A Trace-Driven Comparison of Algorithms for
Parallel Prefetching and Caching

Tracy Kimbrel, Andrew Tomkins, R. Hugo Patterson,
Brian Bershad, Pei Cao, Edward W. Felten,
Garth A. Gibson, Anna R. Karlin, and Kai Li

Technical Report 96-09-01

Department of Computer Science and Engineering
University of Washington

Department of Computer Science and Engineering, Box 352350
University of Washington, Seattle, WA 98195-2350 USA

Contents

1 Introduction

1.1 Motivation L e e
1.2 Parallel prefetching and caching L
1.3 Comparing approaches L e
1.4 Summary of results L
1.5 Related work L
1.6 Organization of the paper L

2 The algorithms

2.1 Theoretical model L
2.2 Optimal prefetching rules L
2.3 The fized horizon algorithm L e
2.4 The aggressive algorithm oL L
2.5 The reverse aggressive algorithmo
2.6 Practical considerations L
2.7 Implementations of the algorithms o o

3 Simulation framework

3.1 File access traCes e e e e e e e
3.2 Data placement and disk head scheduling L oo
4 Results

4.1 Comparison with demand fetching 0 o o

4.2 Fundamental differences L e

(< N B, B S SO N U N

=}

[0}

4.3 Application traces

4.4 Varying parameters

5 A new approach

5.1 Performance of forestall

6 Conclusions

A Performance data:

B Performance data:

C Performance data:

D Performance data:

E Performance data:

F Performance data:

G Performance data:

H Performance data:

baseline measurements

FCFS

double-speed CPU

varying cache size

varying aggressive’s batch size
varying reverse aggressive’s parameters
varying fized horizon’s horizon

forestall with a fixed fetch time estimate

© o0 0o @

13
14

15

17

23

28

29

33

42

51

56

A Trace-Driven Comparison of Algorithms for Parallel Prefetching and Caching

Tracy Kimbrel * Andrew Tomkins

Edward W. Felten ¥

Abstract

! High-performance I/O systems depend on prefetching and
caching in order to deliver good performance to applications.
These two techniques have generally been considered in iso-
lation, even though there are significant interactions between
them; a block prefetched too early reduces the effectiveness
of the cache, while a block cached too long reduces the ef-
fectiveness of prefetching. In this paper we study the ef-
fects of several combined prefetching and caching strategies
for systems with multiple disks. Using disk-accurate trace-
driven simulation, we explore the performance characteristics
of each of the algorithms in cases in which applications pro-
vide full advance knowledge of accesses using hints. Some
of the strategies have been published with theoretical per-
formance bounds, and some are components of systems that
have been built. One is a new algorithm that combines the
desirable characteristics of the others. We find that when per-
formance is limited by I/O stalls, aggressive prefetching helps
to alleviate the problem; that more conservative prefetching
is appropriate when significant I/O stalls are not present; and
that a single, simple strategy is capable of doing both.

1 Introduction

Recently there has been a great deal of interest in prefetch-
ing from parallel disks as a technique for improving the I/O
performance of sequential applications. In this paper, we
study prefetching and caching strategies for multiple disks
in the presence of application-provided knowledge of future
accesses. We compare the performance of four algorithms:

1. Fized horizon is simple to implement, and has near-
optimal performance when sufficient I/O parallelism is

*Dept. of Computer Science and Engr., University of Washington,
Seattle WA ({tracyk,bershad,karlin}@cs.washington.edu)

fSchool of Computer Science, Carnegie Mellon University, Pitts-
burgh PA ({andrewt, garth}@cs.cmu.edu)

iDept. of Electrical and Computer Engineering, Carnegie Mellon
University, Pittsburgh PA (rhp@cs.cmu.edu)

$Computer Sciences Dept., University of Wisconsin - Madison,
Madison WI (cao@cs.wisc.edu)

TDept. of Computer Science, Princeton University, Princeton NJ
({felten,li}@cs.princeton.edu)

I This paper originally appeared without the appendices in the Pro-
ceedings of the Second ACM SIGOPS/USENIX Symposium on Op-
erating System Design and Implementation.

R. Hugo Patterson
Garth A. Gibsonf

Brian Bershad* Pei Cao &
Anna R. Karlin* Kai Lif

available, but can be suboptimal in I/O-bound situa-
tions.

2. Aggressive is also simple to implement, is close to opti-
mal for a single disk and for well-laid-out data on mul-
tiple disks, but can be suboptimal for multiple disks
when the load on the disks is unbalanced.

3. Reverse aggressive is substantially more complex, but
is provably close to optimal for all configurations in a
uniform fetch-time model of disk accesses.

4. Forestall is a new algorithm, representing an attempt
to combine the desirable characteristics of the other
three algorithms.

Using trace-driven simulation on a collection of file access
traces, we compare the performance of these algorithms as-
suming an environment in which a single process is running
and full advance knowledge is available.

1.1 Motivation

Our work is motivated by recent advances in technology that
have made magnetic disks both cheaper and smaller. As a
result, parallel disk arrays have become an attractive means
for achieving high performance from storage devices at low
cost [15, 27, 23]. Independently accessible multiple disks of-
fer the advantage of both increased bandwidth and reduced
contention on individual disk arms. However, many applica-
tions do not benefit from this parallelism because their I/O
accesses are serial. This problem is particularly severe for
read-intensive applications. Write performance is less im-
portant as write behind strategies can mask update latency.
Read-intensive applications that stall for I/O a significant
fraction of their running time include text search, 3D sci-
entific visualization, relational database queries, multimedia
servers and object code linkers.

Many of these applications have predictable access pat-
terns [24, 1, 17]. The ability to provide the file system with
hints about future references has motivated research into the
design of policies that use this information to reduce I/O
overhead [24, 25, 7, 6]. The two key techniques that are en-
abled by detailed information about future accesses are deep
prefetching and better-than-LRU cache replacement.

References b d

A E
Prefetches C F
Evictions F b

(Al [AI[A] L [E]
cacve| (2] [2][0] [2][B][]
[a]] (][] [a][a][d][a]]
e e

t

>
[=][>]
(][]
(] [m]

(a) A prefetching and caching schedule.

o
m
M

References
Prefetches
Evictions

4]
(0]
4]
[F]

b

Cache

(][]][] emo
[/ [o] [][]
[/ [o] [m][=]
[/ [o] [m][=]

[[=l[>] =o>
(=] »=-

—
iy
—
N
—
w
—
~
—
(53]
—
[<2)

(b) A better schedule.

Figure 1: An example of prefetching and caching with advance knowledge of accesses for two disks. One disk holds blocks A,
C, E, and F, and another disk holds blocks b and d. Cache size k = 4 disks and fetch time F' = 2 computation steps.

This paper explores the tradeoff between aggressive
prefetching and optimal cache replacement. The decision to
prefetch requires that a buffer be reserved immediately, usu-
ally precipitating the replacement of cached data. This ear-
lier replacement may result in an inferior replacement choice,
which may actually increase the total number of fetches and
degrade performance. Furthermore, in the multiple disk case,
poor replacement choices can lead to load imbalance between
the disks. The algorithms we study choose different points on
the spectrum between aggressive prefetching (with possibly
poorer cache replacements) and more conservative prefetch-
ing (with closer to optimal cache replacement).

The algorithms explored in this paper also differ in the de-
gree to which they require advance knowledge. Fized horizon
exploits global knowledge the least while reverse aggressive
exploits it the most. Using disk-accurate, trace-driven simu-
lation, this paper’s results provide a measure of the potential
benefit of using global knowledge.

1.2 Parallel prefetching and caching

Prefetching and caching are even more complicated in a sys-
tem with multiple disks, not only because it is possible to
do multiple prefetches in parallel, but also because appropri-
ate cache replacement strategies can alleviate load imbalance
among the disks. Since a disk can serve only one prefetch at
a time, a set of blocks can be prefetched in parallel only if
they reside on different disks.

In order to develop intuition for why cache replacement
strategies can affect parallel prefetching performance, con-
sider the example shown in figure 1. In this example, the
cache holds four blocks and the application references one
block per time unit. If the application wants to reference a
block that is not present in the cache, the application must
wait or stall until the block is present. Suppose that it takes
two time units to fetch a block from disk, and that the fetches
on each disk are serialized. Every fetch evicts some block
from the cache; the evicted block becomes unavailable at the
moment the fetch starts. The goal is to minimize the total
time spent by the application.

The application references blocks in the sequence
(A,b,C,d, E, F), and the cache initially holds blocks A, b, d,
and F. Blocks A, C, E and F are on one disk, and blocks b
and d are on the other disk. The straightforward approach is
to prefetch aggressively: always fetch the missing block that
will be referenced soonest; evict the block whose next refer-
ence is furthest in the future; but do not fetch if the evicted
block will be referenced before the fetched block. For small
caches such as in this figure, the fixed horizon and aggressive
algorithms both behave in this way.

Figure 1(a) shows the cache block changes using this ap-
proach. The total elapsed time for the sequence is 7 time
units. Figure 1(b) shows another prefetching schedule on the
same reference pattern that is faster by one time unit. On
the first fetch, d is evicted rather than F'| even though d is
referenced earlier. This has the advantage of offloading one
fetch from the heavily loaded disk (the one holding A,C,E,
and F) to the otherwise idle disk (the one holding b and d).
This change allows two fetches to proceed in parallel later,
thus saving one time unit.

The example shows that the achievable I/O parallelism of
multiple disks can be affected by cache replacement and data
placement policies. These are the factors that are addressed
by the reverse aggressive algorithm.

1.3 Comparing approaches

The fized horizon algorithm is based on the second Informed
Prefetching (TIP2) system of Patterson, Gibson et al. [25],
which manages allocation of cache space and I/O bandwidth
between multiple processes, only some of which are disclos-
ing some or all of their future accesses. TIP2 is designed
for the case in which sufficient I/O bandwidth exists to ser-
vice the request stream without stalling on I/O. The fized
horizon algorithm, a restriction of TIP2 to a single hinting
process, initiates a fetch for a missing block H references
ahead of its reference, where H is the ratio between the aver-
age time it takes to read a block from disk and the minimum
time it takes to consume a block of data. Pattersonet al.
showed that under the assumption of sufficient bandwidth,

this strategy eliminates stalls while placing little stress on
system resources. However, fized horizon will not look fur-
ther than H references into the future for fetches to perform.
This can cause it to stall on I/O when there is insufficient
disk bandwidth.

In contrast, the aggressive and reverse aggressive algo-
rithms are designed to take maximum advantage of any
amount of I/O parallelism. They use knowledge of future
accesses to minimize application elapsed time for both small
and large numbers of disks. Aggressive prefetches as early as
possible, provided that the prefetched block is needed by the
application sooner than the block that it will replace. When
insufficient bandwidth is available, in particular, it becomes
more important to schedule prefetch requests to ensure that
no bandwidth is wasted.

Reverse aggressive goes beyond aggressive’s use of future
knowledge by attempting to balance disk workload through
carefully selected replacement decisions. Previously, it was
shown theoretically that on any access pattern known in
advance, reverse aggressive’s elapsed time is close to opti-
mal [16]. It is the only one of these algorithms with this the-
oretical performance guarantee. However, it is not a practical
algorithm. First, it is much more complex than the other al-
gorithms, and second, its decisions depend on information
farther in the future than the other algorithms. Nonethe-
less, its relative performance characteristics are of interest:
we would like to understand whether or not the theoretical
model we have defined actually gives insight into real system
performance. If so, the theoretically near-optimal reverse ag-
gressive can be used as a benchmark against which to com-
pare other algorithms. The performance of reverse aggressive
is our best a priori estimate of optimal performance.

The new algorithm forestall attempts to combine the best
features of the other three algorithms: the good performance
of reverse aggressive and the simplicity and implementability
of fized horizon and aggressive. Forestall avoids stalling while
still making good (late) replacement decisions by estimating
the point at which it needs to begin prefetching in order to
prevent stalling.

1.4 Summary of results

In this paper we describe the results of a performance evalua-
tion of the different policies for the d-disk integrated prefetch-
ing and caching problem. Our results from trace driven simu-
lation demonstrate the practical performance characteristics
of these algorithms. On our traces, we found that:

e All four algorithms significantly outperform demand
fetching, even when advance knowledge of the access
sequence is used to make optimal replacement decisions
in conjunction with demand fetching.

e In compute-bound situations, fired horizon and fore-
stall have the best performance (which is usually
matched by reverse aggressive’s).

e In I/O-bound situations, aggressive and forestall have
the best performance (which is usually matched by re-
Verse aggressive’s).

e In any given situation, one of fized horizon or aggressive
performs close to the theoretically near-optimal reverse
aggressive.

e In all situations, forestall performs close to reverse ag-
gressive.

e When data is well-laid out on the disks (e.g., striped),
disk loads are balanced even without careful replace-
ment choices. For this reason, reverse aggressive does
not significantly outperform the other algorithms.

e Flized horizon consistently places the least I/O load on
the disks, due to its conservative fetching and near-
optimal replacement choices. Reverse aggressive and
forestall are intermediate between aggressive and fized
horizon.

e Batching of prefetch requests and disk head schedul-
ing are crucial to the performance of prefetching and
caching strategies.

e Forestall is a promising new approach that com-
bines the best features of the other three algorithms:
good performance regardless of I/O- or compute-
boundedness, simplicity, and practicality.

We have focused on a rather narrow range of the input
space: the single process, fully-hinted case. Clearly, prefetch-
ing and caching algorithms must deal effectively with missing
or incorrect hints, as well as multiple simultaneously execut-
ing processes. Fized horizon, aggressive and forestall can all
be adapted to deal with these more general situations [5, 25].

1.5 Related work

Caching and prefetching have been known techniques to im-
prove storage hierarchies for many years [2, 12]. In architec-
tures, the work on caching and prefetching has focused on
bridging the performance gap between CPU and main mem-
ory [28]. Research using caching and prefetching in database
systems [9, 22, 10] showed that it is important to use appli-
cations’ knowledge to perform caching and prefetching.

File caching and prefetching have become standard tech-
niques for sequential file systems [12, 19, 14, 21, 29, 4, 13, 7,
25]. The most common prefetching approach is to perform
sequential readahead [12, 19, 20]. The limitation of this ap-
proach is that it only benefits applications that make sequen-
tial references to large files. Another large body of work has
been on predicting future access patterns [11, 29, 22, 10, 13].
Recently, caching and prefetching have also been studied for
parallel file systems [11, 17, 24].

Although much work has been done in file caching and
prefetching, most of it has considered one or the other in
isolation. Recent studies for the single disk case showed [6, 5]
that it is important to integrate prefetching, caching and disk
scheduling together and that a properly integrated strategy
can perform much better than a naive strategy. For the multi-
disk case, a theoretical study [16] presented and analyzed
aggressive and reverse aggressive. Other parallel prefetching
strategies include one stripe lookahead prefetching on RAID

arrays, and Patterson et al. [25]’s TIP2 system. The one
stripe lookahead benefits only applications that use large files,
and would perform little prefetching for other applications.
TIP2 uses the fized horizon algorithm we have studied here.
Patterson et al. [25] also present a cost-benefit technique for
controlling buffer allocations for both hinting and non-hinting
applications in a multi-process environment.

Previous studies of the algorithms considered here have
been incomparable. Differences in hardware, both in the pro-
cessor and the I/O system, as well as in the benchmarks used
to evaluate the algorithms, have made it difficult to under-
stand the differences between them. This paper represents
the first direct comparison of these approaches. Using the
knowledge learned from this comparison, we have designed a
new algorithm that attempts to combine the best features of
the previous efforts.

1.6 Organization of the paper

In the next section we describe the first three algorithms and
their theoretical basis. In section 3, we describe our simula-
tion framework. In section 4, we present the results of our
simulations using the first three algorithms. In section 5 we
describe the new algorithm forestall and present simulation
results on its performance. We present our conclusions in
section 6.

2 The algorithms

We begin by introducing the framework used to study this
problem and the terminology used in the rest of the paper.

2.1 Theoretical model

Our theoretical model consists of two levels of memory hier-
archy: a cache of K data blocks, and d (disk) storage devices.
The execution of a program makes a known request sequence
of references r1,72,...7r, to a set of m data blocks.

If a reference hits in the cache, it takes one time unit.
Otherwise, the missed block must be fetched from a stor-
age device. The system can either fetch a block on a miss
(demand driven) or fetch the block before it is referenced in
anticipation of a miss (prefetch). Either case takes F' time
units. If the cache is full, a cache block must be evicted be-
fore the fetch is issued to make room for the requested data
block. While the fetch is in progress, neither the incoming
block nor the discarded block is available for access.

We assume that each block resides on a single disk.
Fetches to a single disk are serialized, but fetches on different
disks can be executed concurrently.

When the program tries to access a block that is not in the
cache, it stalls until the block arrives in the cache. The stall
time is either F' if the block is fetched on demand or F — 3 if
the block is prefetched i time units before the reference. The
measure of performance is the elapsed time required to serve
the entire request sequence; this is equal to the number of
references plus the total stall time.

The goal is to minimize application elapsed time, by de-
ciding when to fetch a block from a disk, which disk to fetch
from, which block to fetch, and which cache block to evict
(when the cache is full).

The time unit models the CPU time spent between two
consecutive file references — the CPU time includes the time
to copy the accessed file data from kernel address space to a
user address space buffer, and the time for the application to
consume the file data. The model simplifies the real situation
by assuming that the CPU time between every two file refer-
ences is the same, that all disk accesses take the same amount
of time, and that there is no CPU overhead incurred by issu-
ing an I/O request. These simplifications were made in order
to make the problem theoretically tractable. Our simulations
use actual CPU times collected in our traces and an accurate
simulation model of modern disk drives, and charge a driver
overhead for each request made to a disk.

2.2 Optimal prefetching rules

The following simple rules can be assumed of any optimal
strategy in the single-disk case [6]. 2

o Optimal fetching: when fetching, always fetch the miss-
ing block that will be referenced soonest;

e Optimal replacement: when fetching, always evict the
block in the cache whose next reference is furthest in
the future;

e Do no harm: never evict block A to fetch block B when
A’s next reference is before B’s next reference;

e Flirst opportunity: never evict A to fetch B when the
same thing could have been done one time unit earlier.

Unfortunately, as exhibited in the example in section 1,
some of these rules no longer hold in the multiple-disk case.
It may be necessary to violate all of the rules except first
opportunity to produce an optimal schedule.

2.3 The fized horizon algorithm

As described earlier, the fized horizon algorithm is based on
the TIP2 system running a single hinting process [25].

Fixed horizon: Whenever there is a missing block at most
H references in the future, issue a fetch for that block, re-
placing the cached block whose next reference is furthest in
the future, provided that reference is further than H accesses
in the future (which will certainly hold if H < K).

Fuzed horizon is consistent with the first three rules of
optimal prefetching for a single disk. An advantage of not
following the fourth rule is that fized horizon needs less in-
formation about references beyond the prefetch horizon than
the other algorithms. A disadvantage is that when additional

2These rules are optimal in the sense that any schedule that does not
follow them can be transformed into one that does, with performance
at least as good.

information is available, fized horizon can have elapsed time
nearly twice optimal.

The prefetch horizon H is computed as the ratio of the
average time it takes to read a block from disk and the min-
imum time it takes to consume a single block of data. In the
theoretical model, H = F'.

Fized horizon tries to fetch as late as possible without
stalling in order to make the best possible replacement de-
cision. Each fetch is issued so that it will complete just in
time for the reference. If parallelism increases to the point
that each request is made to an idle disk, this algorithm is
optimal. However, in practice, a sufficient number of disks
may not be available. In this case, fized horizon may ini-
tiate fetches too late to avoid stalling. In fact, because it
never initiates a fetch more than H references ahead of the
missing block, fized horizon may allow a disk to become idle
even though the future requests beyond the prefetch hori-
zon contain many missing blocks. On the other hand, if the
missing blocks in the sequence tend to be separated by many
intervening references to blocks that are present in the cache,
we'd expect fized horizon to have performance much closer
to optimal than its worst case.

2.4 The aggressive algorithm

The (multi-disk) aggressive algorithm is based on the Cao et
al. (single-disk) aggressive algorithm [6], which is provably
near-optimal in the single-disk case.

(Multi-disk) aggressive: Whenever a disk is free, prefetch
the first missing block on that disk, replacing the block whose
next reference is furthest in the future, under the condition
that the next access to the evicted block is after the next
access to the block being fetched.

Aggressive is the most aggressive prefetching strategy
that is consistent with the four optimal prefetching rules de-
scribed in section 2.2. As mentioned, some of these rules are
no longer valid in the multiple disk case. This provides some
of the intuition for the following theorem.

Theorem 1 [16] For any access pattern, and any lay-
out of data on disks, the elapsed time of aggressive s at most
d(1+e€1) times that of the optimal elapsed time (the minimum
possible), where d is the number of disks, and e1 is a small
constant that depends on system parameters.>

There are worst case access patterns/data layouts for
which the elapsed time of aggressive is at least d times the
minimum possible.

It is important to note that this worst case result depends
on access patterns and data layouts in which the load is heav-
ily unbalanced between the disks. If the request sequence is
balanced, aggressive has near-optimal performance.

3¢1 here is F/K where F is the fetch time/compute time ratio and
K is the cache size measured in blocks. For typical system parameters
€1 is less than 0.02.

2.5 The reverse aggressive algorithm

The reverse aggressive algorithm exploits global knowledge in
order to produce a prefetching schedule that achieves near-
optimal elapsed time. It does this by balancing disk workload
through carefully selected replacement decisions.

Reverse aggressive: Construct a prefetching schedule for
the reversed sequence that replaces at most one block on each
disk in parallel as follows: Whenever a disk is free, determine
the block B not needed for the longest time on that disk. If
the next request to B is after the first missing block, issue
a fetch for the missing block, replacing B. Transform this
prefetching schedule back to a schedule for the original se-
quence by treating each fetch on the reverse sequence as an
eviction on the forward sequence and vice versa.

For a proof of correctness, more details on how and why
this algorithm works well, and a proof of the following theo-
rem, see [16].

Theorem 2 [16] For any request sequence, and for any
layout of the data on the disks, the elapsed time of reverse
aggressive is at most 1 + ez times the optimal elapsed time.*

There are two key properties of reverse aggressive that
result in this theorem. First, whereas aggressive chooses evic-
tions without considering the relative loads on the disks, re-
verse aggressive greedily evicts to as many disks as possible
on the reverse sequence. In the forward direction, this trans-
lates to performing a maximal set of fetches in parallel. The
fact that these are fetches in the forward direction means that
at some point earlier in the sequence, corresponding blocks
were evicted. Thus the eviction decisions of reverse aggressive
on the forward sequence are based on the ability to prefetch
the evicted blocks later on in parallel. Second, whereas ag-
gressive can wastefully prefetch ahead on some of its disks,
reverse aggressive is greedy in the reverse direction. Con-
sequently, it is fetching blocks in the forward direction just
in time (to the extent possible) for them to be used. This
results in performing close to the best evictions possible for
those fetches.

2.6 Practical considerations

Several important features of real systems are not captured
by our theoretical model.

1. Disk response times and CPU times between 1/O re-
quests are not constant.

We use average values for each and expect that vari-
ation in event times does not substantially invalidate
the algorithm’s decisions. In our experimentation, this
does not appear to be a major effect, with one excep-
tion (see section 4.3). (The systematic effects of disk
scheduling on disk response time are considered sepa-
rately).

462 here is less than F'd/K, where F is the fetch time/compute time
ratio, d is the number of disks, and K cache size in blocks. For typical
sytem parameters, €3 is less than 0.1, and sometimes significantly less.

2. Access patterns exhibit locality of reference, and loads
are balanced across the multiple disks when data is
striped.

In practice, this allows both fized horizon and aggres-
sive to effectively utilize multiple disks, and achieve
elapsed times comparable to the theoretically superior
reverse aggressive.

3. Disk accesses require significant CPU overhead to form
the request, communicate with the disk, and service
the resulting interrupt(s). Thus, avoidable data fetches
may add elapsed time even if they do not cause stalls.

Because the theory assumes that fetches entail no CPU
overhead, this penalty punishes overly aggressive fetch-
ing. In practice, this effect favors the fized horizon
algorithm since its late replacement decisions tend to
lead to the fewest fetches.

4. Disk response time is sensitive to the order in which
requests are serviced.

In particular, disk scheduling reduces average disk re-
sponse time as more accesses are presented and allowed
to be reordered by the disk (driver). Although fized
horizon implicitly allows multiple outstanding requests
at each disk, aggressive and reverse aggressive were de-
fined to submit only one request at a time, since in
the theoretical model there is no advantage to batch-
ing. Because of the significance of the disk scheduling
effect, we modify the definitions of aggressive and re-
verse aggressive to submit disk requests in batches. We
have found that the performance of all three algorithms
benefits from the CSCAN disk scheduling algorithm.

Reverse aggressive also benefits from batching of requests
during its construction of its prefetching schedule (the re-
verse pass over the request sequence). This is because typi-
cal request sequences exhibit spatial locality; by batching re-
quests on the reverse pass, reverse aggressive generates miss-
ing blocks to be fetched on the forward sequence in groups
that exhibit locality of reference.

The inter-request CPU time is actually composed of two
components, a fixed amount of time to read a block out of
the cache, and a variable amount of time to process the data.
Our implementation of fized horizon assumes the data pro-
cessing time to be zero, and uses the ratio of the average disk
response time to the time to read a block from the cache as
the prefetch horizon H. This ensures that any prefetch to an
idle disk will complete in time for the reference. Assuming an
average disk response time of 15ms (which is usually an over-
estimate in our simulations) and 243ps to read a block from
the cache (which was measured on the implemented TIP2
system) yields a value of H = 62; we used this value in all
our simulations, except where noted otherwise.

2.7 Implementations of the algorithms

In the context of the considerations of the previous section,
we summarize the implementations we compared.

Fixed horizon: Whenever there is a missing block at most
H references away, issue a fetch for that block, replacing the
block whose next reference is furthest in the future. Note that
this algorithm may at any time have up to H outstanding
references to a disk yielding opportunities for disk scheduling.

Aggressive: Whenever a disk D is free, construct a batch
of at most batch-size® fetches to initiate on D as follows:
As long as the first missing block B on disk D precedes the
block B’ whose next request is furthest in the future, add the
fetch/eviction pair B/B' to the batch. Issue the batch.

If two or more disks are free at the same time, we consider all
their missing blocks together, in order of increasing request
index. Each next missing block is issued to the appropriate
disk (and the best possible choice of evictions is made), if the
disk’s batch is not full and the do no harm rule allows it. At
some point, either the last free disk’s batch becomes full or
the do no harm rule disallows issuing further requests.

Reverse aggressive: Assuming a fixed ratio F' between the
time for a disk access and the inter-reference CPU time, con-
sider the reversed sequence, and use it to derive a prefetching
schedule as described in section 2.5, but construct the sched-
ule in batches as done by aggressive.

This prefetching schedule is then transformed into a schedule
of fetch/eviction pairs for the forward sequence. Associated
with each eviction is a release time, the earliest index in the
request sequence at which the block can be evicted (i.e. one
greater than the index of the last request to the block until
it is possibly fetched back into the cache at some later time.)
The eviction choices are naturally ordered by increasing re-
lease point due to the method used by reverse aggressive to
construct its schedule. Fetches may need to be re-ordered
according to increasing request index; they are then matched
to eviction choices according to these orderings.

This schedule is used to drive the disk model as follows.
Whenever a disk D is free, add the first up to batch-size
fetch/eviction pairs B;/B; that have been released, and for
which B; resides on disk D, to the batch. Issue the batch.®

Notice that aggressive and fized horizon use less looka-
head information than reverse aggressive, in that for both of
them, the “only” future information needed are the identities
of the next missing blocks (up to H missing blocks for fized
horizon, and up to d times batch-size for aggressive), and
their positions in the sequence relative to the next references
to blocks currently in the cache.

3 Simulation framework

We used trace-driven simulation to evaluate the performance
of the algorithms. We believe our simulation model to be an
accurate reflection of the practical performance characteris-
tics of the algorithms. The reference streams are taken from
traces of real applications’ behavior; the trace information

5The batch sizes used are listed in table 6.
6The batch sizes and estimate F used by reverse aggressive are
discussed in section 4.4.

Sector sectors tracks per
size per track cylinder
512 bytes 72 19
cylinders rotational | disk cache
speed size
1962 4002 rpm | 128 Kbytes
ave. access controller | transfer
time (8Kbyte) | interface rate
22.8ms SCSI-II 10 MB/sec

Table 1: HP 97560 characteristics.

xds elapsed times (secs)
CMU simulator | UW simulator
disks | F.H. Agg. F.H. Agg.
1 63.3 61.6 65.6 63.7
36.9 34.1 38.0 34.3
33.6 33.9 36.2 33.7
33.8 35.1 34.2 35.1
33.0 34.2 33.5 34.4

synth elapsed times (secs)
CMU simulator | UW simulator
disks | F.H. Agg. F.H. Agg.

Y | e

1 213.0 168.5 201.4 | 155.8
2 136.3 126.9 130.9 | 121.7
3 118.9 149.5 118.9 | 150.4
4 118.9 150.4 118.9 | 150.1

Table 2: Comparison of the simulators on the xds and synth
traces.

we use is unaffected by prefetching and caching activity. The
accurate modelling of disk fetch times, I/O driver overhead
costs, and application process compute times in the simula-
tions is a key difference relative to the theoretical framework.
However, our simulators do not model serialization of DMA
transactions.

Two separate simulators were developed, one at Wash-
ington (UW) and one at Carnegie Mellon (CMU). The UW
simulator uses the disk drive simulation of Kotz et al. [18]
(which is based on that of Ruemmler and Wilkes [26]) to
accurately model I/O costs. This simulation models fine ar-
chitectural details to provide a very accurate simulation of
the HP 97560 disk drive. Table 1 lists several characteristics
of the HP 97560 (taken from [26]). The CMU simulator uses
the Berkeley RaidSim [8] simulator, as modified at CMU, to
simulate 0661 IBM Lightning disk drives.

The simulators were cross-validated on a common set of
traces. The CMU simulator does not implement reverse ag-
gressive. We obtained good agreement between the simula-
tors on the results for aggressive and fized horizon for sev-
eral traces. Table 2 shows the elapsed times measured by
the simulators for the xds and synth traces described below.
Remaining differences between the simulators are consistent
with the differences in the disk models. We report here re-
sults for all algorithms obtained using the UW simulator.

In our simulations, we ignore write operations. Write
performance is less critical to I/O performance since the ap-
plication generally does not have to wait for the disk to be

"We do not expect this to have a significant effect on the results
since the DMA time is much less than the disk access time.

trace reads distinct compute
blocks | time (sec)
dinero 8867 986 103.5
cscopel 8673 1073 24.9
cscope2 20206 2462 37.1
cscope3 30200 3910 74.1
glimpse 27981 5247 38.7
1d 5881 2882 8.2
postgres-join 8896 3793 11.5
postgres-select 5044 3085 79.2
xds 10435 5392 30.8
synth 100000 2000 99.9

Table 3: Trace summary data.

written. Moreover, the impact this has on the results is small
since most of the references in our traces are reads.

We simulated disk arrays of sizes 1-8, 10, 12, and 16.
Most of our figures show a smaller range of sizes, however.
In each case, the performance with a larger number of disks
is the same as that with the largest number of disks shown.

3.1 File access traces

We used a set of traces collected on a DECstation 5000/200.
The running time of all the applications is dominated by disk
read accesses. Each trace consists of a sequence of file block
read requests in the order they were issued, and the sequence
of measured process compute times between read requests, of
a single execution thread. We used an I/O driver overhead
of .5bms per I/O operation, which is typical of the 5000/200.

The applications are:

cscope[1-3]: an interactive C-source examination tool writ-
ten by Joe Steffen, searching for eight symbols (cscopel)
in a 18MB software package, searching for four text strings
(cscope2) in the same 18MB software package, and searching
for four text strings (cscope3) on a 10MB software package.
With multiple queries, cscope will read multiple files sequen-
tially multiple times.

dinero: a cache simulator written by Mark Hill. This appli-
cation reads one file sequentially multiple times.

glimpse: a text information retrieval system from the Uni-
versity of Arizona, searching for four keywords in a 40MB
snapshot of news articles. It builds approximate indexes for
words to allow both relatively fast search and small index
files. The result is that the index files are accessed repeat-
edly, whereas the data files are accessed infrequently.

postgres-join: the Postgres relational database system de-
veloped at the University of California at Berkeley, perform-
ing a join between an indexed 32MB relation and a non-
indexed 3.2MB relation. The relations are those used in the
Wisconsin Benchmark [3]. Since the result relation is small,
most of the file accesses are reads. Here, the index blocks are
accessed much more frequently than the data blocks.

B cPu Time

L] Driver Time M stall Time

70
60
50

Elapsed Time (secs)

o

1 disk 2 disks 3 di sks 4 di sks 5 di sks

g !! !Hi !i !iii !i !iii !i !iii !i iii !i

demand

fixed horizon

I aggr essi ve
T ever se agg.

I

6 disks 7 di sks 8 di sks 10 disks 12 disks 16 disks

Figure 2: Performance on the postgres-select trace. Each group of bars represents the performance of the four algorithms
optimal demand fetching, fized horizon, aggressive, and reverse aggressive, in left-to-right order.

postgres-select: the Postgres relational database system
executing a selection query of choosing 2% of the tuples from
an indexed 32MB relation. The selection query is part of the
Wisconsin Benchmark suite [3] and uses indexed search.

1d: the Ultrix link-editor, building the Ultrix 4.3 kernel from
about 25MB of object files.
xds: a 3-D data visualization program, XDataSlice, gener-

ating 25 planar slice images at random orientations from a
64MB data file.

Finally, we used a synthetic trace synth containing 50
passes through a loop of 2000 sequential blocks. Compute
times between read requests were generated according to a
Poisson distribution with a 1 ms mean.

Table 3 shows the length (number of read requests), num-
ber of distinct blocks requested, and total application com-
pute times for each of the traces.

The cache size was set to be 10MB (or K = 1280 blocks
of 8 kbytes each) for all traces except dinero and cscopel.
These traces contain references to fewer than 1280 distinct
blocks. For these traces, the cache size was reduced to 4MB
(512 blocks). We assume the cache to be empty (or to contain
some other application’s data) when the traced application
starts. The entire cache is available to the traced application.

3.2 Data placement and disk head scheduling

The data was striped across the array using a one-block
stripe unit. Some of our traces represented block numbers
by (file,offset) pairs; for these we chose a random starting
point within a group of 8550 8kbyte blocks (which occupy
100 cylinders on the HP 97560) for each file, corresponding
to typical file system clustering mechanisms. The maximum
seek time within a group of 100 cylinders is 7.24ms. Thus, in
our simulations the average response time is typically lower
than the 22.8ms listed in table 1. Other traces referred to
logical filesystem block numbers; for these traces we used the
actual block number for each access. Except where noted, we
use CSCAN disk head scheduling.

4 Results

In the following sections, we examine the behaviors of the al-
gorithms in detail. We begin by comparing the performance
of the algorithms with that of demand fetching. We then
examine the algorithms’ performance on the synthetic trace,
an easily understood access pattern that illustrates the key
differences in behavior between the algorithms. Next we ex-
amine performance on the application traces, and explore the
effects on the results of changes in various simulation param-
eters.

4.1 Comparison with demand fetching

In order to make this comparison as favorable as possible to
demand fetching, we use the optimal offline replacement pol-
icy: whenever a block is fetched, the block in the cache whose
next reference is furthest in the future is replaced. Figure 2
shows the elapsed times of the three algorithms and of op-
timal demand fetching on the postgres-select trace for vary-
ing numbers of disks between one and sixteen. The elapsed
times are divided into three compomnents: process compute
time, I/O driver overhead (processor) time, and the time the
processor spends idle, stalling on I/O. From this figure we see
that (1) all three prefetching algorithms significantly outper-
form optimal demand fetching, and (2) the three prefetch-
ing algorithms achieve near linear reduction in I/O overhead
until the applications become compute-bound. These two
behaviors are consistent across all the applications we have
studied.

4.2 Fundamental differences

The synthetic trace is used to examine the algorithms’ be-
havior on a simple, known sequence in order to gain insight
into the algorithms’ performance. This trace shows the rela-
tive behaviors typical of the three algorithms in exaggerated
form. Figure 3 summarizes the results for one to four disks.

The sequential accesses allow excellent performance from
the disks; average response times are between 3 and 4 ms.
In each case, fized horizon performs 38000 fetches, 720 more

B cruTime [Driver Time M Sstall Time

200 .
S 5 ©
— £ 2@
8 150 s :
& x F
2 =
£
= 100
e
(1)
[%2]
g
o 50
0
1 disk 2 di sks 3 di sks 4 di sks

B cruTime [Driver Time M stall Time

agg.

35

V.

=3
>
<

i xed hor.

30 .

(o]
i | h
0 ii iii iii iii

1 disk 2 di sks 3 di sks 4 di sks

Elapsed Time (secs)
L = N N
o [4)] o (9]

o

Figure 3: Performance on the synth (left) and cscopel (right) traces. Each group of bars represents the performance of the
three algorithms fized horizon, aggressive, and reverse aggressive, in left-to-right order.

than the minimum possible 37280 performed by optimal de-
mand fetching. (The total sequence length is 100,000).

With a single disk, the synthetic application is I/O
bound. Fized horizon’s conservative prefetching strategy re-
duces I/O stalling relative to demand fetching, but not as
much as aggressive’s and reverse aggressive’s more aggressive
strategies. After each pass through the loop under fized hori-
zom, the cache contains 1280 sequential blocks and the other
720 blocks in the sequence are not cached. The clustering of
the 720 missing blocks allows good disk performance; how-
ever, the clustering of the 1280 cached blocks causes fized
horizon to leave the disk idle until the last H cached blocks
are being read. Aggressive and reverse aggressive perform
39240 and 39265 fetches, respectively, slightly more fetches
than fized horizon’s 38000, resulting in a small difference in
driver overhead. However, they are able to eliminate much
of the I/O stall time by prefetching distant blocks and thus
not idling the disk appreciably.

With two disks, fized horizon is able to eliminate most
of the stall time, without increasing the total number of
fetches. Aggressive has nearly eliminated stall time com-
pletely, but at a higher driver cost due to its increased number
(41902) of fetches. Reverse aggressive is between fized hori-
zon and aggressive in stall time; it performs 42000 fetches.
Elapsed times are similar under all three algorithms. This
case marks the transition from I/O-boundedness to compute-
boundedness.

With three disks, stall time has been eliminated com-
pletely by all three algorithms. Aggressive uses the excess I/O
bandwidth to prefetch and subsequently evict every block
for every reference. In fact, because aggressive is willing to
prefetch significantly ahead on one disk relative to others,
it wastes 994 fetches, replacing a prefetched block from the
cache before it is used in order to fetch a block on a different
disk that will be needed sooner. Fortunately, this effect does
not increase as the number of disks increases since with in-
creasing I/O bandwidth, aggressive’s prefetching becomes so
successful that every fetch is to the first missing block in the
future. Such a block can never be replaced before it is used,
since that would violate the do-no-harm rule.

Nonetheless, the elimination of stall time by aggressive
comes at a high cost: the driver overhead for the extra fetches

pushes aggressive’s elapsed time higher than the two-disk
case. In contrast, fized horizon prefetches far enough ahead
to serve all requests without stall, but no farther. Dedicat-
ing at most H buffers to prefetching, fived horizon is able to
eliminate stalling altogether without any additional fetches.
Reverse aggressive performs 37907 fetches, fewer than fized
horizon, also eliminating stall time.

4.3 Application traces

The application traces show differences among the three al-
gorithms similar to those shown by the synthetic trace, but
less pronounced.

The right portion of figure 3 shows the performance of
the three algorithms on the CPU-bound cscopel trace. The
behavior here is similar to that for the synthetic trace: aggres-
stve eliminates stalling but issues too many fetches resulting
in a greater driver overhead.

At the I/O-bound end of the spectrum, figure 4 shows
a detailed breakdown of the performance of the three algo-
rithms on the 1d trace, from one to sixteen disks. With one
disk, all three algorithms are I/O bound and have compa-
rable performance. From two to eight disks, the more ag-
gressive prefetching of aggressive and reverse aggressive re-
sults in somewhat less stalling than fized horizon. At ten
disks, fized horizon’s performance matches aggressive’s. Be-
yond this point, the tradeoff between excessive stalling caused
by leaving disks idle, and excessive driver overhead caused by
prefetching aggressively, favors fized horizon over aggressive.
The other traces reflect similar trends, with different points
of crossover: above five disks for postgres-select, glimpse,
and cscope2, and below five disks for postgres-join, dinero,
cscopel, and xds.

An exception to the generally best performance of reverse
aggressive is the cscope3 trace, shown in figure 5. Note that
reverse aggressive’s performance is much worse than aggres-
sive’s with one disk. This is a case in which the differences
between the theoretical model and the simulation model af-
fect the performance of reverse aggressive. Recall that since
reverse aggressive is offline, it generates a complete schedule
based on its estimate of F. When it uses a smaller estimate
of F, each fetch is assumed to complete earlier (relative to

25
5 i
> 20 B cruTime [] Driver Time M stall Time No S
o T2
& 280
~ Qo wn
o 15 T -5
£ 3>
[= -2
- 10
3]
]
g
1 disk 2 disks 3 disks 4 di sks 5 disks 6 disks 7 disks 8 di sks 10 disks 12 disks 16 disks
Figure 4: Performance on the 1d trace.
c
o .
N e 8
120 55 ©
B CcPU Time] Driver Time M stall Time < 2 9
w 100 T 50
o X o >
o - =2
< 80 =
£
= 60
3 40
(%]
&
o 20
0
1 disk 2 disks 3 disks 4 disks 5 disks 6 disks 7 disks 8 disks
Figure 5: Performance on the cscope3 trace.
the inter-reference compute time) and therefore reverse ag- disks | demand ﬁ”{ed aggressive reverse
gressive generates a more aggressive prefetching schedule that - fetcglzlng horgzgon 55 aggrg;swe
keeps the disk(s) busier. When it uses a larger estimate of 5 o 50 52 52
F, each fetch is assumed to take longer, and therefore reverse 3 '27 .82 .87 .85
aggressive must delay the s'cheduling of subseque'nt fetches in) :20 :72 :81 :80
the sequence, thus generating a more conservative prefetch- 5 16 66 70 69
ing schedule. In our implementation of reverse aggressive, the 6 13 58 63 60
single best estimate of F is used for each trace. On traces 7 .12 .50 .62 .50
with large variation in inter-reference compute times, any sin- 8 -10 -45 -56 42
gle estimate of F' will be either too small or too large for some 10 08 -36 43 -35
parts of the trace. This is the case for cscope3 — examination 12 8; gg gg ;EIB
of the trace reveals that the inter-reference compute times - - - -

are bursty. Runs of compute times near 1ms are interspersed
with runs of times around 7ms. Since the average fetch time
on this trace with one disk is about 8ms, the ratio of fetch
time to compute time (the “true” value of F') varies from
about 1 to about 8.

In fact, with a single disk, aggressive has the same theo-
retical performance bounds as reverse aggressive. It is not
surprising that aggressive’s inherent adaptivity to varying
fetch times and compute times should give it an advantage
over reverse aggressive in this case. This effect is noticable,
but less pronounced, on the synth trace as well.

On the remaining traces, reverse aggressive’s elapsed time
varies from 3.6% worse to 10.7% better than the superior of
fized horizon and aggressive in any given configuration. For
the full data, see the appendix.

10

Table 4: Disk utilization on the postgres-select trace.

Table 4 shows the utilization of the disks (averaged over
the disks when there are more than one) for demand fetching
and the three prefetching algorithms on the postgres-select
trace. For moderate numbers of disks, aggressive places the
greatest load on the disks, followed by reverse aggressive and
then fized horizon; demand fetching places the least load on
the disks. With a very high degree of disk parallelism, reverse
aggressive’s offline schedule places even less load on the disks
than fized horizon’s conservative strategy.

80

| K] Wi MWs0 [Oso

70 D160 M320 Mes0 Mi1280
7 60
(8]
Q
2
< 50
[}
£
£ 40
e}
[
@ 30
K
Yoo

10

0

1 disk 2 disks 3 disks 4 di sks 5 disks

Figure 6: Performance of aggressive on the cscope2 trace, as a function of the batch size.

4.4 Varying parameters

The performance of the algorithms depends on a set of pa-
rameters which interact in complicated ways with the appli-
cations’ access patterns and inter-reference compute times,
the layout of data on disks, the disk-scheduling discipline, and
the characteristics of the disks. In this section, we explore
the behavior of the algorithms when some of these parameters
are varied. In this section, we present general observations
and only a small portion of the data. For the full data, see
the appendix.

We have already described most of the primary effects
that explain what we see. These are:

e scheduling: an increase in the number of outstanding
fetches issued by a prefetching algorithm results in in-
creased latitude to reorder fetches and thus reduced
disk response times. This effect is strongest in I/O-
bound situations.

e out-of-order fetching: reordering of fetches can increase
stall penalties when early missing blocks are fetched
after later missing blocks. This effect is strongest in
CPU-bound situations where any stall penalty is costly.
When there is significant stalling, this effect is masked
by other stalls and compensated for by the reduced
average response time.

o carly replacement: as prefetching becomes more aggres-
sive, inferior replacement choices are made, leading to
more fetches and in many cases, an increase in elapsed
time.

o limited aggressiveness: the extent to which an algo-
rithm can prefetch is limited by the do no harm rule.

Disk-head scheduling

The results shown in the previous section were obtained
using CSCAN disk-head scheduling. CSCAN was used
rather than SCAN since the HP 97560 contains a reada-
head buffer; CSCAN always scans in the same direction
that the disk reads, improving the hit rate in the readahead
buffer. We compared the performance impact of CSCAN

11

disks fized aggressive reverse
horizon aggressive
1 14.9 19.2 24.0
2 4.85 11.3 22.1
3 2.59 8.36 19.9
4 0.53 3.59 6.71
5 -0.62 -0.77 0.0
6 -0.68 -0.31 0.0
7 -2.15 -0.45 0.0
8 -0.42 -0.17 0.0
10 -0.05 0.09 0.0
12 0.0 0.11 0.0
16 0.0 0.0 0.0

Table 5: Percentage improvement of CSCAN over FCFS on
the postgres-select trace.

disk-head scheduling versus FCFS scheduling. Relative to
FCFS, CSCAN improves the performance of reverse aggres-
sive the most, up to 24%, and that of fized horizon the least,
up to 15%. For aggressive, the greatest benefit was 19%. Be-
cause of out-of-order fetching, CSCAN sometimes degrades
performance slightly relative to FCFS in compute-bound sit-
uations. This effect is strongest for fired horizon since it
issues fetches later than they are issued by the other algo-
rithms. The maximum degradation we observed is 3.6% (for
fized horizon with six disks on the glimpse trace).

Table 5 shows the performance benefit of CSCAN
scheduling relative to FCFS on the postgres-select trace for
all three algorithms with 1-16 disks.

The batch size used by aggressive

Figure 6 shows the effect of varying aggressive’s batch size
on the cscope2 trace. For each number of disks, performance
initially improves with increasing batch size due to improved
scheduling. For example, for one disk, the average fetch time
drops from 10.4ms to 8.4ms as the batch size increases from
4 to 160. Eventually, out-of-order fetching and early re-
placement become more important and performance drops
off again. For example, for one disk the number of fetches
increases from 6771 to 9806 as the batch size increases from
160 to 1280.

M cPu Time [Driver Time M stall Time
<
N 80
35 o <« 8 9 ©
- © ~ n —
won "o 70 1
30 r r T — r 3
— 3 60 " e e
@ 2 8 =88R
r) ~ "
» () 50 - ; T
20 IS
(] = 40
E &5
- ? 30
3 2
n 10 & 20
8 w
m 5 10
0 0
1 disk 2 di sks 3 di sks 1 disk 2 di sks 3 di sks

Figure 7: Performance of fized horizon as a function of the prefetch horizon H on the cscopel (left)

1 disk 2 disks | 3 disks 4 disks
80 40 40 16

5 disks | 6 disks | 7 disks | > 7 disks
16 8 8 4

Table 6: Batch sizes used for aggressive.

As the number of disks increases, the variation in per-
formance with batch size diminishes, and the best batch size
shifts to a smaller value. This is because in more compute-
bound situations, out-of-order fetching and limited aggres-
siveness are the dominant factors. Because of limited aggres-
siveness, the number of fetches increases only from 11325 to
11399 as batch size increases from 160 to 1280 with 5 disks.

Although the optimal batch size decreases with the num-
ber of disks for all the traces, it varies significantly from trace
to trace. For example, for the xds trace, the optimal batch
size for one to three disks was 16, and for four or more was
4. All the results for aggressive presented in section 4.3 were
obtained using the batch sizes given in table 6. The perfor-
mance of aggressive with these fixed batch sizes is on average
0.7 % worse (and at most 11% worse) than its performance
with the best batch size for the configuration.

Prefetch horizon

The left side of figure 7 shows the effect of varying fized hori-
zon’s prefetch horizon H on the cscopel trace. We see that for
each number of disks, performance deteriorates with increas-
ing H (except on one disk, where it improves slightly until
H = 64 is reached). This is due to out-of-order fetching and
early replacement. For example, with 1 disk, earlier replace-
ments cause the number of fetches to increase from 4959 with
H = 64 to 8535 with H = 2048. Out-of-order fetching ac-
counts for all the stall time with 2 and 3 disks when H > 512;
using FCFS scheduling this stall time is eliminated.

On the more I/O bound traces such as cscope2, also
shown in figure 7, we find a significant initial performance
improvement with increasing H because the more aggressive
prefetching eliminates stalling. Only at very large values of
H does performance decline again.

12

and cscope2 (right) traces.

The parameters used by reverse aggressive

We experimented with the batch size and fixed value of F'
used by reverse aggressive to construct its schedule on its
reverse pass over the request sequence, as well as the batch
size used on the forward pass. Since we use reverse aggressive
only as a benchmark against which to compare the other
algorithms, the main purpose of these experiments was to
determine the optimal configuration (choice of F' and batch
sizes) for each trace, for each number of disks.

These experiments show that, as with aggressive, a
smaller (resp. larger) batch size benefits a more compute-
bound (resp. I/O-bound) application. Recalling that as re-
verse aggressive’s estimate of F' decreases, it becomes increas-
ingly aggressive, we similarly find that a smaller (resp. larger)
value of F' benefits a more I/O-bound (resp. compute-bound)
application.

Processor speed and cache size

In order to assess the impact of improved CPU performance
relative to disk performance, we ran our trace-driven simu-
lations assuming a processor twice as fast. For these tests,
fized horizon’s prefetch horizon H was doubled to 124. The
results are entirely unsurprising: faster processors are more
dependent on I/O performance so that the payoff of using
multiple disks and prefetching is increased. In addition, since
a larger number of disks is needed to eliminate I/O overhead,
the point at which the tradeoffs begin to favor fized horizon
over aggressive is shifted to a larger number of disks. This
behavior was consistent across the applications.

In order to assess the impact of cache size on performance,
we ran our trace-driven simulations with varying cache sizes:
640, 1280, and 1920 blocks. As cache size increases, the per-
formance of all the algorithms improves. In I/O-bound cases,
a larger cache improves aggressive’s and reverse aggressive’s
performance more than fized horizon’s since they prefetch
more aggressively. In more compute-bound cases, aggres-
sive’s excessive driver overhead penalizes it even more with a
larger cache, so that fized horizon’s performance relative to
aggressive improves slightly as cache size increases. This is
illustrated in table 7, which shows the performance of fized
horizon relative to aggressive as percentage difference, as a

cache size | 1 disk | 2 disks | 4 disks | 8 disks | 16 disks
640 6.0 14.7 24.8 7.3 -2.6
1280 11.3 20.2 24.5 5.7 -3.8
1920 13.8 25.0 21.7 5.7 -3.8

Table 7: Elapsed time as a function of the cache size and
number of disks of fized horizon relative to aggressive (per-
centage difference) on the glimpse trace.

function of the cache size and the number of disks on the
glimpse trace.

5 A new approach

We have designed a new algorithm, forestall, attempting to
combine the best features of all three previously described
algorithms: the good performance of reverse aggressive re-
gardless of I/O-boundedness or compute-boundedness, and
the simplicity and implementability of fized horizon and ag-
gressive. Forestall tries to avoid stalling while still making
good (late) replacement decisions by estimating the point
at which it needs to begin prefetching in order to prevent
stalling. It makes this estimate based on its current cache
state.

Returning to the theoretical model, suppose that there
is a single disk, and that at some point during the servicing
of the request sequence, the cache contains the next 2F — 1
blocks requested. (Recall that in the theoretical model, the
interreference CPU time is taken to be 1 time unit, and the
time to fetch a block from disk is F' time units.) Further
suppose that the subsequent two requests are missing from
the cache. Aggressive immediately starts fetching and avoids
stalling on the missing blocks, bringing the second missing
block into the cache at time 2F — just in time to serve the re-
quest without stalling. Fized horizon leaves its disk idle until
the cursor is within F' requests of the first missing block; it
stalls ' — 1 steps on the second missing block. In contrast,
suppose there is only one missing block at a distance of 2F —1
from the cursor. In this case, aggressive will fetch immedi-
ately and make a possibly inferior replacement choice. Fized
horizon waits until its cursor is within F' steps of the missing
block, and prefetches just early enough to avoid stalling; in
the intervening time, it may have finished using a block that
is not needed until later in the sequence (if at all) than the
one evicted from the cache by aggressive.

Forestall behaves as does aggressive in the first case, and
as does fized horizon in the second. For each i, i > 1, let d;
denote the distance from the cursor to the i** missing block
in the request sequence. For any ¢ > 1, if ¢F" > d;, process-
ing will surely stall on the " missing block or some earlier
missing block. It will take ¢F time units to fetch the first
¢ missing blocks, and at most the next d; requests can be
served concurrently. Forestall initiates a prefetch according
to the optimal fetching and optimal replacement rules when-
ever ¢ F' > d; is true for some ¢ and the do no harm rule allows
it.

13

Practical considerations

As do the other algorithms, forestall requires modifications in
order to account for differences between the theoretical model
and real systems. Requests need to be issued in batches in
order to reduce average disk access times. The ratio F' of
disk response time to interaccess time is not constant and
must be estimated. In our implementation, we estimate F'
by tracking recent disk response times and compute times:
F' is dynamically computed on a per-disk basis as the ratio
between the sum of the most recent 100 disk access times and
the most recent 100 interreference CPU times.

Just as we needed the prefetch horizon H to be an overes-
timate of F for fized horizon to have adequate performance,
forestall’s performance depends on overestimating F' in cer-
tain situations as well. We denote by F' the overestimate
of F' used by forestall. We evaluated forestall’s performance
with different values of the parameter F'. We found that
the best choice of F' depended on the per-trace average disk
access times. For those traces for which the average disk ac-
cess time was small, in the 3-4ms range, it was best to take
F' = F. For those traces for which the average disk access
time was larger, it was best to take F' = 4F. This is not hard
to explain. Traces with disk access times in the 3-4ms range
must contain a great deal of sequential access, so that most
requests hit in the disk’s readahead cache and are served by
the CSCAN scheduler in the order in which they are received.
When this happens, it is not necessary to prefetch aggres-
sively. When the disk access times are large, the access pat-
tern is more complicated, and disk access times more varied.
Forestall’s mechanism for deciding when to prefetch benefits
from overestimating the potential to stall. This smooths out
the variations and avoids stalling due to the reordering of
requests by CSCAN. Our implementation of forestall adapts
to the observed disk access times, using the small value of F'
for small disk access times (less than 5ms on average), and
the larger value of F' for larger disk access times. Finally,
because of the reordering of requests by CSCAN, we found
it necessary to add fized horizon’s rule to issue a fetch when-
ever the cursor is within H requests of a missing block. This
avoids stalling on reordered requests in situations in which
the iF’' > d; rule delays fetching until the cursor is very near
the first missing block.

Rather than using complete lookahead information in our
implementation of forestall, we check the value of the expres-
sion iF' —d; only for those missing blocks within distance 2K
of the cursor, where K is the cache size. We have not ex-
perimented with different values of this parameter, nor with
variations of the history length 100 used to track fetch times
and application process compute times.

Forestall's dependence on batch-size is similar to aggres-
stwe’s. We used for forestall the batch sizes given in table 6.

To compare static vs. dynamic estimation of forestall’s
parameter F', we compared the performance of forestall using
fixed values of 1, 2, 4, 8, 15, 30, and 60 for F' to its perfor-
mance using the dynamic estimation just described. Because
actual average inter-reference compute times in our traces
vary greatly (from 1.3ms for postgres-join to 15.7ms for the
postgres-select), no single value can work well for all traces.

B cpPu Time (] priver Time M stall Time B cpPu Time [] priver Time M stall Time

= 0 g
N NI
= 8 60 z 2
- 20 5 = = - 5% =
z 2es T 2%z
8 3°8 & 358
z E: ze . LR E
[= —
2 100 3 30
12 12
g g 20
w5 w
10
0 0
1 disk 2 disks 3 di sks 4 di sks 1 disk 2 disks 3 disks 4 disks 5 disks 6 disks

Figure 8: Performance on the synth (left) and xds (right) traces. Each group of bars represents the performance of the three
algorithms fized horizon, aggressive, and forestall, in left-to-right order.

80
70 B cpu Time [] Driver Time M stall Time

60
50

[l

(@]

N

S

e

©

(0]

I .f

40 I B] = - — _ h
30
20
10

1 disk 2 di sks 3 di sks 4 di sks 5 disks 6 disks 7 disks 8 disks 10 disks 12 disks 16 disks

Elapsed Time (secs)

I | 2g0r essi ve
I | forestall

o

Figure 9: Performance on the cscope2 trace.

The values with the least maximum degradation relative to 5.1 Performance of forestall
the dynamic algorithm, over all traces and disk array sizes,
are 30 and 60; performance is at most 6.8% worse than the
dynamic estimation (on the j2 trace with 2-6 disks). We

exclude the synth trace from this calculation, since its artifi- Figure 8 shows the performance of the three practical algo-
cially low disk response times demand a very low value of F". rithms, fized horizon, aggressive and forestall, on the syn-
For each trace, there is a fixed choice of F' that works well thetic trace and xds. Forestall behaves exactly as expected.
across all disk array sizes. This best choice varies from 1 for In the I/O bound situations, it prefetches aggressively enough
the dinero trace to 60 for the glimpse trace. The maximum to perform as well as or even better than aggressive. In the
degradation relative to the dynamic estimation allowing this CPU-bound situations, it becomes more conservative in its
much flexibility is 1.4% (for the 1d trace with 7 disks and prefetching, and has a lower driver overhead, matching the
F' = 30). Finally, if we choose the best fixed value for each performance of fized horizon.

trace and each disk array size, the maximum degradation rel-
ative to the dynamic estimation is 1.2% for the cscopel trace
with one disk and F’ = 2; for all other traces and array sizes,
as well as all other array sizes for this trace, the degradation
is less than .5%.

Figures 9 and 10 show the performance of the three al-
gorithms on the cscope2 and glimpse traces. Once again,
forestall has the best performance of the three practical algo-
rithms. On all remaining traces, over all configurations, fore-
stall's performance was between 2% worse and 5.8% better
than the best of aggressive and fized horizon in that configu-

These results indicate that choosing the right parameters ration. For the full data, see the appendix.

between workloads is more important than choosing the right
parameter within a particular workload. Furthermore, fore-

stall's performance even with a single fixed parameter over all Table 8 shows the utilization of the disks by forestall on
workloads and array sizes is always within 7% of optimal, and the postgres-select trace. Its utilization falls between those
is almost always within 4% of optimal. This suggests that the of aggressive and fized horizon, as expected. Moreover, in
advantages of forestall are due to its estimation of and adap- I/O-bound situations, it places a load on the disks similar to
tivity to upcoming disk load rather than the dynamic nature aggressive’s; in compute-bound situations, it places a lower
of its fetch-time and compute-time estimates. load on the disks, similar to that of fized horizon.

14

[] Driver Time M Stall Time

o 100

g B cru Time

< 8o

Q

£

= 60

®

n 40

o

©

w 20
0

1 disk 2 disks 3 disks 4 di sks

5 di sks

I | fi xed horizon
I | aggressive
I | forestall

6 disks 7 disks 8 disks 10 disks 12 disks 16 disks

Figure 10: Performance on the glimpse trace.

disks 1 2 3 4 5 6
util. 99 | 92 | 87 | .81 | .68 | .63
disks 7 8 10 12 16
util. .62 | .54 | .39 | .30 | .32

Table 8: Utilization of disks by forestall on the postgres-select
trace.

6 Conclusions

This paper presents the results of a trace-driven simulation
study of integrated prefetching and caching algorithms on a
single read-only access sequence, assuming that all accesses
are known in advance. We studied four algorithms: aggres-
swve, fized horizon, reverse aggressive, and forestall. We found
that the theoretically near-optimal reverse aggressive usually
has the best performance of the four algorithms, but that,
perhaps surprisingly, it was never much better than the best
of the other algorithms. This shows that carefully choosing
replacements is not necessary to balance the load across the
disks when the data is well laid out. We found that each of ag-
gressive and fized horizon performs well under the conditions
for which it was designed, and in any given situation, one or
the other performs similarly to reverse aggressive. Clearly,
aggressive and fized horizon are much more practical algo-
rithms than reverse aggressive. These observations led us to
the hybrid approach of forestall, which prefetches more ag-
gressively in I/O-bound situations and more conservatively in
compute-bound situations, resulting in nearly the best per-
formance of the four in all configurations.

This study leaves several important issues unresolved.
The performance of the algorithms depends on a set of pa-
rameters which interact in a complicated way with the appli-
cations’ access patterns and inter-reference compute times,
the layout of data on disks, the disk-scheduling discipline,
and the characteristics of the disks. At this time, we have
no analytical basis for dynamically determining aggressive’s
batch size, fired horizon’s prefetch horizon H, reverse ag-
gressive’s batch sizes and estimate of F', or forestall's batch
size and estimate F' of F. It is a challenging open problem
to fully understand the interaction between the algorithmic
parameters and the specific application and system charac-

15

teristics.

Another direction for future research is the treatment of
writes, both theoretically and experimentally.

We have not considered the effects of incomplete or inac-
curate hints and we have not dealt with the question of how
to allocate buffers among competing processes. While the
three practical prefetching algorithms can easily be adapted
to deal with these situations ([5, 25]), we expect differences
in their performance. Aggressive prefetching increases both
disk utilization and cache utilization. Therefore, disks are
more likely to be busy when unhinted accesses occur. More-
over, an aggressively prefetching process might consume too
large a fraction of the cache relative to a nonhinting process.
Since fized horizon places the least load on the disks and the
cache, it is likely to be least affected by unhinted accesses and
to have the smallest impact on other executing processes.

Lastly, this work reaffirms that the operating system can
effectively take advantage of hints. An important research
direction is to determine how applications can easily provide
such hints.

Acknowledgements

Tracy Kimbrel and Anna Karlin wish to thank Martin Tompa
for his continued encouragement and advice. We could not
have managed the production of this document without the
help of Dylan McNamee. Karin Petersen, our paper shep-
herd, was of great help in improving the quality of presenta-
tion.

This research is supported in part by NSF grant numbers
ECD-8907068, CCR-9301186, GER-9450075, CCR-9632769,
in part by DARPA Contract numbers DABT63-94-C-0049,
DABT63-93-C-0054, in part by generous contributions from
the member companies of the Parallel Data Consortium, and
in part by Intel Corporation and Digital Equipment Corpo-
ration. Tracy Kimbrel is supported by an Intel Foundation
Graduate Fellowship. Brian Bershad is supported by an NSF
Presidential Faculty Fellowship. Ed Felten is supported by
an NSF National Young Investigator Award. The views and
conclusions contained in this document are those of the au-

thors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of any supporting
organization or the U.S. Government.

References

(1]

[10]

(1]

(12]

[13]

(14]

[15]

A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon,
J. Hollingsworth, J. Saltz and A. Sussman. Tuning the Per-
formance of I/O-Intensive Parallel Applications. Proceedings
of the Fourth Annual Workshop on I/0 in Parallel and Dis-
tributed Systems, pages 15-27, May, 1996.

L.A. Belady. A Study of Replacement Algorithms for Vir-
tual Storage Computers. IBM Systems Journal, 5(2):78-101,
1966.

Jim Gray. The Benchmark Handbook. Morgan-Kaufman, San
Mateo, CA. 1991.

Pei Cao, Edward Felten, and Kai Li. Application-Controlled
File Caching Policies. In USENIX Summer 1994 Technical
Conference, pages 171-182, June 1994.

Pei Cao, Edward W. Felten, Anna Karlin, and Kai Li. Im-
plementation and Performance of Integrated Application-
Controlled Caching, Prefetching and Disk Scheduling. Tech-
nical Report TR-CS95-493, Princeton University, 1995.

Pei Cao, Edward W. Felten, Anna Karlin, and Kai Li. A
study of Integrated Prefetching and Caching Strategies. In
Proceedings of the ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, pages 188-197,
May 1995.

Pei Cao, Edward W. Felten, and Kai Li. Implementation
and Performance of Application-Controlled File Caching. In
Proceedings of the First USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 165-178,
November 1994.

P.M. Chen and D.A. Patterson. Maximizing Performance in a
Striped Disk Array. In Proceedings of the 17th Annual Sym-
posium on Computer Architecture, pages 322—-331, May 1990.

H.T. Chou and D.J. DeWitt. An Evaluation of Buffer Man-
agement Strategies for Relational Database Systems. In Pro-
ceedings of the 19th International Conference on Very Large
Data Bases, pages 127-141, Dublin, Ireland, 1993.

Kenneth M. Curewitz, P. Krishnan, and Jeffrey S. Vitter.
Practical Prefetching via Data Compression. In Proceedings
of the 1993 ACM Conference on Management of Data (SIG-
MOD), pages 257-266, Washington, DC, May 1993.

Carla Schlatter Ellis and David Kotz. Prefetching in File
System for MIMD Multiprocessors. In Proceedings of the 1989
International Conference on Parallel Processing, pages 306—
314, August 1989.

R.J. Feiertag and E.I. Organisk. The Multics Input/Ouput
System. In Proceedings of the 3rd Symposium on Operating
Systems Principles, pages 35—41, 1971.

Jim Griffioen and Randy Appleton. Reducing File System
Latency using a Predictive Approach. In USENIX Summer
1994 Technical Conference, pages 197-208, June 1994.

John H. Howard, Michael Kazar, Sherri G. Menees, David A.
Nichols, M. Satyanarayanan, Robert N. Sidebotham, and
Michael J. West. Scale and Performance in a Distributed File
System. ACM Transactions on Computer Systems, 6(1):51—
81, February 1988.

M. Kim. Synchronized Disk Interleaving. IEEE Transactions
on Computers, 35(11):978-988, 1986.

16

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(28]

(29]

Tracy Kimbrel and Anna R. Karlin. Near-optimal Parallel
Prefetching and Caching. In Proceedings of the 1996 IEEE
Symposium on Foundations of Computer Science, October
1996.

David Kotz and Carla Schlatter Ellis. Practical Prefetching
Techniques for Multiprocessor File Systems. Journal of Dis-
tributed and Parallel Databases, 1(1):33-51, January 1993.

David Kotz, Song Bac Toh, and Sriram Radhakrishnan. A De-
tailed Simulation Model of the HP 97560 Disk Drive. Techni-
cal Report PCS-TR94-220, Department of Computer Science,
Datmouth College, July 1994.

Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and
Robert S. Fabry. A Fast File System for UNIX. ACM Trans-
actions on Computer Systems, 2(3):181-197, August 1984.

L. W. McVoy and S. R. Kleiman. Extent-like Performance
from a UNIX File System. In Proceedings of the 1991 Winter
USENIX Conference, pages 33—43, 1991.

Michael N. Nelson, Brent B. Welch, and John K. Ousterhout.
Caching in the Sprite File System. ACM Transactions on
Computer Systems, 6(1):134-154, February 1988.

Mark Palmer and Stanley B. Zdonik. Fido: A Cache
That Learns to Fetch. In Proceedings of the 17th Interna-
tional Conference on Very Large Data Bases, pages 255-264,
September 1991.

D.A. Patterson, G. Gibson, and R.H. Katz. A Case for Re-
dundant Arrays for Inexpensive Disks (RAID). In Proceedings
of ACM SIGMOD Conference, pages 109-116, June 1988.

R. Hugo Patterson and Garth A. Gibson. Exposing I/O Con-
currency with Informed Prefetching. In Proceedings of the
Third International Conference on Parallel and Distributed
Information Systems, pages 7-16, September 1994.

R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed Prefetching and Caching. In Proceed-
ings of the 15th Symposium on Operating Systems Principles,
pages 79-95, December 1995.

Chris Ruemmler and John Wilkes. An Introduction to Disk
Drive Modelling. In IEEE Computer, 27(3):17-28, March
1994.

K. Salem and H. Garcia-Molina. Disk Striping. In the 2nd
IEEE Conference on Data Engineering, pages 336-342, Feb.
1986.

Alan J. Smith. Second Bibliography on Cache Memories.
Computer Architecture News, 19(4):154-182, June 1991.

C. Tait and D. Duchamp. Service Interface and Replica
Management Algorithm for Mobile File System Clients. In
Proceedings of Parallel and Distributed Information Systems,
pages 190-196. IEEE, 1991.

A Performance data: baseline measurements

This section contains the raw simulation data for the baseline parameters as described in section 4: the prefetch horizon of
fized horizon is 62, aggressive’s batch size is set according to table 6, reverse aggressive’s fetch time estimate F' and batch
size are chosen to minimize its elapsed time, and Forestall’s fetch time estimate F' is determined dynamically as described in
section 5.

[Disks [1 [2 [3 T 4 1 5 [6]
Fixed Horizon
fetches 4771 4771 4771 4771 4771 4771
driver time (sec) 2.3855 2.3855 2.3855 2.3855 2.3855 2.3855
stall time (sec) 0.027 0.009 0.009 0.009 0.009 0.009
elapsed time (sec) 105.951 | 105.933 | 105.933 | 105.933 | 105.933 | 105.933
average fetch time (msec) 3.156 3.178 3.233 3.258 3.274 3.319
average disk utilization 0.14 0.072 0.049 0.037 0.029 0.025
Aggressive
fetches 8812 8812 8823 8815 8812 8816
driver time (sec) 4.406 4.406 4.4115 4.4075 4.406 4.408
stall time (sec) 0.145 0 0 0 0 0.001
elapsed time (sec) 108.089 | 107.944 107.95 107.946 | 107.944 | 107.947
average fetch time (msec) 3.141 3.146 3.174 3.176 3.188 3.203
average disk utilization 0.26 0.13 0.086 0.065 0.052 0.044
Reverse Aggressive
fetches 4731 4764 4829 4830 4914 5018
driver time (sec) 2.3655 2.382 2.4145 2.415 2.457 2.509
stall time (sec) 0.023 0.021 0.019 0.017 0.015 0.013
elapsed time (sec) 105.927 | 105.941 | 105.972 105.97 106.01 106.06
average fetch time (msec) 3.31 3.36 3.366 3.437 3.494 3.288
average disk utilization 0.15 0.076 0.051 0.039 0.032 0.026
Forestall
fetches 4753 4753 4753 4753 4753 4753
driver time (sec) 2.3765 2.3765 2.3765 2.3765 2.3765 2.3765
stall time (sec) 0.145 0 0 0 0 0.001
elapsed time (sec) 106.06 | 105.915 | 105.915 | 105.915 | 105.915 | 105.916
average fetch time (msec) 3.183 3.196 3.253 3.272 3.298 3.324
average disk utilization 0.14 0.072 0.049 0.037 0.03 0.025

Table 9: Performance on the dinero trace.

17

| Disks I 1 2] | | | |
Fixed Horizon
fetches 4953 4953 4953 4953 4953 4953
driver time (sec) 2.4765 | 2.4765 | 2.4765 | 2.4765 | 2.4765 | 2.4765
stall time (sec) 3.131 0.013 0.013 0.013 0.013 0.013
elapsed time (sec) 30.542 | 27.424 | 27.424 | 27.424 | 27.424 | 27.424
average fetch time (msec) 3.53 3.239 3.248 3.286 3.317 3.355
average disk utilization 0.57 0.29 0.15 0.12
Aggressive
fetches 6931 8570 8672 8678 8621 8576
driver time (sec) 3.4655 4.285 4.336 4.339 4.3105 4.288
stall time (sec) 0.911 0 0.001
elapsed time (sec) 29.311 | 29.219 | 29.27 | 29.273 | 29.245 | 29.223
average fetch time (msec) | 3.758 3.361 3.429 3.365 3.39 3.356
average disk utilization 0.89 0.49 0.34 0.25 0.16
Reverse Aggressive
fetches 5349 4995 5024 5093 5132 5135
driver time (sec) 2.6745 | 2.4975 2.512 2.5465 2.566 2.5675
stall time (sec) 1.312 0.021 0.019 0.017 0.015 0.013
elapsed time (sec) 28.921 | 27.453 | 27.465 | 27.498 | 27.515 | 27.515
average fetch time (msec) | 3.622 3.344 3.376 3.409 3.396 3.618
average disk utilization 0.67 0.3 0.21 0.16 0.13 0.11
Forestall
fetches 5210 4970 4953 4953 4953 4953
driver time (sec) 2.605 2.485 2.4765 | 2.4765 | 2.4765 | 2.4765
stall time (sec) 1.266 0 0.001
elapsed time (sec) 28.805 | 27.419 | 27.411 | 27.411 | 27.411 | 27.412
average fetch time (msec) | 3.794 3.334 3.276 3.295 3.326 3.342
average disk utilization 0.69 0.3 0.15 0.12

Table 10: Performance on the cscopel trace.

Disks [1 T 2] | 4 | 5 6 7 8 10 12 16
Fixed Horizon

fetches 5966 5966 5966 5966 5966 5966 5966 5966 5966 5966 5966
driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983
stall time (sec) 32.802 | 22.261 | 14.616 9.04 5.921 3.905 2.488 1.347 1.016 0.371 0.133
elapsed time (sec) 72.894 | 62.353 | 54.708 | 49.132 | 46.013 | 43.997 42.58 41.439 | 41.108 | 40.463 | 40.225
average fetch time (msec) | 9.469 | 15.009 | 17.309 | 17.993 | 18.463 | 18.921 | 18.894 | 19.083 | 19.216 | 19.217 | 19.542
average disk utilization 0.77 0.72 0.63 0.55 0.48 0.43 0.38 0.34 0.28 0.24 0.18
Aggressive

fetches 6318 6592 8208 8956 10299 11014 11587 11717 11619 11102 10662
driver time (sec) 3.159 3.296 4.104 4.478 5.1495 5.507 5.7935 | 5.8585 | 5.8095 5.551 5.331
stall time (sec) 15.858 5.597 1.798 0 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 56.126 | 46.002 | 43.011 | 41.587 | 42.259 | 42.617 | 42.903 | 42.977 | 42.924 | 42.661 42.44
average fetch time (msec) 8.773 13.256 | 14.354 | 16.514 | 17.138 | 17.683 | 17.722 | 17.551 | 17.224 17.65 18.201
average disk utilization 0.99 0.95 0.91 0.89 0.84 0.76 0.68 0.6 0.47 0.38 0.29
Reverse Aggressive

fetches 6359 7320 6837 6290 6124 6071 6085 6115 6131 6177 6237
driver time (sec) 3.1795 3.66 3.4185 | 3.145 3.062 | 3.0355 | 3.0425 | 3.0575 | 3.0655 | 3.0885 | 3.1185
stall time (sec) 17.966 | 6.057 0.978 0 0.005 0.013 0.011 0.009 0.005 0.016 0.008
elapsed time (sec) 58.255 | 46.826 | 41.506 | 40.254 | 40.176 | 40.158 | 40.163 | 40.176 40.18 40.214 | 40.236
average fetch time (msec) 8.173 11.43 13.428 | 16.847 | 17.651 | 17.939 18.64 18.616 | 19.054 | 19.133 | 19.285
average disk utilization 0.89 0.89 0.74 0.66 0.54 0.45 0.4 0.35 0.29 0.24 0.19
Forestall

fetches 6318 6467 7217 7239 7715 7387 7355 7187 7086 6853 6476
driver time (sec) 3.159 3.2335 | 3.6085 | 3.6195 | 3.8575 | 3.6935 | 3.6775 | 3.5935 3.543 3.4265 3.238
stall time (sec) 15.858 | 5.677 1.798 0 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 56.126 | 46.02 | 42.516 | 40.729 | 40.967 | 40.804 | 40.787 | 40.712 | 40.657 | 40.537 | 40.347
average fetch time (msec) | 8.773 | 13.251 | 14.466 | 16.675 | 16.97 | 18.158 | 18.274 | 18.821 | 19.133 | 19.123 | 19.23
average disk utilization 0.99 0.93 0.82 0.74 0.64 0.55 0.47 0.42 0.33 0.27 0.19

Table 11: Performance on the cscope2 trace.

18

Disks 1 2 | 3 | 4] 5 | 6 | 7 8 10 12 16
Fixed Horizon
fetches 11739 11739 | 11739 | 11739 | 11739 | 11739 11739 11739 | 11739 | 11739 | 11739
driver time (sec) 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695
stall time (sec) 28.459 12.906 7.046 2.961 1.669 0.762 0.221 0.164 0.152 0.014 0.014
elapsed time (sec) 108.429 | 92.876 | 87.016 | 82.931 | 81.639 | 80.732 | 80.191 | 80.134 | 80.122 | 79.984 | 79.984
average fetch time (msec) 7.843 11.914 | 14.814 | 16.147 | 16.993 | 17.482 | 17.906 | 18.178 | 18.671 | 18.875 | 19.108
average disk utilization 0.85 0.75 0.67 0.57 0.49 0.42 0.37 0.33 0.27 0.23 0.18
Aggressive
fetches 12092 13572 | 15938 | 16740 | 17713 | 18081 17894 | 17577 | 16917 | 16542 16314
driver time (sec) 6.046 6.786 7.969 8.37 8.8565 | 9.0405 | 8.947 | 8.7885 | 8.4585 | 8.271 8.157
stall time (sec) 13.943 2.862 0.64 0.052 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 94.09 83.749 | 82.71 | 82.523 | 82.957 | 83.142 | 83.048 | 82.898 | 82.564 | 82.373 | 82.258
average fetch time (msec) 7.741 11.597 | 14.215 | 15.92 | 16.553 | 16.568 | 16.711 | 16.905 | 17.605 | 17.966 | 18.49
average disk utilization 0.99 0.94 0.91 0.81 0.71 0.6 0.51 0.45 0.36 0.3 0.23
Reverse Aggressive
fetches 12228 12814 12501 12033 11880 11837 11852 11883 11919 11954 12004
driver time (sec) 6.114 6.407 6.2505 | 6.0165 5.94 5.9185 5.926 5.9415 | 5.9595 5.977 6.002
stall time (sec) 23.85 3.531 0.66 0.407 0.006 0.013 0.011 0.009 0.005 0.016 0.008
elapsed time (sec) 104.065 | 84.039 | 81.011 | 80.524 | 80.047 | 80.032 | 80.038 | 80.051 | 80.065 | 80.094 | 80.111
average fetch time (msec) 7.763 10.787 | 14.095 15.97 | 16.612 | 17.358 | 17.844 | 18.127 | 18.482 | 18.749 | 19.025
average disk utilization 0.91 0.82 0.73 0.6 0.49 0.43 0.38 0.34 0.28 0.23 0.18
Forestall
fetches 12054 13115 | 14217 | 13969 | 14125 13878 13846 13589 | 13322 13048 | 12536
driver time (sec) 6.027 6.5575 | 7.1085 | 6.9845 | 7.0625 | 6.939 6.923 | 6.7945 | 6.661 6.524 6.268
stall time (sec) 14.273 2.863 0.64 0.052 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 94.401 83.521 | 81.849 | 81.137 | 81.163 | 81.041 | 81.024 | 80.904 | 80.767 | 80.626 | 80.369
average fetch time (msec) 7.731 11.603 | 13.616 | 15.745 | 16.183 | 17.246 | 17.648 | 18.477 | 18.669 | 18.812 | 19.035
average disk utilization 0.99 0.91 0.79 0.68 0.56 0.49 0.43 0.39 0.31 0.25 0.19
Table 12: Performance on the cscope3 trace.
Disks 1 2 | 3] 4 | 5 | 6 [7 8 10 12 16
Fixed Horizon
fetches 6493 6493 6493 6493 6493 6493 6493 6493 6493 6493 6493
driver time (sec) 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465
stall time (sec) 65.619 | 31.046 | 20.054 | 14.029 | 10.381 | 7.886 5.702 4.769 2.809 1.404 0.722
elapsed time (sec) 107.582 | 73.009 | 62.017 | 55.992 | 52.344 | 49.849 | 47.665 | 46.732 | 44.772 | 43.367 | 42.685
average fetch time (msec) 13.424 15.145 | 16.192 | 17.244 | 18.068 18.33 18.452 | 18.642 | 18.555 | 18.571 | 18.743
average disk utilization 0.81 0.67 0.57 0.5 0.45 0.4 0.36 0.32 0.27 0.23 0.18
Aggressive
fetches 6690 6888 7287 7551 8908 9376 10423 10992 12009 11530 11315
driver time (sec) 3.345 3.444 3.6435 | 3.7755 4.454 4.688 5.2115 5.496 6.0045 5.765 5.6575
stall time (sec) 54.58 18.58 6.384 2.495 0.826 0.035 0 0.009 0.005 0.001 0
elapsed time (sec) 96.641 60.74 | 48.744 | 44.987 | 43.996 | 43.439 | 43.928 | 44.221 | 44.726 | 44.482 | 44.374
average fetch time (msec) 12.889 14.259 | 14.645 | 16.247 | 15.973 | 16.836 16.79 16.896 | 16.137 | 15.917 | 16.198
average disk utilization 0.89 0.81 0.73 0.68 0.65 0.61 0.57 0.52 0.43 0.34 0.26
Reverse Aggressive
fetches 6712 7179 7630 8141 7619 6803 6656 6709 6750 6822 6978
driver time (sec) 3.356 3.5895 | 3.815 | 4.0705 | 3.8095 | 3.4015 | 3.328 | 3.3545 | 3.375 3.411 3.489
stall time (sec) 52.011 | 15.928 | 4.971 0.495 0 0 0.011 0.009 0.005 0.006 0
elapsed time (sec) 94.083 58.234 | 47.502 | 43.282 | 42.526 | 42.118 | 42.055 42.08 42.096 | 42.133 | 42.205
average fetch time (msec) 12.745 13.46 13.793 | 13.877 14.73 17.016 | 18.321 18.37 18.541 | 18.514 | 18.406
average disk utilization 0.91 0.83 0.74 0.65 0.53 0.46 0.41 0.37 0.3 0.25 0.19
Forestall
fetches 6610 6617 6945 6905 7033 6937 7113 7093 7125 7089 6941
driver time (sec) 3.305 3.3085 | 3.4725 | 3.4525 | 3.5165 | 3.4685 | 3.5565 | 3.5465 | 3.5625 | 3.5445 | 3.4705
stall time (sec) 54.886 | 18.833 6.58 2.906 1.397 0.099 0 0.009 0.005 0.001 0
elapsed time (sec) 96.907 60.858 | 48.769 | 45.075 43.63 42.284 | 42.273 | 42.272 | 42.284 | 42.262 | 42.187
average fetch time (msec) | 13.001 | 14.378 | 14.797 | 16.382 | 16.651 | 17.627 | 17.557 | 18.099 | 18.015 | 18.055 | 18.273
average disk utilization 0.89 0.78 0.7 0.63 0.54 0.48 0.42 0.38 0.3 0.25 0.19

Table 13: Performance on the glimpse trace.

19

Disks [1 [2] | | | | | [10 12 16
Fixed Horizon

fetches 2904 2904 2904 2904 2904 2904 2904 2904 2904 2904 2904
driver time (sec) 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452
stall time (sec) 15.281 7.297 4.696 3.043 2.086 1.565 1.212 1.041 0.599 0.416 0.269
elapsed time (sec) 24.898 | 16.914 | 14.313 | 12.66 | 11.703 | 11.182 | 10.829 | 10.658 | 10.216 | 10.033 | 9.886
average fetch time (msec) 8.368 10.94 13.299 | 15.031 | 16.214 16.93 17.502 | 17.657 | 18.467 | 18.945 19.2
average disk utilization 0.98 0.94 0.86 0.73 0.67 0.52 0.46 0.35
Aggressive

fetches 2981 2982 3137 3102 3310 3505 3734 3779 4091 4285 4651
driver time (sec) 1.4905 1.491 1.5685 1.551 1.655 1.7525 1.867 1.8895 | 2.0455 | 2.1425 | 2.3255
stall time (sec) 15.245 | 6.329 3.433 2.052 0.579 0.265 0.023 0.009 0.005 0.001 0
elapsed time (sec) 24.9 15.985 | 13.166 | 11.768 | 10.399 | 10.182 | 10.055 | 10.063 | 10.215 | 10.308 | 10.49
average fetch time (msec) 8.248 10.583 | 12.037 | 14.199 | 14.932 | 15.958 | 16.444 | 17.175 17.62 18.017 | 18.261
average disk utilization 0.99 0.99 0.96 0.94 0.95 0.92 0.87 0.81 0.71 0.62 0.51
Reverse Aggressive

fetches 3041 3079 3202 3312 3161 3037 3103 3000 2953 3004 3008
driver time (sec) 1.5205 | 1.5395 1.601 1.656 1.5805 | 1.5185 | 1.5515 1.4765 1.502 1.504
stall time (sec) 14.662 6.217 3.233 1.704 0.879 0.618 0.211 0.151 0.035 0.016 0.008
elapsed time (sec) 24.347 | 15.921 | 12.999 | 11.525 | 10.624 | 10.301 9.927 9.816 9.676 9.683 9.677
average fetch time (msec) 7.932 10.036 | 11.585 | 13.254 14.43 16.016 | 16.269 17.39 18.558 | 18.995 | 18.992
average disk utilization 0.99 0.97 0.95 0.95 0.86 0.79 0.73 0.66 0.57 0.49 0.37
Forestall

fetches 2981 2982 3137 3102 3310 3505 3734 3799 3896 3799 3147
driver time (sec) 1.4905 | 1.491 | 1.5685 | 1.551 1.655 | 1.7525 | 1.867 | 1.8995 | 1.948 | 1.8995 | 1.5735
stall time (sec) 15.245 | 6.329 3.433 2.052 0.579 0.265 0.023 0.013 0.005 0.001 0
elapsed time (sec) 24.9 15.985 | 13.166 | 11.768 | 10.399 | 10.182 | 10.055 | 10.077 | 10.118 | 10.065 | 9.738
average fetch time (msec) | 8.248 | 10.583 | 12.037 | 14.199 | 14.932 | 15.958 | 16.442 | 17.253 | 18.126 | 18.582 | 18.983
average disk utilization 0.99 0.99 0.96 0.94 0.95 0.92 0.87 0.81 0.7 0.58 0.38

Table 14: Performance on the 1d trace.

[Disks 1 2 3 4 5 6]
Fixed Horizon
fetches 3856 3856 3856 3856 3856 3856
driver time (sec) 1.928 1.928 1.928 1.928 1.928 1.928
stall time (sec) 4.723 0.04 0.017 0.017 0.017 0.017
elapsed time (sec) 85.867 | 81.184 | 81.161 | 81.161 | 81.161 | 81.161
average fetch time (msec) | 17.228 | 18.029 | 18.039 | 18.299 | 18.344 | 18.094
average disk utilization 0.77 0.43 0.29 0.22 0.17 0.14
Aggressive
fetches 4698 5836 6225 6156 6047 5919
driver time (sec) 2.349 2.918 3.1125 3.078 3.0235 | 2.9595
stall time (sec) 3.994 0.152 0.258 0 0 0.001
elapsed time (sec) 85.559 | 82.286 | 82.586 | 82.294 | 82.239 | 82.176
average fetch time (msec) | 15.032 | 16.576 | 15.929 | 16.578 | 16.706 | 17.102
average disk utilization 0.83 0.59 0.4 0.31 0.25 0.21
Reverse Aggressive
fetches 3987 3853 3859 3873 3879 3892
driver time (sec) 1.9935 | 1.9265 | 1.9295 | 1.9365 | 1.9395 1.946
stall time (sec) 3.775 0.021 0.019 0.017 0.015 0.013
elapsed time (sec) 84.984 | 81.163 | 81.164 | 81.169 81.17 81.175
average fetch time (msec) | 15.776 | 18.055 | 17.964 | 18.204 | 18.262 | 17.934
average disk utilization 0.74 0.43 0.28 0.22 0.17 0.14
Forestall
fetches 4694 4207 3929 3857 3855 3856
driver time (sec) 2.347 | 2.1035 | 1.9645 | 1.9285 | 1.9275 | 1.928
stall time (sec) 3.994 0.153 0.258 0 0 0.001
elapsed time (sec) 85.557 | 81.472 | 81.438 | 81.144 | 81.143 | 81.145
average fetch time (msec) | 15.034 | 15.022 | 15.525 | 17.291 | 17.45 | 17.692
average disk utilization 0.82 0.39 0.25 0.21 0.17 0.14

Table 15: Performance on the postgres-join trace.

20

Disks 1 2 3 4 | 5 6 7 8 10 12 16
Fixed Horizon
fetches 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 32.37 12.647 5.943 3.154 1.402 0.581 0.476 0.073 0.034 0.018 0.018
elapsed time (sec) 45.39 25.667 | 18.963 | 16.174 | 14.422 | 13.601 | 13.496 | 13.093 | 13.054 | 13.038 | 13.038
average fetch time (msec) | 14.368 | 14.906 | 15.044 15.13 15.347 | 15.413 | 15.437 | 15.411 | 15.278 | 15.356 | 15.071
average disk utilization 0.98 0.9 0.82 0.72 0.66 0.58 0.5 0.45 0.36 0.3 0.22
Aggressive
fetches 3085 3085 3085 3085 3286 3317 3826 3937 3902 3852 3731
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 1.643 1.6585 1.913 1.9685 1.951 1.926 1.8655
stall time (sec) 30.691 | 10.772 3.517 0.844 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 43.711 | 23.792 | 16.537 | 13.864 | 13.121 | 13.137 | 13.391 | 13.455 | 13.434 | 13.405 | 13.343
average fetch time (msec) | 13.985 | 14.173 | 13.95 14.55 | 13.923 | 15.036 | 15.221 | 15.274 | 14.797 14.8 15.155
average disk utilization 0.99 0.92 0.87 0.81 0.7 0.63 0.62 0.56 0.43 0.35 0.26
Reverse Aggressive
fetches 3106 3106 3318 3110 3109 3108 3112 3122 3116 3122 3124
driver time (sec) 1.553 1.553 1.659 1.555 1.5545 1.554 1.556 1.561 1.558 1.561 1.562
stall time (sec) 28.956 8.461 2.66 0.125 0 0.001 0 0 0 0 0.002
elapsed time (sec) 41.987 | 21.492 | 15.797 | 13.158 | 13.032 | 13.033 | 13.034 | 13.039 | 13.036 | 13.039 | 13.042
average fetch time (msec) | 13.248 | 12.704 | 12.127 | 13.581 | 14.394 | 15.051 | 14.803 | 14.049 | 14.618 | 14.024 | 14.143
average disk utilization 0.98 0.92 0.85 0.8 0.69 0.6 0.5 0.42 0.35 0.28 0.21
Forestall
fetches 3085 3085 3085 3085 3085 3305 3797 3795 3399 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.6525 | 1.8985 | 1.8975 | 1.6995 | 1.5425 | 1.5425
stall time (sec) 30.691 | 10.791 3.517 0.844 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 43.711 | 23.811 | 16.537 | 13.864 13.02 13.131 | 13.376 | 13.384 | 13.182 | 13.021 13.02
average fetch time (msec) | 13.985 | 14.154 | 13.933 | 14.524 | 14.392 | 15.056 | 15.242 | 15.249 15.2 15.086 | 15.032
average disk utilization 0.99 0.92 0.87 0.81 0.68 0.63 0.62 0.54 0.39 0.3 0.22
Table 16: Performance on the postgres-select trace.
[Disks | 1 2 3 4

Fixed Horizon

fetches 38000 38000 38000 38000

driver time (sec) 19 19 19 19

stall time (sec) 82.583 12.044 0 0

elapsed time (sec) 201.439 130.9 118.856 | 118.856

average fetch time (msec) 3.748 3.776 3.229 3.214

average disk utilization 0.71 0.55 0.34 0.26

Aggressive

fetches 39240 41902 100994 100548

driver time (sec) 19.62 20.951 50.497 50.274

stall time (sec) 36.37 0.933 0.015 0.015

elapsed time (sec) 155.846 | 121.74 | 150.368 | 150.145

average fetch time (msec) 3.965 5.647 3.37 3.164

average disk utilization 1 0.97 0.75 0.53

Reverse Aggressive

fetches 39265 42000 37907 38148

driver time (sec) 19.6325 21 18.9535 | 19.074

stall time (sec) 41.599 2.765 0.014 0.015

elapsed time (sec) 161.088 | 123.621 | 118.824 | 118.945

average fetch time (msec) 3.928 3.907 3.762 3.958

average disk utilization 0.96 0.66 0.4 0.32

Forestall

fetches 39240 38900 39838 38000

driver time (sec) 19.62 19.45 19.919 19

stall time (sec) 36.37 1.232 0.016 0

elapsed time (sec) 155.846 | 120.538 | 119.791 | 118.856

average fetch time (msec) 3.965 4.895 4.843 3.218

average disk utilization 1 0.79 0.54 0.26

Table 17: Performance on the synth trace.

21

Disks 1 2 3 4 5 6
Fixed Horizon

fetches 5900 5900 5900 5900 5900 5900
driver time (sec) 2.95 2.95 2.95 2.95 2.95 2.95
stall time (sec) 32.582 | 4.964 3.219 1.138 0.474 0.094
elapsed time (sec) 65.611 | 37.993 | 36.248 | 34.167 | 33.503 | 33.123
average fetch time (msec) | 10.74 7.758 | 14.065 | 10.106 | 15.07 | 10.869
average disk utilization 0.97 0.6 0.76 0.44 0.53 0.32
Aggressive

fetches 5925 7778 6563 9831 8312 10215
driver time (sec) 2.9625 3.889 3.2815 | 4.9155 4.156 5.1075
stall time (sec) 30.667 0.337 0.356 0.129 0.133 0.055
elapsed time (sec) 63.708 | 34.305 | 33.716 | 35.123 | 34.368 | 35.241
average fetch time (msec) | 10.711 | 7.496 | 14.101 | 9.801 | 15.454 | 10.711
average disk utilization 1 0.85 0.91 0.69 0.75 0.52
Reverse Aggressive

fetches 5892 5989 5927 6001 5893 6017
driver time (sec) 2.946 | 2.9945 | 2.9635 | 3.0005 | 2.9465 | 3.0085
stall time (sec) 31.155 | 0.275 0.528 0.046 0.017 0.018
elapsed time (sec) 64.18 | 33.348 | 33.57 | 33.125 | 33.042 | 33.105
average fetch time (msec) | 10.79 7.732 | 14.092 | 9.864 | 14.883 | 10.173
average disk utilization 0.99 0.69 0.83 0.45 0.53 0.31
Forestall

fetches 5925 6929 6553 7451 7882 7032
driver time (sec) 2.9625 | 3.4645 | 3.2765 | 3.7255 3.941 3.516
stall time (sec) 30.667 0.337 0.356 0.129 0.133 0.055
elapsed time (sec) 63.708 33.88 33.711 | 33.933 | 34.153 33.65
average fetch time (msec) | 10.711 | 7.559 | 14.082 | 9.945 15.53 10.7
average disk utilization 1 0.77 0.91 0.55 0.72 0.37

Table 18: Performance on the xds trace.

22

B Performance data: FCFS

This section contains the data for the baseline parameters as in the previous section, but with FCFS disk head scheduling
rather than CSCAN.

[Disks [T [2 [3 [4 [5 [6]
Fixed Horizon
fetches 4771 4771 4771 4771 4771 4771
driver time (sec) 2.3855 2.3855 2.3855 2.3855 2.3855 2.3855
stall time (sec) 0.009 0.009 0.009 0.009 0.009 0.009
elapsed time (sec) 105.933 | 105.933 | 105.933 | 105.933 | 105.933 | 105.933
average fetch time (msec) 3.153 3.181 3.218 3.247 3.26 3.314
average disk utilization 0.14 0.072 0.048 0.037 0.029 0.025
Aggressive
fetches 8812 8812 8812 8814 8812 8814
driver time (sec) 4.406 4.406 4.406 4.407 4.406 4.407
stall time (sec) 0 0 0 0 0 0.001
elapsed time (sec) 107.944 | 107.944 | 107.944 | 107.945 | 107.944 | 107.946
average fetch time (msec) 3.148 3.144 3.166 3.169 3.178 3.194
average disk utilization 0.26 0.13 0.086 0.065 0.052 0.043
Reverse Aggressive
fetches 4731 4764 4829 4830 4914 5018
driver time (sec) 2.3655 2.382 2.4145 2.415 2.457 2.509
stall time (sec) 0.023 0.021 0.019 0.017 0.015 0.013
elapsed time (sec) 105.927 | 105.941 | 105.972 105.97 106.01 106.06
average fetch time (msec) 3.311 3.356 3.352 3.431 3.483 3.284
average disk utilization 0.15 0.075 0.051 0.039 0.032 0.026

Table 19: Performance on the dinero trace.

[Disks [T [2 [3 [4 [5 [6 |
Fixed Horizon
fetches 4953 4953 4953 4953 4953 4953
driver time (sec) 2.4765 | 2.4765 | 2.4765 | 2.4765 | 2.4765 | 2.4765
stall time (sec) 3.131 0.013 0.013 0.013 0.013 0.013
elapsed time (sec) 30.542 | 27.424 | 27.424 | 27.424 | 27.424 | 27.424
average fetch time (msec) | 3.533 3.245 3.247 3.277 3.305 3.335
average disk utilization 0.57 0.29 0.2 0.15 0.12 0.1
Aggressive
fetches 6778 8582 8606 8685 8621 8576
driver time (sec) 3.389 4.291 4.303 | 4.3425 | 4.3105 | 4.288
stall time (sec) 0.609 0 0 0 0 0.001
elapsed time (sec) 28.932 | 29.225 | 29.237 | 29.277 | 29.245 | 29.223
average fetch time (msec) | 3.808 3.405 3.373 3.358 3.377 3.341
average disk utilization 0.89 0.5 0.33 0.25 0.2 0.16
Reverse Aggressive
fetches 5349 4995 5024 5093 5132 5135
driver time (sec) 2.6745 | 2.4975 2.512 2.5465 2.566 2.5675
stall time (sec) 1.162 0.021 0.019 0.017 0.015 0.013
elapsed time (sec) 28.771 | 27.453 | 27.465 | 27.498 | 27.515 | 27.515
average fetch time (msec) | 3.656 3.342 3.366 3.4 3.382 3.619
average disk utilization 0.68 0.3 0.21 0.16 0.13 0.11

Table 20: Performance on the cscopel trace.

23

Disks 1 2 3 4 | 5 6 7 8 10 12 16
Fixed Horizon
fetches 5966 5966 5966 5966 5966 5966 5966 5966 5966 5966 5966
driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983
stall time (sec) 35.261 | 24.715 | 15.262 | 7.728 4.287 2.408 1.273 0.741 0.555 0.087 0.03
elapsed time (sec) 75.353 | 64.807 | 55.354 | 47.82 | 44.379 42.5 41.365 | 40.833 | 40.647 | 40.179 | 40.122
average fetch time (msec) 9.887 15.936 | 17.771 | 18.352 | 18.473 18.93 18.913 | 19.165 | 19.128 19.29 19.404
average disk utilization 0.78 0.73 0.64 0.57 0.5 0.44 0.39 0.35 0.28 0.24 0.18
Aggressive
fetches 6196 6324 7302 8450 9933 10777 11475 11707 11529 11102 10662
driver time (sec) 3.098 3.162 3.651 4.225 4.9665 | 5.3885 | 5.7375 | 5.8535 | 5.7645 5.551 5.331
stall time (sec) 17.951 | 8.281 3.024 0 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 58.158 | 48.552 | 43.784 | 41.334 | 42.076 | 42.499 | 42.847 | 42.972 | 42.879 | 42.661 42.44
average fetch time (msec) | 9.358 14.89 | 16.761 | 17.499 | 17.804 | 17.917 | 17.767 | 17.571 | 17.348 | 17.734 | 18.257
average disk utilization 1 0.97 0.93 0.89 0.84 0.76 0.68 0.6 0.47 0.38 0.29
Reverse Aggressive
fetches 6359 7320 6837 6290 6124 6071 6085 6115 6131 6177 6237
driver time (sec) 3.1795 3.66 3.4185 3.145 3.062 3.0355 | 3.0425 | 3.0575 | 3.0655 | 3.0885 | 3.1185
stall time (sec) 19.611 | 12.595 3.118 0 0.017 0.013 0.011 0.009 0.005 0.016 0.008
elapsed time (sec) 59.9 53.364 | 43.646 | 40.254 | 40.188 | 40.158 | 40.163 | 40.176 40.18 40.214 | 40.236
average fetch time (msec) 8.869 13.946 | 16.125 | 17.786 | 18.115 | 18.048 | 18.615 | 18.678 | 19.186 | 19.328 | 19.283
average disk utilization 0.94 0.96 0.84 0.69 0.55 0.45 0.4 0.36 0.29 0.25 0.19
Table 21: Performance on the cscope2 trace.
Disks 1 2 3 4 [5 6 7 8 10 12 16
Fixed Horizon
fetches 11739 11739 11739 11739 11739 11739 11739 11739 11739 11739 11739
driver time (sec) 5.8695 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695
stall time (sec) 31.757 13.743 6.463 2.014 0.749 0.233 0.2 0.014 0.095 0.014 0.014
elapsed time (sec) 111.727 | 93.713 | 86.433 | 81.984 | 80.719 | 80.203 | 80.17 | 79.984 | 80.065 | 79.984 | 79.984
average fetch time (msec) 8.184 12.268 | 15.013 | 16.108 | 17.015 | 17.456 | 17.891 | 18.277 | 18.654 18.88 19.1
average disk utilization 0.86 0.77 0.68 0.58 0.49 0.43 0.37 0.34 0.27 0.23 0.18
Aggressive
fetches 11974 12937 | 15104 | 16457 | 17588 | 18048 17824 | 17547 | 16917 | 16542 16254
driver time (sec) 5.987 6.4685 7.552 8.2285 8.794 9.024 8.912 8.7735 | 8.4585 8.271 8.127
stall time (sec) 18.727 4.342 1.132 0.107 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 98.815 84.911 | 82.785 | 82.436 | 82.895 | 83.126 | 83.013 | 82.883 | 82.564 | 82.373 | 82.228
average fetch time (msec) 8.219 12.54 15.309 | 16.142 | 16.775 | 16.717 | 16.777 | 16.966 | 17.597 17.96 18.603
average disk utilization 1 0.96 0.93 0.81 0.71 0.6 0.51 0.45 0.36 0.3 0.23
Reverse Aggressive
fetches 12228 12814 12501 12033 11880 11837 11852 11883 11919 11954 12004
driver time (sec) 6.114 6.407 | 6.2505 | 6.0165 5.94 5.9185 | 5.926 | 5.9415 | 5.9595 | 5.977 6.002
stall time (sec) 27.37 6.138 1.178 0.195 0.005 0.013 0.011 0.009 0.005 0.016 0.008
elapsed time (sec) 107.585 | 86.646 | 81.529 | 80.312 | 80.046 | 80.032 | 80.038 | 80.051 | 80.065 | 80.094 | 80.111
average fetch time (msec) 8.408 12.53 | 15.639 | 16.608 | 16.992 | 17.386 | 17.832 | 18.199 | 18.542 | 18.83 | 19.076
average disk utilization 0.96 0.93 0.8 0.62 0.5 0.43 0.38 0.34 0.28 0.23 0.18

Table 22: Performance on the cscope3 trace.

24

Disks 1 2 3 4 5 6 7 8 10 12 16
Fixed Horizon
fetches 6493 6493 6493 6493 6493 6493 6493 6493 6493 6493 6493
driver time (sec) 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465
stall time (sec) 69.337 | 31.846 | 19.994 | 12.419 | 8.631 6.095 4.014 3.171 1.547 0.745 0.388
elapsed time (sec) 111.3 73.809 | 61.957 | 54.382 | 50.594 | 48.058 | 45.977 | 45.134 | 43.51 | 42.708 | 42.351
average fetch time (msec) | 14.011 15.68 16.63 | 17.531 | 18.305 | 18.515 | 18.611 | 18.648 | 18.529 | 18.586 | 18.675
average disk utilization 0.82 0.69 0.58 0.52 0.47 0.42 0.38 0.34 0.28 0.24 0.18
Aggressive
fetches 6690 6786 7277 7400 8361 9196 10233 10959 11953 11500 11253
driver time (sec) 3.345 3.393 3.6385 3.7 4.1805 4.598 5.1165 | 5.4795 | 5.9765 5.75 5.6265
stall time (sec) 59.899 23.204 | 10.316 3.068 1.321 0.252 0 0.009 0.005 0.001 0
elapsed time (sec) 101.96 65.313 | 52.671 | 45.484 | 44.218 | 43.566 | 43.833 | 44.205 | 44.698 | 44.467 | 44.343
average fetch time (msec) 13.814 15.675 | 16.321 | 17.255 | 17.756 | 17.404 | 17.228 17.12 16.022 | 16.038 | 16.341
average disk utilization 0.91 0.81 0.75 0.7 0.67 0.61 0.57 0.53 0.43 0.35 0.26
Reverse Aggressive
fetches 6712 7179 7630 8141 7619 6803 6656 6709 6750 6822 6978
driver time (sec) 3.356 3.5895 | 3.815 | 4.0705 | 3.8095 | 3.4015 | 3.328 | 3.3545 | 3.375 3.411 3.489
stall time (sec) 59.04 22.734 | 8.948 1.776 1.094 0 0.011 0.009 0.005 0.006 0
elapsed time (sec) 101.112 65.04 51.479 | 44.563 43.62 42.118 | 42.055 42.08 42.096 | 42.133 | 42.205
average fetch time (msec) 14.018 15.73 16.272 | 16.806 | 18.093 | 18.293 18.44 18.529 | 18.633 | 18.563 | 18.547
average disk utilization 0.93 0.87 0.8 0.77 0.63 0.49 0.42 0.37 0.3 0.25 0.19
Table 23: Performance on the glimpse trace.
Disks 1 2 3 4 5 6 7 8 10 12 16
Fixed Horizon
fetches 2904 2904 2904 2904 2904 2904 2904 2904 2904 2904 2904
driver time (sec) 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452
stall time (sec) 16.029 | 7.491 4.39 2.843 1.865 1.291 0.913 0.839 0.431 0.218 0.176
elapsed time (sec) 25.646 | 17.108 | 14.007 12.46 11.482 | 10.908 10.53 10.456 | 10.048 9.835 9.793
average fetch time (msec) 8.63 11.143 | 13.432 | 15.137 | 16.323 | 17.033 | 17.311 | 17.876 | 18.615 | 18.958 19.23
average disk utilization 0.98 0.95 0.93 0.88 0.83 0.76 0.68 0.62 0.54 0.47 0.36
Aggressive
fetches 2943 2979 3000 3052 3228 3459 3712 3809 4061 4285 4608
driver time (sec) 1.4715 | 1.4895 1.5 1.526 1.614 1.7295 1.856 1.9045 | 2.0305 | 2.1425 2.304
stall time (sec) 15.651 | 7.305 3.955 2.126 0.983 0.509 0.017 0.009 0.005 0.001 0
elapsed time (sec) 25.287 | 16.959 | 13.62 | 11.817 | 10.762 | 10.403 | 10.038 | 10.078 10.2 10.308 | 10.469
average fetch time (msec) | 8.575 11.002 | 13.144 | 14.781 | 15.716 | 16.17 | 16.718 | 16.973 | 17.723 | 18.074 | 18.23
average disk utilization 1 0.97 0.97 0.95 0.94 0.9 0.88 0.8 0.71 0.63 0.5
Reverse Aggressive
fetches 3041 3079 3202 3312 3161 3037 3103 3000 2953 3004 3008
driver time (sec) 1.5205 | 1.5395 1.601 1.656 1.5805 | 1.5185 | 1.5515 1.5 1.4765 1.502 1.504
stall time (sec) 15.977 7.36 4.121 2.409 1.197 0.82 0.412 0.2 0.035 0.016 0.008
elapsed time (sec) 25.662 | 17.064 | 13.887 12.23 10.942 | 10.503 | 10.128 9.865 9.676 9.683 9.677
average fetch time (msec) 8.425 10.763 | 12.743 | 14.394 | 15.897 | 16.876 | 17.324 | 17.799 | 18.616 | 19.074 | 19.137
average disk utilization 1 0.97 0.98 0.97 0.92 0.81 0.76 0.68 0.57 0.49 0.37

Table 24: Performance on the Id trace.

25

[Disks 1 2 3 4 5 6]

Fixed Horizon

fetches 3856 3856 3856 3856 3856 3856

driver time (sec) 1.928 1.928 1.928 1.928 1.928 1.928

stall time (sec) 8.916 0.017 0.017 0.017 0.017 0.017

elapsed time (sec) 90.06 | 81.161 | 81.161 | 81.161 | 81.161 | 81.161

average fetch time (msec) | 18.516 | 18.188 | 18.122 | 18.342 | 18.369 | 18.109

average disk utilization 0.79 0.43 0.29 0.22 0.17 0.14

Aggressive

fetches 4138 5704 6188 6156 5978 5949

driver time (sec) 2.069 2.852 3.094 3.078 2.989 2.9745

stall time (sec) 8.546 0 0 0 0 0.001

elapsed time (sec) 89.831 | 82.068 | 82.31 | 82.294 | 82.205 | 82.191

average fetch time (msec) | 18.584 | 17.688 | 16.933 | 17.105 | 17.293 | 17.357

average disk utilization 0.86 0.61 0.42 0.32 0.25 0.21

Reverse Aggressive

fetches 3987 3853 3859 3873 3879 3892

driver time (sec) 1.9935 | 1.9265 | 1.9295 | 1.9365 | 1.9395 1.946

stall time (sec) 8.427 0.021 0.019 0.017 0.015 0.013

elapsed time (sec) 89.636 | 81.163 | 81.164 | 81.169 81.17 81.175

average fetch time (msec) | 1851 | 18.173 | 18.06 | 18.344 | 18.335 | 18.037

average disk utilization 0.82 0.43 0.29 0.22 0.18 0.14

Table 25: Performance on the postgres-join trace.
Disks [1 T 2] | | | | | | 10 12 16
Fixed Horizon
fetches 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 39.131 | 13.893 6.434 3.239 1.313 0.489 0.186 0.018 0.028 0.018 0.018
elapsed time (sec) 52.151 | 26.913 | 19.454 | 16.259 | 14.333 | 13.509 | 13.206 | 13.038 | 13.048 | 13.038 | 13.038
average fetch time (msec) | 16.703 | 16.165 | 16.017 | 15.85 | 15.708 | 15.656 | 15.632 | 15.526 | 15.495 | 15.414 | 15.117
average disk utilization 0.99 0.93 0.85 0.75 0.68 0.6 0.52 0.46 0.37 0.3 0.22
Aggressive
fetches 3085 3085 3085 3085 3085 3234 3707 3891 3926 3882 3731
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 1.617 1.8535 | 1.9455 1.963 1.941 1.8655
stall time (sec) 39.072 | 13.453 4.9 1.342 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 52.092 | 26.473 17.92 14.362 13.02 13.096 | 13.331 | 13.432 | 13.446 13.42 13.343
average fetch time (msec) | 16.703 | 16.214 16.06 15.91 15.742 | 15.512 | 15.774 | 15.251 | 14.928 | 14.962 | 15.202
average disk utilization 0.99 0.94 0.92 0.85 0.75 0.64 0.63 0.55 0.44 0.36 0.27
Reverse Aggressive
fetches 3106 3106 3318 3110 3109 3108 3112 3122 3116 3122 3124
driver time (sec) 1.553 1.553 1.659 1.555 | 1.5545 | 1.554 1.556 1.561 1.558 1.561 1.562
stall time (sec) 39.031 | 13.202 | 5.806 1.008 0 0.001 0 0 0 0 0.002
elapsed time (sec) 52.062 | 26.233 | 18.943 | 14.041 | 13.032 | 13.033 | 13.034 | 13.039 | 13.036 | 13.039 | 13.042
average fetch time (msec) | 16.628 | 16.156 | 16.057 | 15.859 | 15.694 | 15.667 | 15.619 | 15.497 | 15.469 | 15.426 | 15.262
average disk utilization 0.99 0.96 0.94 0.88 0.75 0.62 0.53 0.46 0.37 0.31 0.23
Table 26: Performance on the postgres-select trace.

26

Disks 1 2 3 4

Fixed Horizon

fetches 38000 38000 38000 38000

driver time (sec) 19 19 19 19

stall time (sec) 82.583 12.044 0 0

elapsed time (sec) 201.439 130.9 118.856 | 118.856

average fetch time (msec) 3.748 3.776 3.229 3.214

average disk utilization 0.71 0.55 0.34 0.26

Aggressive

fetches 39240 41902 100994 100548

driver time (sec) 19.62 20.951 50.497 50.274

stall time (sec) 36.37 0.933 0.015 0.015

elapsed time (sec) 155.846 | 121.74 | 150.368 | 150.145

average fetch time (msec) 3.965 5.647 3.37 3.164

average disk utilization 1 0.97 0.75 0.53

Reverse Aggressive

fetches 39265 42000 37907 38148

driver time (sec) 19.6325 21 18.9535 | 19.074

stall time (sec) 41.599 2.765 0.014 0.015

elapsed time (sec) 161.088 | 123.621 | 118.824 | 118.945

average fetch time (msec) 3.928 3.907 3.762 3.958

average disk utilization 0.96 0.66 0.4 0.32

Table 27: Performance on the synth trace.

Disks [1] 2 3 4 5 [6
Fixed Horizon
fetches 5883 5883 5883 5883 5883 5883
driver time (sec) 2.9415 | 2.9415 | 2.9415 | 2.9415 | 2.9415 | 2.9415
stall time (sec) 34.937 | 8.068 4.974 2.068 1.005 0.242
elapsed time (sec) 68.644 | 41.775 | 38.681 | 35.775 | 34.712 | 33.949
average fetch time (msec) | 10.86 7.769 | 14.127 | 10.142 | 14.97 | 10.835
average disk utilization 0.93 0.55 0.72 0.42 0.51 0.31
Aggressive
fetches 5925 7662 6439 9847 8206 10114
driver time (sec) 2.9625 3.831 3.2195 | 4.9235 4.103 5.057
stall time (sec) 31.431 | 0.012 0 0 0 0
elapsed time (sec) 64.472 | 33.922 | 33.298 | 35.002 | 34.182 | 35.136
average fetch time (msec) | 10.846 7.59 14.215 | 9.807 | 15.443 | 10.636
average disk utilization 1 0.86 0.92 0.69 0.74 0.51
Reverse Aggressive
fetches 5910 5997 5945 6007 5904 6024
driver time (sec) 2.955 2.9985 | 2.9725 | 3.0035 2.952 3.012
stall time (sec) 31.298 0.043 0.334 0.01 0.012 0.011
elapsed time (sec) 65.018 | 33.807 | 34.072 | 33.779 | 33.729 | 33.788
average fetch time (msec) | 10.913 | 7.729 | 14.213 | 9.877 | 15.115 | 10.124
average disk utilization 0.99 0.69 0.83 0.44 0.53 0.3

Table 28: Performance on the xds trace.

27

C Performance data: double-speed CPU

This section contains the data for the xds trace, with the processor speed doubled.

[Disks 1 2 3 [4 5 6 7 8 10 12 16
Fixed Horizon
fetches 5900 5900 5900 5900 5900 5900 5883 5883 5883 5883 5883
driver time (sec) 1.475 1.475 1.475 1.475 1.475 1.475 1.47075 | 1.47075 | 1.47075 | 1.47075 | 1.47075
stall time (sec) 47.186 | 16.135 13.901 7.272 6.058 2.778 5.577 5.343 3.038 3.306 2.317
elapsed time (sec) 63.698 32.647 30.413 23.784 22.57 19.29 22.422 22.188 19.883 20.151 19.162
average fetch time (msec) | 10.714 7.735 14.014 10.122 15.41 10.959 15.97 12.872 12.847 14.048 13.583
average disk utilization 0.99 0.7 0.91 0.63 0.81 0.56 0.6 0.43 0.38 0.34 0.26
Aggressive
fetches 5890 6272 5965 6471 5963 7602 6567 8701 10278 10607 10948
driver time (sec) 1.4725 1.568 1.49125 | 1.61775 | 1.49075 1.9005 1.64175 | 2.17525 2.5695 2.65175 2.737
stall time (sec) 46.755 | 10.572 11.808 2.384 2.776 0.048 0.097 0.045 0.046 0.036 0.026
elapsed time (sec) 63.264 | 27.177 28.336 19.038 19.303 16.985 17.113 17.595 17.99 18.062 18.137
average fetch time (msec) | 10.737 7.664 14.121 10.064 15.496 10.871 16.398 12.921 12.7 13.709 12.392
average disk utilization 1 0.88 0.99 0.86 0.96 0.81 0.9 0.8 0.73 0.67 0.47
Reverse Aggressive
fetches 5892 6095 5939 6182 6001 6017 5970 6042 6055 6090 6164
driver time (sec) 1.473 1.52375 | 1.48475 1.5455 1.50025 | 1.50425 1.4925 1.5105 1.51375 1.5225 1.541
stall time (sec) 47.078 8.592 11.946 1.135 2.836 0.055 0.304 0.045 0.046 0.036 0.034
elapsed time (sec) 63.588 25.152 28.467 17.717 19.373 16.596 17.171 16.93 16.934 16.933 16.949
average fetch time (msec) | 10.787 7.734 14.132 10.228 15.506 10.787 16.032 12.257 11.954 12.902 12.794
average disk utilization 1 0.94 0.98 0.89 0.96 0.65 0.8 0.55 0.43 0.39 0.29

Table 29: Performance on the xds trace.

28

D Performance data: varying cache size

This section contains the data for several traces with cache sizes of 5MB (640 blocks) and 15 MB (1920 blocks).

| Disks | 1 [2 | 3 | 4 1 5 1 6]
Fixed Horizon
fetches 7804 7804 7804 7804 7804 7804
driver time (sec) 3.902 3.902 3.902 3.902 3.902 3.902
stall time (sec) 80.295 38.262 | 24.527 | 16.624 | 12.193 9.234
elapsed time (sec) 122.913 80.88 67.145 | 59.242 | 54.811 | 51.852
average fetch time (msec) 13.65 15.451 | 16.454 | 17.39 | 18.142 | 18.402
average disk utilization 0.87 0.75 0.64 0.57 0.52 0.46
Aggressive
fetches 8133 8407 9377 8777 9847 10220
driver time (sec) 4.0665 | 4.2035 | 4.6885 | 4.3885 | 4.9235 5.11
stall time (sec) 73.144 | 27.576 | 12.83 4.352 0.873 0.007
elapsed time (sec) 115.927 | 70.496 | 56.235 | 47.457 | 44.513 | 43.833
average fetch time (msec) 13.02 14.281 | 14.479 | 16.104 | 15.938 | 16.928
average disk utilization 0.91 0.85 0.8 0.74 0.71 0.66
Reverse Aggressive
fetches 8280 9007 9967 9318 9802 8251
driver time (sec) 4.14 4.5035 | 4.9835 4.659 4.901 4.1255
stall time (sec) 69.892 24.098 7.214 1.796 0.064 0
elapsed time (sec) 112.748 | 67.318 | 50.914 | 45.171 | 43.681 | 42.842
average fetch time (msec) | 12.649 | 13.017 | 13.017 | 13.804 | 14.166 | 17.142
average disk utilization 0.93 0.87 0.85 0.71 0.64 0.55

Table 30: Performance on the glimpse trace, cache size 640.

| Disks | I] 2 3 4 5 6
Fixed Horizon
fetches 5853 5853 5853 5853 5853 5853
driver time (sec) 2.9265 | 2.9265 | 2.9265 | 2.9265 | 2.9265 | 2.9265
stall time (sec) 58.697 | 27.363 18.29 12.82 9.592 7.442
elapsed time (sec) 100.34 | 69.006 | 59.933 | 54.463 | 51.235 | 49.085
average fetch time (msec) | 13.302 | 14.879 | 16.005 | 17.096 | 17.981 | 18.251
average disk utilization 0.78 0.63 0.52 0.46 0.41 0.36
Aggressive
fetches 6041 6121 6647 7044 8048 8390
driver time (sec) 3.0205 | 3.0605 | 3.3235 | 3.522 4.024 4.195
stall time (sec) 46.429 | 13.448 4.781 2.51 0.829 0.029
elapsed time (sec) 88.166 | 55.225 | 46.821 | 44.748 | 43.569 42.94
average fetch time (msec) | 12.832 | 14.085 | 14.453 | 16.047 | 16.247 | 17.082
average disk utilization 0.88 0.78 0.68 0.63 0.6 0.56
Reverse Aggressive
fetches 5998 6072 6542 6377 6441 6035
driver time (sec) 2.999 3.036 3.271 3.1885 | 3.2205 | 3.0175
stall time (sec) 42.301 | 11.025 | 3.324 0.964 0 0
elapsed time (sec) 84.016 | 52.777 | 45.311 | 42.869 | 41.937 | 41.734
average fetch time (msec) | 12.749 | 13.675 | 13.685 | 14.398 | 14.649 | 17.02
average disk utilization 0.91 0.79 0.66 0.54 0.45 0.41

Table 31: Performance on the glimpse trace, cache size 1920.

29

| Disks 1 2 3 4 5 6
Fixed Horizon
fetches 4640 4640 4640 4640 4640 4640
driver time (sec) 2.32 2.32 2.32 2.32 2.32 2.32
stall time (sec) 4.96 0.04 0.017 0.017 0.017 0.017
elapsed time (sec) 86.496 | 81.576 | 81.553 | 81.553 | 81.553 | 81.553
average fetch time (msec) | 17.211 | 18.089 | 18.152 | 18.378 | 18.463 | 18.217
average disk utilization 0.92 0.51 0.34 0.26 0.21 0.17
Aggressive
fetches 5378 7310 8013 8043 7758 7561
driver time (sec) 2.689 3.655 4.0065 | 4.0215 3.879 3.7805
stall time (sec) 3.994 0.152 0.258 0 0 0.001
elapsed time (sec) 85.899 | 83.023 | 83.48 | 83.237 | 83.095 | 82.997
average fetch time (msec) | 15.152 | 17.332 | 16.677 | 16.709 | 16.899 | 16.909
average disk utilization 0.95 0.76 0.53 0.4 0.32 0.26
Reverse Aggressive
fetches 4912 4615 4631 4657 4676 4691
driver time (sec) 2.456 2.3075 | 2.3155 | 2.3285 2.338 2.3455
stall time (sec) 3.655 0.021 0.019 0.017 0.015 0.013
elapsed time (sec) 85.327 | 81.544 81.55 81.561 | 81.569 | 81.574
average fetch time (msec) | 16.064 | 18.147 | 18.068 | 18.361 | 18.282 | 18.026
average disk utilization 0.92 0.51 0.34 0.26 0.21 0.17

Table 32: Performance on the postgres-join trace, cache size 640.

| Disks 1 2 3 4 5 6
Fixed Horizon
fetches 3793 3793 3793 3793 3793 3793
driver time (sec) 1.8965 | 1.8965 | 1.8965 | 1.8965 | 1.8965 | 1.8965
stall time (sec) 4.723 0.041 0.018 0.018 0.018 0.018
elapsed time (sec) 85.835 | 81.153 | 81.13 81.13 81.13 81.13
average fetch time (msec) | 17.261 | 18.038 | 18.066 | 18.353 | 18.357 | 18.126
average disk utilization 0.76 0.42 0.28 0.21 0.17 0.14
Aggressive
fetches 3943 4797 4976 4943 4863 4856
driver time (sec) 1.9715 | 2.3985 2.488 2.4715 | 2.4315 2.428
stall time (sec) 3.995 0.153 0.258 0 0 0.001
elapsed time (sec) 85.182 | 81.767 | 81.962 | 81.687 | 81.647 | 81.645
average fetch time (msec) | 14.781 | 16.013 | 15.626 | 16.613 | 16.646 | 17.033
average disk utilization 0.68 0.47 0.32 0.25 0.2 0.17
Reverse Aggressive
fetches 3801 3795 3801 3801 3801 3801
driver time (sec) 1.9005 | 1.8975 | 1.9005 | 1.9005 | 1.9005 | 1.9005
stall time (sec) 3.775 0.009 0.001 0 0 0.001
elapsed time (sec) 84.891 | 81.122 | 81.117 | 81.116 | 81.116 | 81.117
average fetch time (msec) | 14.786 | 17.122 | 17.184 | 17.237 | 17.173 | 17.464
average disk utilization 0.66 0.4 0.27 0.2 0.16 0.14

Table 33: Performance on the postgres-join trace, cache size 1920.

30

Disks 1 2 3 4 5 6
Fixed Horizon
fetches 3155 3155 3155 3155 3155 3155
driver time (sec) 1.5775 | 1.5775 | 1.5775 | 1.5775 | 1.5775 | 1.5775
stall time (sec) 32.755 | 12.841 6.049 3.226 1.402 0.581
elapsed time (sec) 45.81 | 25.896 | 19.104 | 16.281 | 14.457 | 13.636
average fetch time (msec) | 14.222 | 14.786 | 14.943 | 15.012 | 15.279 | 15.323
average disk utilization 0.98 0.9 0.82 0.73 0.67 0.59
Aggressive
fetches 3249 3299 3394 3317 3965 4099
driver time (sec) 1.6245 | 1.6495 1.697 1.6585 | 1.9825 | 2.0495
stall time (sec) 32.613 | 11.717 4.384 1.007 0 0.001
elapsed time (sec) 45.715 | 24.844 | 17.559 | 14.143 | 13.46 | 13.528
average fetch time (msec) | 13.938 | 14.118 | 13.944 | 14.557 | 13.923 | 15.171
average disk utilization 0.99 0.94 0.9 0.85 0.82 0.77
Reverse Aggressive
fetches 3274 3354 3290 3341 3191 3170
driver time (sec) 1.637 1.677 1.645 1.6705 | 1.5955 1.585
stall time (sec) 31.026 | 10.967 4.271 0.353 0.005 0.013
elapsed time (sec) 44.141 | 24.122 | 17.394 | 13.501 | 13.078 | 13.076
average fetch time (msec) | 13.282 | 13.614 | 14.029 | 13.744 | 15.048 | 15.574
average disk utilization 0.99 0.95 0.88 0.85 0.73 0.63
Table 34: Performance on the postgres-select trace, cache size 640.
Disks 1 2 3 4 5 6
Fixed Horizon
fetches 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 32.37 12.647 5.943 3.154 1.402 0.581
elapsed time (sec) 45.39 | 25.667 | 18.963 | 16.174 | 14.422 | 13.601
average fetch time (msec) | 14.368 | 14.906 | 15.044 | 15.13 | 15.347 | 15.413
average disk utilization 0.98 0.9 0.82 0.72 0.66 0.58
Aggressive
fetches 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 30.691 | 10.772 3.517 0.844 0 0.001
elapsed time (sec) 43.711 | 23.792 | 16.537 | 13.864 13.02 13.021
average fetch time (msec) | 13.985 | 14.173 | 13.95 14.55 | 14.446 | 15.175
average disk utilization 0.99 0.92 0.87 0.81 0.68 0.6
Reverse Aggressive
fetches 3106 3106 3122 3110 3109 3108
driver time (sec) 1.553 1.553 1.561 1.555 | 1.5545 | 1.554
stall time (sec) 28.956 8.461 2.656 0.125 0 0.001
elapsed time (sec) 41.987 | 21.492 | 15.695 | 13.158 | 13.032 | 13.033
average fetch time (msec) | 13.248 | 12.668 | 12.072 | 13.581 | 14.419 | 15.115
average disk utilization 0.98 0.92 0.8 0.8 0.69 0.6

Table 35: Performance on the postgres-select trace, cache size 1920.

31

| Disks 1 2 3 4 5 6
Fixed Horizon
fetches 6726 6726 6726 6726 6726 6726
driver time (sec) 3.363 3.363 3.363 3.363 3.363 3.363
stall time (sec) 38.883 | 6.666 4.75 1.751 0.653 0.128
elapsed time (sec) 72.325 | 40.108 | 38.192 | 35.193 | 34.095 | 33.57
average fetch time (msec) | 10.533 | 7.597 | 14.077 | 9.972 | 15.262 | 10.713
average disk utilization 0.98 0.64 0.83 0.48 0.6 0.36
Aggressive
fetches 6866 8769 7501 10876 8913 11309
driver time (sec) 3.433 4.3845 | 3.7505 5.438 4.4565 | 5.6545
stall time (sec) 38.711 | 1.996 1.719 0.129 0.134 0.055
elapsed time (sec) 72.223 | 36.459 | 35.548 | 35.646 | 34.669 | 35.788
average fetch time (msec) | 10.484 | 7.313 | 13.856 | 9.646 | 15.229 | 10.67
average disk utilization 1 0.88 0.97 0.74 0.78 0.56
Reverse Aggressive
fetches 6718 6983 6813 7070 6712 7040
driver time (sec) 3.359 3.4915 | 3.4065 3.535 3.356 3.52
stall time (sec) 37.569 0.371 1.292 0.096 0.016 0.023
elapsed time (sec) 71.007 | 33.941 | 34.777 | 33.71 | 33.451 | 33.622
average fetch time (msec) | 10.527 7.58 14.184 | 9.639 14.91 | 10.011
average disk utilization 1 0.78 0.93 0.51 0.6 0.35

Table 36: Performance on the xds trace, cache size 640.

| Disks 1 2 3 4 5 6
Fixed Horizon
fetches 5392 5392 5392 5392 5392 5392
driver time (sec) 2.696 2.696 2.696 2.696 2.696 2.696
stall time (sec) 29.047 4.104 2.404 0.892 0.304 0.094
elapsed time (sec) 61.822 | 36.879 | 35.179 | 33.667 | 33.079 | 32.869
average fetch time (msec) | 10.857 | 7.848 | 13.977 | 10.251 | 14.806 | 10.846
average disk utilization 0.95 0.57 0.71 0.41 0.48 0.3
Aggressive
fetches 5392 7067 5894 8817 7483 9174
driver time (sec) 2.696 3.5335 2.947 4.4085 | 3.7415 4.587
stall time (sec) 26.626 0.337 0.355 0.129 0.134 0.055
elapsed time (sec) 59.401 | 33.949 | 33.381 | 34.616 | 33.954 | 34.721
average fetch time (msec) | 10.841 | 7.613 | 14.085 | 10.061 | 15.434 | 10.683
average disk utilization 0.98 0.79 0.83 0.64 0.68 0.47
Reverse Aggressive
fetches 5415 5531 5415 5530 5396 5538
driver time (sec) 2.7075 | 2.7655 | 2.7075 | 2.765 2.698 2.769
stall time (sec) 26.357 | 0.107 0.206 0.02 0.016 0.017
elapsed time (sec) 59.143 | 32.951 | 32.992 | 32.864 | 32.793 | 32.865
average fetch time (msec) | 10.828 | 7.809 | 14.095 | 9.927 | 14.775 | 10.376
average disk utilization 0.99 0.66 0.77 0.42 0.49 0.29

Table 37: Performance on the xds trace, cache size 1920.

32

E Performance data: varying aggressive’s batch size

This section contains the performance data for aggressive with varying batch size.

[Disks [1 [2 [3 [4 5 6
Batch size 4
fetches 8812 8813 8812 8812 8812 8813
driver time (sec) 4.406 4.4065 4.406 4.406 4.406 4.4065
stall time (sec) 0.023 0.021 0.019 0.017 0.015 0.013
elapsed time (sec) 107.967 | 107.966 | 107.963 | 107.961 | 107.959 | 107.958
average fetch time (msec) 3.118 3.134 3.151 3.167 3.18 3.193
average disk utilization 0.25 0.13 0.086 0.065 0.052 0.043
Batch size 8
fetches 8812 8812 8812 8813 8817 8816
driver time (sec) 4.406 4.406 4.406 4.4065 4.4085 4.408
stall time (sec) 0.021 0.017 0.013 0.009 0.005 0.001
elapsed time (sec) 107.965 | 107.961 | 107.957 | 107.954 | 107.952 | 107.947
average fetch time (msec) 3.118 3.135 3.155 3.174 3.182 3.203
average disk utilization 0.25 0.13 0.086 0.065 0.052 0.044
Batch size 16
fetches 8812 8812 8812 8815 8812 8838
driver time (sec) 4.406 4.406 4.406 4.4075 4.406 4.419
stall time (sec) 0.017 0.009 0.001 0 0 0
elapsed time (sec) 107.961 | 107.953 | 107.945 | 107.946 | 107.944 | 107.957
average fetch time (msec) 3.131 3.14 3.162 3.176 3.188 3.206
average disk utilization 0.26 0.13 0.086 0.065 0.052 0.044
Batch size 40
fetches 8812 8812 8823 8852 8869 8826
driver time (sec) 4.406 4.406 4.4115 4.426 4.4345 4.413
stall time (sec) 0.015 0 0 0 0 0
elapsed time (sec) 107.959 | 107.944 107.95 107.964 | 107.973 | 107.951
average fetch time (msec) 3.141 3.146 3.174 3.198 3.217 3.229
average disk utilization 0.26 0.13 0.086 0.066 0.053 0.044
Batch size 80
fetches 8812 8813 8812 8853 8883 8812
driver time (sec) 4.406 4.4065 4.406 4.4265 4.4415 4.406
stall time (sec) 0.145 0 0.015 0 0 0
elapsed time (sec) 108.089 | 107.945 | 107.959 | 107.965 107.98 107.944
average fetch time (msec) 3.141 3.148 3.185 3.206 3.221 3.23
average disk utilization 0.26 0.13 0.087 0.066 0.053 0.044
Batch size 160
fetches 8812 8814 8840 8812 8812 8812
driver time (sec) 4.406 4.407 4.42 4.406 4.406 4.406
stall time (sec) 0.405 0 0.195 0.055 0 0
elapsed time (sec) 108.349 | 107.945 | 108.153 | 107.999 | 107.944 | 107.944
average fetch time (msec) 3.15 3.163 3.19 3.206 3.215 3.231
average disk utilization 0.26 0.13 0.087 0.065 0.052 0.044

Table 38: Aggressive performance as a function of batch size on the dinero trace.

33

[Disks T [2 [3 [4 [5 [6 |

Batch size 4

fetches 5325 8555 8599 8661 8621 8583
driver time (sec) 2.6625 | 4.2775 | 4.2995 | 4.3305 | 4.3105 | 4.2915
stall time (sec) 4.161 0.021 0.019 0.017 0.015 0.013
elapsed time (sec) 31.758 | 29.233 | 29.253 | 29.282 29.26 29.239
average fetch time (msec) 5.28 3.349 3.374 3.383 3.366 3.376
average disk utilization 0.89 0.49 0.33 0.25 0.2 0.17
Batch size 8

fetches 5802 8584 8624 8650 8635 8576
driver time (sec) 2.901 4.292 4.312 4.325 4.3175 4.288
stall time (sec) 1.812 0.017 0.013 0.009 0.005 0.001
elapsed time (sec) 29.647 | 29.243 | 29.259 | 29.268 | 29.257 | 29.223
average fetch time (msec) | 4.513 3.373 3.379 3.367 3.37 3.356
average disk utilization 0.88 0.5 0.33 0.25 0.2 0.16
Batch size 16

fetches 6300 8585 8647 8678 8621 8572
driver time (sec) 3.15 4.2925 | 4.3235 4.339 4.3105 4.286
stall time (sec) 0.881 0.009 0.001 0 0 0
elapsed time (sec) 28.965 | 29.236 | 29.259 | 29.273 | 29.245 | 29.22
average fetch time (msec) | 3.991 3.416 3.41 3.365 3.39 3.38
average disk utilization 0.87 0.5 0.34 0.25 0.2 0.17
Batch size 40

fetches 6616 8570 8672 8662 8705 8574
driver time (sec) 3.308 4.285 4.336 4.331 4.3525 4.287
stall time (sec) 0.665 0 0 0 0 0
elapsed time (sec) 28.907 | 29.219 29.27 29.265 | 29.287 | 29.221
average fetch time (msec) | 3.796 3.361 3.429 3.381 3.421 3.389
average disk utilization 0.87 0.49 0.34 0.25 0.2 0.17
Batch size 80

fetches 6931 8570 8677 8747 8713 8572
driver time (sec) 3.4655 4.285 4.3385 | 4.3735 | 4.3565 4.286
stall time (sec) 0.911 0 0.007 0 0 0
elapsed time (sec) 29.311 | 29.219 | 29.28 | 29.308 | 29.291 | 29.22
average fetch time (msec) | 3.758 3.374 3.465 3.423 3.424 3.404
average disk utilization 0.89 0.49 0.34 0.26 0.2 0.17
Batch size 160

fetches 7360 8699 8662 8678 8621 8572
driver time (sec) 3.68 4.3495 4.331 4.339 4.3105 4.286
stall time (sec) 1.83 0.192 0.187 0 0 0
elapsed time (sec) 30.444 | 29.476 | 29.452 | 29.273 | 29.245 | 29.22
average fetch time (msec) | 3.757 3.436 3.417 3.413 3.412 3.407
average disk utilization 0.91 0.51 0.33 0.25 0.2 0.17

Table 39: Aggressive performance as a function of batch size on the cscopel trace.

34

Disks 1 2 3 4 [5 6 7 8 0 [12 | 16
Batch size 4

fetches 5982 6098 7029 8240 9574 10678 11406 11717 11619 11102 10662
driver time (sec) 2.991 3.049 3.5145 4.12 4.787 5.339 5.703 5.8585 | 5.8095 5.551 5.331
stall time (sec) 24.775 9.407 3.736 0.807 0.015 0.013 0.011 0.009 0.005 0.001 0
elapsed time (sec) 64.875 | 49.565 44.36 42.036 | 41.911 | 42.461 | 42.823 | 42.977 | 42.924 | 42.661 42.44
average fetch time (msec) 10.407 | 15.336 16.97 17.65 17.787 | 17.891 17.752 17.551 17.224 17.65 18.201
average disk utilization 0.96 0.94 0.9 0.86 0.81 0.75 0.68 0.6 0.47 0.38 0.29
Batch size 8

fetches 6009 6194 7277 8541 9952 11014 11587 11758 11565 11134 10662
driver time (sec) 3.0045 3.097 | 3.6385 | 4.2705 | 4.976 5.507 | 5.7935 5.879 5.7825 5.567 5.331
stall time (sec) 23.367 | 8.442 3.15 0.299 0.005 0.001 0 0 0 0 0
elapsed time (sec) 63.481 | 48.648 | 43.898 | 41.679 42.09 42.617 | 42.903 | 42.988 | 42.892 | 42.676 42.44
average fetch time (msec) 10.298 14.97 16.392 17.193 | 17.527 | 17.683 | 17.722 17.532 17.195 | 17.534 | 18.135
average disk utilization 0.97 0.95 0.91 0.88 0.83 0.76 0.68 0.6 0.46 0.38 0.28
Batch size 16

fetches 6044 6321 7583 8956 10299 11364 11617 11758 11565 11134 10662
driver time (sec) 3.022 3.1605 | 3.7915 4.478 5.1495 5.682 5.8085 5.879 5.7825 5.567 5.331
stall time (sec) 20.041 6.887 2.507 0 0 0 0 0 0 0 0
elapsed time (sec) 60.172 | 47.157 | 43.408 | 41.587 | 42.259 | 42.791 | 42.918 | 42.988 | 42.892 | 42.676 42.44
average fetch time (msec) | 9.793 | 14.201 | 15.654 | 16.514 | 17.138 | 17.426 | 17.444 | 17.343 | 17.098 | 17.498 | 18.085
average disk utilization 0.98 0.95 0.91 0.89 0.84 0.77 0.67 0.59 0.46 0.38 0.28
Batch size 40

fetches 6171 6592 8208 9684 10892 11553 11728 11884 11654 11164 10662
driver time (sec) 3.0855 3.296 4.104 4.842 5.446 5.7765 5.864 5.942 5.827 5.582 5.331
stall time (sec) 16.349 5.597 1.798 0.156 0.044 0.115 0.06 0.046 0 0 0
elapsed time (sec) 56.544 | 46.002 | 43.011 | 42.107 | 42.599 | 43.001 | 43.033 | 43.097 | 42.936 | 42.691 42.44
average fetch time (msec) 9.099 13.256 14.354 15.55 16.49 17.067 | 17.266 17.228 16.938 | 17.369 | 17.931
average disk utilization 0.99 0.95 0.91 0.89 0.84 0.76 0.67 0.59 0.46 0.38 0.28
Batch size 80

fetches 6318 7022 8799 10463 11331 11655 11753 11897 11807 11291 10662
driver time (sec) 3.159 3.511 4.3995 | 5.2315 | 5.6655 | 5.8275 | 5.8765 | 5.9485 | 5.9035 | 5.6455 5.331
stall time (sec) 15.858 | 4.803 1.017 0.48 0.285 0.4 0.197 0.183 0.091 0.115 0
elapsed time (sec) 56.126 | 45.423 | 42.526 | 42.821 43.06 43.337 | 43.183 | 43.241 | 43.104 42.87 42.44
average fetch time (msec) 8.773 12.278 | 13.331 | 14.736 | 16.237 | 16.979 | 17.106 | 17.009 | 16.756 | 17.182 | 17.717
average disk utilization 0.99 0.95 0.92 0.9 0.85 0.76 0.67 0.58 0.46 0.38 0.28
Batch size 160

fetches 6771 7778 9478 10967 11325 11942 11859 12039 11619 11130 10604
driver time (sec) 3.3855 3.889 4.739 5.4835 | 5.6625 5.971 5.9295 | 6.0195 | 5.8095 5.565 5.302
stall time (sec) 17.081 5.856 1.078 1.119 1.029 0.956 0.832 0.882 0.559 0.197 0.016
elapsed time (sec) 57.576 | 46.854 | 42.926 | 43.712 | 43.801 | 44.036 | 43.871 | 44.011 | 43.478 | 42.871 | 42.427
average fetch time (msec) 8.443 11.569 | 12.688 | 14.445 | 16.183 | 16.833 | 17.135 | 17.078 | 16.679 | 17.019 | 17.744
average disk utilization 0.99 0.96 0.93 0.91 0.84 0.76 0.66 0.58 0.45 0.37 0.28

Table 40: Aggressive performance as a function of batch size on the cscope2 trace.

35

Disks 1 2 3 4 [5 6 7 8 10 [12 | 16
Batch size 4

fetches 11763 12349 14291 16061 17462 18026 17821 17577 16917 16542 16314
driver time (sec) 5.8815 6.1745 | 7.1455 | 8.0305 8.731 9.013 8.9105 | 8.7885 | 8.4585 8.271 8.157
stall time (sec) 28.053 6.26 1.518 0.363 0.015 0.013 0.011 0.009 0.005 0.001 0
elapsed time (sec) 108.035 | 86.535 | 82.764 | 82.494 | 82.847 | 83.127 | 83.022 | 82.898 | 82.564 | 82.373 | 82.258
average fetch time (msec) 8.624 12.843 | 15.411 | 16.314 | 16.698 | 16.667 | 16.725 | 16.905 | 17.605 | 17.966 18.49
average disk utilization 0.94 0.92 0.89 0.79 0.7 0.6 0.51 0.45 0.36 0.3 0.23
Batch size 8

fetches 11779 12627 | 14881 16441 17635 18081 17894 17565 16902 16546 16284
driver time (sec) 5.8895 | 6.3135 | 7.4405 | 8.2205 | 8.8175 | 9.0405 | 8.947 | 8.7825 | 8.451 8.273 8.142
stall time (sec) 25.287 5.205 1.323 0.069 0.005 0.001 0 0 0 0 0
elapsed time (sec) 105.277 | 85.619 | 82.864 | 82.39 | 82.923 | 83.142 | 83.048 | 82.883 | 82.552 | 82.374 | 82.243
average fetch time (msec) 8.623 12.65 15.121 | 16.158 | 16.662 | 16.568 | 16.711 16.84 17.523 | 17.942 | 18.445
average disk utilization 0.96 0.93 0.91 0.81 0.71 0.6 0.51 0.45 0.36 0.3 0.23
Batch size 16

fetches 11811 13043 15366 16740 17713 18175 17924 17607 16902 16598 16314
driver time (sec) 5.9055 6.5215 7.683 8.37 8.8565 | 9.0875 8.962 8.8035 8.451 8.299 8.157
stall time (sec) 21.462 3.911 1.079 0.052 0 0.036 0 0 0 0.033 0
elapsed time (sec) 101.468 | 84.533 | 82.863 | 82.523 | 82.957 | 83.224 | 83.063 | 82.904 | 82.552 | 82.433 | 82.258
average fetch time (msec) 8.416 12.214 | 14.719 15.92 16.553 | 16.541 | 16.552 | 16.811 | 17.462 | 17.882 | 18.404
average disk utilization 0.98 0.94 0.91 0.81 0.71 0.6 0.51 0.45 0.36 0.3 0.23
Batch size 40

fetches 11925 13572 15938 17104 17842 18158 17924 17748 16981 16646 16344
driver time (sec) 5.9625 6.786 7.969 8.552 8.921 9.079 8.962 8.874 8.4905 8.323 8.172
stall time (sec) 15.648 2.862 0.64 0.274 0.264 0.249 0 0.06 0.179 0.204 0
elapsed time (sec) 95.711 83.749 82.71 82.927 | 83.286 | 83.429 | 83.063 | 83.035 82.77 82.628 | 82.273
average fetch time (msec) 7.949 11.597 | 14.215 | 15.737 16.3 16.35 16.496 | 16.651 | 17.391 | 17.777 | 18.264
average disk utilization 0.99 0.94 0.91 0.81 0.7 0.59 0.51 0.44 0.36 0.3 0.23
Batch size 80

fetches 12092 14105 16543 17257 | 17919 18357 18137 17819 16963 16766 16275
driver time (sec) 6.046 7.0525 | 8.2715 | 8.6285 | 8.9595 | 9.1785 | 9.0685 | 8.9095 | 8.4815 | 8.383 | 8.1375
stall time (sec) 13.943 2.195 0.715 0.584 0.704 0.489 0.219 0.368 0.494 0.338 0.093
elapsed time (sec) 94.09 83.348 | 83.087 | 83.313 | 83.764 | 83.768 | 83.388 | 83.378 | 83.076 | 82.822 | 82.331
average fetch time (msec) 7.741 11.093 | 13.798 | 15.546 | 16.225 | 16.284 | 16.339 | 16.549 | 17.325 | 17.639 | 18.155
average disk utilization 0.99 0.94 0.92 0.81 0.69 0.59 0.51 0.44 0.35 0.3 0.22
Batch size 160

fetches 12512 14919 16966 17314 18012 18450 18245 17733 16924 16468 16249
driver time (sec) 6.256 7.4595 8.483 8.657 9.006 9.225 9.1225 | 8.8665 8.462 8.234 8.1245
stall time (sec) 15.216 2.542 1.455 1.297 1.523 0.981 0.913 0.947 0.801 0.373 0.031
elapsed time (sec) 95.573 | 84.102 | 84.039 | 84.055 | 84.63 | 84.307 | 84.136 | 83.914 | 83.364 | 82.708 | 82.256
average fetch time (msec) 7.512 10.643 | 13.615 | 15.645 | 16.247 | 16.196 | 16.337 | 16.62 | 17.185 17.6 18.164
average disk utilization 0.98 0.94 0.92 0.81 0.69 0.59 0.51 0.44 0.35 0.29 0.22

Table 41: Aggressive performance as a function of batch size on the cscope3 trace.

36

Disks 1 2 3 4 [5 6 7 8 10 [12 | 16
Batch size 4

fetches 6520 6597 6803 7178 7957 8946 10017 10992 12009 11530 11315
driver time (sec) 3.26 3.2985 | 3.4015 3.589 3.9785 4.473 5.0085 5.496 6.0045 5.765 5.6575
stall time (sec) 62.407 24.43 10.612 3.948 2.034 0.371 0.011 0.009 0.005 0.001 0
elapsed time (sec) 104.383 | 66.445 52.73 46.253 | 44.729 43.56 43.736 | 44.221 | 44.726 | 44.482 | 44.374
average fetch time (msec) 13.918 15.694 | 16.698 | 17.342 | 17.959 | 17.334 | 17.074 | 16.896 | 16.137 | 15.917 | 16.198
average disk utilization 0.87 0.78 0.72 0.67 0.64 0.59 0.56 0.52 0.43 0.34 0.26
Batch size 8

fetches 6532 6636 6883 7349 8475 9376 10423 11296 12085 11709 11457
driver time (sec) 3.266 3.318 3.4415 | 3.6745 | 4.2375 4.688 5.2115 5.648 6.0425 | 5.8545 | 5.7285
stall time (sec) 60.737 22.944 9.255 3.264 1.495 0.035 0 0 0 0 0
elapsed time (sec) 102.719 | 64.978 | 51.413 | 45.655 | 44.449 | 43.439 | 43.928 | 44.364 | 44.759 | 44.571 | 44.445
average fetch time (msec) 13.732 15.366 | 16.344 | 16.857 16.92 16.836 16.79 16.886 15.76 15.862 | 16.169
average disk utilization 0.87 0.78 0.73 0.68 0.65 0.61 0.57 0.54 0.43 0.35 0.26
Batch size 16

fetches 6553 6631 6959 7551 8908 9975 10860 11795 12487 11980 11499
driver time (sec) 3.2765 3.3155 | 3.4795 | 3.7755 4.454 4.9875 5.43 5.8975 | 6.2435 5.99 5.7495
stall time (sec) 59.057 20.883 7.529 2.495 0.826 0 0 0 0 0 0
elapsed time (sec) 101.05 62.915 | 49.725 | 44.987 | 43.996 | 43.704 | 44.146 | 44.614 44.96 44.706 | 44.466
average fetch time (msec) 13.523 15.002 | 15.658 | 16.247 | 15.973 | 16.255 | 16.513 | 16.529 | 15.635 | 15.695 | 16.172
average disk utilization 0.88 0.79 0.73 0.68 0.65 0.62 0.58 0.55 0.43 0.35 0.26
Batch size 40

fetches 6601 6888 7287 8524 9998 10670 11662 12237 12721 12148 11517
driver time (sec) 3.3005 3.444 3.6435 4.262 4.999 5.335 5.831 6.1185 | 6.3605 6.074 5.7585
stall time (sec) 56.841 18.58 6.384 1.608 0 0 0 0 0 0 0
elapsed time (sec) 98.858 60.74 48.744 | 44.586 | 43.715 | 44.051 | 44.547 | 44.835 | 45.077 44.79 44.475
average fetch time (msec) 13.225 14.259 | 14.645 | 14.741 | 14.873 | 15.694 | 16.011 15.98 15.585 | 15.677 | 15.951
average disk utilization 0.88 0.81 0.73 0.7 0.68 0.63 0.6 0.55 0.44 0.35 0.26
Batch size 80

fetches 6690 7128 7930 9430 11022 11778 12142 12540 12643 12026 11487
driver time (sec) 3.345 3.564 3.965 4.715 5.511 5.889 6.071 6.27 6.3215 6.013 5.7435
stall time (sec) 54.58 16.457 5.461 0.836 0 0.021 0 0.001 0 0 0
elapsed time (sec) 96.641 58.737 | 48.142 | 44.267 | 44.227 | 44.626 | 44.787 | 44.987 | 45.038 | 44.729 44.46
average fetch time (msec) 12.889 13.571 | 13.547 | 13.629 | 14.129 | 15.243 | 15.763 | 15.963 | 15.638 | 15.547 15.83
average disk utilization 0.89 0.82 0.74 0.73 0.7 0.67 0.61 0.56 0.44 0.35 0.26
Batch size 160

fetches 7007 7690 9473 10657 11387 11825 12417 12521 12885 12062 11487
driver time (sec) 3.5035 3.845 4.7365 | 5.3285 | 5.6935 | 5.9125 | 6.2085 | 6.2605 | 6.4425 6.031 5.7435
stall time (sec) 51.598 17.187 5.473 1.041 0.7 0.575 0.27 0.37 0 0 0
elapsed time (sec) 93.818 59.748 | 48.926 | 45.086 45.11 45.204 | 45.195 | 45.347 | 45.159 | 44.747 44.46
average fetch time (msec) 12.508 12.9 12.754 | 13.102 | 14.031 | 15.132 | 15.654 | 15.918 | 15.514 | 15.515 | 15.792
average disk utilization 0.93 0.83 0.82 0.77 0.71 0.66 0.61 0.55 0.44 0.35 0.26

Table 42: Aggressive performance as a function of batch size on the glimpse trace.

37

Disks 1 2 3 4 [5 6 7 8 10 [12 | 16 |
Batch size 4

fetches 2885 2909 2916 2952 3048 3332 3586 3779 4091 4285 4651
driver time (sec) 1.4425 1.4545 1.458 1.476 1.524 1.666 1.793 1.8895 | 2.0455 | 2.1425 | 2.3255
stall time (sec) 16.476 8.221 5.117 2.955 1.414 0.737 0.174 0.009 0.005 0.001 0
elapsed time (sec) 26.083 17.84 14.74 12.596 | 11.103 | 10.568 | 10.132 10.063 10.215 | 10.308 10.49
average fetch time (msec) 8.679 11.449 13.866 15.474 16.32 16.472 17.13 17.175 17.62 18.017 | 18.261
average disk utilization 0.96 0.93 0.91 0.91 0.9 0.87 0.87 0.81 0.71 0.62 0.51
Batch size 8

fetches 2892 2918 2942 3021 3192 3505 3734 3951 4183 4410 4687
driver time (sec) 1.446 1.459 1.471 1.5105 1.596 1.7525 1.867 1.9755 | 2.0915 2.205 2.3435
stall time (sec) 17.041 8.126 4.675 2.65 1.241 0.265 0.023 0.012 0 0 0
elapsed time (sec) 26.652 17.75 14.311 12.325 | 11.002 10.182 10.055 10.152 10.256 10.37 10.508
average fetch time (msec) 8.981 11.609 13.686 14.984 | 15.797 | 15.958 | 16.444 | 16.804 | 17.436 | 17.624 | 18.105
average disk utilization 0.97 0.95 0.94 0.92 0.92 0.92 0.87 0.82 0.71 0.62 0.5
Batch size 16

fetches 2896 2942 2982 3102 3310 3626 3856 4107 4329 4559 4748
driver time (sec) 1.448 1.471 1.491 1.551 1.655 1.813 1.928 2.0535 | 2.1645 | 2.2795 2.374
stall time (sec) 16.552 7.34 3.845 2.052 0.579 0.287 0 0 0 0 0
elapsed time (sec) 26.165 | 16.976 | 13.501 | 11.768 | 10.399 | 10.265 | 10.093 | 10.218 | 10.329 | 10.444 | 10.539
average fetch time (msec) 8.919 11.194 12.99 14.199 | 14.932 15.516 | 15.914 | 16.277 | 17.002 | 17.214 | 17.786
average disk utilization 0.99 0.97 0.96 0.94 0.95 0.91 0.87 0.82 0.71 0.63 0.5
Batch size 40

fetches 2934 2982 3137 3297 3560 3893 4105 4338 4610 4776 4741
driver time (sec) 1.467 1.491 1.5685 1.6485 1.78 1.9465 | 2.0525 2.169 2.305 2.388 2.3705
stall time (sec) 15.58 6.329 3.433 1.594 0.368 0.22 0.077 0.013 0 0 0
elapsed time (sec) 25.212 15.985 13.166 11.407 | 10.313 | 10.331 10.294 | 10.347 10.47 10.553 | 10.535
average fetch time (msec) 8.523 10.583 12.037 | 13.131 13.917 | 14.641 15.208 15.687 | 16.162 | 16.703 17.38
average disk utilization 0.99 0.99 0.96 0.95 0.96 0.92 0.87 0.82 0.71 0.63 0.49
Batch size 80

fetches 2981 3142 3257 3571 3909 4326 4496 4692 4941 4862 4695
driver time (sec) 1.4905 1.571 1.6285 1.7855 | 1.9545 2.163 2.248 2.346 2.4705 2.431 2.3475
stall time (sec) 15.245 6.26 3.176 1.554 0.798 0.392 0.244 0.332 0.05 0.083 0
elapsed time (sec) 24.9 15.996 | 12.969 | 11.504 | 10.917 10.72 10.657 | 10.843 | 10.685 | 10.679 | 10.512
average fetch time (msec) 8.248 9.932 11.459 12.33 13.341 13.85 14.594 | 15.099 15.92 16.378 | 16.986
average disk utilization 0.99 0.98 0.96 0.96 0.96 0.93 0.88 0.82 0.74 0.62 0.47
Batch size 160

fetches 3134 3356 3823 4207 4560 4644 4914 4721 4788 4688 4630
driver time (sec) 1.567 1.678 1.9115 | 2.1035 2.28 2.322 2.457 2.3605 2.394 2.344 2.315
stall time (sec) 15.141 6.183 3.941 2.35 1.72 1.466 0.879 0.953 0.441 0.386 0
elapsed time (sec) 24.873 | 16.026 14.017 | 12.618 | 12.165 11.953 | 11.501 11.478 11 10.895 10.48
average fetch time (msec) | 7.856 9.362 10.522 | 11.344 | 12.389 | 13.653 | 14.519 | 15.356 | 15.746 | 16.049 | 17.023
average disk utilization 0.99 0.98 0.96 0.95 0.93 0.88 0.89 0.79 0.69 0.58 0.47

Table 43: Aggressive performance as a function of batch size on the 1d trace.

38

[Disks T [2 [3 [4 [5 [6 |

Batch size 4

fetches 3925 5451 6044 6062 5978 5925
driver time (sec) 1.9625 | 2.7255 3.022 3.031 2.989 2.9625
stall time (sec) 11.351 0.021 0.019 0.017 0.015 0.013
elapsed time (sec) 92.529 | 81.962 | 82.257 | 82.264 82.22 82.191
average fetch time (msec) | 18.345 | 17.669 | 16.975 | 17.051 | 17.256 | 17.288
average disk utilization 0.78 0.59 0.42 0.31 0.25 0.21
Batch size 8

fetches 4051 5642 6116 6078 5998 5919
driver time (sec) 2.0255 | 2.821 3.058 3.039 2.999 | 2.9595
stall time (sec) 9.318 0.017 0.013 0.009 0.005 0.001
elapsed time (sec) 90.559 | 82.054 | 82.287 | 82.264 | 82.22 | 82.176
average fetch time (msec) | 17.772 | 17.483 | 16.701 | 16.848 | 17.034 | 17.102
average disk utilization 0.79 0.6 0.41 0.31 0.25 0.21
Batch size 16

fetches 4233 5718 6170 6156 6047 5951
driver time (sec) 2.1165 2.859 3.085 3.078 3.0235 | 2.9755
stall time (sec) 7.437 0.009 0.001 0 0 0
elapsed time (sec) 88.769 | 82.084 | 82.302 | 82.294 | 82.239 | 82.191
average fetch time (msec) | 16.928 | 17.15 | 16.438 | 16.578 | 16.706 | 16.837
average disk utilization 0.81 0.6 0.41 0.31 0.25 0.2
Batch size 40

fetches 4510 5836 6225 6239 6137 5954
driver time (sec) 2.255 2.918 3.1125 | 3.1195 | 3.0685 2.977
stall time (sec) 4.611 0.152 0.258 0.258 0 0.207
elapsed time (sec) 86.082 | 82.286 | 82.586 | 82.593 | 82.284 82.4
average fetch time (msec) | 15.643 | 16.576 | 15.929 | 16.083 16.36 16.349
average disk utilization 0.82 0.59 0.4 0.3 0.24 0.2
Batch size 80

fetches 4698 5900 6307 6279 6140 5992
driver time (sec) 2.349 2.95 3.1535 | 3.1395 3.07 2.996
stall time (sec) 3.994 0.712 0.758 0.673 0.129 0.487
elapsed time (sec) 85.559 | 82.878 | 83.127 | 83.028 | 82.415 | 82.699
average fetch time (msec) | 15.032 | 16.431 | 15.682 | 15.941 | 16.042 | 16.047
average disk utilization 0.83 0.58 0.4 0.3 0.24 0.19
Batch size 160

fetches 4890 5940 6387 6270 6090 6176
driver time (sec) 2.445 2.97 3.1935 3.135 3.045 3.088
stall time (sec) 3.774 1.591 1.522 1.232 0.424 0.922
elapsed time (sec) 85.435 | 83.777 | 83.931 | 83.583 | 82.685 | 83.226
average fetch time (msec) | 14.506 | 16.232 | 15.549 | 15.557 | 15.763 | 15.713
average disk utilization 0.83 0.58 0.39 0.29 0.23 0.19

Table 44: Aggressive performance as a function of batch size on the postgres-join trace.

39

Disks [1 2 3 4 [5 6 7 8 10 [12 | 16 |
Batch size 4

fetches 3085 3085 3085 3085 3085 3220 3633 3937 3902 3852 3731
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 1.61 1.8165 | 1.9685 1.951 1.926 1.8655
stall time (sec) 39.507 13.89 5.578 1.786 0.177 0.013 0.011 0.009 0.005 0.001 0
elapsed time (sec) 52.527 26.91 18.598 | 14.806 | 13.197 | 13.101 | 13.305 | 13.455 | 13.434 | 13.405 | 13.343
average fetch time (msec) | 16.582 | 16.121 | 15.884 | 15.833 | 15.544 | 15.172 | 15.412 | 15.274 | 14.797 14.8 15.155
average disk utilization 0.97 0.92 0.88 0.82 0.73 0.62 0.6 0.56 0.43 0.35 0.26
Batch size 8

fetches 3085 3085 3085 3085 3085 3317 3826 4068 3975 3854 3731
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.6585 1.913 2.034 1.9875 1.927 1.8655
stall time (sec) 37.572 | 13.285 | 4.968 1.198 0.005 0.001 0 0 0 0 0
elapsed time (sec) 50.592 | 26.305 | 17.988 | 14.218 | 13.025 | 13.137 | 13.391 | 13.512 | 13.465 | 13.405 | 13.343
average fetch time (msec) | 15.972 | 15.679 15.45 15.156 | 15.113 | 15.036 | 15.221 | 14.961 | 14.501 | 14.653 | 14.895
average disk utilization 0.97 0.92 0.88 0.82 0.72 0.63 0.62 0.56 0.43 0.35 0.26
Batch size 16

fetches 3085 3085 3085 3085 3286 3563 3989 4158 3975 3854 3731
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 1.643 1.7815 | 1.9945 2.079 1.9875 1.927 1.8655
stall time (sec) 35.953 | 12.022 | 4.149 0.844 0 0 0 0 0 0 0
elapsed time (sec) 48.973 | 25.042 | 17.169 | 13.864 | 13.121 | 13.259 | 13.472 | 13.557 | 13.465 | 13.405 | 13.343
average fetch time (msec) | 15.468 | 15.047 | 14.865 14.55 13.923 | 14.605 | 14.883 14.47 14.155 14.44 14.675
average disk utilization 0.97 0.93 0.89 0.81 0.7 0.65 0.63 0.55 0.42 0.35 0.26
Batch size 40

fetches 3085 3085 3085 3085 3498 3947 4207 4218 4059 3933 3741
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 1.749 1.9735 | 2.1035 2.109 2.0295 | 1.9665 | 1.8705
stall time (sec) 33.015 | 10.772 3.517 0.11 0.008 0.133 0.185 0.13 0 0.038 0
elapsed time (sec) 46.035 | 23.792 | 16.537 13.13 13.235 | 13.584 | 13.766 | 13.717 | 13.507 | 13.482 | 13.348
average fetch time (msec) | 14.695 | 14.173 13.95 13.619 | 13.303 | 14.127 | 14.887 | 14.086 | 13.765 | 13.766 13.85
average disk utilization 0.98 0.92 0.87 0.8 0.7 0.68 0.65 0.54 0.41 0.33 0.24
Batch size 80

fetches 3085 3085 3085 3222 3873 4118 4331 4157 4061 4100 3741
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.611 | 1.9365 | 2.059 | 2.1655 | 2.0785 | 2.0305 2.05 1.8705
stall time (sec) 30.691 | 9.611 2.918 0.584 0.358 0.568 0.57 0.439 0 0.147 0
elapsed time (sec) 43.711 | 22.631 | 15.938 | 13.673 | 13.772 | 14.105 | 14.213 | 13.995 | 13.508 | 13.675 | 13.348
average fetch time (msec) | 13.985 | 13.567 | 13.137 | 12.899 | 13.015 | 14.239 | 14.299 | 13.683 | 13.409 | 13.434 | 13.109
average disk utilization 0.99 0.92 0.85 0.76 0.73 0.69 0.62 0.51 0.4 0.34 0.23
Batch size 160

fetches 3085 3085 3388 3762 4126 4355 4340 4237 3933 3820 3681
driver time (sec) 1.5425 | 1.5425 1.694 1.881 2.063 2.1775 2.17 2.1185 | 1.9665 1.91 1.8405
stall time (sec) 28.957 8.422 3.301 1.369 0.888 1.044 0.968 0.831 0.048 0.182 0
elapsed time (sec) 41.977 | 21.442 | 16.473 | 14.728 | 14.429 | 14.699 | 14.616 | 14.427 | 13.492 13.57 13.318
average fetch time (msec) | 13.296 | 12.704 | 12.173 | 12.398 | 12.972 | 13.751 | 13.798 | 12.985 | 12.565 | 12.885 | 12.883
average disk utilization 0.98 0.91 0.83 0.79 0.74 0.68 0.59 0.48 0.37 0.3 0.22

Table 45

: Aggressive performance as a function of batch size on the postgres-select trace.

40

Disks 1 2 3 4 5 6
Batch size 4

fetches 5858 6939 6023 9564 8040 10098
driver time (sec) 2.929 3.4695 | 3.0115 4.782 4.02 5.049
stall time (sec) 32.888 0.162 1.06 0.02 0.018 0.015
elapsed time (sec) 65.896 33.71 34.15 34.881 | 34.117 | 35.143
average fetch time (msec) | 10.977 | 7.635 | 14.623 9.75 15.515 | 10.778
average disk utilization 0.98 0.79 0.86 0.67 0.73 0.52
Batch size 8

fetches 5862 7200 6202 9827 8068 10215
driver time (sec) 2.931 3.6 3.101 | 4.9135 | 4.034 | 5.1075
stall time (sec) 32.197 | 0.077 0.59 0.071 0.065 0.055
elapsed time (sec) 65.207 | 33.756 | 33.77 | 35.063 | 34.178 | 35.241
average fetch time (msec) | 10.914 | 7.583 | 14.355 | 9.788 15.45 | 10.711
average disk utilization 0.98 0.81 0.88 0.69 0.73 0.52
Batch size 16

fetches 5868 7522 6306 9831 8312 10124
driver time (sec) 2.934 3.761 3.153 4.9155 4.156 5.062
stall time (sec) 31.504 | 0.192 0.205 0.129 0.133 0.076
elapsed time (sec) 64.517 | 34.032 | 33.437 | 35.123 | 34.368 | 35.217
average fetch time (msec) | 10.854 | 7.564 | 14.151 | 9.801 | 15.454 10.6
average disk utilization 0.99 0.84 0.89 0.69 0.75 0.51
Batch size 40

fetches 5890 7778 6563 9929 8418 10353
driver time (sec) 2.945 3.889 3.2815 | 4.9645 4.209 5.1765
stall time (sec) 30.61 0.337 0.356 0.232 0.312 0.18
elapsed time (sec) 63.634 | 34.305 | 33.716 | 35.275 34.6 35.435
average fetch time (msec) | 10.745 | 7.496 | 14.101 9.92 15.441 | 10.63
average disk utilization 0.99 0.85 0.91 0.7 0.75 0.52
Batch size 80

fetches 5925 8126 6838 10150 8789 10461
driver time (sec) 2.9625 | 4.063 3.419 5.075 | 4.3945 | 5.2305
stall time (sec) 30.667 | 0.507 0.613 0.399 0.582 0.525
elapsed time (sec) 63.708 | 34.649 | 34.111 | 35.553 | 35.055 | 35.834
average fetch time (msec) | 10.711 | 7.386 | 14.051 | 9.957 | 15.258 | 10.584
average disk utilization 1 0.87 0.94 0.71 0.77 0.51
Batch size 160

fetches 6005 8198 7519 10300 8601 10488
driver time (sec) 3.0025 4.099 3.7595 5.15 4.3005 5.244
stall time (sec) 31.271 0.951 1.998 1.331 1.608 0.978
elapsed time (sec) 64.352 | 35.129 | 35.836 | 36.56 | 35.987 | 36.301
average fetch time (msec) | 10.707 | 7.447 | 13.692 | 9.715 | 15.213 | 10.363
average disk utilization 1 0.87 0.96 0.68 0.73 0.5

Table 46: Aggressive performance as a function of batch size on the xds trace.

41

F Performance data: varying reverse aggressive’s parameters

This section contains the performance data for reverse aggressive with varying batch sizes and fetch time estimates. For
brevity, only the elapsed times are shown.

[Disks [1 [2 [3 T 4 1 5 [6]
Fetch time 4
Batch size 4 105.932 [106.013 | 106.992 | 107.961 | 107.959 | 107.957
Batch size 8 105.946 [106.013 | 106.991 [107.953 | 107.949 | 107.945

Batch size 16 105.976 | 106.093 | 106.988 | 107.944 | 107.944 | 107.944
Batch size 40 106.03 106.348 | 107.021 | 107.944 | 107.944 | 107.944
Batch size 80 106.283 | 106.798 | 107.468 | 107.944 | 107.944 | 107.947
Batch size 160 | 106.825 | 107.719 | 108.033 | 108.044 | 107.944 | 107.954

Fetch time 8
Batch size 4 105.931 105.949 105.979 106.013 106.502 106.99
Batch size 8 105.944 105.981 106.023 106.119 106.502 106.99
Batch size 16 105.972 106.094 106.13 106.335 106.512 107.004
Batch size 40 106.01 106.332 106.476 106.891 107.282 107.542
Batch size 80 106.22 106.716 107.104 107.805 107.944 107.944
Batch size 160 106.708 107.425 108.11 108.148 107.944 107.954

Fetch time 16
Batch size 4 105.929 | 105.946 | 105.978 | 105.986 | 106.047 106.06
Batch size 8 105.945 | 105.977 | 106.028 106.09 106.146 | 106.191
Batch size 16 105.976 | 106.093 | 106.156 | 106.233 | 106.344 | 106.459
Batch size 40 105.975 106.32 106.478 | 106.743 | 107.241 | 107.499
Batch size 80 106.181 106.716 107.227 107.685 107.939 107.944
Batch size 160 106.684 107.425 108.149 108.059 107.944 108.014

Fetch time 32
Batch size 4 105.927 | 105.945 | 105.978 | 105.981 | 106.047 | 106.069
Batch size 8 105.942 | 105.977 | 106.064 | 106.091 | 106.134 | 106.163
Batch size 16 105.974 | 106.093 | 106.161 | 106.253 | 106.329 | 106.402
Batch size 40 105.982 | 106.288 | 106.508 | 106.783 | 107.107 | 107.454
Batch size 80 106.15 106.716 | 107.371 | 107.659 | 107.935 | 107.948
Batch size 160 106.612 | 107.398 | 108.159 | 108.074 | 107.944 | 108.014

Fetch time 64
Batch size 4 105.927 | 105.941 | 105.972 | 105.978 | 106.047 | 106.063
Batch size 8 105.941 105.977 106.025 106.106 106.139 106.171
Batch size 16 105.969 106.089 106.17 106.203 106.302 106.369
Batch size 40 105.987 106.304 106.464 106.749 107.011 107.513
Batch size 80 106.15 106.716 107.268 107.594 107.907 107.944
Batch size 160 106.628 107.407 108.153 108.163 107.944 107.944

Fetch time 128
Batch size 4 105.927 | 105.941 | 105.972 105.97 106.01 106.063
Batch size 8 105.941 | 105.969 | 106.017 106.09 106.135 | 106.171
Batch size 16 105.969 | 106.089 106.17 106.336 | 106.314 | 106.419
Batch size 40 105.987 | 106.312 | 106.539 | 106.689 | 106.994 | 107.484
Batch size 80 106.15 106.716 107.27 107.603 | 107.932 | 107.952
Batch size 160 106.66 107.425 | 108.154 | 108.164 | 107.944 | 107.984

Table 47: Reverse aggressive elapsed time as a function of fetch time estimate and batch size on the dinero trace.

42

| Disks | 1 [2 | 3 [4] 5 [6]
Fetch time 4
Batch size 4 29.884 | 27.485 | 28.328 | 29.219 | 29.217 | 29.215
Batch size 8 29.509 | 27.529 | 28.328 | 29.211 | 29.207 | 29.203
Batch size 16 29.42 | 27.589 | 28.327 | 29.202 | 29.202 | 29.202
Batch size 40 29.339 | 27.807 | 28.351 | 29.202 | 29.202 | 29.202
Batch size 80 29.098 | 28.238 | 28.778 | 29.202 | 29.202 | 29.202
Batch size 160 | 29.894 | 29.255 | 29.404 | 29.348 | 29.202 | 29.202

Fetch time 8
Batch size 4 30.199 27.47 27.489 | 27.526 | 27.854 | 28.326
Batch size 8 30.072 | 27.486 | 27.532 | 27.593 | 27.851 | 28.326
Batch size 16 29.987 | 27.536 | 27.619 | 27.757 | 27.872 | 28.349
Batch size 40 29.479 | 27.678 | 27.927 | 28.231 | 28.528 | 28.937
Batch size 80 28.921 28.015 28.522 29.065 29.195 29.202
Batch size 160 29.792 29.038 29.351 29.438 29.202 29.202

Fetch time 16
Batch size 4 30.379 | 27.461 | 27.477 | 27.498 | 27.515 | 27.541
Batch size 8 30.34 27.51 27.517 | 27.556 | 27.603 | 27.661
Batch size 16 30.177 | 27.525 | 27.639 | 27.682 27.78 27.894
Batch size 40 29.683 | 27.756 | 27.869 | 28.066 | 28.362 | 28.664
Batch size 80 29.105 | 28.104 | 28.463 | 28.906 | 29.181 | 29.202
Batch size 160 30.051 | 29.045 | 29.377 | 29.318 | 29.202 | 29.202

Fetch time 32
Batch size 4 30.499 27.457 | 27.471 27.513 27.528 27.527
Batch size 8 30.423 27.507 | 27.513 27.544 27.592 27.673
Batch size 16 30.351 27.51 27.605 27.673 27.767 27.888
Batch size 40 30.048 27.725 27.954 28.159 28.374 28.675
Batch size 80 29.672 28.072 28.618 28.907 29.188 29.202
Batch size 160 30.773 29.036 29.393 29.455 29.202 29.202

Fetch time 64
Batch size 4 30.544 | 27.453 | 27.471 | 27.506 | 27.518 | 27.515
Batch size 8 30.465 27.48 27.513 | 27.563 | 27.598 | 27.662
Batch size 16 30.319 | 27.513 27.61 27.654 | 27.743 | 27.855
Batch size 40 30.171 27.74 27.91 28.054 | 28.459 | 28.722
Batch size 80 30.055 | 28.087 | 28.521 | 28.904 | 29.185 | 29.202
Batch size 160 30.259 | 29.037 | 29.295 | 29.273 | 29.202 | 29.202

Fetch time 128
Batch size 4 30.559 | 27.453 | 27.465 | 27.505 | 27.517 | 27.515
Batch size 8 30.521 27.48 27.506 | 27.548 | 27.598 | 27.657
Batch size 16 30.433 | 27.513 | 27.608 | 27.745 | 27.753 | 27.874
Batch size 40 30.224 | 27.752 | 27.998 | 28.075 28.4 28.759
Batch size 80 30.088 | 28.111 | 28.529 | 28.898 | 29.189 | 29.202
Batch size 160 30.169 | 29.053 | 29.324 | 29.236 | 29.202 | 29.202

Table 48: Reverse aggressive elapsed time as a function of fetch time estimate and batch size on the cscopel trace.

43

[Disks [1 [2 [3 | 4 [5 [6 [7 [8 [1 [12 [16 |
Fetch time 4
Batch size 4 73.646 | 76.154 | 58.632 | 46.844 | 42.027 | 42.025 | 42.023 | 42.021 | 42.017 | 42.028 | 42.02
Batch size 8 68.713 | 73.32 | 56.656 | 45.18 | 42.017 | 42.013 | 42.012 | 42.02 | 42.012 | 42.019 | 42.018
Batch size 16 | 64.597 | 69.609 | 54.03 | 42.527 | 42.012 | 42.012 | 42.012 | 42.012 | 42.012 | 42.012 | 42.014
Batch size 40 | 60.204 | 65.388 | 50.161 | 42.228 | 42.056 | 42.167 | 42.132 | 42.118 | 42.012 | 42.167 | 42.063
Batch size 80 | 58.676 | 61.528 | 46.006 | 42.612 | 42.377 | 42.467 | 42.295 | 42.303 | 42.242 | 42.397 | 42.414
Batch size 160 | 58.824 [58.068 | 43.961 | 43.221 | 43.178 | 43.163 | 43.107 | 43.137 | 43.002 | 42.705 | 42.431

Fetch time 8
Batch size 4 66.301 53.815 | 49.939 | 45.845 42.027 | 42.025 42.023 42.021 42.017 | 42.028 42.02
Batch size 8 65.976 52.196 | 47.404 | 44.208 | 42.017 | 42.013 42.012 42.02 42.012 42.019 | 42.018
Batch size 16 63.699 50.01 44.751 42.175 42.012 42.012 42.012 42.012 | 42.012 42.012 42.014
Batch size 40 61.436 49.007 | 43.106 | 42.227 | 42.056 | 42.167 | 42.132 42.118 | 42.012 42.167 | 42.063
Batch size 80 59.443 48.204 | 42.297 | 42.612 42.377 | 42.467 | 42.295 42.303 | 42.242 42.397 | 42.414
Batch size 160 59.338 49.797 | 42.507 | 43.221 43.178 | 43.163 43.108 43.137 | 43.002 42.705 42.431

Fetch time 16
Batch size 4 65.726 | 55.805 46.45 41.044 | 40.724 | 41.196 | 41.659 | 41.944 | 42.014 | 42.028 42.02
Batch size 8 66.026 | 53.985 | 45.297 | 40.555 | 40.723 | 41.195 | 41.666 | 41.983 | 42.012 | 42.019 | 42.018
Batch size 16 64.078 | 52.309 | 44.325 | 40.254 | 40.734 | 41.215 | 41.694 | 42.005 | 42.012 | 42.012 | 42.014
Batch size 40 61.326 | 51.027 | 43.843 | 40.661 40.83 41.439 | 41.892 | 42.118 | 42.012 | 42.167 | 42.063
Batch size 80 59.733 | 48.032 42.27 41.451 | 41.396 | 41.849 | 42.191 | 42.303 | 42.242 | 42.397 | 42.413
Batch size 160 58.255 | 48.498 | 42.151 42.79 43.061 | 43.116 | 43.106 | 43.123 | 43.002 | 42.705 | 42.431

Fetch time 32
Batch size 4 66.369 55.811 47.22 42.32 40.412 40.16 40.163 40.251 40.722 41.209 | 41.918
Batch size 8 66.538 54.272 46.13 41.626 | 40.176 | 40.197 | 40.218 40.265 | 40.734 | 41.218 | 41.953
Batch size 16 64.857 52.296 | 44.816 | 40.717 | 40.258 | 40.309 40.344 | 40.375 40.77 41.255 41.994
Batch size 40 61.57 50.761 43.215 40.604 | 40.542 40.8 40.815 40.925 | 41.024 | 41.565 42.063
Batch size 80 60.573 48.144 41.63 41.277 | 41.251 41.61 41.587 | 41.846 | 42.048 | 42.355 42.415
Batch size 160 59.52 47.419 | 42.172 42.502 42.862 43.117 | 42.985 42.976 | 43.202 43.14 42.431

Fetch time 64
Batch size 4 66.686 55.88 47.224 42.28 40.322 | 40.162 | 40.164 | 40.176 40.18 40.214 | 40.265
Batch size 8 66.943 54.08 46.155 | 41.415 | 40.185 | 40.191 | 40.201 | 40.251 | 40.263 | 40.312 40.39
Batch size 16 65.161 | 52.358 44.88 40.69 40.255 | 40.279 | 40.321 | 40.363 | 40.436 | 40.503 | 40.655
Batch size 40 62.331 | 50.149 | 43.592 | 40.636 | 40.549 | 40.706 | 40.763 | 40.865 | 40.942 | 41.286 | 41.539
Batch size 80 60.58 47.05 41.959 | 41.281 | 41.211 | 41.485 | 41.504 | 41.703 | 41.978 | 42.323 | 42.296
Batch size 160 59.045 | 47.689 | 42.042 | 42.517 | 42.849 | 43.065 | 43.107 | 43.159 | 43.189 | 43.294 | 42.313

Fetch time 128
Batch size 4 66.981 | 56.125 | 47.224 | 42.265 | 40.322 | 40.158 | 40.164 | 40.177 40.19 40.229 | 40.236
Batch size 8 67.219 | 54.329 | 46.125 | 41.412 | 40.187 | 40.196 | 40.218 | 40.237 | 40.255 | 40.298 | 40.367
Batch size 16 65.627 | 52.364 | 44.691 | 40.759 | 40.244 | 40.267 | 40.361 | 40.346 | 40.394 | 40.479 | 40.617
Batch size 40 61.941 | 50.631 | 43.293 | 40.592 | 40.501 40.68 40.833 | 40.915 | 40.876 | 41.199 | 41.475
Batch size 80 60.618 48.25 41.506 | 41.355 | 41.268 | 41.476 | 41.473 | 41.665 | 41.959 | 42.289 | 42.339
Batch size 160 59.294 | 46.826 | 41.969 | 42.696 | 42.856 | 43.096 | 43.044 | 42.959 | 43.168 | 43.314 | 42.311

Table 49: Reverse aggressive elapsed time as a function of fetch time estimate and batch size on the cscope2 trace.

44

| Disks 1 2 3 4 5 6 7 8 10 [12 [16
Fetch time 4
Batch size 4 120.374 | 106.657 | 86.841 82.28 81.905 | 81.903 | 81.901 | 81.899 | 81.895 | 81.906 | 81.898
Batch size 8 116.187 | 102.762 | 83.583 | 82.011 | 81.895 | 81.891 81.89 81.898 81.89 81.897 | 81.896
Batch size 16 112.783 96.87 82.994 | 81.957 81.89 81.926 81.89 81.89 81.89 81.968 | 81.892
Batch size 40 107.785 91.908 82.549 | 82.224 | 82.184 | 82.154 | 81.964 | 81.993 | 82.133 | 82.226 | 81.999
Batch size 80 105.834 87.809 82.778 | 82.593 | 82.617 | 82.408 | 82.259 | 82.375 | 82.433 | 82.482 | 82.347
Batch size 160 104.065 85.424 83.448 | 83.379 | 83.458 | 83.014 | 83.052 | 83.083 | 82.751 | 82.653 | 82.354
Fetch time 8
Batch size 4 118.714 99.498 82.058 82.09 81.905 | 81.903 | 81.901 | 81.899 | 81.895 | 81.906 | 81.898
Batch size 8 117.231 96.441 81.642 | 81.832 | 81.895 | 81.891 81.89 81.898 81.89 81.897 | 81.896
Batch size 16 114.398 93.24 81.419 | 81.797 81.89 81.926 81.89 81.89 81.89 81.968 | 81.892
Batch size 40 109.654 90.407 81.011 | 82.111 | 82.184 | 82.154 | 81.964 | 81.993 | 82.133 | 82.226 | 81.999
Batch size 80 105.912 87.902 81.411 | 82.556 | 82.617 | 82.408 | 82.259 | 82.375 | 82.433 | 82.482 | 82.347
Batch size 160 105.316 85.933 82.611 | 83.379 | 83.457 | 83.014 | 83.052 | 83.083 | 82.751 | 82.653 | 82.354
Fetch time 16
Batch size 4 120.959 99.258 86.509 | 82.047 | 80.095 | 80.317 | 81.024 81.7 81.895 | 81.906 | 81.898
Batch size 8 119.269 96.896 85.597 | 81.219 | 80.072 | 80.316 | 81.025 81.72 81.89 81.897 | 81.896
Batch size 16 116.419 92.958 84.417 | 80.524 80.17 80.371 | 81.047 | 81.738 81.89 81.968 | 81.892
Batch size 40 111.804 89.826 82.373 | 80.647 | 80.737 | 80.806 | 81.203 81.91 82.133 | 82.226 | 81.999
Batch size 80 107.929 86.972 81.381 | 81.365 | 81.597 | 81.633 | 81.846 | 82.362 | 82.431 | 82.482 | 82.347
Batch size 160 106.978 84.24 82.473 | 82.839 | 83.309 | 82.926 | 83.044 | 83.094 | 82.751 | 82.653 | 82.354
Fetch time 32
Batch size 4 121.953 | 100.686 | 86.669 | 82.028 | 80.113 | 80.043 80.05 80.058 | 80.082 80.33 81.644
Batch size 8 121.183 98.076 85.666 | 81.279 | 80.056 80.08 80.091 | 80.127 | 80.168 | 80.341 | 81.668
Batch size 16 118.298 94.376 84.202 | 80.741 80.13 80.202 | 80.214 | 80.259 | 80.357 | 80.545 | 81.709
Batch size 40 112.982 90.68 82.261 | 80.612 80.66 80.742 | 80.645 | 80.757 | 81.137 | 81.409 81.92
Batch size 80 109.193 86.671 81.336 | 81.293 | 81.505 | 81.491 | 81.592 | 81.856 | 82.252 | 82.319 | 82.295
Batch size 160 108.381 84.039 82.41 82.678 83.19 82.925 | 83.065 | 83.095 | 82.857 | 82.675 | 82.324
Fetch time 64
Batch size 4 122.666 | 101.556 | 87.388 | 81.982 | 80.065 | 80.035 | 80.038 | 80.051 | 80.065 | 80.094 | 80.131
Batch size 8 121.796 98.68 86.101 | 81.224 | 80.047 80.07 80.078 | 80.117 | 80.145 | 80.185 | 80.266
Batch size 16 118.707 94.765 84.931 | 80.619 | 80.111 | 80.186 | 80.195 | 80.248 | 80.319 | 80.452 | 80.535
Batch size 40 113.545 91.279 82.495 | 80.602 | 80.615 | 80.661 | 80.584 | 80.723 81.03 81.328 | 81.463
Batch size 80 108.795 86.447 81.422 | 81.186 | 81.401 | 81.361 | 81.526 | 81.765 | 82.225 82.32 82.2
Batch size 160 106.666 84.729 82.374 | 82.613 | 83.161 | 82.904 | 82.979 | 83.022 | 82.669 | 82.372 | 82.294
Fetch time 128
Batch size 4 123.14 102.073 | 87.561 | 81.879 | 80.069 | 80.032 | 80.054 | 80.051 | 80.065 | 80.109 | 80.111
Batch size 8 122.151 98.879 86 81.045 | 80.049 80.07 80.084 | 80.111 80.12 80.174 | 80.244
Batch size 16 118.865 94.58 84.897 | 80.559 | 80.111 | 80.176 | 80.177 | 80.207 | 80.274 | 80.445 | 80.495
Batch size 40 113.657 91.243 82.453 | 80.625 | 80.587 | 80.641 | 80.562 80.67 80.96 81.225 | 81.426
Batch size 80 109.424 87.42 81.338 | 81.213 | 81.425 | 81.377 | 81.401 | 81.753 | 82.214 | 82.361 | 82.153
Batch size 160 107.025 84.923 82.402 | 82.926 | 83.243 | 82.917 | 83.057 | 83.083 | 82.857 | 82.548 | 82.339

Table 50: Reverse aggressive elapsed time as a function of fetch time estimate and batch size on the cscope3 trace.

45

[Disks [©v [2 [3 [4 [5 [6 [7 [8] 10 | 12] 16

Fetch time 4

Batch size 4 120.334 | 85.098 | 65.108 | 53.355 | 47.429 | 44.047 | 43.626 | 43.624 43.62 43.62 43.615

Batch size 8 117.591 | 83.434 | 63.074 | 51.409 | 46.198 | 43.674 | 43.615 | 43.623 | 43.615 | 43.617 | 43.615

Batch size 16 114.802 | 81.065 | 60.735 49.93 44.488 | 43.615 | 43.615 | 43.615 | 43.615 | 43.615 | 43.615

Batch size 40 111.624 | 76.967 | 57.331 46.21 44.075 | 43.615 | 43.615 | 43.615 | 43.615 | 43.615 | 43.615

Batch size 80 109.285 | 71.402 | 53.632 | 44.116 | 43.615 | 43.665 | 43.649 | 43.735 | 43.615 | 43.794 | 43.665

Batch size 160 104.802 | 67.211 | 51.041 44.23 44.131 | 44.265 44.2 44.229 | 43.615 | 43.979 | 43.655

Fetch time 8

Batch size 4 107.913 73.03 64.973 | 53.265 | 47.429 | 44.047 | 43.626 | 43.624 43.62 43.62 43.615

Batch size 8 105.957 | 71.325 | 62.994 | 51.409 | 46.198 | 43.674 | 43.615 | 43.623 | 43.615 | 43.617 | 43.615

Batch size 16 103.948 | 68.957 | 60.837 | 49.93 | 44.488 | 43.615 | 43.615 | 43.615 | 43.615 | 43.615 | 43.615

Batch size 40 101.399 | 65.479 | 57.211 46.21 44.075 | 43.615 | 43.615 | 43.615 | 43.615 | 43.615 | 43.615

Batch size 80 99.3 60.248 | 53.496 | 44.116 | 43.615 | 43.665 | 43.649 | 43.735 | 43.615 | 43.794 | 43.665

Batch size 160 97.201 60.57 51.011 44.23 44.131 | 44.265 44.2 44.229 | 43.615 | 43.979 | 43.655

Fetch time 16

Batch size 4 105.481 | 66.119 | 53.034 | 46.815 | 45.171 | 44.013 | 43.623 | 43.623 43.62 43.62 43.615

Batch size 8 103.729 | 65.143 | 51.537 45.8 44.713 | 43.652 | 43.613 | 43.623 | 43.615 | 43.617 | 43.615

Batch size 16 101.83 63.657 | 50.158 | 45.06 | 44.049 | 43.609 | 43.614 | 43.615 | 43.615 | 43.615 | 43.615

Batch size 40 99.838 60.979 | 48.998 | 43.969 | 43.77 | 43.614 | 43.615 | 43.615 | 43.615 | 43.615 | 43.615

Batch size 80 96.914 | 58.512 | 47.502 | 43.282 | 43.394 | 43.665 | 43.649 | 43.735 | 43.615 | 43.794 | 43.665

Batch size 160 94.952 58.988 | 48.418 | 43.967 | 44.053 | 44.264 44.2 44.229 | 43.615 | 43.979 | 43.655

Fetch time 32

Batch size 4 106.155 | 66.602 | 53.799 | 47.221 | 44.527 | 42.727 | 42.336 | 42.609 | 43.235 | 43.593 | 43.614

Batch size 8 104.101 | 65.488 | 52.235 | 46.245 44.08 42.394 | 42.358 | 42.623 | 43.252 | 43.605 | 43.614

Batch size 16 102.238 | 63.442 | 50.491 | 45.059 | 43.337 | 42.334 | 42.416 | 42.639 43.29 43.612 | 43.614

Batch size 40 98.747 61.039 | 48.803 | 44.041 | 42.977 42.54 42.66 42.794 | 43.391 | 43.615 | 43.614

Batch size 80 96.797 58.354 | 47.504 | 43.707 | 42.701 | 42.907 | 43.076 | 43.344 | 43.565 | 43.794 | 43.651

Batch size 160 95.56 58.234 | 48.023 | 43.924 | 43.899 | 44.209 | 44.195 | 44.209 | 43.615 | 44.024 | 43.655

Fetch time 64

Batch size 4 106.528 67.17 53.854 | 47.269 | 44.426 42.57 42.142 42.17 42.224 | 42.289 42.61

Batch size 8 104.416 | 66.029 | 52.415 | 46.318 | 43.831 | 42.257 | 42.159 | 42.198 | 42.262 | 42.339 | 42.637

Batch size 16 102.302 | 63.946 | 50.393 45.07 43.04 42.158 | 42.222 | 42.272 42.36 42.479 | 42.708

Batch size 40 99.538 60.855 | 48.945 43.91 42.873 | 42.303 | 42.509 | 42.542 | 42.717 | 42.911 43.22

Batch size 80 96.534 58.395 | 47.984 | 43.436 | 42.532 | 42.802 | 43.041 | 43.248 | 43.453 | 43.732 | 43.611

Batch size 160 94.083 58.341 | 48.649 | 44.205 | 43.903 | 44.172 | 44.197 | 44.102 | 43.614 | 44.067 | 43.614

Fetch time 128

Batch size 4 106.633 | 67.215 54.05 47.374 | 44.304 | 42.508 | 42.055 42.08 42.096 | 42.133 | 42.205

Batch size 8 104.446 | 66.059 | 52.287 | 46.112 | 43.782 | 42.211 | 42.078 | 42.114 | 42.136 | 42.186 42.28

Batch size 16 102.287 | 63.773 | 50.739 | 45.159 | 43.046 | 42.118 | 42.134 | 42.181 | 42.246 | 42.319 | 42.452

Batch size 40 99.762 60.971 | 48.726 | 43.902 | 42.849 | 42.377 | 42.315 | 42.416 | 42.577 | 42.759 43.17

Batch size 80 96.544 58.679 | 47.561 | 43.747 | 42.526 42.81 42.818 | 43.123 | 43.407 | 43.734 | 43.612

Batch size 160 94.895 60.33 48.078 44.09 44.062 | 44.092 | 44.094 | 44.014 | 43.611 | 44.067 | 43.612

Table 51: Reverse aggressive elapsed time as a function of fetch time estimate and batch size on the glimpse trace.

46

Disks 1 2 3 4 5 6 7 8 10 [12 | 16
Fetch time 4

Batch size 4 26.128 | 18.833 | 17.411 15.52 13.862 | 12.667 | 11.554 | 10.437 | 10.249 10.26 10.252
Batch size 8 26.651 | 18.755 | 16.815 | 15.207 | 13.373 | 11.861 10.74 10.252 | 10.244 | 10.251 10.25
Batch size 16 26.177 | 17.831 | 16.035 | 14.473 | 12.608 | 11.452 | 10.244 | 10.244 | 10.244 | 10.244 | 10.246
Batch size 40 25.345 | 16.858 | 15.096 | 13.367 11.83 10.809 | 10.353 | 10.318 | 10.244 | 10.338 | 10.278
Batch size 80 24.775 | 16.712 | 14.936 | 13.224 11.23 10.582 | 10.591 | 10.577 | 10.448 | 10.597 | 10.569
Batch size 160 24.347 16.47 14.807 | 12.826 11.44 11.23 11.393 | 11.411 11.29 11.006 | 10.571
Fetch time 8

Batch size 4 26.157 | 17.987 | 14.787 | 13.436 | 12.555 | 12.183 | 11.417 | 10.437 | 10.249 10.26 10.252
Batch size 8 26.642 | 17.867 | 14.172 | 12.895 | 12.013 | 11.394 10.74 10.252 | 10.244 | 10.251 10.25
Batch size 16 26.027 | 16.935 | 13.557 | 12.131 | 11.382 | 10.928 | 10.244 | 10.244 | 10.244 | 10.244 | 10.246
Batch size 40 25.348 | 16.289 | 13.392 | 11.525 | 10.767 | 10.666 | 10.353 | 10.318 | 10.244 | 10.338 | 10.278
Batch size 80 24.95 16.012 | 13.046 | 11.622 10.91 10.654 | 10.646 | 10.577 | 10.448 | 10.597 | 10.569
Batch size 160 24.377 16.05 13.599 | 12.282 | 11.615 | 11.358 | 11.393 | 11.411 11.29 11.006 | 10.571
Fetch time 16

Batch size 4 26.082 18.02 14.686 | 12.761 | 11.182 | 10.599 | 10.147 9.886 9.959 10.138 | 10.252
Batch size 8 26.591 17.75 14.203 | 12.176 11.07 10.516 | 10.017 9.868 9.971 10.151 10.25
Batch size 16 25.982 | 17.166 | 13.636 | 11.806 | 10.683 | 10.341 9.927 9.854 10.01 10.18 10.246
Batch size 40 25.223 | 16.171 | 13.331 | 11.671 | 10.624 10.42 10.15 9.978 10.124 | 10.335 | 10.278
Batch size 80 24.825 | 15.921 | 13.057 | 11.805 11 10.664 | 10.587 10.61 10.46 10.597 | 10.569
Batch size 160 24.462 | 15.972 | 13.897 | 12.294 | 12.024 | 11.948 | 11.858 | 11.301 11.59 10.991 | 10.586
Fetch time 32

Batch size 4 26.029 | 17.934 | 14.696 | 12.701 | 11.163 | 10.571 | 10.128 9.861 9.676 9.683 9.793
Batch size 8 26.351 | 17.837 | 14.292 12.17 10.954 | 10.434 | 10.118 9.816 9.678 9.699 9.817
Batch size 16 25.962 | 16.986 | 13.582 | 11.772 | 10.711 | 10.344 | 10.052 9.835 9.768 9.754 9.879
Batch size 40 25.27 16.282 | 13.347 | 11.847 | 10.747 | 10.447 | 10.341 | 10.008 9.995 10.052 | 10.129
Batch size 80 24.9 16.073 | 13.288 | 12.003 | 11.215 | 10.837 | 10.781 | 10.647 | 10.382 | 10.572 | 10.577
Batch size 160 24.435 16.01 13.66 12.866 | 12.324 | 12.356 | 12.229 | 11.772 | 11.535 | 11.097 | 10.826
Fetch time 64

Batch size 4 26.029 | 17.934 14.68 12.656 | 11.224 | 10.504 | 10.166 9.834 9.692 9.767 9.677
Batch size 8 26.351 | 17.762 14.23 12.215 11.08 10.474 | 10.098 9.896 9.709 9.737 9.713
Batch size 16 26.244 | 17.018 | 13.503 11.91 10.825 | 10.375 | 10.111 | 10.009 9.768 9.746 9.794
Batch size 40 25.167 | 16.238 | 13.364 | 11.949 | 10.682 | 10.548 | 10.358 | 10.204 9.931 10.034 | 10.106
Batch size 80 24.888 | 16.188 | 13.216 | 12.046 | 11.189 10.97 10.776 | 10.645 | 10.605 | 10.708 10.67
Batch size 160 24.392 | 15.953 | 13.671 | 12.775 | 12.323 | 12.384 | 12.119 | 12.194 | 11.985 | 11.542 | 11.076
Fetch time 128

Batch size 4 26.029 | 17.934 14.68 12.656 | 11.285 | 10.481 | 10.165 9.903 9.677 9.767 9.678
Batch size 8 26.351 | 17.762 | 14.278 12.19 11.05 10.442 | 10.129 9.862 9.701 9.735 9.714
Batch size 16 26.244 | 16.973 | 13.547 | 11.743 | 10.779 | 10.301 | 10.188 9.871 9.774 9.759 9.796
Batch size 40 25.219 | 16.114 | 13.346 | 11.759 | 10.749 | 10.471 | 10.515 | 10.203 | 10.178 10.06 10.088
Batch size 80 24.771 | 16.056 | 12.999 11.9 11.462 | 11.147 | 11.111 11.12 10.722 | 10.721 | 10.447
Batch size 160 24.377 | 16.148 | 13.651 | 12.722 | 12.605 | 12.135 | 12.557 | 12.579 | 12.059 | 11.549 | 10.615

Table 52: Reverse aggressive elapsed time as a function of fetch time estimate and batch size on the Id trace.

47

| Disks | 1 [2 | 3 [4] 5 [6]
Fetch time 4
Batch size 4 92.487 | 81.692 | 81.991 | 81.993 | 81.992 | 81.99
Batch size 8 90.455 | 81.691 | 81.988 | 81.986 | 81.982 | 81.978
Batch size 16 88.578 | 81.69 | 81.976 | 81.977 | 81.977 | 81.977
Batch size 40 85.763 | 81.871 | 82.253 | 82.25 | 81.977 | 82.234
Batch size 80 85.166 | 82.485 | 82.732 | 82.68 | 82.106 | 82.544
Batch size 160 | 85.002 | 83.489 | 83.497 | 83.284 | 82.401 | 83.086

Fetch time 8
Batch size 4 92.487 | 81.163 | 81.359 | 81.694 | 81.965 | 81.986
Batch size 8 90.455 | 81.165 | 81.358 | 81.693 | 81.974 | 81.976
Batch size 16 88.578 | 81.169 | 81.357 81.7 81.975 | 81.975
Batch size 40 85.763 | 81.364 | 81.665 82.02 81.976 | 82.233
Batch size 80 85.166 82.024 82.204 | 82.525 82.105 82.543
Batch size 160 84.986 83.106 83.232 83.242 82.4 83.085

Fetch time 16
Batch size 4 92.487 | 81.164 | 81.166 | 81.173 | 81.224 | 81.365
Batch size 8 90.455 | 81.166 81.17 81.177 | 81.224 | 81.362
Batch size 16 88.578 | 81.168 | 81.177 | 81.192 | 81.238 | 81.384
Batch size 40 85.763 | 81.363 | 81.514 | 81.568 | 81.352 81.71
Batch size 80 85.165 | 81.998 | 82.126 | 82.186 81.68 82.257
Batch size 160 84.99 83.067 | 83.165 | 83.141 | 82.342 83.04

Fetch time 32
Batch size 4 92.487 | 81.164 81.165 81.17 81.173 81.177
Batch size 8 90.455 81.164 81.167 | 81.176 81.18 81.187
Batch size 16 88.578 81.164 81.171 81.193 81.208 81.226
Batch size 40 85.765 81.36 81.497 | 81.565 81.312 81.633
Batch size 80 85.165 81.984 82.073 | 82.116 81.689 82.219
Batch size 160 84.984 83.02 83.063 | 83.104 | 82.347 | 82.961

Fetch time 64
Batch size 4 92.487 | 81.164 | 81.164 | 81.169 81.17 81.176
Batch size 8 90.455 | 81.167 | 81.166 | 81.172 | 81.175 81.18
Batch size 16 88.578 | 81.169 | 81.168 | 81.184 | 81.199 | 81.213
Batch size 40 85.765 | 81.365 | 81.494 | 81.523 | 81.293 | 81.604
Batch size 80 85.165 | 81.976 | 82.051 | 82.086 | 81.627 | 82.155
Batch size 160 84.985 | 83.015 | 83.014 | 83.091 | 82.346 | 83.054

Fetch time 128
Batch size 4 92.487 | 81.165 | 81.166 | 81.172 | 81.171 | 81.175
Batch size 8 90.455 | 81.165 81.17 81.177 | 81.177 | 81.178
Batch size 16 88.578 | 81.169 | 81.172 81.18 81.195 | 81.213
Batch size 40 85.765 | 81.352 | 81.498 | 81.518 | 81.289 | 81.577
Batch size 80 85.168 | 81.982 | 82.059 | 82.082 | 81.617 | 82.155
Batch size 160 84.988 | 83.026 | 83.075 | 83.043 | 82.347 | 83.032

Table 53: Reverse aggressive elapsed time as a function of fetch time estimate and batch size on the postgres-join trace.

48

[Disks [1 [2 [3 | 4 [5 [6 [7 [8 [1 [12 [16 |
Fetch time 4
Batch size 4 52.54 | 26.927 | 20.823 [16.389 | 13.787 | 13.277 | 13.275 | 13.273 | 13.269 | 13.28 | 13.272
Batch size 8 50.627 | 26.314 | 20.25 | 15.712 | 13.294 | 13.265 | 13.264 | 13.272 | 13.264 | 13.271 | 13.27
Batch size 16 | 49.017 | 25.066 | 19.493 | 14.959 | 13.264 | 13.264 | 13.264 | 13.264 | 13.264 | 13.264 | 13.266
Batch size 40 | 46.106 | 23.816 | 18.577 | 13.859 | 13.272 | 13.412 | 13.508 | 13.476 | 13.264 | 13.341 | 13.287
Batch size 80 | 43.782 [22.778 | 17.716 | 13.878 | 13.622 | 13.906 | 13.88 | 13.821 | 13.313 | 13.618 | 13.641
Batch size 160 [41.995 [22.471 | 16.889 | 14.707 | 14.281 [14.368 | 14.496 | 14.338 | 13.832 | 13.806 | 13.656

Fetch time 8
Batch size 4 52.54 26.925 18.686 14.807 13.157 13.248 13.27 13.271 13.268 13.28 13.271
Batch size 8 50.606 26.313 18.011 14.236 13.131 13.246 13.263 13.27 13.263 13.271 13.269
Batch size 16 48.987 25.066 17.278 13.882 13.146 13.259 13.263 13.262 13.263 13.264 13.265
Batch size 40 46.075 23.816 16.586 13.181 13.209 13.412 13.507 13.474 13.263 13.341 13.286
Batch size 80 43.782 22.724 16.002 13.749 13.611 13.907 13.879 13.819 13.312 13.618 13.641
Batch size 160 41.995 21.496 15.797 14.672 14.253 14.368 14.494 14.336 13.831 13.806 13.655

Fetch time 16
Batch size 4 52.557 | 26.925 | 18.687 | 14.807 | 13.078 | 13.052 13.05 13.048 | 13.134 | 13.255 | 13.272
Batch size 8 50.627 | 26.314 | 18.011 | 14.236 | 13.044 13.04 13.039 | 13.047 | 13.147 13.26 13.27
Batch size 16 49.017 | 25.066 | 17.278 | 13.882 | 13.039 | 13.039 | 13.039 | 13.051 | 13.185 | 13.263 | 13.266
Batch size 40 46.106 | 23.816 | 16.586 | 13.164 | 13.047 | 13.191 | 13.326 | 13.343 | 13.254 13.34 13.287
Batch size 80 43.782 | 22.724 | 16.001 | 13.654 | 13.432 | 13.779 | 13.814 | 13.814 | 13.314 | 13.617 | 13.641
Batch size 160 41.995 | 21.496 | 16.398 | 14.681 | 14.293 | 14.345 | 14.494 | 14.301 | 13.827 | 13.805 | 13.641

Fetch time 32
Batch size 4 52.535 26.921 18.681 14.801 13.074 13.05 13.049 13.048 13.044 13.055 13.054
Batch size 8 50.599 26.311 18.007 14.236 13.044 13.04 13.039 13.047 13.039 13.046 13.068
Batch size 16 48.98 25.066 17.278 13.882 13.039 13.039 13.039 13.039 13.039 13.039 13.118
Batch size 40 46.039 23.816 16.586 13.164 13.047 13.187 13.283 13.255 13.07 13.198 13.27
Batch size 80 43.711 22.724 16.001 13.654 13.406 13.746 13.791 13.754 13.309 13.615 13.617
Batch size 160 41.987 21.496 16.333 14.638 14.208 14.37 14.504 14.184 13.746 13.603 13.638

Fetch time 64
Batch size 4 52.531 | 26.918 | 18.682 | 14.802 | 13.073 | 13.047 | 13.045 | 13.044 | 13.041 | 13.053 | 13.047
Batch size 8 50.595 | 26.309 | 18.008 | 14.232 | 13.038 | 13.035 | 13.038 | 13.047 | 13.039 | 13.046 | 13.045
Batch size 16 48.98 25.062 | 17.275 | 13.882 | 13.039 | 13.039 | 13.039 | 13.039 | 13.039 | 13.039 | 13.042
Batch size 40 46.039 | 23.812 | 16.586 | 13.164 | 13.047 | 13.187 | 13.284 | 13.251 | 13.064 | 13.199 | 13.275
Batch size 80 43.711 | 22.716 | 16.001 | 13.653 | 13.424 | 13.779 | 13.777 | 13.748 | 13.317 13.6 13.588
Batch size 160 41.987 | 21.497 | 15.924 | 14.636 | 14.295 | 14.343 | 14.504 14.22 13.713 | 13.873 | 13.621

Fetch time 128
Batch size 4 52.529 | 26.914 | 18.676 | 14.798 13.07 13.045 | 13.045 | 13.043 13.04 13.053 | 13.047
Batch size 8 50.595 | 26.309 | 18.003 | 14.228 | 13.036 | 13.033 | 13.034 | 13.042 | 13.036 | 13.044 | 13.045
Batch size 16 48.98 25.062 17.27 13.874 | 13.032 | 13.037 | 13.035 | 13.039 | 13.039 | 13.039 | 13.042
Batch size 40 46.039 | 23.812 | 16.578 | 13.158 | 13.044 | 13.187 | 13.283 | 13.251 | 13.064 13.22 13.243
Batch size 80 43.711 | 22.716 | 15.993 | 13.649 | 13.397 | 13.733 | 13.801 | 13.774 | 13.266 | 13.609 | 13.622
Batch size 160 41.987 | 21.492 | 16.415 | 14.582 | 14.199 | 14.736 | 14.555 | 14.492 | 13.752 | 13.975 | 13.633

Table 54: Reverse aggressive elapsed time as a function of fetch time estimate and batch size on the postgres-select trace.

49

| Disks | 1 [2 | 3 [4] 5 [6]
Fetch time 4
Batch size 4 66.434 | 33.368 | 39.661 | 34.022 | 34.103 | 34.097
Batch size 8 65.548 | 33.295 | 38.575 | 34.089 | 34.162 | 34.155
Batch size 16 65.02 | 33.423 | 37.646 | 34.181 | 34.242 | 34.181
Batch size 40 64.155 | 33.608 | 37.314 | 34.331 | 34.419 | 34.302
Batch size 80 64.275 | 33.807 | 37.418 | 34.563 | 34.701 | 34.741
Batch size 160 | 65.044 | 34.446 | 37.36 | 35.585 35.9 35.358

Fetch time 8
Batch size 4 66.426 33.35 34.334 33.23 33.538 | 33.767
Batch size 8 65.723 | 33.262 | 33.891 33.29 33.606 | 33.833
Batch size 16 64.971 | 33.302 | 33.285 33.38 33.704 | 33.876
Batch size 40 64.184 | 33.493 | 33.643 | 33.563 | 33.938 34.04
Batch size 80 64.185 33.728 33.934 | 33.934 | 34.315 34.533
Batch size 160 64.759 34.379 34.967 35.23 35.802 35.293

Fetch time 16
Batch size 4 66.423 | 33.348 | 34.616 | 33.138 | 33.048 | 33.127
Batch size 8 65.689 33.2 34.235 | 33.175 | 33.119 | 33.202
Batch size 16 64.974 33.3 33.477 | 33.269 | 33.235 | 33.276
Batch size 40 64.171 | 33.495 | 33.473 | 33.479 | 33.528 | 33.546
Batch size 80 64.336 | 33.731 | 33.866 | 33.834 | 34.058 | 34.226
Batch size 160 64.519 | 34.361 | 34.822 | 35.164 | 35.741 | 35.163

Fetch time 32
Batch size 4 66.423 | 33.348 | 34.534 | 33.125 | 33.044 | 33.105
Batch size 8 65.658 33.215 34.142 33.171 33.116 33.177
Batch size 16 64.967 | 33.293 33.57 33.257 | 33.227 | 33.251
Batch size 40 64.109 33.485 33.488 | 33.457 | 33.514 | 33.485
Batch size 80 64.092 33.792 33.859 | 33.844 | 33.966 34.173
Batch size 160 64.713 34.339 34.797 | 35.126 35.731 35.034

Fetch time 64
Batch size 4 66.423 | 33.348 | 34.534 | 33.125 | 33.042 | 33.105
Batch size 8 65.658 | 33.215 | 34.151 | 33.171 | 33.115 33.17
Batch size 16 64.967 | 33.293 | 33.433 | 33.252 | 33.223 | 33.229
Batch size 40 64.18 33.48 33.468 | 33.431 | 33.471 | 33.478
Batch size 80 64.199 | 33.688 | 33.813 | 33.796 | 33.951 | 34.162
Batch size 160 64.789 | 34.278 | 34.853 | 35.168 | 35.739 | 35.193

Fetch time 128
Batch size 4 66.423 | 33.348 | 34.534 | 33.125 | 33.042 | 33.105
Batch size 8 65.658 | 33.215 | 34.151 | 33.165 | 33.115 | 33.179
Batch size 16 64.967 | 33.293 | 33.433 | 33.259 | 33.225 | 33.239
Batch size 40 64.18 33.486 33.48 33.44 33.474 | 33.463
Batch size 80 64.26 33.692 | 33.826 | 33.778 | 33.915 | 34.159
Batch size 160 64.924 | 34.299 | 34.813 | 35.175 | 35.662 | 35.198

Table 55: Reverse aggressive elapsed time as a function of fetch time estimate and batch size on the xds trace.

50

G Performance data: varying fized horizon’s horizon

This section contains the performance data for fized horizon with varying values of the horizon.

51

[Disks 1 2 3 4 5 6
Horizon 16
fetches 4716 4716 4716 4716 4716 4716
driver time (sec) 2.358 2.358 2.358 2.358 2.358 2.358
stall time (sec) 0.023 0.023 0.023 0.023 0.023 0.023
elapsed time (sec) 105.919 | 105.919 | 105.919 | 105.919 | 105.919 | 105.919
average fetch time (msec) 3.153 3.171 3.196 3.234 3.245 3.293
average disk utilization 0.14 0.071 0.047 0.036 0.029 0.024
Horizon 32
fetches 4716 4716 4716 4716 4716 4716
driver time (sec) 2.358 2.358 2.358 2.358 2.358 2.358
stall time (sec) 0.022 0.022 0.022 0.022 0.022 0.022
elapsed time (sec) 105.918 | 105.918 | 105.918 | 105.918 | 105.918 | 105.918
average fetch time (msec) 3.145 3.182 3.201 3.241 3.259 3.294
average disk utilization 0.14 0.071 0.048 0.036 0.029 0.024
Horizon 64
fetches 4789 4789 4789 4789 4789 4789
driver time (sec) 2.3945 2.3945 2.3945 2.3945 2.3945 2.3945
stall time (sec) 0.026 0.008 0.008 0.008 0.008 0.008
elapsed time (sec) 105.959 | 105.941 | 105.941 | 105.941 | 105.941 | 105.941
average fetch time (msec) 3.155 3.19 3.232 3.269 3.29 3.328
average disk utilization 0.14 0.072 0.049 0.037 0.03 0.025
Horizon 128
fetches 5182 5182 5182 5182 5182 5182
driver time (sec) 2.591 2.591 2.591 2.591 2.591 2.591
stall time (sec) 0.249 0 0 0 0 0
elapsed time (sec) 106.378 | 106.129 | 106.129 | 106.129 | 106.129 | 106.129
average fetch time (msec) 3.171 3.208 3.256 3.286 3.32 3.37
average disk utilization 0.15 0.078 0.053 0.04 0.032 0.027
Horizon 256
fetches 6005 6005 6005 6005 6005 6005
driver time (sec) 3.0025 3.0025 3.0025 3.0025 3.0025 3.0025
stall time (sec) 0.664 0 0.025 0 0 0
elapsed time (sec) 107.205 | 106.541 106.566 | 106.541 106.541 | 106.541
average fetch time (msec) 3.183 3.217 3.266 3.292 3.33 3.365
average disk utilization 0.18 0.091 0.061 0.046 0.038 0.032
Horizon 512
fetches 8812 8812 8812 8812 8812 8812
driver time (sec) 4.406 4.406 4.406 4.406 4.406 4.406
stall time (sec) 1.444 0 0.205 0.04 0 0
elapsed time (sec) 109.388 | 107.944 | 108.149 | 107.984 | 107.944 | 107.944
average fetch time (msec) 3.147 3.163 3.187 3.204 3.214 3.228
average disk utilization 0.25 0.13 0.087 0.065 0.052 0.044
Horizon 1024
fetches 8812 8812 8812 8812 8812 8812
driver time (sec) 4.406 4.406 4.406 4.406 4.406 4.406
stall time (sec) 1.533 0 0.219 0.055 0 0
elapsed time (sec) 109.477 | 107.944 | 108.163 | 107.999 | 107.944 | 107.944
average fetch time (msec) 3.148 3.166 3.185 3.206 3.215 3.231
average disk utilization 0.25 0.13 0.086 0.065 0.052 0.044
Horizon 2048
fetches 8812 8812 8812 8812 8812 8812
driver time (sec) 4.406 4.406 4.406 4.406 4.406 4.406
stall time (sec) 1.533 0 0.219 0.055 0 0
elapsed time (sec) 109.477 | 107.944 | 108.163 | 107.999 | 107.944 | 107.944
average fetch time (msec) 3.148 3.166 3.185 3.206 3.215 3.231
average disk utilization 0.25 0.13 0.086 0.065 0.052 0.044

Table 56: Fixed horizon performance as a function of horizon on the dinero trace.

52

Disks [1 [2 [3 [4 1 5 1 6]

Horizon 16

fetches 4953 4953 4953 4953 4953 4953
driver time (sec) 2.4765 | 2.4765 | 2.4765 | 2.4765 | 2.4765 | 2.4765
stall time (sec) 3.476 0.022 0.022 0.022 0.022 0.022
elapsed time (sec) 30.887 | 27.433 | 27.433 | 27.433 | 27.433 | 27.433
average fetch time (msec) | 3.543 3.249 3.255 3.257 3.295 3.311
average disk utilization 0.57 0.29 0.2 0.15 0.12 0.1
Horizon 32

fetches 4953 4953 4953 4953 4953 4953
driver time (sec) 2.4765 | 2.4765 | 2.4765 | 2.4765 | 2.4765 | 2.4765
stall time (sec) 3.38 0.022 0.022 0.022 0.022 0.022
elapsed time (sec) 30.791 | 27.433 | 27.433 | 27.433 | 27.433 | 27.433
average fetch time (msec) 3.51 3.237 3.242 3.272 3.283 3.326
average disk utilization 0.56 0.29 0.2 0.15 0.12 0.1
Horizon 64

fetches 4959 4959 4959 4959 4959 4959
driver time (sec) 2.4795 | 2.4795 | 2.4795 | 2.4795 | 2.4795 | 2.4795
stall time (sec) 3.121 0.012 0.012 0.012 0.012 0.012
elapsed time (sec) 30.535 | 27.426 | 27.426 | 27.426 | 27.426 | 27.426
average fetch time (msec) | 3.524 3.251 3.277 3.301 3.333 3.368
average disk utilization 0.57 0.29 0.2 0.15 0.12 0.1
Horizon 128

fetches 5471 5471 5471 5471 5471 5471
driver time (sec) 2.7355 | 2.7355 | 2.7355 | 2.7355 | 2.7355 | 2.7355
stall time (sec) 3.107 0 0 0 0 0
elapsed time (sec) 30.777 | 27.67 27.67 27.67 27.67 27.67
average fetch time (msec) | 3.558 3.373 3.405 3.404 3.439 3.472
average disk utilization 0.63 0.33 0.22 0.17 0.14 0.11
Horizon 256

fetches 6059 6059 6059 6059 6059 6059
driver time (sec) 3.0295 | 3.0295 | 3.0295 | 3.0295 | 3.0295 | 3.0295
stall time (sec) 2.726 0.135 0 0 0 0
elapsed time (sec) 30.69 28.099 | 27.964 | 27.964 | 27.964 | 27.964
average fetch time (msec) | 3.624 3.398 3.427 3.424 3.464 3.504
average disk utilization 0.72 0.37 0.25 0.19 0.15 0.13
Horizon 512

fetches 8535 8535 8535 8535 8535 8535
driver time (sec) 4.2675 | 4.2675 | 4.2675 | 4.2675 | 4.2675 | 4.2675
stall time (sec) 5.01 0.487 0.198 0 0 0
elapsed time (sec) 34.212 | 29.689 29.4 29.202 | 29.202 | 29.202
average fetch time (msec) | 3.751 3.318 3.354 3.318 3.363 3.38
average disk utilization 0.94 0.48 0.32 0.24 0.2 0.16
Horizon 1024

fetches 8535 8535 8535 8535 8535 8535
driver time (sec) 4.2675 | 4.2675 | 4.2675 | 4.2675 | 4.2675 | 4.2675
stall time (sec) 5.126 0.521 0.216 0 0 0
elapsed time (sec) 34.328 | 29.723 | 29.418 | 29.202 | 29.202 | 29.202
average fetch time (msec) | 3.759 3.349 3.37 3.327 3.369 3.383
average disk utilization 0.93 0.48 0.33 0.24 0.2 0.16
Horizon 2048

fetches 8535 8535 8535 8535 8535 8535
driver time (sec) 4.2675 | 4.2675 | 4.2675 | 4.2675 | 4.2675 | 4.2675
stall time (sec) 5.126 0.521 0.216 0 0 0
elapsed time (sec) 34.328 | 29.723 | 29.418 | 29.202 | 29.202 | 29.202
average fetch time (msec) | 3.759 3.349 3.37 3.327 3.369 3.383
average disk utilization 0.93 0.48 0.33 0.24 0.2 0.16

Table 57: Fixed horizon performance as a function of horizon on the cscopel trace.

53

Disks [1 [2 [3 [4 1 5 1 6]

Horizon 16

fetches 5966 5966 5966 5966 5966 5966
driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983
stall time (sec) 37.752 | 28.281 | 21.894 | 16.112 13.633 11.645
elapsed time (sec) 77.844 | 68.373 | 61.986 | 56.204 | 53.725 | 51.737
average fetch time (msec) | 10.09 | 16.023 | 17.859 | 18.343 | 18.647 | 19.025
average disk utilization 0.77 0.7 0.57 0.49 0.41 0.37
Horizon 32

fetches 5966 5966 5966 5966 5966 5966
driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983
stall time (sec) 35.359 | 25.027 | 17.587 | 12.245 8.758 6.44
elapsed time (sec) 75.451 | 65.119 | 57.679 | 52.337 48.85 46.532
average fetch time (msec) | 9.793 | 15.518 | 17.596 | 18.151 | 18.57 | 18.739
average disk utilization 0.77 0.71 0.61 0.52 0.45 0.4
Horizon 64

fetches 5966 5966 5966 5966 5966 5966
driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983
stall time (sec) 32.366 | 21.956 | 14.063 8.965 5.545 3.756
elapsed time (sec) 72.458 | 62.048 | 54.155 | 49.057 | 45.637 | 43.848
average fetch time (msec) | 9.393 14.97 | 17.165 | 18.012 | 18.49 | 18.971
average disk utilization 0.77 0.72 0.63 0.55 0.48 0.43
Horizon 128

fetches 5966 5966 5966 5966 5966 5966
driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983
stall time (sec) 30.072 | 19.129 | 11.066 6.34 3.078 1.395
elapsed time (sec) 70.164 | 59.221 | 51.158 | 46.432 | 43.17 | 41.487
average fetch time (msec) | 9.201 | 14.447 | 16.555 | 17.684 | 18.147 | 18.608
average disk utilization 0.78 0.73 0.64 0.57 0.5 0.45
Horizon 256

fetches 5966 5966 5966 5966 5966 5966
driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983
stall time (sec) 25.667 | 14.606 7.443 4.047 1.299 0.076
elapsed time (sec) 65.759 | 54.698 | 47.535 | 44.139 | 41.391 | 40.168
average fetch time (msec) 8.94 13.632 | 15.803 | 17.261 | 17.691 | 18.401
average disk utilization 0.81 0.74 0.66 0.58 0.51 0.46
Horizon 512

fetches 5966 5966 5966 5966 5966 5966
driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983
stall time (sec) 19.192 | 8.934 3.017 1.164 0.208 0.169
elapsed time (sec) 59.284 | 49.026 | 43.109 | 41.256 40.3 40.261
average fetch time (msec) | 8.456 12.84 | 15.156 | 16.622 | 17.596 | 18.407
average disk utilization 0.85 0.78 0.7 0.6 0.52 0.45
Horizon 1024

fetches 6736 6736 6736 6736 6736 6736
driver time (sec) 3.368 3.368 3.368 3.368 3.368 3.368
stall time (sec) 19.012 7.313 2.32 0.787 0.623 0.484
elapsed time (sec) 59.489 | 47.79 | 42.797 | 41.264 41.1 40.961
average fetch time (msec) | 8.158 | 12.231 | 14.679 | 16.219 | 17.298 | 18.055
average disk utilization 0.92 0.86 0.77 0.66 0.57 0.49
Horizon 2048

fetches 8299 8299 8299 8299 8299 8299
driver time (sec) 4.1495 | 4.1495 | 4.1495 | 4.1495 | 4.1495 | 4.1495
stall time (sec) 23.94 8.745 2.803 2.103 1.709 1.176
elapsed time (sec) 65.199 | 50.004 | 44.062 | 43.362 | 42.968 | 42.435
average fetch time (msec) | 7.744 | 11.784 | 14.304 | 16.248 | 17.258 | 18.029
average disk utilization 0.99 0.98 0.9 0.78 0.67 0.59

Table 58: Fixed horizon performance as a function of horizon on the cscope2 trace.

54

[Disks [1 [2 [3 [4 1 5 1 6]

Horizon 16

fetches 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 36.253 | 16.646 | 9.658 7.205 5.024 3.906
elapsed time (sec) 49.273 | 29.666 | 22.678 | 20.225 | 18.044 | 16.926
average fetch time (msec) | 15.493 | 15.727 | 15.617 | 15.76 | 15.508 | 15.601
average disk utilization 0.97 0.82 0.71 0.6 0.53 0.47
Horizon 32

fetches 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 34.453 | 14.462 7.778 4.953 2.902 1.863
elapsed time (sec) 47.473 | 27.482 | 20.798 | 17.973 | 15.922 | 14.883
average fetch time (msec) | 14.914 | 15.289 | 15.441 | 15.526 | 15.415 | 15.429
average disk utilization 0.97 0.86 0.76 0.67 0.6 0.53
Horizon 64

fetches 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 32.46 | 12.642 | 5.718 3.059 1.206 0.51
elapsed time (sec) 45.48 | 25.662 | 18.738 | 16.079 | 14.226 | 13.53
average fetch time (msec) | 14.407 | 14.853 | 15.033 | 15.11 | 15.217 | 15.386
average disk utilization 0.98 0.89 0.83 0.72 0.66 0.58
Horizon 128

fetches 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 30.405 | 10.83 4.525 1.745 0.422 0.064
elapsed time (sec) 43.425 | 23.85 | 17.545 | 14.765 | 13.442 | 13.084
average fetch time (msec) | 13.831 | 14.252 | 14.587 | 14.67 | 14.925 | 15.255
average disk utilization 0.98 0.92 0.85 0.77 0.69 0.6
Horizon 256

fetches 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 28.591 9.283 3.336 1.104 0.183 0
elapsed time (sec) 41.611 | 22.303 | 16.356 | 14.124 | 13.203 13.02
average fetch time (msec) | 13.281 | 13.506 | 13.678 | 14.291 | 14.633 | 15.212
average disk utilization 0.98 0.93 0.86 0.78 0.68 0.6
Horizon 512

fetches 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 27.117 8.234 3.284 1.14 0.382 0.53
elapsed time (sec) 40.137 | 21.254 | 16.304 | 14.16 | 13.402 | 13.55
average fetch time (msec) | 12.586 | 12.687 | 13.286 | 13.586 | 14.463 | 15.001
average disk utilization 0.97 0.92 0.84 0.74 0.67 0.57
Horizon 1024

fetches 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 23.842 6.768 2.743 1.827 1.116 1.066
elapsed time (sec) 36.862 | 19.788 | 15.763 | 14.847 | 14.136 | 14.086
average fetch time (msec) | 11.305 | 11.583 | 12.206 | 13.098 | 13.752 13.99
average disk utilization 0.95 0.9 0.8 0.68 0.6 0.51
Horizon 2048

fetches 3572 3572 3572 3572 3572 3572
driver time (sec) 1.786 1.786 1.786 1.786 1.786 1.786
stall time (sec) 24.368 7.001 3.405 2.278 1.298 1.171
elapsed time (sec) 37.632 | 20.265 | 16.669 | 15.542 | 14.562 | 14.435
average fetch time (msec) | 10.116 | 10.384 | 11.257 | 11.976 | 12.788 | 13.109
average disk utilization 0.96 0.92 0.8 0.69 0.63 0.54

Table 59: Fixed horizon performance as a function of horizon on the postgres-select trace.

55

H Performance data: forestall with a fixed fetch time estimate

This section contains the performance data for forestall with a static fetch time estimate.

[Disks [+ [2 [3 1 4 | 5 | 6 |
Fetch time 2
fetches 8812 4753 4753 4753 4753 4753
driver time (sec) 4.406 2.3765 2.3765 2.3765 2.3765 2.3765
stall time (sec) 0.145 0 0 0 0 0.001
elapsed time (sec) 108.089 | 105.915 | 105.915 | 105.915 | 105.915 | 105.916
average fetch time (msec) 3.173 3.208 3.254 3.283 3.297 3.324
average disk utilization 0.26 0.072 0.049 0.037 0.03 0.025
Fetch time 4
fetches 8812 10268 4909 4753 4753 4753
driver time (sec) 4.406 5.134 2.4545 2.3765 2.3765 2.3765
stall time (sec) 0.145 0 0 0 0 0.001
elapsed time (sec) 108.089 | 108.672 | 105.993 | 105.915 | 105.915 | 105.916
average fetch time (msec) 3.143 3.857 3.341 3.283 3.297 3.324
average disk utilization 0.26 0.18 0.052 0.037 0.03 0.025
Fetch time 8
fetches 8812 8818 8838 10277 4948 4852
driver time (sec) 4.406 4.409 4.419 5.1385 2.474 2.426
stall time (sec) 0.145 0 0 0 0 0.001
elapsed time (sec) 108.089 | 107.947 | 107.957 | 108.677 | 106.012 | 105.965
average fetch time (msec) 3.143 3.152 3.185 3.943 3.551 3.343
average disk utilization 0.26 0.13 0.087 0.093 0.033 0.026
Fetch time 15
fetches 8812 8815 8844 8821 8830 8824
driver time (sec) 4.406 4.4075 4.422 4.4105 4.415 4.412
stall time (sec) 0.145 0 0 0 0 0.001
elapsed time (sec) 108.089 | 107.946 107.96 107.949 | 107.953 | 107.951
average fetch time (msec) 3.141 3.149 3.182 3.182 3.194 3.206
average disk utilization 0.26 0.13 0.087 0.065 0.052 0.044
Fetch time 30
fetches 8812 8812 8832 8824 8816 8821
driver time (sec) 4.406 4.406 4.416 4.412 4.408 4.4105
stall time (sec) 0.145 0 0 0 0 0.001
elapsed time (sec) 108.089 | 107.944 | 107.954 107.95 107.946 107.95
average fetch time (msec) 3.142 3.147 3.177 3.182 3.19 3.204
average disk utilization 0.26 0.13 0.087 0.065 0.052 0.044
Fetch time 60
fetches 8812 8812 8823 8816 8819 8825
driver time (sec) 4.406 4.406 4.4115 4.408 4.4095 4.4125
stall time (sec) 0.145 0 0 0 0 0.001
elapsed time (sec) 108.089 | 107.944 107.95 107.946 | 107.948 | 107.952
average fetch time (msec) 3.141 3.146 3.176 3.177 3.189 3.207
average disk utilization 0.26 0.13 0.087 0.065 0.052 0.044

Table 60: Forestall performance as a function of static fetch time estimate on the dinero trace.

56

[Disks [T [2 [3 [4 [5 [6]

Fetch time 2

fetches 6892 4953 4953 4953 4953 4953
driver time (sec) 3.446 2.4765 | 2.4765 | 2.4765 | 2.4765 | 2.4765
stall time (sec) 0.782 0 0 0 0 0.001
elapsed time (sec) 29.162 | 27.411 | 27.411 | 27.411 | 27.411 | 27.412
average fetch time (msec) 3.74 3.243 3.321 3.295 3.331 3.342
average disk utilization 0.88 0.29 0.2 0.15 0.12 0.1
Fetch time 4

fetches 6931 8656 5108 4953 4953 4953
driver time (sec) 3.4655 | 4.328 2.554 | 2.4765 | 2.4765 | 2.4765
stall time (sec) 0.911 0 0 0 0 0.001
elapsed time (sec) 29.311 | 29.262 | 27.488 | 27.411 | 27.411 | 27.412
average fetch time (msec) | 3.753 3.57 3.507 3.295 3.331 3.342
average disk utilization 0.89 0.53 0.22 0.15 0.12 0.1
Fetch time 8

fetches 6931 8570 8680 9650 5181 5063
driver time (sec) 3.4655 4.285 4.34 4.825 2.5905 | 2.5315
stall time (sec) 0.911 0 0 0 0 0.001
elapsed time (sec) 29.311 | 29.219 | 29.274 | 29.759 | 27.525 | 27.467
average fetch time (msec) | 3.758 3.36 3.448 3.976 3.57 3.449
average disk utilization 0.89 0.49 0.34 0.32 0.13 0.11
Fetch time 15

fetches 6931 8570 8676 8680 8623 8582
driver time (sec) 3.4655 4.285 4.338 4.34 4.3115 4.291
stall time (sec) 0.911 0 0 0 0 0.001
elapsed time (sec) 29.311 | 29.219 | 29.272 | 29.274 | 29.246 | 29.226
average fetch time (msec) | 3.759 3.362 3.438 3.368 3.394 3.359
average disk utilization 0.89 0.49 0.34 0.25 0.2 0.16
Fetch time 30

fetches 6931 8571 8673 8688 8623 8577
driver time (sec) 3.4655 | 4.2855 | 4.3365 | 4.344 | 4.3115 | 4.2885
stall time (sec) 0.911 0 0 0 0 0.001
elapsed time (sec) 29.311 | 29.22 | 29.271 | 29.278 | 29.246 | 29.224
average fetch time (msec) | 3.759 3.365 3.427 3.366 3.389 3.358
average disk utilization 0.89 0.49 0.34 0.25 0.2 0.16
Fetch time 60

fetches 6931 8570 8673 8681 8627 8583
driver time (sec) 3.4655 4.285 4.3365 | 4.3405 | 4.3135 | 4.2915
stall time (sec) 0.911 0 0 0 0 0.001
elapsed time (sec) 29.311 | 29.219 | 29.271 | 29.275 | 29.248 | 29.227
average fetch time (msec) | 3.758 3.362 3.43 3.363 3.394 3.36
average disk utilization 0.89 0.49 0.34 0.25 0.2 0.16

Table 61: Forestall performance as a function of static fetch time estimate on the cscopel trace.

57

Disks 1 2 3 4 [5 6 7 8 0 [12 | 16
Fetch time 2

fetches 5966 5966 5966 5966 5966 5966 5966 5966 5966 5966 5966
driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983
stall time (sec) 33.592 | 23.879 15.09 8.553 5.27 3.226 1.792 1.258 0.812 0.262 0.018
elapsed time (sec) 73.684 | 63.971 | 55.182 | 48.645 | 45.362 | 43.318 | 41.884 41.35 40.904 | 40.354 40.11
average fetch time (msec) 9.476 15.459 | 17.353 | 18.156 | 18.318 | 18.707 | 18.866 | 19.181 | 19.048 | 19.212 19.31
average disk utilization 0.77 0.72 0.63 0.56 0.48 0.43 0.38 0.35 0.28 0.24 0.18
Fetch time 4

fetches 6166 5966 5966 5966 5966 5966 5966 5966 5966 5966 5966
driver time (sec) 3.083 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983
stall time (sec) 20.969 | 24.945 15.09 9.212 5.27 3.226 1.792 1.258 0.812 0.262 0.018
elapsed time (sec) 61.161 | 65.037 | 55.182 | 49.304 | 45.362 | 43.318 | 41.884 41.35 40.904 | 40.354 40.11
average fetch time (msec) 8.827 15.325 | 17.353 | 18.085 | 18.318 | 18.707 | 18.866 | 19.181 | 19.048 | 19.212 19.31
average disk utilization 0.89 0.7 0.63 0.55 0.48 0.43 0.38 0.35 0.28 0.24 0.18
Fetch time 8

fetches 6284 6144 6025 5967 5966 5966 5966 5966 5966 5966 5966
driver time (sec) 3.142 3.072 3.0125 | 2.9835 2.983 2.983 2.983 2.983 2.983 2.983 2.983
stall time (sec) 15.971 | 14.011 | 20.831 | 11.275 7.757 3.371 1.912 1.258 0.812 0.262 0.018
elapsed time (sec) 56.222 | 54.192 | 60.953 | 51.368 | 47.849 | 43.463 | 42.004 41.35 40.904 | 40.354 40.11
average fetch time (msec) | 8.768 | 13.401 | 14.909 | 17.84 | 18.302 | 18.699 | 18.803 | 19.191 | 19.048 | 19.212 19.31
average disk utilization 0.98 0.76 0.49 0.52 0.46 0.43 0.38 0.35 0.28 0.24 0.18
Fetch time 15

fetches 6318 6333 6613 6036 5990 5969 5966 5966 5966 5966 5966
driver time (sec) 3.159 3.1665 | 3.3065 3.018 2.995 2.9845 2.983 2.983 2.983 2.983 2.983
stall time (sec) 15.858 5.998 2.274 6.358 5.106 1.933 2.128 0.746 0.438 0.321 0.018
elapsed time (sec) 56.126 | 46.274 42.69 46.485 45.21 42.027 42.22 40.838 40.53 40.413 40.11
average fetch time (msec) 8.773 13.294 | 14.556 | 16.693 | 17.083 | 18.439 18.61 19.06 19.131 | 19.294 | 19.304
average disk utilization 0.99 0.91 0.75 0.54 0.45 0.44 0.38 0.35 0.28 0.24 0.18
Fetch time 30

fetches 6318 6592 7372 7298 7256 6664 6253 5997 5969 5970 5970
driver time (sec) 3.159 3.296 3.686 3.649 3.628 3.332 | 3.1265 | 2.9985 | 2.9845 | 2.985 2.985
stall time (sec) 15.858 | 5.597 1.798 0 0 0.002 0.16 0.009 0.023 0.02 0.025
elapsed time (sec) 56.126 | 46.002 | 42.593 | 40.758 | 40.737 | 40.443 | 40.396 | 40.117 | 40.117 | 40.114 | 40.119
average fetch time (msec) | 8.773 | 13.256 | 14.494 | 16.687 | 16.764 | 17.98 | 18.135 | 18.889 | 19.126 | 19.144 | 19.305
average disk utilization 0.99 0.95 0.84 0.75 0.6 0.49 0.4 0.35 0.28 0.24 0.18
Fetch time 60

fetches 6318 6592 7683 7857 8513 8152 7922 7607 7136 6672 6157
driver time (sec) 3.159 3.296 3.8415 | 3.9285 | 4.2565 4.076 3.961 3.8035 3.568 3.336 3.0785
stall time (sec) 15.858 5.597 1.798 0 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 56.126 | 46.002 | 42.749 | 41.038 | 41.366 | 41.186 41.07 40.922 | 40.682 | 40.446 | 40.188
average fetch time (msec) | 8.773 | 13.257 | 14.436 | 16.575 | 16.88 | 17.901 | 18.191 | 18.771 | 19.019 | 19.104 | 19.226
average disk utilization 0.99 0.95 0.86 0.79 0.69 0.59 0.5 0.44 0.33 0.26 0.18

Table 62: Forestall performance as a function of static fetch time estimate on the cscope2 trace.

58

Disks 1 2 3 4 [5 6 7 8 0 [12 | 16
Fetch time 2

fetches 11877 11739 11739 11739 11739 11739 11739 11739 11739 11739 11739
driver time (sec) 5.9385 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695
stall time (sec) 32.201 | 14.155 6.993 2.386 1.123 0.395 0.18 0.067 0.085 0.001 0
elapsed time (sec) 112.24 | 94.125 | 86.963 | 82.356 | 81.093 | 80.365 80.15 80.037 | 80.055 | 79.971 79.97
average fetch time (msec) 7.782 12.15 14.801 | 16.136 | 16.856 | 17.427 | 17.847 18.21 18.622 | 18.753 19.17
average disk utilization 0.82 0.76 0.67 0.58 0.49 0.42 0.37 0.33 0.27 0.23 0.18
Fetch time 4

fetches 11989 | 11739 | 11739 | 11739 | 11739 | 11739 | 11739 | 11739 | 11739 | 11739 | 11739
driver time (sec) 5.9945 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695
stall time (sec) 15.255 | 19.98 7.427 2.386 1.123 0.395 0.18 0.067 0.085 0.001 0
elapsed time (sec) 95.35 99.95 | 87.397 | 82.356 | 81.093 | 80.365 | 80.15 | 80.037 | 80.055 | 79.971 | 79.97
average fetch time (msec) 7.687 11.882 | 14.786 | 16.136 | 16.856 | 17.427 | 17.847 18.21 18.622 | 18.753 19.17
average disk utilization 0.97 0.7 0.66 0.58 0.49 0.42 0.37 0.33 0.27 0.23 0.18
Fetch time 8

fetches 12029 12380 11935 11739 11739 11739 11739 11739 11739 11739 11739
driver time (sec) 6.0145 6.19 5.9675 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695
stall time (sec) 14.198 | 3.272 | 15.339 | 5.365 2.089 0.439 0.18 0.067 0.085 0.001 0
elapsed time (sec) 94.313 | 83.563 | 95.407 | 85.335 | 82.059 | 80.409 | 80.15 | 80.037 | 80.055 | 79.971 | 79.97
average fetch time (msec) | 7.697 | 11.635 | 13.861 | 16.069 | 16.776 | 17.444 | 17.847 | 18.21 18.622 | 18.753 | 19.17
average disk utilization 0.98 0.86 0.58 0.55 0.48 0.42 0.37 0.33 0.27 0.23 0.18
Fetch time 15

fetches 12069 | 13014 | 13732 | 12759 | 12118 | 11739 | 11739 | 11739 | 11739 | 11739 | 11739
driver time (sec) 6.0345 6.507 6.866 6.3795 6.059 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695 | 5.8695
stall time (sec) 13.943 2.862 0.64 0.052 0.935 0.188 0.335 0.009 0.084 0.001 0
elapsed time (sec) 94.078 83.47 81.607 | 80.532 | 81.095 | 80.158 | 80.305 | 79.979 | 80.054 | 79.971 79.97
average fetch time (msec) 7.703 11.602 13.64 15.752 | 16.266 | 17.462 | 17.749 | 18.334 | 18.598 | 18.749 | 19.162
average disk utilization 0.99 0.9 0.77 0.62 0.49 0.43 0.37 0.34 0.27 0.23 0.18
Fetch time 30

fetches 12092 13414 14940 14520 14134 13588 13184 12677 12078 11749 11742
driver time (sec) 6.046 6.707 7.47 7.26 7.067 6.794 6.592 | 6.3385 | 6.039 | 5.8745 | 5.871
stall time (sec) 13.943 | 2.862 0.64 0.052 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 94.09 83.67 | 82.211 | 81.413 | 81.168 | 80.896 | 80.693 | 80.448 | 80.145 | 79.976 | 79.972
average fetch time (msec) | 7.741 11.586 | 13.625 | 15.76 16.23 17.39 17.76 | 18.613 | 18.804 | 18.924 | 19.105
average disk utilization 0.99 0.93 0.83 0.7 0.57 0.49 0.41 0.37 0.28 0.23 0.18
Fetch time 60

fetches 12092 13534 15442 15702 15780 15120 14760 14393 13977 13574 12798
driver time (sec) 6.046 6.767 7.721 7.851 7.89 7.56 7.38 7.1965 | 6.9885 6.787 6.399
stall time (sec) 13.943 2.862 0.64 0.052 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 94.09 83.73 | 82.462 | 82.004 | 81.991 | 81.662 | 81.481 | 81.306 | 81.094 | 80.889 80.5
average fetch time (msec) | 7.741 11.585 13.8 15.782 | 16.244 | 17.301 | 17.723 | 18.584 | 18.766 | 18.925 | 19.119
average disk utilization 0.99 0.94 0.86 0.76 0.63 0.53 0.46 0.41 0.32 0.26 0.19

Table 63: Forestall performance as a function of static fetch time estimate on the cscope3 trace.

59

Disks 1 2 3 4 [5 6 7 8 10 [12 | 16 |
Fetch time 2

fetches 6493 6493 6493 6493 6493 6493 6493 6493 6493 6493 6493
driver time (sec) 3.2465 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465
stall time (sec) 64.134 29.651 | 18.465 | 11.895 8.142 5.704 3.725 3.291 1.773 0.821 0.507
elapsed time (sec) 106.097 | 71.614 | 60.428 | 53.858 | 50.105 | 47.667 | 45.688 | 45.254 | 43.736 | 42.784 42.47
average fetch time (msec) 13.314 15.231 | 16.228 | 17.452 | 17.993 | 18.334 | 18.457 | 18.528 | 18.598 | 18.642 | 18.707
average disk utilization 0.81 0.69 0.58 0.53 0.47 0.42 0.37 0.33 0.28 0.24 0.18
Fetch time 4

fetches 6531 6495 6521 6493 6493 6500 6493 6493 6493 6493 6493
driver time (sec) 3.2655 | 3.2475 | 3.2605 | 3.2465 | 3.2465 3.25 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465
stall time (sec) 57.697 | 31.749 | 19.621 | 11.895 | 8.142 5.821 3.725 3.306 1.773 0.821 0.507
elapsed time (sec) 99.679 | 73.713 | 61.598 | 53.858 | 50.105 | 47.787 | 45.688 | 45.269 | 43.736 | 42.784 | 42.47
average fetch time (msec) 13.103 15.003 16.19 17.452 | 17.993 18.33 18.457 | 18.524 | 18.598 | 18.626 | 18.707
average disk utilization 0.86 0.66 0.57 0.53 0.47 0.42 0.37 0.33 0.28 0.24 0.18
Fetch time 8

fetches 6531 6578 6538 6503 6493 6497 6493 6493 6493 6493 6493
driver time (sec) 3.2655 3.289 3.269 3.2515 | 3.2465 | 3.2485 | 3.2465 | 3.2465 | 3.2465 | 3.2465 | 3.2465
stall time (sec) 56.363 | 24.886 | 35.324 | 16.784 | 11.185 | 6.451 4.07 3.321 1.818 0.821 0.507
elapsed time (sec) 98.345 | 66.891 | 77.309 | 58.752 | 53.148 | 48.416 | 46.033 | 45.284 | 43.781 | 42.784 | 42.47
average fetch time (msec) 13.104 | 14.396 | 15.337 | 17.336 | 17.923 | 18.361 | 18.455 | 18.533 | 18.614 | 18.628 | 18.707
average disk utilization 0.87 0.71 0.43 0.48 0.44 0.41 0.37 0.33 0.28 0.24 0.18
Fetch time 15

fetches 6531 6647 6688 6538 6530 6505 6494 6493 6493 6493 6493
driver time (sec) 3.2655 3.3235 3.344 3.269 3.265 3.2525 3.247 3.2465 | 3.2465 | 3.2465 | 3.2465
stall time (sec) 55.448 20.658 | 12.116 7.584 12.461 6.181 5.497 2.676 1.863 1.076 0.617
elapsed time (sec) 97.43 62.698 | 54.176 | 49.569 | 54.442 48.15 47.46 44.639 | 43.826 | 43.039 42.58
average fetch time (msec) 13.104 14.423 | 14.918 | 16.525 17.05 18.137 | 18.457 | 18.516 | 18.585 | 18.648 | 18.737
average disk utilization 0.88 0.76 0.61 0.54 0.41 0.41 0.36 0.34 0.28 0.23 0.18
Fetch time 30

fetches 6565 6687 6891 6769 6723 6616 6560 6514 6493 6493 6493
driver time (sec) 3.2825 | 3.3435 | 3.4455 | 3.3845 | 3.3615 | 3.308 3.28 3.257 | 3.2465 | 3.2465 | 3.2465
stall time (sec) 55.586 | 19.562 | 6.609 2.522 1.939 0.671 0.813 0.072 0.027 0.119 0.215
elapsed time (sec) 97.585 61.622 | 48.771 | 44.623 | 44.017 | 42.695 | 42.809 | 42.045 41.99 42.082 | 42.178
average fetch time (msec) 13.059 | 14.378 | 14.694 | 16.438 | 16.683 | 17.776 | 17.929 | 18.496 | 18.549 | 18.526 | 18.672
average disk utilization 0.88 0.78 0.69 0.62 0.51 0.46 0.39 0.36 0.29 0.24 0.18
Fetch time 60

fetches 6610 6687 7087 6911 6969 6823 6964 6836 6703 6624 6565
driver time (sec) 3.305 3.3435 | 3.5435 | 3.4555 | 3.4845 | 3.4115 3.482 3.418 3.3515 3.312 3.2825
stall time (sec) 54.845 19.089 5.792 2.521 1.062 0.099 0.014 0.009 0.005 0.001 0
elapsed time (sec) 96.866 61.149 | 48.052 | 44.693 | 43.263 | 42.227 | 42.212 | 42.143 | 42.073 | 42.029 | 41.999
average fetch time (msec) 12.998 | 14.374 | 14.565 | 16.422 16.75 17.762 | 17.634 | 18.282 | 18.499 | 18.486 | 18.626
average disk utilization 0.89 0.79 0.72 0.63 0.54 0.48 0.42 0.37 0.29 0.24 0.18

Table 64: Forestall performance as a function of static fetch time estimate on the glimpse trace.

60

Disks 1 2 3 4 [5 6 7 8 10 [12 | 16 |
Fetch time 2

fetches 2900 2903 2903 2903 2903 2903 2903 2903 2903 2903 2903
driver time (sec) 1.45 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515
stall time (sec) 15.617 7.475 4.441 2.739 1.88 1.368 1.069 0.968 0.567 0.327 0.222
elapsed time (sec) 25.232 | 17.091 | 14.057 | 12.355 | 11.496 | 10.984 | 10.685 | 10.584 | 10.183 9.943 9.838
average fetch time (msec) 8.451 11.126 | 13.266 | 15.004 | 16.194 | 16.777 | 17.359 | 18.041 | 18.669 | 18.998 | 19.113
average disk utilization 0.97 0.94 0.91 0.88 0.82 0.74 0.67 0.62 0.53 0.46 0.35
Fetch time 4

fetches 2981 2903 2903 2903 2903 2903 2903 2903 2903 2903 2903
driver time (sec) 1.4905 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515
stall time (sec) 15.245 | 8.724 4.8 2.835 1.88 1.368 1.069 0.968 0.567 0.327 0.222
elapsed time (sec) 24.9 18.34 | 14.416 | 12.451 | 11.496 | 10.984 | 10.685 | 10.584 | 10.183 | 9.943 9.838
average fetch time (msec) 8.248 10.959 | 13.249 15 16.194 | 16.777 | 17.359 | 18.041 | 18.669 | 18.998 | 19.113
average disk utilization 0.99 0.87 0.89 0.87 0.82 0.74 0.67 0.62 0.53 0.46 0.35
Fetch time 8

fetches 2981 2982 3093 2903 2903 2903 2903 2903 2903 2903 2903
driver time (sec) 1.4905 1.491 1.5465 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515 | 1.4515
stall time (sec) 15.245 | 6.329 3.461 3.358 2.261 1.374 1.204 0.983 0.567 0.327 0.222
elapsed time (sec) 24.9 15.985 | 13.172 | 12.974 | 11.877 | 10.99 10.82 | 10.599 | 10.183 | 9.943 9.838
average fetch time (msec) | 8.248 | 10.583 | 12.135 | 14.947 | 16.031 | 16.705 | 17.329 | 18.036 | 18.669 | 18.998 | 19.113
average disk utilization 0.99 0.99 0.95 0.84 0.78 0.74 0.66 0.62 0.53 0.46 0.35
Fetch time 15

fetches 2081 2082 3137 3102 3302 2928 2909 2903 2903 2903 2903
driver time (sec) 1.4905 1.491 1.5685 1.551 1.651 1.464 1.4545 | 1.4515 | 1.4515 | 1.4515 | 1.4515
stall time (sec) 15.245 6.329 3.433 2.056 0.685 0.86 1.511 1.028 0.627 0.38 0.327
elapsed time (sec) 24.9 15.985 | 13.166 | 11.772 | 10.501 | 10.489 11.13 10.644 | 10.243 9.996 9.943
average fetch time (msec) 8.248 10.583 | 12.033 | 14.203 | 14.993 | 16.505 | 17.156 | 17.972 | 18.665 | 18.985 | 19.008
average disk utilization 0.99 0.99 0.96 0.94 0.94 0.77 0.64 0.61 0.53 0.46 0.35
Fetch time 30

fetches 2981 2982 3137 3102 3310 3505 3737 3663 3448 3017 2917
driver time (sec) 1.4905 | 1.491 | 1.5685 | 1.551 1.655 | 1.7525 | 1.8685 | 1.8315 | 1.724 | 1.5085 | 1.4585
stall time (sec) 15.245 | 6.329 3.433 2.052 0.579 0.265 0.164 0.022 0.019 0.018 0.101
elapsed time (sec) 24.9 15.985 | 13.166 | 11.768 | 10.399 | 10.182 | 10.197 | 10.018 | 9.908 9.691 9.724
average fetch time (msec) | 8.248 | 10.583 | 12.037 | 14.199 | 14.932 | 15.957 | 16.449 | 17.305 | 18.174 | 18.925 | 18.949
average disk utilization 0.99 0.99 0.96 0.94 0.95 0.92 0.86 0.79 0.63 0.49 0.36
Fetch time 60

fetches 2981 2982 3137 3102 3310 3505 3734 3779 4080 4137 3880
driver time (sec) 1.4905 1.491 1.5685 1.551 1.655 1.7525 1.867 1.8895 2.04 2.0685 1.94
stall time (sec) 15.245 6.329 3.433 2.052 0.579 0.265 0.023 0.009 0.005 0.001 0
elapsed time (sec) 24.9 15.985 | 13.166 | 11.768 | 10.399 | 10.182 | 10.055 | 10.063 | 10.21 | 10.234 | 10.105
average fetch time (msec) | 8.248 | 10.583 | 12.037 | 14.199 | 14.932 | 15.958 | 16.446 | 17.181 | 17.814 | 18.076 | 18.644
average disk utilization 0.99 0.99 0.96 0.94 0.95 0.92 0.87 0.81 0.71 0.61 0.45

Table 65: Forestall performance as a function of static fetch time estimate on the ld trace.

61

[Disks [T [2 [3 [4 [5 [6]

Fetch time 2

fetches 3855 3856 3855 3856 3855 3856

driver time (sec) 1.9275 1.928 1.9275 1.928 1.9275 1.928
stall time (sec) 4.765 0.152 0.258 0 0 0.001
elapsed time (sec) 85.908 | 81.296 | 81.401 | 81.144 | 81.143 | 81.145
average fetch time (msec) | 16.863 | 17.094 | 17.051 | 17.666 | 17.507 | 17.701
average disk utilization 0.76 0.41 0.27 0.21 0.17 0.14

Fetch time 4

fetches 4108 3856 3855 3856 3855 3856

driver time (sec) 2.054 1.928 1.9275 1.928 1.9275 1.928
stall time (sec) 3.994 0.152 0.258 0 0 0.001
elapsed time (sec) 85.264 | 81.296 | 81.401 | 81.144 | 81.143 | 81.145
average fetch time (msec) | 14.79 | 16.841 | 17.051 | 17.666 | 17.507 | 17.701
average disk utilization 0.71 0.4 0.27 0.21 0.17 0.14

Fetch time 8

fetches 4695 4174 3937 3856 3855 3856

driver time (sec) 2.3475 2.087 1.9685 1.928 1.9275 1.928
stall time (sec) 3.995 0.152 0.293 0 0 0.001
elapsed time (sec) 85.558 | 81.455 | 81.477 | 81.144 | 81.143 | 81.145
average fetch time (msec) | 15.015 | 14.987 | 15.805 | 17.482 | 17.477 | 17.701
average disk utilization 0.82 0.38 0.25 0.21 0.17 0.14

Fetch time 15

fetches 4698 5803 6051 4044 3922 3872

driver time (sec) 2.349 2.9015 | 3.0255 2.022 1.961 1.936
stall time (sec) 3.994 0.153 0.258 0 0 0.001
elapsed time (sec) 85.559 82.27 82.499 | 81.238 | 81.177 | 81.153
average fetch time (msec) | 15.033 | 16.514 | 15.716 | 16.161 | 16.335 | 17.349
average disk utilization 0.83 0.58 0.38 0.2 0.16 0.14

Fetch time 30

fetches 4698 5833 6194 6127 6200 5032

driver time (sec) 2.349 | 2.9165 | 3.097 | 3.0635 3.1 2.516
stall time (sec) 3.994 0.153 0.258 0 0 0.001
elapsed time (sec) 85.559 | 82.285 | 82.571 | 82.279 | 82.316 | 81.733
average fetch time (msec) | 15.032 | 16.567 | 15.956 | 16.585 | 16.583 | 17.107
average disk utilization 0.83 0.59 0.4 0.31 0.25 0.18

Fetch time 60

fetches 4698 5837 6224 6160 6042 5910

driver time (sec) 2.349 2.9185 3.112 3.08 3.021 2.955
stall time (sec) 3.994 0.153 0.258 0 0 0.001
elapsed time (sec) 85.559 | 82.287 | 82.586 | 82.296 | 82.237 | 82.172
average fetch time (msec) | 15.03 | 16.577 | 15.937 | 16.598 | 16.713 | 17.145
average disk utilization 0.83 0.59 0.4 0.31 0.25 0.21

Table 66: Forestall performance as a function of static fetch time estimate on the postgres-join trace.

62

Disks 1 2 3 4 [5 6 7 8 10 [12 | 16 |
Fetch time 2

fetches 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 30.691 | 11.831 4.806 1.562 0.524 0.143 0.032 0.009 0.005 0.001 0
elapsed time (sec) 43.711 | 24.851 | 17.826 | 14.582 | 13.544 | 13.163 | 13.052 | 13.029 | 13.025 | 13.021 13.02
average fetch time (msec) | 13.985 | 14.783 | 14.672 | 15.051 | 14.995 | 15.409 | 15.265 | 15.549 | 15.372 15.21 15.114
average disk utilization 0.99 0.92 0.85 0.8 0.68 0.6 0.52 0.46 0.36 0.3 0.22
Fetch time 4

fetches 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 30.691 | 10.837 5.617 1.562 0.524 0.143 0.032 0.009 0.005 0.001 0
elapsed time (sec) 43.711 | 23.857 | 18.637 | 14.582 | 13.544 | 13.163 | 13.052 | 13.029 | 13.025 | 13.021 13.02
average fetch time (msec) | 13.985 14.13 14.653 | 15.051 | 14.995 | 15.409 | 15.265 | 15.549 | 15.372 15.21 15.114
average disk utilization 0.99 0.91 0.81 0.8 0.68 0.6 0.52 0.46 0.36 0.3 0.22
Fetch time 8

fetches 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 30.691 | 10.811 3.517 0.868 0.736 0.08 0.032 0.009 0.005 0.001 0
elapsed time (sec) 43.711 | 23.831 | 16.537 | 13.888 | 13.756 13.1 13.052 | 13.029 | 13.025 | 13.021 13.02
average fetch time (msec) | 13.985 | 14.164 | 13.915 | 14.467 | 14.835 | 15.339 | 15.267 | 15.549 | 15.372 15.21 15.114
average disk utilization 0.99 0.92 0.87 0.8 0.67 0.6 0.52 0.46 0.36 0.3 0.22
Fetch time 15

fetches 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425
stall time (sec) 30.691 | 10.791 3.517 0.844 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 43.711 | 23.811 | 16.537 | 13.864 13.02 13.021 13.02 13.029 | 13.025 | 13.021 13.02
average fetch time (msec) | 13.985 | 14.166 | 13.936 | 14.514 14.38 15.096 | 14.868 | 15.383 | 15.289 | 15.182 | 15.132
average disk utilization 0.99 0.92 0.87 0.81 0.68 0.6 0.5 0.46 0.36 0.3 0.22
Fetch time 30

fetches 3085 3085 3085 3085 3085 3297 3764 3588 3123 3085 3085
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.5425 | 1.6485 1.882 1.794 1.5615 | 1.5425 | 1.5425
stall time (sec) 30.691 | 10.772 3.517 0.844 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 43.711 | 23.792 | 16.537 | 13.864 13.02 13.127 13.36 13.281 | 13.044 | 13.021 13.02
average fetch time (msec) | 13.985 | 14.172 | 13.947 | 14.536 | 14.398 | 15.058 | 15.214 | 15.234 | 15.241 | 15.096 | 15.052
average disk utilization 0.99 0.92 0.87 0.81 0.68 0.63 0.61 0.51 0.36 0.3 0.22
Fetch time 60

fetches 3085 3085 3085 3085 3166 3313 3830 3942 3904 3860 4108
driver time (sec) 1.5425 | 1.5425 | 1.5425 | 1.5425 1.583 1.6565 1.915 1.971 1.952 1.93 2.054
stall time (sec) 30.691 | 10.772 3.517 0.844 0 0.001 0 0.009 0.005 0.001 0
elapsed time (sec) 43.711 | 23.792 | 16.537 | 13.864 | 13.061 | 13.135 | 13.393 | 13.458 | 13.435 | 13.409 | 13.532
average fetch time (msec) | 13.985 | 14.173 13.95 14.548 | 14.243 | 15.037 | 15.228 | 15.284 14.8 14.764 | 14.865
average disk utilization 0.99 0.92 0.87 0.81 0.69 0.63 0.62 0.56 0.43 0.35 0.28

Table 67: Forestall performance as a function of static fetch time estimate on the postgres-select trace.

63

[Disks T [2 [3 [4 [5 [6 |

Fetch time 2

fetches 5925 5912 5889 5891 5889 5897
driver time (sec) 2.9625 2.956 2.9445 | 2.9455 | 2.9445 | 2.9485
stall time (sec) 30.831 3.009 3.435 1.188 0.52 0.1
elapsed time (sec) 63.872 | 36.044 | 36.458 | 34.212 | 33.543 | 33.127
average fetch time (msec) | 10.717 | 7.708 | 14.253 | 10.062 | 15.601 | 11.066
average disk utilization 0.99 0.63 0.77 0.43 0.55 0.33
Fetch time 4

fetches 5925 6016 5907 5894 5890 5897
driver time (sec) 2.9625 | 3.008 | 2.9535 | 2.947 2.945 | 2.9485
stall time (sec) 30.667 | 0.421 3.216 0.707 0.546 0.1
elapsed time (sec) 63.708 | 33.508 | 36.248 | 33.733 | 33.57 | 33.127
average fetch time (msec) | 10.711 | 7.706 | 14.132 | 9.903 | 15.673 | 11.06
average disk utilization 1 0.69 0.77 0.43 0.55 0.33
Fetch time 8

fetches 5925 7045 6444 6025 5910 5896
driver time (sec) 2.9625 | 3.5225 3.222 3.0125 2.955 2.948
stall time (sec) 30.667 | 0.337 0.355 0.16 0.225 0.06
elapsed time (sec) 63.708 | 33.938 | 33.656 | 33.251 | 33.259 | 33.087
average fetch time (msec) | 10.711 | 7.499 | 14.085 | 10.019 | 14.989 | 10.639
average disk utilization 1 0.78 0.9 0.45 0.53 0.32
Fetch time 15

fetches 5925 7274 6563 8643 7534 6421
driver time (sec) 2.9625 3.637 3.2815 | 4.3215 3.767 3.2105
stall time (sec) 30.667 0.337 0.356 0.129 0.133 0.055
elapsed time (sec) 63.708 | 34.053 | 33.716 | 34.529 | 33.979 | 33.344
average fetch time (msec) | 10.711 | 7.492 | 14.095 | 9.717 15.34 | 10.458
average disk utilization 1 0.8 0.91 0.61 0.68 0.34
Fetch time 30

fetches 5925 7742 6563 9699 8300 9846
driver time (sec) 2.9625 | 3.871 | 3.2815 | 4.8495 4.15 4.923
stall time (sec) 30.667 | 0.337 0.356 0.129 0.133 0.055
elapsed time (sec) 63.708 | 34.287 | 33.716 | 35.057 | 34.362 | 35.057
average fetch time (msec) | 10.711 | 7.467 | 14.099 | 9.758 | 15.445 | 10.708
average disk utilization 1 0.84 0.91 0.67 0.75 0.5
Fetch time 60

fetches 5925 7778 6563 9807 8300 10015
driver time (sec) 2.9625 3.889 3.2815 | 4.9035 4.15 5.0075
stall time (sec) 30.667 0.337 0.356 0.129 0.133 0.055
elapsed time (sec) 63.708 | 34.305 | 33.716 | 35.111 | 34.362 | 35.141
average fetch time (msec) | 10.711 | 7.497 | 14.096 | 9.798 | 15.451 | 10.678
average disk utilization 1 0.85 0.91 0.68 0.75 0.51

Table 68: Forestall performance as a function of static fetch time estimate on the xds trace.

64

