
Array Restructuring for Cache Locality

Shun-Tak A. Leung

Department of Computer Science and Engineering
University of Washington

Technical Report UW-CSE-96-08-01
August 1996

This technical report is adapted from the author’s Ph.D. dissertation.

© Copyright 1996

Shun-Tak Albert Leung

University of Washington

Abstract

Array Restructuring for Cache Locality

by Shun-Tak Albert Leung

Chairperson of Supervisory Committee: Professor John Zahorjan

Department of Computer Science

and Engineering

Caches are used in almost every modern processor design to reduce the long memory

access latency, which is increasingly a bottleneck to program performance. For caches to

be effective, programs must exhibit good data locality. Thus, an optimizing compiler may

have to restructure programs to enhance their locality. We focus on the class of restructur-

ing techniques that target array accesses in loops.

There are two approaches to enhancing the locality of such accesses:loop restructur-

ing andarray restructuring. Under loop restructuring, a compiler adopts a canonical array

layout but transforms the order in which loop iterations are performed and thereby reor-

ders the execution of array accesses. Under array restructuring, in contrast, a compiler lays

out array elements in an order that matches the access pattern, while preserving the flow of

control. While loop restructuring has been studied extensively, array restructuring has

received much less attention despite advantages such as its applicability to complicated

loop structures that may hamper loop restructuring.

To fill the void, this dissertation investigates how to perform array restructuring effec-

tively — efficiently, automatically, and generally. We present a formal framework for

array transformations that meet these objectives. Such transformations are represented by

linear transformations of array index vectors. Within this framework, we develop algo-

rithms to solve various problems in array restructuring: selecting transformations based on

the access pattern, laying out elements of restructured arrays, and determining which ele-

ments are accessed by a loop and thus restructuring only that part of an array.

To evaluate our array restructuring technique, we implemented a prototype compiler

and performed a series of experiments with loops commonly used in related loop restruc-

turing studies. Experimental measurements showed that array restructuring improved per-

formance substantially in many cases, despite a modest runtime overhead in some.

Moreover, the results also indicated that array restructuring complemented loop restruc-

turing in applicability and performance: it applied where loop restructuring did not; when

both applied, it offered comparable, sometimes even better, performance; in cases where it

did not perform as well, loop restructuring improved performance considerably anyway.

This observation points to the potential benefit of integrating the two complementary

approaches.

i

Table of Contents

List of Figures . vi

List of Tables . ix

List of Common Symbols . x

Part I
Introduction

Chapter 1: Introduction . 2

1.1 Motivation . 2

1.1.1 Two Approaches to Improving Locality . 3

1.1.2 Comparing Array and Loop Restructuring . 6

1.1.3 Understanding Array Restructuring . 8

1.2 Contributions . 9

1.3 Organization. 9

Part II
Analysis

Chapter 2: Array Restructuring Framework . 12

2.1 Loop Restructuring Framework: A Tutorial . 12

2.2 Array Restructuring Framework . 16

2.3 Alternatives . 19

ii

2.4 Summary . 22

Chapter 3: Choosing an Index Transformation. 24

3.1 Index Transformation for Better Locality . 24

3.1.1 Innermost Loop. 24

3.1.2 Enclosing Loops . 28

3.1.3 Unimodular Index Transformation Matrix . 32

3.1.4 Summary. 33

3.2 Computing the Index Transformation Matrix . 33

3.2.1 Permuting Array Indices. 34

3.2.2 General Unimodular Transformation Matrices. 38

3.3 More General Access Patterns . 46

3.3.1 Multiple Accesses . 47

3.3.2 Non-Affine Array Index Expressions . 54

3.3.3 Imperfect Loop Nests . 59

3.3.4 Multiple Loop Nests . 60

3.4 Summary . 64

Chapter 4: Linearizing Restructured Arrays. 65

4.1 Computing the Bounds of the Restructured Array . 67

4.2 Problem of Non-Constant Array Bounds. 69

4.3 Introducing Our Solution . 71

4.4 Computing the Linearization Vector . 73

4.4.1 Relaxed Bounds . 75

4.4.2 Computing Linearization Vector from Relaxed Bounds. 76

4.4.3 Summary. 81

iii

4.5 Relaxing the Transformed Array Bounds . 82

4.5.1 Relaxed Bounds Revisited . 84

4.5.2 Symmetric Image Polyhedron. 85

4.5.3 Computing Augmented Bounds . 86

4.5.4 Computing Center of Symmetry. 88

4.5.5 Computing Relaxed Bounds . 90

4.5.6 Summary. 94

4.6 Summary . 95

Chapter 5: Partial Restructuring . 96

5.1 Regularly Spaced Elements . 97

5.1.1 Extending the Framework. 97

5.1.2 A Single Access . 99

5.1.3 Multiple Accesses . 103

5.1.4 Summary. 108

5.2 Range of Index Vectors . 109

5.2.1 The Problem . 109

5.2.2 Solutions . 110

5.2.3 Multiple Accesses . 118

5.2.4 Implications to Linearization . 119

5.2.5 Summary. 121

5.3 Summary . 122

Part III
Experimentation

Chapter 6: Implementation . 124

iv

6.1 Runtime System. 125

6.2 Array Restructuring Pass . 126

6.2.1 Functions. 126

6.2.2 Limitations . 130

Chapter 7: Experimental Results . 132

7.1 Experiments . 132

7.2 Array Restructuring . 136

7.2.1 General Results . 137

7.2.2 Individual Cases . 143

7.3 Comparing Array Restructuring and Loop Restructuring 147

7.3.1 Methodology. 147

7.3.2 Results. 149

7.4 Array Restructuring and Tiling . 152

7.5 Summary . 155

Chapter 8: Parallel Execution . 156

8.1 Experiments and Results . 156

8.2 Discussion . 159

8.3 Summary . 161

Part IV
Conclusion

Chapter 9: Related Work. 164

9.1 Array Restructuring . 164

9.1.1 Reordering Array Elements . 164

v

9.1.2 Other Forms of Data Layout Optimizations . 168

9.2 Loop Restructuring . 170

Chapter 10: Summary and Conclusions. 174

Bibliography . 177

Appendix A: Memory Utilization . 187

A.1 Lemmas. 188

A.2 Volumes of Polyhedra . 193

Appendix B: Additional Experimental Results . 195

B.1 Uniprocessor Workstation: IBM RS/6000 . 195

B.2 Shared Address Space Multiprocessor: KSR-2. 198

vi

List of Figures

1.1 A Simple Example — Matrix Multiply . 4

2.1 Linear Algebraic Representation of Array Access . 13

2.2 Array Restructuring by Linear Transformation of Index Vector 17

3.1 Improving Locality through Index Transformation . 26

3.2 Flattening Columns of an Access Matrix . 29

3.3 Effect of Transformation Matrix with Non-Integral Inverse 33

3.4 Algorithm to Transform Access Matrix with Permutation Matrix 35

3.5 Transforming Access Matrix by Permuting Rows . 36

3.6 Algorithm to Transform Access Matrix with Nonsingular Matrix 39

3.7 Affecting Magnitudes of Strides in Index Space . 45

3.8 Multiple Accesses to One Array. 49

3.9 Optimizing Multiple Accesses Individually or Collectively 50

3.10 Computing Transformation from Aggregate Access Matrix 53

3.11 Examples of Non-Affine Array Accesses . 57

3.12 Handling an Imperfect Loop Nest. 60

4.1 Transforming Array Bounds . 68

4.2 Laying Out Elements of Restructured Array — Tentative Solution. 70

4.3 Laying Out Elements of Restructured Array — Our Solution 71

4.4 Computing the Linearization Vector: A Road Map . 74

4.5 Computing Linearization Vector from Relaxed Bounds. 78

vii

4.6 Relaxing Transformed Array Bounds . 83

4.7 Worst-Case Example of Memory Use . 94

5.1 Restructuring Regularly Spaced Elements . 98

5.2 Restructuring Regularly Spaced Elements for Multiple Accesses 104

5.3 Examples of Restricted Index Ranges . 111

5.4 Computing Image of Loop Bounds. 114

5.5 Causes of Including Elements Not Accessed . 117

6.1 Organization of Implementation . 125

6.2 Sample Output Code. 129

7.1 Array Restructuring Performance — Profitable Cases . 138

7.2 Array Restructuring Performance — Unprofitable Cases

(with Manual Override of Compiler Decision). 139

7.3 Array Restructuring Performance — Complete Execution Times 140

7.4 Access Pattern of SYR2K. 146

7.5 Performance Variation of SYR2K . 147

7.6 Comparing Array and Loop Restructuring . 150

7.7 Array Restructuring and Tiling . 154

8.1 Parallel Speedups on SGI Power Challenge — Profitable Cases 158

8.2 Parallel Speedups on SGI Power Challenge — Unprofitable Cases

(with Manual Override of Compiler Decision). 159

B.1 Array Restructuring Performance on RS/6000 — Profitable Cases 196

B.2 Array Restructuring Performance on RS/6000 — Unprofitable Cases

(with Manual Override of Compiler Decision). 197

viii

B.3 Parallel Speedups on KSR-2 — Profitable Cases. 199

B.4 Parallel Speedups on KSR-2 — Unprofitable Cases

(with Manual Override of Compiler Decision). 200

B.5 Parallel Speedups of Original Loop on KSR-2 — Selected Cases. 201

ix

List of Tables

7.1 Loops for Experiments . 133

7.2 Sizes of Original and Restructured Arrays . 142

7.3 Problems and Solutions in Individual Cases. 144

x

List of Common Symbols

Access matrix

Access offset vector

Array bounds matrix

Array bounds vector

Center of symmetry of image polyhedron

Height of a matrix

Iteration vector

Lower array bound of thej-th dimension

Lower bound for thej-th dimension in the augmented bounds

Number of array dimensions

Number of loop levels in a loop nest

Transformation matrix for relaxed bounds

Rank of a matrix

Lower bounds of relaxed bounds

Upper bounds of relaxed bounds

Scalar offset of an element into array

Index transformation matrix

Index transformation offset vector

Upper array bound of thej-th dimension

Upper bound for thej-th dimension in the augmented bounds

Linearization vector

Array index vector

Transformed array index vector

A

a

B

b

c

height…()

i

l j

l j …()

m

n

R

rank …()

r l

ru

s

T

t

uj

uj …()

v

x

y

xi

Acknowledgments

First of all, I must thank John Zahorjan, my advisor. Throughout the almost five years I

have been working with him, he has offered not only advice and guidance, but also con-

stant encouragement, support, and confidence in me — even, and perhaps especially, at

those times when I have doubts. His optimism is contagious.

I would also like to thank Craig Chambers and Susan Eggers, members of my Reading

Committee. Their valuable comments helped to improve this dissertation substantially.

National Center for Supercomputing Applications at the University of Illinois at

Urbana-Champaign provided the Silicon Graphics Power Challenge used in some of my

experiments. The SUIF compiler group of Stanford University provided the compiler

infrastructure for my prototype. Ruth Anderson and Thu Nguyen installed the SUIF com-

piler locally and helped me with its use.

My parents, to whom this dissertation is dedicated, have always had my future in

mind. Their silent support and sacrifice have enabled me to pursue my dreams and come

thus far.

Last but certainly not least, praise and gratitude are due to God, who has showered me

with undeserved blessings beyond what I dare to dream of.

xii

Dedicated to my parents Sze-Wing Leung and Suet-Chor Kwan

Part I

Introduction

2

Chapter 1

Introduction

1.1 Motivation

As the gap between processor and memory speeds continues to widen, it is increasingly

important to execution performance that the average latency of memory accesses be

reduced. One proven hardware technique is the use of caches. Caches appear in virtually

all major processor designs [Bannon and Keller 1995; Hunt 1995; Levitan, Thomas, and

Tu 1995; Papworth 1996; Tremblay and O’Conner 1996; Yeager 1996]. The memory sys-

tem is structured as a hierarchy of caches in the hope that most data accesses can be satis-

fied by levels that have short access times, thus avoiding long trips to relatively slow

memory. This technique exploits the observation that many programs exhibit locality of

access: soon after accessing a piece of data, the program tends to access the same data

again (which is called temporal locality) or other nearby data (spatial locality).

The use of caches in turn influences programming practice. To achieve good perfor-

mance, programs must utilize the cache effectively. Therefore, programmers conscious of

the heavy cache miss penalty will try to write code that exhibits good data locality — both

temporal and spatial. For example, they can make use of blocked algorithms, which seek

to operate on data already in the cache as much as possible before bringing another set of

data into the cache [Lam, Rothberg, and Wolf 1991]. While offering maximum perfor-

mance, manual tuning is not only time-consuming, but also makes programs less portable

across hardware platforms. A program hand-optimized for one architecture may perform

much worse on another.

3

Compiler-directed locality optimizations promise high performance without sacrific-

ing portability or demanding excessive programmer effort, although they may not outdo

manual tuning. A compiler can analyze the data access pattern and restructure programs to

enhance their locality, perhaps even tailoring them to the particular target architecture.

This dissertation focuses on compiler-directed program restructuring techniques that

target array accesses in loops, which represent a significant fraction of the total execution

time in many applications. There has been intense interest in such techniques. Some of the

extensive research is surveyed in Chapter 9. These techniques have received much atten-

tion in part because array accesses in loops are often executed many times. Any effort

spent on optimizing even a small number of them promises huge reward in execution per-

formance. Their regularity also makes them especially amenable to compiler analysis.

1.1.1 Two Approaches to Improving Locality

To improve the locality of array accesses in a loop, we can restructure the loop or restruc-

ture the arrays. In theloop restructuring approach, the compiler modifies the loop’s con-

trol structure to change the execution order of the iterations (or parts of iterations) and

thereby the sequence of array accesses. We might, say, bring iterations accessing the same

array element closer together in execution order; this would improve temporal locality. In

the array restructuring approach, the compiler changes the storage order of an array

according to its access pattern. We might, say, store an array in column-major order if it is

accessed column by column, thus enhancing spatial locality. Although previous work has

concentrated on loop restructuring, in fact both approaches can enhance locality because

locality results from an interaction between the execution order of accesses and the stor-

age order of elements, rather than from either execution order or data layout alone. For

concreteness, let us consider an example.

Figure 1.1 shows a straightforward implementation of a dense matrix multiplication as

well as graphical representations of the access patterns for the three arrays involved. We

show the array laid out in row-major order. We first examine the locality exhibited by the

4

original loop as shown in Figure 1.1(a). The innermost loop computes a single element of

the result arrayC as the dot product of a row ofA and a column ofB.

• The accesses toC[i,j] have excellent temporal locality because the innermost

loop reusesC[i,j] many times. Moreover, after scalar replacement [Bacon, Gra-

ham, and Sharp 1994] — a compiler optimization that replaces an array element

with a scalar variable — the running sum is accumulated in a register;C[i,j] is

read from memory only before the innermost loop and written back after.

• The access toA[i,k] has modest temporal locality and good spatial locality. The

innermost loop reads a row of elements, which are consecutive in memory because

Figure 1.1: A Simple Example — Matrix Multiply

C is initially zero
B is row-major
FOR i = 1, 100

FOR j = 1, 100
FOR k = 1, 100

C[i,j] = C[i,j] +
A[i,k] * B[k,j]

C is initially zero
Copy B[x,y] to B2[y,x]
FOR i = 1, 100

FOR j = 1, 100
FOR k = 1, 100

C[i,j] = C[i,j] +
A[i,k] * B2[j,k]

A

B

C

A

B

C

B2

Access direction of innermost loop

(a) Original Array Layout (c) Array restructuring:
B2 = transpose of B

(b) Loop restructuring:
Interchange loops j, k

C is initially zero
B is row-major
FOR i = 1, 100

FOR k = 1, 100
FOR j = 1, 100

C[i,j] = C[i,j] +
A[i,k] * B[k,j]

B

C

A

5

A is row-major. Thus, the innermost loop goes through adjacent memory locations,

with good spatial locality. Furthermore, although iterations of the innermost loop

read different elements, consecutive executions of the innermost loop reuse the

same row. Temporal locality is moderately good, provided that a row ofA is short

enough to stay in cache until it is reused.

• The access toB[k,j] is problematic: it has poor temporal as well as spatial local-

ity. Since the innermost loop goes through the row-major array column by column,

consecutive iterations touch elements far apart in memory. These elements are in

different cache lines (unless the arrays are unrealistically small). Each access there-

fore potentially results in a cache miss. Moreover, temporal locality is poor because

the loop nest goes through the entire array before accessing any element again, by

which time the cache line containing the reused element has most likely been dis-

placed from the cache by the huge number of intervening accesses.

Loop restructuring improves the problematic access toB, as well as overall perfor-

mance, despite some side-effects on the other two arrays. In part (b) of the figure, we

interchange the two inner loops1. This alters the execution order of the iterations. For this

loop nest, such a change respects all existing loop-carried dependences and therefore pre-

serves program semantics. Under the new execution order, the innermost loop goes

through arrayB row by row. Spatial locality is much better than before, although temporal

locality remains unchanged because arrayB is still read in whole before being reused. The

new execution order also affects accesses to arraysA andC. In particular, the innermost

loop now reuses the elements ofA and updatesC row by row. Experiments have shown

that these changes together lead to substantially better overall performance [Kennedy and

McKinley 1992].

1. This simple loop nest could be improved further using loop tiling [Lam, Rothberg, and Wolf 1991; Wolf
and Lam 1991a]. For simplicity, we present this illustrative example with loop interchange only.

6

Array restructuring also improves the problematic access toB, but without affecting

the other accesses or temporal locality. Figure 1.1(c) illustrates this. While the loop struc-

ture is unchanged, the loop accesses a newly defined arrayB2, instead of the original array

B. B2 contains the same elements asB, but in a different order determined by the access

pattern: in this caseB2 is the transpose ofB. Thus, the access toB[k,j] is replaced by an

access to the corresponding element inB2, namelyB2[j,k] . As a result, the innermost

loop goes throughB2 row by row. This is logically equivalent to going throughB column

by column but has far better spatial locality. In addition to transforming the accesses toB,

the compiler also generates code to copy data fromB to B2 before loop execution2. If the

array were updated, the data would also have to be copied back afterward. Notice that

array restructuring has not changed temporal locality: the loop nest in Figure 1.1(c) still

accesses the entire arrayB2 before reusing any element. Finally, the other two arrays are

accessed in exactly the same way as before because the iteration execution order has not

changed.

1.1.2 Comparing Array and Loop Restructuring

While we can often improve locality by either loop or array restructuring, each approach

has distinct advantages as well as disadvantages, making one or the other more appropri-

ate in a given situation.

First, array restructuring can be easily applied to complicated loop structures that

sometimes hamper, if not frustrate, loop restructuring. This is because array restructuring

does not change a program’s flow of control, only its data layout. By contrast, loop

restructuring is harder to apply because it affects control flow. Reordering data accesses

without altering what the program computes requires careful compiler analysis to guaran-

tee that the new order respects the same dependences as the old under all circumstances.

2. The original arrayB, and the data copying betweenB andB2, can be eliminated if all accesses toB
throughout the program are replaced by accesses toB2. We discuss this possibility in Section 3.3.4.

7

This is especially difficult for complicated loops such as those that are imperfectly nested,

contain conditional statements, have complex loop-carried dependences, have depen-

dences dependent on runtime data, and so on. For example, while some of the most

sophisticated loop restructuring techniques may be able to transform an imperfect loop

nest implementing LU decomposition without pivoting [Anderson, Amarasinghe, and

Lam 1995; Wolf and Lam 1991a], they would be frustrated by pivoting since the loop-car-

ried dependences are determined by data available only at run time. Insufficient or impre-

cise compile-time information may also prevent the compiler from applying loop

transformations desired for locality.

Second, array restructuring, by definition, affects spatial locality but not temporal

locality, whereas loop restructuring affects both. Temporal locality is the property that

after accessing a data item, programs tend to access it again soon, while spatial locality

concerns the likelihood of accessing nearby data. Array restructuring does not affect tem-

poral locality because temporal locality relates to how soon the same data item is accessed

again, which in turn depends on the order of all accesses but not where that data item is

placed in memory3.

This property of array restructuring may be viewed as a limitation but can also be

exploited to advantage. Since array restructuring does not affect temporal locality, it obvi-

ously cannot be used to improve temporal locality. On the other hand, we can use array

restructuring to improve spatial localitywithout jeopardizing temporal locality. With loop

restructuring, however, we may have to strike a balance between the improvement in spa-

tial locality won by a loop transformation and any accompanying degradation in temporal

locality.

3. Locality is defined here as a property of the access pattern and data layout. We distinguish it fromreuse,
especially reuse by a specific level of the memory hierarchy. Whether reuse results from locality depends on
architectural parameters such as cache size, cache line size, replacement policy, etc. While temporal locality
is not affected by array restructuring, the degree of temporal reuse may.

8

Third, when a loop accesses more than one array, array restructuring can transform

each individually in the best way, independently of how, or whether, the others are restruc-

tured. Not only does this simplify analysis, but it also avoids the dilemma confronted in

loop restructuring that the locality for one array may be improved only at the expense of

another. By contrast, loop restructuring inevitably affects all the loop’s accesses and thus

may necessitate such a tradeoff. In the earlier example, array restructuring improves the

access to arrayB without affecting those toA andC. In contrast, with loop restructuring,

we must assess how the loop transformation impacts accesses to all three arrays before

concluding that it will likely increase overall performance.

Analogously, when an array is accessed by more than one loop, array restructuring

affects all these loops, complicating analysis and sometimes resulting in a painful tradeoff,

while loop restructuring simply considers each loop independently. However, array

restructuring may still avoid such tradeoffs between loop nests if arrays are restructured

dynamically in between. The runtime cost must, of course, be considered. Section 3.3.4

explores this further.

1.1.3 Understanding Array Restructuring

We have seen that both loop and array restructuring can improve locality of array accesses

in loops, and that each approach has its advantages as well as disadvantages. Many of

them are “symmetric” to each other, making one or the other approach more suited to a

given case.

However, relatively little attention has been given to array restructuring; most research

effort so far has focused on loop restructuring techniques, including both individual trans-

formations and, more recently, unifying analysis frameworks (such as one using nonsingu-

lar matrices [Li and Pingali 1993c]). To facilitate comparison with our work, we defer the

discussion of these contributions to Chapter 9, which surveys the extensive, long-standing

work on loop restructuring and some recent progress in array restructuring.

9

This dissertation fills the void in the understanding of array restructuring. We aim to

identify, understand, and address issues that must be dealt with in order to perform array

restructuring effectively — efficiently, automatically, and as generally as possible. The

insights will help us not only to perform array restructuringper se better, but also to inte-

grate both forms of restructuring for maximum effectiveness.

1.2 Contributions

We make the following contributions in this dissertation:

• We develop a formal framework for performing array restructuring efficiently, auto-

matically, and as generally as possible.

• We devise detailed algorithms for various steps in the array restructuring process

within this framework and show that they solve the problems they address.

• We demonstrate the feasibility of array restructuring by implementing a prototype

compiler incorporating these algorithms.

• We evaluate our array restructuring techniques through a series of experiments

using loops from benchmarks and the related literature.

1.3 Organization

The rest of this dissertation is organized as follows. Part II presents the analysis tech-

niques to restructure arrays. In particular, Chapter 2 presents our framework for imple-

menting array restructuring without incurring extra indexing overhead. It is based on the

linear transformation of array index vectors between the original and restructured arrays.

Chapter 3 describes our algorithms for computing an index transformation to improve

10

locality based on the data access pattern. Chapter 4 discusses how to lay out the elements

of the restructured array in such a way that finding any element from its array indices is as

efficient as in the conventional (untransformed) case, a nontrivial problem because of the

generality of our array transformations. These three chapters assume that arrays are

restructured in whole. Chapter 5 presents techniques to restructure only elements that are

accessed by a given loop and to calculate such a subset of elements.

Part III presents our results. Chapter 6 outlines the implementation of a prototype

compiler for array restructuring. Chapter 7 reports a series of experiments to evaluate our

array restructuring techniques and study how they compare and interact with existing loop

restructuring techniques. Chapter 8 presents experimental results for parallel execution.

Finally, Part IV concludes this dissertation by placing it in a larger context. Chapter 9

reviews related work. Chapter 10 summarizes our contributions and suggests future

research directions.

Part II

Analysis

12

Chapter 2

Array Restructuring Framework

To automate array restructuring, we need a concrete framework for representing and

deciding how arrays are structured. This chapter presents the framework used in our anal-

ysis. First, we outline a loop restructuring framework based on linear algebraic representa-

tions of iterations, array elements, and accesses. Given this background, we present our

array restructuring framework and discuss how it affects the generated code. Finally, we

compare this framework with several other alternatives to show the rationale behind our

choice.

2.1 Loop Restructuring Framework: A Tutorial

Arrays are restructured for better locality based on how they are accessed by the loop. To

decide automatically how each array should be restructured, we must first represent the

abstract notion of “access pattern” in a concrete way that allows formal analysis. For this

purpose, we use a linear algebraic framework that others have found useful for analyzing

certain loop transformations and their effects on array accesses [Li and Pingali 1993c;

Wolf and Lam 1991b]. A tutorial is given here for completeness. Using the illustrative

example in Figure 2.1, we first discuss the representations of iterations and array elements

and finally those of array accesses.

Consider ann-deep perfect loop nest such as the one at the top of Figure 2.1, for which

. We assume that all the loop variables are incremented at unit stride. Loop nests

that do not meet this condition are first normalized to the canonical form by adjusting the

loop bounds.

n 2=

13

The left part of Figure 2.1 illustrates how iterations are represented. Each iteration can

be uniquely identified by ann-dimensionaliteration vector, denotedi, whose components

are the values of the loop variables (ordered from the outermost to the innermost) for that

iteration. Theiteration space is ann-dimensional vector space that contains the iteration

vectors. Clearly, iteration vectors must be integral because the loop variables can assume

only integer values. However, not every integral vector identifies an iteration.

The loop bounds determine which integral vectors in the iteration space correspond to

iterations. In Figure 2.1, for instance, only the grid points marked by circles identify itera-

tions. We can represent the loop bounds algebraically as well as geometrically. Assume

that the lower (upper) bound for thek-th loop variable,ik, is the maximum (minimum) of

Figure 2.1: Linear Algebraic Representation of Array Access

i1

i2

x1

x2

Declare X[1:5,1:5]
FOR i1 = 0, 3

FOR i2 = max(i1,1), 4
X[i2+1,i1+1] = …

Iteration space (i) Array index space (x)

x Ai a+=

x1

x2

0 1

1 0

i1
i2

1

1
+=

i1 0≥

i2 i1≥

i2 1≥ i2 4≤

i1 3≤

x2 1≥

x1 1≥

x2 5≤

x1 5≤

14

one or more affine functions1 of the enclosing loop variablesi1, i2, …, ik-1. Under this

assumption, we can represent the loop bounds algebraically by a conjunctive set of linear

inequalities involving components of the iteration vector: each affine function in the

bounds forik gives rise to a linear inequality involvingi1, i2, …, ik. In Figure 2.1, the ine-

qualities derived from the loop bounds are shown below the iteration space. Geometri-

cally, the loop bounds are represented by a convex polyhedron2 in the iteration space

bounded by hyperplanes corresponding to the inequalities. As shown in Figure 2.1, the

bounds for the example loop nest form a pentagon. Only iteration vectors whose compo-

nents satisfy the inequalities (or, equivalently, integral points lying within the polyhedron)

identify iterations of the loop.

Since all the loops have unit stride, loop execution may be viewed as enumerating the

valid iteration vectors in lexicographic order3 or, equivalently, the grid points in the poly-

hedron (the circles in Figure 2.1) in row-major order. The corresponding iterations are per-

formed in that order.

Array elements can be represented in a similar way, as illustrated by the right part of

Figure 2.1. For each array, an element is identified by anindex vector comprising the indi-

vidual array indices for the element. Theindex space for that array is the vector space con-

taining the index vectors. The array bounds determine the set of valid index vectors —

integral vectors in the index space that truly identify array elements. These bounds are

represented by a conjunctive set of linear inequalities of the array indices or, equivalently,

a convex polyhedron in the index space. In fact, because the lower and upper bounds for

all array indices are constants, all the inequalities involve a single array index and the con-

vex polyhedron is simply a rectilinear region. Under this framework, a row-major storage

1. In this context, an affine function is simply a linear combination of the arguments plus a constant, such as
.

2. A polyhedron is convex if and only if the line segment between any two points in the polyhedron also lies
entirely in the polyhedron.

3. A vectorx is lexicographically after, or greater than, another vectory if and only if the first nonzero com-
ponent of is positive. The definition for “lexicographically before” or “less than” is analogous.

f x y,() 2x 3y 4+ +=

x y–

15

order means that array elements are laid out in lexicographic order of their index vectors:

the element identified by index vectorx is stored before (not necessarily immediately

before) the one identified by if and only ifx is lexicographically less than .

Given these representations of iterations and array elements, we can now represent an

array access with a mapping from the iteration space to the index space: the mapping takes

iteration vectors to the index vectors of those array elements accessed by the correspond-

ing iterations. We focus on the case where all the array indices are affine functions of the

loop variables. (More general access patterns will be discussed in Section 3.3.2.) In this

case, which is illustrated in Figure 2.1, the mapping itself is also affine and thus can be

written as

(2.1)

wherei is the iteration vector,x the index vector for the accessed element,A a constant

matrix containing the coefficients of the (affine) index expressions for this access, anda a

constant vector containing the offsets in those expressions.

The matrixA is called theaccess matrix. It holds the key access pattern information

used later in our analysis. For an access to anm-dimensional array inside ann-deep loop

nest, the access matrix hasm rows andn columns. Each row corresponds to an array index

expression whereas each column corresponds to a loop variable. From the viewpoint of an

array index, corresponding rows of the access matrixA and the offset vectora specify how

the array index is computed from the loop variables. For example, the first rows ofA anda

in the figure express the fact that the first array index is the inner loop variable (i2) plus 1.

While it is natural to interpret the meaning ofA row by row, each column also gives

key information. From the viewpoint of a loop variable, the corresponding column ofA

indicates how the array indices change as the loop variable is incremented. The last col-

umn ofA, for instance, indicates that when the inner loop variable is incremented, the first

array index increases by one while the second is unchanged.

x′ x′

x Ai a+=

16

2.2 Array Restructuring Framework

We now present our array restructuring framework and discuss its impact on the generated

code. Its basic idea has already been introduced in the matrix multiplication example in

Section 1.1.1. Given the linear algebraic framework just described, we can now express it

more formally, thus paving the way for the analysis to be presented later. As a convention

throughout this dissertation, all arrays are presented as in row-major order.

The following discussion refers to Figure 2.2, which uses the same example as

Figure 1.1 on page 4 except for the renaming of loop variables. We focus on the array

being restructured — arrayB. The upper half of the diagram shows the situation in the

original loop, whereas the lower half demonstrates the effects of restructuring the arrayB.

The original and transformed codes are shown at the top and bottom respectively.

To restructure an array, we define another array with the same number of dimensions.

Let us call this new array therestructured array. In general, the restructured array only

needs to contain those elements of the original array that are actually accessed by the loop

nest in question. We discuss this fully in Chapter 5. For the moment, however, we require

that the restructured array contains the same elements as the original array, but in a differ-

ent order.

Corresponding elements of the original and restructured arrays are related by a linear

transformation of index vectors4. In other words, at each array access, instead of using the

original array indices (components of the index vectorx) to find an element in the original

array, we apply a linear transformation tox to obtain atransformed index vector y and then

usey to find the corresponding element in the restructured array. In equation form, we can

write

(2.2)

4. Section 2.3 explains why affine transformations of index vectors, which are even more general than linear
transformations, are not used.

y Tx=

17

Figure 2.2: Array Restructuring by Linear Transformation of Index Vector

i2

i3

x1

x2

FOR i1 = 1, 100
FOR i2 = 1, 100

FOR i3 = 1, 100
C[i1,i2] = C[i1,i2] +

A[i1,i3] * B[i3,i2]

Iteration space (i) Array index space (x)

x Ai a+=

x1

x2

0 0 1

0 1 0

i1
i2
i3

0

0
+=

y1

y2

y1

y2

0 1

1 0

x1

x2

=

y Tx=
y1

y2

0 1 0

0 0 1

i1
i2
i3

0

0
+=

y Tx TA() i Ta()+= =

Copy elements of B to B2
FOR i1 = 1, 100

FOR i2 = 1, 100
FOR i3 = 1, 100

C[i1,i2] = C[i1,i2] +
A[i1,i3] * B2[i2,i3]

Transformed array index space (y)

(i1 axis points out
from paper)

18

whereT is the transformation matrix that defines the linear transformation applied to the

original index vector and thus also defines the correspondence between elements of the

original and restructured arrays. Note thatT must be nonsingular5 so that each trans-

formed index vectory corresponds to only one original index vectorx. Otherwise, multi-

ple elements of the original array would be assigned to the same element in the

restructured array. Further conditions onT are imposed in Section 3.1.3. For example, in

Figure 2.2 the matrix expresses the fact that arrayB2 is the transpose of arrayB: the

linear transformation it defines maps a column of elements in the original array to a row of

elements in the restructured array (both sets of elements are marked by filled circles in the

figure). Naturally, array transpose is only a special case; the use of linear transformation

allows much more general forms of array restructuring.

Despite the extra index vector transformation, this array restructuring framework does

not involve extra indexing overhead at each array access. In other words, it is no less effi-

cient to find an element in the restructured array than in the original array. This is because

the transformed index vectory can be computed directly from the iteration vectori in the

same way as the original index vectorx, without explicitly applying the transformation to

x and thus without incurring the associated overhead.

To see this, let us look at Figure 2.2 again. Iterationi accesses an original array ele-

ment with index vector . After array restructuring, it accesses a restructured

array element with transformed index vector , which can be expressed directly in

terms of the iteration vectori as

(2.3)

Thus, the transformed index vectory, like the originalx, is an affine function of the itera-

tion vectori, although the two functions may involve different constant matrices and vec-

tors (and versus A anda). A compiler can apply the same optimization technique

5. A matrix is nonsingular if and only if it is square and its determinant is nonzero.

0 1

1 0

x Ai a+=

y Tx=

y Tx T Ai a+() TA() i Ta()+= = =

TA Ta

19

in both cases: integer multiplications and additions required for computing an element’s

address from its array indices are strength-reduced to pointer increments at various levels

of the loop nest [Aho, Sethi, and Ullman 1986].

Apart from the transformed array accesses, few other changes to the generated code

are required. Neither the loop bounds nor the loop nesting structure need be modified; the

flow of control through the loop nest remains unchanged. Since we restructure arrays

dynamically at run time, the program may have to copy elements from the original to the

restructured array before loop execution and, if the array is updated, copy elements back

to the original afterward. The compiler must generate code to perform these operations.

While code generation is relatively straightforward, choosing the transformation

matrix T is far from trivial. Also, laying out elements of the restructured array (i.e., defin-

ing how the transformed index vectory is mapped to an element’s actual location) is a

complicated question with the full generality of our framework. The next two chapters are

devoted to these two issues.

2.3 Alternatives

We have presented our array restructuring framework. Corresponding elements of the

original and restructured arrays are related by a linear transformation of index vectors. In

this section, we discuss the rationale behind this choice by comparing it with several other

plausible alternatives.

The comparison is based on three criteria.

• Generality. The framework should be general, but should not incur an unnecessary

cost. More specifically, we would like a framework that can represent as general

relationships as possible between elements of the original and restructured arrays.

We consider whether it subsumes less general options. However, this generality

20

should not come at the price of extra overhead in the simple cases where the sub-

sumed options would suffice.

• Indexing overhead. We wish to minimize the indexing overhead (i.e., the runtime

cost of finding an element) incurred by array restructuring. Any increase in this cost

may substantially impact performance because it exacts a penalty every time the

restructured array is accessed.

• Indexing data structures. We would like to avoid using indexing data structures —

auxiliary data structures for locating array elements — as much as possible. They

are undesirable for several reasons. First, they take up memory. Second, accesses to

these data structures may degrade performance, especially if they cause cache

misses. A third and related reason is that these accesses compete with accesses to

“real” data for space in the cache since the two kinds of accesses are likely to be

interspersed.

We now consider four options. We describe each option, assess it using the three afore-

said criteria, and explain why it is or is not selected.

The first option is to permute the array dimensions. For example, the restructured array

elementX2[i,j,k] corresponds to the original array elementX[j,i,k] for any val-

ues ofi , j , andk . In two dimensions, this reduces to an array transpose because the only

possible permutation is an exchange. Permutation has been used in previous work to

improve data locality and reduce false sharing [Ju and Dietz 1992; Anderson, Amaras-

inghe, and Lam 1995]. This transformation is the least general of the options considered in

this section. It is a straightforward extension of the traditional row-major and column-

major storage orders and requires no more indexing overhead than these cases. Nor does it

require any indexing data structures to locate array elements.

The second option is the one we have chosen — linear transformation of index vec-

tors. It is much more general than permutation, subsuming the latter as a special case

where the transformation matrixT is a permutation matrix6. The example in Figure 2.2 is

21

one such case. As discussed earlier, applying a linear transformation to index vectors

requires no more indexing overhead than what is traditionally required. Also, like permu-

tation, it requires no indexing data structures. Therefore, the generality does not carry an

unnecessary cost even when simple permutation would have sufficed. In fact, the linear

transformations selected automatically in such cases would correspond to permutations

anyway. The extra generality is especially useful if accesses go through the array index

space diagonally (or in any direction beyond just the natural orthogonal ones), as in

banded matrix computations. Unlike permutation, however, this option allows an infinite

number of possible transformations. Therefore, we need algorithms to choose one that

achieves our goal; a brute force method that evaluates possibilities exhaustively is unac-

ceptable. These algorithms will be discussed later. In short, we choose this option because

it provides an extra level of generality that is useful in some cases but carries no extra run-

time overhead. We now discuss two other options and explain why they are rejected.

The third, even more general option is to apply an affine, rather than linear, transfor-

mation to index vectors. In other words, the transformed index vectory is related to the

original index vector by , with an additional offset vectort. This subsumes the lin-

ear case with a zerot. Like the previous two options, this one does not need indexing data

structures. Nor does it add to the indexing overhead because, as for linear transformation,

the transformed index vectory can be expressed directly in terms of the iteration vectori

with an affine function:

(2.4)

The only difference lies in the offset vector — versus in the linear case.

Despite its “free” generality, this option is not selected because the generality has no effect

in practice. A different offset vector changes neither the storage order of the elements nor

the memory access pattern. It merely shifts the positions of all the elements by the same

6. All rows and columns of a permutation matrix have exactly one nonzero element, which is 1. Multiplying
a permutation matrix to a vector in effect permutes the vector’s components.

Tx t+

y Tx t+ T Ai a+() t+ TA() i Ta t+()+= = =

Ta t+ Ta

22

distance in memory. In other words, there is no practical reason why we should chooset to

be a nonzero rather than a zero7. The latter case simply reduces to a linear transformation.

Finally, let us consider the completely general mapping. Implementing this requires

the use of indirection arrays.X[i] of the original array is stored inX2[IDX[i]] of the

restructured array, whereIDX is itself an array with one element for each element ofX.

This is the most general option conceivable since it allows array elements to be stored in

an arbitrary order defined by the indirection tableIDX . However, it also leads to signifi-

cant indexing and memory overheads because of its need for indexing data structures.

Each access toX is replaced by two accesses: one toIDX and one toX2. Worst of all, the

access pattern forIDX is identical to that for the original arrayX. Therefore, if the latter

has poor locality, so does the former: if an access causes a cache miss in the original array,

it would also cause a cache miss in the identically laid out indirection array8. Therefore,

despite its full generality, we decide against the use of indirection tables.

2.4 Summary

We have presented our formal framework for performing array restructuring. A restruc-

tured array is defined to contain the same elements as the original array in a different

order. Finding an element in the former requires, conceptually, applying a linear transfor-

mation to the original index vector. However, no extra indexing overhead is actually

involved because the linear transformation need not be applied explicitly. Instead, we can

directly compute the transformed index vector from the iteration vector in the same way as

7. Shifting an entire array in memory may matter when we consider conflict misses arising from accesses to
different data structures, particularly arrays. We consider this part of a broader question: relative placement
of different data structures. As far as accesses to the array in question are concerned, however, shifting has
no practical effect.

8. Indirection tables have been successfully used to reduce false sharing on shared-memory multiprocessors
[Jeremiassen 1995; Jeremiassen and Eggers 1995]. They can be effective in this context because misses in
the original array, which is written, are coherence misses caused by false sharing and hence would not
appear in the indirection array, which is only read, even if both arrays are laid out and accessed identically.

23

we compute the original one. We have also considered several other alternatives that we

have rejected in favor of linear index transformations.

24

Chapter 3

Choosing an Index Transformation

The index transformation matrixT defines how an array is restructured. This chapter

addresses the key question of choosingT based on the access pattern to improve locality.

We start in Section 3.1 with a set of requirements on the matrix. Section 3.2 discusses how

to chooseT to meet these requirements. To begin with, we focus on a simple case: a single

array access with only affine index expressions in a single perfect loop nest. More general

access patterns are covered in Section 3.3.

3.1 Index Transformation for Better Locality

We have the following two requirements for the index transformation matrixT. How to

find the matrixT is discussed later in Section 3.2.

• Given the access matrixA, the transformed access matrix should be “lower-tri-

angular,” in a loose sense to be defined later. This requirement follows from our goal

of improving the spatial locality of the array access. We explain this fully in the first

two subsections below, starting from the impact of the innermost loop and then con-

sidering the enclosing loops as well.

• T must be unimodular. We elaborate on this in the final subsection.

3.1.1 Innermost Loop

A suitable index transformation can improve spatial locality if it causes the innermost loop

to go through memory consecutively when accessing elements in the restructured array1.

TA

25

If this cannot be achieved, at least we want the stride to be as small as possible. We now

show what this means for the transformation matrixT.

We illustrate the following discussion with the example in Figure 3.1. The original

loop is adapted2 from the literature on loop restructuring [Li 1995; Li and Pingali 1993c].

It performs a symmetric rank-2k update3 for banded matrices. Array restructuring trans-

forms the original version shown at the top to the version below. Although the loop is

shown in its entirety for completeness, in this discussion we need to consider only the

highlighted access to arrayX. The other arrays can be restructured independently. (As for

the other access toX, we will discuss how to handle it in Section 3.3.1.) The rest of

Figure 3.1 gives the geometrical and algebraic representations of the highlighted access

before and after array restructuring.

In the original loop, the highlighted access has poor spatial locality. As the innermost

loop is executed, each successive iteration reads an array element in a different row and a

different column because incrementing the variablek throughout the loop changes both

the row and column indices of the array (the former by -1 and the latter by 1). Elements

accessed by consecutive iterations are scattered far apart in memory, almost assuredly in

different cache lines. Each successive access potentially results in a cache miss. Note that

in this case simply transposing the array offers little help because the elements accessed

by the innermost loop lie in different rowsand different columns.

 We can also view the problem geometrically, as shown by the middle part of

Figure 3.1. The diagonal arrow indicates how the innermost loop goes through the array’s

index space: each successive iteration moves one row up and one column to the right, cor-

1. We assume, of course, that the innermost loop does not simply reuse the same array element. If it does,
there is no reason to change this behavior. Nor is such a change possible by means of array restructuring.

2. The loop nest as presented in the literature uses Fortran-style arrays, with column-major storage and indi-
ces starting at 1 [Li 1995; Li and Pingali 1993c]. We have adapted the code for row-major arrays with zero
lower bounds to conform with our convention of row-major storage and to simplify the bound and index
expressions for presentation. The memory access pattern is nonetheless preserved.

3. A symmetric rank-2k update, part of the Basic Linear Algebra Subprograms Level 3 (BLAS3) [Dongarra
et al. 1990], performs the matrix operation on a symmetric matrixZ.Z Z XtY YtX+ +=

26

responding to the changes in the two array indices when loop variablek is incremented.

The nonzero projection of this direction in the (vertical) dimension implies that succes-

sive iterations access elements in different rows. This, as we have seen, leads to poor spa-

tial locality. Transposing the array merely reverses the direction, which remains diagonal

and therefore equally bad for locality.

Finally, we can view the problem algebraically in terms of the nonzero structure of the

access matrix, shown on the right in Figure 3.1. The last column of the access matrix rep-

resents changes in the two array indices as the innermost loop variablek is incremented

through the innermost loop. This column is also the algebraic representation of the diago-

nal vector discussed above. Since the column starts with a nonzero (specifically -1), the

first array index (i.e., the row index) changes with variablek . Again, this means that the

innermost loop reads elements in different rows. Transposing the array would in effect

interchange the two rows of the access matrix. Since the other element of the last column

is also nonzero, this transformation does not solve the problem.

Figure 3.1: Improving Locality through Index Transformation

FOR i = 0, n-1
FOR j = i, min(i+2*b, n-1)

FOR k = max(i-b,j-b,0), min(i+b,j+b,n-1)
Z[j-i,i] += X[j-k+b,k] * Y[i-k+b,k] +

X[i-k+b,k] * Y[j-k+b,k]

FOR i = 0, n-1
FOR j = i, min(i+2*b, n-1)

FOR k = max(i-b,j-b,0), min(i+b,j+b,n-1)
Z[j-i,i] += X2[j+b,k] * Y2[i+b,k] +

X2[i+b,k] * Y2[j+b,k]

A 0 1 1–

0 0 1
=

TA 0 1 0

0 0 1
=

T 1 1

0 1
=

x1

y1

y2

x2

x Ai a+=

y Tx TA() i Ta()+= =

x1

27

Our goal is to improve the spatial locality of the highlighted access. This goal can be

stated in the same three ways we have just described the problem, and is met by the code,

access matrix, and geometrical representation in the lower half of Figure 3.1. The array

elements are laid out in such an order that in the transformed code, the innermost loop

reads restructured array elements that lie in the same row and hence are stored contigu-

ously. The innermost loop can thus go through memory consecutively, with better spatial

locality than it has now. Geometrically, this means the innermost loop’s access direction

(the arrow in the figure) should be horizontal, rather than diagonal; in other words, it has

no projection in the (vertical) dimension. Algebraically, the last column of the access

matrix should start with a zero. In this way, the first array index (i.e., the row index) does

not change with the increasing value of variablek as the innermost loop is executed.

An appropriate index transformation matrixT is selected to achieve the above goal for

the restructured array. This is easiest to explain in terms of the algebraic representation of

access pattern. As discussed earlier (see (2.3) on page 18), the transformed index vectory

for the restructured array can be expressed directly as an affine function of the iteration

vectori:

(3.1)

whereT is the index transformation matrix,A is the (original) access matrix, anda is a

constant offset vector. Array restructuring in effect transforms the access matrixA to TA.

Thus, given the original access matrixA, we have to choose a transformation matrixT

such thatTA has the nonzero structure we want: the last column of the matrix starts with a

zero. Note that there are many transformation matrices that can achieve this. All of them

are “equally good” in this respect, although we will discuss later why some are preferred

over others.

The transformation matrix given in Figure 3.1 produces the desired effect on the

access matrix, and thus on the geometrical representation and the code as well. Geometri-

cally, the corresponding linear transformation maps the original, diagonal vector at the top

x1

y TA() i Ta()+=

28

to the horizontal vector below. The transformed access is generated from the transformed

access matrixTA. It goes through elements of the restructured arrayX2 row by row, as

desired.

Having discussed the two-dimensional case, we now turn to the general case where the

array may have more dimensions. The goal remains the same: the innermost loop accesses

elements consecutive in memory. In algebraic terms, this requires that the access matrix’s

last column, which corresponds to the innermost loop, contains one or more zeros fol-

lowed by a single nonzero. (Strictly speaking this nonzero must be 1 or -1 for accesses to

be consecutive. See page 45 for more discussion on the extent to which we can affect the

magnitudes of memory strides.) Given the original access matrixA, we choose a transfor-

mation matrixT such thatTA satisfies this condition. We say thatT flattens the column

because its effect on the column is to lower the latter’sheight, which is defined as the posi-

tion of the top nonzero counted from the bottom.

In summary, to improve the spatial locality of an array access by array restructuring,

we compute a transformation matrixT from the access matrixA such that the last column

of their productTA has one or more leading zeros followed by a single nonzero value or, in

terms of column height, has a height of 1. So far, we have focused entirely on the inner-

most loop, which is undoubtedly most important for locality. The next section considers

the other, enclosing loops as well.

3.1.2 Enclosing Loops

So far we have focused on the last column of the access matrix because it corresponds to

the innermost loop, which is most important for locality. Specifically, we look for a trans-

formation matrix to flatten this column to a height of one. For the very same reason, we

also want to flatten the other columns. In this section, we discuss the inherent limit to how

far columns can be flattened and its implications.

29

An example suffices to show that it is not possible to flatten all the columns to arbi-

trary heights using the samenonsingular transformation matrix. Consider the fourth and

sixth columns of the access matrixA and transformed access matrixB in Figure 3.2. Let

 and be thek-th columns ofA andB respectively. For the sake of argument, assume

that for some nonsingular transformation matrix, sayS, both and have a height of

one. In other words, both columns have a single nonzero, and it is the last element in each

case. Then, for some nonzero scalar . Since the transformation matrixS is

nonsingular, we can express the columns ofA in terms of the corresponding columns ofB.

Thus,

(3.2)

However, this is clearly impossible because both the first and last elements of are zero

whereas those of are nonzero. Hence, there is no nonsingular transformation matrix

that can flatten both the fourth and sixth columns ofA to a height of one.

If we cannot flatten columns to arbitrary heights with nonsingular transformation

matrices, how far can we go? Before answering this question, we have to define some

terms for the following discussion. Let theheight of a matrix be the maximum of the

heights of its columns. For an access matrixA, let () be the height of

0 1 0 0 0 0

0 0 1– 1 0 0

0 0 2 0 2 1

1 0 1

0 0 1–

1– 1 1–

0 1 1– 1 0 0

0 1 2 0 2 1

0 0 1 1– 0 0

=

Height profile

Rank profile

Figure 3.2: Flattening Columns of an Access Matrix

B TA=

Ak Bk

B4 B6

B4 γ B6= γ

A4 S
1–
B4 S

1– γ B6() γ S
1–

SA6= = =

γ A6=

A6

A4

m n× hj 1 j n≤ ≤

30

the submatrix comprising columnsj throughn. We call the sequence of theheight pro-

file of the access matrixA. Similarly, let be the rank4 of the same submatrix and call this

sequence therank profile of A. Figure 3.2 illustrates these two profiles. Both the height

and rank profiles increase or remain unchanged with decreasingj; in other words, they rise

(strictly speaking, do not fall) as we go through the matrix columns from right to left.

The access matrix’s rank profile inherently limits how far its columns can be flattened

by a nonsingular transformation matrix. Specifically, given the access matrixA, the col-

umns of can be flattened at most to match the rank profile ofA, as illustrated in

Figure 3.2. In other words, the best (i.e., lowest) achievable height profile of coincides

with the rank profile ofA. This assertion follows from two observations.

• First,TA has the same rank profile asA, for the following reason. SinceT is nonsin-

gular, left-multiplying it to any matrix preserves the rank of the latter. Therefore, all

corresponding submatrices ofA andTA have the same rank. In particular, this state-

ment applies to submatrices that consist of columnsj throughn for anyj between 1

andn. Since the rank profile is defined by the ranks of these submatrices,A andTA

have the same rank profile.

• Second, for any matrix, the height profile must always be “on or above” the rank

profile. More precisely, for anyj between 1 andn. In Figure 3.2, the two pro-

files coincide in the case of matrixB on the left, whereas for matrixA the height pro-

file is “above” the rank profile at some columns.

To see why this is true in general, let us assume for the sake of argument that

for somej. Consider the columnsj throughn. By the definition of the height profile,

these columns have heights of at most . Therefore, in each of these columns, at

most the bottom elements are nonzero; the other elements must be zero. Thus,

truncating the leading zero elements, we get a number of -dimensional vectors.

4. Therank of a matrix is the number of linearly independent rows it has, which always equals the number
of linearly independent columns [Bloom 1979].

hj

r j

TA

TA

hj r j≥

hj r j<

hj

hj

hj

31

On the other hand, by the definition of the rank profile, we know that the submatrix

consisting of columnsj throughn has rank . In other words, there are linearly

independent columns among these columns, and thus also among their truncated,

-dimensional counterparts. (Recall that all the truncated components are zeros.)

However, this leads to a contradiction if because in any -dimensional vec-

tor space, it is impossible to find more than linearly independent vectors. Hence,

 for anyj between 1 andn. In other words, the height profile must be “on or

above” the rank profile.

From these two observations, we see that multiplying a nonsingular transformation matrix

T to A may change the height profile but never the rank profile ofA. By flattening col-

umns, we can “lower” the height profile at most to the extent that it coincides with the

(unchanged) rank profile. Note, however, that so far we have said nothing about how one

might find such a transformation matrix, or even whether such a matrix exists at all for a

given access matrix. These are discussed later in Section 3.2.2.

A matrix whose height profile coincides with its rank profile would be, in a loose

sense, lower-triangular. An example is the matrixB in Figure 3.2. By “lower-triangular,”

we do not mean “lower-triangular” in the strict mathematical sense; in fact, the matrix in

question may not even be square. Instead, we mean that the matrix elements lying above

the height profile (which, being identical to the rank profile, rises at most one row per col-

umn as we go from right to left through the matrix) constitute an “upper triangle” filled

with zeros.

In summary, in the case of a single array access, optimizing for spatial locality requires

solving the following mathematical problem: given the original access matrixA, compute

a transformation matrixT such thatTA has the lower-triangular form described above. We

present an algorithm for this purpose later in this chapter.

r j r j

hj

hj r j< hj

hj

hj r j≥

32

3.1.3 Unimodular Index Transformation Matrix

In the previous section, we have discussed one requirement on the transformation matrix

T: it should transform the access matrixA such thatTA has a certain nonzero pattern. We

now consider a requirement on the matrixT itself. How to find a transformation matrix

satisfying both requirements is discussed shortly.

In a word, we require thatT be unimodular. (This requirement can be relaxed if we

restructure only part of an array. Chapter 5 elaborates on this.) A unimodular matrix is an

integral, square matrix whose determinant is either 1 or -1. A matrix is unimodular if and

only if both the matrix itself and its inverse are integral [Schrijver 1986]. This property is

important for our purpose for two reasons.

First, the transformation matrixT itself should be integral. Since only integers can be

valid array indices, we need to ensure that any integral vector (the original array index

vector) is transformed to an integral vector (the transformed array index vector). An inte-

gral transformation matrixT is clearly a sufficient condition. It is also a necessary condi-

tion because thej-th column ofT is the image of an integral vector — the vector with a

one in thej-th position and zeros elsewhere — and therefore each column ofT must be

integral.

Second, in order that memory is used efficiently, the inverse of the transformation

matrix, , must also be integral. Consider the example in Figure 3.3. AlthoughT maps

every integral vector to an integral vector, not every integral vector in the transformed

index space is the image of some integral vector in the original index space. Thus, some

elements of the restructured array (such as element[1,1]) do not correspond to elements

of the original array and therefore do not contain array data — even though they do take

up memory. If is integral, however, every integral vector would be an image of some

integral vector under the transformationT (the latter vector obtained by multiplying

to the former). Therefore, all elements of the restructured array are used. (For the moment,

we ignore the array bounds. Issues related to the transformation of array bounds are dis-

T
1–

T
1–

T
1–

33

cussed in Chapter 4.) In short, an integral is a sufficient condition for using all

restructured array elements. Moreover, it is also a necessary condition. The argument

examines each column of and resembles the earlier argument on the necessity of an

integralT.

3.1.4 Summary

To sum up, given the access matrixA for an array access, we wish to find an index trans-

formation matrixT such thatT is unimodular and has the “lower-triangular” form dis-

cussed earlier — with zeros in the “upper triangle” that lies above the rank profile ofA.

The next section discusses how to compute such a transformation matrix.

3.2 Computing the Index Transformation Matrix

We now explain how to compute an index transformation matrixT satisfying the above

requirements. For clarity in exposition, we start with a simple algorithm that considers

only a special class of unimodular matrices useful in many common cases. This is fol-

lowed by a more general algorithm that does not have sucha priori restrictions.

Figure 3.3: Effect of Transformation Matrix with Non-Integral Inverse

x1

x2

Array index space (x)

y2

Transformed array index space (y)

y1

T 0 2

1 0
=

T
1– 0

1
2

1 0

=

T
1–

T
1–

TA

34

3.2.1 Permuting Array Indices

In this section, we describe a simple algorithm to compute an index transformation matrix

T from the access matrixA. Essentially, it selects only matrices that represent permuta-

tions of array indices. Though more restrictive than the general algorithm presented later,

it is useful in some simple cases and follows the same overall solution approach. There-

fore, discussion here also helps to lay the groundwork for subsequent discussion of the

general algorithm.

The algorithm is restrictive in that it considers only permutation matrices as candidates

for the index transformation matrix. A permutation matrix is a square matrix in which

each row and each column contains a single nonzero, which equals 1. Left-multiplying a

permutation matrix to a (column) vector, as we do when applying an index transformation,

produces a vector whose components are some permutation of the original vector’s com-

ponents5. Thus, with a permutation matrix, we in effect restructure an array by permuting

the array indices and storing the elements in row-major order according to the permuted

indices. For example, for the permutation matrix , element[x1,x2,x3] of a

three-dimensional original array corresponds to element[x2,x1,x3] of the restruc-

tured array. Two special cases are row-major storage (the transformation matrix is the

identity matrix) and column-major storage (the transformation matrix has ones along the

off-diagonal, reversing the order of the array indices). For two-dimensional arrays, these

are the only possible permutations. In general, for anm-dimensional array, there are

possible permutations.

Considering only permutation matrices simplifies the task of findingT. Any permuta-

tion matrix is unimodular because it is integral (each element is either 0 or 1) and its deter-

minant is 1 or -1. Therefore, our problem reduces to finding a permutation matrixT such

that has the desired nonzero structure.

5. Similarly, right-multiplying a permutation to a row vector also permutes the vector components. Since we
work with column vectors only, this property does not concern us.

0 1 0
1 0 0
0 0 1

m!

TA

35

The algorithm for computingT from A hinges on the fact that multiplying a permuta-

tion matrixT to A in effect permutes the rows ofA. Intuitively, since we permute the array

indices, we also permute the corresponding rows of the original access matrix accordingly

to obtain the transformed access matrix.

The algorithm permutes the rows ofA to produce the desired nonzero structure; the

permutation matrixT is obtained by applying the same permutation to the identity matrix.

Figure 3.4 shows the algorithm. Figure 3.5 illustrates its operation on an example. The

two columns of matrices show how the arraysA (the access matrix being transformed) and

T (the transformation matrix being computed) change as the algorithm permutes rows.

At the beginning, whenj equalsm andk equalsn, the algorithm focuses on the last

column of the entire matrix. The algorithm permutes the rows to bring the zeros to the top

of the column, thus flattening the column (i.e., lowering the position of the top nonzero as

far as possible). The same permutation is applied to the transformation matrix being

formed. In the special case where the entire column is zero, no action is required to flatten

the column: the column already has a height of zero. Permuting the rows is valid, though

superfluous. On the other hand, if the entire column is nonzero, nothing can be done: row

permutation can move the nonzeros, but not eliminate them.

Figure 3.4: Algorithm to Transform Access Matrix with Permutation Matrix

m = number of array dimensions = number of rows in A
n = number of loop levels number of columns in A

A = access matrix A is an m by n array
T = m by m identity matrix T is an m by m array
j = m j indexes a row
k = n k indexes a column

WHILE (j > 1) and (k >= 1) DO
Permute rows 1 through j to bring zeros in A[1..j,k] to the top
Permute rows 1 through j of T accordingly
j = row position of last zero element in A[1..j,k] or 0 if none
k = k - 1

END

36

After flattening the last column, the algorithm shifts its attention to the submatrix con-

sisting of the remaining columns and the rows that contain zeros in the last column. (This

submatrix is delimited by variablesj andk in the algorithm and by the dashed line in

Figure 3.5.) Future permutation of these rows will not affect the columns we have pro-

Figure 3.5: Transforming Access Matrix by Permuting Rows

0 2– 0 1

2 0 0 0

0 0 1 0

0 0 1 0

2 0 0 0

0 2– 0 1

2 0 0 0

0 0 1 0

0 2– 0 1

2 0 0 0

0 0 1 0

0 2– 0 1

1 0 0

0 1 0

0 0 1

0 0 1

0 1 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

1 0 0

Exchange rows 1 and 3

Exchange rows 1 and 2

No change in row order

j

k

j

j

j

k

k

k

A T

A0

A1

A2

A3

37

cessed because the matrix elements in the intersection of these rows and columns are zero

anyway. At each step, the submatrix shrinks by one column and possibly one or more

rows. The algorithm terminates when the submatrix shrinks into a single row or vanishes

altogether, at which point further row permutations become meaningless.

Notice that we have not specified exactly how rows should be permuted to bring zeros

to the top of a column. There may be multiple ways of doing this, but they lead to results

that are equivalent in having the same height profile. For instance, consider the example in

Figure 3.5. In the first step, we could have brought the two zeros in the last column to the

top by moving the second and third rows up and the first row to the bottom. If we had done

so, we would have obtainedA2 directly without going through the second step. In the end,

the algorithm would have computed the same transformation matrix. In general, no matter

how we permute rows to bring zeros in a column to the top, the number of leading zeros in

the resulting column is the same. Therefore, so is the height of that column and conse-

quently the eventual height profile of the matrix.

This simple algorithm works best when each column contains at most one nonzero,

which means that each loop variable appears in at most one array index (but an array index

may involve more than one loop variable). Figure 3.5 is one example. Intuitively, we con-

sider the loops one by one starting from the innermost. If the loop variable appears in an

array index (there is at most one), we move this array index to the next less rapidly vary-

ing index position.

However, if some column contains multiple nonzeros (i.e., some loop variable appears

in multiple array indices), permuting array indices may not be enough to make the inner-

most loop go through elements consecutively. One example is the array access we consid-

ered in Section 3.1.1 (shown in bold in Figure 3.1 on page 26). Since the array has only

two dimensions, there are only two possible permutations: no transformation or array

transpose. As we discussed before, array transpose does not solve the problem because

with or without transpose, the innermost loop accesses array elements in different rows

38

and different columns. For this and similar cases, we must use general unimodular matri-

ces. The following section discusses an algorithm to choose one.

3.2.2 General Unimodular Transformation Matrices

Given the simple introduction afforded by our consideration of only permutation matrices,

we now present the general algorithm for computing a unimodular index transformation

matrix from the access matrix. This algorithm always finds a transformation that flattens

the access matrix such that the resulting height profile coincides with the rank profile. As

discussed earlier in Section 3.1.2, no nonsingular transformation matrix can flatten the

access matrix any further.

The algorithm consists of two steps. First, it finds a nonsingular matrixS such that the

height profile ofSA coincides with the rank profile ofA. However,S may or may not be

unimodular. In fact, it is not even guaranteed to be integral. Therefore, the second step

computes fromS a unimodular matrixT such that has the same height profile as .

In this sense,T is “as good as”S, but in addition it satisfies the unimodularity requirement.

In the rest of this section, we describe the algorithm to findS, show that the height profile

of must be the same as the rank profile ofA, and finally discuss the algorithm to findT

from S.

Finding Nonsingular Transformation Matrix S

The first step resembles the simple algorithm discussed earlier in Section 3.2.1, but

with one crucial difference: instead of only permuting rows, we use elementary row oper-

ations. In short, the algorithm transforms the original access matrixA to the desired form

by means of elementary row operations, and accumulates the effects of these operations in

a nonsingular matrix computed by applying the same sequence of operations to the iden-

tity matrix.

TA SA

SA

39

There are three types of elementary row operations: scaling a row by a nonzero factor,

exchanging two rows, and adding a multiple of one row to another [Schrijver 1986]. They

subsume row permutations: any row permutation is equivalent to a series of row

exchanges. As noted in Section 3.2.1, row permutation can only move nonzeros, but not

eliminate them. The multiply-and-add operation can eliminate nonzeros.

The algorithm is shown in detail in Figure 3.6. It resembles the Gaussian elimination

algorithm for inverting a matrix but applies to square as well as non-square matrices. All

Figure 3.6: Algorithm to Transform Access Matrix with Nonsingular Matrix

m = number of array dimensions = number of rows in access matrix
n = number of loop levels = number of columns in access matrix

A = access matrix A is an m by n array
S = m by m identity matrix S is an m by m array
j = m j indexes a row

FOR k = n DOWNTO 1 DO k indexes a column

IF (A[1..j,k] are not zero) THEN

Ensure that A[j,k] is nonzero
IF (A[j,k] = 0) THEN

Find a nonzero in A[1..(j-1),k]. Suppose it is in row i.
Exchange row i of A and row j of A
Exchange row i of S and row j of S

ENDIF

Make A[1..(j-1),k] zero by eliminating nonzeros
FOR i = 1 TO j-1 DO

f = A[i,k]/A[j,k]
Multiply row j of A by f and subtract from row i of A
Multiply row j of S by f and subtract from row i of S

ENDFOR

Update only rows 1 through j-1 in future
j = j - 1

ENDIF

ENDFOR

40

arithmetic operations are performed on rational numbers, rather than integers or floating

point numbers. The algorithm has complexity for an access matrix, where

m is the number of array dimensions andn is the number of loop levels. This is because

thek -loop is executedn times, the i-loop at mostm times, and each elementary row oper-

ation takesn steps, one for each element in the row. The cost of the algorithm is small

because there are typically only a handful of array dimensions and loop levels.

The algorithm starts from the last column (whenk is n). If the entire column is zero,

no action is needed: the height is already as small as it can possibly be. If the column con-

tains nonzeros, we ensure that the bottom element is nonzero by a row exchange if neces-

sary. (This is similar to pivoting in Gaussian elimination.) Then, we eliminate all other

nonzeros, if any, by multiply-and-add row operations, thus obtaining a column with only

one nonzero in the bottom row and therefore a height of 1. The same sequence of row

operations are applied to the identity matrix to compute the corresponding transformation

matrix inS.

After flattening the last column, the algorithm drops the last row and column from fur-

ther consideration and focuses on the remaining submatrix (delimited by variablesj and

k). Future updates on the remaining rows (i.e., rows 1 throughj) will not affect the col-

umns that have been processed and dropped from consideration (i.e., columnsk+1

throughn) because the intersection of these rows and columns contains only zeros. The

algorithm terminates after going through all columns. (In fact, it can terminate earlier:

whenj reaches 1, the loop body in the algorithm performs no more updates toA andS.)

Guaranteeing Identical Height and Rank Profiles

The above algorithm always finds a transformation matrixS such that the height and

rank profiles of coincide. As noted in Section 3.1.2, no nonsingular transformation

matrix can flatten the access matrixA any further. We now explain why it is guaranteed to

achieve this.

O mn2() m n×

SA

41

The key is to show that after iterationk — the iteration for which the loop variablek in

Figure 3.6 has the valuek, not thek-th iteration — the submatrix comprising columnsk

throughn of matrix variableA (i.e., the columns flattened so far) is of height as

well as rank , where is the value of variablej at the end of iterationk (after the

decrement, if any, in iterationk). To simplify the following argument, we augmentA with

a column that contains only zeros and our algorithm with an iteration that

does nothing. Adding a zero column to any matrix has no effect on the matrix’s rank and

height. Therefore, the extra column does not affect the rank and height profiles. For the

augmentedA, we claim that

(3.3)

where is the submatrix consisting of columnsk through of matrix variableA at

the end of iterationl, while and denote the rank and height of a

matrix respectively. (This claim will be justified shortly.) When the algorithm terminates

in iteration 1 (), this claim applies to allk between 1 and (inclusive). There-

fore, the height and rank profiles of the finalA — which is the transformed access matrix

 augmented with a zero column — are identical: for

. At the same time, the corresponding transformation matrixS has been com-

puted in the matrix variableS.

We now justify the claim in (3.3) by examining how each iteration updatesA. For-

mally, we prove the claim by induction onl, which decreases from to 1.

We first examine the initial case: . Variablej is initialized to the number of

rows. Thus, . The submatrix consists of a single zero column (which

we have augmentedA with) and hence has height and rank 0. Thus, (3.3) holds true.

Now consider the situation at the end of iterationl (), with the assumption that

(3.3) holds at the end of the previous iteration (i.e., for).

m jk–

m jk– jk

n 1+ n 1+

rank Ak
l()

() height Ak
l()

() m jk–= = for 1 l k n 1+≤ ≤ ≤

Ak
l()

n 1+

rank …() height…()

l 1= n 1+

SA rank Ak
1()

() height Ak
1()

()=

1 k n 1+≤ ≤

n 1+

l n 1+=

jn 1+ m= An 1+
n 1+()

l n≤

l 1+

42

First, note that (3.3) remains true for because iterationl does not change the

columns processed in previous iterations, namely columns through . That is,

(3.4)

To see this, note that at the end of iteration (the previous iteration), our induction

hypothesis implies that (by letting). Therefore,

the top nonzero in is in row , while rows 1 through of are

all zero. Since the updates in iterationl (the current iteration) are restricted to these rows

of matrix variableA, they do not affect columns through .

What remains to be shown is that the claim holds true also for , that is, for the

submatrix including the just processed column . In other words, we need to show that

(3.5)

There are two cases to consider: the top elements of column are all zero, or they are

not.

• In the first case, iteration does nothing: the variablej is not changed; nor does

including the unmodified column change the rank and height of the submatrix of

processed columns. More specifically, becausej is not modified. More-

over, since iteration simply expands the submatrix of processed columns by the

unmodified column , the resulting submatrix consists of columnl and the col-

umns in . Note that by the

induction hypothesis, and that column has leading zeros in this case. We first

determine . We observe that

because contains all the columns in . We also observe that

 because every column of (either column or a column

from) has nonzeros only in the bottom elements. Combining these

k l 1+≥

l 1+ n 1+

Al 1+
l()

Al 1+
l 1+()

=

l 1+

height Al 1+
l 1+()

() m jl 1+–= k l 1+=

Al 1+
l 1+()

j l 1+ 1+ j l 1+ Al 1+
l 1+()

l 1+ n 1+

k l=

l

rank Al
l()

() height Al
l()

() m jl–= =

j l 1+ l

l

l

j l j l 1+=

l

l Al
l()

Al 1+
l 1+()

rank Al 1+
l 1+()

() height Al 1+
l 1+()

() m jl 1+–= =

l j l 1+

rank Al
l()

() rank Al
l()

() rank Al 1+
l 1+()

()≥ m jl 1+–=

Al
l()

Al 1+
l 1+()

rank Al
l()

() m jl 1+–≤ Al
l()

l

Al 1+
l 1+()

m jl 1+–

43

two observations, we have . By an analogous argument,

. These two results together give us

(3.6)

• In the second case, where some of the top elements of column are nonzero,

iteration decrementsj and updatesA appropriately. Thus, . Also,

 consists of the updated column and the columns of , which is identical

to according to (3.4). Note that column is updated in such a way that it has

 leading zeros followed by a nonzero in row . Thus, the updated col-

umn l must have a height of . Note also that by the induction hypothe-

sis has a height of . Therefore, equals ,

the greater of the two heights. As for , contains lin-

early independent columns: of them from (whose rank is

) and the last one being the updated column (which is linearly indepen-

dent of all columns in because of its unique nonzero in row). Thus,

. Combining the results for the rank and height, we have

in this second case

(3.7)

This completes the proof for the claim in (3.3). It follows that our algorithm finds a

transformation matrixS such that has identical height and rank profiles.

Finding Unimodular Transformation Matrix T

So far, we have described the first step of our algorithm: finding a nonsingular matrixS

such that has the desired form. However,S may or may not be unimodular; in fact, it

may not even be integral. In the next step, we compute fromS a unimodular matrixT such

that and have identical height profiles. In this sense,T andS are “equally good.”

rank Al
l()

() m jl 1+–=

height Al
l()

() m jl 1+–=

rank Al
l()

() height Al
l()

() m jl 1+– m jl–= = =

j l 1+ l

l j l j l 1+ 1–=

Al
l()

l Al 1+
l()

Al 1+
l 1+()

l

j l 1+ 1– j l 1+

m jl 1+– 1+

Al 1+
l 1+()

m jl 1+– height Al
l()

() m jl 1+– 1+

rank Al
l()

() Al
l()

m jl 1+– 1+

m jl 1+– Al 1+
l 1+()

m jl 1+– l

Al 1+
l 1+()

j l 1+

rank Al
l()

() m jl 1+– 1+=

rank Al
l()

() height Al
l()

() m jl 1+– 1+ m jl–= = =

SA

SA

TA SA

44

In a word, we choose , where is the Hermite normal form ofS. A ratio-

nal matrix is in Hermite normal form if and only if (a) it is lower-triangular, (b) all its ele-

ments are nonnegative, (c) the diagonal element in each row is greater than other elements

in the same row [Schrijver 1986]. It is known that for any rational nonsingular matrix, say

B, there exists a unimodular matrixU such that is in Hermite normal form.

Moreover, for any such matrixB, the corresponding Hermite normal form matrix is

unique. Thus, it is meaningful to talk aboutthe Hermite normal form of a matrix. There

are known algorithms to compute it [Schrijver 1986].

To justify our choice forT, we must first show that does exist. Then, we show that

 satisfies both our requirements:T is unimodular, and has the same height

profile as .

• exists because is nonzero: the determinant of is the product of its main

diagonal elements (because it is lower-triangular); and those elements are all posi-

tive (because each of them is greater than other elements on the same row, which are

nonnegative).

• To see thatT is unimodular, note that

(3.8)

for some unimodular matrixU. Since the inverse of a unimodular matrix is also uni-

modular [Schrijver 1986],T is unimodular.

• As for the height profile requirement, note that is lower-triangular, by the defini-

tion of Hermite normal form. Therefore, so is its inverse . Moreover,

(3.9)

In other words, we can obtain by left-multiplying with a lower-triangular

matrix, namely . This does not change the heights of the columns, and therefore

 and have the same height profile.

T HS
1–
S= HS

H BU=

HS
1–

T HS
1–
S= TA

SA

HS
1–

HS HS

T HS
1–

S SU() 1–
S U

1–
S

1–
S U 1–= = = =

HS

HS
1–

TA HS
1–

S

A HS
1–

SA()= =

TA SA

HS
1–

TA SA

45

Magnitudes of Strides in Index Space

So far, we have focused on the directions of strides in the index space. Could we also

reduce the magnitudes of the strides to improve spatial locality? Unfortunately, we cannot

reduce these magnitudes at will as long as the restructured array must contain all elements

of the original. Consider the example in Figure 3.7. The upper half shows the computed

index transformation. With this transformation, the innermost loop accesses elements in

the same row as indicated by the row of three black circles.

One might want to reduce the innermost loop’s stride (i.e., the top, and in fact only,

nonzero in the last column of) from 2 to 1. The lower half of the diagram shows this

hypothetical situation. The black elements, accessed by consecutive iterations, are adja-

cent, indicating a unit stride in the innermost loop. However, no linear transformation can

FOR i1 = …
FOR i2 = …

… X[2*i2,i1] …

Array index space (x)

x2

x1

y2

y1

Transformed array index space (y)

y2

y1

T 0 1

1 0
=

T′A … 0

… 1
=

TA 1 0

0 2
=

T′

Figure 3.7: Affecting Magnitudes of Strides in Index Space

A 0 2

1 0
=

TA

46

achieve this because with any linear transformation, the elements between the black ele-

ments in the original index space remain between the black elements in the transformed

index space. (This is inherent to linear transformations: they map colinear points to colin-

ear points.) There is no “space” between the adjacent black elements in the restructured

array. Nevertheless, we can have some control over the magnitudes of strides by omitting

unaccessed elements (such as those between the black ones) from the restructured array

completely. Chapter 5 discusses this in detail.

Summary

Given an access matrixA, we compute an index transformation matrixT that improves

locality of the access in two steps.

1. Use the algorithm in Figure 3.6 on page 39 to compute from access matrixA a non-

singular matrixS such that has the desired form. is guaranteed to have iden-

tical height and rank profiles. No nonsingular transformation matrix can flatten the

access matrix further than that.

2. Let , where is the Hermite normal form ofS, which can be computed

using known algorithms. The final index transformation matrixT is guaranteed to

be unimodular. Moreover, has the same height profile as , and in this sense

T is just “as good as”S for our purpose of improving locality.

3.3 More General Access Patterns

We have fully discussed a simple, but restrictive, case: a single access with affine index

expressions to the array in question in a single perfect loop nest. In any real application,

many of these simplifying assumptions do not hold. In this section, we discuss how to

handle more general cases:

SA SA

T HS
1–
S= HS

TA SA

47

• multiple accesses to the same array

• non-affine array index expressions

• imperfect loop nests

• multiple loop nests

3.3.1 Multiple Accesses

So far, we have focused on just one array access and discussed how to compute an index

transformation matrix from one access matrix. In general, however, a loop nest may con-

tain multiple accesses to the same array. In fact, the example loop nest in Figure 3.1 of

Section 3.1.1 contains two accesses to each of the two read-only arrays (X andY), even

though we concentrated on only one access in our earlier discussion.

In this section, we discuss the handling of multiple accesses to the same array. We first

explore two broad issues: whether or not to create multiple, differently transformed copies

of the array for different accesses, and exploiting locality between accesses in the same

iteration. Then, we describe the more specific question of how we compute our index

transformation matrix from the access matrices for multiple accesses.

Multiple Copies or One Copy

Sometimes, there is simply no one array layout that yields good locality for all

accesses. A simple example is a two-dimensional array accessed by the same loop in row-

major order through one access and in column-major order through another. One of the

accesses is bound to exhibit poor locality whether we store the array in row-major or col-

umn-major order. Even if we allow more general layouts, as our framework does, at least

one of the accesses cannot go through memory consecutively as desired. In fact, in this

case, other layouts only worsen the situation by causing both accesses to have bad locality.

48

 This problem can be addressed by creating multiple versions of the same array, each

laid out differently. At one extreme, each array access has its own version. Alternatively,

accesses that are “similar enough” to one another may share a single version. However,

this approach has several drawbacks. First, the array has to be read-only. If the array may

be written, we would have to maintain consistency between the multiple versions by

updating all copies of the same element whenever one is updated (analogous to maintain-

ing cache coherence on multiprocessors, but with no hardware support). This is both cum-

bersome and expensive. Second, the amount of memory required for the restructured array

is increased by the duplication factor. So is, roughly, the runtime copying overhead for

creating the restructured array. Third, since the loop accesses these array versions simulta-

neously, the competition for limited cache space is intensified. This may lead to more

cache misses and thus diminish, if not outweigh, the performance advantage gained by

improving the locality of each individual array access. Similarly, given a fixed amount of

memory, the largest problem size that can be handled without excessive paging is reduced.

 In many cases, however, one array layout suffices for a number of similar, but not

identical, array accesses. One common case is the case of uniformly generated accesses

[Wolf and Lam 1991a]. Uniformly generated accesses are accesses that vary with the loop

variables in identical ways and differ only in the constant offsets, such asX[i+j-1,j]

andX[i+j,j-2] . In formal terms as defined in (2.1) on page 15, they have the same

access matrixA, but different offset vectorsa. Since our algorithm for computing the

transformation matrix depends only on the access matrix, such accesses would yield

exactly the same transformation matrix and thus can share the same array layout. Intu-

itively, different uniformly generated accesses move through the array index space in the

same directions when execution goes through various loops; they differ only in their start-

ing points. Since we are concerned with only these directions of movement, we can treat a

set of uniformly generated accesses as a single access.

Even if a number of array accesses are not uniformly generated, they may still be sim-

ilar enough such that a single array layout is “good enough,” though not ideal, for all of

49

them. Consider the example in Figure 3.8. The triple loop has two accesses to the three-

dimensional arrayX. Although they are not uniformly generated, they are similar in that

only the first array index changes with the innermost loop variablei3 . Thus, both trans-

formations in the figure would improve performance substantially because they both allow

the innermost loop to go through memory consecutively, even though in each case the

array layout is not ideal for one of the accesses (the second for , the first for).

Locality between Accesses in the Same Iteration

In optimizing for locality, we treat each access individually: we focus on the spatial

locality between occurrences of one access in consecutive iterations rather than that of

multiple accesses to the same array in one iteration. Consider the illustrative example in

Figure 3.9. If arrayX is stored in row-major order, as it is originally, the four accesses

would touch adjacent array elements in any single iteration, whereas consecutive itera-

tions would touch elements in different rows. IfX is transposed, accesses in the same iter-

FOR i1 = 1, n
FOR i2 = 1, n

FOR i3 = 1, n
… X2[1,i2,i3] …
… X2[i1,1,i3+1] …

FOR i1 = 1, n
FOR i2 = 1, n

FOR i3 = 1, n
… X2[i2,1,i3] …
… X2[1,i1,i3+1] …

FOR i1 = 1, n
FOR i2 = 1, n

FOR i3 = 1, n
… X[i3,1,i2] …
… X[i3+1,i1,1] …

T1

0 1 0

0 0 1

1 0 0

= T2

0 0 1

0 1 0

1 0 0

=

Figure 3.8: Multiple Accesses to One Array

OR

T1 T2

50

ation would touch elements in different rows, whereas for each access, consecutive

iterations touch consecutive elements. These two scenarios are depicted in Figure 3.9.

Between these two alternatives, our algorithm would choose to transpose the array

because it considers each access individually and therefore does not recognize that the

four seemingly unrelated accesses toX in fact touch adjacent memory locations.

The impact of not recognizing and exploiting this is compensated for (and sometimes

more than compensated for) by the improved locality of each individual access. After

array restructuring, the four transformed accesses lead to four separate streams of consec-

utive memory references through four distinct memory regions. Occurrences of any one

access in consecutive iterations can probably reuse array elements in the same cache line

despite intervening accesses to other cache lines because such intervening accesses are

few (three toX2 in the example). More generally, suppose the stride weres, instead of 4,

each cache line containsl elements, and the value of variableb is b. The original loop

would incur roughly cache misses: per iteration forb iterations in the

Figure 3.9: Optimizing Multiple Accesses Individually or Collectively

FOR i = 1, b, 4
FOR j = 1, b

… X[j,i] …
… X[j,i+1] …
… X[j,i+2] …
… X[j,i+3] …

FOR i = 1, b, 4
FOR j = 1, b

… X2[i,j] …
… X2[i+1,j] …
… X2[i+2,j] …
… X2[i+3,j] …

Transpose

cache line

s
l
-- b b

s
--- s

l
--

51

innermost loop. If the array were transposed, the approximate number of misses would be

: for each of thes accesses in one execution of the innermost loop. The lat-

ter count is likely to be smaller sinceb is typically much greater thanl, and thus

. However, for a cache with low associativity, perfor-

mance may suffer severely if the memory locations accessed in an iteration happen to map

to the same position in the cache (typically because they are apart by some power of two).

This problem can be remedied by array padding — adding a small, fixed number of

dummy array elements to each row to avoid such an unfortunate mapping of cache lines

[Bacon et al. 1994].

Computing an Index Transformation Matrix

Based on the general discussion above, we now describe how our compiler handles

multiple accesses to the same array. We choose not to use multiple copies of an array in a

single loop nest, for the reasons discussed above. Instead, we compute a single transfor-

mation matrix from anaggregate access matrix, which combines the individual access

matrices in a way to be described. The offset vectors are ignored. As we have discussed,

they have little effect on locality. By ignoring them, we lose no essential information and

automatically treat a set of uniformly generated accesses as one.

The aggregate access matrix consists of columns from the individual access matrices

ordered in a way that reflects their relative importance to locality similar to the single

access case. Recall that each column indicates how the array indices change as the corre-

sponding loop variable is incremented. For a single access, we aim to flatten these col-

umns, most of all the one corresponding to the innermost loop because it is most important

for locality, but to a lesser extent other columns as well. Since this column is the rightmost

in the access matrix, our algorithm transforms the matrix into, loosely speaking, a lower-

triangular form for this purpose.

This notion is generalized to multiple accesses. Columns from individual access matri-

ces are ordered in the aggregate matrix according to their corresponding loop levels: the

b
l
--- s b

s
--- b

l

b
l
--- s b

s

bs
l

----- b
s
---≅ s

l
-- b b

s
---≤

52

column corresponding to an inner loop is placed to the right of that corresponding to an

outer loop; tie-breaking rules for columns corresponding to the same loop level are

designed to preserve the original layout as much as possible6. Thus, when there is only

one access, the aggregate access matrix reduces to the single access matrix.) Figure 3.10

illustrates this. The identical rightmost columns of and become the rightmost col-

umn of the aggregate matrixA; the middle of becomes the next inA; the middle of

is omitted as explained below; the leftmost columns of and make up the rest ofA.

When combining individual access matrices into an aggregate, we can treat certain

columns specially. First, zero columns are ignored (as in Figure 3.10). This is because any

transformation matrixT would transform a zero column to a zero column. Hence, zero

columns do not affect our choice and therefore are dropped altogether. Second, identical

columns (e.g.,) and columns differing by only a constant scaling factor (e.g., and

) are treated as one because any transformation matrix that flattens one column to a cer-

tain height always flattens the other to the same height.

Thus, the algorithm transforming an individual access matrix to lower-triangular form

achieves roughly the same effect with the aggregate access matrix: columns most impor-

tant for locality are flattened most. Figure 3.10 again illustrates this. After choosing the

transformation matrixT, we can transform the two accesses individually according to (2.3)

on page 18, effectively turning their access matrices and into and

respectively. The transformed aggregate access matrix has the expected lower-trian-

gular form, but the two individual transformed matrices may not. However, since the

rightmost column in both are flattened to a height of one, both accesses now go through

memory consecutively, at least in the innermost loop.

6. Specifically, columns are ordered as follows: a column corresponding to an inner loop is placed to the
right of one corresponding to an outer loop; that being equal, a column occurring more times (in the individ-
ual access matrices) at that level is placed to the right of one occurring fewer times; that being equal, a col-
umn with fewer nonzeros is placed to the right of one with more; that being equal, a column with a smaller
height is placed to the right of one with a greater height. The last two rules tend to preserve the original array
layout, other things being equal.

A1 A2

A1 A2

A1 A2

1
0
0

1
2

2
4

A1 A2 TA1 TA2

TA

53

Summary

In summary, we choose one index transformation for each array, focusing on the

potential for reuse between instances of each access in consecutive iterations, rather than

that between accesses in the same iteration. To find this transformation matrix, we extract

columns from the individual access matrices, order those columns based on their impor-

FOR i1 = …
FOR i2 = …

FOR i3 = …
… X[i1+i3,i1,i2] …
… X[i3,i1,1] …

A1

1 0 1

1 0 0

0 1 0

= A2

0 0 1

1 0 0

0 0 0

=

A
1 0 0 1

1 1 0 0

0 0 1 0

=

T
0 1 0

0 0 1

1 0 0

=

TA
1 1 0 0

0 0 1 0

1 0 0 1

=TA1

1 0 0

0 1 0

1 0 1

= TA2

1 0 0

0 0 0

0 0 1

=

Figure 3.10: Computing Transformation from Aggregate Access Matrix

FOR i1 = …
FOR i2 = …

FOR i3 = …
… X2[i1,i2,i1+i3] …
… X2[i1,1,i3] …

54

tance to locality, form an aggregate access matrix, and finally apply previously described

algorithms to compute the transformation matrix.

3.3.2 Non-Affine Array Index Expressions

We have so far assumed that all array index expressions are affine functions of loop vari-

ables, thus allowing analysis and transformation of accesses entirely in a simple linear

algebraic framework. To maximize applicability, we now extend our techniques to deal

with non-affine index expressions as well. While affine accesses are most common and

therefore appropriately the focus of our effort, it would be overly conservative if we were

to give up restructuring an array when even a single index expression is not affine.

In dealing with non-affine (or otherwise complicated) accesses, array restructuring

promises wider applicability than traditional loop restructuring techniques. Unlike loop

restructuring, its legality does not rely on dependence analysis, which may be frustrated

by the existence of even a single non-affine index expression in the loop. With array

restructuring, affine and non-affine accesses are transformed similarly, as discussed

shortly. In other words, non-affine index expressions do not prevent us from applying a

selected array transformation. To select the transformation in the first place, we use infor-

mation from the affine accesses, if any, and whatever can be learnt from the non-affine

ones, however limited. At worst, we pick a transformation that does not improve locality

as expected, but we never modify the program illegally.

To handle non-affine array accesses, we have to address two issues: mechanism and

policy. By mechanism, we mean how to transform array accesses for a given index trans-

formation. We show the transformed accesses to be as efficient as the original ones, just as

in the affine case. By policy, we mean choosing the index transformation itself. We discuss

how the analysis can accommodate non-affine index expressions.

55

Applying a Selected Transformation

First, let us consider the mechanism aspect. Whether array index expressions are affine

or not, the transformed access generally involves no more indexing overhead than the

original one because the address of an array element is an affine function of the indices in

both cases. In the affine case, we have explained how the transformed index vectory, like

the originalx, can be expressed directly as an affine function of the iteration vectori. This

hinges on the associativity of matrix multiplication (see (2.3) on page 18 in Section 2.2).

In the non-affine case, a similar argument does not hold. Thus, it might appear that extra

computation would be needed to computey from x when the access is performed at run

time.

In fact, no extra computation is required becausey need not be computed explicitly.

The address of an array element is an affine function of the array indices — original or

transformed. Traditionally, the scalar offset of an elementX[x1,x2,…] in a row-major

arrayX is

(3.10)

where , , and are respectively the lower bound, upper bound, and array index in

thek-th dimension of anm-dimensional array. In other words, the offsets is an affine func-

tion of the array index vectorx:

(3.11)

where is a constant vector and a constant scalar offset, both dependent only on the

array bounds. As we shall see in Chapter 4, after array restructuring, the offset of an ele-

ment within the restructured array, denoted , remains an affine function of the trans-

formed index vectory and therefore also of the original index vectorx:

(3.12)

s uk lk– 1+()
k j 1+=

m

∏

xj l j–()
j 1=

m

∑=

lk uk xk

s vx v0+=

v v0

s′

s′ v′y v0′+ v′T() x v0′+= =

56

Without array restructuring, when performing an access, we may have to compute the

array indices inx and then the locations according to (3.11). With array restructuring, we

still computex as before, and then according to (3.12). The constants involved in these

two cases may be different, but the form of the code should be the same and thus equally

efficient because the same compiler optimization techniques should apply in both cases,

provided that these techniques do not depend on the particular values of constants. For

example, induction variable elimination would still apply unless a particular implementa-

tion relies on the increment having specific values, rather than merely the knowledge that

the increment is loop-invariant.

Selecting the Index Transformation Matrix

Now we turn to the policy aspect of handling non-affine index expressions: choosing

the index transformation itself. We extract as much access pattern information as we can

from the index expressions, though perhaps not as much as in the affine case. Any limita-

tion in the analysis, however, does not make the transformed program incorrect; at worst,

we mistakenly select a transformation that does not improve performance as we hope. In

the following discussion, we first review what information is needed to compute an index

transformation and then discuss how far we can obtain that information from non-affine

accesses.

To choose an index transformation, we need to know how array indices change as var-

ious loop variables are incremented. As discussed before, in the affine case, these changes

can be determined precisely: they come from the columns of the access matrices. In the

non-affine case, we have less accurate but often still useful information.

Let us look at several examples that illustrate possible techniques before we discuss

our approach in general terms. These examples are shown in the upper half of Figure 3.11,

in which f(.) and so on are non-affine expressions about which we know little except

that their values are completely determined by their arguments. For the first access

X[i2,f(i1)] , the non-affinef(i1) prevents us from knowing which column is

s′

57

accessed in each outer loop iteration. We do know, however, that every execution of the

inner loop accesses a column. Therefore, we should transpose the array regardless of

f(i1) . For the second, less obvious accessX[f(i1)+i2,g(i1)+i2] , we know that

the inner loop accesses elements on the same diagonal consecutively, although we cannot

determine which diagonal it is for any given outer loop iteration. Nevertheless, this partial

information is enough for us to choose a transformation, say , that places elements on

such a diagonal consecutively in memory. Consider the third access:

X[f(i1)+h(i2),g(i1)+h(i2)] . In this case, the inner loop also accesses elements

along a diagonal because given the value ofi1 , varying i2 always changes both array

indices by the same amount. We do not know which diagonal it is. Nor can we tell how the

elements in that diagonal are accessed: they could be accessed in some irregular order.

Despite this lack of information, it still seems beneficial to store elements in the same

diagonal consecutively. Even if the inner loop may not go through them consecutively, at

least the memory accesses are likely to stay within a smaller region than if the array is

stored in the original, row-major order. The performance benefits are uncertain, however.

Generally, our analysis for non-affine accesses identifies non-affine sub-expressions in

index expressions and writes each index expression as an affine function of these non-

affine sub-expressions and the loop variables, as we have done in the examples above.

x 0 0 1

0 1 0

i1
f i1()

i2

= x 0 1 0 1

0 0 1 1

i1
f i1()

g i1()

i2

= x 0 1 0 0 1

0 0 1 0 1

i1
f i1()

g i1()

i2
h i2()

=

FOR i1 = …
FOR i2 = …

X[i2,f(i1)]

FOR i1 = …
FOR i2 = …

X[f(i1)+i2,g(i1)+i2]

FOR i1 = …
FOR i2 = …

X[f(i1)+h(i2),g(i1)+h(i2)]

Figure 3.11: Examples of Non-Affine Array Accesses

0 1
1 1

58

Moreover, we recognize non-affine sub-expressions common to different array dimen-

sions, such as theh(i2) in X[f(i1)+h(i2),g(i1)+h(i2)] . Thus, the three previ-

ous examples may be represented by “augmented” access matrices and iteration vectors as

shown in the lower half of Figure 3.11. Each column in an augmented access matrix corre-

sponds to a loop variable or one of the non-affine sub-expressions identified, which are

themselves functions of loop variables. Although we cannot determine exactly how each

non-affine sub-expression varies with the loop variables, we do know which loop vari-

ables it depends on. Therefore, when we order columns from individual access matrices to

form an aggregate access matrix, we treat a column for a non-affine sub-expression as if it

were for the deepest loop whose variable the sub-expression depends on. For instance, the

column in the third example is deemed to correspond to the inner loop variablei2 .

With this rule, we form the aggregate access matrix as before, ordering columns by the

depths of their corresponding loops and with tie-breaking rules aimed at preserving the

original array layout as much as possible. The index transformation matrix is then chosen

just as discussed earlier.

How do we identify these non-affine sub-expressions? Roughly speaking, we examine

the expression trees for array indices from the bottom up. If a node is an affine function of

loop variables and already identified non-affine sub-expressions, it is annotated as “affine”

and with the coefficients of the affine function. Specifically, a node that adds or subtracts

two affine nodes or multiplies a loop-invariant constant to an affine node falls into this cat-

egory. The parent’s coefficients are computed from the children’s. In other cases, the node

is annotated as non-affine, and we record the set of loop variables it depends on, which is

the union of the sets for its children. This procedure is similar to value numbering [Alpern,

Wegman, and Zadeck 1988; Bacon, Graham, and Sharp 1994; Reif and Lewis 1986].

Summary

In summary, non-affine array accesses by no means hamper the application of a

selected index transformation. The transformed array accesses do not involve any more

1
1

59

indexing overhead than the original ones because the address computation and index

transformation, both represented by affine functions, can be combined. Non-affine

accesses do, however, complicate the analysis for choosing the transformation. We try to

express non-affine index expressions as affine functions of non-affine sub-expressions to

determine, as far as we can, how array indices change when loop variables are incre-

mented and thus choose a suitable index transformation.

3.3.3 Imperfect Loop Nests

Imperfect nesting of loops often complicates, if not hampers, loop restructuring. For a per-

fect loop nest, one can think of many loop transformations (e.g., interchange [Allen and

Kennedy 1984], reversal [Wedel 1975], and skewing [Wolfe 1989b]) simply as the reor-

dering of indivisible iterations. They can be expressed formally as transformations of an

iteration space whose points represent iterations of the innermost loop. For an imperfect

loop nest, however, iterations of non-innermost loops also have to be represented in the

same framework. Work on this continues [Kelly and Pugh 1995; Pugh 1991]. Alterna-

tively, the compiler may split an imperfect nested loop into equivalent, perfect loop nests

with loop distribution, transform the latter individually, and finally recombine them with

loop fusion if appropriate [Kennedy and McKinley 1994].

On the other hand, array restructuring can easily handle imperfect loop nests. Since the

loop structure is unchanged, as before we only need to compute the changes in array indi-

ces as various loop variables are incremented. These changes can be obtained from col-

umns of the access matrix as before. The access matrix for an access outside the innermost

loop may have fewer columns than one within, but all access matrices have the same num-

ber of rows, which is the number of dimensions for the array in question. Therefore,

access matrix columns may be extracted and ordered according to loop levels to form an

aggregate access matrix just as discussed before. This is illustrated by the example in

Figure 3.12. Despite the different dimensions of access matrices and , this example

is handled in much the same way as the perfect loop nest in Figure 3.10 on page 53.

A1 A2

60

3.3.4 Multiple Loop Nests

We have so far focused on optimizing for a single loop nest. Before loop execution, ele-

ments of the original array are copied to the restructured array; during loop execution, the

restructured array is accessed instead of the original; after loop execution, elements are

copied back to the original array if the array is written. The whole process is then repeated

FOR i1 = 1, n
FOR i2 = 1, n

… X[i2,i1,i2] …
FOR i3 = 1, n

… X[i3,1,i2] …

A1

0 1

1 0

0 1

= A2

0 0 1

0 0 0

0 1 0

=

A
0 1 0 1

1 0 0 0

0 1 1 0

=

T
0 1 0

0 0 1

1 0 0

=

TA
1 0 0 0

0 1 1 0

0 1 0 1

=TA1

1 0

0 1

0 1

= TA2

0 0 0

0 1 0

0 0 1

=

FOR i1 = 1, n
FOR i2 = 1, n
… X2[i1,i2,i2] …

FOR i3 = 1, n
… X2[1,i2,i3] …

Figure 3.12: Handling an Imperfect Loop Nest

61

for the next loop nest. This strategy is simple but potentially inefficient: the copying over-

head may outweigh the performance gain in loop execution.

This copying overhead can be amortized if a single array transformation is chosen for

a larger segment of the program that contains more than one loop nests. The array needs to

be restructured only before and, if written, after the entire set of loop nests; the intermedi-

ate copying is eliminated. We can trivially extend the analysis techniques discussed so far

for this purpose: simply enclose the program segment in question with an imaginary loop

that has only one iteration and then analyze the resulting imperfect loop nest as before.

The nontrivial issue that warrants more discussion is which loop nests should be

grouped together. When making this decision, we have to consider the tradeoff between

copying overhead and potential improvement in loop execution performance. At one end

of the spectrum, choosing an array transformation best for each loop nest would maximize

the performance gain but at a substantial copying cost; at the other, grouping as many loop

nests together as possible would amortize the overhead but may cause some loop nests to

be executed with an array layout unsuitable for the access pattern. In the following, we

first look at several options, going from fine- to more coarse-grained grouping, and then

discuss the approach we have taken.

First, we can consider each loop nest individually. Arrays are restructured before and,

if written, after each loop execution. We have already discussed this option.

Second, we may consider a “basic block” of loop nests at a time. By a “basic block,”

we mean a sequence of loop nests (perhaps with intervening non-loop code) that are

always executed together, analogous to a basic block of instructions. As discussed above,

we can handle this simply by enclosing the loop nests inside an imaginary loop with one

iteration.

We need not always group the longest straight-line sequence of loop nests together.

Instead, we could break such a sequence into subsequences of loop nests such that each

subsequence has its own array transformation and the array is dynamically restructured

62

between subsequences. The sequence can be broken up in different ways for different

arrays; there is no reason why all arrays must be restructured at the same points in pro-

gram execution. For each array, the access patterns of loop nests in a subsequence should

be similar enough that there is some array transformation appropriate (though not neces-

sarily ideal) for all of them. While assigning each loop nest into a separate subsequence no

doubt achieves this, on the other hand we want to minimize the number of subsequences

or, more precisely, the copying overhead between subsequences. This problem can proba-

bly be solved with some form of dynamic programming. We would need cost models to

estimate the copying overhead and the performance benefit of a given array transforma-

tion to a given series of loop nests, together with an algorithm that chooses array transfor-

mations to maximize such benefits. Much remains to be done, but we have not explored

this direction further.

Third, we may consider an entire procedure. Arrays are restructured dynamically only

at procedure calls and returns. Interprocedural analysis is not required. This is especially

appropriate for procedures that are intended for a library and therefore may be called by

code that has been compiled separately without any notion of array restructuring. Arrays

are stored in a canonical form whenever control is being transferred between procedures.

Alternatively, if the calling convention includes the layout information of arrays passed

between caller and callee, arrays can be restructured only as required even across proce-

dure calls.

Finally, we can consider the entire program and choose a single transformation for

each array. Although this approach requires sophisticated interprocedural analysis to

locate all accesses, including aliased accesses, to each array, it has the major advantage of

eliminating not only all runtime copying overhead but also the need for extra memory to

store the restructured arrays in addition to the originals. However, there may not be a sin-

gle array transformation appropriate throughout the entire program. If there is an obvious

choice, the programmer may have written the program based on that to begin with.

63

Our strategy for multiple loop nests combines compiler analysis on each loop nest

individually with “lazy restructuring” at run time. The compiler chooses a transformation

for each array and each loop nest, and transforms the accesses accordingly. However, we

do not obliviously copy from and to an original array laid out in some fixed canonical

order. Instead, our runtime system caches valid copies of an array, each corresponding to a

different transformation. Before a loop nest is executed, it looks for a valid copy matching

the desired transformation for this loop nest, as determined by the compiler. If such a copy

is found, it is used; otherwise, the runtime system creates one from a valid copy. After

loop execution, the restructured array is preserved, and other copies are invalidated if the

array has been written. This is analogous to the maintenance of cache coherence in shared-

memory multiprocessors with an invalidation-based protocol. For compatibility with sepa-

rately-compiled procedures, arrays are assumed to be in row-major order on procedure

entry and restored to row-major order on exit. In other words, array restructuring occurs

only within a procedure.

The major limitation of this strategy is the extra storage required to keep multiple cop-

ies of the same array. Keeping more than two copies does not imply proportionally

increased pressure for cache space because only some of them are accessed simulta-

neously — two during copying, one in loop execution. However, for some fixed capacity

of storage (be it memory or disk), keeping extra copies does limit the size of the array (and

hence the problem) that can be handled. Therefore, for large problems whose bottleneck is

memory or disk capacity, we should discard some (perhaps all but one) of the copies.

When an array should be restructured is as important and difficult a question as how.

The answer depends on a tradeoff between allowing each loop nest to run with the best

array layouts and the runtime copying overhead to create those layouts. Another concern

is the extra storage needed for multiple copies of an array, which may limit problem sizes

for a fixed amount of available storage. In this section, we have explored only some of the

possible options. In fact, we have not even touched on the possibility of restructuring an

64

array within a loop nest, rather than always before and after it. Much more work is needed

to fully understand the issue of when to restructure an array.

3.4 Summary

To improve the spatial locality of a single array access by array restructuring, we find a

unimodular index transformation matrix with a, roughly speaking, “lower-triangular” non-

zero structure. Our procedure for this consists of two steps. First, a Gaussian elimination-

like algorithm transforms the access matrix to the right form with elementary row opera-

tions, accumulating the effects of those operations in a nonsingular, but not necessarily

unimodular, matrix. The algorithm always produces a transformed access matrix with

identical rank and height profiles; we have shown that it is impossible to flatten the access

matrix columns any further. In the second step, a unimodular matrix is computed from the

nonsingular matrix just obtained by means of the latter’s Hermite normal form.

We have also discussed handling general access patterns. If there are multiple accesses

to one array, the same algorithm for computing the transformation matrix can be applied to

an aggregate access matrix constructed from the columns of the individual ones. Non-

affine index expressions do not hinder the application of an already selected index trans-

formation. They do make choosing that transformation harder by making the analysis less

precise than in the affine case. We have nonetheless developed techniques to gather some

useful access pattern information that guides the choice. Imperfect loop nests pose no spe-

cial problem. Finally, using one array transformation for multiple loop nests can amortize

the runtime copying overhead but involves complex tradeoffs that require further study.

65

Chapter 4

Linearizing Restructured Arrays

What does it mean to store elements of an array in row-major order? In Chapter 2, we

assume that the restructured array is row-major. Accessing an element involves, conceptu-

ally, computing the original index vector, applying a linear transformation, and finally

indexing the restructured array under this assumption. Based on the same assumption, we

have discussed in Chapter 3 how we can relate locality to the access matrix and thus

choose a suitable index transformation to enhance locality. To see what this key assump-

tion means to the restructured array, we first look at what it means traditionally.

Traditionally, an array declaration specifies lower and upper bounds on each array

index. The bounds are constant: they do not depend on the values of other indices. Thus,

for a row-major,m-dimensional array, finding an element with indices , …, requires

computing a scalar offsets into the array as

(4.1)

where and are respectively the lower and upper bounds of thek-th array index. This

can also be expressed in vector form:

(4.2)

where

(4.3)

x1 xm

s uk lk– 1+()
k j 1+=

m

∏

xj l j–()
j 1=

m

∑=

lk uk

s vx vl–=

vj uk lk– 1+()
k j 1+=

m

∏= 1 j m≤ ≤

66

We call the row vectorv thelinearization vector. The address of the element can be further

computed as an affine function of the offsets, using the size of an element and the starting

address of the array. Since only affine functions are used, a compiler can optimize the

address calculation by strength reduction: replace the brute force evaluation of affine func-

tions, which involves multiple integer multiplications and additions per access, with incre-

mental evaluation, which only involves incrementing an address pointer by a pre-

computed amount in each iteration.

Thus, to lay out elements of the restructured array in row-major order, we need to

compute the same two pieces of information: the bounds of the restructured array and,

from those bounds, the linearization vector. This is simple if our index transformation just

permutes array indices (as in Section 3.2.1). We can obtain the transformed array bounds

by permuting the original array bounds accordingly. The linearization vector is then calcu-

lated in the traditional way from the transformed (i.e., permuted) array bounds.

The rest of this chapter considers the general case where the index transformation

matrix is an arbitrary unimodular matrix. Computing the bounds of the restructured array

is relatively simple. It is discussed in Section 4.1. Computing the linearization vector from

those bounds, however, is much harder than in the traditional case because those bounds

may not be constant. In other words, the lower and upper bounds for one array index may

depend on the values of other array indices. Such non-constant array bounds render the

traditional solution described above inapplicable. Section 4.2 explains this problem more

clearly. Section 4.3 introduces our solution with an example. Section 4.4 and Section 4.5

discuss the general algorithm in detail.

67

4.1 Computing the Bounds of the Restructured Array

To compute the bounds of the restructured array, we express those of the original array

algebraically, as well as geometrically, and transform these representations with simple

linear algebra.

We can represent the bounds of the original array algebraically as a set of inequalities

involving the array indices, or geometrically as a convex polyhedron in the array index

space. Both representations are illustrated on the left of Figure 4.1 for the two-dimensional

arrayX shown at the top of the diagram.

• In the algebraic representation, each inequality simply states that some array index

must be at least its lower bound, or at most its upper bound. To facilitate mathemati-

cal manipulation, we write the inequalities in vector form as

(4.4)

in which the comparison is interpreted row by row, with each row of the matrixB

and vectorb corresponding to an inequality in standard form.

• In the geometrical representation, valid array index vectors correspond to integral

points (i.e., points whose coordinates are integers) within a convex polyhedron in

the index space. Each face of the polyhedron is a hyperplane defined by one of the

inequalities, and points in the polyhedron have coordinates that satisfy all the ine-

qualities. For the original array, the polyhedron is simply a rectilinear region (a rect-

angle in the two-dimensional case) because all the inequalities involve only one

array index.

Given the index transformation matrixT, we can compute the bounds of the restruc-

tured array by simple substitution. SinceT is unimodular, it is nonsingular. Thus,

(4.5)

Bx b≥

x T
1–
y=

68

wherex andy are index vectors for the original and restructured arrays respectively. Sub-

stituting this back into (4.4), we get

(4.6)

This gives us the linear inequalities that the transformed array indices must satisfy if the

original ones satisfy (4.4). The right half of Figure 4.1 shows the transformed inequalities

Figure 4.1: Transforming Array Bounds

x1

x2

x1 0≥

x2 0≥

x1 50≤

x2 1000≤

1 0

1– 0

0 1

0 1–

x1

x2

0

50–

0

1000–

≥

1 1–

1– 1

0 1

0 1–

y1

y2

0

50–

0

1000–

≥

Bx b≥ BT
1–

y b≥

y1 y2≥

y2 0≥

y1 y2 50+≤

y2 1000≤

y1

y2

T 1 1

0 1
=

T
1– 1 1–

0 1
=

X[0:50,0:1000] X2[???]

y Tx=

BT
1–

y b≥

69

for the example. Notice that the transformed array bounds cannot be expressed as a con-

ventional array declaration because the bounds on one array index may depend on the val-

ues of the others. In geometrical terms, each face of the polyhedron in the original index

space is mapped through the index transformation to a hyperplane in the transformed

index space. These image hyperplanes together delineate the image polyhedron represent-

ing the bounds of the restructured array.

All integral vectors within the transformed array bounds (4.6) correspond to original

index vectors within the original array bounds (4.4), and therefore identify elements that

the restructured array must contain. This is because any integral vectory satisfying (4.6) is

the image of , which is integral (since bothT and are unimodular) and satis-

fies (4.4). Similarly, the converse is also true.

4.2 Problem of Non-Constant Array Bounds

Having computed the bounds of the restructured array according to (4.6), we lay out the

elements (in row-major order) in such a way that the location of an element can be effi-

ciently computed from the array indices. Specifically, we find an affine function to express

the location in terms of the array indices. This affine function is represented by the linear-

ization vector. In this section, we explain why computing this vector is nontrivial in our

case, highlighting the difficulty with a simple but unsatisfactory solution.

Computing the linearization vector is complicated by array restructuring. When array

bounds do not depend on array indices, as in the traditional case, (4.1) gives a well-known,

closed-form answer. However, in general our array restructuring technique may lead to

array bounds that vary with other array indices, as Figure 4.1 has shown. In geometrical

terms, the bounds of the restructured array are delineated by a parallelepiped1, rather than

1. A parallelepiped is the analogue of a parallelogram in three or more dimensions.

x T
1–
y= T

1–

70

a rectilinear region, in the array index space. The traditional method therefore does not

apply.

A simple but unsatisfactory solution is illustrated by Figure 4.2, showing the same

example as Figure 4.1. As in Figure 4.1, the rectangle on the left and the parallelogram on

the right represent the bounds of the original and restructured arrays respectively. The ten-

tative solution uses the dashed box on the right as the bounds of an “expanded” array. In

other words, we compute the two extremities of the transformed array bounds (the shaded

parallelogram) in each dimension. Then, we conventionally declare an array with the

extremities as lower and upper bounds. Since this expanded array contains all the ele-

ments necessary for storing the original, it can be used in place of the restructured array.

However, this naive solution could waste a large, potentially unlimited, amount of

memory just to make it efficient to find an element given the array indices. In Figure 4.1,

this wasted memory corresponds to the two empty triangles in the dashed box. In this

example, the original array has 51,051 elements (51 rows by 1001 columns), but the

naively expanded array has 1,052,051 elements (1051 rows by 1001 columns). Only one-

twentieth of the expanded array is used! This utilization rate, already poor, can be made

arbitrarily small by making the original array, and hence also the restructured array, “skin-

nier.” Moreover, the unused memory locations are interspersed with the utilized ones at a

moderately fine granularity: each contiguous range of unused memory spans roughly one

Figure 4.2: Laying Out Elements of Restructured Array — Tentative Solution

T 1 1

0 1
=

1050

50

10001000

50

0 0

71

row of elements. Therefore, we cannot reduce the waste by not allocating physical pages

for the unused portions. The same problem, of course, occurs also in higher-dimensional

cases.

4.3 Introducing Our Solution

We address this problem with a two-step algorithm that, roughly speaking, finds a trans-

formation to turn the array bounds back into constants without jeopardizing prior transfor-

mations for better locality. Once we have constant array bounds, the traditional method

can be used to compute the linearization vector. Figure 4.2 shows how the algorithm

applies to the example. Again, the rectangle on the left and the deeply shaded parallelo-

gram in the middle represent the bounds of the original and restructured arrays respec-

tively.

1. The first step relates to the middle part of the figure. It computes a parallelogram

(the shaded, outer parallelogram in the middle) with a pair of horizontal sides (the

Figure 4.3: Laying Out Elements of Restructured Array — Our Solution

T 1 1

0 1
= R 1 0

1– 1
=

1050

50

1000

1050

-501000

50

0 0 0

72

top and bottom sides) to enclose the parallelogram representing the bounds of the

restructured array (the deeply shaded, inner parallelogram). Why horizontal sides

are significant will become clear below. The outer parallelogram defines the bounds

of an expanded array that contains all the necessary elements (corresponding to

integral points in the inner parallelogram) and perhaps some unnecessary ones. Nat-

urally we want to minimize the number of the latter. Hence, the outer parallelogram

should enclose the inner one as tightly as possible.

2. The second step takes the middle part of the figure to the right part. It computes a

linear transformation, represented by matrixR, to transform the outer parallelogram

to a rectangle. This transformation in effect shifts each row leftward by the row

index (i.e., row 0 at the top is not moved, row 1 is shifted left one column, and so

on). With this transformation, the horizontal sides remain horizontal, whereas the

slanted sides are made vertical by the horizontal movement. The resulting expanded

array has constant array bounds. Thus, it can be handled traditionally.

The properties of the additional transformationR have important implications. First,

because it is linear, it can be combined with the affine functions that represent other inter-

mediate steps of computing the location of the accessed element from the loop variables.

No extra indexing overhead is required.

Second, by only shifting rows horizontally,R does not jeopardize the previous trans-

formation T chosen to improve spatial locality. Earlier on, we have described how to

chooseT so that the innermost loop goes through the array index space horizontally, rather

than diagonally, as the arrows in the figure show. SinceR shifts rows horizontally, it keeps

a horizontal direction horizontal and thus preserves the effect ofT.

Finally, it should be noted that we have not eliminated unused memory. We still allo-

cate but do not use the memory corresponding to the two lightly shaded triangles in the

right part of Figure 4.2. In this example, the expanded array has 53,601 elements (1051

rows by 51 columns), of which about 5 percent are not used. In general, at most half the

73

allocated memory is unused in the two-dimensional case. A bound for any number of

dimensions is proved in Appendix A.

4.4 Computing the Linearization Vector

Having seen how a specific example is handled, we can now more easily discuss the full

details of the general algorithm. We have to find a linearization vectorv, for the restruc-

tured array, that meets the following requirements.

• v is integral. This facilitates address computation and the associated compiler opti-

mizations.

• v represents a row-major storage order — the storage order of the restructured array

assumed throughout the earlier analysis. In other words, if transformed index vec-

torsy and are both within the transformed array bounds andy is lexicographically

less than2 , then . This subsumes the obvious requirement that two differ-

ent vectors within the bounds must lead to different offsets, because one of the these

two vectors must be lexicographically less than the other.

Among vectors meeting these requirements, we naturally want to find one that minimizes

the amount of allocated memory. The linearization vector given by (4.3) satisfies both

requirements and uses the minimum amount of memory. However, as noted earlier, this

formula applies only to constant array bounds, while our transformed bounds may not be

constant. Therefore, we need a more general way of computing the linearization vector.

Our overall approach is to relax thetransformed bounds so that the resulting bounds,

which we call therelaxed bounds, are in a special form for which we know how to com-

2. A vector is lexicographically positive (negative) if its leading nonzero is positive (negative). A vectory is
lexicographically less than, or before, a vector if is lexicographically negative. This means that in
the first dimension where the two vectors differ, the component of y is less than that of . “Lexicographi-
cally greater than” or “lexicographically after” are defined similarly.

y′

y′ vy vy′<

y′ y y′–
y′

74

pute the linearization vector. In geometrical terms, we look for a special form of polyhe-

dron to enclose the polyhedron representing the transformed bounds. An unsatisfactory

application of this approach is the “dashed box” solution attempted in Section 4.2: we

relaxed the transformed bounds directly to a set of constant bounds, but found it too

wasteful in the use of memory.

This section and the next present a much better solution. Figure 4.4 outlines the whole

process and indicates where related discussion is. In this section, we first specify the form

of the relaxed bounds and explain why it makes computing the linearization vector easier.

Then, we describe the algorithm to calculate the linearization vector and argue that it pro-

duces a vector meeting our requirements. This roughly corresponds to the second step

(i.e., transforming the outer parallelogram and then linearizing the resulting rectangle in

Figure 4.2 on page 70) in the previous section’s example. The issue of computing the

Figure 4.4: Computing the Linearization Vector: A Road Map

Transformed Bounds

Augmented Bounds
Equation (4.23)

Center of Symmetry
Section 4.5.2

Relaxed Bounds
Section 4.5.1
Section 4.4.1
Equation (4.7)

Linearization Vector

Section 4.5.3

Section 4.5.5
Equation (4.30)

Section 4.4.2
Figure 4.5

Section 4.5.4
Equation (4.24)

S
ec

tio
n

4.
5

S
ec

tio
n

4.
4

75

relaxed bounds themselves from the transformed bounds is left to the next section. It

roughly corresponds to the first step (i.e., finding an enclosing parallelogram with a pair of

horizontal sides) of the example. The discussion is organized in this way because knowing

how the relaxed bounds are used is crucial to understanding why they are computed in the

way to be described later.

4.4.1 Relaxed Bounds

We have defined the relaxed bounds as the result of relaxing the transformed bounds to a

special form that facilitates computing the linearization vector. We now specify exactly

what that form is and explain how it helps the calculation of the linearization vector.

Intuitively, we need a special form such that the relaxed bounds in the transformed

index space, which are not constant but in this form, can be further transformed through

another linear transformation to bounds that are constant. (As Section 4.3 explains, in two

dimensions, geometrically this special form is “a parallelogram with a pair of horizontal

sides.”) With the resulting bounds, we can compute a linearization vector in the traditional

way (since those bounds are constant) and combine this vector with all prior transforma-

tions by composing the corresponding affine functions. Furthermore, we require that the

extra transformation here preserve the locality improvement effected by the previous

transformation.

Formally, we require that the relaxed bounds — a set of inequalities in the transformed

array indices — can be expressed in vector form as

(4.7)

whereR is an matrix required to be lower-triangular with a unit diagonal (i.e., all

diagonal elements must be 1), and arem-dimensional vectors, andy denotes the

transformed index vector as before. For the example in Figure 4.2, the relaxed bounds are

represented by the shaded, outer parallelogram in the middle, and the transformed bounds

r l Ry ru≤ ≤

m m×

r l ru

76

by the deeply shaded, inner parallelogram. The special form stipulated here translates into

the requirement for “a pair of horizontal sides” in that example. See Section 4.5.1 for the

geometrical implications in higher-dimensional spaces.

If the relaxed bounds are in this form, we can transform the transformed index vectory

again, with the matrixR, to another vector space so that the resulting bounds in this space

are constant, allowing them to be handled traditionally. Formally, we can define

(4.8)

In Figure 4.2, this transformation corresponds to further transforming the outer parallelo-

gram to a rectangle. Substituting (4.8) into (4.7) yields the bounds onz, which are

(4.9)

In Figure 4.2, and represent the four sides of the rectangle on the right. We might

then compute a linearization vector, denotedw, for these constants bounds in the tradi-

tional manner. The linearization vectorv, which takes a transformed index vectory to an

element’s offset into the restructured array, is therefore equal to .

Because of the formR is required to have, the extra transformation preserves the effect

of the transformation applied earlier for better locality: sinceR is lower-triangular with a

unit diagonal, left-multiplying it to an access matrix changes neither the height nor the

value of the top nonzero of any access matrix column. In this sense, prior locality optimi-

zations are preserved. In particular, an access matrix column representing a unit stride

through memory consists of leading zeros and a single 1 or -1 in the last dimension, and

this is not affected by the application ofR.

4.4.2 Computing Linearization Vector from Relaxed Bounds

Computing the linearization vectorv from the relaxed bounds in (4.7) is in fact more com-

plicated than just described because we cannot assume thatR, , and are always inte-

z Ry=

r l z ru≤ ≤

r l ru

wR

r l ru

77

gral. If R is not integral, the vector may be non-integral for an integral

transformed index vectory. Thus, restructured array elements may be identified bynon-

integral vectorsz within the bounds . Because of this and possibly non-integral

 and , strictly speaking the linearization vectorw cannot be computed traditionally

after all.

For this reason, instead of first transforming the relaxed bounds to constant bounds

and then findingw with the formula (4.1), we integrate the two steps in one algorithm.

WhetherR, , and are integral or not, we compute a vectorw such that the product

 is integral, even thoughw itself may or may not be integral. The final result isv

— the linearization vector taking transformed index vectorsy to offsets in the restructured

array. Since all the intermediate steps of addressing an element given the original array

indices are eventually merged into a single affine function anyway, all that matters is that

 is integral; non-integralw or R is not a problem.

The algorithm is shown in Figure 4.5. We discuss this algorithm in the remainder of

this subsection. We show that the linearization vectorv it computes does meet the require-

ments stipulated at the beginning of this section. Furthermore, the computedv, to a good

approximation, requires the least amount of memory among all vectors that also satisfy

those requirements. Finally, we show that the algorithm reduces to the traditional method

in the simple case of constant bounds.

First, the algorithm guarantees thatv is integral. To see this, consider each component

of v in turn. From , we have

(4.10)

becauseR is lower-triangular with a unit diagonal. For , we know that is equal

to , which is set to 1 in the algorithm. Thus, is an integer. As for , when

the algorithm chooses ,sum is precisely the rightmost summation in the above equa-

z Ry=

r l z ru≤ ≤

r l ru

r l ru

v wR=

vT wRT=

v wR=

vj wkRkj
k 1=

m

∑ wj wkRkj
k j 1+=

m

∑+= =

j m= vm

wm vm 1 j≤ m<

wj

78

tion. Choosing , which can be shown to be positive by induction onj, such that its frac-

tional part isceiling(sum) - sum ensures that

(4.11)

and hence

(4.12)

which is an integer because both terms in the rightmost expression are results of floor and

ceiling functions. Hence, the linearization vectorv is integral.

 is an lower-triangular matrix
 and are m-dimensional column vectors
 and are m-dimensional row vectors

FOR = DOWNTO 1 DO

at_least =

sum =

 = smallest number >= at_least and with

fractional part = ceiling(sum) - sum

ENDFOR

R m m×
r l ru
v w

wm 1=

j m 1–

ru j 1+, r l j 1+,– 1+() wj 1+

wkRkj
k j 1+=

m

∑
wj

v wR=

Figure 4.5: Computing Linearization Vector from Relaxed Bounds

wj

wj wj– Rkjwk
k j 1+=

m

∑ Rkjwk
k j 1+=

m

∑–=

vj wj wkRkj
k j 1+=

m

∑+ wj Rkjwk
k j 1+=

m

∑+= =

79

Second, ify and are both within the relaxed bounds andy is lexicographically less

than , then . Since , we start justify-

ing this claim by considering the possible ranges for the components of , which

is denotedd from now on.

• The leading nonzero ofd is at least 1. SinceR is lower-triangular, the leading non-

zero of is in the same dimension as that of . In fact, the two

leading nonzeros are equal since all diagonal elements ofR are 1. As is lexi-

cographically positive, its leading nonzero is positive. Moreover, as is inte-

gral, this leading nonzero is at least 1.

• is at least . Sincey and are within the relaxed bounds, thej-th

components of and are both between and (see (4.7) on page 75).

Their difference, , cannot be less than .

Assume that the leading nonzero ofd is in thel-th dimension. We would have

(4.13)

Noting the two previous observations on the range for and , we see that

(4.14)

The right-hand side must be at least because the algorithm always chooses to be at

least . Specifically, by repeated substitution

(4.15)

y′

y′ vy vy′< vy′ vy– wRy′ wRy– w Ry′ Ry–()= =

Ry′ Ry–

d R y′ y–()= y′ y–

y′ y–

y′ y–

dj ruj r lj–()– y′

Ry Ry′ r lj ruj

dj ruj r lj–()–

vy′ vy– wRy′ wRy– wd wldl wkdk
k l 1+=

m

∑+= = =

dl dk

wldl wkdk
k l 1+=

m

∑+

wl ruk r lk–() wk
k l 1+=

m

∑–

≥

wm wj

ru j 1+, r l j 1+,– 1+() wj 1+

wj ru j 1+, r l j 1+,–() wj 1+ wj 1++≥

wj ru j 1+, r l j 1+,–() wj 1+ wj 2+ ru j 2+, r l j 2+,–() wj 2++ +≥

…

wj wm ruk r lk–() wk
k j 1+=

m

∑+≥

80

Combining the equation (4.13) and inequalities (4.14) and (4.15), we thus conclude that

.

Thus, we see that the algorithm computes a linearization vector that has the required

properties. Among the many vectors having these properties, we want one that minimizes

the amount of memory allocated. To this end, the algorithm chooses the smallest allow-

able value for every . In fact, selecting the smallest possible even has the side-effect

of decreasing the value that subsequently chosen () is required to

exceed (i.e., the value ofat_least).

Although choosing the smallest possible value for each does not guarantee the

minimum amount of allocated memory, it does tend to reduce that amount because the

restructured array needs a contiguous memory region for, roughly,

(4.16)

elements. We now justify this approximation. Since the elements are laid out in the lexico-

graphic order of their index vectors (in short, row-major order), we need memory for

 elements, where and are respectively the lexicographically

least and greatest vectors within the transformed bounds and thus identify the first and last

elements of the restructured array. This size equals .

To see that this is approximated by (4.16), we relate the bracketed expression to and

. BecauseR is lower-triangular with a unit diagonal, is lexicographically

positive if is: the leading nonzero of is in the same dimension as that

of and is positive because it equals the latter, which is positive. In other words, if

y is lexicographically less than , the same is true of and . Hence, and

 are respectively the lexicographically least and greatest in the set of vectors

such thaty is integral and within the relaxed bounds (4.7). If we do not insist ony being

integral, the set of vectors such thaty is within the relaxed bounds (in the form

vy′ vy– wm≥ 1 0>=

wj wj

wk k j 1– … 1, ,=

wk

w ru r l–() 1+ wk ruk r lk–()
k 1=

m

∑ 1+=

vylast vyfirst– 1+ yfirst ylast

w Rylast Ryfirst–() 1+

r l

ru R y′ y–()

y′ y–() R y′ y–()

y′ y–()

y′ Ry Ry′ Ryfirst

Rylast Ry

Ry

81

) is simply the set of vectorsz such that . The lexicographically

least and most among them are and respectively. Thus, by dropping the integral con-

dition, we informally arrive at the above approximation:

(4.17)

Finally, note that although our algorithm is more general than the traditional method, it

reduces to the latter in the case of constant bounds. For constant bounds, and hence

. The algorithm always chooses to be 1. As for , notice thatsum is

always zero because for . Therefore, the algorithm simply chooses for

the smallest integer greater than or equal toat_least . The value ofat_least is itself

an integer because and , being simply the array bounds, are integers. Thus,

 is simply chosen to be the value ofat_least . To sum up, we have

(4.18)

These recursive equations lead to the closed-form formula in (4.3).

4.4.3 Summary

We have discussed how we compute a linearization vector that satisfies the requirements

at the beginning of this section. Essentially, we relax the transformed array bounds so that

the resulting bounds have the form specified in (4.7). This allows us to compute a linear-

ization vector that preserves the locality improvement brought about by the earlier index

transformation. Figure 4.5 shows our algorithm to do this. The algorithm guarantees that

the linearization vector is integral and represents a row-major storage order. It reduces to

the traditional method in the simple case of constant array bounds. Moreover, it minimizes

the approximate amount of memory required for the restructured array — for the given set

of relaxed bounds. In the next section, we discuss how the relaxed bounds themselves are

calculated from the transformed bounds.

r l Ry ru≤ ≤ r l z ru≤ ≤

r l ru

w Rylast Ryfirst–() 1 w ru r l–() 1+≈+

R I=

v w= wm 1 j m<≤

Rkj 0= k j≠ wj

r l j 1+, ru j 1+,

wj

vm wm 1= =

vj wj ru j 1+, r l j 1+,– 1+() wj 1+= = 1 j m<≤

82

4.5 Relaxing the Transformed Array Bounds

The relaxed bounds correspond to anm-dimensional parallelepiped that encloses the poly-

hedron representing the transformed array bounds. We call the former theenclosing paral-

lelepiped and the latter theimage polyhedron. As discussed in Section 4.4.1, the relaxed

bounds must be in the form (4.7) so that, roughly speaking, they can be linearly trans-

formed to constant bounds without nullifying the benefit of the transformation chosen in

Chapter 3. In geometrical terms, we require that the enclosing parallelepiped can be trans-

formed to anm-dimensional rectilinear region; not all parallelepipeds are acceptable.

This section concerns computing the relaxed bounds. Again, Figure 4.4 on page 74

shows how different parts of our discussion fit together. We first elaborate on requirements

for the relaxed bounds and, equivalently, the enclosing parallelepiped (Section 4.5.1).

Then, our solution is presented. As we shall see, it applies to polyhedra symmetric about a

center (Section 4.5.2). These include all parallelepipeds and hence any image polyhedron

we may get by transforming the original bounds. The algorithm consists of three steps.

1. Compute theaugmented bounds — a set of inequalities that is equivalent to the

transformed bounds but contains additional information (Section 4.5.3).

2. Compute the center of symmetry of the image polyhedron (Section 4.5.4).

3. Compute the relaxed bounds by selecting a subset from the augmented bounds and

supplementing it with other necessary bounds constructed from it (Section 4.5.5).

Although the presentation is mostly in abstract terms for the generalm-dimensional

case, we refer to the two-dimensional example in Figure 4.6 for concrete illustration

whenever appropriate. The transformed bounds and the equivalent image polyhedron are

in part (a). They are taken from the right half of Figure 4.1 on page 68. To simplify phras-

ing and explain concepts in whichever terminology seems most intuitive, we may occa-

sionally refer interchangeably to a set of bounds and its corresponding polyhedron or

parallelepiped, or to a vector and its corresponding point.

83

Figure 4.6: Relaxing Transformed Array Bounds

1 1–

1– 1

0 1

0 1–

y1

y2

0

50–

0

1000–

≥

y1 y2≥

y2 0≥

y1 y2 50+≤

y2 1000≤

center

y1

y1

y2

y2

y1

y2

y1 0≥

y2 0≥

y2 y1 50–≥

y1 1050≤

y2 1000≤

y2 y1≤

1 0

1– 0

0 1

0 1–

1– 1

1 1–

y1

y2

0

1050–

0

1000–

50–

0

≥

y1 0≥

y2 y1 50–≥

y1 1050≤

y2 y1≤

Run Fourier-Motzkin

Compute center
+

Select hyperplanes

1 0

1– 1

y1

y2

1050

0
≤

1 0

1– 1

y1

y2

0

50–
≥

Transformed bounds

Augmented bounds

Relaxed bounds

center

+
Build mirror images

Image polyhedron

Image polyhedron

Enclosing parallelepiped

(a)

(b)

(c)

84

4.5.1 Relaxed Bounds Revisited

We have seen in (4.7) that the relaxed bounds must be in the form , whereR is

lower-triangular with a unit diagonal. Part (c) of Figure 4.6 demonstrates bounds of this

form. In scalar terms, thej-th array index, , is bounded by a pair of affine functions in

the preceding indices (i.e., , …,) that differ only in the constant term:

(4.19)

Geometrically, the enclosing parallelepiped is delineated bym pairs of parallel hyper-

planes, one pair for each array dimension. The two hyperplanes for thej-th dimension are

defined by (4.19). They must be parallel to the (j+1)-st throughm-th dimensions but not

the j-th (they may or may not be parallel to the first dimensions). In the case of two

dimensions (the first vertical and the second horizontal), this means that we are looking

for a parallelogram delineated by a pair of parallel lines () that are parallel to the

second dimension but not the first (in short, horizontal) and another parallel pair ()

that are not parallel to the second dimension (in short, vertical or slanted). In other words,

we want a parallelogram with a pair of horizontal sides — just as discussed in Section 4.3.

In the case of three dimensions (with the third dimension perpendicular to this page of

paper), this parallelogram “grows out from the page toward the reader,” and the resulting

“pillar,” whose cross-section is a parallelogram with a pair of horizontal sides, is limited

by a third pair of parallel planes () that arenot perpendicular to this page (i.e.,not

parallel to the third dimension pointing out from the page).

Furthermore, we want the relaxed bounds to be tight. Specifically, we want to mini-

mize the difference between and in each dimension so that the amount of memory

required is minimized. We have seen in (4.16) on page 80 that the restructured array needs

memory for roughly elements. Minimizing helps to

reduce this summation in two ways: it reduces the term directly (is the

same whatever might be); it also reduces the terms for

r l Ry ru≤ ≤

yj

y1 yj 1–

yj Rjkyk–
k 1=

j 1–

∑ r lj+≥ yj Rjkyk–
k 1=

j 1–

∑ ruj+≤

j 1–

j 1=

j 2=

j 3=

r l ru

wk ruk r lk–()
k 1=
m∑ 1+ ruk r lk–

wk ruk r lk–() wk

ruk r lk– wj ruj r lj–() 1 j k<≤

85

indirectly by decreasing the value that must exceed in the algorithm in Figure 4.5 on

page 78.

To sum up, the requirements on the relaxed bounds and, equivalently, the enclosing

parallelepiped are as follows.

• Form. The relaxed bounds and enclosing parallelepiped have the form specified in

(4.7), discussed in detail above.

• Inclusion. Any vector satisfying the transformed bounds computed in Section 4.1

also satisfies the relaxed bounds. In geometrical terms, the enclosing parallelepiped

must, needless to say, enclose the image polyhedron.

• Tightness. The relaxed bounds and enclosing parallelepiped are tight. In algebraic

terms, is minimized. In geometrical terms, each pair of parallel faces of the

enclosing parallelepiped are as close together as possible.

4.5.2 Symmetric Image Polyhedron

Our algorithm for finding the relaxed bounds applies to convex polyhedra symmetric

about a point. By symmetry, we mean that there exists a pointc (the center of symmetry

or, simply, the center) such that if any pointy is in the polyhedron, its mirror image

(the point “on the opposite side of the center”) is also in the polyhedron. All three poly-

gons in Figure 4.6 exhibit this symmetry.

Our algorithm always applies to the transformed bounds because the image polyhe-

dron is a parallelepiped (we justify this shortly) and any parallelepiped is symmetric in the

sense above. The center of a parallelepiped is the intersection of the hyperplanes exactly

halfway between pairs of parallel faces of the parallelepiped. For example, in each poly-

gon in Figure 4.6, the center can be obtained by intersecting the slanted line halfway

between the two slanted sides and their horizontal or vertical counterparts.

wj

ruj r lj–

2c y–

86

In the case of transformed array bounds, we can see directly that the image polyhedron

is symmetric. We know that the original array indices lie within the original array bounds:

(4.20)

where the vectors and are respectively the lower and upper bounds of the original

array. With these, we define

(4.21)

This must be the center of the image polyhedron. For any pointy in the image polyhedron,

there is anx satisfying the original bounds (4.20) such that . The mirror image ofy

about the centerc is

(4.22)

Sincex satisfies the original bounds (4.20), so does . Therefore, is also

in the image polyhedron.

Having verified that the image polyhedron is symmetric, we discuss in the next few

subsections an algorithm to find the relaxed bounds for any polyhedron having this kind of

symmetry.

4.5.3 Computing Augmented Bounds

Using the Fourier-Motzkin algorithm [Schrijver 1986], the algorithm first of all computes

the augmented bounds — a set of inequalities that is equivalent to the transformed bounds

but contains more information. In geometrical terms, the Fourier-Motzkin projects the

image polyhedron onto successively lower-dimensional subspaces formed by the firstj

dimensions (forj from down to 1). The resulting inequalities are divided intom

subsets. Thej-th subset delineates the projection of the image polyhedron onto the firstj

dimensions. Since inequalities in this subset are within the subspace of the firstj dimen-

bl x bu≤ ≤

bl bu

c
1
2
---T bl bu+()=

y Tx=

2c y– T bl bu+() Tx– T bl bu x–+()= =

bl bu x–+ 2c y–

m 1–

87

sions, they involve , possibly , …, , but never , …, . In other words, the

coefficient for is not zero, those for , …, may be, and those for , …,

always are. Part (b) of Figure 4.6 illustrates the augmented bounds. The first pair of ine-

qualities, as well as the pair of horizontal lines it corresponds to, delineates the projection

of the image polyhedron onto the first dimension . The second and third pairs of ine-

qualities are the transformed bounds, rewritten as lower and upper bounds on in terms

of .

Divided into such subsets, the augmented bounds can be written in the following form.

For , thej-th subset gives the bounds on in terms of the preceding vector com-

ponents , …, :

(4.23)

where () is the lower (upper) bound on and is the maximum (minimum) of

one or more affine functions in , …, . (The bounds on are constants.) For exam-

ple in Figure 4.6(b), and together are written as .

Notice that this form of writing the bounds begins to resemble the form required by (4.19)

on page 84 in Section 4.5.1. We would get the required form if we could somehow replace

 and by suitable affine functions in the same arguments, namely , …,

. The next few sections aim to do precisely this. In later discussion, we will repeat-

edly use the following property of the augmented bounds.

Lemma 4.1: For any , …, satisfying the augmented bounds for the firstj dimen-

sions, there exists , …, such that allm components ofy satisfy the entire set of

augmented bounds.

This property is a known result of the Fourier-Motzkin algorithm [Schrijver 1986]; we

do not attempt to justify it on our own. Its converse is trivially true: for any , …, sat-

isfying all the augmented bounds, the firstj components of course satisfy the bounds for

the firstj dimensions. For instance, in part (b) of Figure 4.6, the two thick horizontal lines

yj y1 yj 1– yj 1+ ym

yj y1 yj 1– yj 1+ ym

y1

y2

y1

1 j m≤ ≤ yj

y1 yj 1–

l j y1 … yj 1–, ,() yj uj y1 … yj 1–, ,()≤ ≤

l j …() uj …() yj

y1 yj 1– y1

y2 0≥ y2 y1 50–≥ y2 max0 y1 50–,()≥

l j …() uj …() y1

yj 1–

y1 yj

yj 1+ ym

y1 ym

88

are augmented bounds for the first dimension. If they were too close together, the aug-

mented bounds would not be equivalent to the transformed bounds because some vectors

within the latter would be excluded by the former. If they were too far apart, there would

be values of between them for which there is no such that the complete vector y lies

within the image polyhedron.

In summary, the Fourier-Motzkin algorithm finds the augmented bounds, which have

the form (4.23) where the bounds for a dimension are functions of preceding dimensions.

4.5.4 Computing Center of Symmetry

Next, we compute the image polyhedron’s center of symmetry. In fact, this can be done

directly from the transformed bounds without first computing the augmented bounds, as

we have alluded to when arguing in Section 4.5.2 that the image polyhedron is symmetric.

We simply apply the index transformationT to the center of the rectilinear region for the

original bounds, which is obtained by averaging the lower and upper bounds of each

dimension. However, this section presents a more tortuous but also more general method

that applies even when the bounds of the restructured array are not simply the image of the

original array bounds — a situation arising from partial restructuring, which will be dis-

cussed in a later chapter.

With the augmented bounds in (4.23), we can compute the image polyhedron’s center

of symmetryc recursively as follows:

(4.24)

where and are as defined in (4.23). We show below thatc is indeed a center

of symmetry. In fact, it isthe center because any center would be equal toc.

Lemma 4.2: Supposec is defined as in (4.24) and is a center of symmetry of the image

polyhedron. Then, and for all .

y1 y2

cj
1
2
--- l j c1 … cj 1–, ,() uj c1 … cj 1–, ,()+[]= j 1 … m, ,=

l j …() uj …()

c′

cj cj ′= l j c1 … cj 1–, ,() cj≤ uj c1 … cj 1–, ,()≤ 1 j m≤ ≤

89

Proof: This can be justified by induction onj. Assume that it is true for allk such that

. We argue that it would then be true forj as well. (The case for can follow

exactly the same argument since the assumption is trivially true for .) Our strategy

is to show that can be neither greater nor less than and therefore must equal .

First, assume for the sake of argument that . Because satisfy the

bounds for the first dimensions, by Lemma 4.1 there exists a vector such that the

first components of are equal to those ofc and satisfies all the augmented

bounds. In particular,

(4.25)

It follows that . Hence, , …, ,

satisfy the bounds for the firstj dimensions. Again by Lemma 4.1 there exists a pointz in

the image polyhedron such that , …, , and . Let

 be the mirror image ofz about . Being the mirror image ofz, also satisfies the aug-

mented bounds. Thej-th component of would then be

(4.26)

(The last line is obtained by substituting the definition of in (4.24).) This is less than

 because we assume that . Therefore, violates the augmented

bounds for thej-th dimension — a contradiction — and the tentative assumption that

 must be false.

The possibility that is similarly rejected by considering a pointz such that

 and arguing that thej-th component of its mirror image exceeds

. Hence, the only possibility is that .

1 k j<≤ j 1=

j 1=

cj c′j c′j

cj c′j> c1 … cj 1–, ,

j 1– γ

j 1– γ γ

l j c1 … cj 1–, ,() γj uj c1 … cj 1–, ,()≤ ≤

uj c1 … cj 1–, ,() l j c1 … cj 1–, ,()≥ c1 cj 1– uj c1 … cj 1–, ,()

z1 c1= zj 1– cj 1–= zj uj c1 … cj 1–, ,()=

z′ c′ z′

z′

z′j 2c′j uj c1 … cj 1–, ,()–=

2cj uj c1 … cj 1–, ,()– 2 c′j cj–()+=

l j c1 … cj 1–, ,() 2 c′j cj–()+=

cj

l j c1 … cj 1–, ,() cj c′j> z′

cj c′j>

cj c′j<

zj l j c1 … cj 1–, ,()=

uj c1 … cj 1–, ,() cj c′j=

90

Finally, note that because is the average of

 and (see (4.24)), and

(see (4.25)). This completes the proof.

4.5.5 Computing Relaxed Bounds

Having found the image polyhedron’s center of symmetry by (4.24), we are ready to com-

pute the relaxed bounds and, equivalently, the enclosing parallelepiped. As before, we

describe the algorithm first and then argue that what it computes meets our requirements.

Algorithm

For j ranging from 1 tom, we evaluate at the affine functions making up

the lower bound function and select the one producing the maximum value. Sup-

pose this affine function has coefficients and offset ; in other words, it is given by

. We include the following inequality in the relaxed bounds:

(4.27)

In Figure 4.6(c), these inequalities (one per dimension) are listed on the left and corre-

spond to the two black lines in the index space. They are selected from the augmented

bounds in Figure 4.6(b); the striped lines are omitted. We write them in vector form as

(4.28)

whereF is a lower-triangular matrix with a zero diagonal and whose elements in the lower

triangle are , as illustrated by the first vector inequality in Figure 4.6(c). To this set of

m inequalities, we add its mirror image about the center:

(4.29)

l j c1 … cj 1–, ,() cj uj c1 … cj 1–, ,()≤ ≤ cj

l j c1 … cj 1–, ,() uj c1 … cj 1–, ,() uj c1 … cj 1–, ,() l j c1 … cj 1–, ,()≥

c1 … cj 1–, ,

l j …()

Fjk fj

Fjkykk 1=
j 1–∑ fj+

yj Fjkyk
k 1=

j 1–

∑ fj+≥ yj Fjkyk
k 1=

j 1–

∑– fj≥⇔

I F–() y f≥

Fjk

I F–() y 2 I F–() c f–≤

91

These correspond to the two grey lines. Combining the two sets of inequalities (4.28) and

(4.29), we obtain the full set of relaxed bounds:

(4.30)

These bounds satisfy the three requirements stated in Section 4.5.1: they have the right

form, include the transformed bounds, and are tight. We consider each of these in turn.

Form

First, the bounds are in the form required by (4.7) in Section 4.4.1, with

, , (4.31)

This follows from the observation that is lower-triangular with a unit diagonal. At

this point, we take note of the following lemma on , which is the “distance”

between each pair of parallel hyperplanes forming the enclosing parallelepiped. This

result will be used in later discussion.

Lemma 4.3: for .

Proof: When computing the relaxed bounds, we include bounds selected from the aug-

mented bounds according to (4.27). Recall that is the maximum of affine

functions in , …, , and the algorithm picks the one yielding that maximum at ,

…, . Therefore, at those values the maximum and the selected affine function have

the same value:

(4.32)

Substituting this into the right-hand side of this lemma, we get

(4.33)

f I F–() y 2 I F–() c f–≤ ≤

r l f= ru 2 I F–() c f–= R I F–=

I F–

ruj r lj–

ruj r lj– 2cj 2l j c1 … cj 1–, ,()–= 1 j m≤ ≤

l j y1 … yj 1–, ,()

y1 yj 1– c1

cj 1–

l j c1 … cj 1–, ,() Fjkck
k j 1+=

m

∑ fj+=

2cj 2l j c1 … cj 1–, ,()– 2cj 2 Fjkck
k j 1+=

m

∑

– 2fj–=

92

which is thej-th component of

(4.34)

by the definition of and in (4.31) above. In other words, the right-hand side of this

lemma equals , as is to be proved.

Inclusion

Second, any vectory that satisfies the transformed bounds also satisfies the relaxed

bounds. To see this, consider each half of the relaxed bounds in turn. For the half selected

from the augmented bounds, (4.28), we know that any vectory satisfying the transformed

bounds also satisfies all the augmented bounds and, of course, any subset. For the mirror

image half, (4.29), note that the mirror image ofy aboutc satisfies the transformed bounds

because of the symmetry. Therefore, it also satisfies (4.28), which implies thaty satisfies

(4.29):

(4.35)

Tightness

Third, the relaxed bounds are at least as tight as any set of bounds satisfying the two

requirements above. Consider an alternative set of bounds: . We claim that

 for or, in vector form, .

To see this, we select two vectors within the transformed bounds that are mirror

images of each other aboutc. For everyj, a different pair is chosen and their “distance”

along thej-th dimension is considered. In Figure 4.6(c), the points for are marked

by unfilled squares, and those for by unfilled triangles. In general, the first

components of both vectors are , …, . The other components are chosen as fol-

lows. First, from Lemma 4.2 we know that , …, satisfy the bounds for the first

 dimensions. Therefore, by Lemma 4.1 there exists a vector that has the same first

2c 2Fc– 2f– 2 I F–() c 2f– ru r l–= =

r l ru

ruj r lj–

I F–() 2c y–() f≥ I F–() y 2 I F–() c f–≤⇔

r ′l R′y r′u≤ ≤

r ′uj r ′lj–() ruj r lj–()≥ 1 j m≤ ≤ r ′u r ′l–() ru r l–()≥

j 1=

j 2= j 1–

c1 cj 1–

c1 cj 1–

j 1–

93

 components and satisfies all the bounds, in particular those for thej-th dimension. Its

existence implies that the lower bound for thej-th dimension, , does not

exceed the upper bound, . It follows that , …, , sat-

isfy the bounds for the firstj dimensions. Therefore, again by Lemma 4.1, there exists a

vector, sayz, within the bounds and whose firstj components are , …, , and

. Similarly, we construct the vector within the bounds and whose firstj

components are , …, , and . In summary,

(4.36)

Sincez and are within the transformed bounds, they both satisfy the alternative

bounds . In particular, for thej-th dimension

(4.37)

Negating the first inequality and adding the second would eliminate the two summations

and yield

(4.38)

Substituting into the right-hand side the definition of in (4.24) on page 88 and then

applying Lemma 4.3 on page 91, we have

(4.39)

as we wish to prove.

j 1–

l j c1 … cj 1–, ,()

uj c1 … cj 1–, ,() c1 cj 1– l j c1 … cj 1–, ,()

c1 cj 1–

l j c1 … cj 1–, ,() z′

c1 cj 1– uj c1 … cj 1–, ,()

z1 z′1 c1= = … zj 1– z′j 1– cj 1–= =

zj l j c1 … cj 1–, ,()=

z′j uj c1 … cj 1–, ,()=

z′

r ′l R′y r′u≤ ≤

r ′lj zj R′jk zk
k j 1+=

m

∑–≤ l j c1 … cj 1–, ,() R′jk ck
k j 1+=

m

∑–=

r ′uj z′j R′jk z′k
k j 1+=

m

∑–≥ uj c1 … cj 1–, ,() R′jk ck
k j 1+=

m

∑–=

r ′uj r ′lj– uj c1 … cj 1–, ,() l j c1 … cj 1–, ,()–≥

cj

r ′uj r ′lj– 2cj 2 l j c1 … cj 1–, ,()–≥ ruj r lj–=

94

In conclusion, the relaxed bounds as given by (4.30) are at least as tight as alternative

bounds — in every dimension. They are therefore as efficient in memory use as other

bounds of the same form.

Using the algorithm presented so far in this chapter, we allocate for the restructured

array at most roughly times the memory needed for storing array elements, wherem is

the number of array dimensions. A proof is given in Appendix A. For two dimensions, the

worst case occurs when, for example, the image polyhedron is a square with horizontal

and vertical diagonals, as Figure 4.7 illustrates. A worst case in three dimensions is analo-

gous: a cube with diagonals along the three natural, orthogonal dimensions. Such cases are

rare in our experience. Access patterns that require skewing of array indices typically

occur in banded matrix applications, where the arrays have one long dimension and one or

more short dimensions to store a narrow band of matrix elements.

4.5.6 Summary

Our algorithm for computing the relaxed bounds applies to transformed bounds that are

symmetric. First, using the Fourier-Motzkin algorithm, the algorithm computes the aug-

mented bounds, which are equivalent to the transformed bounds but divided into bounds

for each dimension dependent on preceding dimensions only. Next, we compute the center

of symmetry according to (4.24). Finally, the relaxed bounds are constructed from a spe-

cially chosen subset of the augmented bounds and its mirror image according to (4.30).

m!

Figure 4.7: Worst-Case Example of Memory Use

Image polyhedron
Enclosing parallelepiped

95

The relaxed bounds thus computed are shown to have the required form, to include all

vectors included by the transformed bounds, and to require the least memory among

bounds meeting the other two conditions.

4.6 Summary

Laying out elements of the restructured array is difficult. The traditional method does not

apply because of the generality of our index transformations. We have to find a lineariza-

tion vector for the restructured array that is integral and represents a row-major storage

order — the key assumption in our earlier analysis. To do that, we first compute the

bounds of the restructured array by linearly transforming the original array bounds. Then,

the transformed bounds are relaxed to a special form amenable to a further transformation

that preserves the improvement of previous transformations. Finally, we calculate a linear-

ization vector from the relaxed bounds.

96

Chapter 5

Partial Restructuring

In the preceding chapters, we have assumed that restructuring is always applied to the

entire array. However, a loop may access only a small part of an array, in which case

restructuring the whole array is unnecessary. For example, a loop may use only part of a

large array that is statically declared to accommodate the maximum problem size. Some-

times, an array access may cover only a subspace of the full array index space, such as a

row, column, or diagonal of a two-dimensional array. Also, an access may touch only a

subset of regularly spaced elements in an array, such as the elements with even indices.

In this chapter, we discuss restructuring only that part of an array that is accessed by a

given loop. In other words, only the accessed elements are placed in the restructured array.

Not only does this reduce memory and copying overheads by decreasing the size of the

restructured array, it also improves spatial locality further because array elements are

stored more compactly in fewer cache lines. We describe how to determine the set of

accessed elements and how to extract only those elements into the restructured array —

without deviating from the affine framework of Chapter 2. In those cases that our partial

restructuring techniques do not handle, we can and do fall back to restructuring the entire

array.

Two sets of techniques are presented. The first deals with elements regularly spaced in

the index space (like a checkerboard, for instance). The second applies when the loop

touches elements in a restricted region of the index space (e.g., only those with indices

between 1 and 100).

97

5.1 Regularly Spaced Elements

This section presents techniques to restructure only elements that are regularly spaced in

the index space in the form of a “lattice.” Such access patterns arise from array indices

with non-unit strides. We start by extending the transformation framework. This is fol-

lowed by an algorithm to choose the transformation for a single access and finally tech-

niques for multiple accesses. As in previous chapters, array bounds are not considered for

the moment; they are dealt with in the next section.

5.1.1 Extending the Framework

Consider the example in Figure 5.1. We concentrate on the upper half here; the lower half

is discussed later in Section 5.1.2. Both the inner and outer loops go through the two-

dimensional array at strides of two. Only elements with an even row index () and odd

column index () are accessed. To improve locality, not only should we transpose the

array so that the inner loop accesses a row of elements, but we also want the restructured

array to contain only those accessed elements. The figure shows how this is achieved.

The index transformation is extended from to

(5.1)

wherex andy, as before, are the original and transformed index vectors respectively,T is

an transformation matrix, andt anm-dimensional offset vector (m being the num-

ber of array dimensions). This transformation departs from earlier discussion in two ways:

• its matrixT is nonsingular — possibly non-integral and hence non-unimodular;

• it has an additional offset vectort, which may also be non-integral.

Because of the non-integral matrixT and offset vectort, some (integral) original index

vectorsx may be mapped to non-integral vectors in the transformed index space. Being

non-integral, the latter cannot identify any element in the restructured array. However, this

x1

x2

y Tx=

y Tx t+=

m m×

98

Figure 5.1: Restructuring Regularly Spaced Elements

y1

y2

Array index space (x)

x2

Transformed array index space (y)

x1

y1

y2

0
1
2

1
2
--- 0

x1

x2

1
2
---–

0

+=

x1

x2

0 2

2 0

i1
i2

0

1
+=

y1

y2

1 0

0 1

i1
i2

0

0
+=

FOR i1 = …
FOR i2 = …

… X[2*i2,2*i1+1] …

FOR i1 = …
FOR i2 = …

… X2[i1,i2] …

y Tx t+=

S 0 1

1 0
=

HSA
1–

1
2
--- 0

0
1
2

=

t
1
2
---–

0

=

99

is not a problem. Such original index vectors correspond to elements that are not accessed

anyway; there are no corresponding elements in the restructured array, as it should be.

Index vectors for elements thatare accessed are always mapped to integral vectors, which

do identify the corresponding restructured array elements. In fact, this is precisely the

mechanism by which unaccessed elements (whose transformed index vectors would be

non-integral) are omitted from the restructured array. We say that an element isselected by

the index transformation if its transformed index vector is integral, andomitted otherwise.

Although T or t may be non-integral, index computation can still be done strictly in

integer arithmetic since in choosingT andt we ensure that the transformed access has an

integral access matrix and offset vector. This is crucial because it means that the usual

compiler code generation and optimization techniques continue to apply despite the non-

integral index transformation.

The extra offset vectort does not affect the access pattern, but merely shifts it. This

neither improves nor degrades locality. Recall that in Section 2.3 we have considered add-

ing an offset vector to our linear array transformation but have decided against it because

it does not change the storage order of elements. That conclusion remains true. We add the

offset here only to make the transformed array indices integral.

Having introduced the basic idea of restructuring regularly spaced elements, we next

consider how the transformation is chosen.

5.1.2 A Single Access

As mentioned above, we extend the index transformation from linear to affine and the

transformation matrix from unimodular to nonsingular: . NeitherT nor t is nec-

essarily integral, althoughx andy must be. Since the transformed index vectory is an

affine function of the original index vectorx, which is itself an affine function of the itera-

tion vectori (i.e.,) we can expressy directly in terms ofi:

(5.2)

y Tx t+=

x Ai a+=

y Tx t+ TA() i Ta t+()+= =

100

The use of affine rather than linear index transformations complicates the transformed

array bounds only slightly. Instead of , we have . Hence, the

original array bounds, written in the form of a vector inequality (see (4.4) on

page 67), are transformed to (c.f. (4.6) on page 68). The rest of

the linearization procedure in Chapter 4 still applies.

This section discusses what we require ofT andt and how to compute them. Only a

single array access is considered; the case for multiple accesses is left to the next section.

Requirements onT and t

Our requirement for the transformation consists of two parts that mirror each other.

First, any iteration vectori, which is of course integral, must be mapped to an integral

transformed index vectory. In other words, any element accessed by some iteration must

have an integral transformed index vector and therefore is selected by the index transfor-

mation. Related to this, we further require thaty can be computed fromi using only inte-

ger arithmetic. Second, and conversely, any integral transformed index vectory should

correspond to one or more integral iteration vectorsi. This means that all elements in the

restructured array really are accessed by some iterations or, equivalently, all elements

selected by the index transformation are accessed by some iteration(s). For example in

Figure 5.1, if the transformation were only an array transpose, the elementX2[3,1]

would store the value ofX[1,3] , which is not accessed by any iteration because its row

index is odd.

To satisfy the two requirements above, we require that

• and are both integral, and

• ’s Hermite normal form1 is the identity matrix.

1. For any matrix of full row rank, say , there exists an unimodular matrix such that
 where the matrix is in Hermite normal form (see page 44 for an earlier discus-

sion on Hermite normal form). is the Hermite normal form of [Schrijver 1986].

x T
1–
y= x T

1–
y t–()=

Bx b≥

BT
1–

y b BT
1–
t+

≥

TA Ta t+

TA

m n× Γ n n× U
ΓU HΓ 0[]= m m× HΓ

HΓ Γ

101

Let us consider each in turn. First, in order that any integrali is mapped to an integral

y according to (5.2), we want both and to be integral. This is clearly a suffi-

cient condition, guaranteeing thaty can be computed fromi using only integer operations.

It is also a necessary condition. If were not integral (say in thej-th column), two inte-

gral vectors differing only in thej-th dimension by 1 would be mapped to two vectors dif-

fering by thej-th column of , at least one of which must be non-integral because their

difference is not integral. Thus, has to be integral. Given that, must also be

integral becausey, i, are all integral, and .

Second, in order that any integraly corresponds to some integrali according to (5.2),

we want the Hermite normal form of , denoted , to be the identity matrix. We now

explain why. If equals the identity matrix, then by the definition of Hermite normal

form, for some unimodular matrixU. In other words,

(5.3)

Thus, given any integral vectory, we can find a corresponding iteration vectori (there may

be many) as follows: lengthen them-dimensional vector ton dimensions

with appended zeros, and left-multiply the lengthened vector byU. To verify that

the resultingi corresponds to the giveny, we substitute it into the right-hand side of (5.2):

(5.4)

Finding T and t

We now describe how to computeT and t to meet the above requirements: and

 are integral, and ’s Hermite normal form is the identity matrix. This is done in

three steps as illustrated in the lower half of Figure 5.1.

TA Ta t+

TA

TA

TA Ta t+

TA y TA() i Ta t+()+=

TA HTA

HTA

TA() U I 0[]= n n×

TA I 0[] U
1–

=

y Ta t+()–

n m–

TA() i Ta t+()+ I 0[] U
1–

U
y Ta t+()–

0
 Ta t+()+=

I 0[]
y Ta t+()–

0
Ta t+()+=

y=

TA

Ta t+ TA

102

1. Compute a nonsingular matrix, denotedS, to flatten the columns of the access

matrix exactly as described earlier in Section 3.2.2. Roughly speaking, this matrix

represents a transformation to reorder the elements as appropriate. In Figure 5.1,S

is , corresponding to an array transpose to make the innermost loop go through

array elements row by row.

2. Compute the Hermite normal form2 of , denoted . Choose .

Intuitively, the matrix represents an additional transformation to omit unac-

cessed elements while preserving the effect of the previous transformationS. In the

example, array indices are halved. As Figure 5.1 illustrates, this may lead to non-

integral array indices. (Notice that the circles lie between grid points.) This problem

is remedied by the next step.

3. Choose . Adding the offset vectorst makes the non-integral index vectors

integral by shifting all of them by a suitable non-integral amount (in the example,

up by).

We now argue more formally that these choices forT and t meet our requirements.

First of all, choosing fort makes zero and hence integral. As for , by the

definition of Hermite normal form for some unimodular matrixU.

Therefore,

(5.5)

Because is the inverse of a unimodular matrix, it is also unimodular and thus by inte-

gral by definition. Furthermore, this very equation also indicates that the Hermite normal

form of isI, as required. Thus, the requirements on are also met.

2. Strictly speaking, the Hermite normal form exists only for matrices of full row rank (i.e., the rank is equal
to the number of rows). The access matrixA is not necessarily of full row rank; hence neither is . How-
ever, our algorithm for findingS from A (Figure 3.6 on page 39) ensures that the height of matrix is the
same as its rank. (Recall that our algorithm guarantees that the transformed access matrix has identical
height and rank profiles.) Therefore, consists of rows of zeros followed by a

 submatrix of full row rank. In the rest of our discussion, “ ” refers to this submatrix.

0 1

1 0

SA HSA T HSA
1–

S=

SA
SA

SA m rank SA()–
rank SA() n× SA

HSA
1–

t Ta–=

1
2

Ta– Ta t+ TA

SA() U HSA 0[]=

TA HSA
1–
S

A HSA

1–
SA() HSA

1–
HSA 0[] U

1–
I 0[] U

1–
= = = =

U
1–

TA TA

103

Finally, and have identical height profiles because as and

, like its inverse , is lower-triangular. This means thatT andS are equally “good”

in flattening the columns of the access matrix.

5.1.3 Multiple Accesses

Multiple accesses are handled with a slightly adapted algorithm. As usual, we start with

our requirements and then present the algorithm for satisfying them. Figure 5.2 illustrates

the algorithm. In this example, the computed transformation transposes the array so that

the inner loop goes through a row of elements, and omits from the restructured array ele-

ments that are not accessed at all.

Requirements

The requirements are similar to those in the last section. In order that the restructured

array includes all accessed elements, for every access, any integral iteration vectori must

be mapped to an integral transformed index vectory. As before, we ensure this by requir-

ing that both and are integral for each access. However, it may not always be

possible to satisfy the converse requirement because of the regularity of affine index trans-

formations. In other words, not every integraly corresponds to some integral iteration vec-

tor i for at least one of the accesses; the restructured array could contain elements not

really accessed by any iteration. Nevertheless, the index transformation we compute is

minimal: it selects no more elements than any affine transformation satisfying the first

requirement. Before justifying this claim, let us first describe how we compute the trans-

formation.

Algorithm

The algorithm to computeT andt resembles that in the last section for a single access.

In fact, it reduces to the latter when there is only one access. The main difference lies in

TA SA TA HSA
1–

SA()=

HSA
1–

HSA

TA Ta t+

104

C 1 2 0 2

1– 2 2 0
=

Figure 5.2: Restructuring Regularly Spaced Elements for Multiple Accesses

y1

y2

Array index space (x)

x2

Transformed array index space (y)

x1

y1

y2

0 1

1
2
--- 1

2
---–

x1

x2

1–

1
2

+=

x1

x2

0 2

2 0

i1
i2

0

1
+=

y1

y2

2 0

1– 1

i1
i2

0

0
+=

FOR i1 = …
FOR i2 = …

… X[2*i2,2*i1+1] …
… X[2*i1+2*i2+1,2*i1] …

FOR i1 = …
FOR i2 = …

… X2[2*i1,i2-i1] …
… X2[2*i1-1,i2+1] …

x′1
x′2

2 2

2 0

i1
i2

1

0
+=

y′1
y′2

2 0

0 1

i1
i2

1–

1
+=

0

1
Reference offset is

y Tx t+=

HSC
1–

1 0

1
2
---–

1
2

=

S 0 1

1 0
= t

1–

1
2

=

Relative
offset

Access
matrix
columns

105

the new steps 2 and 3 to construct a special matrix. The lower half of Figure 5.2 serves as

our example in the following discussion.

1. Compute matrixS from the aggregate matrix formed from columns of the individ-

ual access matrices, as described before in Section 3.3.1. This transformation reor-

ders elements for better locality. In the figure, the matrix in effect transposes

the array. As in the last section, what remains to be done is finding further transfor-

mations to omit the unaccessed elements without nullifying the effect ofS.

2. Choose any one of the accesses as the “reference.” Call the offset vector of the ref-

erence access thereference offset, denoted . In Figure 5.2, we pick the first

access as the reference; is thus . For each access, compute itsrelative offset,

namely the difference between its offset vector and the reference offset. The array

index vector can thus be expressed as . Below, we will make

each access’s integral by making both and integral.

3. Compose a matrix,C, with relative offsets and access matrix columns from all

accesses. (In Figure 5.2,C is shown in the middle with a dashed line separating the

two parts.) The columns ofC can be in any order. We will explain the significance

of C shortly. Note that when there is only one access,C is simply the access matrix,

and the next two steps reduce to steps 2 and 3 in the last section.

4. Compute the Hermite normal form of , denoted . Choose . As

before, intuitively represents a transformation that omits unaccessed elements

from the restructured array.

5. Choose , like in the last section, to shift index vectors resulting from

step 4 so that they all become integral.

As in the last section,T is as good asS in flattening access matrix columns. Because

 and is lower-triangular, for any access matrixA both transformed access

matrices and must have the same height profile.

0 1

1 0

aref

aref
0

1

Ai a aref–() aref+ +

Ta t+ T a aref–() Taref t+

SC HSC
1–

T HSC
1–

S=

HSC
1–

t Taref–=

T HSC
1–

S= HSC
1–

SA TA HSC
1–

SA()=

106

Moreover, the index transformation thus computed ensures that for every access,

and are integral as required. Let us explain why. First of all, because is the

Hermite normal form of , is integral, for the same reason as why is integral in

the last section. Recall that the columns ofC are each access’s relative offset and

access matrix columns. Therefore, the product ofT with them must be integral: for every

access, and are integral. Moreover, step 5 ensures that is inte-

gral (in fact, zero). It follows from these two observations that for each access, and

 (which equals) are both integral, as we require.

Computed Index Transformation Is Minimal

Although the computed index transformation may select elements that are not really

accessed, it is minimal in that it selects no more elements than other index transformations

that also select all the accessed elements. In other words, any element selected by our

transformation is also selected by such an alternative. Let the alternative index transforma-

tion be .

To justify this claim, we first have to argue that must be integral. For the sake of

argument sake, suppose it were not. Recall that the columns ofC originate from access

matrices or relative offsets. Again for the sake of argument, suppose further that one of the

non-integral columns in originates from thej-th column of some access matrixA.

Then, for that access, the transformed access function would

map two iteration vectors differing by 1 in thej-th dimension to two transformed index

vectors differing by thej-th column of . If, as we have assumed, this column is not

integral, the two index vectors cannot both be integral and hence the two elements cannot

both be selected by the alternative transformation, even though both elements are accessed

and therefore should be selected. Hence, the non-integral columns in , if any, could

not have originated from access matrices.

TA

Ta t+ HSC

SC TC TA

a aref–

T a aref–() TA Taref t+

TA

Ta t+ T a aref–() Taref t+()+

y T′x t′+=

T′C

T′C

y T′A() i T′a t′+()+=

T′A

T′C

107

Moreover, they could not have originated from relative offsets either. Again, suppose

for argument’s sake that one of them were. Let that access be . The transformed

access can be written as

. (5.6)

Compare it with the transformed reference access:

(5.7)

Note that and are integral as we have concluded in the last paragraph, but

 is non-integral as we assume in this paragraph. Therefore, for any integral

iteration vectori, the two index vectors (5.6) and (5.7) cannot both be integral: if (5.6) is

integral, is not and hence neither is (5.7); if (5.7) is integral, is

also integral and hence (5.6) must be non-integral. In other words, these two elements

accessed by iterationi cannot both be selected even though they should. Again, we reach a

contradiction and therefore must conclude that is integral.

Having shown that is integral, we can now argue that any element selected by our

index transformation (i.e., is integral) is selected by the alternative as well (i.e.,

 is also integral). With some minor algebraic manipulations, we have

(5.8)

Based on this, an integral would always imply an integral if both

and are integral, which indeed they are as we show below.

First, let us consider . Substituting the choice forT in step 4 above, we have

(5.9)

Ai a+

T′A() i T′a t′+()+

T′A() i T′ a aref–() T′aref t′+()+ +

T′Aref() i T′aref t′+()+

T′A T′Aref

T′ a aref–()

T′aref t′+() T′aref t′+()

T′C

T′C

Tx t+

T′x t′+

T′x t′+ T′T 1–

Tx t+() t′ T′T 1–
t–

+=

Tx t+ T′x t′+ T′T 1–

t′ T′T 1–
t–

T′T 1–

T′C T′T 1–
TC T′T 1–

HSC
1–

S

C= =

108

By the definition of Hermite normal form, there exists a unimodular matrixU such that

. Substituting this into (5.9) gives us

(5.10)

which implies that

(5.11)

SinceU is unimodular, so is [Schrijver 1986]. By the definition of a unimodular

matrix, is integral. Moreover, we have shown above that is integral. Therefore,

 is also integral.

Next, we consider . Letx be the original index vector of some element

accessed by the loop nest. Both our index transformation and the alternative must select

this element. In other words, both and (see

(5.8)) are integral. As we already know that is integral and hence so is the first term

on the right-hand side, must be integral also. As and are

both integral, according to (5.8) is integral whenever . This completes the

argument for our claim that any element selected by the computed index transformation is

also selected by the alternative transformation.

5.1.4 Summary

We have discussed techniques to restructure a subset of elements regularly spaced in the

index space. The index transformation is affine and has a nonsingular, possibly non-uni-

modular or even non-integral, transformation matrix. Although the transformation may be

non-integral, the algorithm to find the transformation matrixT and offset vectort guaran-

tees that all the transformed access matrices and offsets, namely and , are inte-

gral. This ensures that the restructured array contains all the elements accessed by the loop

but omits those that are not, to the extent allowed by affine index transformations. Specifi-

cally, when there is only one access, we further ensure that our index transformation

SC HSC 0[] U=

T′C T′T 1–

HSC
1–

HSC 0[] U T′T 1–

I 0[] U T′T 1–
0 U= = =

T′C() U
1–

T′T 1–
0=

U
1–

U
1–

T′C

T′T 1–

t′ T′T 1–
t–

Tx t+ T′T 1–

Tx t+() t′ T′T 1–
t–

+

T′T 1–

t′ T′T 1–
t– T′T 1–

t′ T′T 1–
t–

T′x t′+ Tx t+

TA Ta t+

109

selects only elements that are actually accessed, and no more. When there are multiple

accesses, however, we cannot guarantee this but our index transformation is minimal in

that it selects no more elements than alternative transformations.

5.2 Range of Index Vectors

The restructured array need not always contain all the elements of the original array. In

some cases, a loop may access only elements with indices within a restricted range, for

example elements 1 to 100 among the 200 elements along some array dimension or one

column of a two-dimensional array. By using such restricted ranges in place of the original

array bounds for our linearization procedure, we can include in the restructured array only

those elements that are really accessed.

This section discusses how to compute, though sometimes approximately, the range of

accessed elements from array index expressions and loop bounds. The required assump-

tions will be presented as they become relevant to the discussion. The analysis below is

not critical for array restructuring: whenever a necessary assumption does not hold, we

can (and do) always fall back to the option of restructuring entire arrays based on trans-

formed array bounds.

We first explain the problem. Then, we present solutions for a single access, followed

by a solution in the case of multiple accesses. We close this section by discussing the how

partial restructuring affects the linearization procedure presented earlier.

5.2.1 The Problem

After choosing an index transformation as in Section 5.1, we want to find the “image” of

the loop bounds in the transformed index space. Specifically, we wish to compute the set

of transformed index vectors that correspond to one or more iteration vectorswithin the

loop bounds.

110

Even for a single affine access, this problem is much harder than the seemingly similar

problem solved in Section 4.1 — computing the transformed array bounds from the origi-

nal array bounds. In that problem, the transformation is invertible because the transforma-

tion matrix T is nonsingular. Here, however, the transformed access matrix may be

singular, and therefore the mapping may not be invertible.

Figure 5.3 illustrates the difficulties. Part (a) shows the easy case where is nonsin-

gular. The image of the loop bounds can be computed just as before by substituting

 into the bounds oni (i.e., the loop bounds). In part (b), is

of full column rank but not full row rank. The above substitution is invalid because

has no inverse. The single loop accesses only one dimension, specifically a row, of a two-

dimensional array. Part (c) is difficult for the opposite reason: is of full row rank but

not full column rank. The two inner loops covers a square in the index space; the outer-

most loop shifts this square diagonally, sweeping out the shaded region. In both parts (b)

and (c), it is not obvious how to find the image. Finally, part (d) combines the difficulties

of (b) and (c): is neither of full row rank nor of full column rank. The inner loop cov-

ers a diagonal line segment; the outer loop shifts it diagonally, thus sweeping out a longer

diagonal line segment. While it is perhaps possible to handle each special case with a spe-

cialized technique, we prefer to deal with them uniformly, as we now discuss.

5.2.2 Solutions

The problem is to find the image of the loop bounds in the transformed index space. We

make two assumptions. First, the array access has affine index expressions. Second, the

loop bounds can be represented as a conjunctive set of linear inequalities on the loop vari-

ables or, geometrically, as a convex polyhedron in the iteration space. In other words, each

lower (upper) loop bound is the maximum (minimum) of one or more affine functions of

enclosing loop variables. As mentioned earlier, we fall back to restructuring the entire

array whenever our assumptions do not hold.

TA

TA

i TA() 1–
y Ta t+()–[]= TA

TA

TA

TA

111

FOR i1 = 0, 100
FOR i2 = 0, 100

… X2[i1,i2] …

TA 1 0

0 1
= (rank = 2)

FOR i1 = 0, 100
… X2[3,i1] …

TA 0

1
= (rank = 1)

(a) Full row and column rank (b) Full column rank only

(c) Full row rank only (d) Neither full column
rank nor full row rank

FOR i1 = 0, 100
FOR i2 = 0, 100

FOR i3 = 0, 100
… X2[i1+i2,i1+i3] …

FOR i1 = 0, 100
FOR i2 = 0, 100

… X2[i1+i2,i1+i2] …

TA 1 1

1 1
= (rank = 1)TA 1 1 0

1 0 1
= (rank = 2)

Figure 5.3: Examples of Restricted Index Ranges

112

With these assumptions, we can refine the problem statement as follows: given a trans-

formed array access with access function , compute the set of index vectorsy such

that for one or more iteration vectorsi satisfying the loop bounds. The result is

to be represented as a set of linear inequalities on the transformed array indices or, geo-

metrically, as a convex polyhedron in the transformed index space. We discuss two ways

to calculate this result. They both compute the required set of index vectors, although they

are not guaranteed to produce identical sets of inequalities. The first way is conceptually

simpler, but the second has been implemented for efficiency.

One way is to project a polyhedron in the (m+n)-dimensional vector space of onto

the m-dimensional subspace ofy alone3. Specifically, a vector in the (m+n)-dimensional

vector space is , the vector formed by concatenatingy andi. Define a polyhedron,P, in

this (m+n)-dimensional vector space with the following inequalities:

(5.12)

The first line is the loop bounds; the second simply means . ProjectingP onto

them-dimensional subspace ofy produces the set ofy for which there is somei such thaty

and i together satisfy all the inequalities definingP, that is withi within the

loop bounds. Therefore, this set ofy is precisely what we try to compute: the image of the

loop bounds in the transformed index space. To find the projection, we can apply the Fou-

rier-Motzkin algorithm toP to get bounds for each dimension of in terms of preceding

dimensions of the vector, and retain only the bounds for dimensions corresponding toy.

By Lemma 4.1 on page 87, this procedure yields the aforesaid set ofy.

While this method is conceptually simple, we have not implemented it mainly because

of concerns for efficiency. The Fourier-Motzkin algorithm sometimes produces redundant

3. Amarasinghe and Lam have used a similar approach involving the projection of polyhedra to tackle
another problem: generating communication code for distributed-memory multiprocessors [Amarasinghe
and Lam 1993].

Fi f+

y Fi f+=

y

i

y

i

Di d≥
y Fi f+≥ y Fi f+≤

y Fi f+=

y Fi f+=

y

i

113

inequalities. In particular, writing equations as pairs of inequalities may contribute to this

problem [Amarasinghe and Lam 1993]. To avoid generating a large number of spurious

inequalities, we use instead an algorithm that treats equations as equations.

In the second method, roughly speaking we expressi as a function ofy (“inverting”

the function) and then substitute it into the loop bounds to get equivalent bounds on

the index vectory. We have seen that ifF is nonsingular,i can be written in terms ofy as

. If F is singular, however, this fails becauseF has no inverse. Instead, we

expressi in terms ofsome components ofy and possibly some other parameters (both of

which we callindependent components, or simply independents), substitute that expres-

sion into the loop bounds to obtain equivalent bounds on the independents, and finally

project the latter bounds onto the subspace spanned by the independents iny. We now

explain this in more detail with the help of Figure 5.4, which shows how the example in

Figure 5.3(d) is handled step by step.

First of all, to expressi in terms of the independents (to “invert”), we treat

 as an equation in unknownsy andi, rather than a formula to computey from i.

The “solutions” to this equation can be expressed parametrically as

(5.13)

where is an arbitraryn-dimensional vector. Any would give usy and i such that

 because, in fact, the parametric vector is equal toi.

We want to express the same solutions in another way such that the parametric vector

resemblesy more closely. To do this, we first convert intocolumn echelon form

[Bloom 1979]. (The implications are discussed shortly.) For example, the matrix in the

middle of Figure 5.4 is in this form. Intuitively, the top nonzero in each column descends

like a staircase as we go through the columns from left to right, is the only nonzero in the

row, and equals 1. Formally, a matrix is in column echelon form if and only if

Fi f+

i F
1–

y f–()=

Fi f+

y Fi f+=

y

i

F

I
λ f

0
+=

λ λ

y Fi f+= λ

F

I

114

FOR i1 = 0, 100
FOR i2 = 0, 100

… X2[i1+i2,i1+i2] …

y1

y2

i1
i2

1 1

1 1

1 0

0 1

λ1

λ2

=

y1

y2

i1
i2

1 0

1 0

0 1

1 1–

µ1

µ2

=

y1 y2– 0≥ y1 y2– 0≤
i1 0≥ i1 100≤

y1 i1– 0≥ y1 i1– 100≤

y1 0≥ y1 200≤

independents: y1 i1
dependents: y2 y1= i2 y1 i1–=

Turn into column echelon form

Substitute into
loop bounds

Run Fourier-Motzkin
Omit bounds for i1

Resulting bounds on y

Figure 5.4: Computing Image of Loop Bounds

y1

y2

i1 0≥ i1 100≤

i2 0≥ i2 100≤

Loop bounds:

Write as
inequalities

115

• it consists of some (or no) nonzero columns followed by some (or no) zero columns;

• in each nonzero column, if any, the top nonzero

- equals 1,

- is the only nonzero in its row, and

- occurs below the top nonzero of the column to the left, if any.

The matrix (or any matrix for that matter) can be converted to this form by elementary

column operations, whose effects can be summarized in a nonsingular matrix multiplied to

 on the right [Bloom 1979]. That is, there is a nonsingular matrix such that ,

denotedE, is in column echelon form. Thus, the solutions to the “equation”

can also be expressed as

(5.14)

where , like , is an arbitraryn-dimensional vector. This is equivalent to (5.13) because

any solution given by a certain can also be given by some (), and vice

versa ().

The fact thatE is in column echelon form allowsi to be expressed in part as a function

of y. Specifically, the parametric vector in effect consists of some, possibly all, compo-

nents of index vectory and perhaps some components of iteration vectori — both identi-

fied by rows ofE that contain the top nonzeros of the columns and therefore, the column

echelon form specifies, contain a single “1.” (There must be a unique row for each column

since column echelon form also specifies that the top nonzero descends through the col-

umns.) In Figure 5.4, for instance, the first and third rows fit the above description. They

mean that and . Thus, and are the independent components. The

other components ofy and i (the “dependents” and) are expressed in terms of the

independents and , as the diagram illustrates.

F

I

F

I
∆ F

I
∆

y Fi f+=

y

i
Eµ f

0
+=

µ λ

λ µ µ ∆ 1– λ=

λ ∆µ=

µ

µ1 y1= µ2 i1= y1 i1

y2 i2

y1 i1

116

After i has been expressed in terms of the independents, it can be substituted into the

loop bounds to yield equivalent bounds on the independents. The latter are projected onto

the subspace spanned by independents iny by applying the Fourier-Motzkin algorithm

and then omitting the bounds on the other independents, namely those ini. This leads to

bounds on the independent components ofy (shown in the bottom right of the diagram).

In addition, we must also include inequalities representing the equations that relate the

dependents iny to the independents. For example, in Figure 5.4 is written as a

pair of inequalities in and . These inequalities involve onlyy’s components because

y’s dependents can always be expressed in terms ofy’s independents without involving the

independents ini. Again, this follows from the column echelon form. We explain this with

reference to in Figure 5.4. The row inE for has a nonzero in the first column, which

means that varies with . The top nonzero in this column must be above ’s non-

zero. (These two nonzeros in the same column cannot be the same element; if they were,

 would have been classified as an independent.) Therefore, the independent in that

corresponds to must lie above and thus must be another component ofy. In fact, it

is . The preceding argument would have applied to any other column in which ’s row

contains a nonzero and to any other dependents iny, had there been any.

The above two groups of inequalities ony together delineate the image of the loop

bounds. Anyy such that for some iteration vectori within the loop bounds is

within the image, and vice versa. We outline the argument here. The forward direction of

the claim can be justified by “following the arrows in Figure 5.4.” Sincei satisfies the loop

bounds and , the bounds on the independents and hence those derived by pro-

jection are satisfied. For the same reason, so are the inequalities relating dependents and

independents iny. Conversely, we could start from a vectory in the image and find somei

such thati satisfies the loop bounds and . This is done by following the same

arrows backward. First, according to Lemma 4.1 on page 87, fromy’s independents we

can pick values fori’s independents such that the two together satisfy the bounds on all the

y2 y1=

y1 y2

y2 y2

y2 µ1 y2

y2
y

i
µ1 y2

y1 y2

y Fi f+=

y Fi f+=

y Fi f+=

117

independents. Next, from the independents we can computei’s dependents such that the

entire iteration vectori satisfies the loop bounds and .

Imprecision

Our technique, however, has one main limitation. Since we ignore the fact thati, being

an iteration vector, must be integral, the set of elements accessed by some iteration may

not be calculated precisely. Some elements not accessed may be needlessly included in the

restructured array. Figure 5.5(a) illustrates the problem. An element in one of the two

empty triangles would be mistaken as being accessed by some iteration because its index

vector corresponds to some iteration vector with , which is within the loop

bounds 0 and 1 but not integral. Note, however, that because elements are not erroneously

y Fi f+=

Figure 5.5: Causes of Including Elements Not Accessed

FOR i1 = 0, 1
FOR i2 = 0, 100

FOR i3 = 0, 100
… X2[100*i1+i2,100*i1+i3] …

200

100

2001000

(b) Uniformly Generated Accesses

FOR i1 = 0, 4
FOR i2 = 0, 4

… X2[i1,i2] …
… X2[i1+2,i2+2] …

(a) Ignoring that Iteration Vectors Are Integral

0 i1 1< <

118

omitted, the computed bounds of the restructured array do include all the elements that

must be in the array.

5.2.3 Multiple Accesses

Having discussed the case of a single access, we now outline how multiple accesses can

be handled. We handle the common case of uniformly generated accesses4, and fall back

to restructuring the whole array in other cases. For uniformly generated accesses, the

images of the loop bounds are the same up to a constant offset, as demonstrated by the two

squares delineated by thin lines in Figure 5.5(b). Therefore, in each group of correspond-

ing faces from the identically shaped polyhedra, we select the most “lenient” one to form

the bounds of the restructured array. In other words, writing the inequalities (one for every

access) in the standard form , we pick the one with the smallest right-hand side.

This results in the larger square bounded by thick dashed lines.

As the figure shows, this may cause unaccessed elements to be mistakenly included in

the restructured array. However, we expect that there are many fewer such elements than

accessed elements because the offsets are typically small, especially compared with array

dimensions. For this reason, only a relatively small amount of memory is wasted.

One may envision more sophisticated analysis, but no major benefits are expected. For

example, we could find the image of the loop bounds for each access (whether or not the

accesses are uniformly generated) and compute the convex hull of these images. In

Figure 5.5(b), this would be the hexagon bounded by thick grey lines. As the figure shows,

even this does not guarantee that only accessed elements are included: the elements identi-

fied by the two unfilled circles are still included needlessly. Moreover, in the common case

of uniformly generated accesses with small offsets, this method saves only a small amount

of memory compared with the simpler technique we use.

4. A set of accesses are uniformly generated if their array indices differ only by constant offsets. See previ-
ous discussion on page 48.

βy β0≥

119

5.2.4 Implications to Linearization

After computing the image of the loop bounds in the transformed index space, we find a

linearization vector with the procedure in Chapter 4, but using as bounds of the restruc-

tured array this computed image rather than the transformed array bounds. Though devel-

oped with the transformed array bounds in mind, that procedure applies to bounds having

the form of a symmetric convex polyhedron, not just transformed array bounds. Therefore,

it applies here as well, provided that the computed image is symmetric.

One common case in which the computed image is symmetric occurs when there is

only one access and the loop bounds themselves are symmetric, which subsumes the com-

mon case of constant loop bounds but not the less common, though still reasonable, case

of triangular loop bounds. If the loop bounds are symmetric about, say , the restructured

array’s bounds would be symmetric about . This is because any index

vector y within the latter bounds has a (not necessarily unique) corresponding iteration

vector i within the loop bounds. The mirror image ofi about , which is within the loop

bounds because of the symmetry, maps to the mirror image ofy about ,

which is therefore within the bounds of the restructured array.

If the image of the loop bounds is not symmetric, we can adapt the linearization proce-

dure slightly to handle a special case, while resorting to restructuring the entire array in

others. The adapted procedure differs from the earlier one outlined in Figure 4.4 on

page 74 only in the final step, namely computing the relaxed bounds. In particular, the

point c is defined exactly as before (i.e., according to (4.24) on page 88), although it is

clearly not the center of symmetry — there is no center of symmetry because there is no

symmetry. As for the relaxed bounds, in Section 4.5.5 on page 90, they consist of inequal-

ities selected from the transformed bounds and the mirror images of those selected ine-

qualities. Here, all inequalities are from the image of the loop bounds. In particular, for

, we pick the affine functions that yield the lower bounds , like in

Section 4.5.5, and those that yield the upper bounds , which replace the

mirror images before. (Recall that and are augmented bounds for thej-th

γ

TA() γ Ta t+()+

γ

TA() γ Ta t+()+

1 j m≤ ≤ l j c1 … cj 1–, ,()

uj c1 … cj 1–, ,()

l j …() uj …()

120

dimension and are respectively the minimum and maximum of one or more affine func-

tions, as discussed in Section 4.5.3). We check whether each selected pair of affine func-

tions differ only by a constant offset (i.e., they represent parallel hyperplanes). If they do

not, the following does not apply, and we fall back to restructuring the entire array. If they

do, let the affine function picked from and be respectively

and (5.15)

We choose the relaxed bounds as

for (5.16)

or, with F being an matrix having in the lower triangle and zeros in the main

diagonal and upper triangle,

(5.17)

The relaxed bounds so computed meet the three requirements set out in Section 4.5.5.

Let us consider each of them in turn. First, the relaxed bounds have the form required in

(4.7) on page 75, with , , and . This is because, owing to the

form of F described above, is a lower-triangular matrix with a unit diagonal. Sec-

ond, the relaxed bounds include the image of the loop bounds because the inequalities

making up the relaxed bounds are all selected from those making up the image of the loop

bounds. Therefore, any vector satisfying the latter must, of course, satisfy the former as

well. Finally, the relaxed bounds are tight: for any alternative bounds satis-

fying the above two conditions, . The argument for this is almost

identical to the one given in Section 4.5.5. We can follow the same argument here because

up to (4.38) on page 93, it doesnot rely onc being the center of symmetry, only on the

l j …() uj …()

Fjkyk
k 1=

j 1–

∑ fj+ Fjkyk
k 1=

j 1–

∑ f′j+

Fjkyk
k 1=

j 1–

∑ fj+ yj Fjkyk
k 1=

j 1–

∑ f′j+≤ ≤ 1 j m≤ ≤

m m× Fjk

f I F–() y f′≤ ≤

r l f= ru f′= R I F–=

I F–

r ′l R′y r′u≤ ≤

r ′u r ′l–() ru r l–()≥

121

definition ofc in (4.24), which we also use here. Here, however, the “distance” between

the pair of parallel hyperplanes for thej-th dimension is

(5.18)

Continuing the previous argument from (4.38), we see that , as

we want to show.

5.2.5 Summary

A loop may access only those elements whose array indices lie within a limited range. We

can use this range, instead of the transformed array bounds, to compute a linearization

vector for the restructured array using the procedure in Chapter 4, provided the range is a

symmetric convex polyhedron. We adapt the linearization procedure slightly to deal with

some special asymmetric cases. To find that range for one access, we map the loop bounds

through the transformed access function into the transformed index space. Calculating this

image is complicated by the fact that the mapping is not always invertible. We can deal

with the problem by casting it as a problem of polyhedral projection. Alternatively, we can

“invert” the mapping function in a loose sense: the iteration vector is expressed in terms of

part (possibly but not necessarily all) of the array index vector and other independent

parameters. The set of accessed elements computed may be imprecise in some cases.

However, errors are always on the conservative side: elements that are not accessed may

be needlessly put in the restructured array, but elements that are indeed accessed are not

incorrectly omitted. Whenever our technique does not apply, we fall back to restructuring

entire arrays.

uj c1 … cj 1–, ,() l j c1 … cj 1–, ,()– Fjkck
k 1=

j 1–

∑ f′j+

Fjkck
k 1=

j 1–

∑ fj+

–=

f′j fj–()=

ruj r lj–()=

r ′uj r ′lj–() ruj r lj–()≥

122

5.3 Summary

Restructuring entire arrays is not always necessary because only elements accessed by the

loop need to be in the restructured array. In this case, we may restructure part of an array.

We use affine, possibly non-integral index transformations to represent the fact that the

restructured array contains only elements regularly spaced in the index space. Runtime

index computation still involves only integer arithmetic despite the use of non-integers in

the transformations. Moreover, the accessed elements may also be restricted to a region in

the array index space. We define the bounds of the restructured array with the image of the

loop bounds in the transformed index space but follow basically the same procedure as

before to compute a linearization vector.

Part III

Experimentation

124

Chapter 6

Implementation

We have implemented a prototype compiler based on the SUIF compiler from Stanford

University [Wilson et al. 1994]. SUIF is designed for rapid prototyping of compiler tech-

niques. It has been chosen for our implementation because of its extensibility.

The overall structure of our prototype is shown in Figure 6.1. SUIF itself consists of

compiler passes communicating through a well-defined intermediate program representa-

tion. Each pass reads the program representation from a file, modifies it or annotates it

with additional information, and outputs the result. SUIF accepts C or Fortran programs.

A frontend converts the source program to its intermediate representation1. This represen-

tation is then analyzed and transformed by various passes. Finally, code is generated from

the transformed representation. SUIF has a MIPS code generator. To compile for other

architectures, it can also generate C code, which may then be compiled by the native C

compiler of the machine platform on which the binary is eventually executed.

To the basic SUIF infrastructure we have added two components for array restructur-

ing: compiler analysis and runtime support. Compiler analysis is implemented in an array

restructuring pass immediately before code generation and after other existing passes.

(The rationale for and limitations of this decision are discussed in Section 6.2.2). Runtime

support is implemented in a runtime system linked with the generated code. The following

sections discuss these two components in detail.

1. Fortran code is translated to C before being read by SUIF proper. A separate SUIF pass recovers certain
Fortran-specific information lost in the translation by recognizing idiomatic patterns in the C code that the
translator produces.

125

6.1 Runtime System

The runtime system is called immediately before the execution of each loop nest. It has

two main functions: managing copies of each array and dealing with runtime constants.

The runtime system manages multiple copies of the same array to support a lazy

restructuring scheme. (We summarize here previous related discussion on page 63 in

Section 3.3.4.) In this scheme, the compiler determines for each loop how an array should

Figure 6.1: Organization of Implementation

Frontend

Array restructuring

Code generation

Native C compilerArray restructuring
runtime system

C Fortran

SUIF

C

Binary MIPS binary

Additions

126

be transformed. At run time, multiple copies of an array transformed differently may exist

simultaneously. In preparation for loop execution, the runtime system finds a copy with

the desired transformation, creating one if there is none. Elements are copied from a valid

copy using data remapping routines that are carefully coded for maximum efficiency. The

runtime system also ensures consistency between array copies by invalidating all but the

one being used if it is written.

Our runtime system also deals with runtime constants, such as loop bounds and array

bounds, which typically depend on the problem size and thus the input, as in the example

in Figure 6.2(a). The compiler needs the array index expressions to select index transfor-

mations. This is possible because the strides in those expressions are usually known at

compile time. Given the transformation, the compiler can then modify the array accesses.

However, the linearization vector is not fully determined yet because computing the

bounds of the restructured array requires runtime information like the original array

bounds, the loop bounds, or both. Thus, our compiler calculates as much as it can with

what is known and outputs the intermediate results into the generated code. Before loop

execution, the runtime system in effect completes the process and calculates the lineariza-

tion vector, combining information from compiler analysis and runtime information that

has become available.

6.2 Array Restructuring Pass

The array restructuring pass implements the analysis techniques presented in previous

chapters. In this section, we describe its major functions and discuss its limitations.

6.2.1 Functions

The array restructuring pass relies on SUIF to identify the loops, array declarations, and

array accesses and to provide information on the loop bounds, array bounds, and index

127

expressions, among other things. Given this information, it makes restructuring decisions

and modifies the program representation accordingly.

Making Decisions

The array restructuring pass makes two types of decisions. First, it analyzes the access

pattern of each loop nest and selects an index transformation for each array. This has been

discussed extensively in previous chapters.

Moreover, it also decides whether to restructure an array at all according to a heuristic

comparison of the cost and benefit. In the current implementation, our simple heuristic is

based on the assumption that the runtime cost of restructuring an array, mainly the cost of

copying elements, is roughly proportional to the array size, whereas the benefit is roughly

proportional to the (dynamic) number of accesses to that array. Thus, array restructuring

seems profitable for, say, a triple loop accessing a two-dimensional array because each ele-

ment is likely to be accessed many times but copied only once (or twice if the array is

written).

However, this view may be deceptive. First, while the array is two-dimensional, the

loop may access only one dimension, say a row, of it. Second, while an access may appear

syntactically within a triple loop, its index expressions may vary with only the outer loop

variables. In this case, the benefit of array restructuring does not grow with how many

times the innermost loop repeatedly accesses the same element. In fact, a good compiler

would lift the array access outside the innermost loop and replace it with a scalar variable

inside, a common optimization called scalar replacement [Bacon, Graham, and Sharp

1994]. Therefore, our heuristic rule has to look beyond the number of array dimensions or

loop levels.

The prototype compiler considers array restructuring profitable if the access matrix

has more columns, excluding zero columns at the right, than its rank. The former is an

indication of how often the access is executed; the latter is the dimensionality of the sub-

128

space of elements accessed. Neither is affected by left-multiplying the access matrix with

a nonsingular matrix, as we do when restructuring an array. In other words, the heuristic

yields the same result whether it is applied to the original or transformed access matrix.

Although this simple rule has been effective so far, we expect that a more accurate cost-

and-benefit analysis using information on actual loop and array bounds to be required for

larger, more complicated applications.

Modifying Code

After deciding whether and how to restructure each array, the array restructuring pass

modifies the program accordingly. Specifically, it transforms array accesses and inserts

calls to the runtime system. Figure 6.2 shows sample output code, abbreviated and slightly

modified for presentation, for one of the subroutines used in our experiments.

Accesses to the restructured array replace those to the original, as illustrated by the

code shown in bold in Figure 6.2. We treat the restructured array as one-dimensional

regardless of the dimensionality of the original. (For example,a2 andb2 in Figure 6.2(b)

are pointers to elements.) This is because its bounds cannot always be expressed in a con-

ventional multidimensional array declaration, as noted in Section 4.1. Besides, since we

compute the linearization vector directly, we may as well treat the restructured array as a

one-dimensional array. The lone array index is the scalar offset into the array expressed

directly as a dot product of the linearization vector and the loop variables (see code in

bold). Note that some components of the linearization vector are variables because they

cannot be fully determined until run time, as explained in Section 6.1.

The array restructuring pass also inserts calls to the runtime system (the calls to

Transform andCleanup in part (b) of the figure). They are placed where arrays may

be dynamically restructured: immediately before loop nests and before procedure returns.

The latter is for restoring restructured arrays back to their original, canonical layouts

before returning. Note that calls to the runtime are needed neither at procedure entry nor

after a loop nest (even if some arrays are written). This is because array restructuring is

129

SUBROUTINE CHOLSKY (IDA, NMAT, M, N, A, NRHS, IDB, B)
REAL A(0:IDA,-M:0,0:N), B(0:NRHS,0:IDB,0:N)

C
C CHOLESKY DECOMPOSITION
C

DO 1 J = 0, N
… Update array A …

1 CONTINUE
C
C SOLUTION
C

DO 6 I = 0, NRHS
…
B(I,L,K+JJ) = …
…

6 CONTINUE
RETURN
END

extern int cholsky_(ida, nmat, m, n, a, nrhs, idb, b)
…
{

float *a2, *b2; /* restructured arrays */
void *descriptor_a; *descriptor_b; /* array descriptors */
int lv_a_1, lv_a_2, lv_b_1, lv_b_2; /* linearization vector */

a2 = Transform(&descriptor_a, a, …, lv_a_1, lv_a_2);
for (j = 0; j <= n; j++) {

… /* No need to restructure A. Use original array. */ …
}

a2 = Transform(&descriptor_a, a, …, lv_a_1, lv_a_2);
b2 = Transform(&descriptor_b, b, …, lv_b_1, lv_b_2);
for (i = 0; i <= nrhs; i++) {

… /* Restructure B. Use original A. */ …
b2[lv_b_1 * i + lv_b_2 * (k+jj) + l] = …

}

Cleanup(descriptor_a);
Cleanup(descriptor_b);

}

(a) Original Fortran Code

(b) After Array Restructuring Pass

Figure 6.2: Sample Output Code

130

done lazily. For example, after a restructured array has been written, it is not copied back

to the original until execution encounters a loop nest that demands the original array. For

the same reason, the runtime system is called even when the compiler has decided not to

restructure an array, such as before the first loop nest, because the runtime still needs to

update the original array if it does not contain the latest changes. The overhead of making

such runtime decisions is trivial compared with the costs of loop execution and, to a lesser

extent, data copying.

6.2.2 Limitations

Though useful as a proof of concept in this study, our current prototype leaves several

issues for future work. These include alias analysis, interprocedural analysis, and the inte-

gration of array restructuring with other compiler optimizations, especially loop restruc-

turing techniques.

First, our prototype does not perform alias analysis. For example, it does not check for

aliasing arising from COMMON and EQUIVALENCE constructs in Fortran or pointer-

based array accesses in C. Instead, we simply assume that arrays are always accessed

through easily identifiable array accesses (never through address pointers, for example)

and that distinct array variables refer to distinct, non-overlapping arrays.

However, alias analysis is necessary for array restructuring in general. To restructure

an array, the compiler should identify and transform all accesses to that array in the loop

nest. This is critical if the array is written. It is less important for read-only arrays because

accesses to either the original or restructured version are acceptable, provided that both

versions are consistent to begin with. Aliases hinder the task of identifying all accesses to

a given array and thereby limit array restructuring.

We omitted alias detection because it is an independent problem beyond the scope of

this study. It impacts loop restructuring equally, if not more. Specifically, if aliasing pre-

cludes the compiler from restructuring an array, most likely the loop nest itself cannot be

131

restructured either because the same problem would likewise hamper the dependence

analysis required for validating loop transformations. In fact, loop restructuring is even

more susceptible to such difficulties. For one thing, it is frustrated by aliasing problems in

any of the arrays written by the loop, whereas for array restructuring, problems in one

array does not preclude the restructuring of another. Also, for array restructuring, we only

need to know which accesses are made to the array in question; we need not fully under-

stand how all array indices vary for us to apply a transformation (though such knowledge

surely helps in choosing one). To validate a loop transformation, however, we need depen-

dence analysis that demands much more information on the array indices.

Second, the prototype does not perform interprocedural analysis for array restructur-

ing. If a loop nest contains procedure calls, the prototype compiler assumes, perhaps over-

optimistically, that the callees do not access any array that is restructured in the caller.

Like alias analysis, interprocedural analysis is needed for both loop and array restructuring

to deal with procedure calls within loop nests. For array restructuring we only have to

determine whether the callee accesses a certain array, whereas for loop restructuring we

also need detail information on individual accesses for a full dependence analysis.

Finally, it is to some extent anad hoc decision to perform array restructuring after

other compiler optimizations. Exactly how best to integrate array restructuring with other

optimizations, especially loop restructuring, warrants much more study than what can be

devoted to it in this study. As a first step, we do it after other SUIF optimization passes

because the latter obviously were not designed with our array restructuring technique in

mind. Therefore, it is better to let the array restructuring pass, which is done last, tackle

unintended artifacts of existing passes than vice versa.

132

Chapter 7

Experimental Results

We performed a series of experiments to evaluate our array restructuring technique. These

experiments have been designed to study the performance impact of array restructuring by

itself, as well as how it compares and interacts with existing loop restructuring techniques.

In this chapter, we report and discuss these results.

7.1 Experiments

We selected for our experiments loops commonly used in related loop restructuring litera-

ture and with readily available source code, since we are particularly interested in how

array restructuring compares and interacts with existing loop restructuring techniques.

These loops include, among others, the NASA7 kernels1 of the SPEC 92 benchmarks

[Dixit 1992], which have been used in several key studies of compiler-directed cache opti-

mizations [Carr, McKinley, and Tseng 1994; Li 1993; Wolf 1992]. They are described in

Table 7.1.

For each loop, we experimented with a range of problem sizes. We chose the problem

sizes so that the major arrays are at least a few times larger than the second-level cache.

This ensures that the data do not fit in the cache. If they did, we would not be able to study

1. Among the SPEC 92 benchmarks, the NASA7 kernels are likely to benefit most from locality optimiza-
tions of any kind. In an extensive experimental study, Carr et al. found that, among the SPEC 92 bench-
marks, their locality optimization techniques improved performance only for some NASA7 kernels [Carr,
McKinley, and Tseng 1994]. Their cache simulation results indicated that before any optimization, only the
NASA7 kernels had a significant cache miss rate (slightly below 20%) while other SPEC92 benchmarks’
miss rates were no more than 3%, many practically zero.

133

Table 7.1: Loops for Experiments

Loop Descriptiona Related Studies

MATMUL Simple dense matrix multiply. Its innermost
loop computes one element of the result matrix.

Cierniak and Li
1995; Kennedy and
McKinley 1992; Li
and Pingali 1992;
Wolf and Lam 1991a

SYR2K Symmetric rank-2k update for banded matrices.

It computes .

Li 1993; Li 1995; Li
and Pingali 1992

MXM Hand-tuned matrix multiply. Its outermost loop
is unrolled four times and jammed.

Carr, McKinley, and
Tseng 1994; Li 1993;
Wolf 1992

GMTRY Gaussian elimination. It sets up a linear system
for a vortex method solution and inverts the
resulting matrix using Gaussian elimination
without pivoting.

Carr, McKinley, and
Tseng 1994; Li 1993;
Wolf 1992

CFFT2D Two-dimensional fast Fourier transform (FFT).
It consists of two routines performing FFT on
the first and second array dimension respec-
tively.

Carr, McKinley, and
Tseng 1994; Li 1993;
Wolf 1992

CHOLSKY Cholesky decomposition and solution. It per-
forms Cholesky decomposition on multiple
banded matrices stored as a three-dimensional
array. It then performs forward and backward
triangular solves simultaneously for multiple
right-hand sides stored as a three-dimensional
array.

Carr, McKinley, and
Tseng 1994; Li 1993;
Wolf 1992

BTRIX Block tridiagonal matrix solution. It performs a
block tridiagonal matrix solution along one
dimension of a four-dimensional array.

Carr, McKinley, and
Tseng 1994; Li 1993;
Wolf 1992

VPENTA Pentadiagonal inversion. It simultaneously
inverts three pentadiagonal matrices.

Anderson, Amaras-
inghe, and Lam
1995; Carr, McKin-
ley, and Tseng 1994;
Li 1993; Wolf 1992

Z Z X+
t
Y Y

t
X+=

134

how various locality optimizations (either by loop or array restructuring) affect perfor-

mance because virtually all array accesses would be cache hits. In particular for the

NASA7 kernels, our problem sizes differ from, and typically exceed, the standard ones.

(The enlarged data sets were simply generated at random because in all these loops the

access pattern does not depend on the contents of arrays, only on their sizes.) Since our

problem sizes differ from those of the standard benchmarks, our results shouldnot be

treated as a report on SPEC benchmark performance.

These loops are relatively small pieces of code, though many of them (in particular the

NASA7 kernels) have been extracted from complete numerical scientific codes. As

explained above, we chose them to facilitate a comparison between array and loop restruc-

turing. Moreover, compared with large applications, they offer two advantages. First, their

manageable sizes allow deeper understanding of the observed performance behavior: it is

feasible to examine each loop and array to determine what transformations have been used

and how they affect the access pattern. Second, our experiments comparing array and loop

restructuring required manually applying loop transformations, for reasons to be explained

later. This would have been impractical if the applications had been too large.

Naturally, measuring code fragments rather than complete applications has its draw-

backs. For one thing, without considering large, complete applications — and as many of

them as possible — we cannot tellhow often array restructuring (or any program restruc-

turing technique for that matter) benefits loop execution, but onlyhow much it does for

a. The descriptions for the NASA7 kernels (MXM to EMIT) are mostly adapted from a document dis-
tributed with the source code [Bailey and Barton 1986].

EMIT Vortex emission. It is extracted from a vortex
code. It creates new vortices according to cer-
tain boundary conditions.

Carr, McKinley, and
Tseng 1994; Li 1993;
Wolf 1992

Table 7.1: Loops for Experiments (Continued)

Loop Descriptiona Related Studies

135

specific loops. Moreover, we cannot accurately gauge the interaction between a loop that

array restructuring has transformed and other parts of the program, especially those exe-

cuted immediately before and after it.

In the latter respect, however, we address the limit of our methodology by making pes-

simistic assumptions, so that if the measurements are in any way deficient, they are biased

against array restructuring. We report performance as the execution times of the loops

themselves plus all copying overhead (from some canonical array layout to the desired

layout, and back in the case of a read-write array). In effect, this assumes that in the con-

text of a complete application, the overhead is paid whenever execution enters or leaves

the loop in question. If it is not the case (e.g., the cost is amortized over multiple loop exe-

cutions), performance would exceed what our results suggest. Also, in a complete applica-

tion, a loop’s performance is affected by what data happen to be left in the cache by

preceding accesses, while what the loop itself leaves in the cache may likewise affect the

performance of subsequent execution. We expect this effect to be inconsequential in the

experiments because most arrays are at least several times of the cache size and accessed

many times. Therefore, the cost of filling even the entire cache at such transitions, both on

entry into and exit from the loop nest in question, is small relative to the total cost of

accesses inside the loop nest.

All experiments reported in this chapter were done on a DEC 3000 Model 400 work-

station based on the Alpha 21064 processor [DEC 1992; Dutton et al. 1991; Sites 1992].

(Results on an IBM RS/6000 Model 41T workstation are included in Appendix B. We

omit them here since they are qualitatively the same as those reported below.) Our config-

uration has two levels of cache for data: an on-chip, 8 KB, write-through data cache, and

an off-chip, 512 KB, write-back, unified cache shared by data and instructions. Both levels

of cache are direct-mapped. Cache lines are 32 bytes long. On a read miss in the first-level

cache, 5 cycles are required to read the accessed data from the second-level cache and

another 5 cycles to fill the rest of the cache line. A write miss adds another 5 cycles. On a

miss in the second-level cache, it takes 24 cycles to read the accessed data from main

136

memory and another 6 cycles to fill the other half of the cache line. The Alpha 21064 pro-

cessor also has a 32-entry, fully associative translation lookaside buffer (TLB) for data

pages.

The loops were compiled by our prototype compiler. The output C code was compiled

by the native C compiler (cc)and linked with our runtime system. Standard compiler opti-

mizations (-O2) were enabled in both steps. In addition, we augmented SUIF with two

simple passes implementing limited versions of two known optimizations unrelated to

array restructuring. Both were applied in all cases, independently of whether any loop or

array was restructured. The first optimization is scalar replacement [Bacon, Graham, and

Sharp 1994]. This optimization replaces an array access in the innermost loop(s) with the

use of a temporary scalar variable, whose value is loaded from the accessed element

before the loop and stored back afterward if modified. The second optimization replaces

loop-invariant upper loop bound expressions in the generated C code with temporary vari-

ables storing the pre-computed values to avoid evaluating the expressions in every loop

iteration, as implied by the semantics of thefor construct in C. We added these two opti-

mizations because they proved critical to performance (with or without loop or array

restructuring) in some of the loops but, for some reason, were not performed by SUIF or

the native C compiler on those loops. Omitting them would have unduly and significantly

impacted performance in a way unrelated to either loop or array restructuring, making it

much more difficult to assess their effects.

7.2 Array Restructuring

The first, most natural question is whether array restructuring improves performance at all,

especially in view of the potential for substantial copying overhead at run time. Our exper-

iments showed that it did in many of the cases. In this section, we also discuss what array

transformations the compiler applied in individual cases and give insights into how they

improved performance in sometimes unanticipated ways.

137

7.2.1 General Results

The loops listed in Table 7.1 fall into three categories according to our compiler’s array

restructuring decisions. Recall that the compiler heuristically decides whether or not an

array should be restructured by comparing the potential benefit and cost. For five of the

loops, it decided that array restructuring could be applied profitably despite the potential

overhead. Their performance is shown in Figure 7.1. For another three, the compiler deter-

mined that loop execution would benefit from array restructuring, but the copying over-

head might be too large to justify it. Performance of these loops are shown in Figure 7.2.

Finally, for one of the loops (specifically EMIT of the NASA7 kernels), the compiler saw

no opportunity to improve the original array layouts. Therefore, no array was restructured.

Previous studies likewise found virtually no improvement using other program restructur-

ing techniques [Carr, McKinley, and Tseng 1994; Li 1993; Wolf 1992]. For this reason, we

did not measure the performance of this loop; it is omitted throughout the following dis-

cussion.

Both Figure 7.1 and Figure 7.2 show how execution times vary with problem sizes for

the original loop (i.e., with standard compiler optimizations but no loop or array restruc-

turing) and for array restructuring — one curve for loop execution alone and one including

runtime overhead. This overhead includes the cost of copying elements from the original

to the restructured arrays, and back if necessary. Time spent by the runtime system to com-

plete the analysis (see Section 6.1) is also attributed to the runtime overhead. In practice,

however, it is trivial compared with the copying cost.

First, let us consider Figure 7.1. Generally, array restructuring improved performance

substantially. In all cases except SYR2K, execution times were roughly halved. For

SYR2K, the improvement was more dramatic: execution times decreased by almost a fac-

tor of seven.

GMTRY, CFFT2D, and CHOLSKY contain some loop nests for which our prototype

compiler decided that the default array layouts were already best and hence did not

138

Figure 7.1: Array Restructuring Performance — Profitable Cases

100 200 300 400 500

Matrix order

0

10

20

30

E
xe

cu
tio

n
 t
im

e
 (

se
co

n
d

s)

(a) MATMUL

ARR+O obscures ARR

20 40 60 80 100

Matrix bandwidth

0

50

100

E
xe

cu
tio

n
 t
im

e
 (

se
co

n
d

s)
(b) SYR2K

ARR+O obscures ARR

100 200 300 400 500

Matrix order

0

5

10

15

E
xe

cu
tio

n
 t
im

e
 (

se
co

n
d

s)

(c) GMTRY

ARR+O obscures ARR

256 512 768 1024

Array dimension

0

2

4

6

8

E
xe

cu
tio

n
 t
im

e
 (

se
co

n
d

s)

(d) CFFT2D

100 200 300 400 500

Matrix order

0

10

20

30

E
xe

cu
tio

n
 t
im

e
 (

se
co

n
d

s)

(e) CHOLSKY

Original loop (BASE)
Array restructuring
(without overhead) (ARR)
Array restructuring
(with overhead) (ARR+O)
points at size threshold for L2 cache

As noted in graphs, some curves may
obscure others.

139

restructure any array. The execution times shown here and in the remainder of this disser-

tation do not include contributions from such loop nests (though we did compile and exe-

cute the entire routines in all experiments). This allows us to see clearly the direct

performance impact of array restructuring when it was indeed applied. The results shown

here are qualitatively representative of the total execution times, however, as the part that

array restructuring did affect dominated the whole computation in each case. For example,

Figure 7.3 shows the execution times of the complete routines, including both the parts

affected and unaffected by array restructuring. These timings exhibit the same trend as

Figure 7.2: Array Restructuring Performance — Unprofitable Cases
(with Manual Override of Compiler Decision)

100 200 300 400 500

Matrix order

0

5

10
E

xe
cu

tio
n

 t
im

e
 (

se
co

n
d

s)

(a) MXM

ARR+O obscures ARR, BASE

20 40 60 80

Matrix order

0

10

20

30

40

50

E
xe

cu
tio

n
 t
im

e
 (

se
co

n
d

s)

(b) BTRIX

100 200 300 400

Matrix order

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
 t
im

e
 (

se
co

n
d

s)

(c) VPENTA

Original loop (BASE)
Array restructuring
(without overhead) (ARR)
Array restructuring
(with overhead) (ARR+O)
points at size threshold for L2 cache

As noted in graphs, some curves may
obscure others.

140

those for the affected part alone (in Figure 7.1), although the percentage improvement is,

of course, lower because of contributions from the unaffected loop nests.

Performance improved despite the runtime overhead. For MATMUL, SYR2K, and

GMTRY, the overhead was negligible. In fact, it was so small that including the overhead

did not visibly change the performance curves. In the cases of CFFT2D and CHOLSKY,

the overhead did have a noticeable impact. However, it remained much smaller than the

performance gain in loop execution. Therefore, array restructuring still increased overall

performance significantly even though the overhead was nontrivial.

Figure 7.3: Array Restructuring Performance — Complete Execution Times

100 200 300 400 500

Matrix order

0

5

10

15

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) GMTRY

256 512 768 1024

Array dimension

0

5

10

15

20

25

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) CFFT2D

100 200 300 400 500

Matrix order

0

10

20

30

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(c) CHOLSKY

Original loop
Array restructuring (with overhead)

141

Furthermore, performance improvement was consistent over a wide range of problem

sizes, not just for particular sizes. We expect this to hold true in problems larger than what

we measured: array restructuring would still improve performance substantially; the over-

head would still have little impact. In fact, the overhead would decrease relative to execu-

tion times. This is because asymptotically the overhead grows more slowly than the

performance gain. The copying overhead is roughly proportional to the amount of data

copied, and thus to the size of the arrays being restructured (assuming, in the worst case,

that entire arrays are restructured). The performance gain, however, is expected to grow at

least linearly with the computation (or, more precisely, the part involving the array

accesses in question). In these five loops, the total array size grows asymptotically slower

than the computation. Our cost-and-benefit heuristics attempt to designate only arrays and

loops with this property as candidate for array restructuring.

Figure 7.2 shows the execution times of loops for which our compiler decided not to

restructure any array because of concerns over copying overheads. Manually overriding

the compiler to restructure arrays once for the entire routine, we obtained the measure-

ments shown in the figure to see whether that decision is correct and how much perfor-

mance would have suffered if our heuristics had designated these cases as profitable.

Not surprisingly, array restructuring did not improve overall performance in any sig-

nificant way. For BTRIX and VPENTA, it did roughly halve the execution times of the

loops themselves. However, the copying overhead was also substantial, as expected, off-

setting most of the gain. Incidentally in these cases, performance was improved by array

restructuring despite such overhead, at least for the larger of the problems that we mea-

sured (but not some small problems like VPENTA at 100). We expect these observations

to hold for even larger problems that we did not measure, because in these loops both the

total size of arrays being restructured and the computation involving the accesses in ques-

tion grow at the same rate.

Finally, Table 7.2 shows the memory overheads of array restructuring, namely the

sizes of the restructured arrays. Only a single problem size is shown for each loop as the

142

relative overheads are independent of absolute array sizes. The data exclude arrays that are

not restructured. In all cases except SYR2K, the restructured arrays are as large as the

original because the compiler decided, in effect, to permute array dimensions. For

SYR2K, the index transformation skews the array index space. Some memory is left

unused to facilitate index computation, as discussed in Chapter 4. Partial restructuring

could have reduced the size of the restructured array to the exact size of the original. How-

ever, our current implementation failed to do so because of runtime constants in loop

bounds.

To summarize, when our compiler decided that array restructuring would be profit-

able, performance improved substantially for a wide range of problem sizes despite mod-

est, sometimes insignificant, copying overheads. The compiler also successfully identified

cases in which array restructuring would not be profitable because of the overhead. If we

had performed array restructuring in those cases, performance would have improved only

slightly, if at all.

Table 7.2: Sizes of Original and Restructured Arrays

Loop
Size of Original
Array(s) (MB)

Size of Restructured
Array(s) (MB)

MATMUL 0.95 0.95 (100%)

SYR2K 6.10 6.41 (105%)

MXM 0.95 0.95 (100%)

GMTRY 0.95 0.95 (100%)

CFFT2D 8.00 8.00 (100%)

CHOLSKY 9.54 9.54 (100%)

BTRIX 11.6 11.6 (100%)

VPENTA 6.10 6.10 (100%)

143

7.2.2 Individual Cases

Array transformations used in individual cases and the problems they address are summa-

rized in Table 7.3. We discuss in detail only the case of SYR2K because it demonstrates an

unanticipated effect of array restructuring on something beyond cache misses.

We believe that array restructuring dramatically improved SYR2K’s performance

mainly because it reduced TLB misses. Like the reduction in cache misses, this resulted

from accessing elements consecutively in memory.

To see this, let us examine the access pattern of SYR2K, shown in Figure 7.4. We con-

sider only the accesses to arrayX; those toY are identical.X has long rows and relatively

short columns. Both accesses toX go through it diagonal by diagonal. Although this sug-

gests, correctly, a need to improve spatial locality, the impact on cache misses is smaller

than it seems because cache lines are generally reused soon. Consider the access

X[j-k+b,k] . Little data reuse is expected between iterations of the innermost loop

because they read elements in a diagonal, which are far apart. However, the middle loop

carries spatial reuse. When the innermost loop is next executed (as the next middle loop

iteration), the access moves on to the next diagonal. The new diagonal’s elements are

probably in the same cache lines as the old because the two are adjacent. As the innermost

loop has relatively few iterations (only tens in the experiments), cache lines containing the

old diagonal are likely to remain in the cache. Furthermore, temporal reuse is carried by

the outermost loop. In any one iteration of the outermost loop, the access never moves

beyond a fixed column, touching a triangle of elements. When we execute the next itera-

tion, this column and hence the triangle shift right by one. Therefore, consecutive triangles

overlap considerably: in any one triangle, only elements in the boundary column are not

read before. The rest probably have stayed in cache since the last iteration because each

iteration has to displace only a small number of cache lines to make room for newly read

elements, namely the boundary column. In fact, even an entire triangle contains at most a

thousand or so elements, which occupy just a fraction of common cache capacities. As for

the access pattern for the other access,X[i+k-b,k] , it is similar except that temporal

144

a. In line with the convention in this dissertation, we describe the problematic access patterns and their
solutions in terms of row-major arrays, although the arrays are column-major as the source code is in
Fortran. Thus, when we, for example, say that a loop accesses a two-dimensional array (which is implic-
itly row-major) “column by column,” we mean that it strides through the least rapidly varying array
dimension. For a column-major array in Fortran, this would mean going through elements of a row. This
is only a matter of terminology; the Fortran code itself wasnot modified or affected in any way.

Table 7.3: Problems and Solutions in Individual Cases

Loop Problematic Access Patterna Solution by Array Restructuring

MATMUL The innermost loop reads one
array column by column.

Transpose array so that the inner-
most loop accesses it row by row.

SYR2K The innermost loop reads two
arrays diagonally.

Skew array index space to map
diagonals in the original arrays to
rows in the restructured arrays.

MXM An access in middle loop (of a tri-
ply nested loop) reads an array col-
umn by column.

Transpose array so that it is read
row by row.

GMTRY Implementation of Gaussian elimi-
nation updates a submatrix column
by column.

Transpose array so that the corre-
sponding submatrix in the restruc-
tured array is updated row by row.

CFFT2D One of two phases performs FFT
on columns; the innermost loop
therefore updates a two-dimen-
sional array column by column.

Transpose array dynamically
between phases so that it is always
updated row by row.

CHOLSKY The solution phase updates a
three-dimensional array for the
right-hand sides not in row-major
order: the innermost loop incre-
ments the middle array index.

Permute array indices so that the
array is accessed in “almost” row-
major order: the innermost loop
increments the last index, middle
loops increment middle indices, etc.

BTRIX Four four-dimensional arrays are
not accessed in row-major order.

Permute array indices so that all
four arrays are accessed in “almost”
row-major order. For one of them,
the restructured array contains only
the plane of the original that is
really accessed.

VPENTA All six two-dimensional and one
three-dimensional arrays are not
accessed in row-major order.

Permute array indices so that all
arrays are accessed in strictly row-
major order.

EMIT None is found. None is required.

145

reuse is carried by the middle loop: each outermost loop iteration reads one diagonal

repeatedly (hence the thickness of the arrows in the diagram).

Since cache misses do not seem to have enough impact to account for the performance

difference observed, we believe TLB misses to be a more likely cause of SYR2K’s poor

performance. Notice that consecutive innermost loop iterations may touch different pages

because they read elements separated by a row long enough to span a page or more. A

row, and therefore page, is touched again only after a complete execution of the innermost

loop. If there are not enough TLB entries for all the rows in this and other arrays, each

access potentially suffers a costly TLB miss. This seems to be our case: the Alpha 21064

processor has 32 TLB entries for data [DEC 1992], fewer than the total number of rows in

all the arrays. (Page faults cannot explain the poor performance because our measure-

ments indicated no unusual paging activity.)

Although we had no way to directly measure TLB misses, the following experiment

lent support to our hypothesis. We measured the original loop for different values ofb (see

the top of Figure 7.4 forb). The results are shown in Figure 7.5. By reducing the value of

b, we reduce the number of rows the innermost loop touches while keeping each row long

enough to need a separate TLB entry. Performance would suffer if there are not enough

entries for all the rows touched. For a TLB with 32 entries, we expect the threshold to be 7

or 8 because each execution of the innermost loop touches some elements of4*b-1 rows

(all 2*b-1 rows of arrayX, the same forY, and one row ofZ) . Figure 7.5 shows a dis-

crete change at the expected point: between 7 and 8, execution time rises by 120%, much

more than can be explained by the corresponding 30% increase in the number of itera-

tions, and the execution time rises much faster thereafter.

Array restructuring reduced TLB misses by making array accesses go through ele-

ments consecutively in memory. The resulting access pattern is shown at the bottom of

Figure 7.4. The innermost loop reads a row of elements, which are in adjacent cache lines

and likely to be in the same page. Moreover, the triangle of elements touched by one out-

ermost loop iteration covers half the elements in consecutive, short rows rather than a few

146

Declare X[2*b-1,n], Y[2*b-1,n], Z[2*b-1,n]
FOR i = 1, n

FOR j = i, max(i+2*b-2,n)
FOR k = max(1,i-b+1,j-b+1), min(n,i+b-1,j+b-1)

Z[j-i+1,i] += X[j-k+b,k] * Y[i-k+b,k] +
X[i-k+b,k] * Y[j-k+b,k]

X[j-k+b,k] X[i-k+b,k]

Declare X2[n,2*b-1], Y2[n,2*b-1],Z[2*b-1,n]
FOR i = 1, n

FOR j = i, max(i+2*b-2,n)
FOR k = max(1,i-b+1,j-b+1), min(n,i+b-1,j+b-1)

Z[j-i+1,i] += X2[j+b,-j+k-b] * Y2[i+b,-i+k-b] +
X2[i+b,-i+k-b] * Y2[j+b,-j+k-b]

X2[i+b,-i+k-b]X2[j+b,-j+k-b]

Figure 7.4: Access Pattern of SYR2K

becomes

147

elements per short row (and presumably per page) scattered around the array. As the trian-

gle shifts down the restructured array, only a few TLB entries are needed for the working

set at a given time. This would have helped paging behavior as well had it been a problem.

7.3 Comparing Array Restructuring and Loop Restructuring

In addition to evaluating array restructuring itself, we also compared array restructuring

with common loop restructuring techniques that also aim at improving locality, spatial as

well as temporal. Before discussing the results, we first describe the comparison method-

ology.

7.3.1 Methodology

We compared the execution time of each loop after array restructuring with that after loop

restructuring. To apply array restructuring, we simply compiled each loop with the proto-

type, manually overriding the compiler’s decision not to restructure because of potentially

high overhead in some of the loops. On the other hand, loop restructuring was done manu-

ally as described below.

Figure 7.5: Performance Variation of SYR2K

3 4 5 6 7 8 9 10

Variable b

0

2

4

6

8

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

148

Each loop was restructured by manually changing its Fortran source. We then com-

piled it with SUIF (without array restructuring). In each case, the best loop transformation

was chosen manually using various loop restructuring techniques in the literature and their

combinations. Transformations were both chosen and applied manually because we would

like to consider a wide range of techniques in the literature, but no single compiler to our

knowledge has implemented all of them. Moreover, any particular implementation of a

general technique might fail to transform a given loop because of limitations incidental to

the implementation but not inherent to the technique itself. The transformations consid-

ered include loop interchange (or permutation, for loops more than doubly nested) [Allen

and Kennedy 1984; Kennedy and McKinley 1992], skewing [Wolfe 1989b], reversal

[Bacon, Graham, and Sharp 1994; Wedel 1975], scaling [Li and Pingali 1993c], fusion,

and distribution [Carr, McKinley, and Tseng 1994; Kennedy and McKinley 1990, 1994].

To calibrate the quality of the loop restructuring we did by hand, we also compared our

manually selected transformations with those performed by the POWER Fortran Acceler-

ator (PFA) on a Silicon Graphics Power Challenge [SGI 1995b]. We found the manual

restructuring to be as good as, and sometimes better than, what PFA did. PFA is a source-

to-source code optimizer. It performs a number of advanced loop transformations auto-

matically to maximize locality and parallelism. Those relevant to locality include loop

interchange, fusion, blocking, and unroll-and-jam [SGI 1995b]. In five of our loops, PFA

performed basically the same transformations as we did. In the other three, PFA did not

perform any transformation. (Without PFA’s source code, it cannot be determined whether

PFA did not transform these loops because it could not or because it decided against any

change.) In two of these three loops (SYR2K and CHOLSKY), our manual restructuring

based on other existing techniques improved performance significantly. In the last remain-

ing case (CFFT2D), we did not transform the loops manually because it seems extremely

unlikely that they could be automatically transformed by a compiler with existing technol-

ogy. The major difficulty is the use of indirection arrays for indexing read-write data

arrays, which frustrates dependence analysis.

149

Experimental results are shown in Figure 7.6. The bar chart shows the execution times

of each loop after different kinds of processing, all normalized to the execution time of the

original loop. Normalized, rather than absolute, execution times are shown because we

wish to consolidate the results for all loops in one chart to facilitate discussion, but the

execution times of different loops differ vastly. In the graph, all timings for array restruc-

turing include two components: loop execution and data copying. “Manual loop restruc-

turing” refers to the manually chosen loop transformations; “automatic loop restructuring”

refers to those selected by PFA automatically. The latter gives us some indication of what

one particular production-quality optimizing compiler based on the latest technology can

achieve. Performance resulting from other compilers may, of course, vary. The problem

size of each loop is at the top of the range used in previous experiments (which have been

reported in Figure 7.1 and Figure 7.2).

7.3.2 Results

Generally, the results suggest that array and loop restructuring complement each other.

More specifically, the loops fall into three categories based on the comparison between the

two types of techniques.

For MATMUL, SYR2K, and CFFT2D, array restructuring excelled in applicability as

well as performance. It either applied where loop restructuring did not (CFFT2D) or pro-

duced better performance despite the copying overhead. MXM is a unique case. Array

restructuring did not improve performance; it performed better than loop restructuring

only because the latter degraded performance “unexpectedly.” MXM is a hand-tuned

implementation of matrix multiplication in which the outermost loop has been unrolled

four times. We deliberately permuted the loops in a way that would be optimal if the

unrolling were absent, expecting that a compiler would do the same. The SGI PFA con-

firmed our expectation.

For CHOLSKY and GMTRY, array restructuring and loop restructuring resulted in

comparable performance improvement. For CHOLSKY, however, array restructuring

150

Figure 7.6: Comparing Array and Loop Restructuring

0.0 0.5 1.0 1.5

Normalized execution time

MATMUL

SYR2K

MXM

CFFT2D

CHOLSKY

GMTRY

BTRIX

VPENTA

Original loop

OverheadArray restructuring

Manual loop restructuring

Automatic loop restructuring

Loop was not restructured

0.0 0.5 1.0 1.5

Normalized execution time

151

arguably performed better because it seems difficult to automatically select the compli-

cated sequence of loop transformations required to get the reported performance. Difficul-

ties include imperfect nesting at almost every loop level and certain array indices and loop

bounds that involve multiple loop variables. The entire sequence was chosen with consid-

erable experimentation and human intuition, even though it merely consists of well-known

transformations including loop interchange, fusion, and distribution. It effectively turned

the loop nest completely “inside out.” The SGI PFA did not transform this loop nest.

Therefore, array restructuring achieved better performance than automatic loop restructur-

ing, although it was only comparable to manual loop restructuring.

For BTRIX and VPENTA, loop restructuring was undoubtedly the better approach.

Although array and loop restructuring both reduced loop execution times to the same

extent, loop restructuring need not incur the runtime overhead of copying array elements.

Moreover, the loop restructuring done in both cases was simple: we merely interchanged

loops in a few perfect loop nests. The automatic optimizer performed the same with little

difficulty.

Finally, we note that the prototype compiler successfully identified the cases where it

would be wiser to do something else than to restructure arrays. As mentioned earlier, the

compiler decided against array restructuring for three loops: MXM, BTRIX, and

VPENTA. From Figure 7.6, we see that for MXM it is best not to restructure anything,

loop or arrays. The original version is already highly optimized, at least for the particular

architecture in these experiments. (The graph may suggest that array restructuring per-

formed equally well, but in fact it performed slightly worse because of the overhead,

although the difference is too small to be visible.) As for BTRIX and VPENTA, some sim-

ple loop restructuring suffices to decrease execution times significantly.

To sum up, in these results array restructuring complemented loop restructuring. It

applied where loop restructuring did not. When both applied, array restructuring per-

formed comparably, sometimes better. In cases where it did not perform as well, some

152

simple loop restructuring would have been good enough. This strongly suggests that com-

bining the two can potentially improve performance even further.

However, their complex interaction makes exploiting this potential nontrivial. For

example, suppose we first apply automatic loop restructuring and then array restructuring.

One might expect some extra performance improvement over applying either alone. This,

however, will not materialize. As we have noted, out of the eight loops in the experiments,

five were automatically transformed by PFA and three were not. In the latter group of

loops, naturally, combined loop and array restructuring would have the same performance

as array restructuring alone, since itis array restructuring alone. As for the former group,

our prototype would not transform the arrays any further because they already have good

spatial locality after loop restructuring. Worse, for MATMUL and MXM, better perfor-

mance could have resulted from simply applying array restructuring to the original loop.

The same would also happen in the case of SYR2K if the results for manual loop restruc-

turing are considered. The reason for this is that in trying to improve spatial locality,

which array restructuring could have done without jeopardizing temporal locality, loop

restructuring sacrifices some temporal locality — a loss that subsequent array restructur-

ing cannot recover. More work is required to fully understand how the two types of

restructuring should be integrated.

7.4 Array Restructuring and Tiling

Array restructuring also complements loop tiling, a powerful locality optimization tech-

nique for nested loops [Lam, Rothberg, and Wolf 1991; Wolf 1992; Wolf and Lam 1991a].

This section discusses how the two interact.

We experimentally compared three forms of each loop: tiling alone, tiling with loop

restructuring, and tiling with array restructuring. In each case, the innermost loop(s) were

tiled manually by changing the Fortran source2. For loop restructuring, the loops were

153

restructured and then tiled, as in previous work [Li 1995; Wolf and Lam 1991a]. For array

restructuring, however, we tiled the original loop and then applied array restructuring

because we could not manually tile the output code of the prototype compiler. Tiling the

loops first also agrees with this dissertation’s convention of applying array restructuring

last (see Section 6.2.2). We expect results to be similar if array restructuring had been

applied first because our algorithm chooses array transformations based on the directions

in which inermost loops go through the index space, and loop tiling does not alter those

directions. We measured execution times for a range of tile sizes. Problem sizes were the

same as those used in Section 7.3. We did not apply tiling to CFFT2D because its imper-

fect nesting and use of indirection arrays would likely frustrate any form of automatic loop

restructuring.

Figure 7.7 shows the results. Execution times are plotted against tile sizes. In each

case, the performance for the largest tile size is effectively that of the untiled version of the

same loop because the largest tile size equals the number of iterations3, which means there

is only one big tile for that loop. In some cases, tiling was not appropriate after loop or

array restructuring because locality had improved so much that subsequent tiling brought

no further benefit. To reflect this in the graphs, we show the execution time of the untiled

loop as a horizontal line without individual data points for different tile sizes.

From Figure 7.7, we see that tiling improved the performance of the original loop sub-

stantially, as previous studies have also found [Lam, Rothberg, and Wolf 1991; Li 1995].

However, without loop or array restructuring, performance improvement depended very

much on the tile size. The performance curves are generally U-shaped, as Figure 7.7(a)

2. We applied tiling by hand even though SUIF itself has implemented this technique because its current
implementation is insufficient for our purpose. The compiler tiled none of the loops when loop bounds were
runtime constants, possibly because the compiler decided against tiling when it could not ascertain whether
the loops were large enough to justify it. With loop bounds set to large compile-time constants, three (MAT-
MUL, MXM, and one pair of inner loops in CHOLSKY) of the eight loops were tiled automatically.

3. The only exception is SYR2K after loop restructuring. Its innermost loop has many times more iterations
than that of the original version. If we were to show this iteration count as the largest tile size (as we do in all
other cases), either the x-axis would be awkwardly long or the small performance variation with tile size
would become illegible.

154

0 100 200 300 400 500

Tile size

0

10

20

30

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) MATMUL

0 100 200 300 400

Tile size

0

50

100

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) SYR2K

0 100 200 300 400 500

Tile size

0

5

10

15

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(c) MXM

0 100 200 300 400 500

Tile size

0

5

10

15

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(d) GMTRY

0 100 200 300 400 500

Tile size

0

10

20

30

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(e) CHOLSKY

0 20 40 60 80

Tile size

0

10

20

30

40

50

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(f) BTRIX

0 100 200 300 400

Tile size

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(g) VPENTA

Tiling
Tiling + loop restructuring
Tiling + array restructuring
(with overhead)

If tiling is not appropriate, execution times
for untiled loops are shown as horizontal
lines without data points.

CFFT2D is omitted because it cannot be
tiled automatically.

Figure 7.7: Array Restructuring and Tiling

155

demonstrates most evidently. Execution time decreases with increasing tile size, reaches a

minimum, and then rises again. This observation also agrees with previous findings [Lam,

Rothberg, and Wolf 1991; Li 1995]. Some researchers have therefore investigated how to

choose an appropriate tile size for best performance [Coleman and McKinley 1995;

Esseghir 1993; Lam, Rothberg, and Wolf 1991].

As Figure 7.7 shows, array and loop restructuring sometimes made the performance of

the tiled loops less sensitive to tile size. Performance still deteriorated when tiles were too

small, presumably because of excessive loop overhead. However, performance degrada-

tion for large tiles was mitigated. In several cases, tiling brought no further improvement

after arrays had been restructured; the “optimal” tile was the largest possible, namely all

the iterations. Loop restructuring had a similar effect, as a previous study has also

observed [Li 1995]. However, it is always valid to apply any array restructuring and tiling

together. Since array restructuring does not alter the loop structure, it never makes an orig-

inally tilable loop untilable. The same cannot be said of loop restructuring in general.

7.5 Summary

In our experiments, array restructuring by itself improved performance significantly in

most cases, with a modest, sometimes insignificant, runtime overhead. In other cases,

however, the overhead was too high for the technique to be beneficial. The prototype com-

piler was able to distinguish between the two. We also found that array restructuring com-

plemented loop restructuring: it applied to cases where the latter did not and performed

comparably when both applied; when it did not perform as well, some simple loop restruc-

turing would have sufficed. Moreover, array restructuring also complemented loop

restructuring in that it made tiling performance less dependent on the size of tiles.

156

Chapter 8

Parallel Execution

This dissertation focuses on restructuring arrays to improve locality for loop execution on

a single processor. However, array restructuring may also help parallel execution. At the

very least, by improving the locality of each processor’s access pattern, it can decrease the

execution times on individual processors and thus the overall execution time as well.

Moreover, changing array layouts may alleviate false sharing, a problem that arises from a

mismatch between data layouts and inter-processor access patterns and has been success-

fully addressed by means of data transformations [Jeremiassen and Eggers 1995]. There-

fore, we also carried out some experiments for parallel execution to gauge how our array

restructuring technique affects performance in the parallel case. Results are discussed in

this chapter.

8.1 Experiments and Results

The experiments were performed on a Silicon Graphics Power Challenge [SGI 1995a].

(Results on a Kendall Square Research KSR-2 are included in Appendix B. They resem-

ble the Power Challenge results here.) The Power Challenge is a shared-memory multipro-

cessor based on MIPS R8000 processors. Each processor has two levels of cache for

integer data, but only one for floating point data. The first-level cache is an on-chip,

16 KB, write-through, direct-mapped cache with a line size of 32 bytes. However, it is

used only for integer operations, while all the loops in our experiments perform primarily

floating point operations. Floating point loads and stores are satisfied directly by a second-

level cache: an off-chip, 4 MB, write-back, four-way set-associative cache with a line size

157

of 512 bytes. The MIPS R8000 also has a 384-entry three-way set-associative translation

lookaside buffer (TLB) shared by instructions and data. (All background information in

this paragraph is from SGI’s on-line documentation [SGI 1995a].)

As before, we first compiled the Fortran code using our prototype compiler, and then

the output C code using Power Challenge’s native C compiler (cc), both with standard

compiler optimizations (-O2). SUIF automatically parallelized the loops where it identi-

fied such opportunities and inserted calls to its runtime system for parallel execution. The

object code was finally linked with SUIF’s and our runtime systems.

Figure 8.1 shows the results for loops that our prototype compiler considered profit-

able; Figure 8.2 shows those for the unprofitable cases with manual override of the com-

piler’s decision against array restructuring. Each graph plots the parallel speedup against

the number of processors for several cases. In addition to the usual categories explained in

the previous chapter, all of which involve SUIF in some way, we also measured the loops

directly parallelized and compiled by Power Challenge’s native Fortran compiler. This

allows us to further validate any trend that may be observed from the SUIF-based results.

We do not, however, quantitatively compare the two sets of results because they come

from two vastly different compilers, one being a commercial product and the other a

research prototype.

All speedups were computed relative to the execution time of the parallelized version

of the original loop (compiled by SUIF) running on a single processor. Therefore, for

other versions of the same loop, the speedup may, and often does, exceed the number of

processors because the speedup is in part due to reasons that are not directly related to par-

allel execution. Also, note that parallel speedups strictly speaking should be calculated

based on the execution time of the sequential version, rather than a parallelized version

running on one processor. However, our focus here is not parallelization overhead, but

how array restructuring affects parallel execution. Using the sequential execution time as a

basis would merely scale the vertical axes but not influence the relative trends.

158

Figure 8.1: Parallel Speedups on SGI Power Challenge — Profitable Cases

0 2 4 6 8

Number of processors

0

8

16

S
pe

ed
up

(a) MATMUL

0 2 4 6 8

Number of processors

0

10

20

30

40

50

S
pe

ed
up

(b) SYR2K

0 2 4 6 8

Number of processors

0

2

4

6

8

S
pe

ed
up

(c) GMTRY

0 2 4 6 8

Number of processors

0

2

4

6

8
S

pe
ed

up

(d) CFFT2D

0 2 4 6 8

Number of processors

0

8

16

S
pe

ed
up

(e) CHOLSKY

Linear speedup
Original loop
Native Fortran compiler
Manual loop restructuring
Array restructuring (with overhead)

All speedups are relative to execution time
of the original loop on 1 processor.

159

8.2 Discussion

Let us first consider Figure 8.1, which shows the loops for which the prototype compiler

considered array restructuring profitable. Array restructuring did substantially improve

performance over the original loop. This agrees with our previous observation on unipro-

cessor execution. Array restructuring achieved this in two ways: improving the spatial

locality of execution on each processor and reducing false sharing between processors.

0 2 4 6 8

Number of processors

0

2

4

6

8
S

pe
ed

up

(a) MXM

0 2 4 6 8

Number of processors

0

2

4

6

8

S
pe

ed
up

(b) BTRIX

0 2 4 6 8

Number of processors

0

2

4

6

8

S
pe

ed
up

(c) VPENTA

Linear speedup
Original loop
Native Fortran compiler
Manual loop restructuring
Array restructuring (with overhead)

All speedups are relative to execution time
of the original loop on 1 processor.

Figure 8.2: Parallel Speedups on SGI Power Challenge — Unprofitable Cases
(with Manual Override of Compiler Decision)

160

Better spatial locality accounts for the performance improvement in MATMUL,

SYS2K, and CFFT2D, as in the workstation results reported in the last chapter. MATMUL

and SYS2K are both perfect loop nests that can be parallelized easily. In both, the outer-

most loop is parallel, and its iterations have little interaction. Thus, all the speedup curves

are almost linear. Array restructuring improved performance by roughly the same factor

on any number of processors. It was, incidentally, only applied to read-only arrays. The

improvement could not have come from reduced false sharing. Instead, it resulted from

better spatial locality of loop execution on each individual processor. Essentially, what we

expect on a single processor occurred independently on each processor of the multiproces-

sor. As for CFFT2D, the situation was similar, except that the restructured array was both

read and written, but still with no false sharing. Performance did not scale well with more

processors because the compilers (SUIF as well as the native Fortran compiler) were able

to parallelize only the innermost loop.

False sharing comes into play for GMTRY and CHOLSKY. For GMTRY, on one pro-

cessor, performance for the four loop versions was comparable. On eight processors, how-

ever, the original loop performed much worse than the other three. This was due to false

sharing. In GMTRY, the parallelized loop writes a column of elements (in a two-dimen-

sional array), which are stored consecutively according to the Fortran convention. False

sharing may result if different processors write different elements in the same cache line.

Both loop and array restructuring can remedy this problem, as evidenced in Figure 8.1(c)

by the comparable performance of all but the original loops. As in the workstation results,

array and loop restructuring had similar performance. Array restructuring in effect trans-

poses the array, causing the parallelized loop to write elements far apart, and a sequential

loop within it to write consecutive elements. This both improves spatial locality and

reduces false sharing. Loop restructuring (done manually as well as by the native Fortran

compiler) can achieve a similar effect with loop distribution followed by interchange.

CHOLSKY suffered a similar problem, and array restructuring offered a similar solu-

tion. Figure 8.1(e) shows hardly any parallel speedup for the original loop. False sharing

161

between processors, poor spatial locality on each individual processor, and load imbalance

(since the parallelized loop had only a few iterations) all contributed to the problem. Array

restructuring solved the first two, by allowing the outermost, parallelized loop to write ele-

ments far apart and the inner loops executed entirely on one processor to go through ele-

ments consecutively. A suitable sequence of loop transformations that effectively turns the

imperfect loop nest “inside out” can solve all three problems. Thus, manual loop restruc-

turing performed much better than array restructuring, unlike in the workstation’s case

where the two performed comparably. However, as discussed in Section 7.3.2, it is diffi-

cult to find the right loop transformation sequence. Failing to do that, the native Fortran

compiler did not improve performance.

Finally, let us briefly look at the unprofitable cases in Figure 8.2. (Recall that in these

cases array restructuring was applied against the prototype compiler’s decision for experi-

mental purposes.) Generally, the observations resemble those for single processor execu-

tion (see Section 7.3.2). For MXM, array restructuring had virtually no effect on

performance, whereas loop restructuring, including that performed by the native Fortran

compiler, decreased performance unexpectedly. However, loop restructuring did have an

advantage at eight processors because of a better distribution of iterations among proces-

sors. For BTRIX and VPENTA, simple loop restructuring chosen by the native Fortran

compiler obtained significant improvement over the original loops, whereas array restruc-

turing performed dismally after copying overhead has been taken into account.

8.3 Summary

Although our array restructuring targets execution on a single processor, it may also

improve performance of parallel execution. First, it improves the spatial locality of loop

execution on each individual processor. Moreover, it may reduce false sharing between

processors. Laying out an array in such a way that inner loops executed entirely on one

processor go through the elements consecutively tend to separate the elements accessed by

162

parallelized, outer loops by a large distance, thus decreasing the potential for false sharing.

We could in principle use array restructuring to target false sharing more specifically

because false sharing, like spatial locality, is related to the layout of data in memory. How-

ever, we have not pursued this direction further in this study since our focus is on sequen-

tial execution.

Parallel execution introduces more dimensions into the problem of program restructur-

ing. In addition to temporal and spatial locality, both important on one processor, we also

have to consider parallelism, inter-processor communication, and load balance, to name

just a few. Loop restructuring may affect all these factors. It is difficult to find a suitable

loop transformation to balance often conflicting goals, even harder than for single proces-

sor execution. This suggests that it is even more important to combine array and loop

restructuring in parallel programs than in sequential ones.

Part IV

Conclusion

164

Chapter 9

Related Work

In this chapter, we review related work that also aims to improve cache performance. As

discussed earlier, one may enhance the locality of array accesses in loops by restructuring

loops or by restructuring arrays. This chapter is organized accordingly, but with an empha-

sis on array restructuring techniques since they are more closely related to this study.

9.1 Array Restructuring

Our survey on array restructuring techniques is divided into two parts. Since we are

mainly concerned with changing the storage order of array elements, we first discuss in

detail related work with a similar focus. Then, we also look at other forms of data layout

transformations and optimizations.

9.1.1 Reordering Array Elements

We review three other studies of reordering array elements for better cache performance.

These studies share several characteristics that differentiate them from our work. First,

they use both loop and array restructuring; we focus on array restructuring. Second, they

address cache performance on shared address space multiprocessors; our main concern is

single processor execution. Third, they consider a small subset of possible array transfor-

mations, typically permutations of array dimensions; we explore a much larger design

space. Fourth, they try to select a single transformation for each array maintained through-

out multiple loop nests; we allow dynamic restructuring between loop nests. As we dis-

cuss each study, we elaborate on these and other differences.

165

Cierniak and Li have proposed a unified framework for loop and array restructuring

[Cierniak and Li 1995]. It extends Li’s previous loop restructuring framework based on

nonsingular matrices [Li and Pingali 1993c]. Essentially, they observe that for a traditional

row-major or column-major array layout, the memory location of an element is an affine

function of its indices. (Recall that, as discussed in Chapter 4, the scalar offset of an ele-

ment into the array is the dot product of the index and linearization vectors, plus some sca-

lar constant.) They propose that a compiler can choose from all affine functions rather than

always adhere to a standard layout. This flexibility, together with the freedom to change

loop structures, offers many opportunities to improve locality.

Their array restructuring framework differs from ours in not having the notion of

transformed index vectors. In their framework, the compiler chooses directly an affine

function taking original array indices to memory locations; in ours, the compiler selects an

index transformation that takes original index vectors to transformed index vectors, which

in turn are used to compute memory locations. Any transformation in either framework

can be expressed in the other. In this sense, both are equally general.

Although their framework is potentially very general, the problem of actually choos-

ing the right combination of array layout and loop transformation is tractable only because

many possibilities are ruled outa priori. Imposing several conditions on array layouts,

they eventually consider only layouts that effectively correspond to permutations of array

indices (in two dimensions, the possibilities reduce to row-major and column-major lay-

outs). Also, instead of computing a loop transformation with an algorithm, as done in Li’s

earlier work [Li and Pingali 1992; Li and Pingali 1993a; Li 1995], they consider a prede-

termined subset of transformations that they believe to be sufficient. Given these restric-

tions, they select a combination of array and loop transformations by exhaustively

evaluating combinations of candidates for legality and potential locality improve-

ment (for ann-deep loop nest andm-dimensional array). As for multiple accesses, the

compiler resolves conflicting loop and array transformation requirements from different

accesses apparently also with an exhaustive search, although details were not given.

m!2
n

2

166

In contrast, our algorithm explores the full range of array transformations allowed by

the framework, including index space “skewing” and transformations for partial restruc-

turing. Moreover, we explore the possibilities without an exhaustive search, which would

be impossible because the number of transformations to consider is infinite. For example,

we have explained in Section 3.1.1 that for SYR2K, permuting array dimensions cannot

solve the performance problem; the index space must be skewed. This possibility, though

allowed in both frameworks, is explored and selected only by our algorithm. More gener-

ally, access patterns involving diagonal movement through the index space, often found in

banded matrix computations, require similar array transformations.

The SUIF compiler restructures arrays to reduce false sharing and improve processor

and spatial locality [Anderson, Amarasinghe, and Lam 1995]. The SUIF project aims at

automatically parallelizing sequential programs. The compiler decides how to partition

array elements and loop iterations across processors in a way that maximizes parallelo-

gram while minimizing inter-processor communication [Anderson and Lam 1993]. For

machines with a shared address space but distributed memories (such as Stanford’s DASH

[Lenoski et al. 1992]), one might rely on the cache coherence hardware to move data

between processors as needed. However, this straightforward solution may lead to false

sharing and poor processor and spatial locality. These problems arise because in the shared

address space, array elements supposedly allocated to the same processor may be sepa-

rated by elements belonging to other processors [Anderson, Amarasinghe, and Lam 1995].

To remedy the problem, Anderson et al. propose restructuring arrays based on their

data partitions [Anderson, Amarasinghe, and Lam 1995]. Elements allocated to the same

processor are put in a contiguous region in the shared address space; in effect, such contig-

uous regions serve as the “local memories” of processors. Arrays are restructured with two

transformations:permutation permutes array dimensions;strip-mining turns one array

dimension into two in much the same way as loop strip-mining turns a singly nested loop

into a doubly nested one. Anderson et al. also describe a linear algebraic framework for

array restructuring that resembles ours in using linear index transformations.

167

Their work differs from ours in several ways. First, they use their framework only for

representing array permutations. (Strip-mining cannot be represented by linearly trans-

forming index vectors.) They mentioned the possibility of unimodular transformations but

did not pursue it. In comparison, we fully explore unimodular and even non-unimodular

invertible transformations. Second, they restructure arrays solely to bring elements allo-

cated to the same processor together in the shared address space. They are not concerned

about the storage order of those elements, expecting another compilation phase to reorder

elements for better cache performance. In contrast, the storage order of array elements on

a single processor is precisely our focus. In this sense, our work complements theirs.

Finally, the particular sets of transformations are also different; neither includes the other.

Ju and Dietz have proposed combining array and loop restructuring to reduce cache

coherence overhead in shared-memory multiprocessors [Ju and Dietz 1992]. For each loop

and each array the loop accesses, the compiler estimates the cache coherence overhead for

all possible combinations of loop structures and data layouts. Calculated from a detailed

machine-specific cost model, these estimates are used to construct aninterference graph.

Nodes of the graph represent loops and arrays; edges connect loops to the arrays they

access and are labeled with a cost table containing the above estimates. The compiler

selects loop structures and array layouts to minimize the sum of the edge costs, which is

the expected total cache coherence overhead. Since all combinations of loop structures

and data layouts are exhaustively searched (with some pruning), in practice the compiler

can afford to consider only a small number of possibilities [Ju and Dietz 1992]. In the only

example given, arrays are either row-major or column-major, and loops are interchanged.

This work differs from ours in several ways. First, the goals are different: it aims to

reduce cache coherence traffic on shared-memory multiprocessors, while we seek to

improve spatial locality on a single processor. Second, for array restructuring, it can afford

to consider only a few possible transformations (e.g., row- and column-major storage

orders), while our framework allows efficient exploration of a much larger design space.

Third, they use both loop and array restructuring, while we focus on the latter. Finally,

168

they analyze loops and arrays on a global level to select one layout for each array, while

we analyze individual loops locally, restructuring arrays in between if necessary.

9.1.2 Other Forms of Data Layout Optimizations

The following optimizations differ from our array restructuring technique fundamentally

in that they do not focus on reordering array elements as we do.

Array padding has long been used to improve memory system performance [Bacon,

Graham, and Sharp 1994]. The compiler adds dummy elements to an array so that ele-

ments accessed consecutively are separated by some suitable distance in memory. This

technique is useful for fully utilizing the memory bandwidth on vector machines with

banked memory: the padding causes consecutive memory accesses to be directed to differ-

ent memory banks and thus serviced in a pipelined fashion. Array padding may also be

needed to avoid excessive conflict misses in caches with low associativities. In such

caches, excessive conflict misses may result if the program happens to access array ele-

ments at strides that equal powers of two (which often happens when some array dimen-

sions are powers of two) because all those elements would be mapped to a small number

of sets in the cache. Array padding solves the problem by slightly shifting those elements

so that they are mapped to different sets. In a related technique,array alignment, the com-

piler judiciously chooses array starting addresses to avoid the conflict misses that may

occur if the program alternately accesses elements of different arrays and those elements

happen to be mapped to the same set in the cache. The systematic selection of suitable

padding amounts has been studied recently [Bacon et al. 1994].

Array padding is orthogonal to our array restructuring technique. Unlike our tech-

nique, it does not reorder array elements, just adds dummy elements between the “real”

elements. However, it can be incorporated into our framework. When calculating the lin-

earization vector, we can account for the dummy elements by choosing the vector’s com-

ponents to be slightly greater than what would be strictly required for all elements to have

their own unique memory locations.

169

Jeremiassen and Eggers apply data transformations to reduce false sharing in coarse-

grained, explicitly parallel applications on shared-memory multiprocessors [Jeremiassen

and Eggers 1995; Jeremiassen 1995]. Based on how different threads of execution access

data, the compiler transforms data structures so that data accessed by the same thread are

grouped together while write-shared data with little processor locality are separated into

different cache lines. Three data transformations are used:group and transpose converts a

group of statically declared vectors into a vector of records with one field for each original

vector;pad and align pads data structures to the cache line size and aligns them on cache

line boundaries;indirection places dynamically allocated data structures predominantly

written by one processor in a heap region specific to that processor, leaving a pointer to the

new location in the original location [Eggers and Jeremiassen 1991; Jeremiassen 1995;

Jeremiassen and Eggers 1995].

Their work and ours differ in several significant ways. First, they aim at reducing false

sharing in explicitly parallel applications on shared-memory machines, while we try to

improve spatial locality in sequential programs running on uniprocessors. Second, their

transformations target data structures in general, while ours focus on reordering array ele-

ments. In particular, as applied to multidimensional arrays, group and transpose amounts

to a form of permuting array dimensions: if the vector components are themselves arrays,

this transformation effectively permutes the array dimension corresponding to the vector

to the leftmost index position while preserving the relative order of the other dimensions.

Third, their transformations consist of individual useful techniques selected heuristically

by the compiler, while our transformations are represented in a formal framework and

chosen by algorithmic analysis of formal representations. Finally, they make data restruc-

turing decisions after a static whole-program analysis, while we may dynamically restruc-

ture arrays between loops and uses local analysis.

Torrellas, Lam, and Hennessy have also studied the impact of false sharing and spatial

locality in multiprocessor caches [Torrellas, Lam, and Hennessy 1994]. They propose five

data layout optimizations to improve cache performance. These include different forms of

170

padding and alignment, dynamically allocating data structures in processor-specific heaps,

and putting locks and the variables they protect together. Their techniques generally

speaking differ from ours in the same ways as those of Jeremiassen and Eggers just dis-

cussed.

9.2 Loop Restructuring

In this section, we review loop restructuring techniques for improving locality — both

temporal and spatial — to demonstrate the depth and breadth of the long-standing work in

this area. In particular, we discuss loop interchange, permutation, fusion, and tiling (or

blocking) [Bacon, Graham, and Sharp 1994]. In addition, we survey other transformations

that do not improve locality by themselves but are sometimes needed to enable those just

listed, as well as frameworks for systematically selecting sequences of transformations. In

keeping with our theme, we focus on how the transformations enhance locality, although

many of them may also serve other purposes such as increasing instruction-level parallel-

ism, reducing loop overhead, and enabling automatic parallelization or vectorization.

Loop interchange swaps two different loops in a loop nest, one of which is typically

the innermost loop [Allen and Kennedy 1984]. This transformation reorders iterations so

that those accessing the same or nearby data are executed closer together in time than

under the original program order. It can improve temporal locality by, say, moving a loop

that reuses the same array element to the innermost position, or spatial locality by simi-

larly moving a loop that goes through an array at unit stride.

Loop permutation generalizes loop interchange. It permutes the loops in a loop nest

into some order different from the original program order. A permutation may be viewed

as a series of interchanges. For loop interchange and permutation to be legal, all the trans-

formed loop nest’s dependence vectors, obtained by permuting components of the original

dependence vectors accordingly, must remain lexicographically positive. Some research-

171

ers have studied selecting a permutation for both parallelism and locality based on a sim-

ple memory model [Carr, McKinley, and Tseng 1994; Kennedy and McKinley 1992].

Loop skewing and loop reversal by themselves do not improve locality but are often

required to make loop permutation legal [Wolfe 1989b]. Loop skewing merely skews the

iteration space by adding some multiple of an outer loop variable to the bounds of inner

loops; by itself, it does not reorder iterations and thus is always legal. Loop reversal does

reorder iterations, reversing the order in which a loop goes through its iterations [Wedel

1975]. Therefore, loop reversal is legal only if all dependence vectors remain lexicograph-

ically positive after their components for the reversed loop have been negated [Bacon,

Graham, and Sharp 1994].

Given a loop nest, it is often difficult to choose a legal sequence of such loop transfor-

mations to achieve the desired effects on locality. The difficulty is compounded by the fact

that a sequence may be legal overall even if some intermediate steps are illegal. Some

researchers have therefore proposed representing these transformations in a formal frame-

work amenable to mathematical analysis [Banerjee 1991; Wolf and Lam 1991b]. Specifi-

cally, these loop transformations and their combinations are represented by unimodular

transformations on the iteration space. A compiler represents array accesses and loop

bounds as affine functions, selects a unimodular transformation mathematically, computes

the transformed affine functions, and generates code directly from these transformed func-

tions — all without explicitly applying any of the intermediate loop transformations. This

mathematics-based approach has inspired other research efforts, including, of course, this

dissertation. Others have also developed a framework to represent iteration reordering

loop transformations as sequences of kernel transformations each with specific rules for

converting dependence vectors, loop bounds, etc. [Sarkar and Thekkath 1992]. It facili-

tates legality checking and code generation for a given transformation sequence, although

algorithms must still be developed to choose a suitable sequence.

The unimodular loop restructuring framework has notably been extended to one using

nonsingular matrices, which subsume unimodular matrices [Li and Pingali 1993c]. This

172

extension adds another loop transformation calledloop scaling, which replaces a loop

variable by a multiple of itself [Li 1993]. This framework has led toaccess normalization

[Li and Pingali 1992; Li and Pingali 1993a]. Access normalization is an optimization for

non-uniform memory access (NUMA) multiprocessor. Given a distribution of data to pro-

cessors, it aims to transform a loop nest so that the outermost loop can be parallelized

without compromising processor locality, while in the inner loops, data can be transferred

between processors using block transfer memory operations [Li 1993]. The same frame-

work has also led to cache locality optimization techniques especially suited for banded

matrix applications on uniprocessors [Li 1995; Li 1993]. As discussed in Section 9.1.1,

some recent work on unifying loop and array restructuring has also built on this frame-

work [Cierniak and Li 1995].

The above optimizations target perfect loop nests because they reorder iterations as a

whole rather than statements in an iteration. To apply them to imperfect loop nests, a com-

piler may useloop distribution to convert the original loop nest into a series of perfect

loop nests, each containing some of the statements in the original loop body [Kennedy and

McKinley 1990]. Even when starting with a perfect loop nest, we may still want to distrib-

ute it if loop transformations that will improve the performance of some statements in the

loop body are precluded by loop-carried dependences arising from others.

Loop fusion, the inverse of loop distribution, can also improve locality [Abu-Sufah

1979; Wolfe 1989b]. By fusing corresponding iterations from different loop nests into one,

it brings uses of the same or nearby data, originally in corresponding iterations separated

by an entire loop nest, to within the same iteration. It has been used together with loop dis-

tribution to maximize loop-level parallelism and improve locality on shared-memory mul-

tiprocessors [Kennedy and McKinley 1994], and furthermore with loop permutation and

reversal to improve locality on uniprocessors as well [Carr, McKinley, and Tseng 1994].

Finally, loop tiling (or blocking) is another powerful iteration reordering technique to

improve locality [Abu-Sufah 1979; Gannon, Jalby, and Gallivan 1988]. Tiling can be

viewed as strip-mining followed by permutation [Wolfe 1989a]. The iteration space is

173

divided into rectangular “tiles” such that the data touched by a tile fit in the cache. The

restructured loop executes iterations one tile at a time, finishing one tile before executing

another. Thus, each tile reuses data in the cache as much as possible before the next tile

replaces them with other data.

Loop tiling has long been used by scientific programmers in the form of blocked algo-

rithms [Lam, Rothberg, and Wolf 1991]. Compiler algorithms to automate tiling is rela-

tively recent [Wolf and Lam 1991a]. The compiler applies loop permutation, skewing, and

reversal within a unimodular transformation framework as discussed above to produce a

fully permutable nest — a nest of loops for which any permutation is legal — which can

then be tiled [Wolf and Lam 1991a; Wolf 1992]. Others have looked into the possibility of

using non-rectangular tiles [Irigoin and Triolet 1988].

However, tiling performance is often sensitive to tile size [Lam, Rothberg, and Wolf

1991]. If a tile is too large, the data it touches may overflow the cache, destroying the

intra-tile reuse critical to tiling’s potential to improve performance. This is especially true

for caches with low associativity, in particular direct-mapped caches, because conflict

misses may occur even if the data size is well within the cache’s capacity. Proposed solu-

tions to this problem include copying data accessed by each tile to a separate buffer while

they are being used [Lam, Rothberg, and Wolf 1991], judiciously (and conservatively)

choosing tile sizes with compiler analysis [Coleman and McKinley 1995], and combining

tiling with other forms of loop restructuring [Li 1995].

174

Chapter 10

Summary and Conclusions

This dissertation studies the use of array restructuring to improve the locality of array

accesses in loops. Under this approach, the compiler analyzes the access pattern for each

array to determine how elements should be laid out for better locality. We explore how this

can be done effectively — efficiently, automatically, and as generally as possible.

To this end, we have developed a framework for array restructuring. In this frame-

work, a restructured array stores the same elements as the original, but in a different order

defined by a linear transformation of array index vectors. Using linear transformation is

efficient: it incurs no extra indexing overhead, even in the case of non-affine array index

expressions. Moreover, it makes possible automatic analysis based on linear algebraic

techniques. Finally, it is extremely general: for example, it subsumes permuting array

dimensions and allows restructuring only regularly spaced elements that are actually

accessed by the loop.

Within this framework, we have devised algorithms to automate array restructuring.

• First, the compiler chooses an index transformation for each array based on the

access pattern so that, first and foremost, the innermost loop accesses elements con-

secutively. Among other things, we can handle non-affine index expressions and

imperfect loop nests, both frequent obstacles to loop restructuring.

• Second, the restructured array is linearized: its elements are laid out in such a way

that an element’s location is an affine function of the array indices. Though easy for

traditional, constant array bounds, linearization is complicated by the non-constant

bounds that may result from general array restructuring. Our algorithm offers a gen-

175

eral solution that guarantees low indexing overhead at the price of some unused

memory.

• Finally, we can also restructure only those elements of an array that are really

accessed by the loop, thus reducing memory use and copying overhead as well as

improving spatial locality by storing elements more compactly. Our techniques sup-

port subsets of elements that are regularly spaced or within a restricted range, or

both, in the index space.

We obtained promising results from experiments using loops from related literature.

We found that for a range of problem sizes, array restructuring improved performance

substantially in many cases, despite a modest overhead in some under pessimistic assump-

tions. Our prototype was able to identify those cases where array restructuring was unprof-

itable due to excessive overhead.

We also found that array restructuring compared favorably with loop restructuring in

both applicability and performance. The two approaches complement each other; neither

enjoys an unqualified superiority. Array restructuring applied in some cases where loop

restructuring did not and achieved comparable, sometimes better, performance when both

were applicable. However, there were also cases where simple loop restructuring outper-

formed our array restructuring technique — precisely those cases for which our prototype

decided against array restructuring because it might not be profitable.

These quantitative results confirm the qualitative observation at the beginning of this

dissertation that loop and array restructuring each has its advantages and disadvantages,

which often mirror each other.

• Array restructuring can be more easily applied to complicated loop structures. For

example, we have discussed how it handles imperfect loop nests, non-affine index

expressions, etc., with relative ease. Unlike loop restructuring, it is also immune to

insufficient or imprecise information on loop-carried dependences.

176

• Array restructuring changes spatial locality but not temporal locality. Thus, it can

improve the former without jeopardizing the latter. Loop restructuring changes both,

which makes it more powerful (it can improve both) but also complicates perfor-

mance tradeoffs.

• Array restructuring can improve independently the locality for each array accessed

in a loop nest, while loop restructuring affects accesses to all arrays in the loop, thus

necessitating tradeoffs between them. On the other hand, multiple loop nests can be

restructured independently, while array restructuring affects all loop nests accessing

the same array. While this latter case may occur more often than the former, they are

not mutually exclusive. In the latter case, dynamically restructuring arrays between

loop nests may help, though at the expense of runtime overhead.

The complementary nature of loop and array restructuring suggests that the best

results are likely to be obtained by integrating both approaches. However, simply perform-

ing them one after the other in some order may not produce the expected performance

advantage. There have been attempts to fully integrate the selection of loop and array

transformations. As noted in the discussion on related work, in these previous attempts the

problem of choosing the right combination is tractable only because many possible trans-

formations — loop or array — are ruled outa priori. The potential of integrating the wid-

est possible classes of loop and array transformations may not be fully realized.

This dissertation is less ambitious in that it focuses on array restructuring. Loop

restructuring has been widely studied for a long time, with the tremendous amount of

research effort culminating in the state of the art. Array restructuring has so far received

relatively little attention. It is hoped that this study has contributed to a deeper understand-

ing of effective array restructuring. In the short term, the techniques developed can be

used on their own as another set of tools available to an optimizing compiler for improv-

ing locality. In the longer term, the insights obtained may also serve as one small step on

the road to an eventual integration of both approaches.

177

Bibliography

[Abu-Sufah 1979] W. Abu-Sufah. “Improving the Performance of Virtual Memory Com-

puters.” Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1979.

[Aho, Sethi, and Ullman 1986] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compil-

ers: Principles, Techniques, and Tools. Reading, MA: Addison-Wesley, 1986.

[Allen and Kennedy 1984] J. R. Allen and K. Kennedy. “Automatic Loop Interchange.” In

Proceedings of the ACM SIGPLAN Symposium on Compiler Construction,

(Montreal, Canada, June), 233-46. New York: ACM Press, 1984.

[Alpern, Wegman, and Zadeck 1988] B. Alpern, M. N. Wegman, and F. Zadeck. “Detect-

ing Equality of Values in Programs.” InConference Record of the Fifteenth

Annual ACM Symposium on Principles of Programming Languages,(San

Diego, CA, January), 1-11. New York: ACM Press, 1988.

[Amarasinghe and Lam 1993] Saman P. Amarasinghe and Monica S. Lam. “Communica-

tion Optimization and Code Generation for Distributed Memory Machines.” In

Proceedings of ACM SIGPLAN ’93 Conference on Programming Language

Design and Implementation, (Albuquerque, NM, June), 126-38. New York:

ACM Press, 1993.

[Anderson and Lam 1993] Jennifer M. Anderson and Monica S. Lam. “Global Optimiza-

tions for Parallelism and Locality on Scalable Parallel Machines.” InProceed-

ings of ACM SIGPLAN ’93 Conference on Programming Language Design

and Implementation, (Albuquerque, NM, June), 112-25. New York: ACM

Press, 1993.

178

[Anderson, Amarasinghe, and Lam 1995] Jennifer M. Anderson, Saman P. Amarasinghe,

and Monica S. Lam. “Data and Computation Transformations for Multiproces-

sors.” InProceedings of the Fifth ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming,(Santa Barbara, CA, July), 166-78.

New York: ACM Press, 1995.

[Bacon, Graham, and Sharp 1994] David F. Bacon, Susan L. Graham, and Oliver J. Sharp.

“Compiler Transformations for High-Performance Computing.”ACM Com-

puting Surveys26(4):345-420 (December 1994).

[Bacon et al. 1994] David. F. Bacon et al. “A Compiler Framework for Restructuring Data

Declarations to Enhance Cache and TLB Effectiveness.” InProceedings of

CASCON ’94, (Toronto, Canada, November), 270-82. Ottawa: National

Research Council of Canada, 1994.

[Bailey and Barton 1986] David H. Bailey and John T. Barton. “The NAS Kernel Bench-

mark Program.” Numerical Aerodynamic Simulations Systems Division,

NASA Ames Research Center, 1986. Distributed electronically with code.

University of Illinois at Urbana-Champaign, 1979.

[Banerjee 1991] Utpal Banerjee. “Unimodular Transformations of Double Loops.” In

Advances in Languages and Compilers for Parallel Processing,edited by A.

Nicolau et al. Research Monographs in Parallel and Distributed Computing.

Cambridge, MA: MIT Press, 1991.

[Bannon and Keller 1995] Peter Bannon and Jim Keller. “Internal Architecture of Alpha

21164 Microprocessor.” InDigest of Papers, COMPCON Spring '95, Technol-

ogies for the Information Superhighway, 79-87. Los Alamitos, CA: IEEE

Computer Society Press, 1995.

179

[Bloom 1979] David M. Bloom.Linear Algebra and Geometry. Cambridge, England:

Cambridge University Press, 1979.

[Carr, McKinley, and Tseng 1994] Steve Carr, Kathryn S. McKinley, and Chau-Wen

Tseng. “Compiler Optimizations for Improving Data Locality.” InProceedings

of Sixth International Conference on Architectural Support for Programming

Languages and Operating Systems, (San Jose, CA, October), 252-62. New

York: ACM Press, 1994.

[Cierniak and Li 1995] Michal Cierniak and Wei Li. “Unifying Data and Control Transfor-

mations for Distributed Shared-Memory Machines.” InProceedings of ACM

SIGPLAN ’95 Conference on Programming Language Design and Implemen-

tation, (La Jolla, CA, June), 205-17. New York: ACM Press, 1995.

[Coleman and McKinley 1995] Stephanie Coleman and Kathryn S. McKinley. “Tile Size

Selection Using Cache Organization and Data Layout.” InProceedings of

ACM SIGPLAN ’95 Conference on Programming Language Design and

Implementation, (La Jolla, CA, June), 279-90. New York: ACM Press, 1995.

[DEC 1992] Digital Equipment Corporation (DEC).DEC 3000 Model 400/400S AXP

Technical Summary. Maynard, MA: Digital Equipment Corporation, 1992.

[Dixit 1992] Kaivalya M. Dixit. “New CPU Benchmarks Suites from SPEC.” InDigest of

Papers, COMPCON Spring '92, Thirty-Seventh IEEE Computer Society Inter-

national Conference, (San Francisco, CA, February), 305-10. Los Alamitos,

CA: IEEE Computer Society Press, 1992.

180

[Dongarra et al. 1990] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain

Duff. “A Set of Level 3 Basic Linear Algebra Subprograms.”ACM Transac-

tions on Mathematical Software 16(1):1-17 (March 1990).

[Dutton et al. 1991] Todd A. Dutton, Daniel Eiref, Hugh R. Kurth, James J. Reisert, and

Robin L. Stewart. “The Design of the DEC 3000 AXP Systems, Two High-

Performance Workstations.”Digital Technical Journal 4(4):66-81 (Special

issue 1992).

[Eggers and Jeremiassen 1991] Susan J. Eggers and Tor E. Jeremiassen. “Eliminating

False Sharing.” InProceedings of the 1991 International Conference on Paral-

lel Processing,vol. 1, 377-81. University Park, PA: Pennsylvania State Univer-

sity Press, 1991.

[Esseghir 1993] K. Esseghir. “Improving Data Locality for Caches.” Master’s thesis, Rice

University, 1993.

[Gannon, Jalby, and Gallivan 1988] Dennis Gannon, William Jalby, and Kyle Gallivan.

“Strategies for Cache and Local Memory Management by Global Program

Transformation.”Journal of Parallel and Distributed Computing 5(5):587-616

(October 1988).

[Hunt 1995] Doug Hunt. “Advanced Performance Features of the 64-Bit PA-8000.” In

Digest of Papers, COMPCON Spring '95, Technologies for the Information

Superhighway, 123-8. Los Alamitos, CA: IEEE Computer Society Press, 1995.

[Irigoin and Triolet 1988] F. Irigoin and R. Triolet. “Supernode Partitioning.” InProceed-

ings of the Fifteenth Annual ACM SIGACT-SIGPLAN Symposium on Princi-

181

ples of Programming Languages, (San Diego, CA, January), 319-29. New

York: ACM Press, 1988.

[Jeremiassen 1995] Tor E. Jeremiassen. “Using Compile-Time Analysis and Transforma-

tions to Reduce False Sharing on Shared Memory Multiprocessors.” Ph.D. dis-

sertation, University of Washington, 1995.

[Jeremiassen and Eggers 1995] Tor E. Jeremiassen and Susan J. Eggers. “Reducing False

Sharing on Shared Memory Multiprocessors through Compile Time Data

Transformations.” InProceedings of the Fifth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, (Santa Barbara, CA, July),

179-88. New York: ACM Press, 1995.

[Ju and Dietz 1992] Y.-J. Ju and H. Dietz. “Reduction of Cache Coherence Overhead by

Compiler Data Layout and Loop Transformation.” InLanguages and Compil-

ers for Parallel Computing: Fourth International Workshop Proceedings, Ith-

aca, NY, USA,edited by Utpal Banerjee et al., 344-58. Berlin: Springer-Verlag,

1992.

[Kelly and Pugh 1995] Wayne Kelly and William Pugh. “Finding Legal Reordering Trans-

formations Using Mappings,” InLanguages and Compilers for Parallel Com-

puting: 7th International Workshop, Ithaca, NY, USA, edited by Keshav Pingali

et al., 107-24. Berlin: Springer-Verlag, 1995.

[Kennedy and McKinley 1990] Ken Kennedy and Kathryn S. McKinley. “Loop Distribu-

tion with Arbitrary Control Flow.” InProceedings of Supercomputing ’90,

(New York, NY, November), 407-16. New York: ACM Press, 1990.

182

[Kennedy and McKinley 1992] Ken Kennedy and Kathryn S. McKinley. “Optimizing for

Parallelism and Data Locality.” InProceedings of 1992 International Confer-

ence on Supercomputing,(Washington, D.C., July), 323-34. New York: ACM

Press, 1992.

[Kennedy and McKinley 1994] Ken Kennedy and Kathryn S. McKinley. “Maximizing

Loop Parallelism and Improving Data Locality via Loop Fusion and Distribu-

tion.” In Languages and Compilers for Parallel Computing: 6th International

Workshop Proceedings, Portland, OR, USA, edited by Utpal Banerjee et al.,

301-20. Berlin: Springer-Verlag, 1994.

[KSR 1992] Kendall Square Research Corporation (KSR). “Memory Management.” In

Principles of Operation. Revision 6.0. Waltham, MA: Kendall Square

Research Corporation, 1992.

[KSR 1993] Kendall Square Research Corporation (KSR). “KSR/Series Memory Model

and Processor.” InKSR/Series Parallel Programming. Release dated 12/15/93.

Waltham, MA: Kendall Square Research Corporation, 1993.

[Lam, Rothberg, and Wolf 1991] Monica S. Lam, Edward E. Rothberg, and Michael E.

Wolf. “The Cache Performance and Optimizations of Blocked Algorithms.” In

Proceedings of Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, (Santa Clara, CA, April),

63-74. New York: ACM Press, 1991.

[Lenoski et al. 1992] D. Lenoski, J. Laudon, K. Charachorloo, W. D. Weber, A. Gupta, J.

Hennessy, M. Horowitz, and M. S. Lam. “The Stanford DASH Multiproces-

sor.” Computer 25(3):63-79 (March 1992).

183

[Levitan, Thomas, and Tu 1995] David Levitan, Thomas Thomas, and Paul Tu. “The Pow-

erPC 620 Microprocessor: A High Performance Superscalar RISC Micropro-

cessor.” InDigest of Papers, COMPCON Spring '95, Technologies for the

Information Superhighway, 285-91. Los Alamitos, CA: IEEE Computer Soci-

ety Press, 1995.

[Li 1993] Wei Li. “Compiling for NUMA Parallel Machines.” Ph.D. dissertation, Cornell

University, 1993.

[Li 1995] Wei Li. “Compiler Cache Optimizations for Banded Matrix Problems.” InPro-

ceedings of 9th ACM International Conference on Supercomputing. 1995.

[Li and Pingali 1992] Wei Li and Keshav Pingali. “Access Normalization: Loop Restruc-

turing for NUMA Compilers.” InProceedings of Fifth International Confer-

ence on Architectural Support for Programming Languages and Operating

Systems, (Boston, MA, October), 285-95. New York: ACM Press, 1992.

[Li and Pingali 1993a] Wei Li and Keshav Pingali. “Access Normalization: Loop Restruc-

turing for NUMA Computers.”ACM Transactions on Computer Systems

11(4):353-75 (November 1993).

[Li and Pingali 1993b] Wei Li and Keshav Pingali. “Loop Transformations for NUMA

Machines.”SIGPLAN Notices 28(1):9-12 (January 1993).

[Li and Pingali 1993c] Wei Li and Keshav Pingali. “A Singular Loop Transformation

Framework Based on Non-Singular Matrices.” InLanguages and Compilers

for Parallel Computing: 5th International Workshop Proceedings, New Haven

CT, USA, edited by Utpal Banerjee et al., 391-405. Berlin: Springer-Verlag,

1993.

184

[Moore 1993] Charles R. Moore. “The PowerPC 601 Microprocessor.” InDigest of

Papers, COMPCON Spring '93, Thirty-Eighth IEEE Computer Society Inter-

national Conference, (San Francisco, CA, February), 109-16. Los Alamitos,

CA: IEEE Computer Society Press, 1993.

[Paap and Silha 1993] George Paap and Ed Silha. “PowerPC: A Performance Architec-

ture.” InDigest of Papers, COMPCON Spring '93, Thirty-Eighth IEEE Com-

puter Society International Conference, (San Francisco, CA, February),

109-16. Los Alamitos, CA: IEEE Computer Society Press, 1993.

[Papworth 1996] David B. Papworth. “Tuning the Pentium Pro Microarchitecture.”IEEE

Micro 16(2):8-15 (April 1996).

[Pugh 1991] William Pugh. “Uniform techniques for Loop Optimization.” InProceedings

of the 1991 ACM International Conference on Supercomputing,341-52. 1991.

[Reif and Lewis 1986] J. H. Reif and H. R. Lewis. “Efficient Symbolic Analysis of Pro-

grams.”Journal of Computer and Systems Sciences32(3):280-313 (June

1986).

[Sarkar and Thekkath 1992] Vivek Sarkar and Radhika Thekkath. “A General Framework

for Iteration-Reordering Transformations.” InProceedings of ACM SIGPLAN

’92 Conference on Programming Language Design and Implementation, (San

Francisco, CA, June), 175-87. New York: ACM Press, 1992.

[Schrijver 1986] Alexander Schrijver.Theory of Linear and Integer Programming. Series

in Discrete Mathematics. New York: Wiley, 1986.

185

[SGI 1995a] Silicon Graphics, Inc. (SGI). “The POWER CHALLENGE Technical

Report.” Mountain View, CA: Silicon Graphics, Inc. 1995. Published as world-

wide web page at http://www.sgi.com/Products/hardware/Power/brief-

toc.html.

[SGI 1995b] Silicon Graphics, Inc. (SGI).POWER Fortran Accelerator User’s Guide.

Mountain View, CA: Silicon Graphics, Inc., 1995.

[Sites 1992] Richard L. Sites, ed.Alpha Architecture Reference Manual. Bedford, MA:

Digital Press, 1992.

[Taylor 1992] Angus E. Taylor. “Partial Differentiation.” InMcGraw-Hill Encyclopedia of

Science and Technology. 7th ed. Vol. 13. New York, 1992.

[Torrellas, Lam, and Hennessy 1994] Josep Torrellas, Monica S. Lam, and John L. Hen-

nessy. “False Sharing and Spatial Locality in Multiprocessor Caches.”IEEE

Transactions on Computers 43(6):651-63 (June 1994).

[Tremblay and O’Conner 1996] Marc Tremblay and J. Michael O’Conner. “UltraSPARC-

I: A Four-Issue Processor Supporting Multimedia.”IEEE Micro 16(2):42-50

(April 1996).

[Wedel 1975] D. Wedel. “FORTRAN for the Texas Instrument ASC System.”SIGPLAN

Notices 10(3):119-32.

[Wilson et al. 1994] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M.

Anderson, S. W. K. Tjiang, S. W. Liao, C. W. Tseng, M. W. Hall, M. S. Lam

and J. L. Hennessy. “SUIF: An Infrastructure for Research on Parallelizing and

Optimizing Compilers.”SIGPLAN Notices 29(12):31-37 (December 1994).

186

[Wolf 1992] Michael E. Wolf. “Improving Locality and Parallelism in Nested Loops.”

Ph.D. dissertation, Stanford University, 1992.

[Wolf and Lam 1991a] Michael E. Wolf and Monica S. Lam. “A Data Locality Optimizing

Algorithm.” In Proceedings of ACM SIGPLAN ’91 Conference on Program-

ming Language Design and Implementation, (Toronto, Canada, June), 30-44.

New York: ACM Press, 1991.

[Wolf and Lam 1991b] Michael E. Wolf and Monica S. Lam. “A Loop Transformation

Theory and an Algorithm to Maximize Parallelism.”IEEE Transactions on

Parallel and Distributed Systems 2(4):452-71 (October 1991).

[Wolfe 1989a] Michael J. Wolfe. “More Iteration Space Tiling.” InProceedings of Super-

computing ’89, (Reno, NV, November), 655-64. New York: ACM Press, 1989.

[Wolfe 1989b] Michael J. Wolfe.Optimizing Supercompilers for Supercomputers.

Research Monographs in Parallel and Distributed Computing. Cambridge,

MA: MIT Press, 1989.

[Yeager 1996] Kenneth C. Yeager. “The MIPS R10000 Superscalar Microprocessor.”

IEEE Micro 16(2):28-41 (April 1996).

187

Appendix A

Memory Utilization

In this appendix, we show that the amount of memory needed for the restructured array (to

facilitate address computation from array indices as described in Chapter 4) is at most

times the amount of memory for storing data elements, wherem is the number of array

dimensions. This upper bound is only approximate because we do not actually count ele-

ments, but only compare volumes of regions in the transformed index space that represent

memory use. We believe, however, that the approximation is acceptable unless one or

more array dimensions is unusually small.

Recall that in Chapter 4 we transform the original array bounds with a some index

transformation to get the bounds of the restructured array. The transformed bounds define

the set of elements that the restructured array must contain. These bounds are represented

geometrically by the image polyhedron. Thus, in the following discussion we approximate

the memory needed for array data with the volume of the image polyhedron. Recall also

that to facilitate addressing an element, we allocate memory according to the relaxed

bounds — a special form of bounds computed from the transformed bounds. The relaxed

bounds are represented geometrically by the enclosing parallelepiped. Thus, we use the

enclosing parallelepiped’s volume to approximate the amount of allocated memory.

We show below that the volume of the enclosing parallelepiped is at most m! times

that of the image polyhedron, assuming that the enclosing parallelepiped is in the form

specified in Section 4.4.1 on page 75 and the image polyhedron is symmetric as defined in

Section 4.5.2 on page 85. In our proof, we compute and compare the volumes of two

regions: the enclosing parallelepiped itself and a polyhedron guaranteed to be inside the

m!

188

image polyhedron. The construction of the latter is discussed shortly in Section A.2, but

first we prove several lemmas that will be used later. All summations and products are

from 1 tom unless stated otherwise; the range is omitted to simplify notations.

A.1 Lemmas

Lemma A.1: For any vector and any vectors (), let be the mirror

image of about (i.e.,). The convex hull spanned by all vectors

 and (for) is equal to the set

(A.1)

Proof: Let be the set in (A.1) andS be convex hull. By definition,

(A.2)

First, we show . Consider an element of , denoted . Choosing , we

can express as follows:

(A.3)

Moreover, noting that all and are nonnegative and their sum is 1, we have

(A.4)

γ m Pk 1 k m≤ ≤ P′k
Pk γ P′k 2γ Pk–= 2m

Pk P′k 1 k m≤ ≤

γ δk Pk γ–()∑+ δk∑ 1≤:{ }

S′

S αkPk βkP′k+()∑ αk 0≥ βk 0≥ and αk βk+()∑ 1=, ,:{ }=

S S′⊆ S σ δk αk βk–=

σ

σ αkPk βkPk′+[]∑=

αkPk βk 2γ Pk–()+[]∑=

αk Pk γ–() βk γ Pk–()+[]∑ αk βk+()∑ γ+=

αk βk–() Pk γ–()[] γ+∑=

γ δk Pk γ–()∑+=

αk βk

δk∑ αk βk– αk βk+()∑≤∑ αk βk+()∑ 1= = =

189

Therefore, and hence

Conversely, consider an element of , denoted . We choose and from

according to the following table:

It is clear that in all cases and . Furthermore, for

and . Therefore,

(1.5)

Hence, belongs to and therefore . Since and are subsets of each other,

they are equal.

Lemma A.2: For any nonnegative number and positive integer ,

(A.6)

Proof: We prove this by induction onm. Let be the integral on the left-hand side.

For , (A.6) is true because

(A.7)

if if

σ S′∈ S S′⊆

S′ σ′ αk βk δk

δk 0≥ δk 0<

1 k m<≤ αk δk=

βk 0=

αk 0=

βk δk=

m
αm

1 δk∑–

2
------------------------ δm+=

βm

1 δk∑–

2
------------------------=

αm

1 δk∑–

2
------------------------=

βm

1 δk∑–

2
------------------------ δm+=

αk 0≥ βk 0≥ αk βk+ δk= 1 k m<≤

αm βm+ 1 δk∑–() δm+=

αk βk+()
k 1=

m

∑ δk
k 1=

m 1–

∑ 1 δk
k 1=

m

∑–

δm+ + 1= =

σ′ S S′ S⊆ S S′

λ m

y1d … ymd
y1 … ym+ + λ≤∫ 2λ() m

m!
----------------=

Im λ()

m 1=

I1 λ() y1d
y1 λ≤∫ y1d

λ–

λ

∫ 2λ= = =

190

Assume that (A.6) is true for . Consider .

(A.8)

Therefore, (A.6) holds true for as well. By induction, it holds for any positive

integer .

Lemma A.3: For any vector , and any m-dimensional vectors , …, such that

 starts with zeros (which are followed by), the volume of the region defined

by is .

m j= I j 1+ λ()

I j 1+ λ() y1d … yj 1+d
y1 … yj 1++ + λ≤∫=

y1d … yjd
y1 … yj+ + λ yj 1+–≤∫

yj 1+d
λ–

λ

∫=

I j λ yj 1+–() yj 1+d
λ–

λ

∫=

2 λ yj 1+–()[] j

j!
--- yj 1+d

λ–

λ

∫=

2 λ yj 1++()[] j

j!
--------------------------------------- yj 1+d

λ–

0

∫
2 λ yj 1+–()[] j

j!
--------------------------------------- yj 1+d

0

λ

∫+=

2
2 λ yj 1+–()[] j

j!
--------------------------------------- yj 1+d

0

λ

∫=

2
j 1+

–
j 1+() !

------------------- λ yj 1+–() j 1+

yj 1+ 0=

yj 1+ λ=

=

2λ() j 1+

j 1+() !
----------------------=

m j 1+=

m

γ m L1 Lm

Lk k 1– Lkk

S γ δkLk∑+ δk∑ 1≤:{ }= 2
m

m!------ Lkk∏

191

Proof: The volume of is the absolute value of the integral

(A.9)

where becausez is a point inS. This integral therefore equals

(A.10)

where

(A.11)

is called the Jacobian of with respect to [Taylor 1992]. Because

, the partial derivative of with respect to is

(A.12)

Substituting this back into (A.11), we can see that the Jacobian is equal to if we

treat as thek-th column of a matrixL. Thus, (A.10) becomes

(A.13)

By Lemma A.2, the integral evaluates to (simply let be 1). Moreover,L is

lower-triangular because of the special form of its columns, , as described in this

lemma. As a result, the determinant ofL is the product of its diagonal elements. Combin-

S

z1d … zmd
S

∫
z γ δkLk∑+=

z1 … zm, ,()∂
δ1 … δm, ,()∂

--------------------------------- δ1d … δmd
δ1 … δm+ + 1≤∫

z1 … zm, ,()∂
δ1 … δm, ,()∂

z1∂
δ1∂

-------- …
z1∂
δm∂

… … …
zm∂
δ1∂

-------- …
zm∂
δm∂

=

z1 … zm, , δ1 … δm, ,

zj γj δkLkj∑+= zj δk

zj∂
δk∂

-------- Lk j=

L()det

Lk

L δ1d … δmd
δ1 … δm+ + 1≤∫

2
m

m!⁄ λ

Lk

192

ing these two facts, we conclude that the integral (A.9) is , and therefore the

volume ofS is the absolute value of (A.9): .

Lemma A.4: For any vectors and such that , and a lower-triangular matrix

with a unit diagonal, the volume of the region is .

Proof: The volume of the specified region is the absolute value of the integral

(A.14)

Notice that is lower-triangular. Therefore, its determinant is the product of its diagonal

elements, all of which are 1. Thus, , and is hence nonsingular. By a change of

integration variables , we see that the integral is equal to

(A.15)

where is the Jacobian of with respect to , as discussed

in (A.11) [Taylor 1992]. Because ,

(A.16)

The integral (A.15) is thus further reduced to

(A.17)

which is equal to . The volume is the absolute value of the latter, but since

, all the factors are non-negative. Consequently, the volume is simply

.

2
m

m!
------ Lkk∏

2
m

m!
------ Lkk∏

λ µ λ µ≤ Φ

y λ Φy µ≤ ≤:{ } µk λk–()∏

y1d … ymd
λ Φy µ≤ ≤∫

Φ

Φ 1= Φ

z Φy=

y1 … ym, ,()∂
z1 … zm, ,()∂

--------------------------------- z1d … zmd
λ z µ≤ ≤∫

y1 … ym, ,()∂
z1 … zm, ,()∂

--------------------------------- y1 … ym, , z1 … zm, ,

y Φ 1–
z=

y1 … ym, ,()∂
z1 … zm, ,()∂

--------------------------------- Φ 1–

det 1
Φ()det

------------------- 1= = =

z1d … zmd
λ z µ≤ ≤∫

µk λk–()∏
λ µ≤ µk λk–

µk λk–()∏

193

A.2 Volumes of Polyhedra

Equipped with the previous lemmas, we are now ready to prove the volumes of the rele-

vant polyhedra and thus the ratio of allocated memory to memory actually used for array

elements. First, consider the enclosing parallelepiped. It is defined by (4.7) on page 75,

which is repeated below for convenience:

(A.18)

R is a lower-triangular matrix with a unit diagonal. By a direct application of Lemma A.4,

the enclosing parallelepiped’s volume is

(A.19)

Next, let us construct a polyhedron within the image polyhedron as follows and com-

pute its volume. For eachk from 1 tom, let be anm-dimensional vector within the

transformed bounds such that

(A.20)

where is the center of symmetry of the image polyhedron, as computed in (4.24) on

page 88 and is the augmented bounds for thek-th dimension, as defined by (4.23)

on page 87. Such a vector must exist according to Lemma 4.1 on page 87 because the

first k components of satisfy the augmented bounds for the firstk dimensions. (The

choice of is in fact the same as thez in the proof of Lemma 4.2.)

We claim that the convex hull spanned by all the ’s and their mirror images aboutc

is inside the image polyhedron. This follows from two facts. First, ’s mirror image, like

 itself, is in the image polyhedron because the image polyhedron is symmetric. Second,

the convex hull they span is also in the image polyhedron because the image polyhedron is

r l Ry ru≤ ≤

VE ruk r lk–()∏=

Pk

Pk1 c1= … Pk k 1–, ck 1–=

Pkk lk c1 … ck 1–, ,()=

c

lk …()

Pk

Pk

Pk

Pk

Pk

Pk

194

convex. We now find the volume of the convex hull, denoted . By Lemma A.1, this

convex hull can be written as

(A.21)

Because we choose according to (A.20), the vector starts with zeros fol-

lowed by . By Lemma A.3, the convex hull’s volume is

(A.22)

Applying Lemma 4.3 on page 91 on each factor in the product gives us

(A.23)

Finally, having computed and , we can now compare the volumes of the image

polyhedron and its enclosing parallelepiped. Let be the volume of the image polyhe-

dron. Since the convex hull defined above is inside the image polyhedron, . More-

over, from (A.19) and (A.23), we know that . Hence,

(A.24)

In other words, the volume of the enclosing parallelepiped is at most times that of the

image polyhedron. Roughly speaking, the memory for the restructured array is at most

times that needed for data.

VH

c δk Pk c–()∑+ δk∑ 1≤:{ }

Pk Pk c– k 1–

Pkk ck– lk c1 … ck 1–, ,() ck–=

VH
2

m

m!
------- lk c1 … ck 1–, ,() ck–[]

k 1=

m

∏=

VH
1

m!
------- ruk r lk–()

k 1=

m

∏=

VH VE

VI

VH VI≤

VE m!() VH=

VE m!() VI≤

m!

m!

195

Appendix B

Additional Experimental Results

In this appendix, we briefly report experiments on other hardware platforms to demon-

strate the generality of our previous observations. We used an IBM RS/6000 uniprocessor

workstation and a Kendall Square Research KSR-2 shared address space multiprocessor.

We ran essentially the same experiments as before, though with slightly different problem

sizes in some cases because of differences in cache and TLB sizes.

B.1 Uniprocessor Workstation: IBM RS/6000

This section reports experimental results for an IBM RS/6000 Model 41T workstation

based on the PowerPC 601 processor [Moore 1993; Paap and Silha 1993]. The PowerPC

601 has an on-chip, 32 KB, eight-way set-associative, write-back, unified cache. Cache

lines are 64 bytes long but split into two 32-byte sectors for cache coherence purposes. In

addition, the processor has a 256-entry, two-way set-associative TLB for instructions and

data [Moore 1993]. The workstation itself also has a 512 KB second-level cache.

Figure B.1 (c.f. Figure 7.1 on page 138) shows the results for loops for which the pro-

totype compiler considered array restructuring profitable; Figure B.2 (c.f. Figure 7.2 on

page 139) shows those to which array restructuring was applied despite the compiler’s

decision.

Generally, these results are qualitatively the same as those for a DEC 3000 Model 400

workstation based on the Alpha 21064 processor, which have already been reported in

196

100 200 300 400 500 600

Matrix order

0

50

100

150

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) MATMUL

ARR+O obscures ARR

20 40 60 80 100

Matrix bandwidth

0

50

100

150

200

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) SYR2K

ARR+O obscures ARR

100 200 300 400 500

Matrix order

0

10

20

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(c) GMTRY

ARR+O obscures
MAN and ARR

256 512 768 1024

Array dimension

0

10

20
E

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

(d) CFFT2D

No MAN

100 200 300 400 500

Matrix order

0

10

20

30

40

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(e) CHOLSKY

Original loop (BASE)
Manual Loop restructuring (MAN)
Array restructuring
(without overhead) (ARR)
Array restructuring
(with overhead) (ARR+O)

As noted in graphs, some curves may
obscure others.

Figure B.1: Array Restructuring Performance on RS/6000 — Profitable Cases

197

Section 7.2. However, unlike in the DEC 3000 results, the execution times of MATMUL,

SYS2K, and GMTRY rise markedly faster when the respective problem sizes exceed cer-

tain thresholds. Below these thresholds, array restructuring did not noticeably improve

performance over the original loop, while loop restructuring sometimes even made perfor-

mance slightly worse. Above the thresholds, both loop and array restructuring produced

the expected improvement. We attribute this to the PowerPC 601’s much larger TLB,

which, with 256 entries, is eight times as large as the 32-entry TLB in an Alpha 21064

[DEC 1992]. A larger TLB, or cache, implies a larger problem size threshold above which

locality improving optimizations matter to performance — and below which anticipated

100 200 300 400 500

Matrix order

0

10

20

30
E

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

(a) MXM

ARR+O obscures ARR, BASE

20 40 60 80

Matrix order

0

20

40

60

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) BTRIX

100 200 300 400

Matrix order

0.0

0.5

1.0

1.5

2.0

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(c) VPENTA

Original loop (BASE)
Manual Loop restructuring (MAN)
Array restructuring
(without overhead) (ARR)
Array restructuring
(with overhead) (ARR+O)

ARR obscures MAN

As noted in graphs, some curves may
obscure others.

Figure B.2: Array Restructuring Performance on RS/6000 — Unprofitable Cases
(with Manual Override of Compiler Decision)

198

performance gains from such optimizations may not materialize. For example, from

Figure B.1(b), SYR2K’s problem size threshold appears to be 60. This is almost exactly

eight times — the ratio of TLB sizes — the threshold for the Alpha processor (namely, 7

or 8), which has been predicted hypothetically in Section 7.2.2 as well as observed experi-

mentally in Figure 7.5 on page 147.

B.2 Shared Address Space Multiprocessor: KSR-2

In this section, we report experiments on a Kendall Square Research KSR-2, a shared

address space multiprocessor. KSR-2 has a cache-only memory architecture (COMA): it

has no “main memory;” all its memory is distributed to processors and kept coherent by

hardware [KSR 1992]. Processors are connected in a hierarchy of rings, each with at most

32 processors. Each processor has a 32 MB, 16-way set-associativelocal cache. Local

cache space is allocated inpages of 16 KB, but different local caches are kept coherent in

subpages of 128 bytes. Thus, the cache line size is 16 KB for allocation purposes, but 128

bytes for coherence purposes. Each processor also has a 512 KB, 2-way set-associative

subcache, divided into two halves for instructions and data. Like the local cache, the sub-

cache has different units for allocation and for coherence: 2 KBblocks and 64 bytessub-

blocks respectively [KSR 1992]. Misses in the subcache and local cache lead to latencies

of 20-24 cycles (0.5-0.6 s) and 175-600 cycles (4.375-15 s) respectively [KSR 1993].

Our experiments were done on a KSR-2 with two rings. To avoid potential complications

if data traffic crosses the ring boundary, we used only the 25 processors on one ring1.

Results are shown in Figure B.3 and Figure B.4 respectively for cases where array

restructuring was applied according to and in spite of compiler decision. They resemble

results for the SGI Power Challenge, shown in Figure 8.1 on page 158 and Figure 8.2 on

1. Each ring was configured for 32 processors, but only 25 processors were operational at the time of our
experiments.

µ µ

199

Figure B.3: Parallel Speedups on KSR-2 — Profitable Cases

0 8 16 24

Number of processors

0

50

100

150
S

pe
ed

up

(a) MATMUL

0 8 16 24

Number of processors

0

50

100

150

200

S
pe

ed
up

(b) SYR2K

0 8 16 24

Number of processors

0

50

100

150

200

250

S
pe

ed
up

(c) GMTRY

0 8 16 24

Number of processors

0

8

16

24

S
pe

ed
up

(d) CFFT2D

0 8 16 24

Number of processors

0

20

40

60

80

S
pe

ed
up

(e) CHOLSKY

Original loop
Manual loop restructuring
Array restructuring (with overhead)

All speedups are relative to execution time
of the original loop on 1 processor.

200

page 159. All speedups are relative to the execution time of the original loop running on

one processor, for reasons explained earlier in Section 8.1.

Qualitatively, results for the two machines are similar. Quantitatively, however, both

loop and array restructuring improved performance much more significantly on the KSR-2

than on the Power Challenge. Notice that the vertical scales of the KSR-2 graphs are often

at least several times those of the corresponding Power Challenge graphs so as to accom-

modate the large speedups relative to the original loop that we observed on the KSR-2. We

attribute this to KSR-2’s much larger cache line sizes. Since cache space is allocated in

very large units (2 KB subcache blocks, 16 KB local cache pages), each cache contains

Figure B.4: Parallel Speedups on KSR-2 — Unprofitable Cases
(with Manual Override of Compiler Decision)

0 8 16 24

Number of processors

0

8

16

24

S
pe

ed
up

(a) MXM

0 1 2 3 4 5

Number of processors

0

5

10

S
pe

ed
up

(b) BTRIX

0 8 16 24

Number of processors

0

8

16

24

S
pe

ed
up

(c) VPENTA

Original loop
Manual loop restructuring
Array restructuring (with overhead)

All speedups are relative to execution time
of the original loop on 1 processor.

201

relatively few such units. This in turn leads to frequent cache misses when memory is

accessed at long strides, as in the original loops. Moreover, replacing a cache line is espe-

cially costly because it potentially displaces a large amount of data. (There is no need to

load the same large amount of data, though, because coherence is managed in smaller

units of subblocks and subpages.)

Figure B.5 shows the speedups of the original loops of MATMUL, SYR2K, GMTRY,

and CHOLSKY. These curves are the same curves in Figure B.3, only shown on different

vertical scales because those in Figure B.3 make the rise in speedup illegible. With these

graphs, we again observe the same trend as we do for the Power Challenge in Section 8.2.

0 8 16 24

Number of processors

0

8

16

24
S

pe
ed

up

(a) MATMUL

0 8 16 24

Number of processors

0

8

16

24

S
pe

ed
up

(b) SYR2K

0 8 16 24

Number of processors

0

8

16

24

S
pe

ed
up

(c) GMTRY

0 8 16 24

Number of processors

0

8

16

24

S
pe

ed
up

(d) CHOLSKY

Figure B.5: Parallel Speedups of Original Loop on KSR-2 — Selected Cases

202

For MATMUL and SYR2K, the original loop parallelized reasonably well. Array restruc-

turing improved performance by roughly the same factor on any number of processors

because it improved the locality of execution on each individual processor independently.

For GMTRY and especially CHOLSKY, however, the original loop parallelized poorly in

part because of false sharing. Both loop and array restructuring remedied the problem;

both produced performance that was not only higher in absolute terms but also scaled bet-

ter with the number of processors.

