
Reducing Network Latency Using Subpages in a
Global Memory Environment

Hervé A. Jamrozik, Michael J. Feeley, Geoffrey M. Voelker, James Evans II
Anna R. Karlin, Henry M. Levy, and Mary K. Vernon

Department of Computer Science and Engineering
University of Washington

First published in the “Proceedings of the Seventh ACM Conference on Architectural Support for Programming Languages and Operating Systems”, October 1996.

Also available as Technical Report UW-CSE-96-07-03.

Abstract
New high-speed networks greatly encourage the use of network
memory as a cache for virtual memory and file pages, thereby re-
ducing the need for disk access. Because pages are the fundamental
transfer and access units in remote memory systems, page size is a
key performance factor. Recently, page sizes of modern processors
have been increasing in order to provide more TLB coverage and
amortize disk access costs. Unfortunately, for high-speed networks,
small transfers are needed to provide low latency. This trend in page
size is thus at odds with the use of network memory on high-speed
networks.

This paper studies the use of subpages as a means of reducing
transfer size and latency in a remote-memory environment. Using
trace-driven simulation, we show how and why subpages reduce
latency and improve performance of programs using network mem-
ory. Our results show that memory-intensive applications execute
up to 1.8 times faster when executing with 1K-byte subpages, when
compared to the same applications using full 8K-byte pages in the
global memory system. Those same applications using 1K-byte
subpages execute up to 4 times faster than they would using the disk
for backing store. Using a prototype implementation on the DEC
Alpha and AN2 network, we demonstrate how subpages can reduce
remote-memory fault time; e.g., our prototype is able to satisfy a
fault on a 1K subpage stored in remote memory in 0.5 milliseconds,
one third the time of a full page.

1 Introduction
New-generation networks, such as ATM, have now surpassed disks
in their ability to transfer data rapidly into processor memory. As
research has shown, such performance greatly encourages remote
paging [5, 9, 12] or global management and use of network-wide
memory [10, 6, 7]. That is, network nodes with memory-intensive

This research was supported in part by grants from the National Science Foundation
(CCR-9200832, CDA-9123308, CCR-9632769, CCR-9024144, GER-9550429, and
GER-9450075) and from Digital Equipment Corporation.

applications can use the primary memory of lightly-loaded nodes
as temporary backing store. In effect, the use of remote memory
to reduce the latency of VM, file access, or database operations,
introduces a new level of the memory hierarchy: namely, a global
memory cache that lies (logically) between local memory and disk.
This new level has the potential for much lower latency than disk.

Because pages are the fundamental transfer and access units in
remote memory systems, page size is a key factor in remote memory
performance. On current processors, page size has been driven up-
wards by two factors. First, magnetic disks have high access latency,
therefore large pages and multi-page transfers are needed to amor-
tize the cost. Second, the combination of relatively small TLBs and
large physical memories on current machines causes performance
degradation due to insufficient TLB coverage. TLB coverage is in-
creased by large page sizes or superpage mechanisms [20, 19, 16];
e.g., the DEC Alpha supports page sizes from 8KB to 1MB, the
SUN UltraSPARC supports page sizes from 8KB to 4MB, and the
MIPS R10000 supports page sizes from 4KB to 16MB.

Unfortunately, the latency characteristics of high-speed networks
are at odds with this trend. Recent research has succeeded in sub-
stantially minimizing the latency caused by operating system soft-
ware for network transfers [23, 21], and newer controllers reduce
latency even further [8]. Therefore, the total latency for remote
memory transfers is dictated to an increasing extent by the size of
the transfer, rather than by the controller and software overhead.
For remote memory access, then, smaller transfers may ultimately
be needed to reduce latency and improve program performance.

This paper examines the use of subpages as the transfer units
in remote memory systems. Subpages are hardware- or software-
supported power-of-two subunits of full pages; for example, an 8K
page might be managed as 8 1K subpages, 16 512-byte subpages,
etc. We present several alternative techniques for using subpages
for remote memory access. Using trace-driven simulation, we show
how and why subpages reduce remote memory latency and improve
performance of programs executing in a global memory environ-
ment. To ensure that our simulation parameters are realistic, we
implemented a prototype software-supported subpage mechanism
on DEC Alpha workstations connected by a DEC AN2 ATM net-
work. We measured remote subpage transfers using this mechanism
in a globally-managed memory for the Digital Unix operating sys-
tem. Our implementation is able to satisfy a page fault on a 1K
subpage stored in remote memory in .52 ms, compared with 1.4
ms for a full page. (By comparison, an average local disk access
takes 4 to 14 ms on the same system, depending on the nature of the
access – sequential or random.) Our results demonstrate the value
of using subpages to reduce transfer size and latency in a high-speed



0

4

8

12

16

0 4 8 12 16
transfer size (Kbytes)

la
te

nc
y 

(m
s)

Disk

Ethernet - 10 Mb/s
(50% idle)

Ethernet - 10 Mb/s
(100% idle)

ATM - 155 Mb/s

Figure 1: Latency vs. Page Size for Disks and Networks

network. For example, we show up to 1.8-fold speedup of memory-
intensive applications executing with 1K subpages,when compared
to the same applications using full 8K pages in the global memory
system. Those same applications using 1K subpages execute up to
4 times faster than they would using the disk for backing store.

The remainder of the paper is organized as follows. Section 2
presents further motivation for the use of subpages in global memory
systems and introduces several alternative techniques for subpage
management. Section 3 describes our simulation methodology and
our subpage prototype implementation. In Section 4 we present
performance results for several subpage management schemes. We
also examine application memory access behavior and show why
that behavior lends itself to the subpagemodels defined in Section 2.
Finally, Section 5 concludes and summarizes our results.

2 Motivation

As mentioned above, the characteristics of modern network perfor-
mance motivate a change in the transfer size for distributed memory
systems. We see this graphically in Figure 1, which plots the transfer
latency of a disk subsystem, a heavily-loaded 10 Mb/s Ethernet, a
lightly-loaded Ethernet, and an ATM network as a function of page
size on a DEC Alpha workstation. The graph demonstrates four key
points. First, the disk subsystem exhibits high latency even for a
“zero-length” page, as expected. Second, the networks have much
lower initial overhead; therefore the linear increase in the transfer
time with page size accounts for a more substantial fraction of the
total latency. Third, even for an ATM-speed network, we can reduce
latency substantially with smaller packets; this is difficult to see in
the figure, because the scale is distorted by the high disk access
time. The final interesting point shown by the graph is that even
Ethernet, while much worse than disk for transferring large pages,
would still have better latency than disk for very small pages.

How important are these measurements to a system using global
page caching? In previous work, we showed how network mem-
ory could be managed globally by implementing a global memory
management system on the Digital Unix operating system on DEC
Alphas [7]. For our system, the complete latency for faulting an 8K
Alpha page into memory from a remote node, including software
overhead and management messages, was about 1.6 ms. Of that
time, 1.03 ms was due to network and controller time for sending
the page from the source node to the destination. If the latency
for a remote page fault is to be greatly reduced, then reducing
this on-the-wire time is crucial. Moreover, in our experiments,
the speedups using global memory management were close to the

maximum achievable, given the ratio of disk access to remote mem-
ory access time. Therefore, reducing remote memory latency is
important for obtaining further performance gains.

2.1 Using Subpages for Global Memory

Global memory systems rely on the idle memory of lightly-loaded
network nodes to hold pages for heavily active nodes. A fault on
node A may be satisfied by node B, either because B has stored
A’s page in its “global memory,” or because A has faulted a page
actively in use by B (e.g., a shared code page). In any case, pagesare
the fundamental units of access detection and transfer; because the
virtual memory system is the only hardware mechanism available to
trap access to non-resident storage, we must move data in integral
page-sized units.

A subpage is a power-of-two subunit of a full page. Conceptually,
a system supporting subpageswould permit any (incomplete) subset
of the subpages to be present within a full page, and would detect
and trap attempted access to any non-resident subpage. In this way,
when a fault occurs, the operating system could (a) transfer only the
subpage containing the word accessed, and (b) restart the program
immediately on receipt of that subpage. Becausesubpagesare much
smaller than full pages, the subpage transfer completes quickly and
the program suffers a smaller latency. Whether this benefits the
program in the long run depends on a number of issues, which we
discuss shortly.

We have definedseveral possible techniques for handling subpage
transfers:

1. Lazy Subpage Fetch. Transfer the faulted subpage. Bring the
remaining subpages only on demand. This is equivalent in
many respects to simply reducing the page size.

2. EagerFullpage Fetch. Transfer the faulted subpageand restart
the program. Asynchronously, transfer the remainder of the
full page as a large transfer.

3. Subpage Pipelining. Transfer the faulted subpage and restart
the program. Asynchronously, send the remainder of the sub-
pages on the page. Because we are sending the remainder of
the page in subpage units, the transfers can be sequenced to
ship the most likely to be accessed subpages first.

Lazy subpage fetch is likely to perform poorly if the program
eventually touches many subpages of the faulted page; i.e., fetching
all of the subpages, one at a time, will be much worse than faulting
the full page. On the other hand, if the page is read-only and the
program touches only one or two subpages, the approach might be
beneficial. Lazy subpage fetch is similar in many ways to a system
with small pages; we compare the two approaches at the end of this
section.

Eager fullpage fetch reduces the initial fault latency by transfer-
ring only a single subpage; it then overlaps the I/O of the remainder
of the page with the execution of the program. Note that this ap-
proach could benefit execution in two ways. Assume that a program
faults a subpage i on a non-resident page, P . First, if the time be-
tween that fault on i and the access to another subpage on P is
greater than the transfer time for the rest of the page, we will have
transferred the full page yet suffered the latency of only the single
subpage, i. Second, if the program faults subpage j on another
page, Q, before accessing another subpage on P , then the transfer
of P can be overlapped with the transfer of j. In the first case com-
puting is overlapped with I/O, while in the second two I/O transfers
are overlapped.

The third scheme, subpage pipelining, is somewhat similar to
eager fullpage fetch. However, in this case, the faster arrival of
additional subpages has the potential to further reduce the time the

2



program waits for the remote data, in cases where the time between
the fault and the next subpage access on P is less than the full-page
transfer time. As we will see, the first subpages to arrive following
arrival of the faulted subpage take relatively little additional latency.
This scheme is similar in some ways to the pipelining of cache data
into cache lines over small buses [4].

It is interesting to compare our subpage schemes with an archi-
tecture that uses small pages (i.e., the size of one of our subpages).
A major disadvantage of the small page scheme, relative to sub-
pages, is the reduced TLB coverage and therefore higher TLB miss
rate that small pages would incur. Furthermore, previous work [13]
has shown that although smaller transfers offer the potential for
increased locality, this advantage is outweighed by the increased
overhead of the multiple requests required. We performed exper-
iments to confirm that this is true for our environment as well.
Therefore, we consider neither small pages nor lazy subpage fetch
in this paper.

2.2 Discussion

From the presentation above, we saw that there are two ways to
benefit from subpages: computational overlap and I/O overlap. It is
not obvious a priori whether this overlap can, in fact, be achieved.
In particular, for eager fullpage fetch, the interval between arrival
of the subpage and arrival of the follow-on full page is long, for
example, on the order of 72,000 memory accesses for a 1K subpage.
To completely overlap computation with that interval would require
that no accesses occur to the incomplete parts of the page while the
I/O is in progress, which is unlikely. To overlap I/O, on the other
hand, requires that the program fault another page before it accesses
a non-resident subpage on the page; yet for acceptable program
performance, the average time between page faults must be much
larger than the time to fetch a page.

This issue of overlap causes a tension between different subpage
sizes. For small subpages, the subpage fault will complete quickly,
leaving more time for overlap. On the other hand, larger subpages
are likely to reduce the probability of access to incomplete parts
of the page. In addition, with subpage pipelining, larger subpages
reduce the number of network interrupts.

The quantitative performance gain depends on two types of fac-
tors: technological factors, such as the software overhead of mes-
sage transfers and the ratio between network speed and memory
speed, and behavioral factors, such as the access pattern of an exe-
cuting program. In the following sections we examine these issues
through simulation and measurement. Our goal is to answer the
following questions:

� To what extent can eager fullpage fetch improve performance,
if at all? How does this vary across applications?

� What is the optimal subpage size to use? We have described
tensions in both directions.

� How much of the benefit is due to overlapped I/O vs. over-
lapped computation? To what extent is this benefit affected by
the value of the fixed overheads?

� How much additional benefit can be obtained by pipelining?

3 Experimental Methodology
To study the effect of subpage transfers on remote memory opera-
tions, we implemented both a trace-driven simulator and a software
prototype. Our simulator provides a detailed analysis of the policies
and mechanisms we wish to examine and allows us to experiment
with a range of system parameters. For our prototype, we con-
structed a software implementation of subpages on the DEC Alpha

250 266-MHz workstation. We used the prototype to provide mea-
sured software management and network overheads for the simula-
tor, and to validate simulated results where possible. The prototype
and simulator are described below.

3.1 System Prototype

Our prototype is implemented as an extension to GMS, a full global
memory management system described in [7]. The system is
integrated with Digital Unix V3.2; nodes are connected by a DEC
AN2 155 Mb/sec ATM network [1].

Subpage protection is implemented in software by modifying
the PALcode [17] on the DEC Alpha 250. Our system keeps 32
subpage valid bits for each page, one bit for each 256-byte block;
the valid bits indicate which subpages are currently valid (subpages
are a multiple of 256 bytes). When a page fault occurs, we (1)
allocate a page of physical memory, (2) transfer the first subpage
from remote memory on another node into its proper position on
that page, (3) set the corresponding subpage valid bits for that page,
(4) turn off read/write access to the page, and (5) continue program
execution. When the program attempts to access data on a page that
is incomplete (i.e., not all of its subpages are loaded), the hardware
traps to PALcode to handle the access protection violation. PALcode
then checks the valid bits to see whether the attempted access is to
a subpage that is loaded; if so, then the PALcode emulates the
read or write access. This emulation slows execution, but only on
incomplete pages; as soon as the remainder of the data for a page
arrives, read/write access to the page is re-enabled.1

3.1.1 Prototype Evaluation

Table 1 shows the performance of emulated read/write operations
on our prototype, as well as several other measurements for compar-
ison. The PALcode caches the subpage valid bits for each emulated
operation; a “fast” load or store occurs when an emulated operation
is to the same page as the previous emulated operation. As the
table shows, a fast load is 6.5 times slower than an L2 cache hit,
and 1.6 times faster than an L2 miss (assuming the loaded data is
in cache). Prototype measurements and simulation results indicate
that emulation slowed execution by less than 1% for the workloads
we examined.

For the simulation results reported in this paper, we assume TLB-
based hardware support, which has no overhead associated with
accessing resident subpages. This simply consists of an additional
valid bit in the TLB per subpage.2

To gain a detailed understanding of performance, we instru-
mented our prototype to log crucial events. We extracted median
latencies for these events from logs produced by running a memory-
intensive program on our instrumented kernel configured for various
subpage alternatives. These values were then used to calibrate the
simulator (as described in Section 3.2) and are summarized in the
rest of this section.

Table 2 shows the page-fault latencies for various subpage sizes.3

Subpage latency is the time until the program resumes execution
after a page fault. This latency includes two components: (1) a
fixed cost of about 0.27 milliseconds for handling the fault, locating
the page in the network, sending a request message to the node
storing the page, processing the request message, and resuming the

1An alternative technique would be that used by the Wisconsin Wind Tunnel
project [15, 14] to implement additional state bits for SVM on the CM5; they used
ECC bits to cause faults, however, this would still require emulating writes, and the
Alpha 250 has imprecise exceptions on data parity errors, making use of parity difficult
or impossible. Similar techniques have been used for trace production as well [22].

2The IBM 801 used a similar scheme to manage transactions on units of less than a
page – in their case, for each 128-byte line [3].

3We have optimized the performance of global memory operations along the lines
described in [21], hence our latencies are slightly better than those reported in [7].

3



Performance
Operation Cycles Time
fast load 52 195 ns
slow load 95 361 ns
fast store 64 241 ns
slow store 102 383 ns

null PAL call 15 56 ns
L1 cache hit 3 11 ns
L2 cache hit 8 30 ns
L2 miss 84 315 ns

Table 1: Performance of PALcode Load/Store Emulation

Subpage Latency (ms) Improvement Potential
Size Rest of Overlapped Sender

(bytes) Subpage Page Execution Pipelining

256 0.45 1.49 50% 0%
512 0.47 1.46 47% 1%

1024 0.52 1.38 40% 7%
2048 0.66 1.25 23% 16%
4096 0.94 1.23 1% 17%

fullpage - 1.48 - -

Table 2: Page-fault Latencies for Eager-Fullpage Fetch from Re-
mote Memory. Latencies are arrival times of subpage and rest of
page. Improvement potential is given as a percentage of fullpage
latency.

faulted program when the subpages arrives, and (2) a variable cost
for transferring the subpage over the network and copying it into the
faulting node’s memory. Rest of Page latency is the time from the
page fault until the entire page has been transferred. This latency
includes the time to send the rest of the page over the network
and the time to copy it into memory. The latency reduction of
subpages comes at a cost of increased overhead. Subpages increase
faulting-node CPU overhead by 0.08 ms to 0.48 ms and increase
sending-node overhead by 0.05 ms to 0.16 ms.

Table 2 also shows that there are two ways that subpages can
improve page-fault latency. The first, Overlapped Execution, is
the amount of time between subpageand rest-of-page arrival that the
faulted program can potentially run (this is less than the difference
in the two latencies by the CPU overhead of receiving the rest of
the page). The second, Sender Pipelining, is the improvement
achieved by better pipelining of the rest-of-page transfer by the
sending node.

Understanding the exact operation of data transfers in a complex
system, particularly where pipelining and overlap may occur in
both hardware and software, is often challenging. Figure 2 shows
a detailed timeline containing the crucial components involved in
a remote page fetch operation for full 8K pages, and 2K and 1K
subpages using eager fullpage fetch on our hardware platform.

Each timeline contains 5 components that contribute to a remote
paging operation from a requesting node to a remote node serving
the faulted page:

1. Req-CPU: Computation on the requester (the faulting node),
either to process global memory management code (the thick
bar) or execute the application code (the dotted line).

2. Req-DMA: Time required by the requester’s network controller
to copy data between host memory and the controller.

3. Wire: Time required for transmission of data on the network
interconnect.

Srv-CPU

Rest of PageRequest Subpage Program Execution

0.2 0.4 0.6 0.8 1.0 1.20.0 1.4

Page-Fault Latency (ms)

Wire

Wire

Wire

Fullpages

1K Subpages

2K Subpages

Req-CPU
Req-DMA

Req-CPU
Req-DMA

Req-CPU
Req-DMA

Srv-DMA
Srv-CPU

Srv-DMA
Srv-CPU

Srv-DMA

Figure 2: Remote Page Fetch Timeline for Fault on Requesting for
a Page Stored on a Serving Node.

4. Srv-DMA: Time required on the server storing the page for the
controller to copy data between host memory and the controller.

5. Srv-CPU: Execution on the server to process the request.

The shading on the bars indicates the work causing the particular
component. For example, looking at the timeline for fullpage trans-
fers, we see 4 black bars at the beginning of the transfer; these are for
handling the fault on the requesting side and transmitting a control
message to the server to request the remote page. The remaining
bars are dark gray; these show the work required to transmit the
page from the remote server to the requesting CPU, including the
two DMAs and the wire time for the 8K page. In this case, the
DMA on the requester completes at about 1.15 ms after the fault,
and the application continues execution at 1.48 ms after the fault, as
indicated by the dotted line.

For comparison, let’s examine the timeline for a fault with 2K
subpages. Again, the first 4 black bars show the sending of the
request message. The light gray bars that follow are the return of
the 2K subpage. Note that the DMA times and wire time for the
2K subpage are shorter than for the fullpage, so the application
continues after .66 ms. The dark gray bars on this graph show the
pipelining of the remainder of the page (in eager fullpage fetch)
following the initial subpage transfer. Notice the extent to which
components of this pipelined 6K transfer overlap other components
of the initial 2K transfer. The second transfer arrives, interrupting
the requesting CPU at approximately 1 ms. The application sees a
window of .35 ms of execution before the second segment arrives,
and then continues at 1.25 ms following the interrupt. In this case,
then, not only did the application restart in half the time of the
fullpage case, but the arrival of the entire transfer completed sooner,
despite the fact that the same number of total bytes were sent.
This occurs because of the overlap of parts of the DMA and wire
transmission of the two transfers.

Finally, the top timeline shows similar detail for 1K subpages. It
is surprising that the 1K case is slightly worse than the 2K case for
completion of the total paging operation, finishing at close to 1.4
ms. This occurs because the DMA and wire transmission of the first
1K subpage is “too small” for optimal overlap; i.e., it completes too
soon, leaving less chance for the server DMA of the remainder of
the page to be fully overlapped. This leaves a “space” on the wire
between the first subpage transfer and the remaining transfer that is
larger than for the 2K case.

4



3.2 Trace-Driven Simulator

Our simulator models the memory behavior of applications exe-
cuting in a global memory environment. It takes as input mem-
ory reference traces generated from applications instrumented by
Atom [18]. It then simulates these memory references and models
the effect of paging to both local disk and to remote memory. Pag-
ing policy is determined by a configurable memory management
module; an LRU policy is used by default. Once all references
have been consumed, the simulator produces as output a complete
description of the paging behavior of the applications that generated
the traces. This description details, among other things: the number
and type of page faults, the number of faults overlapped with others,
the contribution of the application’s CPU time to total execution
time, the time spent waiting for subpages, and the time for arrival
of remaining page fragments on page faults.

The simulator models page faults to remote memory using a
simplified model of the timelines shown in Figure 2, containing
three components of each transfer: request time, on-the-wire time,
and receive time. The request and receive times include software
and DMA overheads on both nodes. These page fault components
were chosen to permit modelling of the overlap of various operations
in the page fault transfers. On the remote node, the request time for
the remaining page fragment is overlapped with the wire time for
the subpage. On the faulting node, the receive time for the subpage
is overlapped with the wire time of the remaining page fragment. In
addition to overlap, the simulator models congestion delays in the
network.

The simulator estimates time using memory accesses as its clock
events. In order to translate latencies (e.g., for subpage transfers)
into events, we measured program execution time on a DEC Alpha
for several applications; we then traced those applications and ran
the traces through a cache simulator to model memory accesses.
Using the results of the cache simulator, we then calculated the
average time per trace event (i.e., per memory access) for these
programs. For our applications, we calculated an average time per
simulation event to be about 12 nanoseconds, i.e., 83,000 events
correspond to one millisecond of execution time.

We validated the simulator by comparing its performance im-
provement estimates against those measured using the prototype.
Both quantitative improvement for eager fullpage fetch and the
trend with subpage size agreed with the prototype measures, i.e,
both found the same optimial subpage size. We could not validate
subpage pipelining, for reasons discussed in Section 4.3.

4 Performance Results
This section presents measurements of subpage performance and
behavior from our trace-driven simulation. The purpose of these
experiments is to determine how much of the potential for improve-
ment (shown in Table 2 for eager fullpage fetch) is actually achieved
in practice. We also examine the interplay between program behav-
ior and achieved performance. As noted above, we parameterized
the simulator using measurements taken from our prototype im-
plementation. The simulator has the advantage of being easier to
instrument and thus it gives us more insight into the behavior of the
applications.

We traced and analyzed several applications executing in the
simulated subpage environment. To see the effect of heavy paging
activity, we ran the applications in different memory configurations.
The applications we used were the following:

Modula-3 is the DEC SRC compiler for the Modula-3 [11] pro-
gramming language. We traced a Modula-3 compilation of
smalldb, a library that transparently maintains a copy of in-
memory data structures on secondary storage. The trace in-

0

1

2

3

4

5

6

7

8

9

10

Full-Mem 1/2-Mem 1/4-Mem 

subpage size

ex
ec

ut
io

n 
tim

e 
(e

ve
nt

s 
x 

10
8 )

disk 8192
p_8192
sp_4096
sp_2048
sp_1024
sp_512
sp_256

17.77

Figure 3: Subpage Performance for 3 Memory Sizes for Modula-3

cludes 87 million memory references, and from 773 to 5655
faults, depending on the memory configuration.

ld is the unix object file linker. We traced a link of Digital Unix
V3.2 to generate our ld data. The trace includes 102 million
memory references, and from 6807 to 10629 page faults.

Atom [18] is the instrumentation software we used to generate
the traces. To obtain this trace, we instrumented Atom itself
(using Atom), then traced it while processing the gzip binary.
The trace includes 73 million memory accessesand from 1175
to 5275 page faults.

Render [2] is a graphics rendering program that displays a
computer-generated scene from a large (over 100MB) pre-
computed database. The trace includes 245 million memory
references and from 1433 to 6145 page faults.

gdb is the GNU debugger. We traced the initialization phase of the
debugger, run without loading a program. The trace includes
.5 million references and from 138 to 882 page faults.

In the results below, we use the Modula-3 trace to evaluate the
subpage mechanisms in detail. Modula-3 was average among the
applications we studied with respect to performance improvement
due to subpages. In general, the traces from all of the applications
have the same basic behavior with respect to the various subpage
options examined,and thus lead to the same conclusions. We present
a summary of the performance gains for the subpage mechanisms
for all of the applications at the end of this section.

4.1 Performance of Eager Fullpage Fetch

Figure 3 shows the performance of the Modula-3 trace for a number
of subpage sizes and memory configurations. This graph represents
a warm (global) cache situation, that is, all pages are assumed to
initially reside in remote memory. For these measurements, we
used eager fullpage fetch, i.e., the first subpage is transferred with
the remainder of the page following immediately afterwards. Three
memory configurations are shown: full-mem, in which the program
is given as much local memory as it needs (in this case, the faults
are all initial page faults), 1/2-mem, in which the program executes
in half its maximum memory, and 1/4-mem, in which the program
executes in one quarter of its maximum memory.

For each memory configuration, the left-most bar, marked
disk 8192, shows the performance for this trace when all page
faults are serviced from disk, i.e., there is no global memory. The

5



0

5

10

15

20

25

30

p_8192 sp_4096 sp_2048 sp_1024 sp_512 sp_256

subpage size

ex
ec

ut
io

n 
tim

e 
(e

ve
nt

s 
x 

10
7 )

page_wait
sp_latency
exec

Figure 4: Subpage Performance for Modula-3 at 1/2 Memory

next bar, marked p 8192, shows the performance of global mem-
ory management using full 8K pages. As previous studies have
shown, the performance improvement of global memory relative to
disk is significant — in this case, the speedups range from 1.7 to 2.2,
depending on memory availability [7]. The remaining bars show
the performance for subpage sizes ranging from 4096 to 256 bytes.

Subpages offer improvement over full pages ranging from about
8% (for 256-byte subpages in full-mem) to 40% (for 2K subpages
in 1/4-mem). The performance improvement of subpages increases
as the program’s memory demands are stressed, e.g., 1K subpages
show a 16% improvement for full-mem, a 25% improvement at
1/2-mem, and a 38% improvement for the 1/4-mem configuration.
Subpage sizes of 2K are the best choice for Modula-3, although all
subpage sizes show improved performance relative to full pages.
Over all the applications, subpage sizes of 1K or 2K were best, with
only slight differences between them.

Figure 4 shows the results for 1/2-mem in more detail. Three
components of the trace runtime are shown: the execution time of
the program (exec), waiting time due to transfer of the first subpage
on each faulted page (sp latency), and time stalled waiting for the
arrival of the remainder of the page (page wait). The sp latency bars
demonstrate the fault latency improvement with smaller subpages;
sp latency decreases from 55% of total runtime at sp 4096 to 25%
at sp 256. With decreasing latency, however, comes an increase
in the page wait component, from 2% at 4K to 35% at 256 bytes.
This occurs for two reasons: first, smaller subpages increase the
probability of accessing another subpage before either the page is
complete or a miss on a different page occurs; second, because the
subpage fault completes more quickly, there is increased opportunity
(in time) to access a non-resident subpage before the full page
arrives. Thus, there are both spatial and temporal reasons for the
impact of smaller subpages.

In order for very small subpages to outperform larger ones, we
will have to reduce this page wait component. We examine one
method of doing this, subpage pipelining, in Section 4.3.

4.2 Analysis of Subpage Performance

One might expect the benefit of eager fullpage fetch to increase
as subpage size decreases, because the subpage fault completes
more quickly, leaving more time to overlap. As we have seen,
however, smaller subpagesdo not necessarilyperform better. This is
partially explained by the reduced opportunity for senderpipelining,
as shown in Table 2. Additional insight is given in Figure 5, which
shows the interaction of subpage size, latency, and waiting time.
For each page fault, j, listed on the X axis, the graph plots the

0

20

40

60

80

100

120

140

1 76 15
1

22
6

30
1

37
6

45
1

52
6

60
1

67
6

75
1

82
6

90
1

97
6

10
51

11
26

12
01

12
76

13
51

pagefault event

w
ai

tin
g 

tim
e 

(e
ve

nt
s 

x 
10

3 )

sp_4096

sp_2048

sp_1024

sp_512

p_8192

Figure 5: Sorted Per-Fault Waiting Times for Different Subpage
Sizes. Each curve consists of three sections: (1) a horizontal seg-
ment on the right, representing the best case, where faults wait only
the subpage latency, (2) a horizontal segment on the left, represent-
ing the worst case, where faults stall until the full page arrives, and
(3) a middle region, where there is some overlap.

total waiting time that occurred for data on page j; waiting time
includes the initial subpage latency plus any waiting time afterwards
for arrival of the remainder of the page. The faults are sorted by
waiting time, with the highest waiting times on the left, and the
lowest waiting time on the right.

All of the subpage curves in Figure 5 are composed of three
sections:

1. A horizontal segment in the lower right. The right intercept
of this segment, for each curve, is the time to transfer the
subpage of the specified size. These faults saw the best case:
they waited only for the subpage transfer to complete, and then
overlapped computation and I/O with the rest of the full-page
transfer.

2. A horizontal segment in the upper left. The left intercept of
this segment, for all curves, is the time to transfer the full
page. These faults saw the worst case: they were not able to
overlap the full-page I/O, and quickly blocked waiting for the
remainder of the full page to arrive.

3. A small region in the middle, where some overlap occurred.

In this figure, we see that all subpage sizes benefit, by different
amounts, relative to the normal 8K full-page global memory system.
As well, we see that program behavior changes with subpage size
in two distinct ways. As subpage size decreases, faults that are
fully overlapped have higher benefit, as shown by the decreasing
Y intercepts on the right. On the other hand, the marginal benefit
decreases with decreased page size. Moreover, there are fewer
faults that achieve best-case overlap, as shown by the decreasing
length of the “best-case” (right-hand) segment. This decrease occurs
because smaller subpages increase the probability of accessing data
on another (non-resident) subpage. For Modula-3, 2K subpages
offer the best trade-off between these alternatives.

As discussed in Section 2.2, full overlap should be difficult to
achieve. It is therefore surprising that for all subpage sizes, a
large fraction of the page faults achieve best-case overlap. If com-
putational overlap accounted for a significant fraction of the total
overlap, we might expect more of the page fault events to fall in the
middle region of the curve. In fact, our measurements confirm that

6



Modula-3

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9
simulation event (x 10

7
)

cu
m

ul
at

iv
e 

pa
ge

fa
ul

t

Figure 6: Temporal Clustering of Page Faults for Modula-3

most of the speedup can be attributed to parallel I/O, rather than
computational overlap.

It is surprising that so much I/O overlap is possible, given that the
average time between faults is much larger than the time to fetch the
rest of the page. The reason this is possible is that many programs
with low fault rates undergo periods of high faulting, e.g., during
a phase change. Figure 6 plots the temporal clustering of page
faults for Modula-3. For each simulation event, the graph shows
the number of page faults that have occurred up to that point in
time. Horizontal segments of the curve represent periods of high
computation and little fault activity; vertical segments of the curve
are periods of high fault rate. I/O overlap occurs mostly during the
high-fault intervals; the larger the fraction of faults that occur during
these periods of high faulting the greater the expected increase in
performance from eager fullpage fetch.

4.3 Pipelining Subpage Access

From Figure 5, we see that small subpages reduce the initial fault
latency, but they also increase the probability of blocking before the
full page arrives. Recall that in all measurements shown above, the
remainder of the page is transferred in a large message following the
initial subpage transfer. An alternative scheme is to pipeline that
remaining data in multiple smaller messages. Pipelining has the
potential to further improve performance for several reasons. First,
the initial transfer of the faulted subpage includes the additional
software latency of finding the node storing the page, sending it a
message, and so on. Once the source node has been contacted, it
can send the pipelined sections immediately after the initial sub-
page; these transmissions will have no additional latency beyond
the minimum due to the time on the wire, the controller, and the
receiver-side interrupt. Therefore, small pipelined follow-on trans-
fers will complete quickly, one at a time, after receipt of the initial
subpage; if the receiver-side interrupt overhead is small, the fault-
ing program will be able to continue to execute while the pipelined
subpages arrive. Second, with pipelining we have the potential
to sequence the pipelined segments if we have information about
the likelihood of accessing particular subpages relative to the first
fault. The goal is to have the pipelined subpages arrive in the order
in which they are most likely to be accessed, so as to reduce the
program’s stall time.

The crucial issue, then, is to determine the most likely order of
access. To explore this issue, we modified our simulator to record
the subpage number of the first different subpage to be touched after
the initial subpage fault. Figure 7 shows this pictorially. The X axis
shows the distance (in subpages) from the initial faulted subpage
to the subpage next accessed. The Y axis shows the percentage of

0
10
20
30
40
50
60
70

-3 -2 -1 0 1 2 3
(a) distance from first access: 

2K subpage

%

0

10

20

30

40

50

60

-7 -5 -3 -1 1 3 5 7

(b) distance from first access: 
1K subpage

%

Figure 7: Distribution of Distances to Next Accessed Subpage on
the Same Page

0

5

10

15

20

25

30

p_8192 sp_2048 sp_1024 sp_512 sp_256
subpage size

ex
ec

ut
io

n 
tim

e 
(e

ve
nt

s 
x 

10
7 )

eager_fp_fetch
sp_pipelining

Figure 8: Comparison of Eager Fullpage Fetch and Subpage Pipelin-
ing (Modula-3, 1/2 mem)

next accesses for each subpage distance. Figure 7a shows results
for 2K subpages, while Figure 7b shows results for 1K subpages.
In both cases, we see that these programs exhibit significant spatial
locality: there is a high likelihood that the next subpage faulted on
the same page will be the next consecutive subpage (distance +1).

Below we report simulation results examining pipelining and its
potential benefits. In the simulation results shown we assume zero
CPU overhead on the receiving node for the follow-on pipelined
subpages. In our current prototype using the AN2 controller, how-
ever, each pipelined subpage causes an interrupt whose handling
cost exceeds the wire time for the subpage (e.g., the overhead is 68
�s for a 256-byte subpage and 91 �s for a 1K subpage), making
computational overlap impossible. This overhead could be reduced
by eliminating the need for copying. Eliminating the interrupt
entirely is more difficult with the AN2, and would require a net-
work controller that is able to update subpage valid bits directly.
Therefore, on our current prototype, software pipelining does not

7



0

10

20

30

40

50

60

Atom ld Modula-3 render gdb
application

pe
rf

om
an

ce
 im

pr
ov

em
en

t (
%

)

eager fp fetch
sp pipelining

Figure 9: Reduction in Execution Time for Eager Fullpage Fetch
and Subpage Pipelining (1/2-mem, 1K subpages).

outperform eager fullpage fetch. Our simulation results show the
performance improvement subpage pipelining could yield if these
overheads could be reduced or eliminated with a controller better
suited to the task.

Based on the measurements from Figure 7, we simulated subpage
pipelining where we transfer the faulted subpage and pipeline behind
it the following and preceding subpages (the +1 and -1 subpages)on
the page. The remainder of the page then follows in one message.
Figure 8 shows the additional benefit that can be achieved through
subpage pipelining on the Modula-3 trace with the 1/2 memory
configuration, relative to subpages without pipelining. Note that
pipelining will only reduce waiting that occurs after the first sub-
page arrives (shown as page wait in Figure 4). At subpage size of
1K, pipelining reduces the page wait component by 42%; however,
relative to the entire execution at 1K, the reduction is only 10%.
The improvement is larger for smaller memory configurations.

We can understand the effect of pipelining by looking back at the
waiting time curves in Figure 5. Pipelining will not affect the length
of the “best-case” (lower-right) part of the curves because it does not
affect the subpage latency. It can, however, significantly reduce the
length of the “worst-case” (upper-left) segments of the curves; with
pipelining, an access that would have blocked waiting for the full-
page transfer time can continue much sooner, because the subpage
it referenced has been pipelined and arrives more quickly.

In our studies, we simulated several different pipelining schemes.
For example, in one experiment, we doubled the size of the pipeline
transfers. That is, for 512-byte subpages, we sent the faulted 512-
byte subpage followed by a pipelined transfer of the next 1K bytes.
The motivation for choosing this strategy, particularly for small
pages, is that there is little additional latency for doubling the length
of the follow-on transfer. As another example, we transferred twice
the subpage size for the initial fault, choosing to send either the
preceding or following page along for the ride, depending on where
in the subpage the faulted word was located. In general, we found
that all of the schemes showed various amounts of improvement
over eager fullpage fetch, but none made a substantial improvement
relative to the basic scheme shown in Figure 8.

4.4 Summary

Overall, the simulation results for the Modula-3 compilation show
that subpages have the potential to reduce latency for global mem-
ory access. Figure 9 summarizes the performance gains for eager
fullpage fetch and subpage pipelining for all five of our applica-
tions, when executing in 1/2-mem configuration with 1K subpages.

Atom

0

500

1000

1500

2000

2500

3000

0 2 4 6 8
simulation event (x 10

7
)

cu
m

ul
at

iv
e 

pa
ge

fa
ul

t

gdb

0

50

100

150

200

0 2 4 6
simulation event (x 10

7
)

cu
m

ul
at

iv
e 

pa
ge

fa
ul

t

Figure 10: Temporal Clustering of Page Faults for gdb and Atom

All applications show measurable benefit due to subpages; in two
cases the benefit is greater than for the Modula-3 compilation. This
further indicates that subpage mechanisms may be worthwhile. The
performance increase due to subpages ranges from 20% to 44% for
eager fullpage fetch and from 30% to 54% for subpage pipelining.

For current high-speed networks and memory technology, most
of the benefit we see for eager fullpage fetch derives from over-
lapped I/O. Indeed, we measured for each application in Figure 9
the percentage of speedup improvement due to overlapped I/O,
which varied from 53% (for Atom) to 83% (for gdb).

Figure 10 further supports the observation that the applications
that obtain the greatest speedup are those with the largest fraction
of faults occurring during periods of high fault rate. Here we see
that for gdb, periods of high fault rate account for the majority of
the page faults, as indicated by the steep vertical jumps in the curve.
In contrast, for Atom all regions have relatively low fault rate, as
indicated by the relatively smooth increase in the curve. As we
would expect, gdb benefits significantly more from subpages than
Atom.

Applications running on any given network memory system will
have different degrees of nonuniformity in their fault rates. Often
applications will have significant periods of high fault rate due to
phase changes. Thus, intuitively, the benefit due to overlapped I/O
estimated in our simulation experiments is likely to be observed in
real workloads.

We have found that subpagepipelining improves performance for
all the applications we examined, assuming an intelligent controller
that eliminates the CPU overhead for pipelined subpages. This ben-
efit derives from a combination of increased computational overlap
and the new opportunities for I/O overlap. Note that the relative
improvement of subpage pipelining is larger for the applications
that derive smaller benefit from eager fullpage fetch.

Finally, while for current technological parameters our simula-
tions indicate that the optimal subpage size is about 2K, we might
expect that size to decrease in the future, particularly for subpage
pipelining, as the ratio of network speed to memory speed increases.

8



5 Conclusions
This paper examined the use of subpages to reduce the latency of
network access in a network-wide memory system. Subpages are
motivated by high-speed networks, whose transfer time is to a large
extent proportional to message size.

We presented two techniques for using subpages. Eager fullpage
fetch brings a faulted subpage and sends the remainder of the page
as a large follow-on transfer. Subpage pipelining sends the page
in smaller units following the faulted subpage, with the hope that
those follow-on subpages will arrive (just) before they are needed.

Our prototype demonstrates that on ATM-speed networks, sub-
page transfers can substantially reduce fault latency relative to full
pages. For example, on our Alpha/AN2 prototype on Digital Unix,
a remote memory fault, even for 1K subpages, completes in about
one third the time of an 8K full-page fault from remote memory.
This is between 7 and 28 times faster than a fault serviced from disk
by the NFS file system, depending on the nature of the file (e.g., se-
quential vs. random access). The need to fetch less than a page on a
fault will increase with increasing page sizes, which are required by
huge primary memories and small on-chip TLBs. Subpages would
be best supported in hardware using extra per-page valid bits, but
they can be supported in software as well, using several different
techniques. Our prototype uses PALcode on the Alpha to trap ac-
cess to incomplete pages, and emulates reads and writes directed
to valid subpages. Despite the emulation, our prototype achieves
speedup, e.g., 24% performance improvement over fullpages for
eager fullpage fetch with 2K subpages on the Render application.

Our detailed simulations, validated by prototype measurements,
show the performance benefits of using subpages. Our programs
saw up to a 44% improvement when using subpages compared to
full pages, and more with pipelining. Our “worst” application was
able to decrease execution time by 20% with 1K subpages relative
to full 8K pages, and by 29% when subpage pipelining was used. A
detailed examination of the behavior of our applications shows that
most of the benefit comes from I/O overlap.

Our analysis shows that spatial locality for these programs re-
quires that the full page be transferred eventually. That is, sim-
ply reducing the page size to support smaller pages would actu-
ally degrade performance. However, by fetching most of the page
asynchronously, as with eager fullpage fetch, we obtain significant
benefit and improve TLB coverage relative to smaller pages as well.

We believe that in the future, as networks continue to improve,
network-wide memories and subpage transfer units will be one key
approach to achieving high performance.

Acknowledgements
Comments from Dylan McNamee, Jeff Chase, Ashutosh Tiwary,
Vivek Narasayya, and the anonymous referees helped improve the
quality of the paper. The authors would like to thank David Mazieres
for his Alpha-PALcode editing tools and Ted Romer for help using
them, Chandu Thekkath and Hal Murray for help in understanding
AN2 network performance, David Conroy for explaining Alpha
ECC handling, and Bradford Chamberlain and Dylan McNamee for
the Render application. We would also like to thank the Digital
Equipment Corporation Systems Research Center for providing us
with the DEC AN2 network used in our prototype.

References
[1] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and

Charles P. Thacker. High-speed switch scheduling for local-
area networks. ACM Transactions on Computer Systems,
11(4):319–352, November 1993.

[2] Bradford Chamberlain, Tony DeRose, Dani Lischinski, David
Salesin, and John Snyder. Fast rendering of complex environ-
ments using a spatial hierarchy. In Proc. of Graphics Interface
‘96, May 1996.

[3] Albert Chang and Mark F. Merge. 801 storage: Architecture
and programming. ACM Trans. on Computer Systems, 6(1),
February 1988.

[4] Douglas W. Clark, Butler W. Lampson, and Kenneth A. Pier.
The memory system of a high-performance personal computer.
IEEE Trans. on Computers, C-30(10), October 1981.

[5] Douglas Comer and James Griffioen. A new design for dis-
tributed systems: The remote memory model. In Proceedings
of the USENIX Summer Conference, June 1990.

[6] Michael D. Dahlin, Randolph Y. Wang, Thomas E. Anderson,
and David A. Patterson. Cooperative caching: Using remote
client memory to improve file system performance. In Pro-
ceedings of the USENIX Conference on Operating Systems
Design and Implementation, November 1994.

[7] Michael J. Feeley, William E. Morgan, Frederic H. Pighin,
Anna R. Karlin, Henry M. Levy, and Chandramohan A.
Thekkath. Implementing global memory management in a
workstation cluster. In Proceedings of the 15th ACM Sym-
poisum on Operating Systems Principles, December 1995.

[8] Edward W. Felten, Richard D. Alpert, Angelos Bilas,
Matthias A. Blumrich, Douglas W. Clark, Stefanos N. Dami-
anakis, Cezary Dubnick, Liviu Iftode, and Kai Li. Early ex-
perience with message-passing on the Shrimp multicomputer.
In Proc. of the 23rd International Symposium of Computer
Architecture, May 1996.

[9] Edward W. Felten and John Zahorjan. Issues in the implemen-
tation of a remote memory paging system. Technical Report
91-03-09, Department of Computer Science and Engineering,
University of Washington, March 1991.

[10] Michael J. Franklin, Michael J. Carey, and Miron Livny.
Global memory management in client-server DBMS architec-
tures. In Proceedings of the 18th VLDB Conference, August
1992.

[11] Samuel P. Harbison. Modula-3. Prentice Hall, Englewood
Cliffs, NY, 1992.

[12] Liviu Iftode, Karin Petersen, and Kai Li. Memory servers for
multicomputers. In Proceedings of the IEEE Spring COMP-
CON ’93, pages 538–547, February 1993.

[13] Edward D. Lazowska, John Zahorjan, David R. Cheriton, and
Willy Zwaenepoel. File access performance of diskless work-
stations. ACM Trans. on Computer Systems, 4(3), August
1986.

[14] S. Reinhardt, M. Hill, J. Larus, A. Lebeck, J. Lewis, and
D.Wood. The Wisconsin Wind Tunnel: Virtual prototyping
of parallel computers. In Proc. of the ACM Sigmetrics Conf.
on Measurement and Modelling of Computer Systems, May
1993.

9



[15] Steve K. Reinhardt, Babak Falsafi, and David A. Wood. Ker-
nel support for the Wisconsin Wind Tunnel. In Proc. of the
2nd USENIX Symp. on Micorkernels and Other Kernel Archi-
tectures, September 1993.

[16] Ted Romer, Wayne Ohlrich, Anna Karlin, and Brian Bershad.
Reducing TLB and memory overhead using online superpage
promotion. In Proc. of the 22nd Annual Int. Symp. on Com-
puter Architecture, June 1995.

[17] Richard L. Sites, editor. Alpha Architecture Reference Manual.
Digital Press, One Burlington Woods Drive, Burlington, MA
01803, 1992.

[18] Amitabh Srivastava and Alan Eustace. Atom: A system for
building customized program analysis tools. Technical Report
94/2, DEC Western Research Lab, March 1994.

[19] Madhusudhan Talluri and Mark D. Hill. Surpassing the TLB
performance of superpages with less operating system support.
In Proc. of the 6th Int. Conf. on Arch. Support for Programming
Languages and Operating Systems, October 1994.

[20] Madhusudhan Talluri,Shing Kong,Mark D. Hill, and David A.
Patterson. Tradeoffs in supporting two page sizes. In Proc.
of the 19th Annual Int. Symp. on Computer Architecture, May
1992.

[21] Chandramohan A. Thekkath, Henry M. Levy, and Edward D.
Lazowska. Separating data and control transfer in distributed
systems. In Proc. of the 6th Int. Conf. on Arch. Support for
Prog. Languages and Operating Systems, October 1994.

[22] Richard Uhlig, David Nagle, Trevor Mudge, and Stuart
Sechrest. Trap-driven simulation with Tapeworm II. In Proc.
of the 6th Int. Conf. on Arch. Support for Prog. Languagesand
Operating Systems, October 1994.

[23] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein,
and Klaus Erik Schauser. Active Messages: A mechanism for
integrated communication and computation. In Proceedingsof
the 19th International Symposium on Computer Architecture,
pages 256–266, May 1992.

10


