logic

PI processing (outbound) PI 4 2

Totals 182 118

Table 4: Di�erence in timing between hardware and software implementations of a shared variable

read miss. The directory for the block is in a home node di�erent from the node requesting the

data.

5 Performance Results

In this section, we �rst describe briey each application with an emphasis on the communication

aspects, i.e., the massaging of the major data structures. We then present the results of the

simulation of the four architectures described in Section 4 and assess the e�ectiveness of the software

implementation using the communication primitives.

5.1 FFT

The application

The SPLASH-2 FFT algorithm is optimized for distributed or hierarchical memory systems [2]. The

input data of FFT consists of a

p

n�

p

n matrix of complex numbers. The major data structures

are the input matrix A, its transpose B, and another matrix of same dimension for the \roots

of unity". In the beginning, one processor performs initialization for the entire input matrix and

the roots of unity. The post-initialization algorithm consists of six phases. (1) B A

T

; (2) and

(3) Compute and update B; (4) A B

T

; (5) Compute and update A; (6) B A

T

. There are

three synchronizing barriers, after phases 3, 5 and 6. Each processor is assigned to compute a set of

consecutive rows. In the three transpose phases, each processor is responsible for reading a subblock

of the source matrix and writing it into the corresponding rows of the destination matrix. During a

computation phase, each processor operates on the set of rows set up in the prior transpose phase.

In a hardware invalidation-based protocol, communication occurs in the transpose phases. For

example, in phase 4, when a processor reads a subblock of B, it will generate read misses since

the data for that source matrix was generated on a subblock by subblock basis by other processors

10

pr
am

hw
−in

f−o
ri

hw
−2

56
k−

2w
ay

−o
ri

hw
−2

56
k−

dm
−o

ri
hw

−3
2K

−2
wa

y−
or

i
hw

−3
2k

−d
m−

or
i

sw
−in

f−o
ri

sw
−2

56
k−

2w
ay

−o
ri

sw
−2

56
k−

dm
−o

ri
sw

−3
2K

−2
wa

y−
or

i
sw

−3
2k

−d
m−

or
i

sw
−in

f−o
pt

sw
−2

56
k−

2w
ay

−o
pt

sw
−2

56
k−

dm
−o

pt
sw

−3
2K

−2
wa

y−
op

t
sw

−3
2k

−d
m−

op
t

0

2000000

4000000

6000000

8000000

10000000

Ex
ec

uti
on

 T
im

e (
in

cy
cle

s)

Processor busy

Memory latency

Synchro−Memory

Figure 3: Execution times for FFT. Processor busy is the compute processor execution time.

Memory latency is the amount of time the compute processor waits because of memory latency and

cache coherence e�ects. Synchro-Memory is the synchronization time, including load imbalance,

due to the e�ect of memory latency.

in phases 2 and 3. When a processor writes the data in A, it will need to generate invalidation

messages since the �rst transpose phase left the corresponding cache lines in shared state.

We use the communication primitives to interleave computation with communication. More specif-

ically, in phases 2 and 3 (likewise in phase 5), we insert put operations as soon as a processor

(producer) has �nished computing a row of B to disseminate the data to the other (consumer)

processors. In addition, right after the puts we insert getex calls to place in the correct state the

cache lines corresponding to the rows of A that the processor will overwrite in phases 4 (and 6).

Thus, when the processor �nishes the computing phase it has (or at least has requested) in its cache

the needed data in the desired state to perform the transpose. Either the data has been put there

by another processor or it has been prefetched via a getex. There is one condition, however, for

this aggressive communication latency hiding scheme to be successful. Namely, the cache must be

large enough to hold the working set of the computation phase and the working set of the transpose

phase. If the cache is too small to hold the two working sets, cache pollution will occur because the

put or the get operations will have been performed too early. To that e�ect, in the cases of small

caches, the prefetching is scheduled just before the matrices are accessed in the transpose phases.

Simulation results

Figure 3 displays the simulation results of FFT running on the four model architectures and the

combinations of cache size/associativity described in Section 4. We show, from left to right, the

PRAM model (of course without cache), the hardware full-directory implementation, the software

implementation, and the optimized software implementation, each with the �ve cache con�gurations

(cf. Section 4.1). As mentioned above, the use of communication primitives was dependent on the

size of the caches.

11

sw
−in

f−o
ri

sw
−2

56
k−

2w
ay

−o
ri

sw
−2

56
k−

dm
−o

ri

sw
−3

2K
−2

wa
y−

or
i

sw
−3

2k
−d

m−
or

i

sw
−in

f−o
pt

sw
−2

56
k−

2w
ay

−o
pt

sw
−2

56
k−

dm
−o

pt

sw
−3

2K
−2

wa
y−

op
t

sw
−3

2k
−d

m−
op

t

0

5000000

10000000

15000000

20000000

Ne
tw

or
k T

ra
ffic

 (in
 by

tes
)

Request

Data

Control

Figure 4: Network tra�c for FFT. \Request" \Data", and \Control" are the network tra�c for

forwarding cache miss requests or communication primitives, transferring of data, and sending

control messages (e.g., invalidation and acknowledgment) respectively. The network tra�c of the

hardware implementation is omitted since it is equivalent to that of the software implementation.

First, looking at the PRAM results, we see that the load balance is close to ideal. Second, a compar-

ison between the PRAM and hardware implementation shows that communication, which occurs

only during the transpose phases, is intensive. Execution time in the hardware implementation is

more than double that of the PRAM when we include a realistic memory latency and a fast but

inexible coherence protocol. Third, as already noticed in other studies [11], in�nite caches can be

worse than large �nite caches because while there is less data tra�c there can be more coherence

tra�c or contention for data in a single cache. This latter phenomenon is the case here during

phase 4 of the original program (phases 2 and 3 of the optimized program) since A is initialized by

one processor.

Comparing the software and hardware implementations shows the price that is paid by adding

(software) exibility. In Section 4, we gave one example (cache read miss) where the latency in

the software implementation was 54% higher than that of the hardware implementation. This

ratio is close to the 70-80% and 70-96% ratios of the Memory latency and Synchronization-Memory

components of the execution time. The slightly higher ratio in the execution times can be explained

by the facts that messages that can be processed locally take relatively longer in the software

implementation than in the hardware one and that there exists contention in the communication

processor.

The insertion of communication primitives pays o� handsomely. Now the optimized method is

much faster than the original software implementation and, unless conict misses occur frequently

(direct-mapped caches), is even faster than the hardware implementation. In Table 5, we break

down the execution times phase by phase of the two software schemes for the in�nite cache case.

12

Phase Application Proc. Busy Memory Synchronization

1 Original 53925 792100 0

Optimized 61119 386036 0

2,3 Original 1004490 3691 140073

Optimized 1010790 271857 1128018

4 Original 53910 1570010 0

Optimized 53908 8482 0

5 Original 915967 2382 736366

Optimized 922303 150690 51664

6 Original 53958 1271600 122772

Optimized 53955 2670 16036

Total Original 2082305 3641568 1026376

Optimized 2102136 821539 1222850

Table 5: Breakdown of execution times of FFT for original and optimized software implementation

(in�nite cache).

Notice �rst that the memory latency in the optimized case is only 23% of the original and this

gain overwhelms, in absolute numbers, the 22% loss in synchronization time. The introduction of

the communication primitives has a negligible e�ect on the computation time (Processor Busy).

Overall, the optimized implementation is 40% faster than the original implementation.

In the original implementation, all the memory latency overhead is incurred in the transpose phases

1

2

, 4, and 6. This overhead is almost twice as much as the processor's busy time. During the

transpose phases, no computation takes place and conversely during the computation phases there

is no memory tra�c (recall that we have an in�nite cache).

After the optimization, communication is performed while computation is in progress, except during

phase 1. In phase 1, the reduction of memory latency stems from the possibility of transfer of several

cache lines with a single request. This eliminates the need for sending and processing multiple small

messages, thus reducing network tra�c (cf. Figure 4 which shows an appreciable decrease in the

number of requests). This bulk transmission mode also enables the home node to pipeline the data

transfers, hiding the communication latency even further. In phases 2 and 3

3

, and phase 5, the

large amount of computation should be su�cient to overlap with the entire memory latency of

phase 4 and 6 respectively. The residual memory latencies in those phases are caused by the fact

that the number of pending communication operations is limited to 10, which is less than what is

required, namely (number of processors� 1) put and one getex for a complete overlap with the

2

The �rst transpose phase (phase 1) incurs shorter memory latency because when a processor �rst writes the

transposed data into its own cache no other processor has touched the data yet. Therefore writes proceed almost

twice as fast as in the other two transpose phases.

3

The large synchronization time at the end of phase 3 of the optimized software implementation is caused by

initializing the input matrix A on a single processor. A comparable corresponding synchronization time is found at

the end of phase 5 of the original implementation.

13

computations.

The in�nite cache case illustrates the performance gain potential of an aggressive communication

and computation overlapping scheme. When the cache size is limited, the use of aggressive commu-

nication primitives raises the danger of polluting the cache. In the FFT case, the pollution will be

caused by conicts between the current working set (e.g., a set of consecutive rows of B in phases

2 and 3), and future working set (e.g., a set of consecutive columns of B and corresponding rows

of A in phase 4). In the case of the large 256 KB cache, we see that the pollution e�ect is indeed

present since the memory latency time (in the optimized case) is twice as much as that of the

in�nite cache for 2-way set associativity and 3 times as much for direct-mapped. Even so, though,

the performance is comparable to that of the hardware scheme where there are almost no conict

misses: slightly better for the 2-way case, slightly worse for the direct-mapped. For the two small

caches, data is prefetched into the caches just before its use. The results show that the conservative

communication primitives also reduce the memory overhead signi�cantly without causing much of

the cache pollution problem. Again the results are comparable with those of the hardware scheme.

Figure 4 shows the network tra�c before and after the optimization. The network tra�c of the

hardware implementation is omitted since it is equivalent to that of the software implementation.

As mentioned earlier, the optimized version will result in fewer requests. Cache pollution on the

other hand will result in an increase not only in requests but also in data to be transferred since

data displaced by prematurely prefetched data must be fetched again. This is particularly visible

in the 256 KB direct-mapped cache. Finally, the amount of control messages slightly decreases

because of the getex requests that place the data in the right state.

Summary

In the case of FFT, the use of communication primitives to prefetch data and to put cache lines

in the correct state in advance yields execution times for the software optimization comparable, in

fact even slightly lower, to those of the hardware implementation.

5.2 LU Factorization

The application

The SPLASH-2 parallel implementation of the LU factorization of a dense matrix has been op-

timized to exploit data locality [33]. Nonetheless, the serial sections of the application produce

a fair amount of load imbalance. The input matrix is divided into submatrices, or blocks, which

are assigned to processors in a 2D scatter decomposition fashion. In essence, every processor is

responsible for factorizing the same number of blocks and this number diminishes almost uniformly

for all processors during the computation. The algorithm iterates over the number of blocks along

the diagonal. In the k-th iteration, the processor responsible for the block A

kk

factorizes it. This is

by necessity a serial part of the algorithm. Then the perimeter blocks A

ik

and A

kj

are computed

using A

kk

, a phase that requires communication. This can be performed in parallel but the proces-

sors owning the perimeter blocks all need to access data in the processor owning A

kk

. Finally the

remaining interior blocks A

ij

are updated by the processors responsible for them. This phase also

requires communication between the updating processors and the processors to which the perimeter

blocks have been assigned.

14

pr
am

hw
−in

f−o
ri

hw
−2

56
k−

2w
ay

−o
ri

hw
−2

56
k−

dm
−o

ri
hw

−3
2K

−2
wa

y−
or

i
hw

−3
2k

−d
m−

or
i

sw
−in

f−o
ri

sw
−2

56
k−

2w
ay

−o
ri

sw
−2

56
k−

dm
−o

ri
sw

−3
2K

−2
wa

y−
or

i
sw

−3
2k

−d
m−

or
i

sw
−in

f−o
pt

sw
−2

56
k−

2w
ay

−o
pt

sw
−2

56
k−

dm
−o

pt
sw

−3
2K

−2
wa

y−
op

t
sw

−3
2k

−d
m−

op
t

0

5000000

10000000

15000000

20000000

Ex
ec

uti
on

 T
im

e (
in

cy
cle

s)

Processor busy

Synchro−Algorithm

Memory latency

Synchro−Memory

Figure 5: Execution times for LU. Processor busy is the compute processor execution time. Synchro-

Algorithm is the synchronization time due to load imbalance intrinsic to the algorithm. Memory

latency is the amount of time the compute processor waits because of memory latency and cache

coherence e�ects. Synchro-Memory is the synchronization time, including load imbalance, due to

the e�ect of memory latency.

The communication required in the �rst and second phases of each iteration provides some oppor-

tunities for using the communication primitives. Thus, we modi�ed the algorithm in three ways.

First when a (producer) processor is factorizing a diagonal block A

kk

, it sends (multicast) a row of

data as soon as the row is computed to the (consumer) processors in charge of the perimeter blocks

A

ik

and A

kj

. Second, after a (producer) processor �nishes updating one row of a perimeter block,

it sends (multicast) the data to the (consumer) processors that use the block for processing the

interior blocks. Finally, since an interior block is exclusively accessed by the processor in charge of

its computation, we let the processor prefetch the data with ownership (getex) before updating the

block. In the cases of the in�nite and large caches, prefetching is scheduled once for all at the �rst

instance of phase 3. For the small caches, prefetching is issued in each iteration.

Simulation results

Figure 5 displays the execution times for the �ve environments. The PRAM simulation shows

the e�ects of the serial sections. Processors are idle one third of the time, on average. This syn-

chronization is exacerbated on a realistic system by the additional memory overhead because busy

processors take longer to complete the assigned tasks, thus keeping idle processors waiting longer.

On the other hand, the memory overhead accounts for only 10% to 15% of the total execution time

in the hardware implementation and 15% to 30% in the original software implementation. This

leaves less room for optimization but reducing the memory overhead is still desirable because it

helps reduce the synchronization overhead as well.

In LU, the 256KB caches are large enough to accommodate the whole working set of LU for the

problem size we simulated. When the caches are 2-way set-associative, the optimized solution is

15

sw
−in

f−o
ri

sw
−2

56
k−

2w
ay

−o
ri

sw
−2

56
k−

dm
−o

ri

sw
−3

2K
−2

wa
y−

or
i

sw
−3

2k
−d

m−
or

i

sw
−in

f−o
pt

sw
−2

56
k−

2w
ay

−o
pt

sw
−2

56
k−

dm
−o

pt

sw
−3

2K
−2

wa
y−

op
t

sw
−3

2k
−d

m−
op

t

0

10000000

20000000

30000000

Ne
tw

or
k T

ra
ffic

 (in
 by

tes
)

Request

Data

Control

Figure 6: Network tra�c for LU. \Request" \Data", and \Control" are the network tra�c for

forwarding cache miss requests or communication primitives, transferring of data, and sending

control messages (e.g., invalidation and acknowledgment) respectively. The network tra�c of the

hardware implementation is omitted since it is equivalent to that of the software implementation.

as e�cient as the hardware implementation for both large and small caches. When the cache is

direct-mapped, the large number of conicts takes its toll and the e�ect is magni�ed in the software

implementations because of the increased latencies. Those conicts that occurred within the work-

ing set of phase 3, when each processor factorizes interior blocks using perimeter blocks, cannot

be avoided by the optimized software implementation. Thus we see less signi�cant improvement,

especially in the case of the 32K direct-mapped cache.

The network tra�c does not vary much between the three implementations (cf. Figure 6). The

optimizations do not introduce severe cache pollution.

Summary

In LU, there is less opportunity to perform optimizations. However, the use of multicast and

prefetching is worthwhile, mostly if the caches are not direct-mapped. In that case, the performance

of the optimized software is as good as that of the hardware implementation which, itself, is within

20% to 45% of the PRAM lower bound.

5.3 RADIX Sort

The application

RADIX sort is part of the NAS parallel benchmark [3]. It sorts k-bit integers by examining r bits

(r � k) of the keys per iteration. In the parallel implementation, each processor is assigned an

equal fraction of the keys. An iteration consists of three phases. In phase 1, each processor scans

through its assigned keys and computes the local histogram and density of each radix value. In

16

p p

p

p p

p

p

p p

p

p p

p

p

Broadcast the global densities!

3

1

0 1 2 3 4 5 6 7

753

7

p
7

Figure 7: Communication patterns for computing the global densities and pre�x sums of the local

histograms. Each processor initially has local histograms and local densities in its cache. The solid

arrows indicate the data transfer needed for both global densities and pre�x sums. The dashed

curves are for the pre�x sums only. The label in each node is the processor that computes the

intermediate or �nal results.

phase 2, pre�x sums of the local histograms and the global densities (sums of local densities of all

processors) are computed. These results are used to compute the new position of each key in the

output order. In phase 3, the keys are permuted based on the new position computed in the prior

step.

The major data structures are two arrays that are used alternately for the input and sorted keys,

and a binary tree of arrays to store the pre�x sums of the local histograms and the (partial) results

of the global densities. Communication occurs in every phase at each iteration but with di�erent

patterns. In phase 1, each processor reads a portion of the keys, sorted and written in phase 3 of the

previous iteration. Although the reading is sequential, the order of the keys cannot be determined

until phase 3 completes. In phase 2, the communication patterns for computing the global densities

and the pre�x sums are illustrated in Figure 7 using eight processors. In phase 3, each processor

determines the new order of the keys assigned to it and the pattern is random. False sharing will

occur frequently in this phase since neighboring keys might be assigned to di�erent processors.

The communication primitives can be used in each phase in di�erent ways. In phase 1, the only

possibility is to prefetch data as soon as phase 3 terminates. We insert get operations for prefetching

keys before computing the local histograms and density functions. In phase 2, we insert put or

multicast operations in the (producer) processors to send the data to the (consumer) processors

according to the regular pattern of communication ow shown in Figure 7. Neither get nor put

primitives can be used in phase 3 because the data locations are not known until run-time. A

certain amount of false-sharing can however be avoided by having processors writing memory

directly (write-through) instead of obtaining the ownership of a line and caching it locally. Thus

a writemem(wt) call is inserted at the beginning of phase 3 and a corresponding writemem(wb) at

the end.

Simulation results

Figure 8 shows the performance results of RADIX sort. As can be seen when comparing the PRAM

and hardware implementation execution times, the memory latency e�ects are the most important

17

pram

hw−inf−ori
hw−256k−2way−ori

hw−256k−dm−ori
hw−32K−2way−ori

hw−32k−dm−ori

sw−inf−ori
sw−256k−2way−ori

sw−256k−dm−ori
sw−32K−2way−ori

sw−32k−dm−ori

sw−inf−opt
sw−256k−2way−opt

sw−256k−dm−opt
sw−32K−2way−opt

sw−32k−dm−opt

0

1
0

0
0

0
0

0
0

2
0

0
0

0
0

0
0

3
0

0
0

0
0

0
0

Execution Time (in cycles)

P
ro

c
e

s
s
o

r b
u

s
y

M
e

m
o

ry
 la

te
n

c
y

S
y
n

c
h

ro
−

M
e

m
o

ry

F
i
g
u
r
e
8
:
E
x
e
c
u
t
i
o
n
t
i
m
e
s
f
o
r
R
A
D
I
X
.
P
r
o
c
e
s
s
o
r
b
u
s
y
i
s
t
h
e
c
o
m
p
u
t
e
p
r
o
c
e
s
s
o
r
e
x
e
c
u
t
i
o
n
t
i
m
e
.

M
e
m
o
r
y
l
a
t
e
n
c
y
i
s
t
h
e
a
m
o
u
n
t
o
f
t
i
m
e
t
h
e
c
o
m
p
u
t
e
p
r
o
c
e
s
s
o
r
w
a
i
t
s
b
e
c
a
u
s
e
o
f
m
e
m
o
r
y
l
a
t
e
n
c
y
a
n
d

c
a
c
h
e
c
o
h
e
r
e
n
c
e
e
�
e
c
t
s
.
S
y
n
c
h
r
o
-
M
e
m
o
r
y
i
s
t
h
e
s
y
n
c
h
r
o
n
i
z
a
t
i
o
n
t
i
m
e
,
i
n
c
l
u
d
i
n
g
l
o
a
d
i
m
b
a
l
a
n
c
e
,

d
u
e
t
o
t
h
e
e
�
e
c
t
o
f
m
e
m
o
r
y
l
a
t
e
n
c
y
.

sw−inf−ori

sw−256k−2way−ori

sw−256k−dm−ori

sw−32K−2way−ori

sw−32k−dm−ori

sw−inf−opt

sw−256k−2way−opt

sw−256k−dm−opt

sw−32K−2way−opt

sw−32k−dm−opt

0

2
0

0
0

0
0

0
0

4
0

0
0

0
0

0
0

6
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

Network Traffic (in bytes)

R
e

q
u

e
s
t

D
a

ta

C
o

n
tro

l

F
i
g
u
r
e
9
:
N
e
t
w
o
r
k
t
r
a
�
c
f
o
r
R
A
D
I
X
.
\
R
e
q
u
e
s
t
"
\
D
a
t
a
"
,
a
n
d
\
C
o
n
t
r
o
l
"
a
r
e
t
h
e
n
e
t
w
o
r
k
t
r
a
�
c

f
o
r
f
o
r
w
a
r
d
i
n
g
c
a
c
h
e
m
i
s
s
r
e
q
u
e
s
t
s
o
r
c
o
m
m
u
n
i
c
a
t
i
o
n
p
r
i
m
i
t
i
v
e
s
,
t
r
a
n
s
f
e
r
r
i
n
g
o
f
d
a
t
a
,
a
n
d
s
e
n
d
i
n
g

c
o
n
t
r
o
l
m
e
s
s
a
g
e
s
(
e
.
g
.
,
i
n
v
a
l
i
d
a
t
i
o
n
a
n
d
a
c
k
n
o
w
l
e
d
g
m
e
n
t
)
r
e
s
p
e
c
t
i
v
e
l
y
.
T
h
e
n
e
t
w
o
r
k
t
r
a
�
c
o
f
t
h
e

h
a
r
d
w
a
r
e
i
m
p
l
e
m
e
n
t
a
t
i
o
n
i
s
o
m
i
t
t
e
d
s
i
n
c
e
i
t
i
s
e
q
u
i
v
a
l
e
n
t
t
o
t
h
a
t
o
f
t
h
e
s
o
f
t
w
a
r
e
i
m
p
l
e
m
e
n
t
a
t
i
o
n
.

1
8

Phase Application Instr Memory Sync

1 Original 704778 1783595 113057

Optimized 704834 515701 310923

2 Original 139419 707990 1248630

Optimized 139682 435627 1156961

3 Original 999610 3733430 248395

Optimized 1048766 2905070 240463

Total Original 1843872 6226998 1638077

Optimized 1893347 3858511 1737689

Table 6: Breakdown of execution times of RADIX for the original and optimized software imple-

mentations, 256K 2-way set associative cache.

of the three applications. A very small load imbalance in the PRAM case occurs during phase 2.

But since phase 2 is short compared to phases 1 and 3 (cf. the instruction count in Table 6), the

e�ect is not signi�cant and cannot be seen at the scale of the �gure.

Table 6 shows the breakdown of the execution times for the case of the 256 KB, 2-way set-associative

cache for the original and optimized software implementations. In the original implementation, and

similarly in the hardware implementation, more than half of the memory latency e�ects arise in

phase 3. Unfortunately this is where the communication primitives are least applicable since the

communication patterns are random. Nonetheless, the change of write policy in that phase yields

a 20% improvement over the original implementation. The prefetching e�ects in phase 1 are quite

signi�cant, decreasing the memory latency and associated load imbalance by a factor of two for

that phase. The communication primitives also reduce the memory latency in phase 2 but here the

e�ect is less important since that phase does not take much time.

The gains of the optimized implementation are even more signi�cant for the small caches. The

optimized software implementation is almost as good as the hardware one.

Figure 9 displays the network tra�c before and after the optimizations. While in FFT and LU the

amount of network tra�c was about the same (but both the timing of when it took place and the

amount of time to process the messages were di�erent), here we have a large reduction due to the

change in write policy. It is particularly striking in the case of small caches where not only false

sharing but also conict misses are avoided by writing through to memory in phase 3.

Summary

Radix is the most memory intensive of the three applications but also the least amenable to opti-

mization. Nonetheless a combination of prefetching and of write policy change allows the optimized

software implementation to be competitive with the hardware implementation.

19

6 Related Work

Cache coherence controlled by a communication processor and the integration of the shared-memory

and message-passing paradigms have been extensively studied in the past three years.

The design of our communication processor is closely related to that of the Flash project [22, 16].

Flash is a tightly coupled CC-NUMA system that uses a programmable processor (MAGIC) and

software (running on MAGIC) to maintain cache coherence. The MAGIC chip is highly optimized.

It includes special hardware to assist message receiving, scheduling, dispatching, and directing

outgoing messages to proper destination interface units. The processing of incoming messages,

the protocol handling, and the preparation of outgoing messages are pipelined. In addition to its

macropipelining architecture, MAGIC employs speculative memory access to overlap the memory

latency with the protocol handling. As a result, the slowdown due to the software overhead is

minimized to only 2%-12% over that of an ideal hardware implementation. In contrast, our co-

processor is more exible, allowing more easily the introduction of new primitives or changes in the

protocols, and closer to what is available o�-the-shelf, but the software overhead is of the order of

50%. The use of dedicated communication hardware can also be found in tightly-coupled message-

passing systems such as the Intel Paragon [18] and has been proposed for networks of workstations

[27].

Combining message passing with shared memory to overcome some of the ine�ciencies of cache

coherence mechanisms was �rst proposed in the context of the Alewife project [20, 21] and further

elaborated in Flash [15]. A number of important issues have been raised and discussed, e.g., user-

level messaging and protection, and coherence strategy for bulk data transferring. Since our interest

was mainly on performance related issues, we have concentrated on the latter, imposing a global

coherence strategy for prefetching and bulk data transfers.

The communication primitives that instruct the system to perform e�cient data transfers resemble

the asynchronous send/receive operations in message passing interfaces [4, 24], prefetching [23, 6, 14]

and poststore [19] commands, non-blocking (bulk) read (get) and write (put) operations in the

split-phase assignment statement of Split-C [9], and explicit communication mechanisms [26]. The

common idea is the overlap of communication with computation. The di�erences are: �rst, in

policy with respect to message-passing systems, since the global addressing space paradigm and

cache coherence is maintained; second, in the (extendible) set of primitives, since the communication

primitives include both producer-consumer oriented operations and availability of bulk transfers;

and third, in implementation, since the execution of the optional communication primitives are

interruptible by mandatory shared memory requests which are assigned a higher priority.

Tailoring the coherence protocol to the application can be done in several ways. Protocol modi�-

cations can be speci�ed by the user at a coarse grain level [12, 13] or in incremental fashion [17],

can be dictated by the compiler [25, 10], or can be the result of hardware monitoring [8, 29]. In the

applications we have studied, we have seen the need for applying di�erence coherence strategies at

the granularity of a computational phase on a data structure per data structure basis.

20

7 Conclusion

We have proposed a set of communication primitives that can enhance the performance of cache

coherent shared-memory multiprocessors. These primitives give the user some of the capabilities of

message-passing systems while keeping the correctness and simplicity aspects of the global address

space paradigm. The primitives allow prefetch and post-store of blocks of data whose sizes are not

limited to single cache lines and permit to tailor the cache coherence protocol to the needs of the

application.

We have shown how these primitives could be implemented in a communication processor that

handles not only these primitives but also all cache coherence transactions in software. This pure

software approach will incur some overhead but will add exibility since it facilitates the introduc-

tion of new primitives as well as the implementation of variations in cache coherence protocols.

We selected three benchmarks from the SPLASH-2 suite for performance evaluation purposes. We

then simulated a 16 processor system with �ve di�erent cache con�gurations. We simulated four

environments: an ideal PRAM model to gauge the e�ects of memory latency and cache coherence,

a system where cache coherence was maintained with a full directory hardware scheme, and two

implementations with a communication processor, one using the original benchmarks and one

with communication primitives appropriately inserted. With the parameters that we chose for

the communication processor, the contributions to the execution times of the memory latency and

cache coherence e�ects in the original software solution were at least 50% higher than those of the

hardware implementation. With communication primitives, the optimized software solution gave

results comparable to those of the hardware solution.

The evaluation results are encouraging and point to the value of a software approach enhanced by

user directives. The quantitative results, which show a comparable performance to the hardware

solution, are conservative since an increase in network latency or memory bandwidth would hurt

relatively more the hardware implementation. The software solution is also more attractive since

it is more scalable, for example there is no di�culty in keeping a full directory since it is a software

data structure, and more amenable to change.

There are several directions that can be followed to expand this study. One is to see the e�ects

of integrating the communication processor with either the compute processor or the memory

controller. In the �rst case, the interface between the compute and communication processors will

be much faster. This speed advantage could be negated by the competition for o�-chip bandwidth

and overall complexity of design. The second case would be more in the philosophy of intelligent

memory, i.e., the integration of processor-like functions in DRAMs [28]. Another possible study is to

see how the communication processor could be shared in cluster-like environments. In a cluster-like

architecture, tight-coupling between the communication processor and several compute processors

could become too complex. A looser coupling, i.e., another design, might be more appropriate.

Whether the looser coupling and potential saturation of the communication processor might be

detrimental to overall performance is an interesting issue.

21

References

[1] A. Agarwal, D. Kranz B.-H. Lim, and J. Kubiatowicz. APRIL: a processor architecture for

multiprocessing. In Proceedings of 17th International Symposium on Computer Architecture,

pages 104{114, 1990.

[2] D. H. Bailey. FFT in external or hierarchical memory. Journal of Supercomputing, 4(1):23{35,

March 1990.

[3] D. H. Bailey et al. The NAS parallel benchmarks. International Journal of Supercomputer

Applications, 5(3):63{73, Fall 1991.

[4] V. Bala et al. The IBM external user interface for scalable parallel systems. Parallel Computing,

20(4):445{462, April 1994.

[5] L. M. Censier and P. Feautrier. A new solution to coherence problems in multicache systems.

IEE Transactions on Computers, c-27(12):1112{1118, Dec. 1978.

[6] T.-F. Chen and J.-L. Baer. A performance study of software and hardware data prefetching

schemes. In Proceedings the 21st Annual International Symposium on Computer Architecture,

pages 223{32, 1994.

[7] T. M. Chilimbi and J. R. Larus. Cachier: A tool for automatically inserting cico annotations.

In Proceedings of International Conference on Parallel Processing, pages 89{98, 1994.

[8] A. L. Cox and R. J. Fowler. Adaptive cache coherency for detecting migratory shared data. In

Proceedings of 20th International Symposium on Computer Architecture, pages 98{108, 1993.

[9] D. E. Culler et al. Parallel programming in Split-C. In Proceedings Supercomputing '93, pages

262{73, 1993.

[10] R. Cytron, S. Karlovsky, and K. P. McAuli�e. Automatic management of programmable

caches. In Proceedings of International Conference on Parallel Processing, pages 229{238,

1988.

[11] S. Eggers and R. Katz. A characterization of sharing in parallel programs and its application

to coherency protocol evaluation. In Proc. of 15th Int. Symp. on Computer Architecture, pages

373{382, 1988.

[12] B. Falsa� et al. Application-speci�c protocols for user-level shared memory. In Proceedings of

Supercomputing '94, pages 380{9, 1994.

[13] M. I. Frank and M. K. Vernon. A hybrid shared messory/message passing parallel machine.

In Proceedings of International Conference on Parallel Processing, pages 232{236, 1993.

[14] E. Gornish, E. Granston, and A. Veidenbaum. Compiler-directed data prefetching in multipro-

cessor with memory hierarchies. In Proceedings of International Conference on Supercomputing

1990, pages 354{368, 1990.

22

[15] J. Heinlein, K. Gharachorloo, S. Dresser, and A. Gupta. Integration of message passing

and shared memory in the Stanford FLASH multiprocessor. In Proceedings of 6th Interna-

tional Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS-VI), pages 38{50, 1994.

[16] M. Heinrich et al. The performance impact of exibility in the Stanford FLASH multiproces-

sor. In Proceedings of 6th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-VI), pages 274{285, 1994.

[17] M. Hill, J. Larus, S. Reinhardt, and D. Wood. Cooperative shared memory: software and

hardware for scalable multiprocessors. In Proc. of 5th Int. Conf. on Architectural Support for

Programming Languages and Operating Systems, pages 262{273, 1992.

[18] Intel Corporation. Intel Paragon(tm) Supercomputer Product Brochure.

http://www.ssd.intel.com/paragon.html#system.

[19] Kendall Square Research Corporation. KSR1 technical summary, 1992.

[20] D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and B.H. Lim. Integrating message-passing

and shared-memory: early experience. In Proceedings of 4th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 54{63, 1993.

[21] J. Kubiatowicz and A. Agarwal. Anatomy of a message in the Alewife multiprocessor. In

Proceedings of 7th ACM International Conference on Supercomputing, 1993.

[22] J. Kuskin et al. The Stanford FLASH multiprocessor. In Proceedings of 21st International

Symposium on Computer Architecture, pages 302{313, 1994.

[23] D. Lenoski et al. The Standford DASH multiprocessor. IEEE Transactions on Computer,

25(3):63{79, March 1992.

[24] P. Pierce. The NX message passing interface. Parallel Computing, 20(4):463{480, April 1994.

[25] D. K. Poulsend and P.-C. Yew. Integrating �ne-grained message passing in cache coherent

shared memory multiprocessors. Journal of Parallel and Distributed Computing, 33(2):172{

188, March 1996.

[26] U. Ramachandran, G. Shah, A. Sivasubramaniam, A. Singla, and I Yanasak. Architectural

mechanisms for explicit communication in shared memory multiprocessors. In Proceedings of

Supercomputing '95, 1995.

[27] S. K. Reinhardt, R. W. P�le, and D. A. Wood. Decoupled hardware support for distributed

shared memory. In Proc. of 24th Int. Symp. on Computer Architecture, pages 34{43, 1996.

[28] A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the memory wall: The case for proces-

sor/memory integration. In Proc. 23rd Int. Symp. on Computer Architecture, pages 90{101,

1996.

[29] P. Strenstrom, M. Brorsson, and L. Sandberg. An adaptive cache coherence protocol optimized

for migratory sharing. In Proc. of 20th Int. Symp. on Computer Architecture, pages 109{118,

1993.

23

[30] J. E. Veenstra and R. J. Fowler. MINT: a front end for e�cient simulation of shared-memory

multiprocessors. In Proceedings of the Second International Workshop on Modeling, Analysis,

and Simulation of Computer and Telecommunication Systems, pages 201{7, 1994.

[31] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. K. Schauser. Active messages: a mech-

anism for intergrated communication and computation. In Proceedings of 19th International

Symposium on Computer Architecture, pages 256{66, 1992.

[32] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs:

Characterization and methodological considerations. In Proceedings of 22nd International

Symposium on Computer Architecture, pages 24{36, 1995.

[33] S. C. Woo, J. P. Singh, and J. L. Hennessy. The performance advantages of integrating block

data transfer in cache-coherent multiprocessors. In Proceedings of 6th International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS-VI),

pages 219{229, 1994.

24

