
On the Limitations of Ordered

Representations of Functions

Jayram S. Thathachar

Technical Report UW-CSE-96-09-03

September, 1996

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195





On the Limitations of Ordered Representations of

Functions

Jayram S. Thathachar

�

jayram@cs.washington.edu

Department of Computer Science and Engineering

University of Washington

Box 352350

Seattle, Washington 98195{2350

Abstract

We demonstrate the limitations of the various ordered representations that have

been considered in the literature for symbolic model checking including OBDDs [Bry86],

MTBDDs [CMZ

+

93], EVBDDs [LS92], *-BMDs [BC95] and HDDs [CFZ95] by giving

a variety of simple and natural functions for which each representation requires expo-

nential size to represent them. We also show that there is a simple regular language

that requires exponential size to be represented by any *-BMD; note that OBDDs can

represent any regular language in linear size.

1. Introduction

In recent years, symbolic model checking has become one of the most important techniques

for formal veri�cation of hardware systems. Bryant [Bry86] introduced the OBDD represen-

tation for functions and showed that OBDDs can represent a rich class of functions succinctly

and allow various operations to be performed e�ciently. Subsequently, it was shown that

OBDDs can also be used to handle the state explosion problem in symbolic model checking

(see, for example, [BCM

+

90], [BCL

+

94] and [McM93]).

Despite its success, OBDDs have proved to be unsatisfactory for representing some impor-

tant functions. Thus ordered representations like MTBDDs due to Clarke et al. [CMZ

+

93]

and EVBDDs due to Lai and Sastry [LS92] were de�ned. These have been e�ective for

some additional functions but still have exponential size complexity for other functions like

�

This work was supported by the National Science Foundation under Grant CCR-9303017.

1



On the Limitations of Ordered Representations of Functions 2

multiplication and exponentiation. Progress in the direction of concisely representing the

multiplication function was made by Bryant and Chen [BC95] who proposed the BMD and

the *-BMD representations and showed how multiplication and other arithmetic functions

can be represented e�ciently at the word level. An immediate and important question that

arose was whether *-BMDs are more powerful than MTBDDs or EVBDDs or, at the least,

OBDDs. This question was answered in the negative by Enders [End95], who exhibited

functions with exponential complexity in the *-BMD representation but need only polyno-

mial size OBDDs. Recently, Clarke et al.(see [CFZ95] and [CZ95]) de�ned generalizations

of MTBDDs and BMDs, called hybrid decision diagrams (HDDs), that combine the advan-

tages of both the representations. However, we are still far from understanding the true

power and limitations of these representations and an important question is characterizing

the complexity of various important functions in these representations.

In this report, we demonstrate the weakness of all of the representations above by showing

that none of them can represent many important boolean functions concisely. We show that

a variety of functions from arithmetic, sorting, string matching, formal languages, and graph

theory have exponential complexity in every one of these representations. Our bounds also

apply to other ordered representations like FDDs [KSR92] and *-BDDs [End95].

We derive these results by �rst de�ning a general abstract representation, called Binary

Linear Diagram(BLD) that encompasses all of these representations and then show by a

simple argument that the size of a BLD is bounded by the rank of a certain matrix associated

with the function that it computes. This matrix has previously been looked at by researchers

studying VLSI and computational complexity in order to prove area-time-squared (AT

2

)

bounds for boolean functions (See [Len90] for references and a survey of this area). One of

the successful methods for proving AT

2

lower bounds is to construct large \fooling sets".

Dietzfelbinger et al. [DHS94] showed that the rank is at least the square-root of the size of

any fooling set; applying this, we can recast all the fooling set based AT

2

bounds for boolean

functions as size bounds in the BLD representation. Examples of boolean functions that have

exponentially large fooling sets can be found in Lipton and Sedgewick [LS81], Papadimitriou

and Sipser [PS84] and Bryant [Bry91].

Directly computing the rank is a more di�cult problem and hence has been used less

often to prove AT

2

bounds. Hajnal et al. [HMT88] have shown that many graph-theoretic

predicates have associated matrices with exponentially high rank.

The rank bound also holds for functions that are de�ned on a word level. This can be

used to get some insight into the contrast in the complexity when functions are dealt with

either in the bit level or in the word level. For example, for the bit-level representation of

multiplication, the associated matrix has exponential rank but the word-level de�nition gives

rise to a matrix of constant rank! This gives insight as to why multiplication at the word

level has linear-sized *-BMDs but at the bit level requires exponential size in the all of the

ordered representations.

For dealing with the complexity of functions in speci�c representations, Enders [End95],



On the Limitations of Ordered Representations of Functions 3

in order to derive the result referred to above, introduced a general technique that can be

adapted to each individual representation. This technique does not apply to HDDs but

can be extended to include it as well, although handling the resulting formalism is quite

complicated. Applying this method, Enders showed that the graph-predicate that checks

whether a graph is a triangle requires *-BMDs of exponential size. (This separates *-BMDs

from OBDDs because the same function can be represented by an OBDD in polynomial

size.) An interesting and natural question is whether *-BMDs can represent regular languages

e�ciently, for which OBDDs have linear size. We answer this in the negative, by exhibiting

a simple regular language requiring exponential size in the *-BMD representation. This

provides a partial justi�cation for Clarke et al.'s (see [CFZ95] and [CZ95]) approach for

HDDs where they use OBDDs to represent control-logic based functions and BMDs for

arithmetic functions.

The report is organized as follows. In the next section, we de�ne the BLD representation

and illustrate how it generalizes all the ordered representations. Next, we describe formally

our basic lower bound technique that applies to these representations which we then use to

give lower bounds for many functions, either from the fooling set approach or the direct rank

approach. Then, we demonstrate for a simple regular language that the *-BMD complexity

is exponential and conclude with a summary and related important open questions.

2. Binary Linear Diagrams

A (boolean) input � : X ! f0; 1g is an assignment of 0-1 values to a variable set X. For

technical reasons, we will also allow X to be the empty set in which case � is the (unique)

empty input. We will use monomials to denote inputs; for example, xyz denotes an input

� : fx; y; zg ! f0; 1g, where �(x) = 0 and �(y) = �(z) = 1. Given two inputs � : Y ! f0; 1g

and � : Z ! f0; 1g, where Y and Z are disjoint, their composition � � � : Y [ Z ! f0; 1g

is de�ned in the natural way. De�ne f to be a pseudo-boolean function on X if its domain

is the set of inputs that assign 0-1 values to the variables of X and its range is some �xed

ground �eld.

1

Given an input � : Y ! f0; 1g, the subfunction f

�

of f denotes a function

that maps each input � : XnY ! f0; 1g to f(� � �), that is, f

�

(�) = f(� � �). In this report,

the term function will always refer to a pseudo-boolean function and we will not mention

the variable set on which a function is de�ned if it can be understood from the context.

We now de�ne our abstraction of the ordered representations, the (Ordered) Binary Linear

Diagram(BLD). Let X = fx

1

; x

2

; : : : ; x

n

g be a set of variables and let x

p

1

; x

p

2

; : : : ; x

p

n

be an

order imposed on the variables of X. The basic structure of a BLD is a labeled, directed

acyclic graph. The nodes that have out-degree zero are called the sinks; each sink is labeled

with an element of the ground �eld. Every other node v has out-degree two and the two

edges that are directed from v that are distinguished as the 0-edge and 1-edge, respectively.

The node that the 0-edge (respectively, 1-edge) directs to is called the 0-child (respectively,

1

For boolean functions, this �eld is GF [2].



On the Limitations of Ordered Representations of Functions 4

1-child). The node v is labeled with a variable and a 2� 2 matrix

"

v

00

v

01

v

10

v

11

#

, with entries

in the ground �eld. The BLD is required to satisfy the constraint that in every directed

path, the sequence of variables appearing in order along that path must conform with the

order x

p

1

; x

p

2

; : : : ; x

p

n

.

The 2 � 2 matrix associated with a node describes the linear relationship between the

function computed at the node and the two functions computed at its children. Formally,

we de�ne the semantics of computation in a BLD by associating a node function g

v

with

each node v. For a sink node v, g

v

is a constant function (on the empty variable set) as given

by its label. For a non-sink node v labeled with the variable x

p

k

for some k, 1 � k � n, g

v

is de�ned on the variable set fx

p

k

; x

p

k+1

; : : : ; x

p

n

g in terms of its 0-child u and 1-child v as

follows:

"

(g

v

)

x

p

k

(g

v

)

x

p

k

#

=

"

v

00

v

01

v

10

v

11

#

�

"

g

u

g

w

#

:

Note: We interpret the above and any other functional equations as follows: let Y be the

union of the variable sets of all the various functions appearing in an equation. Then, for

any input � : Y ! f0; 1g, the equation should hold when each function is evaluated at �

restricted to the variable set that is de�ned on. For example, the equation above implies

that for any input � : fx

p

k+1

; : : : ; x

p

n

g ! f0; 1g,

(g

v

)

x

p

k

(�) = v

00

� g

u

(�

0

) + v

01

� g

w

(�

00

);

where �

0

(y) = �(y) for each variable in the variable set of g

u

and �

00

is similarly de�ned with

respect to g

w

.

Finally, there is a designated node in the �rst level called the source and we say that the

BLD computes the node function associated with the source node. It is important to note

that in contrast to many of the ordered representations that have canonical representations

of functions, there can be possibly many BLDs computing the same function. However, this

is not a drawback since our technique for proving lower bounds for functions does not require

their BLD representations to be unique.

Given the description of a function in any of the ordered representations, we can show that

there is an equivalent BLD of the same size. For example, given an OBDD or an MTBDD for

a function f , the BLD for f has the same underlying acyclic graph with the same variable

and sink labelings and with the associated matrix for each node being the 2 � 2 identity

matrix. The transformation of BMDs to BLDs is similar except that the associated matrix

for each node is

"

1 0

1 1

#

, as given by the Galois expansion. The case for *-BMDs needs only

a little bit more work and is best illustrated by Example 1 that we give below. HDDs are

oblivious forms of BLDs. Here the BLD is a leveled acyclic graph with all its edges going

between adjacent levels. All the nodes in any level (except the level corresponding to the

sinks) are labeled with the same variable and the same matrix that the HDD associates with

that variable.



On the Limitations of Ordered Representations of Functions 5

Example 1: To illustrate the transformation of *-BMDs to BLDs, consider the word-

level multiplication function for a pair of two-bit numbers. Figure 1 shows both the *-BMD

representation and the corresponding BLD representation of that function. Note that in

the BLD, the matrix associated with the node labeled by the variable x

1

abstracts both the

Galois expansion and the weight associated with the 1-edge of the corresponding node in the

*-BMD.

x0

x1

1y

0y

0 1 2

x0

x1

1y

0y

0 1 2

2

1

1 2

0

1

1 1

0

1

1 1

0

1

1 1

0

*-BMD BLD

Figure 1: The *-BMD (left) and BLD(right) for the multiplication function with the order of

variables being x

1

; x

0

; y

1

; y

0

. The dashed lines denote the 0-edges and the solid lines denote

the 1-edges.

3. Lower Bounds for Functions under Ordered Representations

We now describe the rank method that we use to give complexity bounds for various functions

that applies to all the ordered representations considered in this paper. First, we show how

the rank of a certain matrix associated with a function bounds its BLD size. Then, we

describe the various methods for getting bounds on the rank.



On the Limitations of Ordered Representations of Functions 6

3.1. The Technique

For this section, let f be a function onX = fx

1

; x

2

; : : : ; x

n

g and let P be any BLD computing

f with the order of variables being x

p

1

; x

p

2

; : : : ; x

p

n

. Fix a k, 0 � k � n, and let L =

fx

p

1

; x

p

1

; : : : ; x

p

k

g be the �rst k variables in this order and R be the remaining variables. For

each input � : L! f0; 1g, we can associate a unique node in the BLD that can be reached

from the source by tracing the path of 0-edges and 1-edges as de�ned by � and stopping as

soon as either a sink or a node labeled with a variable of R is reached. For example, in the

BLD of Figure 1, the nodes corresponding to the inputs x

1

x

0

y

1

and x

1

x

0

are the sink labeled

with 0 and the node labeled with y

1

respectively. Let V

k

denote the set of nodes associated,

in the manner described above, with all the inputs that assign 0-1 values to the variables

of L. The following lemma shows that the subfunction f

�

, for any input � : L ! f0; 1g, is

linearly related to the node functions associated with the nodes in V

k

.

Lemma 1: Let X, f , P , k, L and V

k

be as de�ned above. Then, for any input � : L!

f0; 1g, there exist scalars t

�;w

, w 2 V

k

, in the ground �eld such that

f

�

=

X

w2V

k

t

�;w

� g

w

Proof: The proof is by induction on k.

Basis (k = 0:) Here L = � and � is the empty input so f = f

�

= g

s

, where s 2 V

0

is the

source node.

Induction Let k > 0 and suppose the statement is true for k � 1. Let L

0

= Lnfx

k

g and

R

0

= XnL

0

. Fix any input � : L! f0; 1g, and note that we can express it either as �

0

� x

p

k

or as �

0

� x

p

k

, for some input �

0

: L

0

! f0; 1g. Assume that � = �

0

� x

p

k

; the proof for the

other case is similar. By the induction hypothesis, there exist scalars t

�

0

;w

0

, w

0

2 V

k�1

, such

that f

�

0

=

P

w

0

2V

k�1

t

�

0

;w

0

� g

w

0

.

Note that each w

0

in the sum above is either a sink or labeled with the variable x

p

j

, for

some j � k. Therefore, we have,

f

�

= (f

�

0

)

x

p

k

=

0

B

B

B

B

B

B

B

@

X

w

0

2 V

k�1

x

p

k

labels w

0

t

�

0

;w

0

� (g

w

0

)

x

p

k

1

C

C

C

C

C

C

C

A

+

0

B

B

B

B

B

B

B

@

X

w

0

2 V

k�1

x

p

k

does not label w

0

t

�

0

;w

0

� g

w

0

1

C

C

C

C

C

C

C

A

(1)

Consider any w

0

2 V

k�1

in the �rst summand above. Since it is labeled by x

p

k

, there exist

the 0-child u 2 V

k

and 1-child v 2 V

k

in P such that (g

w

0

)

x

p

k

= w

0

10

� g

u

+w

0

11

� g

v

. Substitute

this expression into Equation 1 for each such w

0

.



On the Limitations of Ordered Representations of Functions 7

On the other hand, for any w

0

2 V

k�1

in the second summand above, w

0

is the (unique)

node in P associated with the input � so w

0

also belongs to V

k

.

Combining the two observations above, we can see that f

�

is a linear combination of the

node functions associated with the nodes in V

k

, proving the lemma. 2

We will describe the linear relationship of Lemma 1 by a matrix equation. Again, �x a

0 � k � n, and let L, R and V

k

be as in the statement of Lemma 1 above. De�ne a matrix

M

f

associated with f of 2

k

rows, one for each input � : L! f0; 1g, and 2

n�k

columns, one

for each input � : R ! f0; 1g. The (�; �)-th entry of M

f

is f(� � �). Similarly, de�ne a

jV

k

j�2

n�k

matrix M

g

associated with the node functions in V

k

. In this matrix, the (w; �)-th

entry, for each w 2 V

k

and each input � : R ! f0; 1g, is g

w

(�

0

), where �

0

is the input �

restricted to the variable set of g

w

. Finally, let T denote the 2

k

� jV

k

j matrix that expresses

the linear relationship between M

f

and M

g

. In other words, the (�; w)-th entry of T , for

each input � : L! f0; 1g and each node w 2 V

k

is the t

�;w

of Lemma 1.

The relationship between M

f

and M

g

, as given by Lemma 1 is M

f

= T �M

g

. Therefore,

we can infer from elementary linear algebra that

rank(M

f

) � rank(M

g

) � jV

k

j:

Thus, the rank of M

f

is a lower bound on the size of P .

Example 2: Let f be the multiplication function of Example 1. If we use the order as

followed by the BLD in that example and set k = 2, the matrix M

f

will have four rows

corresponding to inputs that assign values to x

1

and x

0

and four columns corresponding to

inputs that assign values to y

1

and y

0

. The matrix is described below:

y

1

y

0

y

1

y

0

y

1

y

0

y

1

y

0

x

1

x

0

x

1

x

0

x

1

x

0

x

1

x

0

2

6

6

6

4

0 0 0 0

0 1 2 3

0 2 4 6

0 3 6 9

3

7

7

7

5

Notice that this matrix has rank one (over reals or rationals).

Referring to the BLD in Figure 1, we can see that V

k

consists of two nodes, the sink

labeled with zero and the node labeled with the variable y

1

. Therefore, the matrix M

g

has

two rows corresponding to the node functions of these two nodes and four columns and has

the following entries:

y

1

y

0

y

1

y

0

y

1

y

0

y

1

y

0

sink labeled 0

node labeled y

1

"

0 0 0 0

0 1 2 3

#



On the Limitations of Ordered Representations of Functions 8

In contrast, consider the bit-level multiplication function f

0

representing the second least

signi�cant bit of the product. In this case, the matrix M

f

0

has rank two over GF [2]:

y

1

y

0

y

1

y

0

y

1

y

0

y

1

y

0

x

1

x

0

x

1

x

0

x

1

x

0

x

1

x

0

2

6

6

6

4

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

3

7

7

7

5

In determining the complexity of a function in the various representations, we must con-

sider all possible orders of variables. Therefore, to prove lower bounds using the rank method

above, we must show that for any order, there is always a partition of X into L and R such

that the associated matrix M

f

has a high rank. We state these observations as a theorem

below:

Theorem 2: For any k, 0 � k � n, and for any order of the variables x

p

1

; x

p

2

; : : : ; x

p

n

,

let M

p

1

;p

2

;:::;p

n

f;k

denote the matrix

2

where the (�; �)-th entry is f(� ��), for each � and � that

assign 0-1 values to fx

p

1

; x

p

2

; : : : ; x

p

k

g and fx

p

k+1

; x

p

k+2

; : : : ; x

p

n

g, respectively. Then, any

BLD that computes f must have size at least

min

p

1

;p

2

;:::;p

n

max

k

rank(M

p

1

;p

2

;:::;p

n

f;k

):

Corollary 3: The statement in Theorem 2 holds when we substitute any of the ordered

representations like MTBDDs, EVBDDS, *-BMDs, HDDs in place of BLDs.

3.2. Rank versus Fooling Sets

We now consider the various methods that researchers have used to get lower bounds on the

rank of many important boolean functions that holds independent of the order imposed on

the variables. We will be primarily interested in those functions that have exponential rank.

For a boolean function f , and for a �xed partition of X into L and R, the matrix M

f

is the matrix of the two-party communication complexity game, an area which has been

extensively studied. In this game ([Yao79]), one player has the assignment of values to the

variables of L and the other to the variables of R and their goal is to compute f by commu-

nicating the fewest number of bits. A related measure is the best-partition communication

complexity ([PS84]) in which one computes the communication cost for the best choice of

L and R, with the constraint that the sizes L and R be \large" enough. This measure has

been heavily used to give AT

2

bounds in VLSI (see Lengauer [Len90] for references).

2

We use this notation instead of the plain M

f

to show the dependence explicitly.



On the Limitations of Ordered Representations of Functions 9

One technique for getting lower bounds on the best-partition communication complexity

is to construct large boolean fooling sets, one for each partition. If the minimum size of all of

these sets is s, then log s is a lower bound on the best-partition communication complexity.

A fooling set A consists of pairs of inputs that assign values to the variables of L and R,

respectively, such that

1. there exists a � 2 f0; 1g such that for each pair (�; �) in A, f(� � �) = �, but

2. for any two distinct pairs (�; �) and (�

0

; �

0

) in A, either f(� � �

0

) 6= � or f(�

0

� �) 6= �.

For our application, we are interested in knowing how the fooling set size relates to the

rank. The following proposition due to Dietzfelbingeret al. [DHS94] shows that if the fooling

set size is exponential, then so is the rank. Although they considered equipartitions, the

same proof extends to unequal-sized partitions as well, which we give below for the sake of

completeness.

Proposition 4 (Dietzfelbinger et al. [DHS94]): For a boolean function f , an order

on its variable set x

p

1

; x

p

2

; : : : ; x

p

n

and an integer k, 0 � k � n, let M = M

p

1

;p

2

;:::;p

n

f;k

be the

matrix as de�ned in Theorem 2. Suppose s is the size of any fooling set and suppose r is

the rank of M over any �eld.

3

Then, r �

p

s� 1.

Proof: Let A be a fooling set of size s. Without loss of generality assume that the � in

its de�nition is one and we will show below that the rank of M is at least

p

s. If the � in

its de�nition is zero, then the proof below will also apply to the matrix J �M , where J is

a matrix whose every entry is one. Then, rank(M) � rank(J �M)� 1 �

p

s� 1.

As before, let L = fx

p

1

; x

p

1

; : : : ; x

p

k

g be the �rst k variables in the order and R be the

remaining variables. The basic idea is to look at the Kronecker product M 
 M

T

. The

rows of this matrix are indexed by the pairs (�; �) and the columns by the pairs (�

0

; �

0

), for

each �; �

0

: L! f0; 1g and each �; �

0

: R ! f0; 1g and the entry corresponding to (�; �)-th

row and (�

0

; �

0

)-th column is f(� � �)f(�

0

� �

0

). An important property that the Kronecker

product satis�es is that rank(M 
M

T

) = rank(M)rank(M

T

).

Let A = f�

i

; �

i

) : 1 � i � sg. Consider the s� s submatrix N of M 
M

T

induced by the

rows corresponding to (�

i

; �

i

) and the columns corresponding to (�

j

; �

j

), for each 1 � i; j � s.

This matrix is an identity matrix because the (i; j)-th entry is f(�

i

��

i

)f(�

j

��

j

) which equals

one if and only if i = j. Thus, the rank of M 
M

T

is at least s from we can deduce that

s � rank(M 
M

T

) = rank(M)rank(M

T

) = rank(M)

2

;

which proves the proposition. 2

Proposition 4 above, and Corollary 3 together imply that boolean functions that have

fooling sets of exponential size, one for each order of the variables (with respect to some

3

Note that M is a 0-1 matrix so this is well-de�ned.



On the Limitations of Ordered Representations of Functions 10

partition), require exponential size in all the ordered representations. In general, constructing

fooling sets is easier than computing the rank directly. However, there are functions for which

the rank is exponentially larger than the size of any fooling set. In fact, Dietzfelbinger et

al. [DHS94], in the same paper referred to above, showed that almost all boolean functions

satisfy the property that the rank is exponential but no fooling set is larger than linear in

size. Therefore, for some functions we have to resort to computing the rank directly. This

again is a classic problem that has been extensively studied in communication complexity.

As shown by Mehlhorn and Schmidt [MS82], the �xed-partition communication complexity

of any function is bounded below by the logarithm of the rank of the associated matrix.

Therefore, researchers have used this approach for proving bounds on the best-partition

communication complexity by showing that for certain functions, all the matrices that arise

by considering the various partitions have large rank. These results directly give bounds for

the BLD representation as well.

3.3. Functions that have Exponential BLD Size

In this section, we list some important boolean functions which have exponential BLD-size

for all orders of the variables; for each function, we will indicate the approach that was taken

to show that the rank is exponentially large.

Selection/Equality Testing

Given 2n input bits, divide them into two halves, the selector and the candidate, of n bits

each. Given that the selector has exactly n=2 bits set to one, function is de�ned to be one

if and only if the n=2-bit number obtained by selecting those bits in the candidate at the

positions corresponding to the zero bits in the selector equals the remaining n=2-bit number

in the candidate (corresponding to the positions where the selector bits are one).

A Deterministic Context-Free Language

Here the input binary string is an encoding of a string in f0; 1; c; �g

�

and the function is

de�ned to be one if and only if the input encodes a string that has the form wcw

R

, for some

w 2 f0; 1g

�

, when the �'s are removed from the string.

Pattern Matching

Here, the function is de�ned to be one if and only if the binary pattern string of �n bits

occurs in the binary text string of (1� �)n bits, where 0 < � < 1.

Comment: Lipton and Sedgewick [LS81] exhibit fooling sets of exponential size for each of

the three functions above.



On the Limitations of Ordered Representations of Functions 11

Shifted Equality

Given two n-bit numbers x and y and a log n-bit number i, the function evaluates to one if

and only if x equals the number y shifted circularly to the right by i bits.

Comment: The proof that this function has fooling sets of exponential size under all parti-

tions illustrates a general technique by Lam and Ruzzo [LR92] who gave a transformation

from the �xed-partition to the best-partition model. Using this technique, one can translate

a result that shows that there is a large fooling set for a certain function under some �xed

partition to another result that shows that there are large fooling sets for a related function

under all partitions.

Multiplication

There are two versions that can be considered here. In the �rst version, the function veri�es

the product, that is, it takes two n-bit numbers x and y and a 2n-bit number z as inputs

and evaluates to one if and only if x � y = z. In the second version, the function computes

the middle-bit of the product of two n-bit numbers.

Comment: For the veri�er version, Lipton and Sedgewick [LS81] showed that this function

has fooling sets of exponential size under all partitions of equal size. Bryant [Bry91] showed

that even computing a single bit can be hard by exhibiting fooling sets of exponential size

for the middle-bit version. In contrast, Bryant and Chen [BC95] showed that the word-level

de�nition of multiplication has linear-sized *-BMDs.

For the following three problems, the input undirected graph is represented by

�

n

2

�

bits.

Connectivity

The function is de�ned to be one if and only if the undirected graph is connected.

s-t-Connectivity

This function takes two additional vertices s and t as its input and evaluates to one if and

only if there is a path between s and t in the graph.

Bipartiteness

Here, the function is de�ned to be one if and only if the undirected graph is bipartite, that

is, the vertex set can be divided into two sets such that all the edges in the graph connect

vertices of one set to vertices of the other.

Comment: For each of the three functions above, Hajnal et al. [HMT88] bounded the rank

directly and showed that it is exponential.



On the Limitations of Ordered Representations of Functions 12

4. *-BMDs and Regular Languages

In the earlier sections, we saw that the rank method is a useful tool for proving bounds that

hold uniformly in all the ordered representations. A related and important problem is to

contrast speci�c representations in order to understand what representations are best suited

for a class of functions or languages. For example, MTBDDs and EVBDDs need exponential

size to represent multiplication and exponentiation but *-BMDs can represent these and

many other word-level arithmetic functions concisely. However, we already know by the

result due to Enders [End95], referred to earlier, that *-BMDs are not more powerful than

OBDDs. An interesting question is to contrast these representations for natural classes of

languages. For regular languages, we know that OBDDs can represent any regular language

in linear size by keeping track of the state in the automaton that represents it. In this section,

we demonstrate that *-BMDs fail to represent all the languages in this class e�ciently. We

exhibit a simple regular language that any *-BMD representing it requires exponential size.

In order to prove this, we use Enders' [End95] approach in bounding the number of distinct

path functions.

Since all the ordered representations deal with functions and not languages, in order to

de�ne the complexity of a language in any of these representations, we formally de�ne for

each language S, the associated family of functions f

S

n

, parameterized by the number of

variables n, as follows: let X = fx

1

; : : : ; x

n

g be the set of variables; then, for any input

� : X ! f0; 1g, we have f

S

n

(�) = 1 if and only if �(1)�(2) : : : �(n) 2 S. The complexity

of S in a representation is de�ned to be the complexity of this family of functions in that

representation.

We now state our main result of this section.

Theorem 5: Let the sets A

i

, for i = 0; 2; 3; 4, be de�ned as follows:

A

i

= fw 2 f0; 1g

7

: w has i ones g:

Then, any *-BMD representing the regular language

S = A

�

0

A

3

(A

0

[ A

2

)

�

[ A

�

0

A

4

A

�

0

requires size 2


(n)

.

We will �rst describe the technique that Enders introduced to derive bounds for the *-BMD

representation and then apply it to prove our result.

Fix an order x

p

1

; x

p

2

; : : : ; x

p

n

on the variables and a *-BMD that computes f = f

S

n

. For

any input � that assigns values to the �rst k variables in this order, for some k � n, let v

�

be the node reached in the *-BMD by taking the path corresponding to � and let E

�

denote

the product of the edge weights from the source to v

�

. As before, we will denote the node

function corresponding to a node v by g

v

.



On the Limitations of Ordered Representations of Functions 13

Let the path

4

function h

(�)

, corresponding to �, be de�ned as h

(�)

= E

�

�g

v

�

. Enders showed

that the path function can also be expressed in terms of the subfunctions using Mobius

inversion. To describe this equation, we will need the following two notations: for any input

�, j�j denotes the number of variables set to one by � and for any two inputs �; � : Y ! f0; 1g,

we denote � � � to mean that �(y) � �(y) for each variable y 2 Y . As before, partition

X into L and R, where L = fx

p

1

; x

p

1

; : : : ; x

p

k

g. For any input � : L ! f0; 1g, we have the

following equations:

Proposition 6 (Enders [End95]):

f

�

=

X

���

h

(�)

h

(�)

=

X

���

(�1)

j�j�j� j

f

�

(2)

To bound the number of nodes in any particular level, we de�ne a variant of the fooling set

that we used earlier. This variant is similar in spirit to the one used by Enders [End95] and

Bryant [Bry91]. Here, the fooling set A consists of inputs that assign values to the variables

of L only and satis�es the property that for any two distinct inputs �; � : L! f0; 1g in A,

there exist �; � : R! f0; 1g such that

h

(�)

(�)h

(�)

(�) 6= h

(�)

(�)h

(�)

(�): (3)

We claim that the *-BMD must have at least jAj nodes. For otherwise, by the pigeon-hole

principle, there are two inputs � and � in A such that v

�

= v

�

. But this implies that for all

�; � : R! f0; 1g

h

(�)

(�)h

(�)

(�) = E

�

E

�

g

v

�

(�)g

v

�

(�) = E

�

E

�

g

v

�

(�)g

v

�

(�) = h

(�)

(�)h

(�)

(�);

which contradicts Equation 3.

With this machinery, we are now ready to prove the result.

Proof:[Of Theorem 5] Assume that n = 14m, for some large enough m. Divide the

variables X = fx

1

; x

2

; : : : ; x

14m

g into 2m blocks of seven consecutive variables each. In other

words, the block B

i

, for 1 � i � 2m, will contain the variables x

j

, for 7(i� 1) < j � 7i. Any

input � that assigns values to the variables of a block B

i

, for some i, induces a binary string

�(7(i � 1) + 1)�(7(i � 1) + 2) : : : �(7i). We will be interested in the various binary strings

that are induced by the inputs in the appropriate blocks.

Fix an order x

p

1

; x

p

2

; : : : ; x

p

n

on X and also �x a *-BMD that uses this order to compute

the characteristic function f = f

S

n

of S. Let L = fx

p

1

; x

p

1

; : : : ; x

p

n=2

g and R = XnL be an

equipartition of X.

4

We use h

(�)

rather than h

�

to emphasize the fact that this is not a subfunction.



On the Limitations of Ordered Representations of Functions 14

A simple counting argument shows that we can always �nd 2s blocks, for some even

s � m=8, indexed by the set I (jIj = 2s), such that for ` 2 I, jB

`

\ Lj � 3. For each ` 2 I,

we will arbitrarily choose three variables in B

`

\ L and call them special. Similarly, we can

�nd a single block B

r

, r =2 I, such that jB

r

\ Rj � 4 and arbitrarily choose four special

variables in B

r

\ R. We will call the blocks B

i

, for i 2 I [ frg, also as special.

The set of inputs that we will deal with will be obtained by carefully assigning values to

the special variables. By default, the non-special variables in any input are always assigned

to zero and we will not mention that henceforth. Note that this means that each non-special

block induces the binary string 0000000, which is the unique element of A

0

.

The fooling set A consists of inputs that correspond to the various ways of choosing a set

I

0

� I of cardinality s; for each such choice of an I

0

, the corresponding input is de�ned as

follows: For each ` 2 I,

(a) if ` 2 I

0

, then the three special variables in B

`

\ L are each set to one.

(b) Otherwise, if ` 2 InI

0

, then set the special variable with the smallest index in B

`

\ L

to zero and the other two to one.

The fooling set has the right size of

 

2s

s

!

= 2


(n)

:

Note that if (a) (respectively, (b)) above was used to assign values to the special variables

of a block, then assigning a zero to each of the other variables (which are non-special and

hence get a zero value eventually anyway) induces a string in A

3

(respectively, A

2

).

We will now show that the set we have constructed is indeed a fooling set by exhibiting

two inputs �; � : R! f0; 1g such that

1. for all � in A, h

(�)

(�) = 1, and

2. h

(�)

(�) is distinct for each � 2 A.

Then, by Equation 3, we will have proved the theorem.

De�ne the input � : R ! f0; 1g by setting all the four special variables in B

r

to one. To

see that h

(�)

(�) = 1, for any � 2 A, via Equation 2, note that the induced string in block

B

r

is an element of A

4

. The only way to ensure that � � � and f

�

(�) 6= 0 is by having �

assign zeros to all the variables of L so that � � � induces an element of A

�

0

A

4

A

�

0

in all the

blocks put together. Then,

h

(�)

(�) = (�1)

j�j�j� j

f

�

(�) = 1;

since s is even and � assigns 5s variables to one whereas � assigns no variable to one.



On the Limitations of Ordered Representations of Functions 15

On the other hand, the input � : R ! f0; 1g is de�ned by assigning a zero to all the

special variables in B

r

(and hence to all variables in R). For each � 2 A, we will obtain an

exact expression for h

(�)

(�) via Equation 2 and then show that it is distinct for each �.

Notice that � �� induces an element of A

3

in each of some s special blocks, an element of A

2

in each of some other s special blocks and the element of A

0

in each of the rest. To obtain a

� � � such that f

�

(�) 6= 0, the only choice is in assigning values to those blocks in which � ��

does not induce the element of A

0

. Moreover, the string that �:� induces contains no block

that can be a member of A

4

therefore this string must be an member of A

�

0

A

3

(A

0

[ A

2

)

�

.

This implies that j�j � j� j is odd so that h

(�)

(�) is negative and its magnitude is the number

of � � � such that � � � induces a string in A

�

0

A

3

(A

0

[ A

2

)

�

.

In the string induced by � � �, delete all the blocks corresponding to A

0

and call the

resulting string of length 14s as w. Let w = w

2s

w

2s�1

: : : w

1

, where w

i

2 A

2

[ A

3

, and let

n

s

> n

s�1

> � � � > n

1

be the positions such that for 1 � j � s, w

n

j

2 A

3

. From the

discussion above, it is clear that the magnitude of h

(�)

(�) is exactly the number of strings u

in A

�

0

A

3

(A

0

[A

2

)

�

such that u has the same length as w and the bit value for each position in

u is no more than the bit value for the corresponding position in w. Let u = u

2s

u

2s�1

: : : u

1

,

where u

i

2 A

0

[ A

2

[ A

3

, for 1 � i � 2s. For each j, 1 � j � s, observe that the number of

u's in which u

n

j

2 A

3

is exactly 2

n

j

�j

4

j�1

= 2

n

j

+j�2

. Summing up over all j, we have,

h

(�)

(�) = �

X

1�j�s

2

n

j

+j�2

:

By a similar argument one can show that for an input �

0

2 A di�erent from �, by deleting

the blocks corresponding to A

0

in the string induced by �

0

� �, if m

s

> m

s�1

> � � � > m

1

are

the positions where the elements of A

3

appear, then,

h

(�

0

)

(�) = �

X

1�j�s

2

m

j

+j�2

:

By our construction of the fooling set, the vectors (n

s

; n

s�1

; : : : ; n

1

) and (m

s

; m

s�1

; : : : ; m

1

)

are di�erent . Let q be the largest integer such that n

q

6= m

q

and assume, without loss of

generality, that n

q

> m

q

. Then,

h

(�

0

)

(�)� h

(�)

(�) =

X

1�j�q

2

n

j

+j�2

�

X

1�j�q

2

m

j

+j�2

� 2

n

q

+q�2

� (2

m

q

+q�1

� 1) > 0:

This proves our claim that h

(�)

(�) is distinct for each � 2 A and completes the proof of the

theorem.

2

5. Conclusions

We have shown that a variety of boolean functions have exponential complexity in all the

ordered representations by relating its complexity to two measures, the fooling set size and



On the Limitations of Ordered Representations of Functions 16

the rank. We also showed that there is a simple regular language that requires exponential

size *-BMDs. We are currently investigating other boolean functions whose counter part

multi-output functions are known to have high AT

2

bounds. There are two directions here{

either look at some speci�c bit that is hard for that function or consider the function de�ned

as a predicate by including the output of the function as part of the input of the predicate.

Another important issue is to study the limitations of the word-level representation of

various functions. We are unaware of any results in this direction that show that certain

word-level functions have high complexity in all the ordered representations. Since the bound

in Theorem 2 applies for all functions, currently we are trying to show, via this technique,

that even the word-level representations are ine�cient for some important functions.

Acknowledgments

I am indebted to Paul Beame for his invaluable guidance and support during the course

of this work and for his comments and clari�cations in the report. I also thank Richard

Anderson for directing me towards studying the *-BMD-complexity of regular languages.

References

[BC95] R.E. Bryant and Y.-A. Chen. Veri�cation or Arithmetic Circuits with Binary

Moment Diagrams. In 32nd ACM/IEEE Design Automation Conference, Pitts-

burgh, June 1995. Carnegie Mellon University.

[BCL

+

94] J.R. Burch, E.M. Clarke, D.E. Long, K.L. MacMillan, and D.L. Dill. Sym-

bolic model checking for sequential circuit veri�cation. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 13(4):401{424, April

1994.

[BCM

+

90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic

Model Checking: 10

20

States and Beyond. In Proceedings of the Fifth Annual

IEEE Symposium on Logic in Computer Science, pages 1{33, Washington, D.C.,

June 1990. IEEE Computer Society Press.

[Bry86] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.

IEEE Transactions on Computers, C-35(8):677{691, August 1986.

[Bry91] R. E. Bryant. On the Complexity of VLSI Implemetations and Graph Represen-

tations of Boolean Functions with Application to Integer Multiplication. IEEE

Transactions on Computers, 40(2):205{213, February 1991.



On the Limitations of Ordered Representations of Functions 17

[CFZ95] E. Clarke, M. Fujita, and X. Zhao. Overcoming the limitations of MTBDDs and

BMDs. Technical Report CMU-CS-95-159, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA 15213, April 1995.

[CMZ

+

93] E. Clarke, K.L. McMillian, X. Zhao, M. Fujita, and J.C.-Y. Yang. Spectral Trans-

forms for large Boolean Functions with Application to Technologie Mapping. In

30th ACM/IEEE Design Automation Conference, pages 54{60, Dallas, TX, June

1993.

[CZ95] E. Clarke and X. Zhao. A new approach for verifying arithmetic circuits. Techni-

cal Report CMU-CS-95-161, School of Computer Science, Carnegie Mellon Uni-

versity, Pittsburgh, PA 15213, May 1995.

[DHS94] Dietzfelbinger, Hromkovic, and Schnitger. A Comparison of Two Lower Bound

Methods for Communication Complexity. In Symposium on Mathematical Foun-

dations of Computer Science, pages 326{335, 1994.

[End95] R. Enders. Note on the Complexity of Binary Moment Diagram Representations.

Manuscript, 1995.

[HMT88] Andr�as Hajnal, Wolfgang Maass, and Gy�orgy Tur�an. On the communication

complexity of graph properties. In Proceedings of the Twentieth Annual ACM

Symposium on Theory of Computing, pages 186{191, Chicago, Illinois, 2{4 May

1988.

[KSR92] U. Kebschull, E. Schubert, and W. Rosenstiel. Multilevel Logic Synthesis Based

on Functional Decision Diagrams. In 29th ACM/IEEE Design Automation Con-

ference, pages 43{47, 1992.

[Len90] Lengauer. VLSI theory. In Handbook of Theoretical Computer Science, Ed.

Jan van Leeuwen, Elsevier and MIT Press (Volume A (= \1"): Algorithms and

Complexity), volume 1. 1990.

[LR92] Lam and Ruzzo. Results on communication complexity classes. Journal of Com-

puter and System Sciences, 44, 1992.

[LS81] Richard J. Lipton and Robert Sedgewick. Lower bounds for VLSI. In Conference

Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computa-

tion, pages 300{307, Milwaukee, Wisconsin, 11{13 May 1981.

[LS92] Y.-T. Lai and S. Sastry. Edge-valued binary decision diagrams for multi-level

hierarchical veri�cation. In 29th ACM/IEEE Design Automation Conference,

pages 608{613, 1992.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell

Massachusetts, 1993.



On the Limitations of Ordered Representations of Functions 18

[MS82] Kurt Mehlhorn and Erik M. Schmidt. Las Vegas is better than determinism

in VLSI and distributed computing (extended abstract). In Proceedings of the

Fourteenth Annual ACM Symposium on Theory of Computing, pages 330{337,

San Francisco, California, 5{7 May 1982.

[PS84] Papadimitriou and Sipser. Communication complexity. Journal of Computer and

System Sciences, 28, 1984.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive com-

puting (preliminary report). In Conference Record of the Eleventh Annual ACM

Symposium on Theory of Computing, pages 209{213, Atlanta, Georgia, 30 April{

2 May 1979.


