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Abstract

We consider the problem of interleaving sequences of real numbers in order to maximize

the minimum, over all pre�xes p of the interleaved sequence, of the sum of the numbers in p.

A simple and e�cient solution is given. This problem is motivated by a resource scheduling

application, and a special case of the scheduling problem is reduced to the interleaving problem.

1 Introduction

As processors get faster relative to memory speeds, �le system I/O is increasingly a bottleneck

to performance. Recent studies have shown that an application program's I/O overhead can be

signi�cantly reduced using integrated prefetching and caching policies [1, 2]. These techniques,

augmented by mechanisms to allocate cache space among multiple processes, were shown empiri-

cally to improve the performance of multi-programmed workloads as well, assuming standard, fair

scheduling mechanisms are used to arbitrate the processes' competing prefetch requests and pro-

cessing demands. A natural question arises: can performance improve further if we assume that

not only are prefetching and caching decisions under the control of a single manager, but that

the scheduling of I/O resources (i.e. the order in which di�erent processes' prefetch requests are

served) and processing resources (the order in which the processes' computations are executed) are

integrated into the policy as well?

Consider the following example. Suppose each of two processes, P and Q, start at time 0 and

request data in a cyclic fashion. For simplicity, suppose each processes' data �le consists of only

two blocks. Thus, process P issues the request sequence p

1

; p

2

; p

1

; p

2

; : : : and Q issues the request

sequence q

1

; q

2

; q

1

; q

2

; : : :. Suppose further that 10 units of time are required to fetch a block of data

into the cache, and that each process computes for 1 unit of time after each request for a block of

data. The requested block must be present in the cache for the computation to proceed, of course.
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P 's and Q's data blocks will be brought into the cache alternately under a round-robin policy,

say in the order p

1

; q

1

; p

2

; q

2

; these fetches complete at times 10, 20, 30, and 40, respectively. Until

P 's last block of data is available at time 30, only 2 units of work can be completed by the CPU.

P is able to complete one unit of work (on block p

1

at time 11) and Q completes one unit of work

(on block q

1

at time 21). Finally at time 30, P 's entire data set is resident in the cache and it can

run unhindered by I/O stalls. The same happens for Q at time 40.

If instead we favor one of the processes, say P , by devoting resources to it exclusively, we reach

a state sooner in which the processor can be fully utilized. If the blocks are fetched in the order

p

1

; p

2

; q

1

; q

2

, P can run without stalling on I/O starting at time 20. Q's full data set still becomes

resident at time 40.

A simpli�ed version of this integrated scheduling problem reduces to the following combinatorial

problem. The reduction is outlined in section 4; full details are given in section 8. Imagine that you

are given a set of several independent streams of transactions (drafts and deposits) on a checking

account that is backed by a savings account. Any time the checking account is overdrawn, the

overdraft must be covered from savings. Your goal is to produce an ordering of the transactions

that

1. respects the orders of the individual streams, and

2. minimizes the amount that has to be transferred from savings to cover overdrafts in the

checking account.

In section 7, we present a simple and e�cient algorithm that �nds an exact solution. The algorithm

requires O(n logm) arithmetic operations, where n is the total number of transactions in all of the

m sequences.

2 Motivation and background

Recent research into maximizing �le system performance shows that many applications' I/O de-

mands can be disclosed to the �le system in advance [2, 3]. Suppose multiple processes share a

cache backed by a storage device, and that the system has advance knowledge of the processes'

sequences of requests for items residing on the backing store. Prefetching of items into the cache

(initiating a transfer before a process faults on a missing item, and overlapping the servicing of

processes' requests with the transfer) is allowed. Suppose there are no constraints regarding the

interleaved servicing of the requests of the di�erent processes, other than that the requests of an

individual process must be served in order. The goal is to minimize the completion time of the last

process to �nish.
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The general problem described above appears to be a di�cult one, even in the case of a single

process. In the single-process case, it can be shown [1] that any time a block must be evicted, an

optimal choice is available: that block which is not needed for the longest time among all blocks

present in the cache. (This rule is derived from Belady's optimal o�ine paging algorithm [4].)

Cao et. al [1] also showed that it is always best to choose the �rst missing block when deciding

which block to prefetch, and that a prefetch should never be initiated for a block that is not needed

until after the next request of the block that would be evicted. These rules provide guidance in

determining a prefetching and caching schedule. They uniquely determine which blocks to fetch

and to evict, given that a prefetch is to be scheduled. However, they do not completely determine

when a prefetch should be initiated. New and possibly better eviction choices arise as the request

sequence is served. Cao et. al derived an algorithm for the single-process case with performance

within a factor min(2; 1 + F=K) of optimal, where F is the time to fetch a block relative to the

inter-request application compute time and K is the cache size in blocks. For typical systems,

F=K � :02, so this performance is very close to optimal. No polynomial-time exact solution is

known.

Kimbrel et. al [5] considered algorithms for the single-process case in a practical setting, sim-

ulating the algorithms' behaviors using �le access sequences from real programs. One of their al-

gorithms, dubbed Forestall, determines whether to prefetch (subject to the rules described above)

based only on its estimate of the likelihood of a stall given its current cache state. The algorithm

does not weigh this likelihood against the bene�ts of waiting to prefetch in order make a better

eviction decision (and thus possibly avoid stalling at a later point in the schedule). They found

that this algorithm performs at least as well as the theoretically near-optimal algorithm of Cao et.

al. This suggests that in practice, it is not necessary to solve the di�cult problem of determining

exactly when each prefetch should occur based on an optimal or near-optimal sequence of eviction

choices. It is su�cient to prefetch whenever a stall is imminent given the current cache contents,

and to delay prefetching if the cache contains the blocks needed in the near future so that no stall

is imminent.

Thus, in the more di�cult multiple process case, the algorithm given here may well lead to

a practical prefetch scheduler (when combined with the Forestall algorithm of Kimbrel et. al),

even though it is designed without considering the e�ects of cache evictions (as will become clear

in section 3). Forestall will determine whether prefetching is needed; the algorithm given here

determines an order in which to prefetch the multiple processes' blocks, once the decision to prefetch

has been made.

3 Formal problem statement

The general problem is formalized as follows:
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� Let B = B

1

[ : : :[B

m

be a collection of disjoint sets of blocks residing on the backing store.

� A reference sequence, or request sequence, is an ordered sequence of references R

k

=

r

k

1

; r

k

2

; : : : r

k

jR

k

j

, where each r

k

i

2 B

k

.

� There are m separate reference sequences R

1

; : : : ; R

m

.

� There is a cache of size K that contains at most K blocks in B at any time.

� Fetching a block from a disk into the cache takes F time units.

The references in each sequence R

k

must be served in order. A single reference can be served in

one unit of time. However, in order for a reference to be served, it must be in the cache. We imagine

that for each reference sequence there is a cursor that at any time points to the next request to be

served. If this request is for a block that is in the cache, the cursor can be advanced by one request

during the next time unit. If several cursors point to blocks that are present in the cache, one and

only one of them can be advanced in a single time unit. If all requests pointed to by the cursors are

for blocks that are not in the cache, the processing stalls until one of the missing blocks arrives in

the cache (i.e., until the fetch for that block completes). Note that, to the extent that the cursors

are advancing, prefetches can overlap the serving of requests.

There are two constraints on the prefetches performed:

1. If a fetch of block b is initiated at time t and the cache contains K blocks at that time,

some block b

0

in the cache must be evicted to make room for the incoming block. Neither the

fetched block b nor the evicted block b

0

is available during the F time units between t and

t+ F in which the fetch occurs.

2. The fetches are sequential: If a fetch is initiated for a block at time t, no other fetch can be

initiated until time t

0

� t+ F .

The goal of a multi-process prefetching and caching algorithm is to construct, on input request

sequences fR

k

g, a schedule for prefetching and serving requests that minimizes the elapsed time

required to serve all of the R

k

; this elapsed time is equal to

P

m

k=1

jR

k

j plus the total stall time.

The schedule speci�es

� which blocks to fetch,

� when to fetch them,

� which cache blocks to evict, and
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� when to service each request.

In this paper, we solve this problem for the special case of an unbounded cache; that is, we

assume cache evictions are never necessary. (However, for reasons described in the previous section,

we believe that this algorithm is nonetheless practical.) We will thus be concerned only with the

order in which to fetch blocks into the cache, and not which blocks to evict. The algorithm presented

here will work no matter what set of blocks is contained in the cache initially.

At any time during the processing of the requests, for each request sequence there is some

distance from the cursor to the �rst hole (block missing from the cache) in that sequence. We refer

to the requests at or following the cursor and preceding the �rst hole as uncovered. Uncovered

requests can be thought of as work available to the processor; if a total of U requests are uncovered

in all sequences, then the cursors can be advanced a total of U times before all cursors reach holes

and a stall is incurred. Clearly, an optimal prefetching algorithm can be assumed to always �ll

the �rst hole (fetch the �rst missing block) in some request stream. Since we assume the cache

is in�nite, it never pays to wait and leave the storage device idle before initiating a prefetch; this

would help only in order to make a better eviction decision if the cache were bounded. Thus we

assume that a fetch is initiated at time 0, and every F time units thereafter, until the last hole is

�lled.

4 A reduction

As mentioned previously, to minimize the overall completion time, we can focus on minimizing the

total stall time, i.e., the number of time steps during which no request is served (because all cursors

are blocked by holes and no request can be served until the current fetch completes). If �lling a hole

in some sequence uncovers F requests (including the hole and all requests up to but not including

the next hole in the sequence), the schedule \breaks even" in terms of uncovered requests, since

it takes F steps to �ll the hole, and F uncovered requests for blocks already present in the cache

can be served concurrently. Any greater number represents a net gain of uncovered requests from

the time at which the fetch is initiated until it completes; fewer than F requests uncovered will

decrease the amount of work available to the processor, and increase the chance of a stall. If there

are U < F uncovered requests at some time iF (i.e. the i

th

fetch has just completed), then only

the U uncovered requests can be served before the next fetch completes at time (i+1)F and more

requests are uncovered; F � U steps will be spent stalling.

We thus consider each request sequence to be simply a sequence of numbers. Corresponding to

a request sequence containing u

1

uncovered requests, followed by a hole, then u

2

� 1 cached blocks

and then another hole, etc., we have the sequence u

1

;�F; u

2

;�F; : : :. Intuitively, it costs F steps

to �ll a hole; this cost must be paid before the bene�t (that of being able to serve the requests
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uncovered) can be reaped. The problem reduces to the following problem: We are given a list of

several independent streams of transactions (drafts and deposits) on a checking account, which is

backed by a savings account. Whenever the checking account is overdrawn, the de�cit must be

made up out of savings. We need to interleave the transactions in an order respecting the orders

of the individual streams and minimizing the amount that has to be transferred from savings to

cover overdrafts in the checking account. (Each time a dollar is moved from savings into checking

to cover a check, one unit of stall time is incurred.) We will give a more formal description of this

reduction in section 8; �rst, we introduce some notation and derive a solution to the new problem.

5 Reduced problem statement

De�nition: Given a sequence w = w

1

: : : w

n

of real numbers, the depth D(w) of w is

min

0�i�n

i

X

j=1

w

j

and the net N(w) of w is

n

X

i=1

w

i

:

We denote the net N(w

1

: : : w

i

) of a pre�x w

1

: : : w

i

of w by N(w; i) and similarly denote the depth

of a pre�x; we will also speak of the \depth of w at index i" or the \net of w at index i" when the

meaning is clear. Notice that in comparing two sequences, the sequence whose depth is a greater

number is the shallower of the two, since a sequence's depth is a non-positive number.

Given a set W = fw

k

= w

k

1

: : : w

k

n

k

: 1 � k � mg of m sequences of numbers, an interleaving I

of W is a sequence I

1

: : : I

n

, where n =

P

m

k=1

n

k

, such that there is a one-to-one map M from

f(k; i) : 1 � k � m; 1 � i � n

k

g

to [1::n] such that

1. for all 1 � k � m, for all 1 � i

1

< i

2

� n

k

, M(k; i

1

) < M(k; i

2

), and

2. for all 1 � k � m, for all 1 � i � n

k

, I

M(k;i)

= w

k

i

.

For a sequence w = w

1

: : : w

n

, let B(w) and R(w) denote the shortest non-empty pre�x (if it

exists) of w that sums to a non-negative value and the remaining su�x, respectively; that is,

B(w) = w

1

: : : w

l

and R(w) = w

l+1

: : : w

n

, where

l = min

1�i�n

fi : N(w; i) � 0g
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if fi : N(w

1

: : : w

i

) � 0 & 1 � i � ng 6= ;.

Lemma 1 Any su�x w

i

: : : w

jB(w)j

of B(w) sums to a non-negative value.

Proof: Since B(w) is the shortest non-empty pre�x of w with a non-negative net, N(w; i�1) �

0, with equality holding only in the case i = 1. (For any i, we take w

i

: : : w

i�1

to be the empty

sequence.) 2

De�nition: Let I(W ) denote the set of all interleavings of W . We seek an interleaving I such

that D(I) is maximum. Let I

�

(W ) denote the set of optimal interleavings; that is,

I

�

(W ) = fI 2 I(W ) : D(I) = D

�

(W )g

where

D

�

(W ) = max

I2I(W )

D(I):

6 Solving the reduced problem

The algorithm to �nd a \shallowest" interleaving is the following: consider each of the input

sequences, and choose that one (call it w) with the shallowest pre�x B(w). Output B(w), replace

w by the su�x that remains after removing B(w), and repeat. The algorithm runs into trouble,

however, if none of the input sequences has a pre�x with a non-negative sum. In this case, a

dual construction allows the processing of the remaining sequences by considering su�xes with

non-positive sums.

Lemma 2 (Shallowest �rst) Let W be a set of sequences, and suppose that B(w

k

) exists and

that for each k

0

6= k, either B(w

k

0

) does not exist or D(B(w

k

)) � D(B(w

k

0

)). Let l = jB(w

k

)j.

Then there is some interleaving I 2 I

�

(W ) such that M(k; i) = i for all 1 � i � l, where M is the

map associated with I.

Proof: We �rst show that for every interleaving I 2 I(W ), D(I) � D(B(w

k

)). Let I be an

interleaving of W , given by map M . Let k

0

be the index of the sequence w

k

0

such that B(w

k

0

)

\�nishes �rst" in I, i.e. M(k

0

; jB(w

k

0

)j) < M(k

00

; jB(w

k

00

)j) for all k

00

6= k

0

such that B(w

k

00

) exists.

Since each w

k

00

, k

00

6= k

0

, contributes a non-positive sum to

D(I;M(k

0

; jB(w

k

0

)j) = min

0�i�M(k

0

;jB(w

k

0

)j)

i

X

j=1

I

j

(whether B(w

k

00

) exists or not), we have

D(I) � min

0�i�jB(w

k

0

)j

i

X

j=1

w

k

0

j

= D(B(w

k

0

)):
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Since D(B(w

k

)) � D(B(w

k

0

), the claim follows.

Next, we show that any interleaving I, given by map M , that doesn't satisfy the claim of the

lemma can be transformed into an interleaving I

0

(given by a mapM

0

) that does, withD(I

0

) � D(I).

I

0

is obtained from I by \moving up" the entries in B(w

k

) to the beginning of the interleaving,

without changing the respective orderings among the entries of R(w

k

) and the sequences other

than w

k

. For i � l, let M(k; i) = i and for i > l, let M

0

(k; i) = M(k; i). For each (k

0

; i

0

)

such that k

0

6= k, let M

0

(k

0

; i

0

) = M(k

0

; i

0

) + jfi � l : M(k; i) > M(k

0

; i

0

)gj. By the preceding

argument, the net value N(I

0

;M

0

(k; i)) = N(I

0

; i) for each 1 � i � l is at least as great as the

depth D(I) of the original interleaving. For each k

0

6= k, each entry w

k

0

i

0

has a (possibly empty)

su�x of B(w

k

) moved ahead of it in I

0

. By lemma 1, that su�x has a non-negative net, so that

N(I

0

1

: : : I

0

M

0

(k

0

;i

0

)

) � N(I

1

: : : I

M(k

0

;i

0

)

). Thus the overall depth of I

0

is no smaller than that of I,

since at each index of I

0

there is an index of I with net value at least as small. 2

In order to apply this lemma to the interleaving problem, it is necessary that at least one

of the sequences to be interleaved has a non-empty pre�x with a non-negative net. When this

fails, we use a dual notion. Notice that for a sequence w = w

1

: : : w

i

w

i+1

: : : w

n

, N(w

1

: : : w

i

) =

N(w)�N(w

i+1

: : : w

n

). Thus maximizing the minimum pre�x sum (of an interleaving) is equivalent

to minimizing the maximum su�x sum. This motivates the following:

De�nition: For sequence w = w

1

: : : w

n

, let B

0

(w) and R

0

(w) denote the shortest non-empty

su�x (if it exists) of w that sums to a non-positive value and the remaining pre�x, respectively;

that is, B

0

(w) = w

l+1

: : : w

n

and R

0

(w) = w

1

: : : w

l

, where

l + 1 = max

1�i�n

fi : N(w

i

: : : w

n

) � 0g

if fi : N(w

i

: : : w

n

) � 0 & 1 � i � ng 6= ;. The height H(w) of any sequence w = w

1

: : : w

n

is

max

0�i�n

n

X

j=i+1

w

j

:

A dual argument to Lemma 2 yields the following:

Lemma 3 (Lowest last) Let W be a set of sequences, and suppose that B

0

(w

k

) exists and that

for each k

0

6= k, either B

0

(w

k

0

) does not exist or H(B

0

(w

k

)) � H(B

0

(w

k

0

)). Let l = jR

0

(w

k

)j. Then

there is some interleaving I 2 I

�

(W ) such that M(k; i) = (

P

m

j=1

n

j

)�n

k

+ i for all l+1 � i � n

k

,

where M is the map associated with I.

7 The algorithm

Notice that, since every non-empty w is both a non-empty pre�x and a non-empty su�x of itself,

for every non-empty w either B(w) or B

0

(w) exists. Notice also that if B(w) does not exist,
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then removing the su�x B

0

(w) from w will not change this; i.e. B(R

0

(w)) does not exist. These

observations, along with Lemmas 2 and 3, imply that an optimal interleaving of W is obtained by

the following algorithm:

Repeat until for each k, 1 � k � m, either

w

k

is empty or B(w

k

) does not exist:

Let k satisfy D(B(w

k

)) � D(B(w

k

0

))

for all k

0

such that B(w

k

0

) exists.

Output B(w

k

) and replace w

k

with R(w

k

).

Initialize a stack S to the empty stack.

Repeat until for each k, 1 � k � m, w

k

is

empty:

Let k satisfy H(B

0

(w

k

)) � H(B

0

(w

k

0

))

for all k

0

such that w

k

0

is not empty.

Push B

0

(w

k

) on S (in reverse order) and

replace w

k

with R

0

(w

k

).

While S is not empty output pop(S).

A straightforward modi�cation of the algorithm outputs the map M by which the interleaving

is obtained from the input set W . The algorithm can be implemented to use O(n logm) operations

(comparisons, additions, and assignments), where n is the sum of the lengths of the input sequences

(and equal to the length of the output sequence), and m is the number of input sequences. This is

achieved even in the case that each B(w

k

) and B

0

(w

k

) is short (length bounded by a constant). A

linear scan of each B(w

k

) can determine its length and depth (if it exists; if not, a linear scan of

all of w

k

determines this, and w

k

need not be considered again until the second loop is entered.)

These records can be stored in a priority queue keyed on the depth. On each iteration of the �rst

loop, a delete maximum operation determines which B(w

k

) to output, and which w

k

to examine in

order to insert (a description of) the new B(w

k

) into the queue. The second loop can be handled

similarly. Producing the output has a total cost of O(n). Thus, the most expensive operations are

the O(n) insert and delete maximum (or minimum) operations on the priority queue, each with a

cost of O(logm) (see, for example, [6]).

Thus we have the following.

Theorem 4 The above algorithm �nds an optimal interleaving of the m sequences W = fw

k

=

w

k

1

: : : w

k

n

k

: 1 � k � mg in time O(n logm) in the unit cost RAM model.

8 Formalizing the reduction

We return now to the reduction of the prefetching and scheduling problem to the checking and

savings account problem. Lemma 2 allows us to assume that the initial non-negative entries of all
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m sequences (i.e. the numbers of initially uncovered requests) occur �rst in the interleaving (in

an arbitrary order; say in the same order as that in which the input sequences occur). Lemma 2

also allows us to assume that each subsequent pair (�F; u

j

i

) corresponding to the i

th

hole in the

j

th

request sequence occurs consecutively in an interleaving I, since the single positive value u

j

i

is

a zero-depth pre�x. It is thus easy to determine a prefetching schedule that corresponds naturally

to an interleaving I with associated map M , such that I

m+2i

is the number of requests uncovered

by the i

th

fetch; for each prefetching schedule there is a unique such corresponding map specifying

an interleaving. In the following, we assume that an interleaving I is known and has been used to

determine a prefetching schedule. We claim that jD(I)j is the total stall time of the prefetching

schedule.

One direction (the lower bound on total stall time) is easy: since a total of N(I;m + 2i) + iF

requests are uncovered (initially and by prefetch operations) before time (i+1)F , at most N(I;m+

2i) + iF requests can be served by time (i + 1)F . Thus, the stall time accumulated up to time

(i + 1)F is at least max(0; (i + 1)F � (iF + N(I;m + 2i))) = max(0; F � N(I;m + 2i)). Unless

m+2i = jIj, we have that I

m+2i+1

= �F , so that the stall time is at least max(0;�N(I;m+2i+1)).

Taking the minimum value over i of N(I;m+2i+1) (and noting that the minimum net is achieved

at such an index since I

m+2i

is positive for each i) yields the lower bound.

We now show that this bound on the stall time can be met. We show by induction on i that at

time iF ,

1. the number of requests left uncovered and available for servicing between times iF and (i+1)F

is N(I;m+ 2i) �D(I;m+ 2i), and

2. the accumulated stall time is jD(I;m+ 2i)j.

The basis (i = 0) is trivial. For the induction, assume the hypothesis is true for i.

Case 1: D(I;m + 2i + 2) = D(I;m + 2i). In this case, N(I;m + 2i + 1) � D(I;m + 2i) so

that N(I;m + 2i) � D(I;m + 2i) � F , since I

m+2i+1

= �F . Thus there are at least F requests

uncovered at time iF , and no further stalling is incurred between times iF and (i + 1)F . F

requests are served between times iF and (i + 1)F , the accumulated stall time is (unchanged)

jD(I;m + 2i)j = jD(I;m + 2i + 2)j, and the number of requests left uncovered is N(I;m + 2i) �

D(I;m+ 2i)� F + I

m+2i+2

= N(I;m+ 2i+ 2)�D(I;m+ 2i+ 2) as needed.

Case 2: D(I;m + 2i + 2) < D(I;m + 2i). In this case, N(I;m + 2i) �D(I;m + 2i) < F , and

the number of additional stall steps incurred is F � (N(I;m+2i)�D(I;m+2i)) = D(I;m+2i)�

N(I;m+2i+1) = D(I;m+2i)�D(I;m+2i+2) so that the total is jD(I;m+2i+2)j. The number

of requests left uncovered at time (i + 1)F is I

m+2i+2

= N(I;m + 2i + 2) � N(I;m + 2i + 1) =

N(I;m+ 2i+ 2)�D(I;m+ 2i+ 2) as needed.

10



9 Conclusion

In this paper, we have considered an abstract combinatorial problem, \sequence interleaving," de-

rived from a multiple resource scheduling problem. A simple and e�cient algorithm was given for

the sequence interleaving problem. The sequence interleaving problem corresponds to a simpli�ca-

tion of the integrated scheduling problem, which appears to be di�cult. However, there is reason

to believe that a solution to the simpli�ed problem will perform well in practice, as discussed in

section 2. Future work includes testing this hypothesis by comparing the algorithm to existing

approaches, using simulation based on traces of real programs' resource demands.
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