
A User-Level Unix Server for the SPIN Operating System

David Dion

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

October 24, 1996

Abstract

An operating system that emulates Unix supports a wide range of popular applications.

This paper describes the SPIN Unix Server, an implementation of Unix for the SPIN operating

system. The SPIN Unix Server is a user-level application program supported by extensions that

are dynamically linked into the SPIN kernel. It exports a traditional Unix system interface and

provides backwards compatibility to Unix applications. In addition, applications can dynami-

cally customize the Unix interface to optimize the performance of critical services. SPIN and

the SPIN Unix Server are implemented on DEC Alpha workstations.

1 Introduction

An important factor in the acceptance of a new operating system is the range of applications it

supports. For instance, a top priority in the design of Windows NT was to run all existing Windows

and MS-DOS programs [Custer 93]. Although research operating systems rarely demand backwards

compatibility with commercial applications, they still bene�t from exporting a well-known, widely

available programming interface. This paper describes the SPIN Unix Server, an implementation

of Unix for the SPIN Operating System.

The SPINUnix Server is an architecture for Unix emulation. Emulation allows Unix applications

to execute on SPIN as if they were executing on a native Unix operating system. The SPIN

Unix Server is a large, user-level program which emulates Unix by exporting the Unix system call

interface to client applications. The server architecture is transparent to clients, as it o�ers binary

compatibility and identical services to a traditional monolithic Unix system.

While SPIN supports client applications through the Unix server, the server runs on SPIN by

means of a separate emulation. The SPIN Unix Server was actually developed for the Mach 3.0

microkernel [Golub et al. 90]. It has been ported to SPIN using a Mach emulation layer dynamically

embedded into the kernel. Hence, SPIN emulates Unix in the context of an emulation of Mach.

This paper focuses on the implementation of the SPIN Unix Server architecture. This involves

both the Mach emulation and utilization of the server for the Unix emulation. An evaluation of

the architecture is included, as well as a technique for dynamically optimizing the emulation for

critical paths in an application.

1



1.1 The rest of this paper

The next section gives some background on emulating Unix. In Section 3, the SPIN operating

system is described. Section 4 presents the architecture of the SPIN Unix Server. Performance is

evaluated in Section 5, and related work is discussed in Section 6. Finally, Section 7 concludes.

2 Background

Unix is an ideal emulation target for two main reasons. First, it is recognized more for its program-

ming interface than its interaction with low-level machine resources. This allows the emulation to

occur at a relatively high level of abstraction|the system call interface. Second, the Unix program-

ming interface is simple, popular, and readily available. Unix implementations exist on virtually

all architectures and the source code for several versions is publicly available.

Methods for emulating Unix on a foreign operating system target three main goals:

� extensibility: can the emulation be modi�ed without rebooting or rebuilding the system?

� performance: do applications perform on the emulation comparably to on a native system?

� safety: can the emulation damage the system, or can an application corrupt the emulation?

Some earlier systems [Ousterhout et al. 88, Rashid et al. 89] export a Unix programming interface

directly from the kernel. Systems which adopt this approach typically achieve the performance and

protection of a traditional monolithic system, but sacri�ce exibility. As extensibility has evolved

into an important trend in operating system design, Unix functionality has been separated from

the kernel and spread among libraries, server applications, and kernel extensions. Library emula-

tions [Khalidi & Nelson 92] generally have excellent performance (provided calls to native system

services can be minimized), since system calls can be reduced to local procedure calls. However,

libraries are inherently unsafe from applications. Errant or malicious applications can corrupt li-

brary data, causing unpredictable failures or even breakdowns in system security. User-level servers

in separate address spaces [Golub et al. 90] protect emulators from applications. Unfortunately, the

client/server model requires frequent context switching and transfer of data across address space

boundaries, resulting in poor performance. Emulations through kernel extensions [Bricker et al.

91] achieve performance comparable to libraries, and the emulation state is protected from appli-

cations. However, kernel extensions are historically trusted entities. Although the kernel extension

is protected from the application, the kernel is not protected from the kernel extension.

Emulation in the SPIN operating system has the advantages of these approaches without the

disadvantages. SPIN [Bershad et al. 95] is an operating system which can be safely and dynamically

specialized to the needs of applications via untrusted kernel extensions. Extensions are linked

directly into the kernel address space, where they may access system resources and services with

low latency. Protection in SPIN is based on restricted dynamic linking and the type-safety of

Modula-3 [Nelson 91], the programming language in which SPIN and its extensions are written.

An emulation constructed from SPIN extensions harnesses the safety, exibility, and perfor-

mance of the SPIN extension architecture. Emulation extensions execute in the kernel address

space, isolating them from corruption from applications. At the same time, the SPIN protection

model guards the kernel from abusive extensions, allowing untrusted emulations to be linked into

2



the kernel. Performance is optimized by migrating services into the kernel, reducing the need for ex-

pensive context switching. Extensibility is fundamental to the extension architecture; applications

can customize emulations by dynamically linking additional extensions into the kernel.

Implementing Unix in the SPIN extension framework can take several forms. A complete

Unix emulation could be developed in Modula-3 and dynamically linked into the kernel. This

approach would approximate traditional monolithic systems and fully harness the advantages of

SPIN extensions; however, it involves reimplementing an entire Unix infrastructure in Modula-

3

�

. An alternate approach is to implement Unix as a server application for SPIN. Source code

from publicly available versions of Unix could be reused, since user-level SPIN applications can be

written in any language. Nonetheless, extracting and debugging a Unix server from a monolithic

system requires a signi�cant amount of development. The third approach, which is described in

the rest of this paper, is to port an existing Unix server to SPIN. Rather than implementing Unix,

kernel extensions are used to emulate Mach 3.0, which the Unix server was originally developed for.

This approach allows a large amount of code to be reused at relatively low cost. Furthermore, the

SPIN extension architecture can be used to improve the historically poor performance of user-level

servers.

3 Overview of SPIN

The SPIN kernel consists of a set of core system services and an extension mechanism. Core

system services include threads, memory management, and a low-level machine interface. The

extension mechanism allows foreign code to be linked into the kernel address space at run-time.

SPIN extensions access system services with procedure calls and system resources with loads and

stores. They are not hindered by costly protection mechanisms, such as address space switches, in

their interaction with the kernel. Instead, SPIN relies on language features for protection. SPIN

and its extensions are written in the safe subset of Modula-3 [Nelson 91], a type-safe programming

language. Using language features for protection allows much of the protection overhead to be

incurred at compile-time and link-time.

The SPIN extension mechanism has two parts: installation and invocation. Installation in-

volves loading an extension into the kernel and granting it access to system resources and services.

Invocation ensures that extension code is executed at appropriate times. Each service is based on

exibility, but includes mechanisms to dynamically protect the kernel.

3.1 Installation

Installation is controlled by the dynamic linker [Sirer et al. 96]. The dynamic linker accepts

extensions as partially resolved object code generated by a trusted Modula-3 compiler. Extensions

must provide capabilities for interfaces they link against. Capabilities are requested in the Modula-3

build environment and, if granted, embedded into the downloaded extension. If an extension fails

to present a valid capability for a link request, it is rejected. Dynamically linked extensions execute

just as statically linked kernel code. They may access data and call procedures in any visible kernel

interface (i.e. an interface successfully linked against).

�

A Unix emulation of this type is currently under development.

3



3.2 Invocation

Invocation is controlled by the SPIN dispatcher [Pardyak & Bershad 96]. The dispatcher commu-

nicates events to event handlers. An event is an announcement of or a request for a change in

system state. An event handler is a procedure which acts in response to an event. Dynamically

linked extensions integrate themselves into a running system by installing new handlers on system

events. For example, a system call is announced in the SPIN kernel by the MachineTrap.Syscall

event, which is raised by low-level trap handling facilities. A Unix emulation would respond to the

MachineTrap.Syscall event by providing a new handler and registering it with the dispatcher.

In general, dynamically installed handlers should not be invoked at every instance of the event.

For instance, the MachineTrap.Syscall event will be raised for every system call from every user-

level application; however, a system call handler for a Unix emulation should not handle a system

call from an MS-DOS application. Event instances may be �ltered using one or more guards. A

guard de�nes a predicate to be evaluated before the handler is invoked. If all of a handler's guards

evaluate to TRUE when the event is raised, then the handler is executed. Otherwise, the handler is

ignored. Thus, a Unix emulation can use a guard to determine which system calls actually come

from Unix application.

SPIN events are de�ned by procedures in interfaces, and in fact all procedures de�ne events.

Calling a procedure is synonymous with raising the event. The default handler of an event is the

implementation of the procedure, and a dynamically installed handler is an alternate implemen-

tation of the procedure. Thus, the MachineTrap.Syscall event is actually a procedure named

Syscall in the MachineTrap interface. The default handler of the MachineTrap.Syscall event

is the implementation of the MachineTrap.Syscall procedure. A dynamically installed handler

for the MachineTrap.Syscall event is a procedure with the same parameters and return type as

speci�ed in the MachineTrap interface. A guard is a procedure which takes the same parameters

as the handler and event it is associated with; however, guards must return either TRUE or FALSE.

Figure 1 shows the de�nition of the MachineTrap.Syscall event and an extension which emulates

the Mach vm allocate system call.

Extensions can register handlers for events in any visible interface. However, the default handler

of the event can set restrictions on the handling of the event through an authorizer. An authorizer

is a procedure called by the dispatcher when an extension registers a new handler for an event. It

may restrict the invocation of the handler with an imposed guard. An imposed guard is a predicate

applied for the purpose of dynamically limiting access to an event. For example, the module de�ning

the default handler of the MachineTrap.Syscall event has an authorizer which veri�es the identity

of the extension. If the identity is trusted, the authorizer allows the extension to handle arbitrary

system calls. If the identity is not trusted, the authorizer imposes a guard restricting applications

for which the extension can handle system calls. This prevents application-speci�c extensions from

errantly or maliciously modifying the execution environment of other applications.

4 Emulating Unix with the SPIN Unix Server

The SPIN Unix Server architecture comprises two concurrent emulations. First, the server is

supported by an emulation of the Mach microkernel. The Mach emulation consists of a kernel

extension which distributes requests to preexisting SPIN services. Second, DEC OSF/1 Unix is

emulated in the context of the SPIN Unix Server and the Mach emulation. The SPIN Unix Server

4



(* Interface to trap handling *)

INTERFACE MachineTrap;

(* declaration of the MachineTrap.Syscall event *)

PROCEDURE Syscall(s: Strand.T; VAR ms: MachineCPU.SavedState);

(* a Strand.T is the unit of scheduling in SPIN *)

END MachineTrap.

(* Implementation of Mach emulator *)

MODULE MachEmul;

(* procedure which handles Mach system calls *)

PROCEDURE SyscallHandler(s: Strand.T; VAR ms: MachineCPU.SavedState) =

BEGIN

CASE ms.regs[SyscallNumber] OF

...

| -65 (* vm_allocate *)

VMHandlers.vm_allocate(s, ms);

...

ELSE

Error.UnhandledSyscall(s, ms);

END;

END SyscallHandler;

(* guard for the system call handler *)

PROCEDURE SyscallGuard(s: Strand.T; VAR ms: MachineCPU.SavedState) : BOOLEAN

BEGIN

RETURN IsMachSyscall(ms.regs[SyscallNumber) AND IsMachTask(s);

END SyscallGuard;

(* module initialization procedure *)

BEGIN

(* register system call handler with dispatcher *)

WITH event = MachineTrap.Syscall,

handler = SyscallHandler,

guard = SyscallGuard DO

Dispatcher.InstallHandler(event, guard, handler);

END;

END MachEmul.

Figure 1: The Mach emulation extension registers a system call routine and a guard with the dispatcher. The

handler and the guard are attached to the MachineTrap.Syscall event, which announces a system call trap from

user space. Both the handler and guard have the same signature as the Syscall procedure de�ned in the MachineTrap

interface, except that the guard returns a boolean.

5



User
Kernel

Mach Emulation Extension

Unix
App

Unix
App

Unix
App

SPIN

Address Space

Unix Server

Mach Threads Networking

Trap Redirector Extension

Figure 2: In the SPIN Unix Server implementation, application system calls are intercepted by the Trap Redirector

extension and redirected to the user-level Unix Server. The Unix Server executes the system calls, possibly requesting

Mach kernel services. Mach kernel requests are intercepted by the Mach Emulation Extension, which satis�es them

by relying on the SPIN kernel and other extensions.

architecture is shown in Figure 2.

4.1 Emulating Mach

The SPIN Unix Server is derived from the BSD4.3 Single Server, which was implemented for the

Mach 3.0 microkernel. Although the SPIN Unix Server maintains the same general design as

the BSD4.3 Single Server, some signi�cant changes have taken place. For the purposes of this

discussion

y

the most signi�cant modi�cation is the removal of Mach IPC. All Mach messages have

been converted to system call traps.

The Mach microkernel system call interface [Loepere 92] is considerably di�erent than the Unix

system call interface. In general, Mach system calls request lower-level services than Unix system

calls. For instance, whereas the Unix system call brk() requests that a process data segment be

enlarged, the Mach system call vm allocate() speci�es precisely where new virtual memory should

be allocated. The problem in running the Unix server on SPIN is identifying the subset of Mach

system calls which are required and then implementing acceptable semantics in the context of SPIN

services.

Identifying the set of required Mach system calls was accomplished with a system call tracing

extension. The Server was executed in a user-level address space on SPIN. In response to each

system call trap, the trace extension printed the number of the system call and returned a Mach

error code. As system calls were identi�ed, handlers were added to the trace extension and the

corresponding system call numbers were no longer printed. Over time, the trace extension evolved

into an emulation of precisely the Mach system calls required to support the Unix server. A list of

the currently emulated Mach system calls is provided in Table 1. In general, these calls fall into

one of four areas: ports, threads, devices, and tasks and virtual memory. The remainder of this

section briey describes how these four areas mapped to SPIN services.

y

The evolution of the SPIN Unix Server is discussed with slightly more detail in Section 6.1.

6



VM/Tasks Ports Devices Threads Miscellaneous

vm write mach reply port device read thread rendezvous host kernel version

vm read mach task self device read inband thread switch processor set default

vm inherit mach thread self device read request thread create host processor set priv

vm region mach host self device read overwrite thread set state host info

vm statistics mach port move member device read overwrite request thread resume set softclock

vm map task set special port device write poke softclock

vm allocate mach port allocate device write request get mach time

vm deallocate mach port deallocate device write inband

vm protect mach port insert right device write request inband

task create mach port allocate name device set status

task info task get special port device get status

task terminate task get master port device open

device close

Table 1: A list of emulated Mach system calls. Table 3 in Appendix A provides an annotated list with data on the

implementation of each call.

4.1.1 Ports

The Mach port is primarily a handle for message-passing. Since Mach message-passing was removed

from the SPINUnix Server, the implementation of port-related system calls is not critical. However,

when a Mach application holds a port for a system resource, it holds a capability to interact

with that resource. For instance, if a Mach application accesses the machine console with the

device open() system call, the kernel will return a port. Then, when the application reads or

writes from the console, it will pass the console port as a capability to request the respective

service.

In SPIN, capabilities are represented by reference variables and protected by the type-safe

properties of Modula-3. However, when capabilities to a system resource are passed to a user-level

application, the in-kernel language protection is no longer valid. SPIN provides a utility which

allows capabilities to be externalized, or safely passed out of and back into the kernel address

space. In this respect, externalized references are user-level capabilities for SPIN kernel services

and resources, just as ports are user-level capabilities for Mach kernel services and resources. Hence,

externalized references can be used to emulate Mach ports that represent kernel capabilities.

4.1.2 Threads

The SPINUnix Server has multiple threads of execution managed primarily by the Mach C Threads

package. The Mach C Threads package is a library of user-friendly thread operations. It is im-

plemented through the Mach microkernel thread interface. A preexisting SPIN kernel extension

provides a thread interface very similar to the Mach thread interface; consequently, emulating Mach

threads was fairly straightforward.

4.1.3 Devices

The Mach device interface was complicated to emulate for a few reasons. First, SPIN does not

present a uni�ed device interface. SPIN kernel devices vary slightly in both the operations they

export and the signatures of these operations. For instance, an array of bytes can be written to a

disk device, but data written to the ethernet device must be packaged in an mbuf. The problem

of identifying the proper device operation is solved using the port parameter to the system call.

As described in Section 4.1.1, tasks request Mach services from a device through a port. In SPIN,

7



ports are analogous to capabilities, which are implemented as typed references to kernel objects.

Using Modula-3 run-time type identi�cation, the type of the device can be identi�ed through the

type of the device capability. Handlers for device system calls multiplex among di�erent versions

of the same operation depending on the type of the device being acted upon.

The second complication in emulating the Mach device interface was the variation in stan-

dard services. Mach o�ers alternatives to its fundamental device system calls. For instance, the

device write() system call is supplemented by

� device write inband(): compact the data into the Mach message which communicates the

request to the device

z

.

� device write request(): write the data asynchronously.

� device write request inband(): write the data asynchronously and transfer it to the kernel

inband.

To simplify the emulation, these three variations are implemented in the same handler. The loss

of semantics is minimal since inband data transfer applies only to message passing and the server

already implements an asynchronous device protocol in terms of the kernel device interface. Other

Mach device calls o�er similar alternatives.

The third complexity in emulating the Mach device interface was mapping low-level de-

tails between the server virtual devices and SPIN devices. For instance, the SPIN console de-

vice treats break characters di�erently than the server tty implementation. Also, the Mach

device get status and device set status calls need to be mapped to the ioctls exported by

each device. Currently, many of these mappings are fragile; they will require review once the SPIN

device interface is more mature.

4.1.4 Tasks and Virtual Memory

Support for Mach tasks

x

and virtual memory is provided by a SPIN address space extension. The

address space interface includes creation of an address space, allocation and deallocation of virtual

memory, protection of a virtual memory region, and transfer of data from the kernel into a user-

level address space. Although these services are su�cient for basic operations, they lack some of

the features exported by the Mach task and virtual address interfaces. For instance, Mach allows

virtual memory regions to be mapped between tasks and inherited during the creation of new tasks.

The Unix server makes use of memory mapping to reduce the cost of transferring data between

address spaces. The Mach virtual memory model also has a more e�cient implementation, with

features such as copy-on-write. Copy-on-write is especially e�ective in reducing the cost of creating

new tasks.

Emulation techniques were used to disguise the lack of advanced features in the SPIN address

space extension. The emulation involves maintaining extra state and implementing the additional

services. Boundary data and inheritance attributes must be recorded for each region allocated.

Inheritance and mapping can then be replaced by aggressively copying the appropriate regions of

memory. Aggressive copying is correct as long as sharing is not involved, but it su�ers severely

z

With Mach IPC removed, this call has the same functionality as device write() but with slightly di�erent

parameters.

x

A Mach task is an execution environment and the basic unit of resource allocation [Golub et al. 90].

8



in performance. Accordingly, as the demand on task and virtual memory support grows, it is

becoming apparent that side-stepping these Mach optimizations is more costly and complex than

implementing them. A better approach to emulating the Mach virtual memory and task services

would be to identify in advance the major services required and implement them for SPIN in a

kernel extension. The initial development cost would be warranted by the more elegant emulation

and the performance improvement.

4.2 Emulating Unix

The Unix emulation consists mainly of the SPINUnix Server, which exports the system call interface

which DEC OSF/1 applications require. However, system call traps land in the kernel, not in a

user-level server application. Hence, some means of transparently forwarding application system

call traps to the Unix server is necessary for binary compatibility.

System calls are forwarded to the Unix server by a Trap Redirector extension. The Trap Redirec-

tor is an extension composed of two cooperating handlers: the App Handler and the Server Handler.

Together the handlers implement a remote procedure call facility to redirect application system calls

to the Unix server. The App Handler intercepts system calls from Unix applications and prepares

them for reection to the SPIN Unix Server. The Server Handler forwards Unix system calls to

the server and transfers return values to applications. The Trap Redirector extension is illustrated

in Figure 3.

4.2.1 The Server Handler

Each client process controlled by the SPIN Unix Server is assigned a server thread. Server threads

are responsible for executing all system calls from their respective processes. Server threads handle

client system calls in three steps: transferring the system call trap state to the server, executing

the system call, and transferring the return state back to the application.

A server thread drops into the kernel to wait for a client system call via the get next exception()

system call. In the kernel, the get next exception() system call is intercepted by the Server Han-

dler. The Server Handler blocks the server thread until its process makes a system call. When a

system call occurs, the server thread is woken up. It acquires the system call trap state from the

application thread and transfers it to the server address space.

The server thread returns from the get next exception() system call and executes the client

system call in the server address space. While executing the system call the server thread may

invoke Mach system calls to request kernel services. These system calls are handled by the Mach

emulation, as described in Section 4.1. When the system call is complete, the server thread calls

the get next exception() system call with the system call return state as an argument.

The get next exception() system call is again intercepted by the Server Handler. It copies

the system call return state from the server address space and transfers it to the application thread.

The server thread is then blocked until the next system call from its application.

4.2.2 The App Handler

While the Mach emulation intercepts Mach system calls from the SPIN Unix Server, the App Han-

dler intercepts Unix system calls from Unix applications. When a Unix system call is identi�ed and

intercepted, it must be redirected to the Unix server. The App Handler locates the server thread

9



Unix App

User
Kernel

Unix Server

App Handler Server Handler

3

12

Trap Redirector Extension
4

5

6

7

Figure 3: The Trap Redirector extension forwards Unix system calls to the user-level server in the following steps:

(1) A server thread drops into the kernel to await an application system call. It blocks in the Server Handler. (2)

The application makes a system call. It is intercepted by the App Handler. (3) The trap state is transfered from the

App Handler to the Server Handler and the application thread is blocked. (4) The server thread returns to the server

with the trap state. It executes the system call. (5) The server thread returns to the kernel with the return state. It

is intercepted by the Server Handler. (6) The return state is transfered to the App Handler and the server thread is

blocked until the next system call. (7) The application thread returns to the application with the return state.

.

for the current application thread and grants it a reference for the system call trap state. It then

wakes up the server thread and blocks the application thread until the system call is complete.

When the application thread wakes up, it acquires the return state of the system call and loads

the appropriate registers

{

The application thread then returns to the application address space to

continue running the client program.

5 Performance

This section evaluates the performance of the SPIN Unix Server. It is necessary to bear in mind

that the SPIN Unix Server was not implemented for optimal performance. Other approaches, such

as an emulation implemented entirely in SPIN extensions, would reap better performance than

a user-level server. Nonetheless, a di�erent server-based emulation, such as the Microsoft Win32

API, may be an important SPIN project in the future. For this reason, it is valuable to quantify

the performance of the SPIN Unix Server and identify some techniques for improving it.

The SPIN Unix Server is compared against Digital Unix V3.2. Because of the redirection

inherent in server emulations, Digital Unix is expected to perform somewhat better. The SPIN

Unix Server implementation is not measured against the Mach Unix Server implementation in

this paper. The Server has been modi�ed substantially since it was developed for Mach 3.0; the

overall design is roughly the same, but many implementation details have changed. Consequently,

measuring it as the BSD4.3 Single Server for Mach 3.0 would be invalid

k

. When measured, the

modi�ed server on Mach was found to perform comparably to the SPIN Unix Server|occasionally

a bit faster, more often a bit slower. This implies that the poor performance is the result of the

{

On the Alpha, register v0 holds the system call return value, register a3 holds the Unix errno value, and register

a4 indicates either parent or child after a fork() system call.

k

The evolution of the server is described in Section 6.1. In addition, measurements for the current Unix server

running on Mach 3.0 are provided in Appendix B.

10



server model, not this emulation.

Measurements were collected on DEC Alpha 133MHz AXP 3000/400 workstations, which are

rated at 74 SPECint 92. Each machine has 64 MBs of memory, a 512KB uni�ed external cache, an

HP C2247-300 1GB disk-drive, and 10Mb/sec Lance Ethernet interface. Measurements are listed

in Table 2.

Operation Digital Unix SPIN + Server

getpid() 2 �sec 597 �sec

trap and return 13 �sec

read() 24 �sec 643 �sec

ls -l (cold) 246 msec 2043 msec

ls -l (warm) 159 msec 530 msec

Table 2: Performance measurements for the SPIN Unix Server, compared to Digital Unix V3.2.

The �rst experiment measures the time for a null system call (getpid() is actually used). In

Digital Unix, this measures a trap into the kernel and a return to user space. For the SPIN Unix

Server, two measurements are listed. Trap and return is analogous to Digital Unix getpid(). It

measures the latency to drop into the kernel with a system call trap and return. The system call

trap in SPIN has richer semantics than in Digital Unix. For instance, in this experiment, a guard

and a handler were invoked through the dispatcher in response to the system call event. The second

measurement indicates the latency of getpid() executed in the server. It measures the time to

trap into the kernel, wake up a server thread, copy the system call state to the server, execute the

getpid() system call, copy the return state to the kernel, wake up the application thread, and

return to user space. There are two major causes of ine�ciency. The �rst is the copy of system

call state between the server and the kernel, which involves six separate cross-address space copy

operations. The second is the thread hando� between the application thread and the server thread.

Currently there is no sophisticated thread hando� implemented, meaning that the receiving thread

is placed on the scheduling queue behind any other active threads in the system. Both the state

copy and the thread hando� occur twice in each system call to the server.

The second experiment involves a more complicated system call. read() measures the time

required to transfer a 1KB bu�er of data from the �le system to an application. Both Digital Unix

and the SPIN Unix Server use a copyout primitive to execute the data transfer. In Digital Unix,

copyout is only slightly more expensive than bcopy. The server, however, must �rst copy the data

to the kernel and then copy it again to the application. The penalty for this indirect data transfer

is apparent in the measurements. The SPIN Unix Server read() measurement, after adjusting

for the trap redirection latency, is still somewhat slower than the Digital Unix measurement. The

read() system call is measured on both systems with a primed cache.

The third experiment measures the performance of a real program. ls is run on a directory

with 300 �les. The -l option is used to cause all �les to be statted, requiring signi�cantly more

work. The experiment is run with both a warm and cold cache. The di�erence between the warm

and cold cache is more striking in the server than in Digital Unix, since the server caches data in

user space and must copy it across the user-kernel boundary.

11



5.1 Improving Performance through Protocol Decomposition

The performance measurements of the SPIN Unix Server indicate that in its current state it cannot

compete with a monolithic system such as Digital Unix. A primary source of ine�ciency in the SPIN

Unix Server architecture is the indirect data path between applications and machine resources. By

removing some of the indirection, the performance of the server can be improved.

Indirection is especially costly in the implementation of the BSD socket interface. When an

application sends data via UDP through a socket, control �rst switches from the application to the

kernel to the server. The server then copies the data from the application address space to the

server address space. The data is wrapped into an mbuf and then passed through the server network

protocol stack, where it is packaged into a network packet. At the bottom of the server network

protocol stack, the packet is written to a virtual network device driver in the kernel. Control is

switched into the kernel, where the virtual driver packages the data into another mbuf and passes

it to a kernel physical device driver. The physical driver removes the packet from the mbuf and

sends it across the network. Control is then returned to the server and to the application. The

receive path is symmetrical.

The SPIN Unix Server provides these layers of abstraction as part of a generalized networking

interface. However, applications that focus on a particular subset of the interface, such as UDP

send and receive, incur a sti� performance penalty for generality they do not use. The exibility of

SPIN allows application-speci�c optimizations to be integrated with an existing emulation. Hence,

developers can identify critical execution paths and streamline them with kernel extensions.

This approach is similar to protocol decomposition work by Maeda [Maeda & Bershad 93], in

which critical send and receive services of a protocol migrate into the application once a communi-

cation endpoint has been established. However, moving services from the kernel into the application

address space provoke some of the same problems encountered with the library-based emulations.

Speci�cally, portions of the protocol stack in the same address space as the application are not

protected from the application. An errant application could fail unpredictably, and there is no easy

way of regulating the outgoing packets of malicious applications.

SPIN extensions allow the same protocol decomposition without the protection breakdown. To

optimize UDP send and receive, an application installs an extension which implements the necessary

BSD socket system calls in terms of in-kernel SPIN networking services.

��

The \shortcircuit"

extension intercepts system calls on the critical path and allows all others to be reected to the

Server. Consequently, the entire protocol stack in the Server is removed from the data path.

Figure 4 illustrates the di�erence between the SPIN Unix Server send path and the shortcircuit

send path.

The shortcircuit mechanism was evaluated by measuring the latency for a round trip UDP

packet sent from and received by a user-level application. The time between a machine running the

Server on SPIN and another machine running native Digital Unix is about 3.8 milliseconds (this is

approximately the same latency measured running the Server on Mach). The time to send the same

packet between two machines running Digital Unix is about 620 microseconds. Using the protocol

shortcircuit, the round trip latency between the SPIN Unix Server machine and the Digital Unix

machine dropped from 3.8 milliseconds to about 660 microseconds|nearly the same as measured

between two machines running Digital Unix.

��

In-kernel networking services can refer to native services or other dynamically linked extensions.

12



User
Kernel

Mach Emulation

Networking

Unix
App

SPIN

Trap Redirector

Unix Server

Shortcircuit

Figure 4: This path to send a UDP packet through the BSD socket interface without a shortcircuit (solid line) and

with a shortcircuit (dashed line).

6 Related Work

The Unix emulation described in this paper is derived largely from the implementation of Unix on

Mach 3.0 [Golub et al. 90]. The Mach Unix emulation centers around the BSD4.3 Single Server,

a user-level application which exports Unix semantics. Client applications communicate with the

BSD4.3 Single Server via an emulation library loaded into the address space of each Unix program.

System calls trap into the kernel and are reected to the task's emulation library. The emulation

library delivers a message to the BSD4.3 Single Server, which executes the actual system call and

returns the result to the application via its emulation library. The Mach 3.0 and Single Server lacks

the protection and exibility of the SPIN Unix Server. The emulation library is loaded directly

into an application's address space, which means that an errant application can corrupt emulation

data and cause unpredictable behavior. Also, Mach 3.0 o�ers no mechanism for applications to

de�ne a shortcircuit for calls to the server.

The Spring [Khalidi & Nelson 92] Unix emulation increases the functionality of the dynamically

linked library. The Spring Unix emulation library replaces the dynamically linked libc. Besides

providing the traditional services of libc, it contains specialized system call stubs. Rather than

generate a system call trap, these stubs use Spring IPC to request services from native Spring

modules. The small set of services not provided by existing Spring modules are implemented in

a small Unix server. By minimizing the reliance on the Unix server, Spring reduces the message-

passing and trap reection overhead. However, the Spring Unix emulation lacks the protection

o�ered by the SPIN Unix Server. The Unix emulation library resides in the application's address

space where it can be corrupted just as the Mach emulation library. In addition, since all Unix

applications must be dynamically linked against the Spring Unix emulation library, Spring does

not o�er binary compatibility.

In the CHORUS system [Bricker et al. 91], Unix is emulated by a collection of independent

servers, each providing a di�erent aspect of the Unix semantics. One central server is responsible for

intercepting system call traps and delegating responsibility for executing system calls via CHORUS

IPC. To reduce communication overhead, CHORUS servers may be linked directly into the kernel

13



address space. Since CHORUS servers are linked into the kernel address space, they are not

vulnerable to corruption by applications. However, they must be trusted by the CHORUS kernel.

This implies that applications may not dynamically link customized servers into the kernel, as

applications may do in SPIN.

6.1 Evolution of the SPIN Unix Server

The SPIN Unix Server is a derivative of the BSD4.3 Single Server for the Mach 3.0 microker-

nel [Golub et al. 90]. The Single Server communicated with applications through trap redirection,

Mach IPC, and a task emulation library. Each Unix application had a library loaded directly into

its address space. When applications made system calls, the system call traps were redirected into

this emulation library. The system call was handled in the library, if possible. Otherwise, a Mach

message was sent to the Single Server. The Single Server executed the system call in its user-level

address space. If the Server required kernel services, it made a system call or sent a message re-

questing the appropriate service. Upon completion of the system call, the Single Server returned

the result to the application emulation library. The emulation library then returned directly to the

application.

The server arrived at the University of Washington after a �ve year evolution which included de-

velopment work at Carnegie Mellon University, Digital Equipment Corporation, the Open Software

Foundation, and the Open Software Foundation Research Institute. In this time, many signi�cant

changes were committed to the system. These included networking and �le system improvements,

better support for multi-threading, and character device enhancements. The most signi�cant mod-

i�cation with respect to the SPIN Unix Server was the removal of the emulation library. System

call traps are now reected directly into the server task [Patience 93].

Modi�cations to the server continued at the University of Washington. Changes were geared

toward improving stability and facilitating the port to the SPIN kernel. All Mach IPC was removed

from the server. Kernel calls that were formerly implemented with Mach messages were transformed

into system calls. The removal of message-passing both simpli�ed the exception mechanism and

reduced the overhead of communication between the server and the kernel. Other Mach-based

optimizations, such as memory-mapped system call parameters, were switched o�. The resulting

Unix server, although based on the BSD4.3 Single Server for Mach 3.0, di�ers substantially in its

implementation and performance. In some cases it is faster, in others slower.

7 Conclusion

The SPIN Unix Server emulates Unix in the context of an emulation of a subset of Mach 3.0.

The Mach emulation consists of SPIN kernel extensions which intercept and execute Mach system

calls by calling upon SPIN services. The Unix emulation is constructed with an extension which

redirects Unix system calls to the user-level SPIN Unix Server.

The performance evaluation of the SPIN Unix Server indicates that it is not a viable platform

for general purpose computing. Even small applications, such as ls, execute signi�cantly more

slowly than on Digital Unix. There are many opportunities for optimization in the current imple-

mentation of the SPIN Unix Server. Some of these, including copy-on-write and memory mapping

across address spaces, have already been mentioned. In addition, a technique was described in this

14



paper for migrating services from the server into kernel extensions. This method of improving the

performance should be generalized and implemented for real applications.

The strategy for implementing the SPIN Unix Server could also be re�ned. When emulating

a large system, it is bene�cial to identify fundamental services in the system and implement these

in advance. For instance, a fundamental service in Mach is the virtual memory system. For the

Mach emulation, individual services were implemented as they were demanded by the server. This

methodology was eventually successful; however, designing and implementing a Mach virtual mem-

ory extension in advance would have simpli�ed development and probably improved performance

in the long run. An extension emulating some features of the Mach virtually memory system is

now under development. A future experiment will involve converting the SPIN Unix Server virtual

memory support to this extension and evaluating the improvement in elegance and performance.

References

[Bershad et al. 95] Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M., Becker, D., Eggers, S., and

Chambers, C. Extensibility, Safety and Performance in the SPIN Operating System. In Proceedings of

the Fifteenth ACM Symposium on Operating Systems Principles, Copper Mountain, CO, December 1995.

[Bricker et al. 91] Bricker, A., Gien, M., Guillemont, M., Lipkis, J., Orr, D., and Rozier, M. A New Look at Micro-

kernel-based UNIX Operating Systems: Lessons in Performance and Compatibility. In Proceedings of the

EurOpen Spring'91 Conference, Tromsoe, Norway, May 1991.

[Custer 93] Custer, H. Inside Windows NT. Microsoft Press, 1993.

[Golub et al. 90] Golub, D., Dean, R., Forin, A., and Rashid, R. Unix as an Application Program. In Proceedings of

the 1990 Summer USENIX Conference, pages 87{95, June 1990.

[Khalidi & Nelson 92] Khalidi, Y. A. and Nelson, M. N. An Implementation of Unix on an Object-oriented Operating

System. USENIX 1992. Reprinted with permission.

[Loepere 92] Loepere, K., Editor Mach 3 Kernel Interfaces Open Software Foundation and Carnegie Mellon Univer-

sity, 1992.

[Maeda & Bershad 93] Maeda, C. and Bershad, B. N. Protocol Service Decomposition for High-Performance Net-

working. In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, pages

244{255, Asheville, NC, December 1993.

[Nelson 91] Nelson, G, editor. Systems Programming in Modula-3. Prentice Hall, 1991.

[Ousterhout et al. 88] Ousterhout, J. K., Cherenson, A. R., Douglis, F., Nelson, M. N., and Welch, B. B. The Sprite

Network Operating System. In IEEE Computer, February 1988, pp.23{35.

[Pardyak & Bershad 96] Pardyak, P. and Bershad, B. Dynamic Binding for Extensible Systems. To appear in

Proceedings of the Second Symposium on Operating Systems Design and Implementations, Seattle, WA,

October 1996.

[Patience 93] Patience, S. Redirecting Systems Calls in Mach 3.0, An Alternative to the Emulator. In Proceedings

of the Third USENIX Mach Symposium, pages 57{73, Santa Fe, NM, April 1993.

[Rashid et al. 89] Rashid, R., Baron, R., Forin, R., Golub, D., Jones, M., Julin, D., Orr, D., Sanzi, R. Mach: A

Foundation for Open Systems In Proceedings of the Second IEEE Workshop on Workstation Operating

Systems, September 1989.

[Sirer et al. 96] Sirer, E., Fiuczynski, M., Pardyak, P., and Bershad, B. Safe Dynamic Linking in an Extensible

Operating System. In Proceedings of the First Workshop on Compiler Support for Systems Software,

February 1996.

15



A Emulated Mach system calls

System Call Relative Di�culty Location Completion

vm write = S 3

vm read = S 3

vm inherit + E 2

vm region + E 2

vm statistics = E 1

vm map + E 1

vm allocate + S 3

vm deallocate + S 3

vm protect + S 3

task create + S 3

task info = E 1

task terminate + S 2

mach reply port - E 1

mach task self - E 3

mach thread self - E 3

mach host self - E 1

mach port move member - E 1

task set special port - E 1

mach port allocate - E 1

mach port deallocate - E 1

mach port insert right - E 1

mach port allocate name - E 1

task get special port - E 1

task get master port - E 1

device read + S 3

device read inband = S 3

device read request = S 2

device read overwrite = S 3

device read overwrite request = S 2

device write + S 3

device write request = S 2

device write inband = S 3

device write request inband = S 2

device set status + S 1

device get status + S 1

device open = S 3

device close = S 3

thread rendezvous = S 3

thread switch - S 2

thread create = S 3

thread set state = S 3

thread resume - S 3

poke softclock + S 3

set softclock + S 3

host kernel version - E 1

processor set default - E 1

host processor set priv - E 1

host info - E 1

get mach time = S 3

Table 3: An annotated list of emulated Mach system calls. The relative level of di�culty is indicated by (+) for

di�cult, (=) for medium, and (-) for easy. The location of the emulation refers to whether the call was emulated

entirely in the Mach emulation extension (E) or whether some SPIN services, native or dynamically linked, were

required (S). The degree of completion of the emulation indicates whether the call is fully supported. The values

range from supported but completely spoofed (1) to fully supported (3).

16



B Measurements of Mach and the Unix Server

This section displays the same measurements as in Section 5, along with measurements for Mach 3.0

running the Unix server. As mentioned in Section 5 and described in Section 6.1, both the Mach

microkernel and the Unix server have been modi�ed substantially.

Measurements are listed in Table 4. All benchmarks are as described in Section 5. Unfortu-

nately, not all Mach measurements are available for the platform described in Section 5. Hence, the

getpid() and read() benchmarks below were measured on a DEC Alpha 100MHz AXP 3000/300L

workstation. This machine has 64 MBs of memory, a 256KB uni�ed external cache, and an

HP C2247-300 1GB disk drive. It runs Digital Unix V2.1 rather than Digital Unix V3.2. The

ls benchmark was run on DEC Alpha 133MHz AXP 3000/400 workstations, as described in Sec-

tion 5. The trap and return benchmark is not available for Mach.

Operation Digital Unix Mach + Server SPIN + Server

getpid() 5 �sec 1383 �sec 1108 �sec

trap and return 23 �sec

read() 44 �sec 1533 �sec 1207 �sec

ls -l (cold) 246 msec 8360 msec 2043 msec

ls -l (warm) 159 msec 7672 msec 530 msec

Table 4: Performance measurements for the SPIN Unix Server, compared to Digital Unix and the Unix server on

Mach 3.0.

17


