
RaPiD { A Con�gurable Computing Architecture

for Compute-Intensive Applications

Carl Ebeling, Darren C. Cronquist,

Paul Franklin and Chris Fisher

Department of Computer Science and Engineering

University of Washington

Box 352350

Seattle, WA 98195-2350

Technical Report UW-CSE-96-11-03

November, 1996

RaPiD - A Con�gurable Computing Architecture for

Compute-Intensive Applications

�

Carl Ebeling, Darren C. Cronquist, Paul Franklin and Chris Fisher

Department of Computer Science and Engineering

University of Washington

Box 352350

Seattle, WA 98195-2350

Abstract

Con�gurable computers have attracted consider-

able attention recently because they promise to de-

liver the performance of application-speci�c hard-

ware along with the
exibility of general-purpose

computers. Unfortunately, con�gurable computing

has had rather limited success to date. We believe

that the FPGAs currently used to construct con�g-

urable computers are too general to achieve good

cost-performance on computationally-intensive appli-

cations that demand special-purpose hardware. This

paper describes a new architecture called RaPiD (Re-

con�gurable Pipelined Datapaths), which is optimized

for highly repetitive, computationally-intensive tasks.

Very deep application-speci�c computation pipelines

can be con�gured in RaPiD that deliver very high

performance for a wide range of applications. RaPiD

achieves this using a coarse-grained recon�gurable ar-

chitecture that mixes the appropriate amount of static

con�guration with dynamic control.

1 Introduction

Special-purpose architectures have long been used

to achieve higher performance at a lower cost than

general-purpose processors. But as general-purpose

processors have become faster and cheaper, special-

purpose architectures have been relegated to a shrink-

ing number of niche applications. By de�nition, an

application-speci�c architecture speeds up only one

application. This in
exibility combined with a high

design cost make them unattractive except for very

�

This work was supported in part by the Defense Advanced

Research Projects Agency under Contract DAAH04-94-G0272.

D. Cronquist was supported in part by an IBM fellowship. P.

Franklin was supported by an NSF fellowship.

well-de�ned and wide-spread applications like video

processing and graphics.

Con�gurable computing promises to reverse this

trend. The goal of con�gurable computing is to

achieve most of the performance of custom architec-

tures while retaining most of the
exibility of general-

purpose computing. This is done by dynamically con-

structing a custom architecture from an underlying

substrate of con�gurable circuitry

1

. Although the con-

cept of con�gurable computing is very attractive, suc-

cess has been remarkably hard to achieve in practice.

Current custom computing machines [2, 13] are

constructed from �eld-programmable gate arrays (FP-

GAs) [11]. These contain logic blocks which can be

con�gured to compute arbitrary functions, and con�g-

urable wiring which can be used to connect the logic

blocks as well as registers together into arbitrary cir-

cuits. The information that con�gures an FPGA can

be changed quickly so that a single FPGA can imple-

ment di�erent circuits at di�erent times. FPGAs thus

appear to be ideally suited to con�gurable comput-

ing. Unfortunately, the �ne-grained circuit structure

which makes them so general has a very high cost:

Depending on the circuit being constructed, this cost-

performance penalty can range from a factor of 20 for

random logic to well over 100 for structured circuits

like ALUs, multipliers and memory [6]. Thus, custom

computing based on FPGAs is unlikely to compete on

applications that involve heavy arithmetic computa-

tion.

If we are to achieve good performance for

computation-intensive applications, we will need new

con�gurable computing architectures that can ef-

1

Con�gurable computing is also used to refer to other archi-

tecture styles, e.g. dynamically constructing custom functional

units in a general-purpose processor similar to de�ning custom

instructions using writable control store [14]. Our research is

focused on traditional application-speci�c architectures.

1

�ciently implement these arithmetic computations.

Our response to this challenge is RaPiD, a coarse-

grained con�gurable architecture for constructing

deep computational pipelines. RaPiD is aimed at

regular, computation-intensive tasks like those found

in digital signal processing (DSP). RaPiD provides a

large number of ALUs, multipliers, registers and mem-

ory modules that can be con�gured into the appropri-

ate pipelined datapath. The datapaths constructed in

RaPiD are linear arrays of functional units commu-

nicating in mostly nearest-neighbor fashion. Systolic

algorithms [7], for example, map very well into RaPiD

datapaths, allowing us to take advantage of the consid-

erable research on compiling computations to systolic

arrays [9, 8]. RaPiD is not limited to implementing

systolic algorithms, however; a pipeline can be con-

structed which comprises di�erent computations at

di�erent stages and at di�erent times.

Although the computation bandwidth scales with

the size of a RaPiD array, the external memory band-

width does not, and the amount of computation per-

formed per I/O operation bounds the amount of par-

allelism that can be attained. RaPiD limits appli-

cations to at most two reads and one write per cy-

cle, which we have found to be both necessary and

su�cient for the applications we have programmed.

Providing even this much bandwidth requires a high-

performance memory architecture.

We begin by describing the RaPiD architecture in

more detail and then follow with an example of using

RaPiD for matrix multiply. This illustrates the need

for dynamic datapath control, which is then described

in detail. Next we outline a system implementation

based on RaPiD and use this to present performance

results for a number of RaPiD applications. These

results are used to compare RaPiD to some alterna-

tives, notably microprocessors and DSPs. Finally, we

conclude with some observations and a discussion of

future directions for the RaPiD architecture.

2 RaPiD Datapath Architecture

Our description of the RaPiD architecture will be

given in general terms. Implementations of RaPiD

will vary according to a number of parameters includ-

ing data width and data format, number and type

of functional units, and number and con�guration of

busses. The description and examples given here are

based on the RaPiD-1 implementation currently being

developed.

RaPiD is a linear array of functional units which

is con�gured to form a mostly linear computational

pipeline. This array of functional units is divided into

registers
datapath

input muxes output driversbus connectors

M
U
L
T

A
L
U

M
A
R

A
L
U

A
L
U

M
A
R

M
A
R

Figure 1: The basic cell of RaPiD-1 which is replicated

left to right 16 times to form a complete RaPiD-1 chip.

All busses are 16 bits.

identical cells which are replicated to form a com-

plete array. An example cell is shown in Figure 1.

This cell comprises an integer multiplier, three inte-

ger ALUs, six general-purpose \datapath registers"

and three small local memories. A typical single-chip

RaPiD array would contain between 8 and 32 of these

cells. Although the array is divided into cells, this divi-

sion is invisible when mapping an application pipeline

to the functional units and busses.

The functional units are interconnected using a set

of segmented busses that run the length of the data-

path. The functional units use a multiplexer to select

their data inputs from one of the bus segments and a

set of tristate drivers to drive their output onto one or

more bus segments. Each functional unit output also

includes an optional pipeline register. The input mul-

tiplexer provides a constant zero and a feedback from

the function output. These are used, for example, to

implement clear and hold operations for registers, or

to con�gure an ALU as an accumulator in conjunc-

tion with the output pipeline register. Operations are

assigned to functional units so that bus segments are

available to connect units that communicate.

The busses in di�erent tracks are segmented into

di�erent lengths to make the most e�cient use of the

busses. In some tracks, adjacent bus segments can be

connected together by a bus connector as shown in

Figure 1. This connection can be programmed in ei-

ther direction via a uni-directional bu�er or pipelined

with up to three register delays, which allows data

pipelines to built in the bus structure itself.

RaPiD operates on signed or unsigned �xed-point

16-bit data which is maintained via shifters in the

2

multipliers

2

. Di�erent �xed-point representations can

be used in the same application by appropriately con-

�guring the shifters in the datapath. An extra tag bit

is associated with each data value to indicate whether

an over
ow has occurred. Once set, the over
ow value

is propagated to all results. The datapath thus gener-

ates no exceptions during operation but incorporates

them into the data produced. The tag bit can be pro-

grammed for other purposes as well.

The ALUs perform the usual logical and arithmetic

operations on 16-bit data. Any two ALUs in a cell

can be combined to perform a pipelined 32-bit op-

eration, most typically as a 32-bit add for multiply-

accumulate operations. The multiplier inputs two 16-

bit numbers and produces a 32-bit result, shifted by a

statically programmed amount to maintain the appro-

priate �xed-point representation. Both 16-bit halves

of the result are available as output.

The registers in the datapath are used to store con-

stants and temporary values. A datapath register can

be bypassed to connect a bus segment on one track to

a bus segment in a di�erent track.

In many applications, the data is segmented into

blocks that are accessed once, saved locally and reused

as needed, and then discarded. The local memo-

ries provided in each cell of the datapath serve this

purpose. Each local memory has an address regis-

ter which acts like a datapath register except for an

additional input which provides the self-increment op-

eration. This supports the most common case of sim-

ple sequential memory access, but more complex ad-

dressing patterns can be accomplished using registers

and ALUs in the datapath. During each cycle, a

read followed by an optional write is performed to

the addressed location. This is not used for read-

modify-write operations because the latency would

be too long, but rather to implement con�gurable-

length pipeline delays similar to the SILOs found in

the Philips VSP [12].

Input and output data enter and exit RaPiD via

I/O streams at each end of the datapath. Each stream

contains a FIFO �lled with data required or with re-

sults produced by the computation. The datapath

explicitly reads from an input stream to obtain the

next input data value and writes to an output stream

to store a result. The data for each stream is asso-

ciated with a predetermined block of memory, and

address generation is performed by the I/O streams

themselves. The I/O stream FIFOs operate asyn-

chronously: If the datapath reads a value from an

2

The data length and format, i.e. �xed vs.
oating point,

is an implementation parameter. We will assume 16-bit �xed

point in this paper.

empty FIFO or writes a value to a full FIFO, the dat-

apath is stalled until the FIFO is ready.

3 Example: Matrix Multiply

An example exhibiting signi�cant speedup on

RaPiD is matrix multiply. Since each base opera-

tion performs a multiply-accumulate (MAC), an upper

bound on the achievable parallelism is the number of

multipliers in the RaPiD array. An ideal mapping

achieves the highest utilization of multipliers while

minimizing the number of memory accesses per cy-

cle. To generalize results on di�erent RaPiD archi-

tectures, we de�ne RAMsize as the number of entries

per RAM and NumCells as the number of cells on the

RaPiD array. We also assume that a \cell" is a slice

of the RaPiD array containing exactly one multiplier,

three ALUs, and three RAMs, as shown in Figure 1.

RaPiD-1 has RAMsize = 32 and NumCells = 16.

In this section, we consider multiplying an L �M

matrixA by anM�N matrixB yielding an L�N ma-

trix C. For illustrative purposes, we �rst analyze the

restricted case of M � RAMsize and N � NumCells

and then extend to matrices of unlimited size. Both of

these use a standard systolic approach for implement-

ing matrix multiply.

3.1 Restricted Case

The assumption that M � RAMsize and N �

NumCells allows the entire B matrix to be stored

within the RaPiD RAMs, one column per cell. One

cell of the resulting pipeline is con�gured as shown in

Figure 2. The A matrix is passed through the array in

row-major order. Within each cell, the RAM address

Column of matrix B is read from RAM

In Out
Data

RAM
Data

ALU

HIGH

LOW

From
Previous
Cell

To
Next
Cell

Row of matrix A streams in

Row of matrix C streams out

Figure 2: Netlist for one cell of restricted matrix mul-

tiply. The top pipelined bus streams in the A matrix

while the bottom bus streams out the resulting C ma-

trix. The top bus also streams the B columns into the

RAMs prior to the computation.

is incremented each cycle, and a register accumulates

3

the dot product of the stored column and the incom-

ing row. When a cell receives the last element of a

row, the resulting product is passed down an output

pipeline, the RAM address is cleared, and the cell is

ready to compute the product of the next row on the

next cycle.

3.2 Unlimited Case

To multiply matrices of unlimited size, the matri-

ces are �rst tiled according to the available memory

and the number of cells. Consider a tiling of the

A and B matrices producing A sub-matrices of size

Q � R and B sub-matrices of size R � S, as shown

in Figure 3. The values of R and S are chosen such

that an entire B sub-matrix can �t within the RaPiD

RAMs, one column per cell (i.e. R � RAMsize and

S � NumCells). Then an A sub-matrix can be mul-

A (LxM) B (MxN) C (LxN)

Q

R
R

S
Q

S

X =
...

...

Figure 3: RaPiD partitions matrices A, B, and C into

tiles of size Q � R, R � S, and Q � S, respectively.

The product of a row of A sub-matrices and a column

of B sub-matrices produces a single sub-matrix of C.

tiplied with a B sub-matrix in the same manner as

shown in Section 3.1, producing QS intermediate re-

sults of a C sub-matrix. The value of Q is chosen

such that this sub-matrix of partial results can be

completely stored within the RaPiD RAMs, one col-

umn per cell (i.e. Q � RAMsize). After a row of A

sub-matrices is multiplied with a column of B sub-

matrices, the C sub-matrix results are passed down

the output pipeline. Since each sub-matrix multiply

requires a newB sub-matrix to be loaded prior to com-

putation, an extra RAM is used to preload the next

B sub-matrix while the current sub-matrix multiply is

being computed (as illustrated with di�erent shades in

Figure 3). One cell of the RaPiD pipeline implement-

ing unrestricted matrix multiply is shown in Figure 4.

We want to emphasize that even though the preload-

ing of the next B sub-matrix and the computation

of the current sub-matrix multiply occur in parallel,

RaPiD implements these in a strict lock step manner.

Hence, if one operation's request for memory fails, the

entire RaPiD array freezes, which e�ectively stalls not

only the operation requesting the unavailable memory

HIGH

LOW

Row of C submatrix streams out

while column of next submatrix
Column of B submatrix is read

Row of A submatrix streams in

Column of B submatrix streams in to be preloaded

complete.

ALU
In Out

Data

RAM
Data

Q intermediate results are
stored until final product

Cell
Next
To

In Out
Data

RAM
Data

In Out
Data

RAM
Data

preloaded.

Cell
Previous
From

Figure 4: Netlist for one cell of unrestricted matrix

multiply. The top pipelined bus streams in the next B

sub-matrix column to avoid stalling the computation.

The middle pipelined bus streams in the A sub-matrix

while the bottom bus streams out the resulting C sub-

matrix.

but also all independent operations that could have

otherwise executed. Although this may seem overly

restrictive, leaving the lock step model would require

a more complex form of process communication (such

as handshaking) potentially leading to signi�cant de-

lays.

3.3 The Need for Dynamic Control

In the classic systolic array model, the datapath is

statically con�gured into a deep pipeline before data

is pumped through. However, the algorithm for ma-

trix multiply requires several di�erent phases of con-

�guration, including loading the B sub-matrices into

the RAMs, performing the dot product of the incom-

ing rows with the stored columns (which includes in-

crementing or clearing the RAMs at the appropriate

cycle), and retiring completed products to an out-

put pipeline. Recon�guring the datapath statically

to perform these di�erent phases would be both time-

consuming due to the time hit incurred by static re-

con�guration, and di�cult since the phases overlap in

non-intuitive ways. As a result, dynamic control is re-

quired to e�ciently implement multiple, overlapping

phases of an algorithm. It is this support for limited

dynamic control that di�erentiates RaPiD from other

con�gurable architectures.

4 RaPiD Control Architecture

The signals that control the structure and operation

of the RaPiD datapath are divided into static con�gu-

ration stored in SRAM cells and dynamic control up-

dated every clock cycle. The static programming bits

4

are used to construct the underlying pipeline struc-

ture and the dynamic control is used to schedule the

operations of the computation onto the datapath over

time, as illustrated in the previous section.

The functionality that can be speci�ed dynami-

cally are functional unit inputs, I/O stream reads

and writes, and both RAM and ALU operations. Of

the total control information, 27% is dynamic con-

trol (about 1600 bits for a 16-cell array). Generat-

ing these using a stored-program paradigm would be

prohibitively expensive. Two observations allow us to

reduce the amount of information needed to gener-

ate the dynamic control. First, for a given application

most of the functionality that can be speci�ed dynam-

ically is actually static, and hence only a few signals

must change on every cycle. Second, since an appli-

cation's datapath is fairly regular from cell to cell, a

dynamic control signal in one cell is typically required

in a neighboring cell on a successive cycle. Since we

are performing pipelined computations, as data moves

through the pipeline the dynamic control signals move

with it.

Dynamic control is thus implemented by inserting

the current \context" into a pipelined control path

that parallels the datapath. This context contains all

the information required by the various pipeline stages

to compute their dynamic control signals. The control

path comprises a set of 1-bit segmented busses simi-

lar in structure to the datapath busses, as shown in

Figure 5.

status
alu

control
alu

sel
mux
input input

mux
sel

L
U
T

L
U
T

0

Figure 5: Dynamic control generation for part of a

RaPiD cell. All busses are a single bit.

Each dynamic control signal is registered and con-

nected through an optional inverter to either the con-

stant 0, if the control is static, or to a control bus if

the control is dynamic. In most cases, the control sig-

nals needed in the datapath are provided directly by

a control bus. However, more complex decoding us-

ing 3-input look-up tables (LUTs) can be used to de-

code several context bits into the appropriate control.

The LUTs also contain optional registers that can be

used to construct simple �nite state machines (FSMs)

occasionally required by non-pipelined control. For

example, the matrix transpose operation cannot be

done e�ciently with simple pipelined control since it

requires activating one RAM for many cycles until

it is exhausted before moving on to the next. Each

RAM could have a separate control signal to activate

it, but this requires more control lines than are likely

to be available. Using a FSM, a stage can remember

whether or not it is activated, and one context bit can

be used to deactivate one stage and activate the next,

requiring only two control lines.

The LUTs are also used to incorporate datapath

status information into the dynamic control. For ex-

ample, the absolute value operation can be imple-

mented by feeding the sign bit from one ALU back

into the control path where it selects either the ADD

or SUB function in a second ALU.

The number of busses required in the control path

varies by application, but it is not large because

control signals tend to be reused extensively. The

RaPiD-1 architecture provides 15 busses, which is

more than enough for the current set of applications.

5 RaPiD System Architecture

Figure 6 shows a complete RaPiD system compris-

ing a RaPiD datapath, the controller, I/O streams

and memory. The RaPiD system is con�gured by pro-

gramming the controller and I/O streams and loading

the con�guration information into the RaPiD array.

The con�guration data is read using one of the in-

put streams. Di�erent con�gurations can be stored in

memory and read very quickly into the on-chip con-

�guration memory.

5.1 Datapath Controller

Computations performed by RaPiD are best de-

scribed using several nested loops which may run in

sequence or in parallel with each other. Together

these loops determine the context of the computation.

For example, matrix multiply uses three parallel loop

nests. One preloads the B matrix, another accumu-

5

Interleaved
Memory
Banks

RandomlyHOST
Memory
Interface

RaPiD Array

Stream
Controller
Data FIFOs

Controller
Datapath

Context FIFO

Figure 6: Block diagram of the overall RaPiD system.

lates results from the pipelined A and stored B ma-

trices, and yet another outputs the C matrix. These

loops must be initiated and synchronized with each

other and together provide the control for the datap-

ath.

The datapath controller comprises a set of context

generators each of which executes a nested loop or

a sequence of nested loops, and produces a context

for that loop (Figure 7). The context generators are

optimized to execute inner loops at the rate of one

Context
FIFO

Context
FIFOs

S
y
n
c
h
r
o
n
i
z
e
r

OR

XOR

To
RaPiD
Array

CG

CG

CG

CG

DEC

Microprogram
PC

Register File

Context Generator

Context

Context Merge

Default

Figure 7: Block diagram of the RaPiD controller.

iteration per instruction while simultaneously placing

contexts into the context FIFO. Instructions also load

constants into registers, or insert SIGNAL and WAIT

tags into the output context stream.

The context streams generated by the context gen-

erators are merged by a synchronizer which combines

matching SIGNAL and WAIT tags from di�erent con-

text FIFOs. This means that the context genera-

tors do not communicate explicitly but only indirectly

through the synchronizer. After the context streams

have been synchronized, they are ORed together, and

then the result is XORed with a default context value

to produce a �nal context that is inserted into the

context FIFO for the RaPiD array.

The controller typically produces one context for

every 1.3{1.5 instructions executed because of the

overhead required for loop initialization and outer loop

execution. To counteract this potential slowdown, the

controller runs twice as fast as the RaPiD array, al-

lowing it to produce at least one context per cycle on

average. This faster clock rate is achieved by delay-

ing register writes in the context generators (with for-

warding), predicting branches on the non-zero path,

and permitting the synchronizer unit to stall a cycle

to retire SIG and WAIT instructions.

5.2 I/O Streams

Each I/O stream generates the sequence of ad-

dresses used to access memory for reading or writing

the values used or produced by the datapath. These

addresses are statically determined at compile time

and can be described by a multiply-nested loop. These

address loops are executed by address generators (Fig-

ure 8) that are quite similar in design to the context

generators in the controller. The address generators

also run at double speed so that addresses can be pro-

duced at an average of one per cycle.

ALU

PC To
Memory
Controller

Register
File Address

FIFODEC

Microprogram

Address Generator

Figure 8: A RaPiD stream's address generator.

5.3 RaPiD Memory Architecture

The RaPiD array assumes that up to two reads and

one write can be performed to external memory on

each cycle. In this section we outline a memory sys-

tem that can achieve this at a 100MHz clock rate.

We make use of two di�erent and seemingly compet-

ing techniques. First, we use memories that support

6

fast burst mode, that is, high-bandwidth data trans-

fer to addresses in the same row. Second, we orga-

nize memory into randomly interleaved memory banks

[10, 3]. Fast burst mode supports mostly-sequential

memory accesses. Data can usually be stored in mem-

ory so that accesses are mostly-sequential. For exam-

ple, all the address streams for matrix multiply are

in row-major order

3

and therefore mostly-sequential.

Some applications, however, access data with di�er-

ent strides so that the data cannot be placed to give

mostly-sequential access. In this case, the random-

interleaving provides reasonable performance.

Our proposed memory architecture handles up to

three simultaneous address/data transfers via three

parallel memory buses, one for each I/O stream. Ar-

bitration is used to determine which streams get to ac-

cess banks that are in contention. Once a stream has

accessed a memory bank, it can transfer data in bursts

at one word per cycle. No other stream can access this

bank until the data transfer is complete. A stream

may generate a request to another bank before it has

�nished with a current data transfer as long as the cur-

rent transfer will be complete before the new transfer

begins. Single word accesses are thus pipelined us-

ing multiple interleaved banks. This memory can be

constructed using 100MHz synchronous DRAMs.

Table 1 shows the results of simulating this memory

architecture for 256� 256 matrix multiply and 8 � 8

discrete cosine transform (DCT) over a 512� 512 im-

Table 1: The e�ect of memory system performance

on matrix multiply and DCT. Results are given as the

percent increase in RaPiD runtime.

Parameters Applications

Banks Burst Mat1 Mat2 DCT1 DCT2

16 1024 17% 4% 16% 14%

8 1024 22% 9% 22% 14%

16 512 15% 7% 19% 28%

8 512 18% 18% 23% 32%

16 256 2% 7% 51% 21%

8 256 3% 21% 46% 31%

age. We chose these two applications because they

make high demands on the memory system. Matrix

multiply makes an average of 1.5 and a maximum of

3 accesses/sec, while DCT makes a constant 2 ac-

cesses/sec. In these applications, like most, data lay-

out can be done so that memory accesses are mostly

sequential. However, to show how this memory archi-

tecture performs well for non-sequential memory ac-

cesses, we have changed the data layout so that one

3

Since a B sub-matrix is stored one-column per cell, row-

major order allows for simple pipelined control.

matrix is accessed in column-major order in matrix

multiply, and the resulting 8 � 8 matrices in DCT

are transposed. These revised applications are labeled

Mat2 and DCT2. The experiments used data FIFOs of

length 64, a memory access latency of 8 cycles (80ns),

and a memory data transfer rate of 100MHz. The

table lists performance hits for di�erent numbers of

banks and burst lengths. These results show that this

memory architecture with 16 banks and bursts of 1024

can support these RaPiD applications, degrading per-

formance by less than 20%. We believe that further

optimization to the memory architecture will reduce

this overhead to less than 10% for the usual case of

sequential accesses. We also plan to make the mem-

ory organization con�gurable so that it can be tuned

dynamically to the application.

6 RaPiD Performance

This section analyzes the performance of three com-

putationally intensive applications: matrix multiply,

motion estimation, and DCT. Each program is eval-

uated on RaPiD-1, a 16-cell 100MHz array. Static

recon�guration for this architecture is assumed to re-

quire 1000 memory accesses and take 2000 cycles (a

conservative estimate). We �rst verify the 100MHz

frequency by giving critical cycle times from HSpice

simulations and then provide performance results.

Since running times are analyzed under an ideal mem-

ory interface (no stalls), we also provide measurements

of the average number of memory requests per cycle.

A detailed account of the implementations of these

algorithms can be found in Appendix A.

6.1 RaPiD Cycle Time

The performance goal for the RaPiD-1 chip is

100MHz in a 0:5� CMOS process. Table 2 lists the

delay of the major units in RaPiD as predicted by

HSpice on actual layout. The In!Clk delay is the

Table 2: Unit delays (ns)

Pipelined Comb.

Unit In!Clk Clk!Out Bypass

Multiply1 6.3 1.2 -

Multiply2 5.3 1.6 6.9

ALU 4.3 1.6 5.9

Ram 2.0 3.4 -

Bus Connector 0.5 1.2 1.6

Data Register 1.1 1.6 2.1

Optional Inv. 1.6 1.2 -

3-LUT 2.0 1.2 2.2

combinational delay of the unit including the input

7

multiplexer and the setup time of the register. The

Clk!Out delay includes the register output delay, the

bypass multiplexer if appropriate, and the bus driver.

The bypass delay includes the input multiplexer, inter-

nal and bus driver delay for non-pipelined bus connec-

tors. Multiply1 & 2 are the �rst and second pipeline

stages of the multiplier.

Table 3 gives a number of register-to-register paths

whose delays are less than 8ns. This indicates that

RaPiD will run at 100MHz, even if our HSpice simu-

Table 3: Critical path delays (ns)

Path Delay

Register!four busses!Register 7.5

Register!bus!Multiply1 7.9

Multiply1!Multiply2 6.5

Register!two busses!ALU 7.5

Ram!one bus!ALU 7.7

Multiply2!two busses!Ram 6.8

Control Register!one bus!

3LUT!two busses!Optional Inv. 6.6

lations are o� by as much as 25%, as long as applica-

tions can be placed and routed within this path delay

constraint. These constraints are in fact quite gen-

erous. The multiplier remains the critical path, but

the delay is well-balanced with that needed by other

communication paths.

The RaPiD-1 chip will contain 16 cells with a to-

tal of one million transistors on a die approximately

12mm � 12mm. The future addition of the controller,

I/O streams and memory control will add about 20%

to this cost.

6.2 Results

6.2.1 Matrix Multiply

Figure 9 shows the number of GOPS (billion of �xed-

point \operations" per second) that can be computed

on a RaPiD-1 chip con�gured to perform matrix mul-

tiply (an operation is a MAC). Once the pipeline is full

(and assuming no memory stalls) RaPiD performs at

a sustained rate of approximately 1:6 GOPS with an

average of about 1.5 memory accesses per cycle. The

jagged lines are a result of lost performance when the

partitioning can not be made a factor of the matrix di-

mensions (e.g. M = 64 performs better than M = 65

since the latter is not a multiple of the number of

RaPiD cells).

Figure 10 shows the distribution of memory re-

quests for a matrix multiply of two 64� 64 matrices.

Over the course of the computation, eight sets of 512

0.0

0.5

1.0

1.5

2.0

0 128 256 384 512 640 768 896 1024

G
O
P
S

M (MxM matrices)

0.0

0.5

1.0

1.5

2.0

0 128 256 384 512 640 768 896 1024

r
e
q
/
c
y
c
l
e

M (MxM matrices)

Figure 9: Matrix Multiply: GOPS and memory ac-

cesses per cycle, including cycles and accesses for re-

con�guration (an OP is a MAC).

consecutive writes are required, about half of which

induce three memory requests in one cycle.

6.2.2 Discrete Cosine Transform

A 16-cell RaPiD array can e�ciently compute an 8�8

2D-DCT by performing two matrix multiplies with the

transposed output of the �rst being the input to the

second. Figure 11 shows the number of MAC opera-

tions per second that can be computed on RaPiD-1.

As with matrix multiply, RaPiD achieves a sustained

rate of 1:6 GOPS but with an average of 2.0 memory

accesses per cycle. DCT has the highest memory ac-

cess average of all tested applications since it produces

results most e�ciently, reading one input and writing

one output on every cycle after initialization. This

graph is accurate for all image sizes which are mul-

tiples of 8; for clarity the slight jagged performance

drops on other sized images have been removed from

this and the following graphs.

6.2.3 Motion Estimation

Figure 12 shows the number of di�erence/absolute

value/accumulate operations per second that can be

computed on a RaPiD-1 chip con�gured for motion es-

timation. As with matrix multiply and DCT, RaPiD

performs at a sustained rate of 1:6 GOPS but with an

average of 0.1 memory accesses per cycle.

8

1

2

3

0 2048 4096 6144 8192 10240 12288 14336 16384

#

R
e
q
u
e
s
t
s

Cycle #

Figure 10: Distribution of memory requests for a matrix multiply of two 64� 64 matrices.

0.5

1

1.5

2

2.5

3

16 80 144 208 272 336 400 464 528 592 656 720
M (Mx0.8M images)

GOPS
Memory requests/cycle

Figure 11: 8�8 2D-DCT: GOPS and memory accesses

per cycle, including cycles and accesses for recon�gu-

ration (an OP is a MAC).

0.5

1

1.5

2

2.5

3

16 80 144 208 272 336 400 464 528 592 656 720
M (Mx0.8M images)

GOPS
Memory requests/cycle

Figure 12: Motion estimation: GOPS and mem-

ory accesses per cycle, including cycles and accesses

for recon�guration (an OP is a di�erence/absolute

value/accumulate).

6.2.4 Motion Estimation { Double-Gauged

A possible extension to RaPiD requiring little over-

head is double gauging the ALUs such that a single

16-bit ALU can be con�gured as two parallel 8-bit

ALUs. This optimization can often double the per-

formance of applications using an 8-bit datapath by

e�ectively doubling the RAM size and the number of

ALUs. (However, the number of multipliers, which

are not double-gauged, stays constant.) For exam-

ple, Figure 13 shows that a RaPiD-1 chip computing

motion estimation with double-gauged ALUs yields a

sustained rate of 3:2 GOPS, as expected.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

16 80 144 208 272 336 400 464 528 592 656 720
M (Mx0.8M images)

GOPS
Memory requests/cycle

Figure 13: Double-gauged motion estimation: GOPS

and memory accesses per cycle, including cycles and

accesses for recon�guration.

6.2.5 Real-time Video Performance

Figure 14 shows the performance, in terms of frames

per second, of motion estimation and DCT on vary-

ing image sizes. On a standard 720 � 576 image,

RaPiD-1 achieves about 12 frames per second when

executing both motion estimation and DCT (includ-

ing 4000 recon�guration cycles). If the ALUs were

9

10

15

20

25

30

35

40

45

50

55

60

500 600 700 800 900 1000 1100 1200

F
r
a
m
e
s

p
e
r

s
e
c
o
n
d

M (Mx0.8M images)

Motion Estimation
Motion + DCT
Motion (Double Gauged)
Motion (Double Gauged)+DCT

Figure 14: Number of computable frames per second

for motion estimation alone and combined with DCT,

including recon�guration cycles.

double-gauged, approximately 24 frames per second

could be achieved.

6.3 Comparison to Other Architectures

Quantitative comparisons to other architectures are

di�cult because of di�erences in technology, applica-

tion details, data format, and memory systems. For

comparison, we cite here performance results for a

high-performance digital signal processor and one of

the highest performance FPGA-based recon�gurable

computing machines.

De Greef et al. derive a motion estimation al-

gorithm highly optimized for DSP-style architectures

[5]. In a case study of the 50MHz Texas Instru-

ments TMS320C80 digital signal processor (contain-

ing four 32-bit DSPs and one 64-bit RISC processor),

they show that 23 TMS320C80 chips can implement

motion estimation of 720 � 576 pixel frames at 25

frames/second. (A 60MHz version would reduce this

requirement to 12 chips). Section 6.2.5 showed that a

double-gauged RaPiD-1 chip can perform both motion

estimation and DCT at 24 frames/second.

The PAM P

1

is an FPGA-based recon�gurable

computing machine consisting of 23 Xilinx XC3090

FPGAs, a 4MB local RAM, and a 100MB/s host bus.

The PAM project has reported some of the best per-

formance for con�gurable machines. A single PAM P

1

board can perform 2D-DCT at a rate of 1.4 GOPS

(an OP is an MAC/subtract/shift) [4]. Section 6.2.2

showed that RaPiD achieves 1.6 GOPS.

7 Conclusion and Future Directions

RaPiD represents an e�cient con�gurable comput-

ing solution for regular computationally-intensive ap-

plications. By combining the appropriate amount of

static and dynamic control, it achieves substantially

reduced control overhead relative to FPGA-based and

general-purpose processor architectures. Processors

must devote resources to be able to perform irreg-

ular and unpredictable computations, while FPGAs

must devote resources to construct unpredictable cir-

cuit structures. RaPiD is optimized for highly pre-

dictable and regular computations which reduces the

control overhead. The assumption is that RaPiD will

be integrated closely with a RISC engine on the same

chip. The RISC would control the overall computa-

tional
ow, performing the unstructured computations

which it does best, while farming out the heavy-duty,

brute-force computation to RaPiD.

RaPiD is most closely related to the systolic ar-

rays developed in the 1980s in terms of computation

style and application domain. But RaPiD �lls the

gap between static systolic arrays, which are too in-

exible, and programmable systolic arrays like Warp

and iWarp [1], which more closely resemble multipro-

cessors with too much control overhead.

Space has precluded any discussion of program-

ming RaPiD. Programmability is a major prob-

lem for con�gurable computers, which has limited

their widespread use. We use a RaPiD program-

ming model based on describing the operation of each

pipeline stage for one data element passing through

the pipeline. This comprises one \parallel" instruc-

tion which executes in a single cycle. Communication

between operations is constrained to that which is sup-

ported by the physical pipeline. Programs typically

comprise several nested loops, sometimes operating

in parallel. Our programming language allows these

loops to be written separately and composed either se-

quentially or in parallel according to a speci�ed o�set.

Although it does require an understanding of the con-

struction of the RaPiD architecture, we have found

that programmers can develop a new application in

a few hours, once they know the structure of their

computation. The next step is to compile higher-level

descriptions that do not incorporate the constraints of

the RaPiD architecture. Although many recent par-

allel compiler techniques can be applied, the problem

in general is extremely di�cult.

The most important open question is how to best

incorporate RaPiD into a larger system comprising a

general-purpose processor and a more general mem-

ory system. One approach is to treat it as a co-

10

processor as we have described. We believe, however,

that RaPiD should be bound much more closely to

a general-purpose processor. In this model, it would

be viewed as a special functional unit of the processor

with its own special path to memory that could in-

clude the processor cache where appropriate. In such

a model, the granularity of the computation passed to

RaPiD could be relatively small, and the con�gura-

tion information could be contained in the instruction

stream and decoded to con�gure the RaPiD datapath.

Such a tight interaction would greatly increase the ap-

plication domain of RaPiD. Processors incorporating

a RaPiD array could be used for both general-purpose

computing as well as compute-intensive applications

like digital signal processing.

A Application Implementations

This section describes implementations of the appli-

cations analyzed in the performance section. In par-

ticular, for each application formulas for the number

of cycles and memory requests are derived.

A.1 Matrix multiply

We �rst examine the matrix multiplication of two

M �M matrices A and B. For a 16-cell RaPiD array,

matrix multiply is tiled into A sub-matrices of size

Q � R and B sub-matrices of size R � S (see �gure

3), where Q = R = d

M

d

M

32

e

e and S = d

M

d

M

16

e

e. These

values are chosen to reduce the overhead when M is

not a multiple of the RAM size (32) or the number of

cells (16). The total number of cycles is broken down

into three categories: initialization, computation, and

�nalization. Initialization uses RS cycles to load a

B sub-matrix and S � 1 cycles to �ll the pipeline,

performing

S(S�1)

2

MAC operations. Finalization uses

S�1 cycles to unload the computation pipeline and an

additional S cycles to drain the output pipeline, also

performing

S(S�1)

2

MAC operations. The remaining

M

3

� S(S � 1) MAC operations are executed with

a full pipeline, thus consuming a total of

M

3

�S(S�1)

S

cycles. Hence, the total number of cycles consumed is

RS + 2S +

M

3

S

� 1. This equation veri�es the quick

dissipation of setup overhead with increasing M : the

overhead is 12% for M = 32 and 2% for M = 64. A

workload which performs a single matrix multiply has

an additional 2000 recon�guration cycles, yielding an

overhead of 53% for M = 32 and 12% for M = 64.

At least 3M

2

memory references are required since

each input matrix must be read and the output must

be written. For the partitioned algorithm described in

section 3.2, the entireAmatrix is read for each column

of B sub-matrices, the entire B matrix is read for each

row of A sub-matrices, and the output is still written

once. Since there are

M

16

columns of B sub-matrices

and

M

32

rows of A sub-matrices, the total number of

memory references is M

2

M

16

+M

2

M

32

+M

2

.

Matrix multiply in
uenced the decision to have

RAMsize = 2 � NumCells , since the amount of local

memory plays a role in the average memory accesses

per cycle: Decrease RAMsize to NumCells and the

average number of memory accesses per cycle jumps

to 2.0. Conversely, increase RAMsize to 4 �NumCells

and the average number of memory accesses per cycle

drops to 1.25.

A.2 Discrete Cosine Transform

A 16-cell RaPiD array can e�ciently compute an

8 � 8 2D-DCT by performing two matrix multiplies

with the transposed output of the �rst being the in-

put to the second. Consider an M � 0:8M image and

an 8� 8 weight matrix B. First, the image is divided

into

0:8M

2

64

sub-images of size 8�8. Then, for each sub-

image A, ((A�B)

T

�B)

T

is computed by the RaPiD

array. Since the Bmatrix is �xed for one image's com-

putation, it is loaded only once: one column per cell

in both the �rst 8 cells and the last 8 cells. The trans-

pose of the �rst matrix multiply is performed with two

RAMs per cell: one to store products of the current

sub-image and the other to pass the transpose of the

previous sub-image's computed products to the next

8 cells (section 4 describes the non-regular control re-

quired for the transpose). Using a similar analysis to

section A.1 for an 8-cell RaPiD array with no parti-

tioning, multiplying two 8�8 matrices requires 79+

8

3

8

cycles. However, the latency incurred by transposing

the �rst matrix multiply is an additional 64 cycles.

The remaining (

M

8

)(

0:8M

8

)�1 sub-images overlap their

initialization and �nalization phases, yielding a total

cycle count of 143+0:8M

2

. Given a typical image size

of M = 720 and a recon�guration cost of 2000 cycles,

the setup overhead is only 0:5%. This low overhead

is expected since 2D-DCT computes many small ma-

trix multiplies, amortizing recon�guration cost across

many consecutive operations.

Each element of the input must be read once, and

the output must be written once, for a total of 2 �

0:8M

2

memory accesses for DCT.

A.3 Motion Estimation

Motion estimation computes a distance vector

yielding the best (i.e. minimum cost via point-to-point

11

di�erencing) overlap of a reference block (RB) within

a query window (QW). An M � 0:8M reference frame

is divided into

0:8M

2

64

8 � 8 reference blocks, and mo-

tion estimation is performed on each RB within a QW

(from the query frame) of �8 pixels (i.e. a 24�24 pixel

query window). The motion estimation algorithm for

a 16-cell RaPiD array �rst divides the reference frame

into

0:8M

2

256

sub-images of size 16 � 16, each compris-

ing 4 reference blocks. First, a sub-image is loaded

into the RB RAMs, one column per cell. Then, a

32 � 16 sub-image of the query frame is loaded into

the QW RAMs, also one column per cell. Each over-

lap of the 16-entry RB RAM with the 32-entry QW

RAM is computed via point-to-point di�erencing, re-

quiring 17 � 16 cycles (rows of di�erences are summed

as they pass down the pipeline, and at the end of the

array columns are summed and di�erence vectors are

computed). Then, each column of the 32 � 16 query

frame sub-image is shifted down to the next cell, and

32-entries from the next column are read into the �rst

cell. The 17 � 16 cycle overlap phase is computed

again. This process repeats until a total of 16 addi-

tional query frame \shifts" have been performed (for a

total of 17 overlap computations), completing motion

estimation for all four reference blocks in 17 � 17 � 16

cycles. Then, the next (in row major order) 16 � 16

sub-image is read into the RB RAMs, and the process

repeats

0:8M

16

times for a total of

0:8M

16

� 17 � 17 � 16

cycles (note that loading the QW and RB RAMs is

overlapped with computation and hence consumes no

cycles). After each row of RB sub-images, the initial

32� 16 entry QW must be loaded, consuming 32 � 16

cycles (which can not be overlapped). This entire pro-

cess repeats for each row of sub-images, for a total of

16 � 16 +

M

16

(

0:8M

16

� 17 � 17 � 16 + 32 � 16) + 16 =

272 + 32M + 14:45M

2

cycles, including initialization

and �nalization. The setup overhead including a 2000

cycle recon�guration time is 0:3%. Again, this low

overhead is expected because the prodigious amount

of computation makes the cost of initialization, �nal-

ization, and recon�guration insigni�cant.

The memory requirements of motion estimation in-

volve reading the reference frame once, but due to

overlapping query windows, the query frame must be

read twice. In addition,

0:8M

2

64

di�erence vectors must

be written. Hence, a total of 3

1

64

� 0:8M

2

memory

accesses are performed.

Acknowledgments

We would like to thank Larry McMurchie and Jef-

frey Weener for their contributions to the RaPiD

project.

References

[1] M. Annaratone et al. The warp computer: architecture,

implementation, and performance. IEEE Transactions on

Computers, C-36(12):1523{38, 1987.

[2] J. M. Arnold, D. A. Buell, D. T. Hoang, D. V. Pryor,

N. Shirazi, and M. R. Thistle. The Splash 2 processor and

applications. In Proceedings IEEE International Confer-

ence on Computer Design: VLSI in Computers and Pro-

cessors, pages 482{5. IEEE Comput. Soc. Press, 1993.

[3] G. R. Beck, D. W. L. Yen, and T. L. Anderson. The Cydra

5 minisupercomputer: architecture and implementation.

Journal of Supercomputing, 7(1-2):143{80, 1993.

[4] P. Bertin, D. Roncin, and J. Vuillemin. Programmable ac-

tive memories: a performance assessment. In Parallel Ar-

chitectures and Their E�cient Use: First Heinz Nixdorf

Symposium Proceedings, pages 119{30. Springer-Verlag,

1993.

[5] E. De Greef, F. Catthoor, and H. De Man. Mapping real-

time motion estimation type algorithms to memory e�-

cient, programmable multiprocessor architectures. Micro-

processing & Microprogramming, 41(5-6):409{23, 1995.

[6] A. DeHon. Recon�gurable Architectures for General-

Purpose Computing. Ph.D. thesis, Massachusetts Insti-

tute of Technology, August 1996.

[7] H.T. Kung. Let's design algorithms for VLSI systems.

Technical Report CMU-CS-79-151, Carnegie-Mellon Uni-

versity, January 1979.

[8] P. Lee and Z. M. Kedem. Synthesizing linear array algo-

rithms from nested FOR loop algorithms. IEEE Transac-

tions on Computers, 37(12):1578{98, 1988.

[9] D. I. Moldovan and J. A. B. Fortes. Partitioning and

mapping algorithms into �xed size systolic arrays. IEEE

Transactions on Computers, C-35(1):1{12, 1986.

[10] B. R. Rau. Pseudo-randomly interleaved memory. In Pro-

ceedings of the 18th International Symposium on Com-

puter Architecture, pages 74{83, 1991.

[11] J. Rose, A. El Gamal, and A Sangiovanni Vincentelli. Ar-

chitecture of �eld-programmable gate arrays. Proceedings

of the IEEE, 81(7):1013{29, 1993.

[12] K. A. Vissers et al. Architecture and programming of two

generations video signal processors. Microprocessing &

Microprogramming, 41(5-6):373{90, 1995.

[13] J. E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. H.

Touati, and P. Boucard. Programmable active memories:

recon�gurable systems come of age. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 4(1):56{

69, 1996.

[14] Wazlowski-M. et al. PRISM-II compiler and architecture.

In Proceedings IEEE Workshop on FPGAs for Custom

Computing Machines, pages 9{16. IEEE Comput. Soc.

Press, 1993.

12

