
Sorting by Parallel Insertion on a

One-Dimensional Sub-Bus Array

James D. Fix and Richard E. Ladner

Technical Report # 96-09-02

Department of Computer Science and Engineering

University of Washington, Seattle 98195

Abstract

We consider the problem of sorting on a one-dimensional sub-bus array of processors. The

sub-bus broadcast operation makes possible a new class of parallel sorting algorithms whose

complexity we analyze with the parallel insertion model. A sorting method, or sorting strategy,

in the parallel insertion model, uses a sequence of left and right insertion steps, of which we give

two types: greedy insertion steps and simple insertion steps. For two restricted classes of parallel

insertion sorting, the one-way and the alternating sorting strategies, we give lower bounds and

optimal sorting strategies that exactly match the lower bounds. Optimal alternating sorting

strategies are demonstrated to use a factor of two fewer insertion steps on average than odd-

even transposition sort and any optimal one-way sorting strategy. For general sorting strategies,

we give a weak lower bound and consider a sorting strategy that uses the fewest greedy insertion

steps. Finally, we discuss the issues involved in implementing parallel insertion sorting strategies

on sub-bus machines. We evaluate the performance of our sorting strategies by applying them

to shearsort, a common two-dimensional mesh sorting algorithm, and by contrasting the results

with our theoretical results from the parallel insertion model.

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array

�

James D. Fix

y

Richard E. Ladner

z

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

September 16, 1996

Abstract

We consider the problem of sorting on a one-dimensional sub-bus array of processors. The

sub-bus broadcast operation makes possible a new class of parallel sorting algorithms whose

complexity we analyze with the parallel insertion model. A sorting method, or sorting strategy,

in the parallel insertion model, uses a sequence of left and right insertion steps, of which we give

two types: greedy insertion steps and simple insertion steps. For two restricted classes of parallel

insertion sorting, the one-way and the alternating sorting strategies, we give lower bounds and

optimal sorting strategies that exactly match the lower bounds. Optimal alternating sorting

strategies are demonstrated to use a factor of two fewer insertion steps on average than odd-

even transposition sort and any optimal one-way sorting strategy. For general sorting strategies,

we give a weak lower bound and consider a sorting strategy that uses the fewest greedy insertion

steps. Finally, we discuss the issues involved in implementing parallel insertion sorting strategies

on sub-bus machines. We evaluate the performance of our sorting strategies by applying them

to shearsort, a common two-dimensional mesh sorting algorithm, and by contrasting the results

with our theoretical results from the parallel insertion model.

1 Introduction

A one-dimensional sub-bus array has a bus connecting the processors which can be segmented

into sub-buses on which an active processor can broadcast. The sub-bus broadcast capability has

�

A preliminary version of this work was presented in the Sixth Annual Symposium on Discrete Algorithms, 1995

[6]. Use of the MasPar MP-1 for this research was made possible by the Parallel Processing Laboratory at the Purdue

University School of Electrical and Computer Engineering and NSF award number CDA-9015696.

y

�x@cs.washington.edu. Fix's research was supported by an Osberg Family Trust Fellowship and by the National

Science Foundation under Grant CCR-9301186.

z

ladner@cs.washington.edu.

1

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 2

been implemented on the MasPar MP-1 and MP-2 parallel computers [1]. The MasPar computers

are two-dimensional arrays of processors which are controlled by a SIMD parallel program. One-

dimensional sub-bus operations are available in each of eight directions with wrap around. Many

parallel algorithms have been developed for the processor array model where only nearest neighbor

communication is allowed, and these algorithms are applicable to the sub-bus array model as well.

However, a natural question to ask is whether the sub-bus capability gives rise to better algorithms

than are possible on the standard mesh of processors.

The purpose of this paper is to try to determine the best way to sort in place and along one

dimension using the sub-bus broadcast operations. We present models and techniques for developing

sub-bus sorting algorithms and for showing the limitations of sorting on a sub-bus array. For several

categories of sub-bus sorting methods we give exact optimality criteria and present sorting strategies

that match those criteria. One advantage of our techniques is that we are able to provide average

case analysis for our sub-bus sorting strategies. For some sorting strategies which defy analysis we

use simulation to compare their performances. Finally, we implement several sorting strategies to

see how well they perform in a real sorting environment. We compare our sorting methods with

odd-even transposition sort, a well-known sort used on standard processor arrays.

1.1 Summary of Results

We begin by describing the parallel insertion model that models one-dimensional, in-place, com-

parison based, sorting on a sub-bus array (section 2). A left (or right) insertion step in the parallel

insertion model resembles a set of simultaneous data insertions. A sorting strategy (a generalization

of a sorting algorithm) is a sequence of insertion steps that sorts a given input. We describe two

types of left and right insertion steps, greedy insertion steps and simple insertion steps, of which

all our strategies are composed. The greedy insertion steps have the interesting property that

they remove the maximum number of inversions possible by any insertion step. Greedy insertion

steps are not e�ciently implementable, requiring log

2

n sub-bus operations per step, while simple

insertion steps are e�ciently implementable, using just three sub-bus operations per step.

We �rst describe one-way sorting strategies whose insertion steps are always in the same direction.

We show that that the number of steps required to sort using a sorting strategy that uses only left

insertion steps is at least the maximum distance a data value is from its �nal destination for those

values which are left of their �nal destinations. We show that if all permutations of the data are

equally likely then the expected number of steps required to sort with a one-way sorting strategy is

n�

q

�n

2

+

2

3

��(n

�

1

2

) where n is the number of processors in the array. We show that the one-way

sorting strategies consisting of greedy insertion steps and of simple insertion steps use exactly the

required number of steps. These exact bounds on the expected number of steps for one-way sorting

strategies indicates that the advantage of these sorting strategies over odd-even transposition sort

is quite small on average.

We next examine two-way sorting strategies which allow both left and right insertion steps (section

4). The fundamental limitation of sub-bus architectures is that when the bus is segmented into sub-

buses only one data value can be communicated on each sub-bus within each time step. A similar

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 3

limitation exists for insertion steps as well. In section 4.1 we de�ne a metric on permutations

which gives the maximum number of data values which must traverse a cut in the array in order

to reach their �nal destinations. We show that the expected number of insertion steps required to

to sort by a two-way sorting strategy is at least n=4. A special case of two-way sorting strategies

are alternating sorting strategies in which left insertion steps alternate with right insertion steps.

We show that the number of steps required to sort using an alternating sorting strategy is directly

related to our metric. We extend our bound for general strategies to show that the expected

number of insertion steps required to sort by an alternating strategy is at least n=2. We prove that

an alternating sorting strategy that uses greedy insertion steps is optimal but one that uses simple

insertion steps is not optimal.

In section 6 we use simulation to investigate the speed of alternating simple insertion sort. Our

simulations indicate that alternating simple insertion sort is almost as fast as the optimal alternating

greedy sort and both are almost twice as fast as the standard odd-even transposition sort. Finally,

we consider the best sorting strategy we can think of, namely, a best-greedy sort, which sorts in

the minimum number of greedy insertion steps. A best-greedy sort is only slightly faster than our

alternating sorting strategies. Our simulations indicate that average performance of alternating

greedy, alternating simple, and best-greedy sorts are almost identical for large n, taking slightly

more than n=2 steps on average. Figure 7 summarizes our simulation results.

Finally, we describe how to implement our sorting strategies on a real sub-bus machine (section

7). Interestingly, a left (or right) simple insertion step can be expressed almost as simply as a step

in odd-even transposition sort. In section 8 we give the results of implementing alternating simple

insertion sort as the one-dimensional sort in the two-dimensional shearsort algorithm. We compare

alternating simple insertion sort with two versions of odd-even transposition sort, an early-stopping

version that stops when the array is sorted and an oblivious version. Surprisingly, shearsort using

early-stopping odd-even transposition sort uses nearly as few insertion steps as shearsort using

alternating simple insertion sort, which is nearly half that of shearsort using the oblivious odd-

even transposition sort. On the MasPar MP-1, oblivious odd-even transposition steps are nearly

twice as fast as simple insertion steps with early-stopping odd-even transposition steps falling in

between the two. The end result is that the versions of shearsort that use oblivious odd-even

transposition steps and simple insertion steps perform similarly but shearsort using early-stopping

odd-even transposition sort performs best.

1.2 Related Work

Odd-even transposition sort [7, 10] is used for sorting on linear arrays without sub-buses where only

nearest neighbor communication is possible. In odd-even transposition sort, processors swap values

with their adjacent processors until order is achieved. It is commonly used as a subcomponent of

optimal sorting algorithms for a two-dimensional array of processors [15, 16, 17]. In a similar way,

our one-dimensional sorts could be used as subcomponents of these same algorithms for application

on a two-dimensional sub-bus array.

There are a number of architectures related to the sub-bus mesh array, namely, the mesh array

with �xed buses and the many
avors of recon�gurable mesh. A mesh array with �xed buses

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 4

is a conventional mesh of processors with nearest neighbor communication links that has been

augmented with buses. These buses connect rows of processors along each dimension and cannot

be segmented into sub-buses (see, for example, [13], [11]). A recon�gurable mesh is a general term

describing mesh architectures where each processor can dynamically con�gure connections with its

nearest neighbors. The connections give rise to buses connecting arbitrary subsets of processors in

the mesh. (e.g., see [12]). With only a constant factor of overhead, the recon�gurable meshes can

simulate a sub-bus mesh, the sub-bus mesh can simulate a mesh with �xed buses, and a mesh with

buses can simulate a conventional mesh. One-dimensional versions of the sub-bus array and the

recon�gurable arrays are essentially equivalent.

Rajasekaran [14] provides a summary and pointers to many of the sorting results on �xed bus and

recon�gurable mesh architectures, as well as results for the related problem of routing. Most of

the algorithms from this body of work assume queue sizes larger than one or involve sorting more

than one item per processor. These cannot be directly applied to our sorting models since we focus

on the problem of sorting in place.

We have found an interesting relationship between our greedy sorting strategies and sequential

sorting algorithms: the permutation that results from the application of a left greedy insertion step

is the same as what would result from applying one pass of the sequential sorting algorithm bubble

sort [9]. The number of passes used by bubble sort to sort a permutation is exactly the number

of insertion steps used by the left greedy sorting strategy. In fact, our average-case analysis of the

left greedy sorting strategy is an alternative to the analysis of bubble sort given by Demuth [4]

and Knuth [9]. A common improvement of bubble sort is to alternate the directions of the sorting

passes over the input. This \cocktail shaker sort" has been observed to use about half as many

sorting passes as bubble sort. Our analysis and simulation of alternating greedy sort gives evidence

as to why this is the case. We discuss the parallel insertion model's connections with bubble sort

in section 5.

In our preliminary paper [6], we de�ned the left adaptive insertion step which is closely related to

our left simple insertion step. We proved that the left adaptive sort is an optimal left-only sorting

strategy using arguments similar to theorem 3.5 and lemma 3.2 for the left simple insertion sorting

strategy. The left adaptive insertion step can be implemented in four sub-bus operations whereas

the left simple insertion step can be implemented in just three sub-bus operations, making the

latter's implementation slightly faster in practice.

2 The Parallel Insertion Model

We begin by de�ning a simple abstract model for sub-bus sorting, which we call the parallel insertion

model, for one-dimensional, in-place, comparison sub-bus sorting. In the parallel insertion model

the data to be sorted is represented by a permutation � of f1; 2; :::; ng where n is the number

of processors. The data value �[i] is stored at processor i; � is considered sorted if �[i] = i for

1 � i � n. To simplify our de�nitions we assume that there are dummy processors 0 and n + 1

with �[0] = �1 and �[n+ 1] =1. A left insertion step � is de�ned by a set of active processors

A

�

� f0; 1; 2; :::; ng, where 0 is always a member of A

�

. The permutation �(�) is de�ned to be

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 5

�

2 3

�

1

�

4 8 9

�

5 6 7

+

�(�)

1 2 3 4 5 8 9 6 7

Figure 1: Data movement in a left insertion step � applied to � where A

�

= f0; 3; 4; 7g

the permutation which is the result of moving the data values �[i+1]; :::; �[j� 1] to the processors

i+2; i+3; :::; j, respectively, and value �[j] to processor i+1 for every pair i; j of consecutive active

processors. To be more precise, let A

�

= fi

0

; i

1

; i

2

; : : : ; i

k

g with 0 = i

0

< i

1

< i

2

< : : : < i

k

. The

result of the left insertion step � applied to � is the permutation �(�) where

�(�)[i] =

8

>

<

>

:

�[i

j

] if i = i

j�1

+ 1 and 1 � j � k

�[i� 1] if i� 1 62 A

�

and i� 1 < i

k

�[i] if i 62 A

�

and i > i

k

:

Figure 1 illustrates a left insertion with active processors 0, 3, 4, and 7. Notice that since consecutive

processors 3 and 4 are both active, the value of 4 does not move. In a symmetric way we can de�ne

right insertion steps. For a right insertion step �, A

�

we have A

�

� f1; 2; :::; n; n+ 1g, where n+1

is always a member of A

�

. A sorting strategy for � is a sequence of insertion steps �

1

; �

2

; :::�

T

where � = �

0

, for 1 � i � T , �

i

= �

i

(�

i�1

), and �

T

is sorted. We say that the sorting strategy

�

1

; �

2

; :::�

T

sorts � in T steps.

A left-only sorting strategy for � is a sorting strategy for � that consists entirely of left insertion

steps. Similarly, a right-only sorting strategy uses only right insertion steps. A one-way sorting

strategy is one which is either a left-only or right-only sorting strategy. A more general sorting

strategy is a two-way sorting strategy which allows both left and right insertion steps. A special case

of a two-way sorting strategy is an alternating sorting strategy where left insertion steps alternate

with right insertion steps, starting with a left insertion step and ending with a right insertion step.

An important thing to note about the parallel insertion model is that an insertion step is de�ned

entirely by an active set of processors and an insertion step direction. We place no limitations on

how the active set and the insertion step direction is determined. When devising sorting strategies,

it is natural to de�ne the insertion steps in an algorithmic way, de�ning the next insertion step of

the strategy based on the permutation that resulted from the previous insertion step. The sorting

strategies given below are de�ned in this manner. The only complexity measure we consider is the

number of insertion steps used by the strategy, not how the active sets or the direction of each

insertion step was determined. We address the latter complexity issues in a less rigorous way when

we discuss the implementation of sorting strategies in section 7.

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 6

�

1

�

2

�

4 5 3

�

6

�

7

�

9 8

�

+

(�)

1 2 3 4 5 6 7 8 9

Figure 2: Data movement in a left greedy insertion step.

2.1 Greedy Sorting Strategies

A natural approach for devising sorting strategies on the sub-bus is to try to maximize the sort-

ing work performed at each step. The greedy sorting strategies are a family of sorting strategies

whose insertion steps remove the most inversions of any insertion step. The set of inversions in

a permutation � is de�ned as the set of out-of-order value pairs, I(�) = f(x; y) j x = �[i]; y =

�[j] where i < j and x > yg. The set of inversions and the number of inversions of a permuta-

tion are useful measures of order within a permutation, and have been applied to the analysis of

sequential sorting [9]. The only permutation with no inversions is the sorted permutation. De�ne

the left greedy insertion step for � as a left insertion step where the set of active processors is

G

L

(�) = fi j 0 � i � n and if i < j � n then �[j] > �[i]g:

Note that n 2 G

L

(�) for all �, vacuously. An example of the action of a left greedy insertion step

can be seen in �gure 2. The values at active processors form an increasing sequence from left to

right, as prescribed by the active set de�nition.

An important property of a left greedy insertion step is that it never creates any new inversions.

This is stated in the following lemma.

Lemma 2.1 Let
 be the left greedy insertion step for �. If i 2 G

L

(�) and
(�)[j] = �[i], then for

all j � k < i, �[i] < �[k].

Proof: Let i 2 G

L

(�) and
(�)[j] = �[i], and suppose the lemma were false. There is a maximal

k with j � k < i and �[i] > �[k]. Then for all l with k < l < i, we know that �[l] > �[i] > �[k]

by our choice of k. Also, since i 2 G

L

(�) we know that for all l > i, �[l] > �[i] as well. Hence,

�[l] > �[k] for all l > k. As a consequence k 2 G

L

(�). However, k 62 G

L

(�) because
(�)[j] = �[i]

and j � k < i. 2

Our next theorem demonstrates that a left greedy insertion step truly exhibits greedy behavior by

removing the most inversions of any left insertion step.

Theorem 2.1 Let
 be the left greedy insertion step for �. For all possible left insertion steps �

for �, jI(
(�))j � jI(�(�))j.

Proof: Let ! be a left insertion step with the property that for all left insertion steps �, jI(!(�))j �

jI(�(�))j and among those with the property A

!

is as large a set as possible. We will demonstrate

that G

L

(�) = A

!

which implies the result.

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 7

Claim 1: n 2 A

!

.

Suppose n 62 A

!

. Choose i to be the largest member of A

!

. De�ne left insertion step � by the

active set A

�

= A

!

[fi + 1; i + 2; : : : ; ng. It follows that �(�) = !(�) but A

�

has more more

members than A

!

, which contradicts our choice of !.

Claim 2: G

L

(�) � A

!

.

Suppose otherwise, then choose i to be as large as possible such that i 2 G

L

(�)� A

!

. Let A

�

=

A

!

[fig. That is, we form the new left insertion step � from ! by adding i as an active processor.

By the previous claim i 6= n and n 2 A

!

. Choose j to be as small as possible such that j > i and

j 2 A

!

. Since i 2 G

L

(�) we must have �[i] < �[j]. Thus, we have (�[j]; �[i]) 2 I(!(�))� I(�(�)).

On the other hand, by the reasoning in the proof of lemma 2.1 making i active in � will not

introduce any inversions than ! does not already introduce. Thus, jI(�(�))j < jI(!(�))j, which is

impossible.

Claim 3: A

!

� G

L

(�)

Suppose otherwise, then choose i to be as large as possible such that i 2 A

!

� G

L

(�). Let

A

�

= A

!

� fig. That is, we form the new left insertion step � from ! by deleting i as an active

processor. Since n 2 G

L

(�), i 6= n. Choose j to be as small as possible such that j > i and

j 2 G

L

(�). By the previous claim and the choice of j, j is also the smallest member of A

!

larger

than i. We have 0 2 G

L

(�), so choose k < i to be as large as possible such that k 2 G

L

(�). By the

previous claim k 2 A

!

. Thus, by lemma 2.1, no new inversions are created by removing i from A

!

,

that is, I(�(�))� I(!(�)). On the other hand, the removal of i from A

!

means that the inversion

(�[i]; �[j]) 2 I(!(�))� I(�(�)). Thus, jI(�(�))j< jI(!(�))j, which is impossible. 2

The left greedy sorting strategy for � is the left-only sorting strategy for � where each insertion step

is left greedy. The alternating greedy sorting strategy for � is the alternating sorting strategy for �

where each left insertion step is left greedy and each right insertion step is right greedy.

2.2 Simple Insertion Sorting Strategies

A second family of sorting strategies that we will consider is the simple insertion sorting strategies

that are based on left and right simple insertion steps. A left simple insertion step is based on the

idea that a processor should be active when its value is inverted with the value at the processor to

its immediate left. Determining the active processors in a left simple insertion step for � is a two

step process. First, we de�ne the pre-active set of processors P

L

(�) to be

P

L

(�) = fi j 1 � i � n and �[i� 1] > �[i]g [fn+ 1g:

Making only the pre-active processors active is not enough to ensure a sorting step where no

inversions are introduced. Figure 3a illustrates a situation in which inversions would be created

by a left insertion step with only the pre-active processors being active. The values of 3 and 8 are

inserted as far left as possible, creating inversions. To correct this, we extend the active set in the

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 8

1 2 4 5 3

�

6 7 9 8

�

+

3 1 2 4 5 8 6 7 9

(a)

1

�

2

�

4 5 3

�

6

�

7

�

9 8

�

+

1 2 3 4 5 6 7 8 9

(b)

Figure 3: (a) Inversions created by left insertion step with active set P

L

(�). (b) Corrected left

insertion step with additional active processors B

L

(�).

obvious way: given a permutation �, de�ne the blocking set of processors

B

L

(�) = fi j 0 � i � n and for some j > i; j 2 P

L

(�); �[i]< �[j];

and for i � l < j; l 62 P

L

(�)g:

The additional active processors simply insure that a value at an active processor does not create any

inversions with the left insertion step. As we shall see in the proof of lemma 3.2, claim 3, the blocking

processors within a segment bounded by two pre-active processors always form a contiguous block

at the left end of the segment. These blocking processors stop the value at the pre-active processor

to their right from inserting to their left. Since the dummy processor n + 1 is included in P

L

(�)

and has in�nite value, processors at the right end of the array that are not pre-active will be in the

blocking set. This simpli�es some of our proofs about and implementation of simple insertion sort.

Figure 3b illustrates the previous example with the proper blocking processors. The 3 and the 8

are blocked by the values of 2 and 7, respectively, and this is the behavior we desire.

The left simple insertion step for � is a left insertion step whose set of active processors is the

combined set

S

L

(�) = P

L

(�) [B

L

(�):

We can de�ne a right simple insertion step for � in a similar way. The left simple insertion sorting

strategy for � is the left-only sorting strategy where each insertion step is a left simple insertion

step. The alternating simple insertion sorting strategy for � is the alternating sorting strategy for

� where the left insertion steps are left simple and the right insertion steps are right simple.

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 9

2.3 The Odd-Even Transposition Sorting Strategy

An alternative to the parallel insertion model one might consider is one that only allows exchanges

of values (transpositions) rather than insertion operations. Equivalently, in the parallel insertion

model you could consider insertion steps where there is at most one consecutive inactive processor.

We can then formulate odd-even transposition sort [10, 7] which uses value exchanges as another

example of a parallel insertion sorting strategy.

De�ne the odd transposition step for � as a left insertion step with the set of active processors

T

1

(�) = f i j 0 � i � n and i mod 2 = 0 or �[i] < �[i+ 1] g:

Similarly de�ne the even transposition step for � as a left insertion step with the set of active

processors

T

0

(�) = f i j 0 � i � n and i mod 2 = 1 or �[i] < �[i+ 1] g:

Recall that �[0] = �1 and �[n + 1] = 1, so 0; n 2 T

b

(�) for b 2 f0; 1g and all �. The odd-even

transposition sorting strategy for � is an alternating sequence of odd and even transposition sorting

steps that sorts �, starting with an odd transposition step. Figure 4 shows the �rst two steps of the

odd-even transposition sorting strategy for a speci�c �. Because there is at most one consecutive

inactive processor, insertion operations involve value exchanges. Note that odd-even transposition

is a left-only sorting strategy since all of the steps are left insertion steps.

2 1

�

5 4

�

3

�

6

�

9 7

�

8

�

+

1

�

2

�

4

�

5 3

�

6

�

7

�

9 8

�

+

1 2 4 3 5 6 7 8 9

Figure 4: The �rst two steps of the odd-even transposition sorting strategy for a permutation. The

odd transposition step exchanges values at odd-even processor pairs, and the even transposition

exchanges values at even-odd processor pairs.

It can be shown that the odd-even transposition sorting strategy will always sort in n insertion

steps where n is the permutation size. Typically an oblivious version of the sort is implemented

which always sorts in n steps regardless of the permutation. We will also consider the early-stopping

version of the odd-even transposition sorting strategy for � which consists of only the steps necessary

to sort �.

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 10

3 One-Way Sorting Strategies

In this section we consider left-only sorting strategies. Although left-only sorting strategies are less

general than two-way sorting strategies, their development and analysis are interesting and help us

understand the more e�cient two-way sorting strategies. In addition, any lower bounds we �nd for

one-way sorting strategies apply directly to the early stopping version of odd-even transposition

sort.

We begin by characterizing the number of steps required by any one-way sorting strategy to sort

a given permutation. We then show that the one-way greedy and one-way simple insertion sorting

strategies are optimal.

3.1 Lower Bounds for Left-Only Sorting Strategies

Left-only sorting strategies are limited by the fact that a value which is left of its �nal position

can move at most one position to the right per left insertion step. Let 1 � x � n and � be a

permutation of f1; 2; : : : ; ng. Suppose i is the location of the value x in �, so x = �[i]. Then we

de�ne dist

L

(x; �) = maxf0; x� ig. Since the �nal destination of x is processor x, dist

L

(x; �) is the

distance in � of x from its �nal destination if x is to the left of its �nal destination. Otherwise,

dist

L

(x; �) = 0. De�ne maxdist

L

(�) = max

x

dist

L

(x; �), so maxdist

L

(�) is the maximum distance

any value is to the left to its �nal destination in �.

We observe that � is sorted if and only if maxdist

L

(�) = 0. Clearly, if � is sorted then maxdist

L

(�) =

0. If � is not sorted then let x be as large as possible such that �[x] 6= x. Let �[i] = x. Since

�[j] = j for all j > x then i < x. Thus,

maxdist

L

(�) � dist

L

(x; �) = maxf0; x� ig = x� i > 0:

Our �rst theorem is an elementary lower bound on left-only sorting strategies:

Theorem 3.1 If �

1

; �

2

; : : :�

T

is a left-only sorting strategy for �, then T � maxdist

L

(�).

Proof: This follows from the observation that if � is unsorted and � is a left insertion step then

maxdist

L

(�(�)) � maxdist

L

(�)� 1. 2

We de�ne E(n) to be the expected value of maxdist

L

(�) where each permutation � of f1; 2; :::ng

is equally likely. We have the following theorem:

Theorem 3.2 The expected value of maxdist

L

(�) is

E(n) = n�

1

n!

n

X

k=0

k!k

n�k

:

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 11

Proof: De�nem

k

(n) to be the number of permutations � of f1; 2; :::; ng such that maxdist

L

(�) � k.

The function m

k

can be expressed recursively as follows:

m

k

(n) =

(

n! if n � k + 1

(k + 1)m

k

(n� 1) if n > k + 1

To see the case where n > k+1, there are k+1 distinct i's which can be chosen such that �[i] = n

and dist

L

(n; �) � k. Once i is chosen such that �[i] = n and dist

L

(n; �) � k, then the number

of ways to choose the remaining components of the permutation � satisfying maxdist

L

(�) � k is

simply m

k

(n� 1). Unwinding the recursion we obtain m

k

(n) = (k+ 1)!(k+ 1)

n�k�1

for n � k+ 1.

Thus,

E(n) =

1

n!

n�1

X

k=1

k[m

k

(n)�m

k�1

(n)]

=

1

n!

[nm

n�1

(n)�

n�1

X

k=0

m

k

(n)]

= n�

1

n!

n�1

X

k=0

(k + 1)!(k+ 1)

n�k�1

= n�

1

n!

n

X

k=0

k!k

n�k

:

2

As it happens, the expression

1

n!

P

n

k=0

k!k

n�k

can be approximated very closely as

q

�n

2

+

2

3

��(n

�

1

2

)

(cf. Knuth Vol. 1, pages 112-117 [8]). Combining this fact with the previous two theorems we

have:

Theorem 3.3 The expected number of steps in any left-only sorting strategy is at least

n�

r

�n

2

+

2

3

� �(n

�

1

2

):

Thus, the advantage of a left-only sorting strategy over oblivious odd-even transposition sort can

only be slight. Nonetheless, it is interesting to see if optimality for left-only sorting strategies can

be achieved.

3.2 Optimality of the Left Greedy Sorting Strategy

The left greedy sorting strategy is an optimal left-only sorting strategy as evidenced by the following

theorem.

Theorem 3.4 If

1

;

2

; : : : ;

T

is the left greedy sorting strategy for �, then T = maxdist

L

(�).

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 12

Proof: By the lower bound theorem, to prove optimality of

1

;

2

; : : : ;

T

with respect to � we

have to show T � maxdist

L

(�). To do this we simply have to show that each left greedy in-

sertion step reduces the maximum distance left of values in � by one. That is, for 1 � i � T ,

maxdist

L

(�

i

) = maxdist

L

(�

i�1

)� 1, where �

0

= � and �

i

=

i

(�

i�1

). This follows from lemma 3.1

below. 2

Lemma 3.1 If � be an unsorted permutation and
 is the greedy insertion step for �, then

maxdist

L

(
(�)) = maxdist

L

(�)� 1.

Proof: The proof of the lemma is done by two claims. The �rst claim states that if the value at

any inactive processor is left of its �nal destination then it moves one processor closer to its �nal

destination as the result of the left greedy insertion step. The second claim states that the value

at any active processor is at or to the right of its �nal destination.

The following formalizes these claims. Let i be a processor with x = �[i] and 1 � i � n.

Claim 1: If i 62 G

L

(�) then either dist

L

(x;
(�)) = dist

L

(x; �) = 0 or dist

L

(x;
(�)) = dist

L

(x; �)�1.

Suppose i 62 G

L

(�). Since n 2 G

L

(�), choose j as small as possible such that j > i and j 2 G

L

(�).

By de�nition of left insertion steps,
(�)[i+1] = x. If dist

L

(x; �) = 0 then x�i � 0, so x�i�1 < 0.

Hence, dist

L

(x;
(�)) = maxf0; x� i�1g = 0. If dist

L

(x; �) > 0 we have x� i > 0, so x� i�1 � 0.

It follows that dist

L

(x;
(�)) = maxf0; x� i� 1g = dist

L

(x; �)� 1.

Claim 2: If i 2 G

L

(�) then dist

L

(x;
(�)) = dist

L

(x; �) = 0.

Suppose i 2 G

L

(�). Then for all j > i we have x < �[j]. Let
(�)[k] = x, so k is the new location

of x after step
. By lemma 2.1, for all j with k < j � i,
(�)[j] = �[j� 1] > x. Also, for all j > i,

there is some l > i with
(�)[j] = �[l] > x. That is, all the values in positions greater than i in �

stay in positions greater than i in
(�). Thus, for all j > k,
(�)[j] > x. There are n � k values

larger than x, so x � n � (n� k) = k which means dist

L

(x;
(�)) = maxf0; x� kg = 0.

Having established these claims, the lemma follows easily:

maxdist

L

(
(�)) = max

x

dist

L

(x;
(�))

= maxfdist

L

(x;
(�)) j x = �[i] and i 62 G

L

(�)g

= maxdist

L

(�)� 1

The �rst equality follows from the de�nition of maxdist

L

, the second equality from claim 2, and

the last equality from claim 1. 2

3.3 Optimality of the Left Simple Insertion Sorting Strategy

We now prove the optimality of the left simple insertion sorting strategy as stated in the theorem

below.

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 13

Theorem 3.5 If �

1

; �

2

; : : : ; �

T

is the left simple insertion sorting strategy for a permutation �,

then T = maxdist

L

(�).

Proof: Let � be a permutation and �

1

; �

2

; : : : ; �

T

be the left simple insertion sorting strategy for

�. By the lower bound theorem, to prove optimality we have to show T � maxdist

L

(�). To do this

we simply have to show that each left simple insertion step reduces the maximum distance left of

values in � by one. That is, for 1 � i � T , maxdist

L

(�

i

) = maxdist

L

(�

i�1

)� 1, where �

0

= � and

�

i

= �

i

(�

i�1

). This follows from lemma 3.2 below. 2

Lemma 3.2 Let � be an unsorted permutation and � be the left simple insertion step for �. Then

maxdist

L

(�(�)) = maxdist

L

(�)� 1.

Proof: The proof of the lemma is done by a series of three claims. The �rst claim states that

if the value at any inactive processor is left of its �nal destination then it moves one processor

closer to its �nal destination as the result of the left simple insertion step. The second claim states

that the value at a pre-active processor after the left insertion step is never further left of its �nal

destination than the value at some inactive processor. The third claim states that the value at a

blocking processor after the left simple insertion step is never further left of its �nal destination

than the value at some pre-active processor. The cascading e�ect of these three claims is that the

maximum distance left of the values must decrease by one as a result of the left simple insertion

step.

The following formalizes these claims. Let i be a processor with x = �[i] and 1 � i � n.

Claim 1: If i 62 S

L

(�) then dist

L

(x; �(�)) = dist

L

(x; �) = 0 or dist

L

(x; �(�)) = dist

L

(x; �)� 1.

Suppose i 62 S

L

(�). Since n + 1 2 S

L

(�), there is a j 2 S

L

(�) with j > i and for i < l <

j, l 62 S

L

(�). By the de�nition of left insertion steps we have �(�)[i + 1] = x. Thus, either

dist

L

(x; �(�)) = dist

L

(x; �) = 0 or dist

L

(x; �(�)) = dist

L

(x; �)� 1.

Claim 2: If i 2 P

L

(�) then there exists a j 62 S

L

(�) with y = �[j] and dist

L

(x; �(�)) �

dist

L

(y; �(�)).

We show this by looking at the contiguous block of pre-active processors that contains i. There are

two cases to consider: i is the processor at the left end of this pre-active block or i has a pre-active

processor to its left in this pre-active block.

Case 1: i� 1 62 P

L

(�).

De�ne j by �(�)[j] = �[i]. Since i 2 P

L

(�), �[i� 1] > �[i]. Thus i� 1 62 S

L

(�) and i � 1 > 0. It

follows that j < i and j 62 S

L

(�).

Let y = �[j]. Observe that y > x, otherwise j 2 B

L

(�). We can restate this observation as

y � x+ 1. Note that �(�)[j+ 1] = y so we have

dist

L

(x; �(�)) = maxf0; x� jg

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 14

= maxf0; (x+ 1)� (j + 1)g

� maxf0; y � (j + 1)g

= dist

L

(y; �(�)):

Therefore, with this choice of j 62 S

L

(�) and y = �[j], we have dist

L

(x; �(�))� dist

L

(y; �(�)).

Case 2: i� 1 2 P

L

(�).

Because i� 1 2 P

L

(�), we know that �(�)[i] = x.

Let k < i be the maximal element of P

L

(�) with k � 1 62 P

L

(�). By our choice of k, for all l with

k < l � i we have l 2 P

L

(�). So for all such l, �[l� 1] > �[l]. The values at processors k to i form

a decreasing sequence from left to right. Let z = �[k]. We can conclude by transitivity that z > x.

The key fact about k is that by de�nition k 2 P

L

(�) and k�1 62 P

L

(�), so its value falls under Case

1 above. By that same logic, we know there is an j 62 S

L

(�) with y = �[j] and dist

L

(z; �(�)) �

dist

L

(y; �(�)). Since k 2 P

L

(�), dist

L

(z; �)) � dist

L

(z; �(�)).

Combining these observations, it follows that

dist

L

(x; �(�)) = maxf0; x� ig

� maxf0; z� ig

� maxf0; z� kg

= dist

L

(z; �)

� dist

L

(z; �(�))

� dist

L

(y; �(�)):

Again, for this choice of j 62 S

L

(�), we have dist

L

(x; �(�))� dist

L

(y; �(�)).

Case 2 of Claim 2 is illustrated in �gure 5. There is a contiguous block of pre-active processors

starting at processor k and including i with values decreasing from left to right. The left distance

of x does not change with �(�), and is bounded by the left distance of z since z > x. The value

z on the left end of the block moves left past y. For z to be farther left of its destination than y,

z would have to be greater than y. But z < y instead so z's distance left is bounded by the left

distance of y. Note that if we let k = i and z = x this �gure illustrates Case 1 as well.

Claim 3: If i 2 B

L

(�) then there is a j 2 P

L

(�) with y = �[j] and dist

L

(x; �(�))� dist

L

(y; �(�)).

The proof of this case is similar to the proof of Case 2. Here we examine the values at the contiguous

block of processors in B

L

(�) that contains i. It turns out that these blocking processors' left

distances are bounded by the left distance of the value at the pre-active processor that they block.

Suppose i 2 B

L

(�). By de�nition of B

L

(�) there is a j 2 P

L

(�) with j > i and y = �[j] such that

x < y and for i � l < j, l 62 P

L

(�). This implies that for all i � l < j, �[l � 1] < �[l]. Also, since

i 62 P

L

(�), �[i� 1] < �[i] < y. Thus either i� 1 2 P

L

(�) or i� 1 2 B

L

(�), and so �(�)[i] = x.

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 15

�

�

�

y

j

. .

z

�

k

.

�

x

�

i

.

x

.

z

.

y

+

�(�)

z

j

y

. .

�

k

.

x

i

.

x

.

z

.

y

Figure 5: Data movement of x, y, and z with left simple insertion step � described in Case 2 of

Claim 2.

�

�
�

x

i

�

.

�

k

.

y

�

j

.

x

.

y

+

�(�)

x

i

.

y

k

.

j

.

x

.

y

Figure 6: Data movement of x and y with left simple insertion step � described in Claim 3.

De�ne k by �(�)[k] = y. This means that k � 1 2 S

L

(�) and, from above, k � 1 62 P

L

(�). Thus

k � 1 2 B

L

(�) and �[k � 1] < y. We know that for all i � l < k, �[l � 1] < �[l]. Thus, there are

k � i values l in the interval i � l < k with �[l] < y and x � �[l]. Hence x+ k � i � y.

With this fact, we can �nish the proof of the �nal case:

dist

L

(x; �(�)) = maxf0; x� ig

= maxf0; (x+ k � i)� kg

� maxf0; y � kg

= dist

L

(y; �(�)):

Thus there exists a j 2 P

L

(�) with y = �[j] with dist

L

(x; �(�))� dist

L

(y; �(�)).

This case is shown in �gure 6. The situation is very similar to that shown in �gure 5 for the

previous case, except for the run of blocking actives between i and k.

Having established these three claims and using the fact that S

L

(�) = P

L

(�) [B

L

(�), the lemma

follows easily:

maxdist

L

(�(�)) = max

x

dist

L

(x; �(�))

= maxfdist

L

(x; �(�)) j x = �[i] with i 2 P

L

(�) or i 62 S

L

(�)g

= maxfdist

L

(x; �(�)) j x = �[i] with i 62 S

L

(�)g

= maxdist

L

(�)� 1

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 16

The �rst equality follows from the de�nition of maxdist

L

, the second equality follows from claim

3, the third equality from claim 2, and the last equality from claim 1. Thus, the maximum dis-

tance left of the permutation decreases by one with each application of a left simple insertion step. 2

4 Two-way Parallel Insertion Sorting

One-way sorting is an unnatural restriction for studying sub-bus sorting. Considering one-way

sorting is mostly useful for showing the limits of the odd-even transposition sorting strategy. In

general, sorting strategies could have any combination of left and right insertion steps, and the

insertion direction pattern could vary based on the permutation. We now consider the general case

of two-way sorting strategies. The distance that a value must travel is no longer a factor in two-way

sorting. However, considering the number of values that need to travel across a cut of the array

leads to lower bounds for two-way sorting.

4.1 Lower Bounds for Parallel Insertion Sorting

Our goal is to �nd a metric on permutations that characterizes the limitations of sorting in the

parallel insertion model, much like our one-way sorting analysis. Consider a bandwidth argument

like the following: suppose a permutation � has k items in the left half of � that need to move to

the right half of � to be in sorted order. There must also be k items on the right half of � that

need to move to the left half. With each insertion step, regardless of direction, at most two of these

values can move across the middle of � (one broadcast and one shifted). Thus after the step there

must be at least k� 1 items on the left that should be on the right, and vice versa. Extending this

argument we can say that it will take at least k steps to sort �. We formalize these notions below.

Given n processors de�ne a cut i to be any i with 1 � i < n. This corresponds to a partition of the

processors into f1; 2; : : : ; ig and fi+ 1; i+ 2; : : : ; ng. Given a permutation � and cut i de�ne

o�set

L

(i; �) = f�[j] j j � i and �[j] > ig:

The set o�set

L

(i; �) contains values x which are on the left side of the cut i, but should be on the

right, that is, the values on the left that are \o�-side" of cut i. Similarly, de�ne

o�set

R

(i; �) = f�[j] j j > i and �[j] � ig:

It should be clear that o�set

L

(i; �) and o�set

R

(i; �) are disjoint and that their sizes are equal. De�ne

o�(i; �) = jo�set

L

(i; �)j and maxo�(�) = max

i

o�(i; �). Observe that if � is sorted, maxo�(�) = 0.

In our proofs, we compare the contents of the o�-side sets of a cut before and after the application

of an insertion step. We say that a value x = �[j] crosses cut i with step � when x = �(�)[k] and

where one of j and k belongs to the set f1; 2; : : : ; ig and the other belongs to fi+ 1; i+ 2; : : : ; ng.

In a left insertion step where i is not active and there is an active processor somewhere right of

i, exactly two values cross i: the value at the active value that is inserted to the left of cut i and

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 17

the value at i that shifts right to i + 1. In a left insertion step where processor i is active, no

value crosses the cut i. Similar things can be said of right insertion steps, conditional instead on

the state of processor i + 1. Because of these observations, the contents of o�set

L

(i; �(�)) and

o�set

R

(i; �(�)), and the value of o�(i; �(�)) can be determined by considering only o�set

L

(i; �)

and o�set

R

(i; �) and the values that cross cut i with step �.

Consider a left insertion step � applied to � where i 62 A

�

and where x = �[i], and y = �[j] cross

cut i with �. If x > i and y < i then we know that x 2 o�set

L

(i; �) and y 2 o�set

R

(i; �). After the

application of �, however, x 62 o�set

L

(i; �) and y 62 o�set

R

(i; �) and so o�(i; �(�)) = o�(i; �)� 1.

Note that this is the best we can do to reduce size of the o�-side sets with a left or a right

insertion step: if either x < i or y > i, then o�(i; �(�)) = o�(i; �); if both x < i and y > i, then

o�(i; �(�)) = o�(i; �) + 1.

Using this new terminology and applying our observations, we have the following lower bound for

any sorting strategy for �:

Theorem 4.1 If �

1

; �

2

; :::�

T

is a sorting strategy for �, then T � maxo�(�).

Proof: This follows directly from our observations above: for any insertion step �, permutation

�, and cut i, o�(i; �(�))� o�(i; �)� 1. Thus for 1 � t < T , maxo�(�

t+1

) � maxo�(�

t

)� 1 and so

T � maxo�(�) steps are required to sort �. 2

De�ne M(n) to be the expected value of maxo�(�) where � is chosen uniformly from the permu-

tations of f1; 2; : : : ; ng. We have the following:

Theorem 4.2 The expected value of maxo�(�) is M(n) � bn=2c=2.

Proof: De�ne H(n) to be the expected value of o�(bn=2c; �) where � is chosen uniformly from

the permutations of f1; 2; : : : ; ng. Clearly maxo�(�) � o�(bn=2c; �) for all �, so M(n) � H(n).

To determine H(n), note that the probability that o�(bn=2c; �) = k is just

bn=2c

k

!

dn=2e

dn=2e � k

!

n

dn=2e

!

because this is just the fraction of ways of choosing the right dn=2e elements of � where exactly

k of them are less than or equal to bn=2c. So o�(bn=2c; �) has a hypergeometric distribution [3]

whose mean is

H(n) =

dn=2ebn=2c

n

:

Since M(n) � H(n) the statement of the theorem follows. 2

We can use this bound in conjunction with theorem 4.1 to say the following about the expected

number of steps required by sorting strategies

Theorem 4.3 The expected number of steps for any sorting strategy is at least bn=2c=2.

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 18

4.2 Alternating Sorting Strategies

Recall that an alternating sorting strategy sorts a permutation � by applying left and right insertion

steps in alternation, starting with a left insertion step and ending with a right insertion step. For

alternating sorting strategies we can make a stronger claim:

Theorem 4.4 Let �

1

; �

2

; :::�

T

be an alternating sorting strategy for �. Then T � 2maxo�(�).

To establish this, we have the following lemma:

Lemma 4.1 If �

L

and �

R

are left and right insertion steps respectively, then maxo�(�

R

�

L

(�)) �

maxo�(�)� 1.

Proof: If maxo�(�

L

(�)) � maxo�(�) we are done since maxo�(�

R

�

L

(�)) � maxo�(�

R

(�))� 1 .

Suppose instead that maxo�(�

L

(�)) = maxo�(�)� 1 and let i be a cut with o�(i; �) = maxo�(�).

It must be true that i 62 A

�

L

. Also, two values must cross cut i with �

L

, with one of those values

being �[i] 2 o�set

L

(i; �). If no values cross i with �

R

, then

maxo�(�

R

�

L

(�)) � o�(i; �

R

�

L

(�)) = o�(i; �

L

(�)) = maxo�(�)� 1:

Otherwise, if two values cross i with �

R

, then �[i] = �

L

(�)[i+ 1] = �

R

�

L

(�)[i] would be one of

them. But �[i] 2 o�set

L

(i; �), so

maxo�(�

R

�

L

(�)) � o�(i; �

R

�

L

(�)) � o�(i; �

L

(�)) = maxo�(�)� 1:

2

Lemma 4.1 shows that a pair of alternating insertion steps results in at most two values crossing

cut i so we can reduce the o�-side sets by at most one. This gives us theorem 4.4 and theorem 4.5

below, lower bounds for alternating sorting strategies analogous to theorems 4.1 and 4.3.

Theorem 4.5 The expected number of steps in any alternating sorting strategy is at least bn=2c.

4.3 Optimality of the Alternating Greedy Sorting Strategy

Theorem 4.4 from the previous section tells us that an alternating sorting strategy must sort in

exactly 2maxo�(�) steps for it to be considered an optimal alternating sorting strategy. Consider

the alternating sorting strategy consisting entirely of left and right greedy insertion steps. This

alternating greedy sorting strategy is an optimal alternating sorting strategy by the following:

Theorem 4.6 If

1

;

2

; : : : ;

T

is the alternating greedy sorting strategy for � then T = 2maxo�(�).

Proof: Let � be any permutation,

L

be the left greedy insertion step for �. and

R

be the right

greedy insertion step for

L

(�). We will show that for any cut i, o�(i;

R

L

(�)) = o�(i; �)� 1 or

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 19

o�(i; �) = 0. First, we need to make a few observations about the values that cross cut i with the

following claim:

Claim L: For any �, if

L

is the left greedy insertion step for � and i 62 G

L

(�) then there exists a

j > i and y = �[j] where y crosses cut i with

L

and y � i.

To see that this is true, note that n 2 G

L

(�) by de�nition of G

L

(�). Since i 62 G

L

(�) there must

be a j 2 G

L

(�) with j > i where y = �[j] crosses cut i with

L

. Since j 2 G

L

(�) we know that

y < �[l] for all l > j. Let k be such that

L

(�)[k] = y and note that k � i. Since

L

creates no

inversions, we know that y < �[l] for k � l < j. Therefore y � i.

We can make a companion claim for right greedy insertion steps:

Claim R: For any �, if

R

is the right greedy insertion step for � and i + 1 62 G

R

(�) then there

exists a k � i and z = �[k] where z crosses cut i with

R

and z > i.

Given these claims we can consider the following four cases:

Case 1: i 62 G

L

(�), i+ 1 62 G

R

(

L

(�)).

Using claim L we know there exists a y = �[j] with j > i and y � i that crosses cut i with

L

.

Similarly, from claim R there exists a z =

L

(�)[k] with k � i and z > i that crosses cut i with

R

. Note also that x = �[i] crosses cut i with both

L

and

R

because

L

(�)[i + 1] = x and

R

L

(�)[i] = x. So the net e�ect of

L

and

R

is that only y and z cross cut i. Since y � i and

z > i, we have o�set

R

(i;

R

L

(�)) = o�set

R

(i; �)�fyg and o�set

L

(i;

R

L

(�)) = o�set

L

(i; �)�fzg.

It follows that o�(i;

R

L

(�)) = o�(i; �)� 1.

Case 2: i 62 G

L

(�), i+ 1 2 G

R

(

L

(�)).

From claim L there exists a y = �[j] with j > i and y � i that crosses cut i with

L

. In addition,

the value x = �[i] crosses cut i with

L

. Because x =

L

(�)[i+1] and i+ 1 2 G

R

(

L

(�)), we know

that x >

L

(�)[l] for l < i+ 1. Thus x > i.

Since y � i and x > i, we have o�set

R

(i;

L

(�)) = o�set

R

(i; �) � fyg and o�set

L

(i;

L

(�)) =

o�set

L

(i; �)�fxg. It follows that o�(i;

L

(�)) = o�(i; �)�1. Because i+1 2 G

R

(

L

(�)), no values

cross i with

R

, and so o�(i;

R

L

(�)) = o�(i;

L

(�)) = o�(i; �)� 1.

Case 3: i 2 G

L

(�), i+ 1 62 G

R

(

L

(�)).

Because i 2 G

L

(�), no values cross i with

L

, so o�(i;

L

(�)) = o�(i; �). Let x =

L

(�)[i+ 1] and

de�ne j such that x = �[j]. Note that j 2 G

L

(�) and since

L

creates no inversions that x < �[l]

for l > i+ 1. From claim R there exists a z =

L

(�)[k] with k � i and z > i that crosses cut i with

R

. Since

R

creates no inversions, it follows that z > x. There are at least n � i values l with

x < �[l], and so x � i. Since i+ 1 62 G

R

(

L

(�)), x =

R

L

(�)[i].

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 20

From the preceding argument, we know that x and z cross cut i with

R

and that x � i and z > i.

Therefore, o�set

R

(i;

L

(�)) = o�set

R

(i; �)� fxg and o�set

L

(i;

L

(�)) = o�set

L

(i; �) � fzg. We

conclude that o�(i;

R

L

(�)) = o�(i;

L

(�))� 1 = o�(i; �)� 1.

Case 4: i 2 G

L

(�), i+ 1 2 G

R

(

L

(�)).

No values cross cut i in either step so for all l > i, �[l] > �[i] and for all l < i + 1, �[l] < �[i] by

de�nition of greedy insertion steps. Thus o�(i; �) = 0.

In all four cases we have either o�(i;

R

L

(�)) = o�(i; �)� 1 or o�(i; �) = 0. Thus, if � is unsorted

we have maxo�(

R

L

(�)) = maxo�(�)� 1, completing the proof. 2

The optimality of alternating greedy sort gives us tight bounds on the number of steps required by

any alternating sorting strategy. An optimal alternating sorting strategy must reduce the value of

maxo� by one every two steps.

4.4 Best-Greedy Sorting Strategies

Among all sorting strategies for a permutation � that use only greedy insertion steps, there is at

least one that uses the least number of greedy insertion steps. Call any greedy strategy that uses

the least number of greedy insertion steps to sort � a best-greedy strategy for �. The alternating

greedy sorting strategy for � sorts in at most 2maxo�(�) steps. Since 2maxo�(�) � n, a best-

greedy strategy sorts � in at most n steps. To �nd a best-greedy strategy for a permutation � we

could naively search for a best-greedy strategy for � by testing all 2

n

combinations of left and right

greedy insertion steps. There is actually an easier way to �nd a best-greedy strategy for � using

the following \commutativity" theorem.

Theorem 4.7 For any �, if step

L

is the left greedy insertion step for �,

R

is the right greedy

insertion step for

L

(�),

0

R

is the right greedy insertion step for �, and

0

L

is the left greedy insertion

step for

0

R

(�), then

R

L

(�) =

0

L

0

R

(�).

As consequence of theorem 4.7 the order that we choose for the directions of a series of greedy

insertion steps is unimportant in the sense that all orderings produce the same result. We can

�nd a best-greedy strategy for � by applying l left greedy insertion steps followed by r right greedy

insertion steps for all l and r where l+r = 2maxo�(�). This limits our search to 2maxo�(�) sorting

strategies of length at most 2maxo�(�). We use this fact to determine a best-greedy strategy for

our simulations in section 6.

Proof: Let � be an arbitrary permutation and let

L

,

R

,

0

L

, and

0

R

be de�ned as in the

statement of the theorem. Let 1 � i � n. If x = �[i] then de�ne i

L

, i

R

, i

RL

, and i

LR

to be

such that x =

L

(�)[i

L

] =

0

R

(�)[i

R

] =

R

(

L

(�))[i

RL

] =

0

L

(

0

R

(�))[i

LR

]. That is, i

L

, i

R

, i

RL

, and

i

LR

are the positions of x after the applications of

L

,

0

R

,

R

L

, and

0

L

0

R

, respectively, on the

permutation �. To prove the theorem it su�ces to prove the following claim.

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 21

Claim : For all x and y, if x = �[i], y = �[j] and i < j then j

RL

< i

RL

if and only if j

LR

< i

LR

.

We show that j

RL

< i

RL

implies j

LR

< i

LR

. The other direction can be shown by a symmetric

argument.

Assume j

RL

< i

RL

. Since i < j then it must be the case y < x. There are two cases to consider

depending on whether or not j

R

< i

R

. The easy case is when j

R

< i

R

. In this case, since greedy

insertion steps do not create inversions then j

LR

< i

LR

.

We now consider the case when i

R

< j

R

. In order to show that j

LR

< i

LR

we must show two

facts: (i) j

R

2 G

L

(

0

R

(�)) and (ii) for all k, if i

R

� k < j

R

then y <

0

R

(�)[k]. These two facts

will guarantee that the step

0

L

inserts y to the left of x. We now consider two cases depending on

whether or not j

L

< i

L

.

Case 1: j

L

< i

L

. Since i < j then it must be the case that y is inserted to the left of x in the step

L

. In particular, j 2 G

L

(�). This can only happen if for all k > j, y < �[k]. Since x > y and

i < j, j 62 G

R

(�). Any element that is inserted from the left of y to the right of y in the step

0

R

must be larger than y. Hence, y <

0

R

(�)[k] for all k > j

R

, which implies j

R

2 G

L

(

0

R

(�)).

Since j

L

< i

L

and i < j, we have y < �[k] for i � k < j. If i 2 G

R

(�) then those elements to the

right of x in

0

R

(�) are also to the right of x in �. If i 62 G

R

(�) then any element that is inserted

from the left of x to the right of x in the step

0

R

must be larger than x and, consequently, larger

than y. Hence y <

0

R

(�)[k] for i

R

� k < j

R

.

Case 2: i

L

< j

L

. Since j

RL

< i

RL

it must be the case that x is inserted to the right of y in the

step

R

. Therefore, for all k where k < i

L

or i

L

< k < j

L

, x >

L

(�)[k]. Since x > y and j > i,

i 62 G

L

(�). This means that all the elements to the left of x in � are to the left of x in

L

(�). Thus

for all k < i we have x > �[k], and so i 2 G

R

(�). If j 62 G

L

(�) then all the elements to the left of y

in � are to the left of y in

L

(�). In particular, this means that if i < k < j then �[k] < x. Hence,

if j 62 G

L

(�) then x is inserted to the right of y in step

0

R

. This implies that j

R

< i

R

which is not

the case. Hence, we have j 2 G

L

(�). As in case 1, j 2 G

L

(�) implies j

R

2 G

L

(

0

R

(�)).

Since i 2 G

R

(�) and i

R

< j

R

then there must be an m such that i < m < j, m 2 G

R

(�) and for

all m

0

, such that i < m

0

< m, m

0

62 G

R

(�). That is, the element z = �[m] blocks x from moving

past y in the step

R

. In particular, we have i

R

= m � 1 and z > x. Since j

RL

< i

RL

, y must

be inserted to the left of z in step

L

, otherwise z would continue to block x in step

R

. Thus,

y < �[k] for m � k < j. Any element between x and y in

0

R

(�) is between z and y in �. Hence

y <

0

R

(�)[k] for i

R

< k < j

R

. Also y < x =

0

R

(�)[i

R

], so we have established that y <

0

R

(�)[k]

for i

R

� k < j

R

. 2

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 22

5 Connections with Bubble Sort

There are several signi�cant connections between our parallel insertion model analyses and some

of the foundational work in the study of sequential sorting algorithms. As we brie
y noted earlier,

the sequential sorting algorithm bubble sort is strongly related to our greedy sorting strategies.

Suppose that we are sorting a permutation � in a standard sequential model. Recall that bubble

sort proceeds by making several passes over the permutation, say, from �[n] to �[1]. With each

pass of bubble sort, we compare �[i] and �[i+1], and exchange their values if they are out of order.

The value that moves to the left in each exchange is the least value seen during the pass. Thus, the

data movement in a single pass of bubble sort is exactly the data movement that would occur by

applying a left greedy step to the permutation in the parallel insertion model. It follows that the

number of passes used by left greedy sort is exactly that used by bubble sort to sort a permutation

�. That number is maxdist

L

(�) as given by theorem 3.4 whose mean value over permutations of

size n is given by E(n) in theorem 3.2.

Because of this connection, any analysis of the number of passes made by bubble sort are relevant

to the study of one-way sorting in the parallel insertion model. Such analysis was provided in

Demuth's thesis from 1956 [4] (a more condensed version of this work appears in [5]) including

a derivation of E(n). Knuth [9] gives this analysis in full detail, and also derives the number

of sequential sorting operations (exchanges and comparisons) made by bubble sort. For their

analyses, Demuth and Knuth considered the number of inversions removed by each pass. For a

permutation �, they consider the number of inversions of �[i] with values to its right: the set

I

i

(�) = f(�[i]; �[j]) j i < j and �[i] > �[j]g. For every �[i] with non-empty I

i

(�), one inversion is

removed by a pass of bubble sort. It turns out that jI

i

(�)j = dist

L

(�[i]; �).

Another interesting connection can be found between the parallel insertion model and a simple

sequential model for sorting considered by Demuth in his thesis. Demuth's circular, non-reversible

memory machine (CNM) consists of a rotating drum of memory cells accessed by a simple processor

consisting of a comparator and a single register. Sorting on the CNM is very similar to one-way

parallel insertion sorting. Demuth describes a bubble sort-like algorithm that is optimal for this

machine, just as left greedy sort is an optimal one-way sorting strategy in the parallel insertion

model. Interestingly, left simple insertion sorting strategy can not be easily adapted to the CNM

model.

A slightly improved version of bubble sort is often suggested called \cocktail shaker sort", whose

sorting passes occur in alternating directions like alternating greedy sort. As an answer to an

exercise, Knuth [9](Exercise 9, pages 360-361,663) notes that the number of cocktail shaker sorting

passes used to sort � is exactly 2maxo�(�)� (0 or 1). Thus theorem 4.6 is a detailed proof for that

exercise. Many have observed that cocktail shaker sort performs in about half the time as bubble

sort. In the next section, we verify this observation by experimentally determining the mean value

of maxo�(�) and by simulating the alternating greedy sorting strategy.

We discovered the tight connection between the greedy sorting strategies and bubble sort and the

connection between our parallel insertion model and the CNM model after we had fully analyzed

the greedy sorting strategies. It is fascinating that the classic analysis of sequential sorting methods

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 23

10 100 1000
permutation size (n)

0.20 0.20

0.30 0.30

0.40 0.40

0.50 0.50

0.60 0.60

0.70 0.70

0.80 0.80

0.90 0.90

1.00 1.00
st

ep
s

/ n
steps / n

odd−even transposition
alternating simple
alternating greedy (optimal)
best−greedy
maxoff (lower bound)

Figure 7: Average number of insertion steps divided by permutation size n. Only the odd-

even transposition and alternating simple insertion sorts are e�ciently implementable on a one-

dimensional sub-bus array.

can be directly applied to our parallel sorting strategies.

6 Simulation Results

Other than our proof that alternating greedy sort is an optimal alternating sorting strategy, most

of our results for two-way sorting strategies are lower bounds. Ultimately, we would like to say

that the alternating simple strategy sorts nearly as well as an optimal alternating sorting strategy

on average. To do so, we devised experiments to measure the average case performance of our

sorting strategies. For several values of n we generated a random sample of 1000 permutations of

size n, and simulated the action of our sorting strategies for each permutation in the sample. The

strategies simulated were early-stopping odd-even transposition sort, alternating simple insertion

sort, alternating greedy sort, and best-greedy sort. In addition, to compare these with our lower

bound, we computed the average value of maxo�(�) over our sample permutations. Figure 7 shows

the results, giving the average number of insertion steps taken divided by the permutation size.

Early-stopping odd-even transposition was the only one-way sorting strategy among the strategies

simulated. As our lower bound of theorem 3.3 predicted, it sorts in nearly n steps for large n.

Since alternating greedy is an optimal alternating sorting strategy, its graph equals twice the graph

of maxo�(�). This suggests that the lower bound of theorem 4.5 is nearly tight, since the graph

converges to about 1=2. This also suggests that optimal alternating strategies use about half as

many insertion steps as optimal one-way strategies for large n.

Unfortunately, the graph gives proof that alternating simple insertion sort is not optimal since its

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 24

graph lies above alternating greedy sort and each strategy sorted the same set of permutations.

A concrete example of a permutation for which the alternating simple insertion sorting strategy

does not sort in the optimal number of steps is the permutation 4,3,2,1. Our simulations show that

alternating simple insertion sort is nearly an optimal alternating strategy, especially for large n,

since its graph also converges to about 1=2. Thus, alternating simple insertion sort takes nearly

half the number of steps as odd-even transposition sort for large values of n.

In our simulations, we found a best-greedy sorting strategy for each permutation in the sample. The

average number of best-greedy sorting steps converged to about n=2, showing that a best-greedy

sort is not signi�cantly better than optimal alternating sorts for large values of n.

Finally, the �gure shows the sample mean of maxo�(�) for our random permutation samples. Its

graph converges to about 1=4. The large gap between this graph and the sorting strategy results

suggests that maxo�(�) may not be a good metric for determining the performance of general

sorting strategies and that the lower bound in theorem 4.3 can likely be improved.

7 Implementing Sorting Strategies

In this section we give more detail on how one-dimensional sorting strategies can be implemented on

a real sub-bus mesh computer such as a MasPar MP-1 or MP-2. In the process we will empirically

compare the well-understood odd-even transposition sort and the simple insertion sorting strategies.

The sub-bus machine model we have adopted for this discussion consists of n processors numbered 1

to n which are linked together by a single segmentable communication bus. In this model, the sub-

bus does not have wrap-around to directly connect processors 1 and n, whereas the MasPar sub-bus

does have wrap-around. Like the MasPar, we adopt the single instruction multiple data (SIMD)

computing model. Thus, there is a front-end processor which synchronously broadcasts parallel

instructions to the processors. In addition, the front-end executes any sequential instructions in

the program. In our programs there are two kinds of variables, singular which have a single

value stored at the front-end and plural which have a value for each processor. A typical parallel

instruction has the form:

if test then statement.

If the test is True at a processor, then the processor is said to be active and executes the statement .

If the test is False at a processor, then the processor is said to be inactive and does not execute

the statement . Statements to be executed include the usual kinds of RAM instructions such as

addition, multiplication, and comparison. In our programming model we also have the communi-

cation instructions left shift , right shift , left broadcast and right broadcast . The shift operations

perform nearest neighbor communication. For example, if every processor needs to get the value

of x from the processor to its immediate left and store it in y, all processors would execute:

y right shift(x);

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 25

Table 1: E�ect of a right shift operation on a sub-bus machine. The * indicates that the value of

y does not change with the operation.

y right shift (x)

proc-id 1 2 3 4 5 6 7 8 9

x a b c d e f g h i

y * a b c d e f g h

Here, x and y are plural variables. Table 1 illustrates the behavior of this statement. The more

interesting communication operation is the sub-bus broadcast. For example, if a processor wants

to broadcast the value of x right on a sub-bus when a certain test is True , it would execute:

if test then y right broadcast (x).

Each processor whose test is True places its value of x on the sub-bus. The broadcast value travels

to all the processors right of a broadcasting processor up to and including the next active processor.

If there is no active processor to the right, then the broadcast travels to the end of the array. Thus,

all processors (active and inactive) will read the value of x from the �rst active processor to its

left into its own variable y . If a processor has no active processor to its left, then the value of

y does not change. A left broadcast behaves similarly, with data movement in the left direction.

Table 2 illustrates the behavior of right broadcast . Note that if test were true on every processor,

a right broadcast (x) would be equivalent to a right shift (x). We di�erentiate them here because

the shift operation is typically less expensive than a sub-bus broadcast. This is the case on the

MasPar.

An additional primitive singular is needed for individual processors to communicate with the front-

end. If the variable x is plural, then singular (i,x) returns a singular value which is the value of

the plural variable x at processor i . In our examples below we assume that all processors have

\hard-wired" plural variables proc id , the index of the processor, and num procs , the number n of

processors.

We begin with the sub-bus pseudo-code to compute the OR of a plural boolean x across all the

processors in the array, which we'll refer to as global or (x). The global or can be computed in a

Table 2: E�ect of a right broadcast operation on a sub-bus machine. The * indicates that the value

of y does not change with the broadcast.

if test then y right broadcast (x)

proc-id 1 2 3 4 5 6 7 8 9

test F T F T T F F T F

x a b c d e f g h i

y * * b b d e e e h

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 26

constant number of sub-bus operations, and is useful in illustrating a typical sub-bus computation.

The sub-bus pseudocode for global or is given below.

singular global or (plural x)

plural right or ;

right or False ;

if x then right or left broadcast(True);

right or right or or x ;

return singular(1,right or);

The plural variable right or at each processor will eventually hold the OR of the values of x at

and to the right of the processor. If a processor has a True value for x then it broadcasts a value

of True to the left. At the end of the routine, the only way that right or could have a value of

False is if its value of x was False and no processors to the right were active during the broadcast.

To get the OR of x over the entire array, we return the value of right or at the leftmost processor.

On many machines including the MasPar, there is actually signi�cantly faster separate hardware

support for computing the global or .

To illustrate how sorting algorithms might be implemented on a sub-bus machine, we begin with

the pseudo-code for odd-even transposition sort on the left half of �gure 8. Normally, odd-even

transposition sort has a loop that is executed exactly num procs times. On the sub-bus you can

determine whether the array is sorted with few sub-bus operations to perform early-stopping odd-

even transposition sort. On even numbered steps even numbered processors look to their left and

odd numbered processors look to their right in order to coordinate an interchange of out of order

values. On odd numbered steps the reverse happens. At each iteration the processors check to see

if the array is sorted. A total of two shift operations and one global or are used to implement each

step of odd-even transposition sort.

We can also implement simple insertion sorting steps in a constant number of sub-bus operations.

As an example, consider the pseudocode of the left simple insertion sort on the right half of �gure 8.

The variable names in the program match fairly closely the description of the left simple insertion

sorting strategy described in section 2.2. The set of pre-active processors are those which compute

the value of pre active equal to True on line (A). The blocking processors are those which have

pi < data in the calculation of active on line (C). The active processors are those that compute

active equal to True on line (C). To complete the insertion step, a processor which is pre-active or

is not active and does not have an active left neighbor accepts the value of its left neighbor which

is stored in left , and a processor which is not active and whose left neighbor is active accepts the

insertion stored in data .

An interesting thing to note is how we implicitly handle the boundary conditions. On line (B) we

initialize data to 1. If a processor has no processor to its right with pre active equal to True , its

value for data will remain set to 1. This gives the same behavior as having an extra processor

num procs + 1 with data = 1 and pre active = True . Similarly, on line (D) we set left active to

True , which is like having a processor 0 that has active equal to True . Thus, the implementation

follows the abstract de�nition of left simple insertion steps given in section 2.2.

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 27

Odd Even Transposition Sort (plural pi)

singular step, all done ;

plural left, right, done ;

step 0;

all done False ;

while not all done do

step step + 1;

left right shift (pi);

if proc id = 1 then left �1;

right left shift (pi);

if proc id = num procs then right 1;

done pi < right ;

if proc id � step mod 2 then

if left > pi then pi left ;

else

if right < pi then pi right ;

endif

all done not global or (not done);

endwhile

Left Simple Insertion Sort (plural pi)

singular all done ;

plural left, data, pre active, active, left active ;

all done False ;

while not all done do

left right shift (pi);

if proc id = 1 then left �1;

pre active left > pi ; (A)

data 1; (B)

if pre active then

data left broadcast(pi);

active pi < data or pre active ; (C)

left active True ; (D)

left active right shift (active);

if (not active or pre active) and not left active

then pi left ;

if not active and left active then pi data ;

all done singular(1,data) = 1;

endwhile

Figure 8: The sub-bus code to implement the odd-even transposition sorting strategy and the

left simple insertion sorting strategy. The alternating simple sorting strategy has code complexity

similar to the left simple insertion sorting strategy.

Termination is achieved by initializing the plural variable data to1 with each step. If processor 1's

data remains 1 after the pre-active processors broadcast, then the array must be sorted because

there were no pre-active processors.

Note that right simple insertion steps can be implemented in a similar fashion, so we can easily

extend this code to implement alternating simple insertion sort. Simple insertion steps can be

implemented with two shift operations and one sub-bus broadcast. Simple insertion strategies can

be implemented in roughly the same length and code complexity as odd-even transposition sort.

Both sorts use two insertion steps per step, but alternating simple insertion step uses a sub-bus

broadcast while odd-even transposition uses a global or . The potential advantage of alternating

simple insertion sort over odd-even transposition sort is that on average, the former sorts in half

as many iterations than the latter.

Consider instead the problem of implementing an arbitrary parallel insertion sorting strategy. We

can generalize the methods used by the previous two algorithms to provide a template for imple-

menting any sorting strategy, given by the code General Insertion Sort in �gure 9. Here, Direction?

determines whether the insertion step for the strategy is a left or a right step and Active? deter-

mines whether a processor is active. Thus, the data movement involved in a insertion step can

be implemented in a constant number of sub-bus operations. However, since the parallel insertion

model made no restriction on the determination of the insertion step direction and the active set of

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 28

General Insertion Sort (plural pi)

singular all done ;

plural left, data, active, left active, right active ;

all done False ;

while not all done do

if (Direction?(: : :) = Left) then

active Active?(: : :);

data 1

if active then data left broadcast(pi);

left active True ;

left active right shift (active);

if data 6= 1 then

if not left active then pi left ;

if not active and left active then pi data ;

endif

else

...right step...

endif

left right shift (pi);

all done not global or (left > pi);

endwhile

Figure 9: The sub-bus code to implement the data movement in an arbitrary sorting strategy. The

functions Direction? and Active? determine the insertion step direction and whether a processor

is active, respectively, for that sorting strategy.

processors, the computation of Direction? and Active? could be arbitrarily complex. For example,

if we were implementing the left greedy strategy, the code for Active? would consist of computing

the minimum value of pi of the processors to the right and comparing that with the value of pi at

the processor. This su�x minimum computation requires �(logn) sub-bus operations [2]. A loga-

rithmic number of sub-bus steps per insertion step implies that the greedy strategies are unsuitable

for practical use on a sub-bus machine. Thus, only the odd-even transposition sorting strategy

and the sorting strategies based on simple insertion steps are e�ciently implementable among the

strategies we have discussed.

8 Implementation Results

Our simulation results indicate that alternating simple insertion sort takes about half as many

insertion steps as odd-even transposition sort. To see if this improvement factor holds in practice

we implemented the shearsort two-dimensional mesh sorting algorithm using some of the one-

dimensional sorts we have described.

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 29

Table 3: Sub-bus operations per insertion step of the shearsort algorithms.

shift broadcast global or

Oblivious Odd-Even Shearsort 2 0 0

Odd-Even Shearsort 2 0 1

Simple Shearsort 2 1 1

The shearsort algorithm [16] on an n�n array of processors proceeds in 2dlog

2

ne+ 1 phases. The

even phases sort the columns of the array independently, moving the smallest values to the top.

The odd phases sort the rows of the array, with ordering values in the odd rows from smallest on

the left to largest on the right and ordering values in even rows from largest on the left to smallest

on the right. The row and column sorts are done using a one-dimensional sort. The result is that

the elements are sorted in \snake order."

We implemented three versions of the shearsort algorithm. The �rst version of shearsort is sim-

ple shearsort which uses alternating simple insertion sort as the one-dimensional algorithm. The

second version of shearsort is odd-even shearsort which uses the early-stopping version of odd-even

transposition as the one-dimensional algorithm. The third version of shearsort is oblivious odd-

even shearsort which employs the oblivious odd-even transposition sort, using n insertion steps per

one-dimensional sort.

The implementation was done in the MPL programming language that is similar to C, but has

constructs to support the programming style given by our sub-bus pseudocode earlier. The pro-

grams were executed on a square 16,384 (128� 128) processor MasPar MP-1. Each program was

executed on the same set of randomly chosen permutations on n� n arrays of processors where n

ranged between 8 to 128.

In our programs we used the MPL equivalents of the shift , broadcast , and global or communication

primitives. An important di�erence between the programs is the number and kinds of operations

needed to execute an insertion step. Odd-even shearsort uses early-stopping odd-even transposition

sorting steps. Recall that our implementation of early-stopping odd-even transposition sorting used

two shift operations to perform the insertion step and one global or to check if the array is sorted.

A phase of odd-even shearsort ends when all the one-dimensional sorts have completed. This means

that we must check if the entire two-dimensional array is sorted with each sorting step, and so the

global or to determine termination now acts over the entire array. Simple shearsort uses simple

insertion steps which consisted of two shift operations and one broadcast . An additional global or

was added to determine whether all the one-dimensional sorts had completed. Since oblivious odd-

even shearsort does not check if the array is sorted, it uses only two shift operations per insertion

step. Table 3 summarizes the sub-bus operations needed per insertion step of each algorithm.

The di�ering operation counts results in di�erent insertion step costs for each algorithm. Figure

10 shows the average time per insertion step for each shearsort implementation as given by our

experiments. The early-stopping mechanism of odd-even insertion steps incurs a 20% overhead over

oblivious odd-even insertion steps. However, this overhead is small relative to the simple shearsort:

simple insertion steps are nearly twice as costly as both odd-even transposition insertion steps. In

addition, simple shearsort shows a slight rise in time per step because as n grows so does the cost

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 30

0 32 64 96 128
mesh width (n)

0.02 0.02

0.04 0.04

0.06 0.06

0.08 0.08

0.10 0.10

0.12 0.12

0.14 0.14

tim
e

pe
r

st
ep

tim
e per step

simple
odd−even
oblivious odd−even

Figure 10: Time per insertion step in milliseconds for each Shearsort.

of the broadcast operation.

Figure 11 shows the average number of insertion steps used by the three shearsorts divided by

the mesh width n. One might expect these results to mimic our simulation results of section 6

with an additional 2dlog

2

ne + 1 factor due to the number of shearsort phases. Indeed, simple

shearsort uses nearly half as many insertion steps as oblivious odd-even shearsort for mesh widths

of sixteen processors or larger. What is somewhat surprising is that odd-even shearsort uses nearly

as few insertion steps as simple shearsort, using only about 10% more. Even though the two-

dimensional inputs to the shearsort algorithms were chosen uniformly at random, the inputs to

the one-dimensional sorting subroutines are not. As the two-dimensional data is sorted, the one-

dimensional sorting phases may need to perform less work. One possible explanation for the low

number of insertion steps used by odd-even shearsort is that the sorting work needed in the later

phases of the algorithm may require only local rearrangements. If this is the case, then odd-even

transposition steps are as e�ective as simple insertion steps.

Figure 12 shows the time (divided by n) for each of our shearsorts. Odd-even shearsort has the best

performance of our shearsort algorithms. It uses nearly as few insertion steps as simple shearsort

(relative to oblivious odd-even shearsort) at a cost per step competitive with oblivious odd-even

shearsort (relative to simple shearsort). The factor of two improvement in the number of insertion

steps gained by simple shearsort over oblivious odd-even shearsort is o�set by the factor of two

expense of each insertion step. This results in oblivious odd-even shearsort and simple shearsort

having similar performance for large n. Odd-even shearsort performs 30% faster than simple and

oblivious odd-even shearsort for large n.

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 31

0 32 64 96 128
mesh width (n)

4.0 4.0

8.0 8.0

12.0 12.0

16.0 16.0

20.0 20.0

st
ep

s
/ n

steps / n

oblivious odd−even
odd−even
simple

Figure 11: Number of sorting steps divided by mesh width for each Shearsort.

0 32 64 96 128
mesh width (n)

0.3 0.3

0.4 0.4

0.5 0.5

0.6 0.6

0.7 0.7

0.8 0.8

0.9 0.9

tim
e

/ n
tim

e / n

simple
oblivious odd−even
odd−even

Figure 12: Sorting time in milliseconds divided by mesh width for each Shearsort.

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 32

9 Conclusion

In this paper we have investigated one-dimensional sorting algorithms which take advantage of the

sub-bus architecture of some parallel computers. The parallel insertion model provides a frame-

work for investigating these algorithms in the form of one-way, alternating, and two-way sorting

strategies. In the parallel insertion model, the left greedy sorting strategy and the left simple in-

sertion sorting strategy are optimal one-way sorting strategies, whereas the odd-even transposition

sorting strategy is not. The alternating greedy sorting strategy is an optimal alternating sorting

strategy. From our simulation study, a best-greedy strategy is only slightly better than an optimal

alternating sorting strategy and the alternating simple insertion sorting strategy is only slightly

worse than an optimal alternating strategy. A proof of these two observations is still unknown.

All our two-way strategies take about half the number of insertion steps as any one-way sorting

strategy and odd-even transposition sort.

A remaining question in the parallel insertion model is whether a general sorting strategy can be

found that performs signi�cantly better than optimal alternating strategies. Our hunch is that this

is not the case, and that a better lower bound can be found.

From our empirical study, shearsort using alternating simple insertion sort is no faster than shearsort

using oblivious odd-even transposition sort, even though it uses half as many steps in the parallel

insertion model. The fastest version of shearsort in our experiments used the early-stopping version

of odd-even transposition sort. It used nearly as few insertion steps as simple shearsort and its

insertion steps were less costly. These results demonstrate that one must carefully consider the

costs of insertion steps when implementing any sorting strategy on a real sub-bus machine.

We would not want to leave the reader with the impression that shearsort using the early-stopping

odd-even transposition sort is the best sorting algorithm for the MasPar MP-1. The MasPar not

only has the sub-bus mesh which we have been investigating, but it also has a separate communi-

cation architecture called the router. Sorting using the router is much faster than sorting using the

mesh.

Acknowledgements

Thanks to Peter VanVleet for helping us use and understand the MasPar and MPL. Thanks also

to Purdue University for use of its 16,384 processor MasPar MP-1 in this project.

References

[1] T. Blank. The MasPar MP-1 architecture. In Proceedings of COMPCON Spring 90 - The Thirty-Fifth

IEEE Computer Society International Conference, pp. 20{24, February 1990.

[2] A. Condon, R. E. Ladner, J. Lampe, and R. Sinha. Complexity of sub-bus mesh computations. SIAM

Journal on Computing, Vol. 25, No. 3, pp. 520{539, 1996.

Sorting by Parallel Insertion on a One-Dimensional Sub-Bus Array 33

[3] M. H. DeGroot. Probability and Statistics, Addison-Wesley, 1975, 1986.

[4] H. B. Demuth. Electronic Data Sorting. PhD thesis, Stanford University, October, 1956.

[5] H. B. Demuth, Electronic Data Sorting. IEEE Transactions on Computers, Vol. 34, No. 4, pp. 296{310,

1985.

[6] J. D. Fix and R. E. Ladner. Optimal one-way sorting on a one-dimensional sub-bus array. In Proceedings

of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 586{594, January 1995.

[7] N. Haberman. Parallel neighbor-sort (or the glory of the induction principle). Technical Report AD-759

248, National Technical Information Service, 1972.

[8] D. E. Knuth. The Art of Computer Programming Volume I: Fundamental Algorithms. Addison-Wesley,

1973, 1968.

[9] D. E. Knuth. The Art of Computer Programming Volume III: Sorting and Searching. Addison-Wesley,

1973, 1968.

[10] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Mor-

gan Kaufmann, 1992.

[11] J. Y-T. Leung and S. M. Shende. On Multi-dimensional Packet Routing for Meshes with Buses. Journal

of Parallel and Distributed Computing, Vol. 20, No. 2, pp. 187{197, 1994.

[12] R. Miller, V. K. Prasanna-Kumar, D. I. Reisis, and Q. F. Stout. Parallel Computations on Recon�g-

urable Meshes. IEEE Transactions on Computers, Vol. 42, No. 6, pp. 678{692, 1993.

[13] V. K. Prasanna-Kumar and C. S. Raghavendra. Array Processor with Multiple Broadcasting. Journal

of Parallel and Distributed Computing Vol. 4, No. 2, pp. 173{190, 1987.

[14] S. Rajasekaran. Mesh Connected Computers with Fixed and Recon�gurable Buses: Packet Routing

and Sorting. IEEE Transactions on Computers Vol. 45, No. 5, pp. 529{539, 1996.

[15] K. Sado and Y. Igarashi. Some parallel sorts on a mesh-connected processor array and their time

e�ciency. Journal of Parallel and Distributed Computing, Vol. 3, pp. 398{410, 1986.

[16] I. Scherson, S. Sen, and A. Shamir. Shear-sort: A true two-dimensional sorting technique for VLSI

networks. In IEEE-ACM International Conference on Parallel Processing, pp. 903{908, 1986.

[17] C. Schnorr and A. Shamir. An optimal sorting algorithm for mesh connected computers. In Proceedings

of the 18th Annual ACM Symposium on Theory of Computing, pp. 255{263, 1986.

