
BeCecil, A Core Object-Oriented Language
with Block Structure and Multimethods:

Semantics and Typing

Craig Chambers and Gary T. Leavens
Technical Report #UW-CSE-96-12-02

December 1996

This report, minus the appendices, will appear in the proceedings of theThe Fourth International Workshop
on Foundations of Object-Oriented Languages (FOOL 4), Paris, France, January 1997.

Keywords: Multimethods, generic functions, object-oriented programming languages, encapsulation,
information hiding, static typechecking, block structure, subtyping, inheritance, BeCecil language.

1994 CR Categories: D.3.1 [Programming Languages] Formal Definitions and Theory— semantics;
D.3.2 [Programming Languages] Language Classifications— object-oriented languages; D.3.3
[Programming Languages] Language Constructs and Features— abstract data types, control structures,
procedures, functions, and subroutines; D.3.m [Programming Languages] Miscellaneous —
multimethods, generic functions, type systems; F.3.2 [Logics and Meanings of Programs] Semantics of
Programming Languages— operational semantics; F.3.3 [Logics and Meanings of Programs] Studies of
Program Constructs— control primitives, type structure.

Copyright © Craig Chambers and Gary T. Leavens, 1996.

1

BeCecil, a Core Object-Oriented Language
with Block Structure and Multimethods:

Semantics and Typing

Craig Chambers

Department of Computer Science and Engineering
University of Washington

Box 352350 Seattle, WA 98195-2350 USA
(206) 685-2094; fax: (206) 543-2969

chambers@cs.washington.edu

Gary T. Leavens

Department of Computer Science
Iowa State University

229 Atanasoff Hall, Ames, IA 50011-1040 USA
(515) 294-1580; fax: (515) 294-0258

leavens@cs.iastate.edu

January 6, 1997

Abstract

We present and analyze the semantics and static type system for BeCecil, a theoretical (core) language with
multimethods. BeCecil is a simple and orthogonal version of object-oriented languages like Cecil, CLOS, and
Dylan. BeCecil has a new, simple mechanism for information hiding, which allows subclassing and yet can
preserve representation invariants. BeCecil is also block-structured; within a block, one can extend a generic
function with new multimethods, which may come from other generic functions. The inheritance
relationships of objects may be extended in any block, and are statically scoped. The type system separates
classes from types, and inheritance from subtyping. Subtype relationships are also extensible and statically
scoped. These features combine to make BeCecil unusually expressive, while still allowing static
typechecking.

1 Introduction

Object-oriented (OO) languages with multimethods [Bobrowet al. 86, Moon 86, Chambers 92] offer
increased expressiveness over languages with only singly-dispatched methods, for the following reasons:

• dispatching on all arguments is more flexible and symmetric than dispatching on only the first argument;

• multiple dispatching generalizes and unifies global procedures, singly-dispatched methods, and
(statically) overloaded procedures;

• multiple dispatching resolves complications relating to co- versus contravariant redefinition and “binary
methods” [Bruceet al. 95, Castagna 95].

Multimethods also lead to a style of language that permits objects to be extended at several points in a
program. By making such extensions in a nested scope, one can customize the interface of classes for
particular client applications without polluting the interface as seen by other clients. This style can also
support more role-based or subject-oriented programming models [Shilling & Sweeney 89, Wirfs-Brock &
Johnson 90, Reenskaug & Anderson 92, Harrison & Ossher 93, Ossheret al. 95, Van Hilst & Notkin 96].

2

BeCecil Chambers & Leavens

However, in comparison with languages with single-dispatched methods, languages with multimethods
have received little theoretical attention. Work on theλ&-calculus [Ghelli 91, Castagnaet al. 92, Castagna
et al. 95, Castagna 95b] and other languages [Rouaix 90, Agrawalet al. 91, Mugridgeet al. 91, Chambers
& Leavens 94, Chambers & Leavens 95] has given some basic ideas for type systems and type checking
algorithms. Although CLOS [Steele 90, Paepcke 93] and Dylan [Shalit 97, Feinberg 97] are multimethod
languages with module systems, their module systems, which have received little theoretical attention,
either permit encapsulation violations or limit extensibility. Thus the design of (statically typed) module
systems that both allow interesting extensions (e.g., subclasses) and prevent encapsulation violations and
clashes between independently-developed extensions remains an important problem [Cook 90].

We have been developing and experimenting with Cecil, an expressive and practical object-oriented
language based on multimethods [Chambers 92, Chambers 95]. We have gained practical experience with
programming in Cecil by writing an 80,000-line optimizing compiler, Vortex [Deanet al. 96]. We recently
presented a static type system, efficient typechecking algorithm, and module system for Cecil [Chambers &
Leavens 95]. As part of our efforts to formalize the module system and generalize the underlying object
model, we are designing a core language, BeCecil,* that includes extensible generic functions, inheritance,
and static type checking. BeCecil is intended to directly support the following standard and novel
programming idioms.

• BeCecil supports aprototype-based object model that unifies classes and instances in a single
object construct, supports (multiple) inheritance between objects, and supports (mutable) state and
object identity.

• BeCecil supportsmultimethods, collected in (first-class) generic function objects. Each multimethod
case of a generic function can be a nested, lexically-scoped closure; traditional lexically-scoped
functions are modeled by generic function objects with one case. Unlike CLOS or Dylan, multimethods
are not artificially linearized in terms of specificity, which permits ambiguous definitions (that need to
be prevented by the type system). Instance variables are modeled as special kinds of multimethod
implementations, integrating them into the regular message dispatching mechanism. Special message-
sending features modelsuper -send-like operations to invoke overridden multimethod cases.

• BeCecil supports astatic type system that separates types from objects and subtyping from code
inheritance (objects conform to the types they implement) and guarantees that all dynamically-
dispatched messages will find a single most-specific matching multimethod case at run-time. The type
system does not force dummy implementations of abstract operations.

• BeCecil supportsextensible, customizable objects, in that generic functions, superclasses, and
supertypes† can be added to existing objects or types by external clients of those types. New generic
functions can be constructed that build upon all the cases of existing generic functions, in a sense
producing a customized version of the original generic function. (BeCecil’s extensibility is in marked
contrast to the monolithic nature of traditional class declarations in existing object-oriented languages,
and is motivated in part by BeCecil’s inclusion of multimethods.)

• BeCecil supportsscoping and encapsulation of all declarations, including object, type, inheritance,
subtyping, and multimethod declarations, limiting their static visibility and dynamic effect to a
particular region of program text. In addition to traditional uses of encapsulation of hidden state of
objects, this feature enables clients to make extensions to existing objects in a nested scope, thereby
hiding the extensions from other unrelated clients. (Supporting true scoping of previously-global

* Block-structured,extensibleCecil.
†New types to which an existing object conforms, and new supertypes of an existing type.

3

BeCecil Chambers & Leavens

notions such as the inheritance and subtyping graphs and the set of multimethods in a generic function
was a challenge.)

• BeCecil will support a notion ofseparate typechecking, where modules (named collections of
declarations) can be statically typechecked in isolation from clients, unrelated modules, and even any
extending modules. (Modular typechecking is difficult in the face of multimethods, where ambiguities
can arise between independent additions of multimethod cases to a common generic function.)

BeCecil strives to make extension of existing code as easy and useful as possible without modification and
while preserving static typechecking. This goal leads to multimethods, accessing instance variables solely
through messages, separating types from classes, allowing clients to extend existing objects externally
(along with controlling the scope of the extensions), and type system support for separate typechecking of
separately-developed collections of declarations.

BeCecil currently supports all the desired features listed above except named collections of declarations and
separate typechecking; adding modules and modular typechecking is current work. A proof that our type
system is sound with respect to the dynamic semantics is also current work.

Although BeCecil is intended to be a core subset of Cecil, it does not model all of Cecil directly. In particular
it does not model non-local returns, predicate classes [Chambers 93], and parameterized types.

The rest of this paper is organized as follows. The dynamic semantics is described in three sections. Section
2 gives an overview of language minus its typing aspects, including its syntax and various examples.
Appendix A* formally defines the dynamic semantics of the language and Appendix B discusses various
design issues related to the dynamic semantics. Similarly, BeCecil’s type system is also described in three
sections. Section 3 gives an overview of the type system, Appendix C formally defines the type system, and
Appendix D discusses various design issues related to the type system. Finally, Section 4 discusses related
work in some detail, and Section 5 offers more discussion and conclusions.

* The appendix sections are available from the URL ftp://ftp.cs.iastate.edu/pub/techreports/TR96-17/appendix.ps.Z
[Chambers & Leavens 96].

4

BeCecil Chambers & Leavens

2 Syntax, Overview, Sugars, and Examples for the Untyped Subset of BeCecil

In this section we present the untyped subset of BeCecil. We first present the syntax of this subset, show
how to program standard OO mechanisms, present some syntactic sugars, discuss some small examples, and
conclude with some informal descriptions of subtle points in the semantics and how BeCecil supports
abstract data type (ADT) patterns. We hope that this material will give readers a feel for the language before
the detailed dynamic semantics are presented in Appendix A [Chambers & Leavens 96].

2.1 Syntax

The abstract syntax of BeCecil appears in Figure 2-1 below, except for the syntax of the type system, which
is explained in Section 3. BeCecil is a call-by-value language (based on an indirect [Friedmanet al.92] or

P ::= Program
RDS; B prelude, followed by a block

RDS ::= Recursive-Declaration-Sequence
D* mutual recursion is allowed within D*

B ::= Block
RDS E the recursive declaration sequence provides context for E

D ::= Declaration
object I object: allocates a new object named I

| CN1 inherits CN2 inheritance: CN1 directly inherits from CN2
| CN has GF extension: CN to include the methods of GF
| hide RDS in D* end hide: the declarations of RDS are only visible to the D*

CN ::= Class-Name
I identifier that names an object (a class)

GF ::= Generic-Function attributes
I identifier: the methods and tables of I

| method(F*) {B } method: likeλ, a block abstraction
| storage(F*) := E storage table: new table initialized to value of E
| acceptor(F*) := I {B } acceptor: can process an assignment with value I
| GF1 & GF2 combination: GF2 favored over GF1 if clash

F ::= Formal argument
I @ CN the specializer for this argument is the class CN

E ::= Expression
I class name: evaluates to the object denoted by CN

| E0 (AA*) application: evaluates operator then operands left-to-right
| E0 (AA*) := En+1 assignment: with key AA* and value En+1
| E1 ; E2 sequence: evaluates E1, then E2

AA ::= Actual-Argument
E undirected: applicabile if inherits from specializer

| E @CN* directed: applicable if also a CNi inherits from specializer

Figure 2-1: Abstract syntax of BeCecil (minus typing aspects). As usual, an asterisk (*) de-
notes zero or more repetitions of the preceding nonterminal. In concrete examples we freely
use parentheses as well as separators such as commas between repeated phrases.

5

BeCecil Chambers & Leavens

shared objects) that is, roughly, a superset of theλ&-calculus [Ghelli 91, Castagnaet al. 92, Castagnaet al.
95].

2.2 Brief Overview

As a start towards understanding the semantics of BeCecil, we show how to program some standard OO
mechanisms in BeCecil, and then describe how to program some other basic mechanisms.

2.2.1 How to Program Standard OO Mechanisms in BeCecil

An object in BeCecil can be created only by an object declaration. Objects in a program can act as classes
or instances in other OO languages. Each object has a unique identity. For example, the following could be
used to declare a classPoint_rep . (We use the suffix_rep , which stands for “representation,” to
distinguish classes from types in examples.)

object Point_rep

An object may be declared to inherit from some other object by an inheritance declaration. One can use
more than one inheritance declaration with the same object named on the left-hand side to achieve multiple
inheritance. For example the following declares thatPoint_rep inherits from an object namedany , and
declares another object,CP_rep (for colored points), that inherits fromPoint_rep and an object named
Color_rep . The object namedany is used in our examples as an object from which (almost) all objects
inherit.

Point_rep inherits any
object CP_rep
CP_rep inherits Point_rep
CP_rep inherits Color_rep

We chose to make BeCecil simpler by not distinguishing the inheritance and “instance-of” relationships. In
this respect BeCecil resembles prototype-based languages [Ungar & Smith 87, Chambers92, Chambers 95,
Blascheck 94, Abadi & Cardelli 96]. Since an instance of a class is just an object that inherits from the class,
instances of classes are created just like subclasses. For example, one could declare an instance,myPoint ,
of Point_rep as follows.

object myPoint
myPoint inherits Point_rep

Objects in BeCecil can also act as generic functions. A generic function in BeCecil is, roughly, a collection
of multimethods, as in CLOS [Steele 90, Paepcke 93], Cecil, or Dylan [Shalit 97, Feinberget al. 97].
(Unlike CLOS or Dylan, however, the methods in a BeCecil generic function need not all take the same
number of arguments.) For example to declare the generic functionequal , one would write the following.
In our examples, generic functions inherit from an object namedGenericFun_rep (which itself inherits
from any).

object equal
equal inherits GenericFun_rep

Assuming that the generic functionsx andy are implemented for points, the following extension (has)
declaration can be used to extend the generic functionequal with a method specialized for two
Point_rep arguments.

equal has method(p1@Point_rep, p2@Point_rep) {
and(equal(x(p1), x(p2)), equal(y(p1), y(p2)))

}

An extension declaration is similar to amethod declaration in Cecil, and todefmethod in CLOS. The
formals have the formI@CN, whereI is the name of the formal andCN is the name of the formal’s

6

BeCecil Chambers & Leavens

specializer object. Note that there is a formal for each argument, unlike single-dispatch languages, such as
Smalltalk [Goldberg & Robson 83] or C++ [Stroustrup 91], where there is a distinguished “receiver”
(written self or this) that is not mentioned in the list of formals. The body of the method is written
between the curly braces. Method bodies in general contain a block, which consists of a recursive
declaration sequence and an expression, which is evaluated and its value returned as the result of the
method. In the case of the aboveequal method, the block that forms the body has no declarations, but only
an expression, which is evaluated when the method is called, and its value returned.

The expression in the body of the above method calls the generic functionequal twice, but each time with
integer arguments (the twox andy coordinates of the points); thus these calls toequal invoke other
methods of the same generic function. Dispatch to methods is dynamic, and based on the ancestry of all the
actual argument objects. A method isapplicable to a tuple of actuals if each actual inherits from the
corresponding specializer. When a generic function is invoked, the generic function must have a unique,
most-specific method that is applicable to the actuals; that method is then called. For example, the method
above is applicable to two arguments that both inherit fromPoint_rep , because the specializers of the
method are bothPoint_rep .

Instance variables of an object are modeled bystorage tables. A storage table can be thought of as a table,
or relation, that associateskeys to values. Keys consist of a tuple of object identities, and a value is a single
object. In BeCecil, a generic function can contain both storage tables and methods; reading a storage table
looks like applying a generic function. In such an application, the key is formed from the identities of the
arguments of the invocation. If no value is currently stored for the given key, the table’sdefault value is
returned. For example, consider the following declarations. These declare two objects that act as instance
variables,x andy. Each instance variable is modeled by a generic function with a storage table attribute.
Each storage table declared can be thought of as an association between points and integers (objects that
inherit fromPoint_rep and objects that inherit fromint_rep). The identities of points are the keys to
these tables, and the associated integers are the values. The expression following:= in each storage table
declaration,0 in this example, is the default value.

object x
x inherits GenericFun_rep
x has storage(p@Point_rep) := 0
object y
y inherits GenericFun_rep
y has storage(p@Point_rep) := 0

SincemyPoint inherits fromPoint_rep , all methods and storage tables that have formal arguments that
are specialized onPoint_rep are applicable tomyPoint . For example, the expressionx(myPoint)
returns thex coordinate formyPoint , which at this point is the default value 0.

Storage tables can be modified using an assignment expression; in an assignment, the arguments to the left
of the:= form the key, and the expression to the right of the:= gives the value to be associated with that
key. Thus one can set thex coordinate ofmyPoint to 3 by using the following assignment expression.

x(myPoint) := 3

BeCecil also has acceptors, which are like methods that can process an assignment. Having acceptors allows
any storage table to be replaced by an acceptor and a method, and also permits the equivalent of “write-
only” fields. When used in an assignment, the key is bound to the formals, and the value to the right of the
:= is bound to the identifier that follows the:= in the acceptors declaration. For example, the following
declares a generic function,xy , with an acceptor that assigns the value given to both thex andy coordinates
of the point that forms the key.

7

BeCecil Chambers & Leavens

object xy
xy inherits GenericFun_rep
xy has acceptor(p@Point_rep) := v {

x(p) := v;
y(p) := v

}

Thus, the following expression would return 28.
xy(myPoint) := 14;
plus(x(myPoint), y(myPoint))

Dispatch in assignments is also dynamic, but only considers the specializers of the generic function’s
acceptors and storage tables. A generic function’s methods are not considered when dispatching an
assignment. Similarly, when dispatching an application, only the applicability of its methods and storage
tables matters.

The pattern of object creation and initialization can be easily encapsulated in a generic function, which
allows one to create new objects dynamically. In BeCecil, it is often convenient to program both an
initializer (as in Modula-3 [Harbison 92, Nelson 91]; these are called constructors in C++) and a separate
primitive constructor (similar to a class method in Smalltalk), so that the initializer can be inherited.

object initialize
initialize inherits GenericFun_rep
initialize has method(p@Point_rep, i@int_rep, j@int_rep) {

x(p) := i;
y(p) := j;
p

}
object mkPoint
mkPoint inherits GenericFun_rep
mkPoint has method(x@int_rep, y@int_rep) {

object res
res inherits Point_rep
initialize(res, x, y)

}

Note that, because the declaration ofres in mkPoint is inside a nested recursive declaration sequence
(the declarations of the block that forms the body of that method), it creates a new object each time that
method is called. Thus block structure allows one to create objects dynamically, even though objects are
only created by object declarations.

To achieve information hiding, we chose to add just the capability to hide a recursive declaration sequence,
as this gives one the ability to hide generic functions. This capability is found in BeCecil’s hide declaration.
A hide declaration is similar to alocal declaration in Standard ML [Milneret al. 90] in that the
declarations in its recursive declaration sequence are only visible in the declaration sequence that follows
the keywordin . (However, unlike Standard ML, the declarations are all mutually recursive by default.) As
an example, consider the implementation of a gray-scale model of colors, in which the interface presented
to clients allows them to create a color based on gray intensities given as floating-point numbers between
0.0 and 1.0, but for which the hardware uses intensities specified by integers between 0 and 255. Since the
hardware may change, and since we wish to enforce the invariant that every instance has all its intensities
given by integers between 0 and 255, we hide the storage table for instances of this class. Notice how the
code, given below, resembles, say, a C++ class declaration, with a private part that comes before the public
part. (Comments start with two hyphens, and continue to the end of that line, as in Ada [Ada 83] and Cecil.

8

BeCecil Chambers & Leavens

We assume that declarations for generic functionsintensity andpaint , several generic functions to
manipulate integers and floating point numbers, and a classRegion_rep are given elsewhere.)

object Grayscale_rep
Grayscale_rep inherits Color_rep
hide

-- private declarations
object scale
scale inherits GenericFun_rep
scale has storage(c@Grayscale_rep) := 0

in
-- public declarations
initialize has method(c@Grayscale_rep, intensity@float_rep) {

scale(c) := truncate(multiply(min(max(0.0, intensity), 1.0), 255.0));
c

}
intensity has method(c@Grayscale_rep) {

divide(mkFloat(scale(c)), 255.0)
}
paint has method(c@Grayscale_rep, r@Region_rep) { ... }

end
intensity has acceptor(c@Grayscale_rep) := f {

initialize(c, f)
}

It is worth thinking about how the above code maintains the invariant that, for every objecto that inherits
from Grayscale_rep , the value ofscale (o) is between 0 and 255. In stating this invariant, by
scale (o), we mean the result of the generic functionscale defined in the hidden declarations. (Clients
may define their own generic functionscale , with a method specialized onGrayscale_rep , but
because of static scoping, the generic functionscale referred to within the hide declaration is always the
one defined in the private part of the hide declaration.) The storage tablescale has a default value of 0,
which satisfies the invariant. The only way that the storage table can associate the identity ofo with some
other value is by the use of theinitialize method, because no other method in the hide declaration
assigns to that storage table, no method within the hide declaration returns thescale generic function, and
no code outside the hide declaration can access thescale generic function. Sinceinitialize preserves
the invariant, the invariant always holds.

Notice that the argument for the preservation of the invariant given above does not depend ono being
created by a special generic function, such asmkGrayscale given below. The generic function
mkGrayscale is something that any client can write, as it is written outside of the hide declaration.

object mkGrayscale
mkGrayscale inherits GenericFun_rep
mkGrayscale has method(intensity@float_rep) {

object res
res inherits Grayscale_rep
initialize(res, intensity)

}

However, a client can, outside the hide declaration, write a declaration of a subclass that does not have the
implicit behavioral properties of an instance ofGrayscale_rep that was created bymkGrayscale .
This can be done by overriding all the public methods and specializing them on the new subclass. The
prevention of such imposters is discussed in Section 2.6 below.

9

BeCecil Chambers & Leavens

2.2.2 Multimethods and Inheritance of Methods

Because BeCecil uses multiple-dispatch instead of single-dispatch, there is no trouble in programming
binary methods [Bruceet al. 95] such asequal , as we have seen above. Moreover, the interaction of
multimethods and inheritance is powerful, and avoids the need to write an exponential number of methods
to deal with all the cases [Chambers 92, Castagna 95].

To invoke an overridden method inherited from a superclass in BeCecil, one can use the directed form of
actual arguments. In this form, one writes an expression followed by an at-sign (@), and a list of class names.
The method selected must be such that both the object that is the value of the expression and at least one of
the named classes inherit from the corresponding formal parameter’s specializer. For example, the
following is how one would write a class of gray-scale points,GrayPoint_rep , as a subclass of
Point_rep andGrayscale_rep . Notice how theequal and initialize methods use directed
actual arguments to call the methods specialized onPoint_rep andGrayscale_rep as part of their
work. This is similar to the use ofsuper in Smalltalk, orPoint_rep:: andGrayscale_rep:: in
C++.

object GrayPoint_rep -- grayscale points
GrayPoint_rep inherits Point_rep
GrayPoint_rep inherits Grayscale_rep
initalize has method(gsp@GrayPoint_rep, i@int_rep, j@int_rep,

intensity@float_rep) {
initialize(gsp@Grayscale_rep, intensity); -- calls initialize for Grayscale_rep
initialize(gsp@Point_rep, i, j); -- calls initialize for Point_rep
gsp

}
object mkGSP
mkGSP inherits GenericFun_rep
mkGSP has method(i@int_rep, j@int_rep, intensity@float_rep) {

object res
res inherits GrayPoint_rep
initalize(res, i, j, intensity)

}
equal has method(gsp1@GrayPoint_rep, gsp2@GrayPoint_rep) {

and(equal(intensity(gsp1), intensity(gsp2)),
equal(gsp1@Point_rep, gsp2@Point_rep)) -- calls equal for Point_rep

}

2.2.3 Programming Variables

Storage tables can also be used to program variables in BeCecil. The only trick is to use a tuple of zero
arguments for the key. The table then associates the zero-tuple to some object, which can be changed by an
assignment expression. For example, the following block returns 227.

object my_var
my_var has storage() := 0
my_var() := 226;
plus(my_var(), 1)

2.2.4 Programming First-Class Procedures

Because generic functions are objects, they can be used as first-class procedures. For example, consider the
following generic function that can act as a while-loop. This generic functionwhile has a method that
takes two generic function arguments: a condition (c), and a statement (s). These generic functions are
expected to have zero-argument methods (thunks) that can be invoked to perform parts of the loop. The
implementation of the method below relies on another higher-order generic function,ifTrue , which takes

10

BeCecil Chambers & Leavens

a boolean and a generic function as its arguments, and only calls the generic function with zero arguments
if the boolean is true. The generic function,loop , passed as the second argument toifTrue is declared
inside the method forwhile . The usual static closures are made for methods, and thusc ands within
loop refer to the actual arguments passed towhile .

object while
while inherits GenericFun_rep
while has method(c@GenericFun_rep, s@GenericFun_rep) {

object loop
loop inherits GenericFun_rep
loop has method() {s(); while(c, s)}
ifTrue(c(), loop)

}

2.3 Some Useful Sugars

As can be seen from the above examples, BeCecil is a bit tedious to program in, because it is a core
language. So it is helpful to define a few syntactic sugars to make the programming of more interesting
examples easier to write and to read. These sugars also give one some idea of the expressive power of
BeCecil, and can be used to compare BeCecil to other core OO languages, such as the Abadi and Cardelli
calculus [Abadi & Cardelli 95] or Castagna’sλ_object [Castagna 95b].

In the sugars below, we writeX to indicate the desugaring of a phraseX. (It should be understood that if

X is a BeCecil phrase, thenX is just X with its subphrases recursively desugared.) We first discuss
declaration sugars, then formal argument and expression sugars.

2.3.5 Declaration Sugars

The declaration sugars in this section generally produce a sequence of declarations, which are to be inserted
at the point where the sugar occurs. That is, the desugaring does not produce a nested declaration sequence,
but simply several declarations at the same level as the sugar appears. For example, consider the following
sugared declarations.

object o1
o1 inherits y, z, any
object q

The middle declaration above is a sugared declaration form. The desugaring rule for it is the following.

CN0 inherits CN1,...,CNn ≡
CN0 inherits CN1

...
CN0 inherits CNn

Therefore the desugaring of the above example produces the following sequence of declarations.
object o1
o1 inherits y
o1 inherits z
o1 inherits any
object q

Like the first desugaring rule given above, the following declaration sugar also allows one to more
succinctly declare direct inheritance relationships.

object I inherits CN1,...,CNn ≡
object I
I inherits CN1,...,CNn

11

BeCecil Chambers & Leavens

In practical examples, it is convenient to have ways to declare objects that are to be used as generic
functions. Hence the following sugars.

gf I ≡
object I inherits GenericFun_rep

The following sugar allows one to declare a function with a single method more easily.

fun I(F*) {B} ≡
gf I
I has method(F*) {B}

The following sugars allows one to conveniently declare objects that are to be used as variables and as fields
(instance variables). A variable is modeled by a generic function with a zero-argument storage table. A field
is modeled by a generic function with a one-argument storage table. The argument of such a storage table
is the “record,” and the value of that record’s field is returned or updated by invoking or assigning to the
storage table.

var I := E ≡
gf I
I has storage() := E

field I of CN := E ≡
gf I
I has storage(x@CN) := E, wherex is a fresh identifier.

2.3.6 Formal Argument Sugar

If the objectany is used as a class from which (almost) all others inherit, as in Cecil and our examples, then
a formal parameter specialized onany is effectively not specialized at all. Thus the following sugar for
formal arguments allows one to omit the specializer if it isany .

I ≡
I @ any

2.3.7 Expression Sugars

For real programming, it is quite convenient to be able to use blocks as expressions. Such a sugar makes it
easy to have further sugars that made anonymous concrete objects with a given generic function value (like
lambda in Scheme [Clinger & Rees 91]), various flavors oflet -expressions, and even Smalltalk-like
thunks, as we shall see. However, unlike the sugars described above, the sugar for block expressions, of the
form { B } , is not a local expression sugar, as it involves adding new declarations to the block or declaration
list in which the block expression appears. Because such a sugar is somewhat complex to explain, we do
not describe it formally, but instead give an example to clarify how this could be done. Consider the
following.

... -- some declarations
plus({var x := 3

times(x(),x())},
{var y := 4

fun f(z@int_rep) {y() := plus(y(),5); y()}
f(y())
}

)

12

BeCecil Chambers & Leavens

This would desugar as follows, by adding a new method (named by a fresh identifier) for each nested block,
and a call to that method in the place where the nested block occurred in the original expression.

... -- some declarations
fun block1() {

var x := 3
times(x(),x())

}
fun block2() {

var y := 4
fun f(z@int_rep) { y() := plus(y(),5); y() }
f(y())

}
plus(block1(), block2())

By iterating this process one can eliminate all such block expressions and still preserve scoping. Using this,
it is even possible to regard sequence expressions as a syntactic sugar [Abadi & Cardelli 95]. However,
because these are not local sugars (they do not operate on expressions in place), we have chosen to include
sequence expressions directly in the syntax of BeCecil. In some sense, it would be simpler to add block
expressions as a primitive to BeCecil, enabling all of these other sugars, but that complicates the proof of
type soundness by making the syntax of expressions and blocks (and hence declarations) mutually
recursive. The present desugared syntax does not allow blocks within expressions, and thus somewhat
simplifies the proof. In what follows, we regard block expressions, of the form{ B } , as syntactic sugars.

Assuming the sugar for blocks, the first local expression sugar is the following, which creates an “instance”
of a class namedCN.

new CN ≡
{ object I inherits CN

I
}, whereI is a fresh identifier (not free inCN).

One can use the following expression sugar to make anonymous concrete objects with a given generic
function attribute (likelambda in Scheme).

anon GF ≡
{ object I inherits GenericFun_rep

I has GF
I

}, whereI is a fresh identifier.

With anonymous generic functions, one can desugar simultaneous and sequential eagerly-evaluatedlet-
expressions. (These work for all objects that inherit fromany .)

let I1 = E1, ..., In = En in E0 ≡
(anon method(I1,...,In){E0}) (E1,...,En)

let I1 = E1; ...; In = En in E0 ≡
let I1 = E1 in ... let In = En in E0

For writing control structures, it is helpful to have a sugar for making parameterless procedures (thunks).
We adapt part of the syntax for Smalltalk “blocks” for this.

[B] ≡
anon method() { B }

13

BeCecil Chambers & Leavens

2.4 Some Small Examples

In this section we show some small examples of datatypes programmed in BeCecil.

2.4.8 The Untyped Standard Prelude

To make the examples more interesting, the following are assumed as the prelude for example programs
throughout this section, and throughout Appendix A and Appendix B. The declarations in this “untyped
standard prelude” include that of an objectnothing , which can also act as a generic function with no
arguments. This object is used as the return value for procedures that do not wish to return anything. We use
the trick of making this a generic function, so that it can be passed to higher-order functions, such asif .
The standard prelude also declares some objects to be used as ancestors, and integer and floating point
literals, such as 1, 2, 3, and 4.7. In various examples we will also assume some generic functions with
methods that operate on numbers, such asplus , less , leq , etc.

-- the “untyped standard prelude”
object nothing -- used for methods that do not want to return anything
nothing has method() { nothing }

object any inherits nothing -- superclass of all other classes
object GenericFun_rep inherits any

object number_rep inherits any
object int_rep inherits number_rep
object float_rep inherits number_rep
object 1 inherits int_rep -- numeric literals are considered to be identifiers
object 2 inherits int_rep
object 3 inherits int_rep

...
object 4.7 inherits float_rep

...

2.4.9 Boolean

The Booleans can be coded much as in Smalltalk [Goldberg & Robson 83]. In coding this example we adopt
the position of only hiding storage tables for objects. Thus one cannot guarantee that there are only two
Boolean objects in a program, but allowing all classes to be subclassed is standard for OO languages; for
example in Smalltalk one can make new subclasses of Boolean. (On the other hand, Java [Goslinget al. 96]
and Dylan have mechanisms that can prevent subclassing.) This point of view has the advantage of allowing
clients to specialize ontrue andfalse . Havingtrue andfalse also be thunks that return themselves
is useful when one does not need short-circuit evaluation; see theequal method forinterval_rep in
Section 2.4.14.

object boolean_rep inherits any
gf if -- implemented by subclasses
gf not -- also implemented by subclasses
gf equal -- implemented below
fun ifTrue(b@boolean_rep, c@GenericFun_rep) { if(b, c, nothing) }
fun and(b@boolean_rep, c@GenericFun_rep) { if(b, c, false) }
fun or(b@boolean_rep, c@GenericFun_rep) { if(b, true, c) }
object true inherits boolean_rep
true has method() { true } -- useful when a thunk that returns true is desired
if has method(b@true, c@GenericFun_rep, ignored@GenericFun_rep) { c() }
not has method(b@true) { false }
object false inherits boolean_rep

14

BeCecil Chambers & Leavens

false has method() { false } -- useful when a thunk that returns false is desired
if has method(b@false, ignored@GenericFun_rep, a@GenericFun_rep) { a() }
not has method(b@false) { true }
equal has method(x@boolean_rep, y@boolean_rep) { false }
equal has method(x@true, y@true) { true }
equal has method(x@false, y@false) { true }

2.4.10 collection

The following is an abstract class for collections. It gives an implementation oflength that can be
inherited by concrete objects that implementdo .

object collection_rep inherits any
gf isEmpty -- to be implemented by subclasses
gf do -- to be implemented by subclasses
fun length(c@collection_rep) {

var res := 0
do(c, anon method(x) {res() := plus(res(), 1); nothing});
res()

}

2.4.11 list

The following, and the next several examples below, give an implementation of lists,a la Cook [Cook 90].
That is, we use two abstract classes,list_rep andnonempty_rep , a concrete object,nil , and a
concrete classcons_rep . The abstract classlist_rep defines the protocol for accessing the elements
of a list, and gives a general implementation ofdo that can be inherited by concrete objects.

object list_rep inherits collection_rep
gf head -- to be implemented by subclasses
gf tail -- to be implemented by subclasses
do has method(c@list_rep, b@GenericFun_rep) {

if(isEmpty(c), nothing, [b(head(c)); do(tail(c), b)])
}

2.4.12 nil

Since BeCecil does not distinguish between classes and objects, the empty list can be implemented directly
as a concrete object that inherits fromlist_rep .

object nil inherits list_rep
isEmpty has method(n@nil) { true }
tail has method(n@nil) { nil } -- or one could use the trick below...
head has method(n@nil) { head(n) } -- loop forever!

2.4.13 nonempty lists and cons

The following gives the code fornonempty_rep andcons_rep . We use two classes so that one can
inherit theisEmpty method fromnonempty_rep more easily (in other nonempty list representations
that do not want to inherit fromcons_rep). The “fields” ofcons_rep are hidden. The hiding of the
fields makescons_rep like a class with private instance variables, with private meaning the same as in
C++. (It is unclear how to support something like the “protected” notion of C++.) The object
default_list_elem is used for the default value of list elements. We use an initialization method to
allow subclasses ofcons_rep to initialize the hidden fields.

object nonempty_rep inherits list_rep
isEmpty has method(l@nonempty_rep) { false }

15

BeCecil Chambers & Leavens

object default_list_elem inherits any

object cons_rep inherits nonempty_rep
gf initialize -- generic initialization function
hide

field hd of cons_rep := default_list_elem
field tl of cons_rep := nil

in
initialize has method(c@cons_rep, x, l@list_rep) {

hd(c) := x;
tl(c) := l;
c

}
tail has method(l@cons_rep) { tl(l) }
head has method(l@cons_rep) { hd(l) }
tail has acceptor(l@cons_rep) := new_tail { tl(l) := new_tail }
head has acceptor(l@cons_rep) := new_head { hd(l) := new_head }

end
fun cons(x, l@list_rep) { initialize(new cons_rep, x, l) }

The implementation of theequal generic function for lists is broken into three cases, using multimethod
dispatch.

equal has method(x@list_rep, y@list_rep) { false }
equal has method(x@nil, y@nil) { true }
equal has method(x@nonempty_rep, y@nonempty_rep) {

and(equal(hd(x), hd(y)), [equal(tl(x), tl(y))])
}

2.4.14 interval

The ability to add new implementations of a type without changing existing code is a hallmark of OO
programming. Cook considered another example to show this, namely adding intervals of integers as
another subclass ofnonempty_rep . Notice how in our example below, theequal method is specialized
to take advantage of knowledge of the representations when both lists are intervals, which results in a faster
method than the default for nonempty lists given above. Another thing to notice about this example is the
programming of theassign andclone methods; these are used in the next example below. Finally, notice
that the coding of initialize maintains the invariant for all objects,o, that inherit frominterval_rep ,
lower (o) ≤ upper (o).

object interval_rep inherits nonempty_rep
hide

field lower of interval_rep := 0
field upper of interval_rep := 0

in
initialize has method(i@interval_rep, lb@int_rep, ub@int_rep) {

lower(i) := min(lb, ub);
upper(i) := max(lb, ub);
i

}
gf assign -- like C++ assignment operator
assign has method(l@interval_rep, r@interval_rep) {

lower(l) := lower(r);
upper(l) := upper(r);
l

}
tail has method(l@interval_rep) {

16

BeCecil Chambers & Leavens

let lower_plus_1 = plus(lower(l), 1)
in if(greater(lower_plus_1, upper(l)),

[nil],
[var res := clone(l)
 lower(res()) := lower_plus_1;
 res()
]);

}
head has method(l@interval_rep) { lower(l) }
equal has method(x@interval_rep, y@interval_rep) {

and(equal(lower(x), lower(y)), equal(upper(x), upper(y)))
}

end
fun mkInterval(lb@int_rep, ub@int_rep) {

initialize(new interval_rep, lb, ub)
}
gf clone
clone has method(r@interval_rep) { assign(new interval_rep, r) }

2.4.15 gray_interval

The following example, which builds on theinterval andGrayscale_rep examples above, shows
how to use directed actuals to inherit methods. Directed actuals are used all the methods except
mkGrayInterval and clone . The directed actuals prevent recursion, much assuper would in
Smalltalk, orinterval_rep::equal would in C++. By overridingassign andclone , thetail
method is inherited without further rewriting.

object gray_interval_rep inherits interval_rep, Grayscale_rep
initialize has method(gi@gray_interval_rep, lb@int_rep, ub@int_rep,

 intensity@float_rep) {
initialize(gi@Grayscale_rep, intensity);
initialize(gi@interval_rep, lb, ub)

}
assign has method(l@gray_interval_rep, r@gray_interval_rep) {

initialize(l@Grayscale_rep, intensity(r));
assign(l@interval_rep, r@interval_rep)

}
fun mkGrayInterval(lb@int_rep, ub@int_rep, intensity@float_rep) {

initialize(new gray_interval_rep, lb, ub, intensity)
}
clone has method(gi@gray_interval_rep) {

assign(new gray_interval_rep, gi)
}
equal has method(x@gray_interval_rep, y@gray_interval_rep) {

and(equal(intensity(x), intensity(y)),
equal(x@interval_rep, y@interval_rep))

}

2.4.16 array1

The following example shows how a storage table with two arguments can be used as a one-dimensional
array. The classarray1_rep implements one-dimensional arrays of floats. The functionwhile used in
this example was described in Section 2.2.4. Notice that the use of both an acceptor and a method for the
generic function sub allows one to use a pleasing notation for array subscripting, while still allowing bounds
checking. For example, one can write:sub(myArray,3):=47.0 .

object array1_rep inherits collection_rep

17

BeCecil Chambers & Leavens

hide
object a_stor inherits any
a_stor has storage(a@array1_rep, i@int_rep) := 0.0
field max_i of array1_rep := 9

in
initialize has method(a@array1_rep, n@int_rep) {

max_i(a) := n;
do(a, anon method(i){a_stor(a,i) := 0.0});
a

}
isEmpty has method(a@array1_rep) {less(max_i(a), 0)}
do has method(a@array1_rep, b@GenericFun_rep) {

foreach(a, anon method(i){b(a_stor(a,i))})
}
fun foreach(a@array1_rep, b@GenericFun_rep) {

var i := 0
while([leq(i,max_i)], [b(i); i() := plus(i(), 1)])

}
gf sub -- short for “subscript”
sub has method(a@array1_rep, i@int_rep) {

ifTrue(and(leq(0,i), [leq(i, max_i(a))]),
 [a_stor(a, i)])

}
sub has acceptor(a@array1_rep, i@int_rep) := e {

ifTrue(and(leq(0,i), [leq(i, max_i(a))]),
 [a_stor(a, i) := e; a])

}
end
fun mkArray(n@int_rep) { initialize(new array1_rep, n) }

2.5 Block Structure, Extensions, and Customization in Nested Scopes

BeCecil is designed to enable objects to be extensible. In this section we discuss how methods and
inheritance relationships can be extended, and how these extensions are effected by nested scoping. We also
describe how, in a nested recursive declaration sequence, one can customize that recursive declaration
sequence’s view of generic functions.

The concept of “scope” is a bit tricky with hide declarations in BeCecil, hence we avoid that term except
when making general statements about “nested scopes”. There are two more precise concepts that we use
instead. The first is the usual notion of thevisibility of a declaration; this is the area of the program text in
which the declaration has effect. We also speak of area of visibility of a name, meaning the area in which
the declaration that introduced the name is visible. The second is the concept of ancontour of an object
declaration; this is the area of the program text in which one may use extension (has) declarations that add
methods or storage tables to the object’s generic function value. We abuse terminology and refer to the
contour of a name, meaning the contour of the name’s object declaration. Contours correspond to recursive
declaration sequences in the syntax, because only within the recursive declaration sequence where an object
is declared can it be extended.

The reason that an object can only be extended within the recursive declaration sequence in which it is
declared is that otherwise an object might be extended in two different ways in different nested contours.
Since the hidden declarations of a hide declaration form a recursive declaration sequence, this means that
privacy is based on generic functions, not individual methods, in BeCecil. That is, one cannot extend the

18

BeCecil Chambers & Leavens

same generic function in both parts of a hide declaration. In this respect, BeCecil follows CLOS and Dylan,
which also base privacy on generic functions.

As an example and further explanation of these concepts, consider Figure 2-2. In this figure there are two
hide declarations within an outer recursive declaration sequence. The visibility of hidden declarations in a
hide is not surprising. For example,hidden_2 is visible within the entire hide declaration in which it is
declared, including the public (non-hidden) part. The public declarations of a hide declaration are visible
within all of the surrounding recursive declaration sequence. Thus, a declaration need only be put in the
public part of a hide declaration if it needs to see the hidden declarations. To simplify things a bit, neither
set of declarations in a hide declaration may shadow the other. Since recursive declaration sequences allow
mutual recursion,public_1 is visible within the outermost recursive declaration sequence; for example,
it is visible where the declaration of objectx resides. Since in this example no names are redeclared, there
are no holes in the visibility of any of the declarations in Figure 2-2.

In Figure 2-2, one can extendhidden_2 only within the recursive declaration sequence in which it is
declared. The contour of this recursive declaration sequence is the small box () that surrounds its
declaration. Althoughhidden_2 is visible in the public part of that hide declaration, it cannot be extended
there, because that is not part of the same recursive declaration sequence. The block that forms the body of
the method forx at the bottom of the outermost hide declaration in the figure () also is not part of the
recursive declaration sequence in whichx is declared, and thusx cannot be extended there.

However, BeCecil does provide mechanisms, based on theλ&-calculus, for customizing generic functions
within a nested contour. The identifier and combination generic function attributes allow one to use the
generic function value of another object (perhaps declared in a surrounding contour), when customizing a
nested contour’s view of a generic function. For example, suppose one wants to debug theequal method
by calling it with several different inputs, and that one wants to print a message before and after it is called
with arguments that inherit frominterval_rep . Then one could write the following, which defines a

Figure 2-2: Illustration of the contours and areas of visibility of some declarations.

area of visibility ofhidden_2

area of visibility ofhidden_1 ,

area of visibility ofx , public_1 , y

hidden_1_also

contour ofhidden_2

contour ofhidden_1 ,

hidden_1_also

contour ofx , public_1 , y

object x
hide

object hidden_1
hidden_1 inherits x
hidden_1 inherits y
hide

object hidden_2
hidden_2 inherits hidden_1

in
object public_2
public_2 inherits hidden_2

end
object hidden_1_also
hidden_1_also inherits public_2

in
object public_1
public_1 inherits hidden_1
public_1 inherits public_2
public_1 inherits y

x has method() {...}
end
object y

public_2 ,

public_2 ,

19

BeCecil Chambers & Leavens

generic functionequal2 , which has all the methods ofequal , except that the method specialized on two
interval_rep arguments is replaced by the debugging version. (Note that recursive calls from within
the methods ofequal are not sent toequal2 , and would not be even if the name wereequal , because
with static scoping the nameequal in such methods refers to the generic function defined in the outer
contour.)

fun debug_equal() {
gf equal2
equal2 has equal & method(l1@interval_rep, l2@interval_rep) {

print(“calling equal with args ”, l1, l2);
var res := equal(l1, l2);
print(“the call returned ”, res());
res();

}
... equal2(...) ...

}

The block structure of BeCecil also effects inheritance. As as start towards explaining this interaction, it is
important to first look at the effect of an inheritance declaration, disregarding block structure for the
moment. The only dynamic effect of an inheritance declaration is on the applicability and relative specificity
of methods, storage tables, and acceptors for objects that can see it. To ease this kind of discussion, let us
call something that is either a method, storage table, or acceptor acase. Specificity of cases is based on the
pointwise extension of an inheritance relation to the specializers of cases. That is, a casec1 is as specific as
c2 if they have the same number of formals, and if the specializers ofc1 each inherit (directly or indirectly)
from the corresponding specializer ofc2. We say thatc1 overrides c2, orc1 is more specific than c2, if c1 is
as specific asc2 but their specializers are different. Let us also call a case that is either a method or a storage
table aninvocable. Recall that, among a generic function’s invocables, the most specific one that is
applicable to the actual arguments is used. For example, in the following block, the last method is called,
because it is more specific than the others.

equal has method(n1@number_rep, n2@int_rep) {...}
equal has method(n1@int_rep, n2@number_rep) {...}
equal has method(n1@int_rep, n2@int_rep) {...} -- this one is called
equal(7,7)

A generic function must use some inheritance relation to decide the applicability and specificity of its cases.
What inheritance relation should it use? If a programming language only allows inheritance relations to be
defined at the top-level, then there is no problem, but in BeCecil, objects and their inheritance relations may
be defined in several places. We investigated several alternatives (see Section B.8 for a discussion of them),
but to reason statically about a program, and in particular to permit static type checking, the inheritance
relation used cannot vary dynamically. Thus the inheritance relation used is the one that is defined in the
recursive declaration sequence (and surrounding contours) where the generic function is defined. For this
reason, each object contains the this inheritance relation.

The inheritance relation recorded within an object also serves another purpose, in that it defines the object’s
ancestry. The problem solved by this is that dynamically created objects do not appear in the inheritance
relations of generic functions that are not declared in recursive declaration sequences where the object’s
declaration is visible. For example, consider the following code. The inheritance relation that is recorded in
the objectpush says thatStack_rep inherits fromany , but says nothing about objects created within
the body off . Of course, it cannot, since the body off is a nested contour. But then how is the call topush
in the body off supposed to work? It would seem that the newly created object does not, according to the
inheritance relation recorded forpush , inherit fromStack_rep . This is true, but the objectmyStack

20

BeCecil Chambers & Leavens

does know that it inherits fromStack_rep (and fromany). So the application works if some ancestor of
myStack is known to beStack_rep .

object Stack_rep inherits any
gf push
push has method(s@Stack_rep, j@int_rep) {...}
fun f() {

object myStack inherits Stack_rep
push(myStack, 27)

}
f()

Now consider a variation on the above example where the generic function and one of the arguments come
from different contours. In the following, the inheritance relationship betweenStack_rep and
collection_rep is only known within the functionnested . Insidenested , the generic function
size is declared and assigned to the variableg. The generic functionsize has an inheritance relation that
knows thatStack_rep inherits fromcollection_rep . The variablex is assigned an object that
inherits fromStack_rep , but which does not havecollection_rep as an ancestor. The application
at the end works, however, because the object stored inx has an ancestor that is known to inherit from the
specializer of the generic function stored ing (according to its inheritance relation).

object collection_rep inherits any
object Stack_rep inherits any
var g := anon method(x@collection_rep) {...}
var x := new Stack_rep
fun nested() {

Stack_rep inherits collection_rep
gf size
size has method(s@collection_rep) {...}
g() := size

}
fun nested_also() { x() := new Stack_rep }
nested();
nested_also();
g()(x()) -- works

So the general rule is that a case is applicable at some formal argument position if some ancestor of the
actual argument is known to inherit from the formal’s specializer, according to the inheritance relation
recorded in the generic function. This is sensible, because it allows one to understand a generic function
(like size in the above example) in the context in which it was declared. It then behaves as it was
understood no matter where it is used. In this sense the semantics for inheritance is static.

2.6 Procedural and ADT Patterns

In BeCecil, one can program not only OO patterns, but also procedural and ADT patterns. Consider first
argument dispatch. BeCecil has dynamic multiple dispatch as its basic application mechanism; that is, the
particular invocable in a generic function that is called is based on the run-time ancestry of all the actual
arguments. However, if one has an object, such as BeCecil’sany , that is the ancestor of (almost) all others,
then by specializing onany , one is effectively not specializing on that argument position. Thus in BeCecil,
one can program as in a single-dispatch language by always specializing on just the first argument of a case,
or one can program in a procedural style by never specializing on any arguments. The following are thus
examples in singly-dispatched OO and procedural styles (respectively).

single_oo_method has method(first@myClass, snd@any, thd@any) {...}
proc_method has method(first@any, second@any, thd@any) {...}

21

BeCecil Chambers & Leavens

As Cook points out [Cook 90], one characteristic of ADT languages, such as Ada 83 [Ada 83], CLU [Liskov
et al. 81], or Standard ML, is that they completely control the implementation of a particular type of object.
That is, they are able to guarantee behavioral properties of objects of a given type, because they control the
ability to create and modify objects of that type. However, usually objects in such languages are not
extensible (i.e., there is no concept of inheritance). The information hiding used in our previous (OO)
examples always involved hiding generic functions (especially for storage tables). This allows one to
change data structures at will, and also to enforce representation invariants. It thus gives information hiding,
but does not prevent impersonation [Morris 73], since a client can always create a subclass of a given class
and override all the methods that it would otherwise inherit. To see this, consider the following code, which
declares an object that inherits fromGrayscale_rep (of Section 2.2.1). If the specifications of the
methodsinitialize , intensity , andpaint include a requirement that they do not loop forever,
then their specifications are not satisfied when their first argument isbad , even thoughbad inherits from
Grayscale_rep . Thus, behavioral properties cannot be guaranteed to hold for all objects that inherit
from Grayscale_rep .

object bad inherits Grayscale_rep
initialize has method(b@bad, f@float_rep) { initialize(b,f) } -- loop forever!
intensity has method(b@bad) { intensity(b) } -- loop forever!
paint has method(b@bad, r@Region_rep) { paint(b,r) } -- loop forever!

Languages like Ada 83 or CLU are able to guarantee such behavioral properties because they are not
extensible; that is, in such a language one can implement a type and prohibit a client from creating instances,
except by using some defined interface. BeCecil also allows this style of programming. If the name of a class
is hidden, then clients cannot create instances directly. Clients also cannot override methods for subclasses
of the class, because clients will not be able to declare subclasses at all. This style of coding trades
extensibility for guaranteed control over instances. For example, the following shows how, by hiding the
nameGS2_rep , one can make a class that is likeGrayscale_rep , but prevents imposters. Note that the
acceptor for the generic functionintensity has been moved inside the hide declaration, since otherwise
it could not specialize onGS2_rep .

hide
-- private declarations
object GS2_rep
field scale of GS2_rep := 0 -- sugared version of the previous declaration of scale

in
-- public declarations
GS2_rep inherits Color_rep
initialize has method(c@GS2_rep, intensity@float_rep) {

scale(c) := truncate(multiply(min(max(0.0, intensity), 1.0), 255));
c

}
gf mkGS2
mkGS2 has method(intensity@float_rep) {

initialize(new GS2_rep, intensity)
}
intensity has method(c@GS2_rep) {

divide(mkFloat(scale(c)), 255.0)
}
intensity has acceptor(c@GS2_rep) := v { initialize(c, v) }
paint has method(c@GS2_rep, r@Region_rep) { ... }

end

The trade-off between extensibility and such control over subclasses and creation of instances is perhaps
not absolute. One can imagine a language in which subclasses could not override methods of their

22

BeCecil Chambers & Leavens

superclasses, or a more complex language than BeCecil in which the code for a subclass’s methods would
have to provably satisfy the specification of the superclass. But this trade-off does seem fundamental in
languages where subclasses have unlimited ability to change inherited behavior and behavioral
specifications are not an enforced part of the program text.

In summary, BeCecil allows one to program in an ADT style that gives every bit as much control over
instances of a class as one would have in a language like Ada 83 or CLU. When doing so, one gives up
extensibility, but that is no worse than in such ADT languages. Indeed, BeCecil is more flexible, because
within a hide declaration, one can use subclassing on the hidden class, even though clients cannot do so.
Finally, in BeCecil one can program in either an ADT style, or an OO style, and both styles can be used in
the same program.

23

BeCecil Chambers & Leavens

3 Syntax, Overview, Sugars, and Examples for the BeCecil Type System

In this section we give an overview of the BeCecil type system. We first present the syntax of BeCecil with
its type annotations, give a brief overview of the main ideas, then describe some sugars and small examples.
Finally we describe some subtle points of the type system. All this should give the reader a feel for the type
system before the details are presented in Appendix C [Chambers & Leavens 96].

3.1 Syntax

The syntax of BeCecil with types is given in Figure 3-1. The syntax for generic function attributes has type
annotations added to formal parameters and a type annotation for return types. Also there are several new
declaration forms, and a syntax for type expressions.

3.2 Brief Overview

A type error in BeCecil occurs when a program applies a generic function to a tuple of actual arguments,
and the generic function either has no case that is applicable to the actuals, or has more than one applicable
case, but not a unique, most-specific one [Chambers & Leavens 95]. If the first kind of error (“message not
understood”) can occur, the generic function isincomplete. If the second kind of error (“message
ambiguous”) can occur, the generic function isinconsistent.

The BeCecil type system is designed to statically prevent such type errors. The philosophy behind the type
system is to leave the dynamic semantics of the language unchanged. To this end, the central notions of the
type system are found only in the static semantics, and have no run-time effect. To allow additional
flexibility, classes are not considered to be types, and inheritance is independent of subtyping. Type
information in BeCecil is largely declared, not inferred, although the generic function types of objects are
inferred from the information given as annotations to formal arguments and return types of method and
storage table attributes. To keep the type system simple, there is no parametric polymorphism; thus the only
kind of polymorphism supported is subtype polymorphism.

3.2.1 Declarations for the Type System

There are four new declarations in the typed version of BeCecil. The first of these is the type declaration,
which declares names for user-defined types. For example, the following declares a new type named
Point .

type Point

Since user-defined type names are intended to describe ADTs, they are considered to have implicit
behavioral specifications. Hence two such declarations always produce different types, even if they declare
the same name in different contours. To achieve this, each declared type name is given a unique identity
within any contour in which it is visible.

Since user-defined type names have implicit behavioral specifications, subtyping among type names is
declared, not inferred. For example, the following declares thatPoint is a subtype ofTop (used as the
supertype of all user-defined types in our examples), and thatColorPoint is a subtype ofPoint and
Color .

Point subtypes Top
ColorPoint subtypes Point
ColorPoint subtypes Color

The subtype relation among types is the extension of this declared direct subtyping relation to a reflexive
and transitive relation. BeCecil does not require that this relation be antisymmetric.

24

BeCecil Chambers & Leavens

P ::= RDS; B Program

RDS ::= D* Recursive-Declaration-Sequence

B ::= RDS E Block

D ::= Declaration
object I object: allocates a new object named I

| CN1 inherits CN2 inheritance: CN1 directly inherits from CN2
| CN has GF extension: CN to include the methods of GF
| hide RDS in D* end hide: the declarations of RDS are only visible to the D*
| type I type: new named type
| TN subtypes T subtype: TN is a subtype of T
| CN conforms T conformance: CN has the type T

GF ::= Generic-Function attributes
I identifier: the methods and tables of I

| method(F*): T {B } method: likeλ, a block abstraction
| storage(F*) := E:T storage table: new table initialized to value of E
| acceptor(F*) := I:T {B } acceptor: can process an assignment with value I
| GF1 & GF2 combination: GF2 favored over GF1

F ::= I @ CN : T Formal argument

T ::= Type expression
TN type name: a user-defined type

| (T*) -> Tn+1 invocable: with arguments T*, returns Tn+1
| (T*) := Tn+1 assignable: with key arguments T* and value Tn+1
| exact{ET*} exact: all information about an object’s generic function
| T1 & T2 conjunction: glb of types
| T1 | T2 disjunction: lub of types

TN ::= I Type-Name

ET ::= Exact-Type for a generic function
(CT*) -> Tn+1 exact invocable: with arguments CT*, returns Tn+1

| (CT*) := Tn+1 exact assignable: with key arguments CT* and value Tn+1

CT ::= CN : T Class-and-Type

CN ::= I Class-Name

E ::= Expression
I class name: evaluates to the object denoted by CN

| E0 (AA*) application: evaluates operator then operands left-to-right
| E0 (AA*) := En+1 assignment: with key AA* and value En+1
| E1 ; E2 sequence: evaluates E1, then E2

AA ::= Actual-Argument
E undirected: applicabile if inherits from specializer

| E @CN* directed: applicable if also a CNi inherits from specializer

Figure 3-1: Syntax for BeCecil with type checking aspects added. The nonterminalI is an
identifier.

25

BeCecil Chambers & Leavens

The connection between the world of objects and the world of types is established by a conformance
declaration. Conformance is a relation between objects and types, which says that the object has the given
type. For example the following declaration says that the objectPoint_rep conforms to the typePoint .
This declaration makesPoint_rep a prototype (or concrete object): it can be used in any place that any
other object that conforms toPoint can be used.

Point_rep conforms Point

Conformance of formal parameters to types, as well as conformance of the results of methods to types, is
asserted with the usual colon (:) notation. For example, the following is the extension declaration for the
mkPoint method.

mkPoint has method(i@int_rep:int, j@int_rep:int): Point { ... }

Several conformance declarations may be given for the same object. Thus an object may have several types.
For example, the following declarations say thatmyColorPoint conforms both to the typePoint , and
the typeColor .

myColorPoint conforms Point
myColorPoint conforms Color

An object may conform to a type either directly or indirectly. Direct conformance relationships are declared
in the program text, as above. For example,myColorPoint directly conforms toPoint . Indirect
conformance relationships take subtyping into account. The phraseCN conforms to T means that eitherCN
directly conforms toT, or thatCNdirectly conforms to some typeT2, andT2 is a subtype ofT. For example,
myColorPoint conforms toTop. Note that ifCN1 inherits fromCN, andCN conforms toT, this doesnot
mean thatCN1 conforms toT; inheritance relationships have nothing to do with conformance, and
subclasses are not required to be subtypes, nor vice versa.

Not every object has to be declared to conform to a user-defined type. It is perfectly legitimate to give no
conformance declarations for an object. Such an object is thenabstract, in the sense that it cannot be used
as an object in expressions.

The type expressions in BeCecil are inductively defined, with user-defined type names as the basis. There
are three kinds of types that directly describe the generic function value of an object. The most familiar is
the invocable type, which consists of a list of argument types, an arrow (->), and a return type. For example,
the following declares that the generic function equal can be called with two point arguments, and returns
a boolean.

equal conforms (Point, Point) -> boolean

The assignable type is written with a list of types that describe the key, an assignment symbol (:=), and a
type that describes the value being assigned. For example, the following declares that the generic function
y can process an assignment with a single key of typePoint , and a value of typeint .

y conforms (Point) := int

The final kind of type that describes the generic function value of an object is an exact type. This consists
of the keywordexact , and a set of exact invocable and assignable types, each of which contains
information about the class of their formal arguments. For example, the following declares a variable and
explicitly gives its exact type.

gf myVar
myVar has storage() := 27:int
myVar conforms exact{()->int, ():=int}

Exact types contain information about each and every case for an object. Hence an object may only conform
to one exact type. The exact types of all objects declared in a program are inferred by BeCecil from the type

26

BeCecil Chambers & Leavens

annotations given for method, and storage, and acceptor attributes of extension declarations. This helps
make the language less error-prone, since conformance declarations to exact types, such as the one above,
are redundant. It also helps make the language more extensible, since writing down an exact type for an
object means that it cannot be extended with any more cases. However, it is sometimes useful to write down
an exact type for a formal argument, since an identifier can only be used as a generic function attribute if it
conforms to an exact type.

The type system also has conjunction (greatest-lower-bound) types, written with an ampersand (&), and
disjunctive types (least-upper-bound) types, written with a vertical bar (|). The conjunctionS&T is the least
specific type that subtypes bothS andT. This type is different than any user-defined type ifS andT are not
ordered by the subtyping relation. One use of a conjunctive type is collapsing several conformance
declarations into one. For example, the first two declarations below are equivalent to the third.

x conforms (Point) -> int
x conforms (Point) := int
x conforms (Point) -> int & (Point) := int

The disjunctionS|T is the most specific type that is a supertype of bothS andT.

While subtyping for user-defined type names is declared, subtyping for generic function types is structural.
Exact types have no interesting subtypes (because there is no way that the information could be more exact).
However, an exact type can be translated into a supertype that is a conjunction of inexact generic function
types. For example, suppose that the type system has inferred that the exact type ofx is the following.

exact{(Point_rep:Point)->int, (Point_rep:Point):=int}

Then the exact type information forx can be forgotten by passing to the following supertype.
(Point) -> int & (Point) := int

Because exact types for generic functions are inferred, and because they have inexact types as supertypes,
it is not normally necessary to declare that generic functions conform to inexact generic function types.
However, such declarations do have their uses, in particular, when declaring the types of abstract (deferred)
methods or storage tables that are to be implemented for all objects that conform to a given type. For
example, the type of the generic functionif would be declared as follows, enabling the type system to
check that it is implemented for all objects that conform to the typeboolean . (Such conformance
declarations are similar to thesignature declarations in Cecil [Chambers 95, Chambers & Leavens 95].)

if conforms (boolean, ()->Top, ()->Top) -> Top

As a complete example, we show the typed version of thePoint example from Section 2.2 (without the
use of any syntactic sugars).

type Point
Point subtypes Top
object Point_rep
Point_rep inherits any
Point_rep conforms Point -- Point_rep is a prototype
object equal
equal inherits GenericFun_rep
equal has method(p1@Point_rep:Point, p2@Point_rep:Point): boolean {

and(equal(x(p1), x(p2)), equal(y(p1), y(p2)))
}
object x
x inherits GenericFun_rep
x has storage(p@Point_rep:Point) := 0:int
object y

27

BeCecil Chambers & Leavens

y inherits GenericFun_rep
y has storage(p@Point_rep:Point) := 0:int
object initialize
inititalize inherits GenericFun_rep
initialize has method(p@Point_rep:Point,

 i@int_rep:int, j@int_rep:int): Point {
x(p) := i;
y(p) := j;
p

}
object mkPoint
mkPoint inherits GenericFun_rep
mkPoint has method(x@int_rep:int, y@int_rep:int): Point{

object res
res inherits Point_rep
res conforms Point
initialize(res, x, y)

}

The way that the type system infers generic function types and checks applications only allows one to pass
actual arguments to a case if they conform to its declared argument types. Therefore each formal’s
specializer and declared type independently constrain what kinds of arguments can be passed to it. Thus a
formal’s specializer need not conform to its declared type. For example, one can write the following, even
thoughany does not conform toint .

object double
double inherits GenericFun_rep
double has method(x@any:int):int { plus(x, x) }

3.2.2 Client-side and Implementation-side Checks

Type checking can be divided into two parts [Chambers & Leavens 95]:client-side checks and
implementation-side checks. Client-side checks are principally that each generic function application (and
assignment) is type-correct, by comparing the types of the actuals and the type of the generic function. Other
such checks are that the type of the body of a method conforms to the declared result type of the method.
Such type checks are straightforward, except for applications that use directed actuals. For directed actuals,
the generic function must be statically known, so that its exact type and inheritance relation can be used to
check that all possible tuples of objects, which match the actual argument types, will find a unique most-
specific method.

Implementation side checks are that for each declared object, for each invocable type(T*)-> Tr to which
that object conforms, and for each tuple of argument objects that conforms toT*, the object’s set of
invocables has at least one (completeness) and no more than one (consistency) invocable that is applicable
to the actuals; furthermore, the tuple of arguments must conform to the types of this invocable’s formals and
its result type must be a subtype of the result type ofTr (conformance). A similar check must also be made
for each object and each assignable type,(T*):= Tr , to which each object conforms.

In the following example consider implementation-side checks for the declared objectsbar andf . The
object bar does not conform to any invocable or assignable type, and thus trivially passes the
implementation-side checks. The objectf conforms to the invocable type,(Bar)->int . There is just one
tuple of objects, (bar), that conforms to the tuple of argument types, and it is such that the single method
given forf is applicable. Furthermore, this method has the required return type. Hence this example satisfies
the implementation-side checks.

type Bar

28

BeCecil Chambers & Leavens

object bar
bar inherits any
bar conforms Bar
object f
f inherits GenericFun_rep
f has method(x@bar:Bar): int { 3 }

It is interesting to see how implementation-side checking effectively checks that each subtype has
appropriate methods to satisfy the usual rules for structural subtyping. Suppose the following declarations
are added to the above example.

type Foo
object foo
foo inherits any
foo conforms Foo
Foo subtypes Bar -- really?

Does the example still pass the implementation-side type checks with these additional declarations? No,
because now there is a tuple of objects, (foo), that conforms to the tuple of argument types forf , but for
which there is no applicable method. However, iffoo were declared to inherit frombar , then the method
would be applicable, so the checks would be passed. Alternatively, one could fix the example by declaring
another method for f, such as the one below.

f has method(y@foo:Bar): int { 4 } -- one way to fix the above example

Another interesting aspect of the implementation-side checks is how they enforce a “monotonicity”
[Reynolds 80], “regularity” [Goguen & Meseguer 87], or “consistency” [Agrawalet al. 91] condition on the
types of the methods in a generic function. This condition says that if a generic function conforms to two
types,(T1,...,Tn)-> Tr and(S1,...,Sn)-> Sr , and if for eachi, Si is a subtype ofTi, thenSr must be a subtype
of Tr . To see how this is enforced, suppose that, for eachi, Si is a subtype ofTi. Then(T1,...,Tn)-> Tr is a
subtype of(S1,...,Sn)-> Tr by the usual contravariant subtyping rule for function types [Cardelli 88].
Therefore, if an object conforms to(T1,...,Tn)-> Tr it must also conform to(S1,...,Sn)-> Tr . Thus methods
that can be called with a tuple of arguments of type(S1,...,Sn) must return a result that conforms toTr . So
any method that is declared to take a tuple of arguments of type(S1,...,Sn) must have a declared result type,
Sr , that is a subtype ofTr .

The practical consequence of this condition is that programmers have to be careful to not make the result
types of methods too specific, relative to their declared argument types. For example, consider the following
declarations.

object negate
negate inherits GenericFun_rep
negate has method(x@int_rep:number): int {...} -- these do not type check
negate has method(x@float_rep:number): float {...}

With these declarations, the code does not pass the implementation-side type checks, becausenegate
conforms to the invocable type(number)->int , and the last method above does not return anint when
passed anumber . The code would pass the checks if the two methods both had a declared return type of
number . The code would also pass the type checks if both the methods had declared more specific
argument types (int andfloat).

A generic function can also fail to pass the implementation-side checks if a more specific method uses a
more general result type than another method that it specializes, as in the following example, where the
second method overrides the first for arguments that inherit fromfloat_rep . Again the code would type

29

BeCecil Chambers & Leavens

check if both methods returned the same type; however, this example cannot be fixed by changing the
second method’s formal argument type tofloat .

object truncate
truncate inherits GenericFun_rep
truncate has method(x@number_rep:number): int {...} -- these do not type check
truncate has method(x@float_rep:number): number {...}

3.3 Syntactic Sugars

The syntactic sugars for the type system add to the sugars of Section 2.3, except where they are noted as
replacements.

3.3.3 Typed Declaration Sugars

The first declaration sugar allows one to declare a conformance relationship at the same time that one
declares several inheritance relationships.

CN0 inherits CN1,...,CNn conforms T ≡
CN0 inherits CN1,...,CNn
CN0 conforms T

Because of the convention we have been using of naming classes with names of the formX_rep and the
corresponding typeX, one often wishes, for example, to declare that an object inheritsX_rep and conforms
to X at the same time. This is particularly useful for declaring “instances.” The following sugar is similar to
one in Cecil that serves a similar purpose.

object I isa TN1,...,TNn ≡
object I inherits TN1_rep, ...,TNn_rep conforms TN1 & ... & TNn

The following sugars makes it easier to declare subtype relationships.

TN0 subtypes TN1,...,TNn ≡
TN0 subtypes TN1

...
TN0 subtypes TNn

type I subtypes TN1,...,TNn ≡
type I

I subtypes TN1,...,TNn
The following sugar makes it easier to declare abstract generic functions, by allowing one to declare the
name and its type at the same time. This sugar relies on the sugar for declaring generic functions from
Section 2.3.

gf I conforms T ≡
gf I
I conforms T

The following sugars are replacements for the sugars of Section 2.3. They add type information to the
previous sugars.

var I:T := E ≡
gf I
I has storage() := E:T

30

BeCecil Chambers & Leavens

fun I(F*):T {B} ≡
gf I

I has method(F*):T {B}
field I:T1 of CN:T0 := E ≡

gf I
I has storage(x@CN:T0) := E:T1, wherex is a fresh identifier.

3.3.4 Typed Formal Argument Sugars

As in Cecil, it is convenient to be able to write the specializer and type information for formal arguments in
an abbreviated form.

I @:TN ≡
I @ TN_rep: TN

Recall that if the specializer isany , it can be omitted.

I :T ≡
I @ any : T

The following allows one to not mention the specializerGenericFun_rep when a formal argument has
an invocable type.

I @:(T*)-> Tn+1 ≡
I @ GenericFun_rep : (T*)-> Tn+1

For example, we have the following expansion into BeCecil.

ifTrue has method(b@:boolean, c@:()->Top): Top {...} ≡
ifTrue has method(b@boolean_rep:boolean,

c@GenericFun_rep:()->Top): Top {...}

3.3.5 Typed Expression Sugars

The following sugar replaces the untyped version of the sugar fornew given in Section 2.3.7.

 new CN:T ≡
{ object I inherits CN conforms T

I
} whereI is a fresh identifier

When creating a new object of a type namedTN that is to inherit from a class namedTN_rep, one can use
the following sugar.

 new isa TN ≡
new TN_rep:TN

The expression sugars for the two forms oflet carry over into the typed version of BeCecil if one adds
appropriate type annotations based on the minimal inferred types of the expressions involved. Similarly the
expression sugar for Smalltalk-like blocks carries over by adding the return typeTop to the desugared form
given in Section 2.3.7.

3.4 Some Small Examples

In this section we show some small examples of BeCecil code with types. For purposes of giving examples,
we assume that the following declarations are used as the standard prelude for all example programs from
now on. We continue to assume various other generic functions that operate on numbers as well.

31

BeCecil Chambers & Leavens

-- the “typed standard prelude”
type Top

type void subtypes Top -- type of methods that do not want to return anything
object nothing conforms void
nothing has method(): void { nothing }

object any inherits nothing -- abstract superclass of all other classes
object GenericFun_rep inherits any

type number subtypes Top
type int subtypes number
type float subtypes number
object number_rep inherits any
object int_rep inherits number_rep
object float_rep inherits number_rep
object 1 isa int
object 2 isa int
object 3 isa int

...
object 4.7 isa float

...

3.4.6 Boolean

We add type declarations to the Booleans, from Section 3.4.6, as follows. The code has been changed in
places to use the generic functionifExp instead ofif . This is becauseif can return something of any
type, and so is only useful as a statement (when one cares about type checking). The generic function
ifExp works for booleans, but if it is to function as a true if-expression, then it must be extended for each
type of result. However, these problems could easily be solved by adding parametric polymorphism to
BeCecil’s type system.

type boolean subtypes Top
object boolean_rep inherits any -- abstract class
-- the following 3 generic functions are to be implemented by conformers
gf if conforms (boolean, ()->Top, ()->Top) -> Top
gf ifExp conforms (boolean, ()->boolean, ()->boolean) -> boolean
gf not conforms (boolean) -> boolean
gf equal conforms (boolean, boolean) -> boolean -- implemented below
fun ifTrue(b@:boolean, c@:()->Top): Top { if(b, c, nothing) }
fun and(b@:boolean, c@:()->boolean): boolean { ifExp(b, c(), false) }
fun or(b@:boolean, c@:()->boolean): boolean { ifExp(b, true, c()) }

object true isa boolean
true has method(): boolean { true }
if has method(b@true:boolean, c@:()->Top, a@:()->Top): Top { c() }
ifExp has method(b@true:boolean, c@:()->boolean, a@:()->boolean): boolean {

c()
}
not has method(b@true:boolean): boolean { false }

object false isa boolean
false has method():boolean { false }
if has method(b@false:boolean, c@:()->Top, a@:()->Top): Top { a() }

32

BeCecil Chambers & Leavens

ifExp has method(b@false:boolean, c@:()->boolean, a@:()->boolean): boolean {
a()

}
not has method(b@false:boolean): boolean { true }

equal has method(x@:boolean, y@:boolean): boolean { false }
equal has method(x@true:boolean, y@true:boolean): boolean{ true }
equal has method(x@false:boolean, y@false:boolean): boolean { true }

3.4.7 collection

The following example shows how to add type declarations to the collection type that was given previously.
Notice thatcollection_rep does not itself conform to any type, and hence is an abstract class.

type collection subtypes Top
type collElem subtypes Top
object collection_rep inherits any -- abstract class
gf isEmpty conforms (collection) -> boolean -- to be implemented by conformers
gf do conforms (collection, (collElem)->void) -> void -- this one too
fun length(c@:collection): int {

var res: int := 0
do(c, anon method(x:collElem):Top {res() := plus(res(), 1)});
res()

}

3.4.8 list

In the following, notice howequal is not declared as here, as it has been declared above. However, unlike
the untyped version of this example, its type is noted here.

type list subtypes collection
type listElem subtypes collElem
object default_list_elem inherits any conforms listElem
object list_rep inherits collection_rep -- abstract class
gf head conforms (list) -> listElem -- to be implemented by conformers
gf tail conforms (list) -> list -- to be implemented by conformers
equal conforms (list,list) -> boolean -- to be implemented by conformers
do has method(c@:list, b@:(collElem)->void): void {

if(isEmpty(c), nothing, [b(head(c)); do(tail(c), b)])
}

3.4.9 nil

We do not declare a subtype oflist for the empty list, as there seems to be no good reason to do so. Notice
how the non-sugared form of formal arguments is used in the code below.

object nil isa list
isEmpty has method (n@nil:collection):boolean { true }
tail has method(n@nil:list):list { nil }
head has method(n@nil:list):listElem { head(n) } -- loop forever!

3.4.10 nonempty lists

The following gives the code fornonempty_rep , with type information added.
object nonempty_rep inherits list_rep -- abstract class
isEmpty has method(l@nonempty_rep:collection) { false }

33

BeCecil Chambers & Leavens

3.4.11 cons

As with the empty list, we do not declare a subtype oflist for lists implemented bycons_rep . We
declare an initialization generic function to allow initialization of lists. Recall that the object
default_list_elem is used as the default list element.

gf initialize conforms (list, listElem, list) -> void
object default_list_elem inherits any conforms listElem

object cons_rep inherits nonempty_rep conforms list
hide

field hd:listElem of cons_rep:list := default_list_elem
field tl:list of cons_rep:list := nil

in
initialize has method(c@cons_rep:list, x:listElem, l:list): list {

hd(c) := x;
tl(c) := l;
c

}
tail has method(l@cons_rep:list): list {tl(l)}
head has method(l@cons_rep:list): listElem {hd(l)}
tail has acceptor(l@cons_rep:list) := new_tail:list {

tl(l) := new_tail
}
head has acceptor(l@cons_rep:list) := new_head:listElem {

hd(l) := new_head
}

end
fun cons(x:listElem, l:list): list {

initialize(new cons_rep:list, x, l)
}
equal has method(x@:list, y@:list): boolean{false}
equal has method(x@nil:list, y@nil:list) {true}
equal has method(x@nonempty_rep:list, y@nonempty_rep:list): boolean {

and(equal(hd(x), hd(y)), anon method():boolean{equal(tl(x), tl(y))})
}

Adding type information to the interval list example of Section 2.4 is left as an exercise for the reader.

3.4.12 link

Since BeCecil does not have parametric polymorphism, using the type list results in a loss of information
about the type of the elements in thelist , since when extracted they are only known to have the type
listElem . Hence the following type is sometimes useful, as will be seen in thealist example below.

type link subtypes Top
object link_rep inherits any conforms link
object nil conforms link
hide

field nxt:link of link_rep:link := nil
in

initialize has method(l@:link, next@:link): link { nxt(l) := next; l }
gf next
next has method(l@:link): link { nxt(l) }
next has method(l@:link) := v:link { nxt(l) := v }

end

34

BeCecil Chambers & Leavens

3.4.13 alist

The following example, one way to implement association lists, shows some interesting uses of private
inheritance and subtyping; in the hidden declarations,alist_rep is made to inherit fromlink_rep and
to subtypelink . Notice also thatnil is also made to conform to thealist type.

type alist subtypes collection
type key subtypes Top
object default_key conforms key
type value subtypes collElem
object default_value conforms value
nil conforms alist
do has method(c@nil:alist, b@:(collElem)->void): void { nothing }
object alist_rep inherits collection_rep conforms alist
hide

alist_rep isa link
field ky:key of alist_rep_rep:alist := default_key
field vl:value of alist_rep:alist := default_value

in
initialize has method(al@:alist, k:key, v:value, next@:alist): alist {

ky(al) := k;
vl(al) := v;
initialize(al@link_rep, next);
al

}
isEmpty has method(al@:alist): boolean { false }
do has method(c@:alist, b@:(collElem)->void): void {

b(vl(al));
do(next(al), b)

}
gf assoc
assoc has method(k:key, al@nil:alist, v:value): value { v }
assoc has method(k:key, al@:alist, v:value): value {

var res: value := v
if(equal(k, ky(al)),

[res() := vl(al)],
[res() := assoc(k, next(al), v)]);

res()
}

end
fun acons(k:key, v:value, next@:alist): alist {

initialize(new alist_rep:alist, k, v, next)
}

3.4.14 Named Subtypes of Generic Function Types

In BeCecil, user-defined type names can be thought of as having implicit behavioral specifications attached.
The following example shows how to declare a type that is supposed to represent integer-valued functions
that square their arguments.

type squarer subtypes (int) -> int

One declares that a generic function conforms to this type explicitly, as follows. Note that if an object was
declared to conform tosquarer without having an integer-valued method, it would not pass the
implementation-side checks.

gf square conforms squarer
square has method(x@:int): int { times(x, x) }

35

BeCecil Chambers & Leavens

Although the type system does not check thatsquare satisfies the implicit behavioral specification, it does
propagate knowledge about what objects have been asserted to conform to typesquarer . For example,
the functionis_right_triangle , defined below, requires itsf argument to conform to squarer.

fun is_right_triangle(a@:int, b@:int, c@:int,
 f@GenericFun_rep:squarer): boolean {

equal(plus(f(a), f(b)), f(c))
}

For example, the following application would type check.
is_right_triangle(3,4,5,square)

3.5 Some Details

The type system of BeCecil deals with the following features not discussed in [Chambers & Leavens 95]:

• directed actual arguments,

• extensible generic functions,

• first-class generic functions,

• hide declarations, and

• nested contours with local inheritance, object, and extension declarations.

Directed actual arguments are handled by requiring applications with directed actual arguments to be to
statically-known generic functions. This is in the spirit of OO languages, which do not allow one to extract
arbitrary methods of objects and call them. The information that is used to type check such an application
consists of the exact type information for the generic function and the inheritance relation that was closed
with the generic function when it was created. This allows the type system to mimic the dynamic semantics.

For the purpose of extending a generic function, cases can be extracted from an object if the object’s exact
type is known (its identity is not required). This is the main reason for having exact types in the syntax of
type expressions.

First-class generic functions are handled by including types for them in the language. The type checking
rules are well-known and straightforward.

Hide declarations themselves cause no difficulty for the type system, other than the fact that they introduce
nested contours, which do cause problems. We discuss these problems below.

Nested contours in BeCecil require careful attention if they are not to make the type system unsound, and
if they are to be useful. To help keep the type system simple and understandable, the type system is designed
so that it does not use any information from nested contours, other than their type correctness, when
checking a recursive declaration sequence. To put this another way, the type system assumes that the only
objects and inheritance relationships that it needs to consider are those declared either in the contour where
the objects and generic function attributes it is checking are declared or in surrounding contours, but not
those in nested contours. However, this assumption might make the type system unsound, because in a
nested contour, one could declare that a new object conforms to an argument type:

• when the new object does not inherit from the set of objects that were assumed to conform to that type
(“types acquiring new conformers”), thus causing incompleteness, or

• when the new object inherits from two objects that were assumed to conform to that type and were
assumed to not have common descendents (“relating unrelated conformers”), causing inconsistency.

36

BeCecil Chambers & Leavens

Our names for these problems are given in the parenthetical remarks in each of the above bullets. Note that
the above problems, possibly in combination, are the only ways that type unsoundness might arise due to
nested contours (assuming that the implementation-side checks for the surrounding contour are carried out
correctly, and that client-side checking is done as usual). Thus the main difficulty in designing a sound type
system for BeCecil is preventing these problems without rendering nested contours useless.

To illustrate the problem of types acquiring unknown conformers, consider the following (type incorrect)
BeCecil block. In the block, the generic functionequal seems to be completely implemented (if one
considers only the top-level declarations), because there is an implementation for the only object that
conforms to its argument type. However, the assumption that only objects that inherit fromFirst_T_rep
conform to the typeT is falsified in the body of the functionnested , becauseAnother_T_rep is a
object that conforms toT, and it does not inherit fromFirst_T_rep .

type T
gf equal conforms (T, T) -> boolean
object First_T_rep inherits any conforms T
equal has method(p1@First_T_rep:T, p2@First_T_rep:T): boolean { true }
fun nested():T {

object Another_T_rep inherits any conforms T
Another_T_rep

}
equal(nested(), First_T_rep) -- not understood!

To illustrate the problem of relating unrelated conformers, consider the following (type incorrect) block.
The top-level recursive declaration sequence is checked, as usual using information in that contour, so it
seems that the generic functionequal is implemented consistently: the argument will either inherit from
Origin or Red, but not both, as far as that contour is concerned. But in the functionnested at the end,
the objectRed_Origin does inherit from both objects. Thus the call toequal , although seemingly fine,
results in a message ambiguous error.

type Comparable
gf equal conforms (Comparable, Comparable) -> boolean
type ImPoint subtypes Comparable -- points that are not necessarily mutable
object Origin inherits any conforms ImPoint
equal has method(p1@Origin:Comparable, p2@Origin:Comparable):boolean {

true
}
type Color subtypes Comparable
object Red inherits any conforms Color
equal has method(p1@Red:Comparable, p2@Red:Comparable):boolean { true }
var myImPoint:ImPoint := Origin
fun nested(): void {

object Red_Origin inherits Red, Origin conforms ImPoint & Color
myImPoint() := Red_Origin;
nothing

}
nested();
equal(myImPoint(), myImPoint()) -- ambiguous!

Our idea for making the type system sound, and thus turning these run-time errors into type errors, is to
simply prevent both of these problems from happening. To do this, for each declared type name,TN, the
type system tracks two pieces of information. To prevent the problem of types acquiring new conformers,
it tracks the set of objects that are known to conform toTN in the recursive declaration sequence in which
it was declared; this set is called theconformers of TN. To prevent the problem of related unrelated

37

BeCecil Chambers & Leavens

conformers, it tracks the inheritance relation of the recursive declaration sequence in whichTN was
declared; this is called the inheritance relation of TN.

Like inheritance, conformance and subtyping are also scoped in BeCecil. We say that a relationship, such
as thatCN conforms toTN, is visible in an contourS if that relationship holds in the type context given by
the declarations ofS (and surrounding contours). A declaration of an object or type name isvisible in a
contour if it is not shadowed.

The restrictions needed for soundness in the presence of nested contours are that in every contour,S, the
following must hold.

• Suppose that the relationshipCN1 conforms toTN is visible inS, and that the declarationtype TN does
not appear inS. Then there must be some objectCN2, such thatCN2 is a member of the set of conformers
of TN, and the relationshipCN1 inherits fromCN2 is visible inS.

• Suppose that the relationshipCN1 conforms toTN is visible inS, and that the declarationtype TN does
not appear inS. Then for all objectsCN2 andCN3, if bothCN2 andCN3 are conformers ofTN, and if
both of the relationshipsCN1 inherits fromCN2 andCN1 inherits fromCN3 are visible inS, then
according to the inheritance relation ofTN, eitherCN2 inherits fromCN3 or vice versa.

The first rule above can be further simplified by omitting the check that the declaration of the type name
does not appear in the contour, and letting objects declared to conform in the same contour as the type name
trivially satisfy the rule. However, the second rule cannot be simplified in this way, as otherwise multiple
inheritance would be prohibited. In an algorithm implementing these rules, one would want to only check
new conformance relationships, excluding those that were already present in a surrounding contour.

As an example of how these rules permit one to use inheritance in a nested contour, consider the following.
The example is permitted by our rules, as the two ancestors of the objectfloppy declared within the nested
contourbarnum , Elephant_rep andCircusPerf , each conforms to a different type, and the two
types are unrelated. If however,CircusPerf was declared as a subtype ofElephant_rep within
barnum , then the nested contour would be illegal.

type Elephant subtypes Top
object Elephant_rep inherits any conforms Elephant
fun haul(e@:Elephant, thing:Top, distance@:int): void { ... }
type CircusPerf subtypes Top
object CircusPerf_rep inherits any conforms CircusPerf
fun space_for_act(cp@:CircusPerf): int { ... }
fun barnum(): void {

type CircusElephant subtypes Elephant, CircusPerf
object floppy inherits Elephant_rep, CircusPerf_rep
floppy conforms CircusElephant
object wagon inherits any conforms Top
haul(floppy, wagon, space_for_act(floppy))

}
barnum()

38

BeCecil Chambers & Leavens

4 Related Work

BeCecil bears a great deal of similarity to Cecil [Chambers 92, Chambers 95]. However, there are several
differences from Cecil that are worth pointing out. The major differences in the dynamic semantics are the
presence, in BeCecil, of the hide declaration and block structure. A more minor difference is the first-class
nature of generic functions in BeCecil. In BeCecil, assignment and generic functions are more integrated
than in Cecil, but the ability to replace a storage table with an acceptor and a method follows Cecil, in which
a field namedf is accessed through two methods:f andset_f . (CLOS, Dylan, Self, and other languages
also present instance variables to clients as methods.)

The type system of BeCecil relies heavily on our previous work on type systems for multimethod languages
[Chambers & Leavens 94, Chambers & Leavens 95]. The major extensions with respect to that work are the
inclusion of block structure, hide declarations, and directed actual arguments (which allows inheritance of
methods). Another difference is the absence, in BeCecil, of a notation for declaring that objects are abstract
or concrete. There are also some more subtle differences in assumptions; for example, the type system of
BeCecil does not assume that there is a type that is the supertype of all other types, or that there is a class
that is the superclass of all other classes (although we have used such a type and class in our examples).
However, Cecil itself has a type system with parametric polymorphism.

In the rest of this section we discuss the relation of BeCecil to other languages with multimethods, Abadi
and Cardelli’s imperative object calculus, and to other OO languages with block structure.

4.1 The λ&-Calculus

With respect to work on multi-method semantics, the most closely-related work is theλ&-calculus [Ghelli
91, Castagnaet al. 92, Castagnaet al. 95]. Theλ&-calculus is a statically-typed foundational calculus for
multimethod languages, from which BeCecil draws several ideas.

In some respects, theλ&-calculus is simpler than BeCecil, while in other respects BeCecil is simpler. For
example, in theλ&-calculus, generic functions are applied differently than regular functions, but in BeCecil,
there is only one kind of function. On the other hand, BeCecil allows new objects and new inheritance
relationships to be declared, even in nested scopes. In theλ&-calculus, the classes (which are also types)
and their inheritance/subtyping relationships are considered to be constants (predeclared).

Although, in BeCecil,& is used only in declarations as a way to combine generic function attributes, it
performs a similar function to the& operator in theλ&-calculus. To make this point more clearly, we show
how the combination operator& of theλ&-calculus can be defined as an expression sugar in BeCecil. As
for attributes, this combination takes the cases of both expressions, but for those that clash (have the same
specializers), only the cases of the second generic function’s methods remain in the result. Note that the
result of such an expression has an exact type in BeCecil, and so it can be used in further combination
expressions, just as in theλ&-calculus.

GF1 & GF2 ≡
{ object I inherits GenericFun_rep

I has GF1 & GF2
I

}, whereI is a fresh identifier.

The λ&-calculus also has a way to write a generic function with no methods. This is another sugar in
BeCecil.

39

BeCecil Chambers & Leavens

empty ≡
{ object I inherits GenericFun_rep

I
}

A major difference from BeCecil is that theλ&-calculus does not deal with mutation. In some sense theλ&-
calculus is indifferent to the presence of operators such as assignment, being a calculus that is primarily
concerned with generic functions and their invocation. However, the semantics of theλ&-calculus would
have to change to allow for mutable storage. One way this could be done is shown in theλ& :=-calculus
[Castagna 96b]. In this calculus there are locations, which have reference types (much as in ML). (Theλ& :=-
calculus also has conversion functions, which are used to create specializable locations; this permits the
modeling of covariantly-specialized instance variables. It is unclear whether this can be modeled in
BeCecil, but there seems no obvious way to do it, as the type system would need to be changed.)

The type system for BeCecil uses several ideas that are also used in type system of theλ&-calculus. Like
theλ&-calculus, BeCecil does not allow for dynamic inheritance and its typing rules are based on a declared
subtyping relation between atomic types. The emphasis on generic function typing, and the subtyping rules
for generic functions, are adapted from theλ&-calculus.

It is interesting to compare the treatment of generic function types in BeCecil and theλ&-calculus. Theλ&-
calculus types for generic functions are most closely related to the exact types in BeCecil. However, theλ&-
calculus does not permit a generic function type to have supertypes that are single arrow types (the types of
non-overloaded functions), because, in theλ&-calculus, generic functions are applied differently than
regular functions. In BeCecil, since there is only one kind of function, and an exact type has single arrow
types as supertypes. In BeCecil, one may also forget exact type information about a generic function using
subsumption; one first translates the exact type into an inexact type, and then one may use a rule that is the
same as the rule for subtyping generic function types in theλ&-calculus. In BeCecil, there are no dynamic
consequences to this forgetting process (that is, each case in the generic function is still used exactly as
before). Theλ&-calculus also allows supertypes of generic function types; however, forgetting information
about branches can have dynamic consequences, because the type indexes in a generic function type are
used to select a particular method.

The difference in the treatment of generic function types reflects a more fundamental difference in the two
type systems: in BeCecil classes and types are distinguished, as well as inheritance and subtyping. Theλ&-
calculus does not make these distinctions, and thus its type system is not separated from its dynamic
semantics. In BeCecil, the dynamic semantics is independent of the type system. This separation does lead
to complications in the type system of BeCecil, but the result is that BeCecil gives programmers added
flexibility.

One way to prove the soundness of the BeCecil type system would be to translate BeCecil into theλ&-
calculus. We chose not to do so as the translation would not be direct, because the type system of theλ&-
calculus does not deal with nested scopes, mutation, or a separation of types and classes.

In summary, although there is a subset of BeCecil that is similar to theλ&-calculus, the following are the
main differences.

• BeCecil treats imperative features, such as assignment.

• BeCecil has encapsulation.

• BeCecil does not require that all objects and inheritance relationships be visible globally.

40

BeCecil Chambers & Leavens

• BeCecil’s dynamic semantics does not rely on its type system.

• BeCecil separates the concepts of types and classes, and subtypes and subclasses.

4.2 Castagna’s λ_object

The languageλ_object [Castagna 95b] is a meta-language for reasoning about OO programs. In particular,
λ_object is used to describe the semantics of an (unnamed) toy OO language which is “a mix of Objective-
C and CLOS” (page 2). While BeCecil could be compared either to the toy language or toλ_object, BeCecil
is more likeλ_object, andλ_object has nearly all of the expressive power of the toy language.

The main differences betweenλ_object and theλ&-calculus are that inλ_object one can declare new
classes and inheritance/subtyping relationships, and there is some provision for extending the methods of a
generic function that allows for functional update of existing methods (i.e., a new generic function is
produced). While one can declare new classes and subtype/inheritance relationships in aλ_object program,
all such declarations are global to the main computation, unlike those in BeCecil, andλ_object does not
allow mutation. Inλ_object there is also some provision for reasoning about information hiding, but unlike
BeCecil, information hiding is not enforced. (In the toy language, however, information hiding is enforced.
The construct for information hiding is the explicit declaration of the interface of a class (the protocol of its
objects), and this is enforced by the type system. Thus information hiding in the toy language is quite similar
to the hide mechanism of BeCecil.)λ_object also has two primitives,coerce andsuper , that are used
for inheritance of methods.

Since classes and types are not separated inλ_object, itssuper mechanism involves the type system. The
use ofsuper allows one to achieve an effect similar to that of directed actuals in BeCecil. It can be used
more freely than directed actuals in BeCecil because of the lack of block structure inλ_object. In BeCecil
one could perform the equivalent ofcoerce by creating a new proxy object, however this proxy will have
a different object identity than the original object (a concept not present inλ_object), and thus will not be
wholly satisfactory for the same reasons that proxy objects are not wholly satisfactory in standard OO
languages.

Unlike BeCecil, objects inλ_object are records containing instance variables. In BeCecil, the fields of an
object are not part of an object’s value.λ_object is also class-based. BeCecil does not make a distinction
between classes and instances.

Since it is like theλ&-calculus,λ_object shares several other important differences from BeCecil. These
include the distinction between two kinds of applications and the main points summarized above.

4.3 Polyglot

Polyglot, a CLOS-like database type system [Agrawalet al. 91], is the only other statically-typed language
with multimethods and mutation of which we are aware. The main differences between Polyglot and
BeCecil are that Polyglot requires that all objects and inheritance relationships be visible globally, Polyglot
does not separate the notions of type and class or subtype and subclass, and Polyglot does not have a way
to declare the types of generic functions apart from their implementations.

In stating the type system of BeCecil in Appendix C, we have not tried to describe a type checking
algorithm, but rather to describe rules that would guarantee type soundness. However, BeCecil shares an
idea from the Polyglot algorithm in that it also divides the typechecking problem into implementation-side
and client-side checks. In Polyglot, the implementation-side checks impose aconsistency condition on the
return types of methods of a generic function, which says that more specific methods have more specific
return types. (This condition is the same as that used in the category-sorted algebras of Reynolds [Reynolds

41

BeCecil Chambers & Leavens

80] and in order-sorted algebras [Goguen & Meseguer 87].) The implementation-side checks also require
that each set of methods that areconfusable (i.e., that might handle the same call) is totally ordered by the
programmer. Client-side checks thus only need to find a single most-specific multimethod that is applicable
to the static types of the arguments in the call, and the consistency condition ensures that at run time the
result will be a subtype of the result type of this method. Compared to BeCecil, however, their type system
depends on a number of restrictive assumptions:

• The methods of a generic function must be totally ordered by the programmer within each confusable
set. Graph-based method lookup semantics found in most object-oriented languages with multiple
inheritance [Snyder 86], where the method overriding relationship only forms a partial order, cannot be
handled. BeCecil does not make any such assumption, but detects whether any ambiguously-defined
messages are sent.

• Because Polyglot has no way to declare the type of a generic function aside from giving its methods,
and because Polyglot has no other way to distinguish between concrete and abstract classes, there is no
way to declare an “abstract” or “deferred” method.

• Inheritance and subtyping are synonymous in Polyglot. This makes code less flexible, because it
prevents a class from inheriting code from some other class without being required to be a subtype
[Snyder 86]. It also means that one cannot distinguish the specializer of an argument from its type, and
thus one must specialize on all arguments. In BeCecil, one can use a specializer that is distinct from the
formal argument type; because the specializer also does not have to conform to the argument type, one
can use the specializerany , and thus effectively not specialize on that argument.

4.4 Kea

Kea is a higher-order, polymorphic, purely-functional language supporting multimethods [Mugridgeet al.
91]. Objects in Kea contain various properties, which can be thought of as fields, unlike BeCecil.
Information hiding is based on a class mechanism; a class has a declared public interface, and only within
a class can other properties of an object be accessed. The hide declaration in BeCecil is similar.

Like Polyglot, code inheritance and subtyping in Kea are unified. Kea’s type checking includes the notion
that a collection of methods must beexhaustive andunambiguous, and these notions appear in our type
system as well. The semantics of typechecking in Kea is also specified formally. As with Polyglot, our
contribution in the area of typechecking relative to Kea is that we typecheck several important language
features not found in Kea, including mutable state, separate subtyping and inheritance graphs (which allow
abstract classes), and block structure.

4.5 Rouaix’s Work

Rouaix’s work [Rouaix 90] also describes a higher-order, polymorphic, purely-functional language. This
language has no mutable state variables, and does not have information hiding or block structure. This work
uses a type inference system that is quite different than the type system of BeCecil. Like BeCecil, the
language’s dynamic semantics is specified separately from its type system. However, since there are no type
declarations, there is no way to declare abstract or deferred methods.

4.6 CLOS and Dylan

Both the Common Lisp Object System (CLOS) [Steele 90, Paepcke 93] and Dylan [Shalit 97, Feinberget
al. 97] are languages with generic functions and module systems. Unlike BeCecil, the generic functions in
these languages must all have the same number of (required) arguments. Both module systems provide
name-space management, allowing generic functions to be made local or private to packages (although
encapsulation is only advisory in Common Lisp and can be circumvented). CLOS allows one to add
methods to a generic function, either by making a lexical binding in a nested scope, or by modifying the
generic function destructively. Dylan also allows one to declare methods in nested scopes. In these

42

BeCecil Chambers & Leavens

languages inheritance relationships cannot be scoped separately from objects, and CLOS also allows
inheritance relationships to be modified as the program runs. In both languages generic functions are not
integrated with objects as they are in BeCecil. Both of these languages are also dynamically typed.

4.7 Abadi and Cardelli’s Imperative Object Calculus

Abadi and Cardelli have defined an imperative object calculus, Imp- [Abadi & Cardelli 95] [Abadi &
Cardelli 96, chapters 10 and 11], that consists of “objects”, single-dispatch methods (as in Smalltalk
[Goldberg & Robson 83] or Self [Ungar & Smith 87]), “method update, object cloning, and local
definitions” [Abadi & Cardelli 95, page 1]. They view method update as a “tamed” version of dynamic
inheritance. See Section B.10 for why we use storage tables instead of method update in BeCecil.

Although Imp- and BeCecil are not really comparable, because Imp- does not support multiple dispatch
or inheritance, one can use Imp- to test of the claim that BeCecil is able to express features of the OO
paradigm, by translating Imp- into BeCecil. The main interest is how to encode in BeCecil Imp- objects,
which are records of methods, since BeCecil’s objects are not usually thought of as containing their own
methods. However, one can encode an Imp- object as a generic function that has storage tables specialized
on each label of the record, where labels are considered to be objects that do not inherit from each other
[Castagna 95b, Section 4.3]. Each such storage table would contain a generic function that encodes the
corresponding method. This translation could be formalized with the following sugars. (In the sugars,a and
b are expressions,x is an identifier, andl is a label. The first is the sugar for the Imp- object expression,
which creates an object, and the third is for method replacement.)

[l1= (x1) b1, ..., ln= (xn) bn] ≡
{ gf I

I has storage(x@l1) := anon method(x1) { b1 }
...
I has storage(x@ln) := anon method(xn) { bn }
I

}, wherex andI are fresh.

a. l ≡
let I = a in (I(l))(I)

a. l (x) b ≡
a(l) := anon method(x) { b }

clone(a) ≡
let Ia = a
in { gf I

I has Ia
I

}, whereI is different thanIa.

Note that the anonymous methods in the translations do not specialize on their argument. This is because
the methods of Imp- are not multimethods, and so have no need of specialization. We do not include type
information in these sugars, because in Imp- the types are not declared, and because Imp- does not have
user-defined type names. We leave a closer connection between the type systems as future work.

The translation given above assumes some way to code labels as objects in BeCecil. Labels have the
property that they are not shadowed by locally-bound variables, and thus form a second namespace.
However, this can be easily handled by “name mangling” in the translation of labels into BeCecil identifiers.
For example, one might translate labels and identifiers of Imp- into BeCecil as follows.

ς

ς ς
ς

ς ς

ς

ς

ς ς

ς

ς
ς ς

ς

43

BeCecil Chambers & Leavens

l ≡ label_ l

x ≡ variable_ x

4.8 Block Structure

Few OO languages feature block structure to any significant extent. We know of no other statically typed
OO languages with both multimethods and block structure. (Dylan allows one to define methods in nested
blocks, but not classes or inheritance relationships. CLOS has lexical closures, but classes and inheritance
relationships are global.) C++ [Stroustrup 91] has some amount of block structure, in that one can declare
classes within blocks. However, C++ is designed to carefully avoid making static closures for methods.

The main OO languages that allow the full use of block structure are Simula 67 [Birtwistleet al. 73] and
Beta [Madsenet al. 93, Chapter 8]. In Beta there are “fewer restrictions on the use of block structure than
in Simula” [Madsenet al. 93, page 139]. Beta allows one to define local procedures and classes inside the
bodies of other definitions, including procedure and class definitions. We believe that BeCecil supports all
the patterns of programming that can be accomplished in Beta in a fairly direct way.

Most interesting to us is the interaction of block structure and inheritance. What happens when one defines
a class in a local contour that inherits from a class in a surrounding contour? If an instance of the class is
passed out of the local contour, is this inheritance relationship preserved? In Beta, the inheritance
relationship is preserved; for example, messages sent to the object are handled by the superclass if the
object’s own class does not override them. Similarly, in BeCecil, an inheritance relationship declared in an
inner block is preserved by objects created in that block. In BeCecil, the situation is a bit more complex,
because of the separation of types and classes, and because inheritance relationships can be declared apart
from the declaration of objects.

44

BeCecil Chambers & Leavens

5 Discussion and Conclusions

In this section we discuss the expressive power of BeCecil, the importance of separating the study of a
language’s dynamic semantics from its type system, and current work. We finish with some conclusions that
describe the contributions of this work.

5.1 The Expressive Power of BeCecil

BeCecil is an expressive language. In particular it is able to express in a direct fashion typical patterns of
OO programming, including encapsulating state, extending behavior without modifying existing code, and
subtype polymorphism. To demonstrate this claim, we have presented several examples, including those
that show how to program:

• points with state and object identity,

• grayscale colors that encapsulate state that satisfies an invariant,

• grayscale points that inherit state and behavior from grayscale colors and points,

• booleans and lists that use subtype polymorphism and abstract classes.

Such examples are standard in the literature on OO programming; e.g., the Boolean example is taken from
Smalltalk [Goldberg & Robson 83], and the list example is taken from Cook’s paper comparing ADT and
OO styles [Cook 90]. Such examples demonstrate that BeCecil qualifies as an OO programming language,
despite using different mechanisms than Smalltalk or C++ for objects, instance variables, message passing,
classes, and inheritance.

These new mechanisms support new patterns that are not possible or feasible with single-dispatching. For
example, multimethods solve part of the binary method problem [Bruceet al. 95] by giving efficient and
direct access to multiple objects when processing a message. BeCecil also supports programming in an
abstract data type (ADT) style, where one has complete control over the creation of instances of a class,
while still permitting the use of OO patterns within such a class. This is not possible in most purely OO
languages, and a mix of styles like this is not possible in most ADT languages either. However, the ability
to mix styles comes not from a large number of features, but from the combination of a very small number
of orthogonal features.

5.2 The Importance of Dynamic Semantics

Although we designed BeCecil so that it could be statically type checked, we also adopted as a design
principle that the language should make sense apart from its type system. While this technique is not new,
it does have several benefits. The main benefit is a separation of concerns, which allows each part of the
language design to be more highly polished. A prime example of this is the hide declaration in BeCecil. The
hide declaration can hide information, and can even prevent impersonation, without any help from the type
system. In this respect it differs from CLU [Liskovet al. 81] (and from theabstype mechanism of
Standard ML [Milneret al. 90]), which achieves information hiding primarily by a difference between the
types of objects as seen by the ADT implementation and its clients. BeCecil’s hide declaration can be seen
as a highly simplified and focussed version of the module mechanisms in CLOS or Dylan, which also
provide information hiding for multimethod languages without the aid of a type system. Another polished
feature of the BeCecil dynamic semantics is the treatment of inheritance in nested blocks.

5.3 Current Work

The most pressing current work is the proof that the type system of BeCecil is sound.

45

BeCecil Chambers & Leavens

We are also working on a module system for BeCecil that will allow separate typechecking of modules and
combining independently-developed modules [Chambers & Leavens 95]. This module system allows one
module to import another module, or to extend it. Modules that extend some other module are called
extension modules. Extension modules can, effectively, insert declarations into the same recursive
declaration sequence as the modules they extend. This is necessary because the dynamic semantics of
BeCecil can only permit extensions to objects declared in the same recursive declaration sequence, and
because the type system needs to restrict what can be done in nested blocks. Our previous work did not
formalize when one needed to use an extension module, and what privileges were gained by extension
module. It is now clear that the privilege gained by an extension module is the ability to effectively insert
declarations into the extended module’s recursive declaration sequence. Hence one needs to use an
extension module to gain this privilege, and does not need to otherwise.

5.4 Conclusions

We have described a new and simple mechanism for information hiding in multimethod languages. This
mechanism does not compromise extensibility and can preserve representation invariants. BeCecil also
supports programming in a mix of OO and ADT encapsulation styles. The ADT style gives the ability to
hide data structures and preserve invariants plus full control over objects that inherit from a given class (by
giving up some measure of extensibility). As CLOS and Dylan also have mechanisms for information
hiding, our contribution in this area is the simplicity of our mechanism, and the analysis of its semantics and
programming properties. This analysis settles the problem of information hiding for languages with
multimethods noted by Cook [Cook 90].

BeCecil also demonstrates how to achieve a high degree of extensibility in an OO language with
multimethods. In BeCecil, generic functions can be extended with new methods, and objects can be
extended with new inheritance relationships by adding new declarations. Existing declarations do not have
to be edited at all. We have also shown that it is possible for extensions to be made in nested blocks, where
one can declare new classes and new inheritance and subtyping relationships. In a nested block, the
extension mechanisms of BeCecil also allow one to customize and tailor generic functions defined in
surrounding blocks. While the mechanism for combining the methods of a generic function is based on the
λ&-calculus, we have worked out the details of method combination in the presence of nested blocks. A
main contribution is the semantics of static inheritance and subtyping in nested blocks, which is flexible and
entirely new.

BeCecil also demonstrates how simple and orthogonal features can interact in powerful and beneficial ways.
For example, generic functions can subsume several other mechanisms in programming languages,
including procedures (dispatched on zero arguments), singly-dispatched methods (dispatched on one
argument), and multimethods. The use of generic functions and the integration of generic functions and
objects allows one to program with higher-order procedures without sacrificing simplicity. Storage tables,
which are new with this work, are another example of such a feature, as they generalize variables, instance
variables (fields), and arrays.

Finally, BeCecil provides another way to understand OO programming languages, because it is an OO
programming language with very different mechanisms than the usual singly-dispatched languages. For
example, in BeCecil, an object does not contain either the methods that apply to it or its instance variables.
Despite this, we have shown that in such a language one can program standard OO examples in a
straightforward fashion. We believe that the study of such novel ways to achieve the benefits of OO
programming languages can only lead to increased understanding of the design issues and semantics of such
languages.

46

BeCecil Chambers & Leavens

Acknowledgments

This work has been done while Leavens was a visiting scholar at the University of Washington. Leavens’s
research is supported in part by an NSF grant (CCR-9593168) and by a faculty improvement leave from
Iowa State. Chambers’s work is supported in part by an NSF Young Investigator award (CCR-9457767) and
gifts from Sun Microsystems, IBM, Xerox, Pure Software, and Edison Design Group.

Thanks to Michael Ernst, Wilson Hsieh, Dave Grove, and Vassily Litvinov for comments and corrections
on earlier drafts. Thanks also to Vassily for several discussions, in particular about the integration of
methods and state. Thanks to other members of the Cecil group for other discussions of this work. Thanks
to the Computer Science and Engineering Department at the University of Washington for their support of
Leavens on his faculty improvement leave.

47

BeCecil Chambers & Leavens

References
[Abadi & Cardelli 95] Martín Abadi and Luca Cardelli. An imperative object calculus.Theory and Practice of Object

Systems, 1(3):151-166, 1995.
[Abadi & Cardelli 96] Martín Abadi and Luca Cardelli.A Theory of Objects. Springer-Verlag, New York, 1996.
[Ada 83] American National Standards Institute.Reference Manual for the Ada Programming Language. ANSI/MIL-

STD 1815A, February, 1983.
[Agrawal et al. 91] Rakesh Agrawal, Linda G. DeMichiel, and Bruce G. Lindsay. Static Type Checking of Multi-

Methods. In Andreas Paepcke, editor,OOPSLA’91 Conference Proceedings, Phoenix, AZ, October, 1991, volume
26, number 11 ofACM SIGPLAN Notices, pp. 113-128. ACM, New York, November, 1991.

[Birtwistle et al. 73] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug, and Kristen Nygaard.SIMULA Begin.
Auerbach Publishers, Philadelphia, Penn., 1973.

[Blascheck 94] Günther Blaschek.Object-Oriented Programming with Prototypes. Springer-Verlag, NY, 1994.
[Bobrow, et al. 86] Daniel G. Bobrow, Kenneth Kahn, George Kiczales, Larry Masinter, Mark Stefik, and Frank

Zdybel. CommonLoops: Merging Lisp and Object-Oriented Programming. In Norman Meyrowitz (editor),
OOPSLA ’86 Conference Proceedings, Portland, Oregon, September 1986, volume 21, number 11 ofACM
SIGPLAN Notices, pp. 17-29. ACM, New York, November, 1986.

[Bruceet al. 95] Kim Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Object Group, Gary T. Leavens, and
Benjamin Pierce. On Binary Methods.Theory and Practice of Object Systems, 1(3):221-242, 1995.

[Cardelli 88] Luca Cardelli. A Semantics of Multiple Inheritance.Information and Computation, 76(2/3):138-164,
February/March, 1988. An earlier version appeared in the 1984 Semantics of Data Types Symposium, LNCS 173,
pp. 51-66, Springer-Verlag, 1984.

[Castagnaet al. 92] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A Calculus for Overloaded Functions
with Subtyping. InProceedings of the 1992 ACM Conference on Lisp and Functional Programming, San Francisco,
June, 1992, pp. 182-192, volume 5, number 1 ofLISP Pointers. ACM, New York, January-March, 1992.

[Castagnaet al. 95] G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with subtyping.
Information and Computation, 117(2):115-135. Academic Press. February 1995.

[Castagna 95] Giuseppe Castagna. Covariance and contravariance: conflict without a cause.ACM Transactions on
Programming Languages and Systems,17(3):431-447, 1995.

[Castagna 95b] Giuseppe Castagna. A Meta-Language for Typed Object-Oriented Languages.Theoretical Computer
Science, 151(2):297-352. Elsevier Science. November 1995.

[Castagna 96] Giuseppe Castagna. Integration of Parametric and “ad hoc” Second Order Polymorphism in a Calculus
with Subtyping.Formal Aspects of Computing,8(3):247-293, 1996.

[Castagna 96b] Giuseppe Castagna. Instance variables specialization in object-oriented programming, 1996. Obtained
from ftp://ftp.ens.fr/pub/dmi/users/castagna/attributes.ps.gz

[Chambers 92] Craig Chambers. Object-Oriented Multi-Methods in Cecil. In O. Lehrmann-Madsen, editor,ECOOP
’92 Conference Proceedings, Utrecht, the Netherlands, June/July, 1992, volume 615 ofLecture Notes in Computer
Science, pp. 33-56. Springer-Verlag, Berlin, 1992.

[Chambers 93] Craig Chambers. Predicate Classes. InECOOP ’93 Conference Proceedings, Kaiserslautern,
Germany, July, 1993, volume 707 ofLecture Notes in Computer Science, pp. 268-296. Springer-Verlag, Berlin,
1993.

[Chambers 95] Craig Chambers. The Cecil Language: Specification and Rationale: Version 2.0. Department of
Computer Science and Engineering, University of Washington, December, 1995. http://www.cs.washington.edu/
research/projects/cecil/www/Papers/cecil-spec.html

[Chambers & Leavens 94] Craig Chambers and Gary T. Leavens. Typechecking and Modules for Multi-Methods. In
OOPSLA ’94 Conference Proceedings, Portland Oregon, October, 1994, volume 29, number 10 ofACM SIGPLAN
Notices, pp. 1-15. ACM, New York, October 1994.

[Chambers & Leavens 95] Craig Chambers and Gary T. Leavens. Typechecking and Modules for Multi-Methods.
ACM Transactions on Programming Languages and Systems, 17(6):805-843. November, 1995.

[Chambers & Leavens 96] Craig Chambers and Gary T. Leavens. BeCecil, A Core Object-Oriented Language with
Block Structure and Multimethods: Semantics and Typing. Department of Computer Science and Engineering,
University of Washington, UW-CSE-96-12-02, December 1996. Also Department of Computer Science, Iowa State
University, TR #96-17, December 1996. ftp://ftp.cs.iastate.edu/pub/techreports/TR96-17/TR.ps.Z; the appendix
sections only are in ftp://ftp.cs.iastate.edu/pub/techreports/TR96-17/appendix.ps.Z.

48

BeCecil Chambers & Leavens

[Clinger & Rees 91]William Clinger and Jonathan Rees (Editors).Revised4 Report on the Algorithmic Language
Scheme. November 1991. ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/standards/r4rs.ps.gz

[Cook 90] William Cook. Object-Oriented Programming versus Abstract Data Types. In J.W. de Bakker, W.P. de
Roever, and G. Rozenberg, editors, Foundations of Object-Oriented Languages, REX School/Workshop
Proceedings, Noordwijkerhout, the Netherlands, May/June, 1990, volume 489 ofLecture Notes in Computer
Science, pp. 151-178. Springer-Verlag, New York, 1991.

[Dean et al. 96] Jeffrey Dean, Greg DeFouw, David Grove, Vassily Litvinov, and Craig Chambers. Vortex: An
Optimizing Compiler for Object-Oriented Languages. InProceedings of the 1996 ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA ’96), pp. 83-100, San Jose, CA, October
1996.

[Feinberget al. 97] Neal Feinberg, Sonya E. Keene, Robert O. Mathews, and P. Tucker Withington.The Dylan
Programming Book. Addison-Wesley Longman, Reading, Mass., 1997.

[Friedmanet al. 92] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes.Essentials of Programming
Languages. McGraw-Hill, New York, NY, 1992.

[Ghelli 91] Giorgio Ghelli. A Static Type System for Message Passing. In Andreas Paepcke, editor,OOPSLA ’91
Conference Proceedings, Phoenix, AZ, October, 1991, volume 26, number 11 ofACM SIGPLAN Notices, pp. 129-
145. ACM, New York, November, 1991.

[Goguen & Meseguer 87] Joseph A. Goguen and Jose Meseguer. Order-Sorted Algebra Solves the Constructor-
Selector, Multiple Representation and Coercion Problems. InSymposium on Logic in Computer Science, Ithaca, NY,
pp. 18-29. IEEE Press, NY, June, 1987.

[Goldberg & Robson 83] Adele Goldberg and David Robson.Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Reading, Mass., 1983.

[Goslinget al. 96] James Gosling, Bill Joy, Guy Steele, Guy L. Steele.The Java Language Specification. Addison-
Wesley, Reading, Mass., 1996.

[Gunter 92] Carl Gunter.Semantics of Programming Languages. MIT Press, Cambridge, Mass., 1992.
[Harbison 92] Samuel P. Harbison.Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1992.
[Harrison & Ossher 93] William Harrison and Harold Ossher, Subject-Oriented Programming (A Critique of Pure

Objects). In Andreas Paepcke, editor,OOPSLA ’93 Conference Proceedings, Washington, DC, Sept.-October, 1993,
volume 28, number 10 ofACM SIGPLAN Notices, pp. 411-428. ACM, New York, October, 1993.

[Leavens 91] Gary T. Leavens. Modular Specification and Verification of Object-Oriented Programs. IEEE Software
8(4), pp. 72-80, July, 1991.

[Liskov et al.81] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert Scheifler, and
Alan Snyder.CLU Reference Manual. Volume 114 ofLecture Notes in Computer Science, Springer-Verlag, NY,
1981.

[Madsen et al. 93] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard.Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley, Reading, Mass., 1993.

[Meyer 88] Bertrand Meyer.Object-Oriented Software Construction. Prentice Hall, New York, 1998.
[Meyer 92] Bertrand Meyer.Eiffel: The Language. Prentice Hall, New York, 1992.
[Milner et al. 90] Robin Milner, Mads Tofte, and Robert Harper.The Definition of Standard ML. MIT Press,

Cambridge, MA, 1990.
[Morris 73] James H. Morris, Jr. Protection in Programming Languages.Communications of the ACM,16(1):15-21,

January, 1973.
[Moon 86] David A. Moon. Object-Oriented Programming with Flavors. In Norman Meyrowitz (editor),OOPSLA ’86

Conference Proceedings, Portland, Oregon, September 1986, volume 21, number 11 ofACM SIGPLAN Notices, pp.
1-8. ACM, New York, November, 1986.

[Mugridgeet al. 91] W. B. Mugridge, J. G. Hosking, and J. Hamer. Multi-Methods in a Statically-Typed Programming
Language. Technical report #50, Department of Computer Science, University of Auckland, 1991. Also appears in
Pierre America, editor, ECOOP ’91 Conference Proceedings, Geneva, Switzerland, July, 1991, volume 512 of
Lecture Notes in Computer Science; Springer-Verlag, New York, 1991.

[Nelson 91] Greg Nelson, editor.Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1991.
[Ossheret al. 95] Harold Ossher, Matthew Kaplan, William Harrison, Alexander Katz, and Vincent Kruskal. Subject-

Oriented Composition Rules. In OOPSLA’95 Conference Proceedings, pages 235–250, Austin, TX, October 1995.
[Paepcke 93] Andreas Paepcke.Object-Oriented Programming: The CLOS Perspective. MIT Press, 1993.

49

BeCecil Chambers & Leavens

[Reenskaug & Anderson 92] Trygve Reenskaug and Egil P. Anderson. System Design by Composing Structures of
Interacting Objects. InProceedings of the 1992 European Conference on Object-Oriented Programming, pages
133–152, 1992.

[Reynolds 80] John C. Reynolds. Using Category Theory to Design Implicit Conversions and Generic Operators. In
Neil D. Jones (editor),Semantics-Directed Compiler Generation, Proceedings of a Workshop, Aarhus, Denmark, pp.
211-258. Volume 94 of Lecture Notes in Computer Science, Springer-Verlag, NY, 1980.

[Rouaix 90] Francois Rouaix. Safe Run-Time Overloading. InConference Record of the Seventeenth Annual ACM
Symposium on Principles of Programming Languages, San Francisco, CA, pp. 355-366. ACM, New York, 1990.

[Shalit 97] Andrew Shalit.The Dylan Reference Manual: The Definitive Guide to the New Object-Oriented Dynamic
Language.Addison-Wesley, Reading, Mass., 1997.

[Shilling & Sweeney 89] John J. Shilling and Peter F. Sweeney. Three Steps to Views: Extending the Object-Oriented
Paradigm. In Norman Meyrowitz, editor,OOPSLA ’89 Conference Proceedings, New Orleans, Louisiana, October
1989, volume 24, number 10 ofACM SIGPLAN Notices, pp. 353-361. ACM, New York, October, 1989.

[Snyder 86] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming Languages. In Norman
Meyrowitz (editor),OOPSLA ’86 Conference Proceedings, Portland, Oregon, September 1986, volume 21, number
11 ofACM SIGPLAN Notices, pp. 38-45. ACM, New York, November, 1986.

[Steele 90] Guy L. Steele Jr.Common Lisp: The Language (second edition). Digital Press, Bedford, MA, 1990.
[Stroustrup 91] Bjarne Stroustrup.The C++ Programming Language: Second Edition. Addison-Wesley, Reading,

Mass., 1991.
[Ungar & Smith 87] David Ungar and Randall B. Smith. Self: The Power of Simplicity. In Norman Meyrowitz, editor,

OOPSLA ’87 Conference Proceedings, Orlando, FLorida, volume 22, number 12, ofACM SIGPLAN Notices, pp.
227-241. ACM, New York, December, 1987.

[Van Hilst & Notkin 96] Michael Van Hilst and David Notkin. Using C++ Templates to Implement Role-Based
Designs. In Proceedings of 2nd International Symposium on Object Technologies for Advanced Software, March
1996.

[Winskel 93] Glynn Winskel.The Formal Semantics of Programming Languages. Foundations of Computer Science
Series, MIT Press, Cambridge, Mass., 1993.

[Wirfs-Brock & Johnson 90] Rebecca J. Wirfs-Brock and Ralph E. Johnson. A survey of current research in object-
oriented design.Communications of the ACM, 33(9):104–124, September 1990.

50

BeCecil Chambers & Leavens

Appendix A Dynamic Semantics

The dynamic semantics of BeCecil is mainly concerned with the following domains: objects, inheritance
relations, generic function cases, closures, storage tables, and contexts. Objects are characterized by their
identity, their inheritance relation, and their sets of cases. Each object has two sets of cases: a set of
invocables and a set of assignables; methods and storage tables are invocable, storage tables and acceptors
are assignable. Closures are used to represent both methods and acceptors. An object’s set of cases together
with its inheritance relation can be used as a generic function. Objects can be named by declarations, and
nothing else is a first-class domain in BeCecil. Objects can act as classes if they are statically known (i.e.,
named in an object declaration).

The domains used to describe the dynamic semantics are summarized in Figure A-1 below. The sequents
used in the semantics are summarized in Figures A-2 and A-15. The rules in general (for example, see
Figure A-3) have a label enclosed in square brackets ([]), several sequents above a horizontal line, and a
single sequent below the line, and a set of non-sequent side conditions to the right following the word
“where” [Winskel 93]. The sequents above the line are hypotheses of the rule, and the sequent below the
line is its conclusion. A rule with no hypotheses is an axiom (or axiom scheme). The side conditions must

v ∈ ExpressibleValue = Object
vv ∈ ValueVec = ExpressibleValue*
d ∈ DenotableValue =class(Object) + arg(Object)
s ∈ StorableValue = Object
o ∈ Object = ObjectId× Inherits× InvocableSet× AssignableSet
id ∈ ObjectId = Nat
ids ∈ ObjectIdSet = Powerset(ObjectId)
idv ∈ ObjectIdVec = ObjectId*
ι ∈ Inherits = FiniteRel[ObjectId, ObjectId]
is ∈ InvocableSet = PowerSet(Case)
ags∈ AssignableSet = PowerSet(Case)
c ∈ Case = ObjectId*× Branch
cs ∈ CaseSet = PowerSet(Case)
b ∈ Branch = Closure+ StorageTable
k ∈ Closure =closure(Identifier* × Block× Context)
st ∈ StorageTable =storage(Location)
t ∈ Table = table(FiniteFun[ObjectId*, StorableValue] × StorableValue)
aa ∈ ActualArgPair = ExpressibleValue× Powerset(ObjectId)
aav∈ ActualArgPairVec = ActualArgPair*
κ ∈ Context = Environment× Inherits
η ∈ Environment = FiniteFun[Identifier, DenotableValue]
ε ∈ Elaborated = ObjIdEnv× Inherits× HasEnv
ω ∈ ObjIdEnv = FiniteFun[Identifier, ObjectId]
h ∈ HasEnv = FiniteFun[ObjectId, InvocableSet× AssignableSet]
oc ∈ ObjCounter =ocounter(ObjectId)
σ ∈ Store = FiniteFun[Location, StoredValue]
sv ∈ StoredValue = ObjCounter+ Table
l ∈ Location = Nat

Figure A-1: Domains for the dynamic semantics of BeCecil. The domainsFiniteFunand
FiniteRel, and operations onStore, Location, andEnvironment are described in Appendix
E.

51

BeCecil Chambers & Leavens

be satisfied for the rule to be validly applied; if they are, and if the hypotheses hold, then the conclusion
holds.

In what follows we describe the semantic domains that are not concerned with type checking, and then
describe the dynamic semantics of BeCecil.

A.1 Dynamic Semantics Domains, Auxiliary Sequents, and Functions

This section presents more explanation of the domains in the dynamic semantics, and describes various
auxiliary functions and sequents used in the semantic rules. We also use some fairly standard notations for
finite functions, stores, environments, and relations; details for these domains are found in Appendix E.

A.1.1 Objects and Object Identities

An object has four attributes: its identity, its direct inheritance relation, its invocables set, and its assignable
set. No two objects have the same identity.

We also writeoid(o) for the identity ofo.
oid: Object→ ObjectId
oid(id, ι, is) = id

Figure A-2: Table of auxiliary sequents for the dynamic semantics. A few helping se-
quents have been omitted. Sequents that define the semantics of each category in the un-
typed subset of BeCecil syntax can be found in Figure A-15. For each kind of sequent, the
types it relates are shown on three parts on its row: what it assumes, what it works on (or
relates), and what it produces. Sequents that do not produce any result can be thought of
as producing a boolean result (true if it is provable), or as relations on their arguments.

type

prototype sequent
assumes
(inherits)

works on
(arguments)

produces
(synthesizes)

defined
in Figure

ι |− id1 ≤inh id2 Inherits ObjectId× ObjectId A-3

|− id1 ∈ancestors(o) ObjectId× Object A-4

σ |− invoke(b,vs) ➪ v/σ′ Store Branch
× ExpressibleValue*

ExpressibleValue
× Store

A-6

 σ |− assign(b,vs,s) ➪ σ′ Store Branch
× ExpressibleValue*
× StorableValue

Store A-8

ι |− c1 ≤inh c2 Inherits Case× Case A-9

ι |− c1 overrides c2 Inherits Case× Case A-10

ι |− c applies-to aav Inherits Case × ActualArgPair* A-11

(ι,aav) |− c is-best-for cs Inherits
× ActualArgPair*

Case× PowerSet(Case) A-13

52

BeCecil Chambers & Leavens

A.1.2 Direct Inheritance, Inheritance Relations, and Ancestry

A direct inheritance relation,ι, is a binary relation on object identities. It models information from
inheritance declarations in BeCecil.

For example, ifLarch_rep denotes the objectoL and if SpecLang_rep denotes the objectoS, then the
declaration below would be recorded by the direct inheritance relation{(oid(oL), oid(oS))}.

Larch_rep inherits SpecLang_rep

The semantics, given in Figure A-3, extends a direct inheritance relation,ι, to be a reflexive and transitive
relation,≤inh, on object identities and objects. This relation is called aninheritance relation. The notation
used,ι |− id1 ≤inh id2, means that, according toι, id1 is either the same asid2, or id1 inherits (directly or
indirectly) fromid2.

As described in Appendix E.4,cyclic(ι) is true whenι is a cyclic relation, and is the noncyclic union
operator for relations.*

It is often convenient to think of an inheritance relation as a directed graph (with objects identities as nodes,
and direct inheritance relationships as directed edges). For example, Figure A-5 shows an inheritance
relation among objects as such a directed graph. In this picture, for example,text_rep has as ancestors
text_rep , string_rep , font_rep , any , andnothing .

From the direct inheritance relation inside an object, one can determine the object’sancestors. The rule for
determining whether an object identity is an ancestor of another object is given in Figure A-4.

A.1.3 Overview of Generic Functions, Invocables, Assignables, and Generic Function Attributes

A generic function is a function that is generic in the sense that it can work with several different classes of
arguments. A generic function exhibitsad hoc as opposed to parametric polymorphism. In languages like
CLOS, Dylan, and Cecil, a generic function is an abstraction of a set of methods, together with an

* We disallow cyclic inheritance just to be conventional; there is no necessary reason for disallowing it in BeCecil.

Figure A-3: Axioms and rules for inheritance relationships.

Figure A-4: Rule for determining membership in an object’s ancestry.

[inh-base] ι |− id1 ≤inh id2 where(id1,id2) ∈ ι

[inh-reflex]
ι |− id ≤inh id

[inh-trans]

ι |− id1 ≤inh id2 , ι |− id2 ≤inh id3
—————————————————————————

ι |− id1 ≤inh id3

[ancestors]
ι |−id2 ≤inh id1

——————————————————
|− id1 ∈ancestors(id2, ι, is)

∪

53

BeCecil Chambers & Leavens

inheritance relation. In BeCecil, each object can be treated as a generic function, because it contains an
inheritance relation and possibly empty sets of methods, storage tables, and acceptors. The inheritance
relation is used in selecting which of these apply to a given tuple of arguments, and in selecting which one
of these should be run.

In BeCecil, both methods and storage table attributes can handle applications. Recall that, for brevity, we
call something aninvocable if it is method or storage table attribute. Storage table and acceptor attributes
can handle assignments, hence they are calledassignables. Note that a storage table attribute is both
invocable and assignable. A method, storage table, or acceptor attribute is modeled is called acase.

In the semantics the domain for cases is a pair that contains a tuple of object identities and abranch. A
branch is either a closure or a storage table. An case’s tuple of object identities is called its tuple of
specializers; a generic function uses these specializers to determine the classes of objects to which the
corresponding branch may be applied. Closures are used to model branches that are extracted from both
method and acceptor attributes; storage tables are used for storage table attributes. For example, the method
below is be modeled by an case with (int_rep , int_rep) as its specializers, and a branch that is a
closure.

method(x@int_rep, y@int_rep) { less(plus(x,y), 3) }

A.1.4 Closures and Storage Tables

A closure consists of: formals (a tuple of identifiers), a block (code to execute), and a context. The process
of invoking a closure is described by the rule given in Figure A-6. To invoke a closure, a new environment,
η′, is formed by binding the actuals to the formals, with each formal shadowing bindings in the
environment,η, that is extracted from the method’s closure. (Thus, this gives static scoping.) The formals
must all have distinct names, otherwise the side condition that forms the environmentη′ will not be satisfied,
because the strict equality (=s) requires that both sides be proper (non-) for the relationship to be true. In
this context, the body of the method is evaluated, using the rule for blocks given in Figure A-18, to produce
a value and a new store.

A storage table is modeled by a location containing atable. A storage table can be “invoked” with ann-
tuple of arguments; such ann-tuple is called akey for the table. Keys are compared pointwise; that is, two
keys are considered equal if they have the same length and the corresponding components have the same
object identity. To each key the table associates avalue. Informally, a table can be pictured (see Figure A-
7) as havingn+1 columns, and as many rows as there are keys that have been defined, plus a special “default
key” that is associated to the table’s initializer’s value (the “default value”). In each row there is ann+1-
tuple, consisting of a key and its associated value. No two rows have the same key. To invoke the table for

any

int_rep float_rep

GenericFun_repnumber_rep

string_rep font_rep

text_rep

nothing

Figure A-5: A picture of an inheritance relation.

⊥

54

BeCecil Chambers & Leavens

a given key (i.e., to read the table), one finds the row with the same key, and returns the associated value in
that row; if such a row cannot be found, the default value is returned (see Figure A-6). An example, pictured
in Figure A-7, is a table that accepts two arguments, whose tuple of specializers is (string_rep ,
int_rep).

Storage tables can also process assignments. Using the picture in Figure A-7, to assign to a table for a given
key, one finds the row with the same key, and places the desired value in it, discarding the old value; if such
a row cannot be found, a new row is added that associates the given key to the given value. In the formal
model, given in Figure A-8, the whole table is replaced in the store’s mapping for the storage table’s
location.

Figure A-6: Rule and axioms for invocation. The symbol =s means strict equality, as ex-
plained in the text.

[invoke

closure]

(η′,ι) / σ |− B ➪ v/σ′
—————————————————————————————————————
σ |− invoke(closure((I1,...,In), B, (η,ι)), (v1,...,vn)) ➪ v/σ′

wheren ≥ 0,
η′ =sη bind((I1,...,In),

(arg(v1),...,arg(vn))

[invoke

storage

1]

σ |− invoke(storage(l), (v1,...,vn)) ➪ s/σ
wheren ≥ 0,
lookup(σ, l) =s table(f, sd),
((oid(v1),...,oid(vn)):s) ∈f

[invoke

storage

2]

σ |− invoke(storage(l), (v1,...,vn)) ➪ sd/σ
wheren ≥ 0,
lookup(σ, l) =s table(f, sd),
(oid(v1),...,oid(vn)) ∉dom(f)

∪

idint,4idstring,45

idstring,227 idint,32

idstring,541 idint,3

default key

idfloat,4.7

idfloat,0.0

idfloat,3.14

idfloat,0.0

Figure A-7: A picture of a storage table. Hereidstring,45 is the identity of an object that
inherits fromstring_rep , andidint,4 is the identity of an object that inherits from
int_rep .

Figure A-8: Axiom and rules for processing assignments.

[assign

storage]
σ |− assign(storage(l), (v1,...,vn), s) ➪ σ′

wheren ≥ 0,
lookup(σ, l) =s table(f, sd)
t = table(f[(oid(v1),...,oid(vn)) := s], sd),
σ′ = σ[l := t]

[assign

acceptor]

(η′,ι) / σ |− B ➪ v/σ′
————————————————————————————
σ |− assign(closure((I1,...,In,In+1),B,(η,ι)),

(v1,...,vn), s) ➪ σ′

wheren ≥ 0,
η′ =sη bind((I1,...,In,In+1),

(arg(v1),...,arg(vn),arg(s))
∪

55

BeCecil Chambers & Leavens

A.1.5 The Model of Acceptors

The case that models an acceptor attribute has a branch that is a closure. This closure takes the value given
in an assignment as its last argument. For example, consider the following acceptor attribute.

acceptor(p@Point_rep) := v { x(p) := v; y(p) := v }

This attribute would be modeled by a case such as the following, whereidPoint_rep is the identity of the
specializer classPoint_rep , B is the block that forms the body of the acceptor (the code itself), andκ is
an appropriate context.

((idPoint_rep), closure((p,v),B,κ))

Note that the tuple of specializers in the above case has a length that is one less than the number of formals
for the closure. This is because the value is passed as the last argument, but is not involved in determining
applicability. The formal rule for how an acceptor processes an assignment is given in Figure A-8.

A.1.6 Orderings on Cases and Case Sets

Given a case,c, we write specializers(c) for the tuple of specializers ofc.
specializers: Case→ ObjectId*
specializers(idv, b) = idv

It is often convenient to describe the set of specializer tuples of a set of cases. The following abbreviation
is an instance of the general pointwise extension of functions to sets.

specializers(is) ≡ {idv | c ∈ cs, specializers(c) = idv}

As in [Chambers & Leavens 95], we extend an inheritance relation to a partial order on cases. This relation
compares the specializers of cases pointwise. The rule for this relation is given in Figure A-9. This ordering
reflects the method lookup semantics in Cecil. (Other rules might be needed to model other languages, such
as CLOS or Dylan.) For a given direct inheritance relation,ι, a casec1 overrides c2 whenc1 is strictly more
specific in this ordering thanc2. The rule for this relation is given in Figure A-10.

Two casesclash when they have exactly the same tuples of specializers. We use the concept of nonclashing
sets of cases to explicitly define what the disjoint union () and overriding () notations for finite functions
(from Appendix E) mean for case sets. These are equivalent definitions, because a set of cases is also a finite
relation between tuples of specializers and branches, as it is a set of pairs of specializer tuples and branches.

nonclashing: Powerset(Case) × Powerset(Case) → Boolean
nonclashing(cs1, cs2) = ((specializers(cs1) ∩ specializers(cs2)) = {})

Figure A-9: Rule for extending the inheritance ordering to cases.

Figure A-10: Rule for when a case overrides another.

[inh-case]
ι |− id1,1 ≤inh id2,1, ...,ι |− id1,n ≤inh id2,n

————————————————————————————————
ι |− ((id1,1,...,id1,n), b1) ≤inh ((id2,1,...,id2,n), b2)

wheren ≥ 0

[overrides]
ι |− c1 ≤inh c2

——————————————
ι |− c1 overrides c2

wheren ≥ 0,
specializers(c1) ≠ specializers(c2)

∪. ∪

56

BeCecil Chambers & Leavens

⋅ ⋅: Powerset(Case) × Powerset(Case) → Powerset(Case)
cs1 cs2 = if nonclashing(cs1, cs2) then cs1 ∪ cs2 else

⋅ ⋅: Powerset(Case) × Powerset(Case) → Powerset(Case)
cs1 cs2 = cs2 ∪ {c | c ∈cs1, specializers(c) ∉ specializers(cs2) }

A.1.7 Actual Arguments and Applicability

An actual argument pair,(v, idsdir), consists of an expressible value,v, and a set of object identities. The set
of object identities is theset of directed classes, idsdir, which is either empty or contains the classes named
in the directed form of an actual argument.

A casec applies toa tuple of actual argument pairs if for each actual argument pair, some ancestor of the
value inherits from the corresponding specializer ofc and if, where the corresponding directed set is
nonempty, some directed class inherits from the corresponding specializer. The rules for this are defined in
Figures A-11 and A-12.

For example, a method that has (int_rep , int_rep) as its specializers is applicable to the actuals (3, 7)
and (3@int_rep , 7@int_rep). However, according to the inheritance relation in Figure A-5, that
method would not be applicable to the actuals (3@int_rep , 4.7@float_rep), or to the actuals
(3@int_rep , 4.7@int_rep) because in both cases the second value has no ancestors that inherit the
method. If the actuals were (3, 7@number_rep), then again the method would not be applicable, but this
time because the directed class set given for the second actual has no members that inherit the method. On
the other hand, a method that had (int_rep , number_rep) as its specializers would be applicable to all
of these actuals. (There is more discussion on the subtleties of applications in Appendix B.)

A.1.8 Processing Applications and Assignments

To process an application of an object’s generic function value to a tuple of actual argument pairs, the object
can be thought of as acting as follows. It first looks at each case in its invocable set to see which ones are
applicable to the tuples of actual argument pairs extracted from the actuals. In this subset of applicable
cases, it looks for a unique case that overrides all of the other cases. (For both applicability and for ordering
cases, it uses its own inheritance relation. The inheritance relation of the actual arguments is used only to
determine their ancestry.) The rules for finding the most specific case in a set, given a direct inheritance

∪. ⊥
∪. ⊥

∪
∪

Figure A-11: Rule for applicability of cases to tuples of actual argument pairs.

Figure A-12: Treatment of directed sets for applicability.

[applies-to]

|− id1,a ∈ancestors(v1), ..., |− idn,a ∈ancestors(vn),
ι |− id1,a ≤inh id1 , ...,ι |− idn,a ≤inh idn,

ι |− idsdir,1 ok-dir id1 , ...,ι |− idsdir,n ok-dir idn
—————————————————————————————————————
ι |− ((id1,...,idn),b) applies-to((v1,idsdir,1), ..., (vn,idsdir,n))

wheren ≥ 0

[ok-dir-

empty]

ι |− {} ok-dir id

[ok-dir-

directed]

ι |− id′ ≤inh id
—————————————

ι |− ids ok-dir id
whereid′ ∈ ids

57

BeCecil Chambers & Leavens

relation and a tuple of actual argument pairs, are given in Figures A-13 and A-14. Once found, the unique,
best case is invoked as described above (see Section A.1.4).

There are two errors that can arise in the processing of an application. If there are no applicable cases, then
the error “message not understood” occurs. If there is not a unique most-specific case, then the error
“message ambiguous” occurs. These errors are not modeled explicitly by the semantics, instead the
processing of such an application will get “stuck” because the rule [is-best-for] will not apply.

The generic function of an object can also process an assignment. To do this for a tuple of actual argument
pairs and a desired value, it acts as follows. If first goes through the process of determining a unique most-
specific case. It does this as described above with the key of the assignment playing the role of the actual
parameters; however, it uses its set of assignables instead of its set of invocables. (Note that a storage table
will be in both sets.) Once found, the unique most-specific case is given control, as described in Figure A-
8. Errors can occur if there is not a unique most-specific case, as for processing an application.

A.1.9 Contexts, Environments, and Denotable Values

A context records information from declarations that can be used by other declarations or expressions. A
context is modeled as a pair of an environment and a direct inheritance relation. Environments map
identifiers to denotable values (see Appendix E.3 for more details on environments). Denotable values are
objects.

A.1.10 Elaborateds

An elaboratedrecords information from the elaboration of declarations. It is a kind of context used
internally by the semantics. An elaborated is capable of recording information from any sequence of
declarations. An elaborated is modeled as a triple of an “object-id-environment,” a direct inheritance
relation, and a “has-environment.” An object-id-environment is a finite function from identifiers to object
identities. A has-environment is a finite function from object identities to pairs of invocable and assignable
sets; this tracks information from the extension (has) declarations in BeCecil.

The operator is used to collapse the elaborateds produced by declarations at the same level into a single
elaborated. The object-id-environment is merged using the disjoint-union operator, , which disallows

Figure A-13: Rule for when a case is the unique most-specific that applies to a tuple of ac-
tual argument pairs.

Figure A-14:Rules for when one case is better than another. Note that these rules are mu-
tually exclusive.

[is-best-for]

(ι, aav) |− c better-than c1,
...,

(ι, aav) |− c better-than cn
——————————————————
(ι, aav) |− c is-best-for cs

wherecs′ = {c′ | c′ ∈is, ι |− c applies-to aav},
c ∈cs′,
{c1, ..., cn} = cs′,
n ≥ 1

[better-

than-eq]

(ι, aav) |− c better-than c

[better-

than]

ι |− c overrides c′
—————————————————
(ι, aav) |− c better-than c′

wherec ≠ c′

∪.

∪.

58

BeCecil Chambers & Leavens

duplicate object bindings. The non-cyclic union operator, , is used to merge the direct inheritance
relations. However, for the has-environment, if the same object identity is bound to two pairs of invocable
and assignable sets, then the sets are simply unioned together (is = is1 ∪ is2 andags = ags1 ∪ ags2). If we
had used the disjoint union operator for this, then clashes among the invocables or assignables bound to the
same identifier would cause errors at this time (that is, when two elaborateds are combined). Instead, the
regular union allows such potential errors, which may generate a “message ambiguous” error if, for
example, two clashing invocables are both applicable to a given tuple of actual argument pairs.

⋅ ⋅: Elaborated× Elaborated→ Elaborated

(ω1, ι1, h1) (ω2, ι2, h2) = (ω1 ω2, ι1 ι2, blendGfs(h1, h2))
blendGfs: HasEnv× HasEnv→ HasEnv

blendGfs(h1, h2) = {(id:(is,ags)) | (id:(is1,ags1)) ∈h1, (id:(is2,ags2)) ∈h2, is = is1 ∪ is2, ags = ags1 ∪ ags2}
 {(id:(is1,ags1)) | (id:(is1,ags1)) ∈h1, id ∉dom(h2)}
 {(id:(is2,ags2)) | (id:(is2,ags2)) ∈h2, id ∉dom(h1)}

A.1.11 Object Counters and the Store

Thestore maps locations to storable values. A storable value is either an object counter or a storage table.
There is only one location that stores an object counter,l idcounter. The value of the counter stored in this
location is used to assign unique identities to objects.

Locations that hold storage tables should be thought of as pointers to blocks of storage reserved for storing
the table.

A.2 Dynamic Semantics

In this section we explain the dynamic semantics rules given in Figures A-16 through A-25. The order of
presentation follows the order of the syntax of Figure 2-1. The rules form a “big step” semantics [Gunter
92] for BeCecil. The judgements used in this semantics are summarized in Figure A-15. The idea behind
the different kinds of arrows used in the judgements is that the arrows of the form➪ are used for judgements
that yield values, arrows of the form➤ are used for judgements that elaborate declarations and yield
contexts or elaborateds, and arrows of the form➨ are use for judgements that yield actual-argument pairs.
The slashes in sequents are used to separate parts of inherited and synthesized attributes. Thus a sequent of
the formκ/σ1 |− B ➪ v/σ2 can be read as: “assuming the contextκ and the storeσ1, one can prove thatB
evaluates to the expressible valuev, with side-effects recorded in the new storeσ2.”

A.2.12 Programs

The dynamic semantics for BeCecil programs is given in Figure A-16. The evaluation of a program
produces an expressible value and a final store.

A BeCecil program consists of a recursive declaration sequence, which represent a “standard prelude”
(containing objects that are considered to be built-in to the language), and a block. The declarations in the
standard prelude are elaborated starting from an empty context with an initial store,σinit. The initial store is

∪

∪. ⊥
∪. ∪. ∪

⊥

∪.

∪.

Figure A-16: Dynamic semantics for programs. The conditions are explained in the text, as
are details of the sequents.

[program]

({},{})/σinit |− RDS➤ κ/σpre,
κ/σpre |−B ➪ v/σ′

—————————————————————
|− RDS; B ➪ v/σ′

where
σinit = {l idcounter: ocounter(0)}

59

BeCecil Chambers & Leavens

empty except that it maps the location for the object counter to an object counter containing 0. The details
of the elaboration process are described below. This elaboration produces a context,κ, and store,σpre, which
are used to evaluate the block.

A.2.13 Recursive Declaration Sequences

The elaboration of a recursive declaration sequence in an assumed context and store produces a context and
a new store. The formal rule is given in Figure A-17.

Technically, the semantics of forming the context,(η′,ι′), from a recursive declaration sequence is a bit
tricky. The main trick that allows mutual recursion among the declarations is that the context assumed for

Figure A-15: Table of sequents for the dynamic semantics. This table includes a sequent
for each syntactic category; see Figure A-2 for auxiliary sequents. For each kind of se-
quent, the types it relates are shown in three parts on its row: what it assumes, what it
works on, and what it produces (or, in the jargon, what it inherits, what syntactic categories
it manipulates, and what it synthesizes).

type

prototype sequent
assumes
(inherits)

works on
(category)

produces
(synthesizes)

defined in
Figure

|− P ➪ v/σ Program ExpressibleValue
× Store

A-16

κ/σ |− RDS➤ κ′/σ′ Context
× Store

Recursive-
Declaration-
Sequence

Context
× Store

A-17

κ/σ |− B ➪ v/σ′ Context
× Store

Block ExpressibleValue
× Store

A-18

κ/σ |− D* ➤ ε/σ′ Context
× Store

Declaration* Elaborated× Store A-19

κ/σ |− D ➤ ε/σ′ Context
× Store

Declaration Elaborated× Store A-20

η |− CN ➪classo Environment Class-Name Object A-21

κ/σ |− GF ➪ (is,ags)/σ′ Context
× Store

Generic-Function InvocableSet
× AssignableSet
× Store

A-22

κ/σ |− E ➪ v/σ′ Context
× Store

Expression ExpressibleValue
× Store

A-23

η |− I ➪ v Environment Identifier ExpressibleValue A-24

κ/σ |− AA➨(v, ids)/σ′ Context
× Store

Actual-Argument ExpressibleValue
× Powerset(ObjectId)
× Store

A-25

60

BeCecil Chambers & Leavens

the elaboration of the declaration sequence,(η′,ι′), is the same context as that produced by as part of the
result of the rule. (One way to think of this is that the reader must pick(η′,ι′) to satisfy the rule.)

The elaboration of a declaration sequence,D* , like the elaboration of an individual declaration, does not
produce a context, but an elaborated (see Section A.1.10). This elaborated,(ω,ι,h), contains all the
information from the declarations inD* , but invocables and assignables still have to be combined with the
objects they extend, and these objects must also be closed with the appropriate direct inheritance relation.
The context(η′,ι′) is formed from this elaborated in two steps. First, the direct inheritance relation,ι′, is
formed as the noncyclic union of the surrounding contour’s inheritance relation,ι0, and the direct
inheritance from the elaborated declarations. Recall that the notation, =s, is a strict equality relation,
meaning it only holds if both sides are proper (non-). Thusι′ =s ι0 ι means thatι′ is the union ofι0 and
ι, and that the union is not cyclic.

Then an environment,η, is formed. In this environment, the objects declared in the recursive declaration
sequence are closed with the inheritance relation,ι′, and the information from the has-environment,h. The
auxiliary function for doing this is defined below.

closeGfsWith: ObjIdEnv× Inherits× HasEnv→ Environment
closeGfsWith(ω, ι, h) = {(I:class(id, ι, is, ags)) | (I:id) ∈ω, (id:(is,ags)) ∈h}

 {(I:class(id, ι, {}, {})) | (I:id) ∈ω, id ∉dom(h)}

The environmentη′ is formed fromη as described in the rule. In this environment, the declarations inη
shadow those in the surrounding contour’s environment,η0.

It is possible that an object identity bound to an extension in the has-environment is not one of the objects
declared in the recursive declaration sequence. This could happen, for example, if one tried to extend an
object declared in a surrounding contour. We call such extensions “orphans.” An orphaned extension is an
error in BeCecil.* See Section B.3 for a discussion on why orphans are considered errors.

hasOrphans: Elaborated→ Boolean
hasOrphans(ω, ι, h) = (∃id . id ∈dom(h) ∧ id ∉range(ω))

A.2.14 Blocks

The evaluation of a block in an assumed context and store produces an expressible value and a new store.
The formal semantic rule is given in Figure A-18.

* Orphans could just be ignored, but programs containing them are clearly malformed, and so that would be confusing.

Figure A-17: Dynamic semantics of recursive declaration sequences.

[rec-decl-

sequence]

(η′,ι′) / σ0 |− D* ➤ (ω, ι, h)/σ′
——————————————————————

(η0,ι0)/σ0 |− D* ➤ (η′,ι′) /σ′

whereι′ =s ι0 ι,
η′ = closeGfsWith(ω, ι′, h),
η′ = η0 η,
¬ hasOrphans(ω, ι, h)

∪

∪

⊥ ∪

∪.

Figure A-18: Dynamic semantics for blocks.

[block]

κ0/σ0 |− RDS➤ κ/σ,
κ/σ |− E ➪ v/σ′

————————————————
κ0/σ0 |− RDS E➪ v/σ′

61

BeCecil Chambers & Leavens

In a block, of the formRDS E, the recursive declaration sequenceRDS is elaborated as described above to
produce a new context,κ, and a new store,σ, that records any side effects in the elaboration of the
declarations. This context and store are used to evaluate the expression,E.

A.2.15 Declaration Sequences

The elaboration of a declaration sequence in an assumed context and store produces an elaborated and a new
store. The formal semantics is given in Figure A-19.

In a declaration sequence, the individual declarations each elaborate to an elaborated and a new store. (The
store is needed because some declarations have side-effects, such as allocation and initialization of storage
tables.)

When a declaration sequence is complete, the elaborateds that result from the elaboration of individual
declarations are collapsed into a single elaborated, which combines all of their information. The error
checking that is done at this time is the following.

• Each identifierI is bound to at most one object.

• The union of the direct inheritance relations must not have any cycles.

The operation for actually combining the elaborateds produced byn declarations is the disjoint union
operator on elaborateds, . The error checking is done by using strict equality (=s) in the side condition, as
the operator returns if such an error is present.

The side-effects happen left-to-right in a declaration sequence, including allocation of storage. Thus,
although declaration sequences in BeCecil are always mutually recursive, one cannot use storage tables
until they are initialized. For example, in the following, the use ofx in an expression before its storage table
is allocated causes an error. (In the formal semantics, this errors occur when the elaboration gets “stuck.”)

y has storage() := plus(x(), 1) -- error (uninitialized)!
x has storage() := 3

In the above example, reordering the declarations makes the error go away. Another way to fix the error is
to delay the execution of the expression, by using a method instead of a storage table.

y has method() { plus(x(), 1) }
x has storage() := 3
object x
x inherits GenericFun_rep
object y
y inherits GenericFun_rep
y()

Except for side-effects, the order of declarations in a declaration sequence does not matter. For example, the
declarations in the block above could be arbitrarily reordered, without affecting the final value.

Figure A-19: Dynamic semantics of declaration sequences.

[declaration

sequence]

κ0/σ0 |− D1 ➤ ε1/σ1, ..., κ0/σn-1 |− Dn ➤ εn/σn
—————————————————————————————————

κ0/σ0 |− (D1 ...Dn) ➤ ε′/σn

wheren ≥ 0,
ε′ =s i ∈ { 1,...,n} εi∪.

∪.

⊥

62

BeCecil Chambers & Leavens

A.2.16 Declarations

The elaboration of a declaration in an assumed context and store produces an elaborated and a new store.
The formal semantics is given in Figure A-20.

An object declaration, of the formobject I, is elaborated by allocating a fresh object identity, and binding
the identifierI to it.

An inheritance declaration, of the formCN1 inherits CN2, is elaborated by producing a direct
inheritance relation that relates the first class named to the second.

An extension declaration, of the formCNhas GF, the generic function attributeGF is elaborated to a pair
of an invocable set and an assignable set. This pair is bound to the identity ofCN in the has-environment.

In a hide declaration, of the formhide RDSin D* end, both sets of declarations are mutually recursive
with each other. However, only the effect of the public declarations,D* , is seen in the resulting elaborated,
as the recursive declaration sequenceRDS is hidden. The declarations inD* see each other as usual, because
they are part of a larger recursive declaration sequence, but they also see the hidden declarations,RDS. The
hidden declarations,RDS, also see the declarations inD* , which appear through the surrounding context (as
the surrounding contour is formed by a recursive declaration sequence). This is illustrated by the following
example, in which botheven andodd can call each other.

hide
object even
even inherits GenericFun_rep
even has method(i@int_rep) { or(equal(i,0), [odd(minus(i,1))] }

in
object odd
odd inherits GenericFun_rep
odd has method(i@int_rep) { or(equal(i,1), [even(minus(i,1))] }

end

Figure A-20: Dynamic semantics of declarations.

[object

declaration]
κ/σ |− object I ➤ ({I:id}, {}, {})/σ′

wherelookup(σ, l idcounter) =s
ocounter(id),

σ′=σ[l idcounter:= ocounter(id+1)]

[inherits

declaration]

η |− CN1 ➪classo1, η |− CN2 ➪classo2
———————————————————————————————————

(η,ι)/σ |− CN1 inherits CN2 ➤

({},{(id1, id2)},{})/σ

whereid1 = oid(o1),
id2 = oid(o2)

[extension

declaration]

η |− CN ➪classo, (η,ι)/σ |− GF ➪ (is,ags)/σ′,
———————————————————————————————————
(η,ι)/σ |− CNhas GF ➤ ({}, {}, {id:(is,ags)})/σ′ whereid = oid(o)

[hide

declaration]

(η0,ι0)/ σ0 |− RDS➤ (η′,ι′)/σ,
(η′,ι′)/ σ |− D* ➤ (ω′′,ι′′,h′′)/σ′

———————————————————————————————
(η0,ι0)/σ0 |− hide RDSin D* end ➤ (ω′′,ι′′,h′′)/σ′

where
(∀I . I ∈dom(ω′′) ⇒η0(I) = η′(I))

63

BeCecil Chambers & Leavens

The side condition in the rule for the hide declaration prohibits declaring the same object in both parts of a
hide declaration. The reason for this is that it allows the declarations in the public part of the hide declaration
to see each other through the surrounding contour’ s context.

As in CLOS and Dylan, hiding is not done on a per-method basis, but on a per-object (i.e., generic function)
basis. That is, if a generic function is hidden, so are all of its methods. Thus it would be misleading to allow
one to swap the places of the extension declarations foreven andodd in the above example, as it would
look like the method forodd was being hidden, when it must be public if the objectodd is public. The
semantic rule for BeCecil checks for this by only allowing extension declarations to appear in the same part
of a hide declaration as the object declarations they refer to.

The objects declared in the hidden declarations of a hide declaration are closed with the direct inheritance
relation of their recursive declaration sequence (with the hidden declarations added to the surrounding
contour’s inheritance relation), just as if they were the declarations in a block. In the rule given in Figure A-
20, they are closed with the direct inheritance relation,ι′. On the other hand, the direct inheritance relation
closed with the objects declared in the public part (ι0) is the one from their own recursive declaration
sequence, which does not include the hidden inheritance declarations. See Section 2.5 for more discussion
on this topic.

A.2.17 Class Names

A class name is looked up in the assumed environment, and its value is returned. The formal axiom is given
in Figure A-21. Note that the identifier in question must denote a class, not an argument.

A.2.18 Generic Function Attributes

The evaluation of a generic function attribute in an assumed context and store produces an pair of an
invocable set and an assignable set, and a new store. The formal semantics is given in Figure A-22.

An identifier attribute, of the formI, produces a pair of sets containing the cases of the object denoted byI,
with each storage table being allocated a fresh location. The auxiliary functions that allocate new locations
and make copies of each storage table are defined below.

copyStorage: CaseSet× Store→ (CaseSet× Store)

copyStorage({c1,...,cn}, σ) =
let ((c′1,...,c′n),σn) = copylist((c1,...,cn), σ) in ({c′1,...,c′n}, σn)

copylist: Case* × Store→ (Case*× Store)

copylist((),σ) = ((),σ)
copylist((c1,c2,...,cn),σ) =

let ((c′1,σ1) = copy1(c1,σ) in let ((c′2,...,c′n),σn) = copylist((c2,...,cn),σ1) in ((c′1,c′2,...,c′n),σn)

copy1: Case× Store→ (Case× Store)

copy1((idv,closure((I1,...,Im),B,κ)), σ) = ((idv,closure((I1,...,Im),B,κ)), σ)
copy1((idv,storage(l)), σ) =

let (l′,σ′) = allocate(σ, lookup(σ,l)) in ((idv,storage(l′)), σ′)

Since each storage table is in both the invocable and assignable sets, care must be taken to only make a copy
of the storage tables in one of these.

Figure A-21: Dynamic semantics of class names.

[class name] η |− I ➪classo where (I:class(o)) ∈ η

⊥

⊥

⊥

64

BeCecil Chambers & Leavens

A method attribute, of the formmethod(F*){B}, produces a pair whose invocable set contains a single
case. Its specializers are determined by the formals,F* . The formals have the formI@CN, whereCNnames
the formal’sspecializer. The invocable’s specializer tuple is the tuple, in order, of the identities of these
specializers.

The closure of this case, when called, will evaluate the block,B, in a context that extends the enclosing
context by binding each formal directly to the given actual. (Details are given in the semantics of application
expressions below.) For example, the following acts like the identity function of theλ-calculus.

method(x@any) {x}

A storage table attribute, of the formstorage(F*):=E, produces a pair of sets, both of which contain
the same case. The specializers of this case are determined by the formals,F* , as above. The branch of the
case is a storage table with the result of the initializer expression,E, as its default value. The initializer
expression is first evaluated, then the location containing the table is allocated.

An acceptor attribute, of the form,acceptor(F*):=I {B}, produces a pair of sets whose assignable set
contains a single case. The specializers of this case are determined by the formals,F* , as above. The branch
of the case is a closure. This closure has as its tuple of formals the identifiers inF* followed byI.

Figure A-22: Dynamic semantics of generic function attributes.

[identifier

attribute]

η |− I ➪ (id, ι, is, ags)
———————————————

(η,ι)/σ |− I ➪ (is′,ags′)/σ′

where
(is′,σ′) =s copyStorage(is,σ)
ags′ = {(idv,b) | b ∈is′, b=storage(l)}

∪ {(idv,b) | b ∈ags,
b=closure((I1,...,In), B, κ)}

[method

attribute]

η |− CN1 ➪classo1, ...,η |− CNn ➪classon
————————————————————————————————

(η,ι)/σ |− method(I1@CN1,...,In@CNn) {B}
➪ (is,{})/σ

wheren ≥ 0,
is = {((oid(o1),...,oid(on)),

closure((I1,...,In), B, κ))}

[storage

attribute]

η |− CN1 ➪classo1, ...,η |− CNn ➪classon,
(η,ι)/σ |− E ➪ v/σ′

————————————————————————————————
(η,ι)/σ |− storage(I1@CN1,...,In@CNn):= E

➪ (cs,cs)/σ′′

wheren ≥ 0,
(l,σ′′) = allocate(σ′, table({}, v)),
cs= {((oid(o1),...,oid(on)),

storage(l))}

[acceptor

attribute]

η |− CN1 ➪classo1, ...,η |− CNn ➪classon
———————————————————————————————————
(η,ι)/σ |− acceptor(I1@CN1,...,In@CNn):= I {B}

➪ ({},ags)/σ

wheren ≥ 0,
ags= {((oid(o1),...,oid(on)),

closure((I1,...,In,I), B, κ))}

[com-

bined

-attribute]

κ/σ |− GF1 ➪ (is1,ags2)/σ1,
κ/σ1 |− GF2 ➪ (is2,ags2)/σ2

—————————————————————
κ/σ |− GF1 & GF2 ➪ (is,ags)/σ2

whereis = is1 is2,
ags = ags1 ags2

∪
∪

65

BeCecil Chambers & Leavens

The closure of this case, when used in an assignment of a value to a key, will evaluate the block,B, in a
context that extends the enclosing context by binding each formal directly to the corresponding key, and by
binding the value identifier,I, to the value. (Details are given in the semantics of assignment expressions
below.)

A combination attribute, of the formGF1 & GF2, produces a pair of invocable and assignable sets that
contains the cases ofGF2 and those fromGF1 that do not clash with those inGF2. (Recall that cases clash
when they have the same specializers. Thus, if there are no clashes, then the cases of both generic functions
are found in the resulting pair of sets.)

A.2.19 Expressions

The evaluation of an expression in an assumed context and store produces an expressible value and a new
store. The formal semantics is given in Figure A-23.

An identifier used as an expression simply produces the value to which it is bound in the surrounding
context. (See Figure A-24 for the rule used in the hypothesis.)

In an application,E0(AA*), first the operator,E0, and then theActual-Arguments, AA*, are evaluated left-
to-right. TheActual-Arguments each produce actual argument pairs, as described below, which are made
into a tuple. The invocable set of the generic function denoted byE0 is used to search for a unique most-
specific applicable case. Note that the inheritance relation assumed for the search isι0, the inheritance
relation ofE0. If is found, the most specific case’s branch is invoked (using rules given in Figure A-6).

Figure A-23: Dynamic semantics of expressions.

[identifier

expression]

η |− I ➪ v
————————————
(η,ι)/σ |− I ➪ v/σ

[application

expression]

κ/σ |− E0 ➪ (id0,ι0,is0,ags0)/σ0,
κ/σ0 |− AA1 ➨ (v1, idsdir,1)/σ1, ...,κ/σn-1 |− AAn ➨ (vn, idsdir,n)/σn,

(ι0, ((v1,idsdir,1),...,(vn,idsdir,,n))) |− (ids,b) is-best-for is0,
σn |− invoke(b, (v1,...,vn)) ➪ v/σn+1

———
κ/σ |− E0(AA1,...,AAn) ➪ v/σn+1

wheren ≥ 0

[assignment

expression]

κ/σ |− E0 ➪ (id0,ι0,is0,ags0)/σ0,
κ/σ0 |− AA1 ➨ (v1, idsdir,1)/σ1, ...,κ/σn-1 |− AAn ➨ (vn, idsdir,n)/σn,

κ/σn |− En+1 ➪ vn+1/σn+1,
(ι0, ((v1,idsdir,1),...,(vn,idsdir,,n))) |− (ids,b) is-best-for ags0

σn+1 |− assign(b, (v1,...,vn), vn+1) ➪ σn+2
———

κ/σ |− E0(AA1,...,AAn):=En+1 ➪ (id0,ι0,is0,ags0)/σn+2

wheren ≥ 0

[sequence

expression]

κ/σ |− E1 ➪ v1/σ1, κ/σ1 |− E2 ➪ v2/σ2
——————————————————————————

κ/σ |− E1 ; E2 ➪ v2/σ2

66

BeCecil Chambers & Leavens

For example, the following block returns 27.
object f
f inherits GenericFun_rep
f has method(x@int _rep , y@int _rep) { y }
f(3, 27@int_rep)

In the following block, the application produces a “message ambiguous” error, because there are two
applicable methods in the generic function being applied, and neither is more specific than the other.

object f
f inherits GenericFun_rep
f has method(x@int _re p, y@any) { x }
f has method(x@any, y@int _rep) { y}
f(3, 27) -- message ambiguous error!

However, this ambiguity could be resolved by using directed actual arguments. For example, the following
application would call the second method defined above.

f(3@any, 27)

An expression of the formE0(AA*):=En+1 is an assignment expression. It first evaluates the operator,E0,
then the operands,AA*, in left-to-right order, and then evaluates the desired value,En+1. The tuple of the
operands’ identities forms a key. The key is used to search for a unique most-specific case in the assignable
set of the generic function denoted byE0. This unique most specific case is then called upon to perform the
assignment. The result of the expression is the value ofE0.

As an example, the following expression returns 227. It does this by first updating the table for the key 2,
this table is returned by the method in the generic function value offirst , and it is then asked for the value
of the table for that key (2) in the outermost expression, which is an application.

object my_table
my_table inherits field_rep
my_table has storage(x@int_rep) := 641
first has method() {my_table(2) := 227}
(first())(2)

An expression of the formE1;E2 evaluates the two expressions in sequence, and returns the value of the
second one.

A.2.20 Identifiers

An identifier is looked up in the assumed environment, and its value is returned. The formal axiom is given
in Figure A-24. Unlike class names, an identifier can denote either a class or an argument.

A.2.21 Actual Arguments

The evaluation of an actual argument in an assumed context and store produces an actual argument pair and
a new store. Recall that an actual argument pair, written (v, idsdir), consists of an expressible value,v, and a
set of directed classes,idsdir. The formal rule is given in Figure A-25.

For an undirected actual argument, of the formE, the expression is evaluated to produce an expressible
value,v, and an actual argument pair is formed using the empty set for the set of directed classes.

For a directed actual argument, of the formE@CN*, E is evaluated to produce an expressible value,v. The
actual argument pair is formed fromv and the identities of the classesCN*.

67

BeCecil Chambers & Leavens

Figure A-24: Dynamic semantics of identifiers.

Figure A-25: Dynamic semantics of actual arguments.

[identifier 1] η |− I ➪ o where (I:class(o)) ∈ η

[identifier 2] η |− I ➪ o where (I:arg(o)) ∈ η

[undirected

actual]

κ/σ |− E ➪ v/σ′
——————————————————————

κ/σ |− E ➨ (v, {}) / σ′

[directed

actual]

(η,ι)/σ |− E ➪ v/σ′,
η |− CN1 ➪classo1, ...,η |− CNn ➪classon

————————————————————————————————————
(η,ι)/σ |− E@CN1,...,CNn ➨ (v, {id1,...,idn}) / σ′

wheren ≥ 0,
id1 = oid(o1), ..., idn = oid(on)

68

BeCecil Chambers & Leavens

Appendix B Design Decisions and Alternatives for the Untyped Subset of BeCecil

In this section we describe various design decisions and alternatives for the untyped subset of BeCecil.

B.1 Focus on Extensions, Nested Scopes, and Information Hiding

Although we are ultimately interested in module systems that achieve namespace control, information
hiding, and that allow integration of independently developed code [Chambers & Leavens 95], we decided
to separate concerns by focusing first on information hiding, and leaving namespace control and concerns
about integration to a later stage of our investigation. Our earlier module system ideas seemed too complex
to deal with in depth, if we also wanted to investigate the issues of extensibility and nested scopes. Nested
scopes, or something like the hide declaration of BeCecil, are also an important part of the semantics of
module systems. We do believe, however, that aside from the integration problems of modules, the addition
of namespace control poses no fundamental complications.

B.2 Generic Functions are Named, not Methods

One thing we learned from the dynamic semantics, and from a study of Dylan, CLOS, and theλ&-calculus,
is that the primary semantic entity is not a multimethod but a generic function. In BeCecil, an object is
simply a generic function with a unique identity. The alternative view would be that multimethod cases
themselves could be named; but this would mean that the same name would be used for different things in
the same contour, or, more reasonably, that names for cases would consist of an identifier and a tuple of
specializers. Let us call such a name amessage name. However, if message names were used, then one
would be able to call an individual method, using its message name, which would not take dynamic dispatch
and inheritance into account.

Since it is possible to have a generic function containing a single method, there is no loss in expressive
power in naming generic functions. Indeed, there is a gain in expressive power from using named generic
functions. This gain comes because one can shadow an entire generic function by redeclaring its name in a
nested contour, whereas to do the equivalent with message names would require several declarations (in
general). Also, one would not have the same power by shadowing individual message names, because if one
added more methods with the same name in a surrounding contour, then to achieve the same shadowing,
one would have to write yet more declarations in the nested contour.

B.3 No Changes to Generic Function Values of Objects in Nested Contours

In BeCecil, one can extend the direct inheritance relation in any contour, but it seems that one cannot
directly extend a generic function (by adding new cases) in a nested contour. This may prompt one to ask
why the extension declarations cannot act on generic functions declared in surrounding contours.

The first answer is that one can achieve the same effect without changing the generic function values of
objects defined in surrounding contours. That is, it is possible in a nested contour to make a new generic
function with the same name as the one in the surrounding contour, but with some branches of its generic
function replaced and new ones added. The following example shows how, in a nested block, to replace one
method and add another to the generic function value of an object,f .

object f
f has method() {3}
f has method(x@int_rep) {4}
object nested
nested has method() {

object f_new
f_new has f & method(x@int_rep){5} -- replace one off’s methods

69

BeCecil Chambers & Leavens

f_new has method(y@float_rep}{6} -- add yet another method
object more_nested
more_nested has method() {

object f
f has f_new

f(f(3.7)) -- returns 5
}
more_nested()

}
nested()

The second answer is that, in the semantics, one wants the generic function value of an object to be a
property of the object itself, not a property of a contour. If the generic function value of an object were a
property of a contour, that would permit each contour to extend the value by adding new branches, etc., but
it would also make it difficult for a program to pass the generic function value of an object from one contour
to another. So it seems desirable to make the generic function value of an object a property of the object,
instead of its contour. (It still might be possible to allow mutation of the generic function value of an object,
but we do not know how to type check such dynamic updates, and they seem hard to coordinate.)

B.4 Use of Declarations instead of Expressions

In BeCecil, there are as many declaration forms as expressions. We originally sought a core language with
just expressions, but the division between declarations and expressions seems useful. The primary reason is
that we wanted to avoid the complexities of dynamic inheritance. To do this, we wanted to have inheritance
relationships be statically known. One way to do this would have been to make the declaration of parents
part of the construction of objects (which still could have been an expression). But we also wanted to allow
for inheritance relationships to be extensible, and if they were made part of object construction forms, then
the inheritance relationships of objects would be fixed at the moment of their creation.* Declaration forms
allow inheritance relationships to be made apart from the construction of objects, while ensuring that the
requisite information is statically known.

Declaration forms also allow the definition of an object’s methods to be textually spread throughout a
program (as in the module system we hope to study), instead of having to be assembled by the programmer
(as in theλ&-calculus). Declaration forms also avoid the problem of tracking negative information (as in
extensible record calculi), which would be needed if an object’s methods could be extended dynamically.

Finally, as can be seen from the patterns and sugars described in Section 2, there is no loss of expressiveness
in using declaration forms, because of BeCecil’s block structure.

B.5 Distinction between Class Names and Identifiers

In some places in the grammar for BeCecil, a class name,CN, is required instead of an identifier. The exact
distinction is that a class name is required when the identity associated with the name must be statically
known. Class names are required in the syntax in places to avoid the complexities of dynamic inheritance
or dynamic object extensions. However, when an object is used for its generic function value, its identity
does not need to be known; hence for identifiers are allowed to be used as generic function attributes.

* In BeCecil, the ancestry of an object is fixed by the inheritance relation of the recursive declaration sequence in which
it is declared, so it is, in some sense, fixed at the time of the object’s creation. However, it may yet participate in other
inheritance relationships in nested contours.

70

BeCecil Chambers & Leavens

B.6 Mutual Recursion in Declarations

The declarations in a block, and in the private part of a hide declaration in BeCecil, are allowed to be
mutually recursive. One might consider that this is unnecessarily complex for a core language. In particular,
because object declarations resemble “forward” declarations (as in Pascal), one might think that there is no
absolute need for mutual recursion in declarations. In this section we discuss the reasons that led us to prefer
mutual recursion in BeCecil, although the arguments are not indisputable.

One thing that is needed in BeCecil is the concept of a single “checkpoint” in each declaration sequence
where type checking is done. This checkpoint is needed because each object’s methods and storage tables
have to be checked for consistency and completeness [Chambers & Leavens95], which can only be done
once all the methods and storage tables associated with an object have been seen. For example, consider the
following declaration sequence. This sequence will define a consistent set of methods foraddc , but if one
tried to check this after processing each declaration, then there would be points, such as the one marked with
the comment, where the declarations processed thus far would be inconsistent (or incomplete, if one had
type declarations).

object complex_rep inherits any
object cartesian_rep inherits complex_rep
object polar_rep inherits complex_rep
object addc inherits GenericFun_rep
addc has method(x@cartesian_rep, y@complex_rep) {...}
addc has method(x@complex_rep, y@polar_rep) {...}
-- the above is not consistent by itself
addc has method(x@complex_rep, y@complex_rep) {...}
addc has method(x@polar_rep, y@polar_rep) {...}

The above justifies the notion of a declaration sequence as a syntactic construct in BeCecil. Having such
declaration sequences makes it easy for language designers to consider mutual recursion as a possibility.
Allowing mutual recursion is convenient for programming, in that it allows declarations to be introduced in
any order. But that alone is not a sufficient justification for the use mutual recursion in a core language like
BeCecil, considering that the semantics is more complex than it would be otherwise. However, there is an
additional reason for mutual recursion, namely that it is needed if hide declarations are to adequately mimic
the encapsulation aspects of modules. The problem is that in a hide declaration the hidden declarations come
before the declarations that are not hidden; thus mutual recursion is especially convenient, at least for the
hide declaration, to ensure that the methods in each part of a hide declaration can call those in the other part.
While it is possible to put object declarations for the generic functions that are not to be hidden before the
hide declaration, doing so would not allow a single hide declaration to model a single module. (Rearranging
the hide declaration so that the non-hidden part was elaborated first would not allow public declarations to
depend on the hidden ones at all, unless the hide declaration was mutually recursive.)

Since it is sensible to allow mutual recursion in declaration sequences, and since it is especially convenient
for hide declarations, and since Cecil itself allows mutual recursion, we decided to put up with the extra
complexity involved.

B.7 The Model of Objects

We considered several models for the dynamic semantics of objects in BeCecil. The current semantics is
that an object is a generic function (a set of invocables, a set of assignables, and an inheritance relation) that
has a unique identity.

A fundamentally different semantics would have been to have two different kinds of values: objects and
generic functions. In this case objects would not have any value at all, aside from their identity. However,

71

BeCecil Chambers & Leavens

unless generic functions were treated differently than objects, there would be no point in making the
distinction. For example, one could say that generic functions did not inherit from any objects, which would
prohibit them from being stored or passed around. But if that were the case, the language would be rigidly
first-order, and other constructs would have to be added to handle control structures, etc.

At various points, we considered using the store to track various parts of objects: their ancestry, their generic
function cases, or both. However, since these aspects of objects do not change once all the declarations in
recursive declaration sequence are processed, there is no reason to use the store for these aspects of objects.
On the other hand, if one had wanted a semantics in which method cases could be replaced at run-time, then
it would be necessary to keep the generic function cases of an object in the store. With storage tables, there
is not a great need for method replacement (at least in a theoretical sense), because storage tables can contain
generic functions, but this is an avenue we did not explore. (See Section B.10 for more about storage tables.)

B.8 Inheritance

We originally experimented with a language in which inheritance relationships were stored in objects, and
could be changed at run-time. However, this kind of dynamic inheritance has well-known problems for type
checking. In the context of BeCecil, it would mean that implementation-side type checking would be
impossible to perform statically in a reasonable fashion. Hence inheritance in BeCecil is statically declared.

Notice that, in the semantics for applications, the inheritance relation of the calling contour (the contour
where the text of the call appears) plays no role. For example, in the following, the inheritance relationship
declared in the functionnested3 does not affect the application of the value ofg to the value ofx . The
only inheritance relations used are those recorded inx (which determines its ancestry) and ing (which
determines the applicability and relative specificity of its cases.

var g := ...
var x := ...
fun nested1() { ... g() := ... }
fun nested2() { ... x() := ... }
fun nested3() {

foo_rep inherits baz_rep
g()(x())

}
nested1();
nested2();
nested3()

An alternative semantics would be to union the inheritance relation of the actual arguments with the calling
contour’s inheritance relation, for purposes of determining each object’s ancestors. The problem is that this
would allow an object to be passed as an actual argument to a method, but inside of the method the object
would no longer inherit from the specializer given for its formal argument.

Another alternative would be to have some more complex way of combining the inheritance relations of the
actual arguments with those of the calling contour. For example, one might take the ancestors of the actual
that are known in the calling contour, and all of their ancestors according to the calling contour’s inheritance
relation. However, this would potentially result in a large amount of information loss versus the current
semantics, as the calling contour would be filtering out information about objects and inheritance
relationships that both actual arguments and the generic function being called could know about. We leave
the investigation of such combinations as an area for future work.

72

BeCecil Chambers & Leavens

B.9 Extension vs. Inheritance

The notion of extending an object’s generic function cases is an orthogonal notion from inheritance, which
gives BeCecil a flexibility that is appropriate for a core language. For example, one can either copy cases
from several other objects without saying which ones have preference (by using two separate extension
declarations), or have some methods shadow others (by using a single declaration with a combination
attribute). Combination attributes are as in theλ&-calculus, but can involve named objects. This additional
flexibility is useful to allow renaming of generic functions, and explicit combinations of named entities.

B.10 Storage Tables

Storage tables are a generalization of variables, fields, and arrays. However, storage tables are somewhat
complex for a core language, and so we have considered several alternatives for them.

One alternative would be to replace storage tables with the simpler constructs that they generalize: local
variables, fields (instance variables), and arrays. This is what is done, for example, in Smalltalk and Cecil
itself. However, this does not seem to simplify things to any great extent in terms of describing the core
language.

Another alternative, which we considered at some length, would be to delete storage tables from BeCecil,
and to instead use method replacement, as in Abadi and Cardelli’s Theory of Objects [Abadi & Cardelli 96].
This would require a semantic change, in that the cases of an object’s generic function value would have to
be found by the use of a location and the store, making the semantics of recursive environments more
complex. We consider the relevant syntactic sugars below to give the idea of how this alternative would
work out.

By itself, method replacement would take the place of variables. For example, one would have the following
syntactic sugar for the declaration of a variable using this alternative. In the sugars discussed below, we have
tried to keep the meaning as close as possible to the sugars in Section 2.3, to allow better comparison. Note,
however, that in this sugar, the initialization expression is not eagerly evaluated, as it was previously.

var I := E ≡
gf I
I1 has method(){E}

In this alternative, the sugar for assignment to a variable, given below, uses&:= as the primitive operator
for replacing a method. To do such a method replacement, in general, it would be necessary to have exact
information about the specializers of an object’s methods. However, since a zero-argument method has no
specializers, one could, as a special case, allow such updates to arbitrary expressions, even if exact
information about specializers was not known.

Evar () := Eval ≡
let Ival = Eval in

Evar &:= method(){Ival}, whereIval is a fresh identifier.

In this alternative, to model fields (and more interesting kinds of storage tables), BeCecil would also need
a primitive that tested equality of object identities. If that were done, then some model of the booleans would
have to be built-in to BeCecil. Adding the booleans to BeCecil’s initial context would be only a small
complication, however. The following would be the appropriate syntactic sugar for declaring a field of an
object.

73

BeCecil Chambers & Leavens

field I of CN:= E ≡
gf I
I has method(x@CN) {E}, wherex is a fresh identifier.

The syntactic sugar for field updates would probably be something like the following, in whicheq is used
as the equality primitive on objects (a test of object identities).

Efld(Eobj@CNobj):= Eval ≡
let Iobj = Eobj; Ival = Eval
in {

gf old_fld
old_fld has Efld
fun new_fld (x@CNobj) { if(eq(x, Iobj), [Ival], [old_fld(x)]) }
Efld &:= new_fld ;
Efld

}, wherex, Iobj, andIval are fresh identifiers.

This sugar is somewhat more clumsy than the assignment primitive in BeCecil, because the sugar requires
the class nameCNobj to be given. This class name is needed as the specializer for functionnew_fld that
is used in the sugar, as otherwise it would not be clear which method ofEfld should be replaced.
Furthermore, unlike storage tables, the type system would require exact information about the set of cases
for Efld to ensure that this was really a replacement, which would make the BeCecil a bit less flexible.
However, it seems that this alternative would work, and we leave its exploration as future work.

B.11 Initialization of Storage

Many languages do not allow initialization of variables in declaration forms, or (as in Modula-3), interpret
such initializations as syntactic sugar for code that is to be executed at the beginning of a block, before the
usual code is executed. This was not an important semantic point for us, but we believe that all storage
should be initialized, if nothing else, to avoid dealing with nonproper values in the semantics, or having to
allocate storage before it is initialized.

B.12 Copying of Storage Tables during Extensions

Consider the following example declarations.
object x
x has storage() := 3
object y
y has x

What should be the meaning of these declarations? In the current semantics, the storage table allocated for
x is copied when the identifierx is used as a generic function attribute fory. Thus in the current semantics,
y() andx() are not aliases. For example, after executingy():=4 , the value ofx() would still be 3. An
alternative semantics would be to makey have the same storage tables asx , without allocating a new
location fory ’s storage table. This alternative would makex() andy() aliases.

Although preventing aliasing may make programs easier to reason about, the current semantics may also
make BeCecil less expressive. We believe that there are times when, in a nested contour, one wants to make
a customized version of a generic function that shares storage tables with the original. But as yet we have
too little experience with this aspect of BeCecil to make a firm decision about the semantics. It may turn out
that, in a real language based on BeCecil, one needs two primitives, one with each semantics.

74

BeCecil Chambers & Leavens

B.13 No Linearization

In BeCecil, as in Cecil but unlike CLOS or Dylan, there is no linearization of the inheritance relationship,
and thus the ordering imposed on a set of applicable cases is not total. This results in the language
recognizing as errors situations that would not be errors in CLOS or Dylan. In particular, when there is more
than one method that is applicable to a given tuple of actual arguments, there are situations in which the
CLOS or Dylan ordering would pick one method out of a set of applicable methods that, according to the
BeCecil or Cecil semantics, are mutually incomparable (i.e., none overrides the others).

First, it should be noted that the BeCecil semantics could easily be revised to accommodate linearizations,
as in CLOS or Dylan, by redefining the extension of an inheritance ordering to cases. We did not choose to
do this, however, because we are philosophically opposed to such linearizations. That is, we believe that no
one fixed ordering of such (for us) incomparable cases will always be right for all situations. If one accepts
that premise, then one concludes that the language might, at least warn the user about all such situations, or
provide a tool to find them. From that point of view, our type system is a tool that can be used to give such
warnings or find such situations.

75

BeCecil Chambers & Leavens

Appendix C Static Semantics

C.1 Domains for the Static Semantics

The static semantics (type system) of BeCecil is mainly concerned with the following domains: classes,
named types, type attributes, inheritance relations, conformance relations, subtype relations, type contexts,
and type elaborateds.Classes are objects that are statically known (i.e., named in an object declaration), as
opposed to formal arguments.

The domains used in the static semantics are summarized in Figure C-1. The sequents used in the static
semantics are summarized in Figures C-2 and C-16. In what follows we describe the semantic domains that
have not already been discussed, and then the type checking rules.

cl ∈ Class =class(ObjectId)
id ∈ ObjectId = Nat
ids ∈ ObjectIdSet = Powerset(ObjectId)
idv ∈ ObjectIdVec = ObjectId*
µ ∈ NamedType =namedtype(TypeId)
tid ∈ TypeId = Nat
π ∈ TypeEnv = FiniteFun[Identifier, TypeDenotable]
θ ∈ TypeDenotable = Class+ formal(TypeAttribute) + NamedType
τ ∈ TypeAttribute = NamedType+ InvocableType+ AssignableType+ ExactType

+ ConjunctiveType+ DisjunctiveType
τv ∈ TypeAttributeVec = TypeAttribute*
it ∈ InvocableType =arrow(TypeAttribute* × TypeAttribute)
at ∈ AssignableType =assignable(TypeAttribute* × TypeAttribute)
et ∈ ExactType =exact(InvokeCaseSet× AssignCaseSet)
ics ∈ InvokeCaseSet = Powerset(ExactCase)
acs∈ AssignCaseSet = Powerset(ExactCase)
ec ∈ ExactCase = ObjectId*× ExactBranch
ecs∈ ExactCaseSet = Powerset(ExactCase)
eb ∈ ExactBranch = InvocableType+ AssignableType
α ∈ ConjunctiveType =andtype(PowerSet(TypeAttribute))
δ ∈ DisjunctiveType =ortype(PowerSet(TypeAttribute))
ζ ∈ Subtypes = FiniteRel[TypeId, TypeAttribute]
ι ∈ Inherits = FiniteRel[ObjectId, ObjectId]
χ ∈ Conforms = FiniteRel[ObjectId, TypeAttribute]
Κ ∈ TypeContext = TypeEnv× Inherits× ClassInfo× Conforms× Subtypes× TypeInfo
φ ∈ ClassInfo = FiniteFun[ObjectId, Inherits]
ψ ∈ TypeInfo = FiniteFun[TypeId, Inherits× Powerset(ObjectId)]
ξ ∈ TypeElaborated = TypeEnv× Inherits× HasTypes× Conforms× Subtypes
H ∈ HasTypes = FiniteFun[ObjectId, InvokeCaseSet× AssignCaseSet]
ta ∈ TypedActual = TypeAttribute× Powerset(ObjectId)
aa ∈ ActualArgPair = ObjectId× Powerset(ObjectId)
aav∈ ActualArgPairVec = ActualArgPair*

Figure C-1: Domains for the static semantics of BeCecil. The domainsFiniteFun, FiniteR-
el, and operations on them are described in Appendix E.

76

BeCecil Chambers & Leavens

C.2 Static Semantics Domains and Auxiliary Functions

This section explains the domains in the static semantics, and describes various auxiliary functions used in
the type checking rules.

C.2.1 Type Denotables, Class and Type Identities

A type denotable records information about classes, formal arguments, and named types.

As far as the type system is concerned, both aclass and anamed typehave only a single intrinsic attribute:
their identity. No two classes or named types have the same identity.

Figure C-2: Table of auxiliary sequents for the static semantics. A few helping definitions
have been omitted. Sequents that define the static semantics of each category in the BeCecil
grammar can be found in Figure C-16. For each kind of sequent, the types it relates are
shown in three parts in its row: what it assumes, what it works on (or relates) and what it
produces. Sequents that do not produce any result can be thought of as producing a boolean
result (true if it is provable), or as relations on their arguments.

type

prototype sequent
assumes
(inherits)

works on
(arguments)

produces
(synthesizes)

defined
in Figure

ι |− id1 ≤inh id2 Inherits (ObjectId+ wild)
× ObjectId

A-3, C-20

π |− τ is-well-formed TypeEnv TypeAttribute C-4, C-5

ζ |− τ1 ≤subτ2 Subtypes TypeAttribute
× TypeAttribute

C-6

(χ,ζ) |− id <: τ Conforms
× Subtypes

(ObjectId+ wild)
× TypeAttribute

C-8, C-21

(χ,ζ) |− id one-exact-type Conforms
× Subtypes

ObjectId C-9

 ι |− ec1 ≤inh ec2 Inherits ExactCase
× ExactCase

C-10

ι |− ec1 overrides ec2 Inherits ExactCase
× ExactCase

C-11

ι |− ec applies-to aav Inherits ExactCase
× ActualArgPair*

C-12

(ι, aav) |− ec is-best-for ecs Inherits
× ActualArgPair*

ExactCase
× ExactCaseSet)

C-13

(χ,ζ,ι) |− ids type-info-isψ Conforms
× Subtypes
× Inherits

Powerset(
ObjectId)

TypeInfo C-15

77

BeCecil Chambers & Leavens

C.2.2 Type Environments

A type environment is a finite function from identifiers to type denotables. We use the same notation for type
environments as for environments. (See Section E.3 for details.) It will sometimes be useful to extract the
class and type name parts of a type environment separately.

classes: TypeEnv→ FiniteFun[Identifier, ObjectId]
classes(π) = {(I:id) | (I:class(id)) ∈π}
types: TypeEnv→ FiniteFun[Identifier, TypeId]
types(π) = {(I:tid) | (I:namedtype(tid)) ∈π}

C.2.3 Models of Types

Because type names (and classes) have unique identities, the domains used to model types in the static
semantics are not the same as the syntax of types. The correspondence is given in Figure C-3.

The identities in a type attribute cannot be random. Instead, they must be object and type identities that are
known in a given type environment. The rules that check this well-formedness condition for type attributes
are given in Figures C-4 and C-5. These rules are used to check that type of a block is well-formed with
respect to the type environment in which the block is checked (see Section C.3.12).

C.2.4 Direct Subtype and Subtype Relations

A direct subtype relation, ζ, is a binary relation that relates the identities of named types to type attributes.
It models information fromsubtypes declarations in BeCecil.

For example, ifLarch denotesnamedtype(tidL) and if SpecLang denotesnamedtype(tidS), then the
declaration below would be recorded by the direct subtype relation{(tidL, namedtype(tidS))}.

Larch subtypes SpecLang

The static semantics extends a direct subtype relation,ζ, to be a reflexive and transitive relation,≤sub, on
type attributes, as shown in Figure C-6. We also extend a subtype relation to relate tuples pointwise in Figure
C-7. The rule [sub-gf] is taken from theλ&-calculus [Ghelli 91, Castagnaet al. 92, Castagnaet al. 95]. The
rule [sub-arrow] was originally described by Cardelli [Cardelli 88].

Figure C-3: Correspondence between syntax for types and type domains.

Syntax (T) Semantics (τ)

TN namedtype(tid)

(T1,...,Tn) -> Tn+1 arrow((τ1,...,τn), τn+1)

(T1,...,Tn) := Tn+1 assignable((τ1,...,τn), τn+1)

exact{(CN:T)->T,(CN:T):=T} exact({((id),arrow((τ),τ))},{((id),assignable((τ),τ))})

T1 & T2 andtype({ τ1, τ2})

T1 | T2 ortype({τ1, τ2})

(CN1:T1,...,CNn:Tn) -> Tn+1 ((id1,...,idn), arrow((τ1,...,τn), τn+1))

(CN1:T1,...,CNn:Tn) := Tn+1 ((id1,...,idn), assignable((τ1,...,τn), τn+1))

78

BeCecil Chambers & Leavens

Figure C-4: Rules for well-formedness of types. These depend on the rules given below.

Figure C-5: Rules for well-formedness of exact cases.

[wf-namedtype] π |− namedtype(tid) is-well-formed where
tid ∈ range(types(π))

[wf-arrow]

π |− τ1 is-well-formed, ...,π |− τn is-well-formed,
π |− τr is-well-formed

———————————————————————————————————
π |− arrow((τ1,...,τn),τr) is-well-formed

wheren ≥ 0

[wf-assignable]

π |− τ1 is-well-formed, ...,π |− τn is-well-formed,
π |− τr is-well-formed

—————————————————————————————————
π |− assignable((τ1,...,τn),τr) is-well-formed

wheren ≥ 0

[wf-andtype]

π |− τ1 is-well-formed, ...,π |− τn is-well-formed
————————————————————————————————

π |− andtype({ τ1,...,τn}) is-well-formed wheren ≥ 1

[wf-ortype]

π |− τ1 is-well-formed, ...,π |− τn is-well-formed
————————————————————————————————

π |− ortype({ τ1,...,τn}) is-well-formed wheren ≥ 1

[wf-exact]

π |− ec1 is-well-formed, ...,π |− ecn is-well-formed,
π |− ec′1 is-well-formed, ...,π |− ec′m is-well-formed
———————————————————————————————————
π |− exact({ec1,...,ecn},{ec′1,...,ec′m}) is-well-formed

wheren ≥ 0, m≥ 0

[wf-ec-arrow]

π |− arrow((τ1,...,τn),τr) is-well-formed
————————————————————————————————————
π |− ((id1,...,idn),arrow((τ1,...,τn),τr)) is-well-formed

wheren ≥ 0,
(∀i . i∈ {1,...,n} ⇒
idi∈range(classes(π)))

[wf-ec-assign-

able]

π |− assignable((τ1,...,τn),τr) is-well-formed
—————————————————————————————————————
π |− ((id1,...,idn),assignable((τ1,...,τn),τr)) is-well-formed

wheren ≥ 0,
(∀i . i∈ {1,...,n} ⇒
idi∈range(classes(π)))

Figure C-7: Rule for pointwise subtyping of tuples.

[subtypes-

tuple]

ζ |− τ1 ≤subτ′1, ...,ζ |− τn ≤subτ′n
———————————————————————

ζ |− (τ1,...,τn) ≤sub(τ′1,...,τ′n)
wheren ≥ 0

79

BeCecil Chambers & Leavens

C.2.5 Direct Conformance and Conformance Relations

A direct conformance relation is a binary relation that relates object identities to type attributes. It models
information fromconforms declarations in BeCecil.

Figure C-6: Axioms and inference rules for the subtype relation.

[sub-base] ζ |− namedtype(tid) ≤subτ where(tid,τ) ∈ ζ

[sub-refl] ζ |− τ ≤subτ

[sub-trans]
ζ |− τ1 ≤subτ2, ζ |− τ2 ≤subτ3
—————————————————————

ζ |− τ1 ≤subτ3

[sub-and1]
 ζ |− τ ≤subτ1, ...,ζ |− τ ≤subτn
—————————————————————
ζ |− τ ≤subandtype({τ1,...,τn})

wheren ≥ 0

[sub-and2] ζ |− andtype({τ1,...,τn}) ≤subτi wheren ≥ 0, τi ∈ {τ1,...,τn}

[sub-or1]
 ζ |− τ1 ≤subτ, ..., ζ |− τn ≤subτ
—————————————————————
ζ |− ortype({τ1,...,τn}) ≤subτ

wheren ≥ 0

[sub-or2] ζ |− τi ≤subortype({τ1,...,τn}) wheren ≥ 0, τi ∈ {τ1,...,τn}

[sub-

arrow]

ζ |− τ′1 ≤subτ1,..., ζ |− τ′n ≤subτn,
ζ |− τr ≤subτ′r

—————————————————————————————————
ζ |− arrow((τ1,...,τn),τr) ≤subarrow((τ′1,...,τ′n),τ′r)

wheren ≥ 0

[sub-

assign-

able]

ζ |− τ′1 ≤subτ1,..., ζ |− τ′n ≤subτn,
ζ |− τ′r ≤subτr

———————————————————————
ζ |− assignable((τ1,...,τn), τr)

≤sub
assignable((τ′1,...,τ′n), τ′r)

wheren ≥ 0

[sub-

exact-

translate]

ζ |− exact({(idv1,it1),...,(idvn,itn)},
{(idv′1,at1),...,(idv′m,atm)})

≤subandtype({it1,...,itn, at1,...,atm})
wheren≥0, m≥ 0

[sub-gf]

ζ |− itf(1) ≤subit′n, ..., ζ |− itf(n) ≤subit′n,
ζ |− atg(1) ≤subat′1, ..., ζ |− atg(o) ≤subat′o

———————————————————————————————
ζ |− andtype({it1,...,itk, at1,...,atl, τ1,...,τm})

≤sub
andtype({it′1,...,it′n, at′1,...,at′o, τ1,...,τm})

wherek≥0, l ≥ 0,m≥0, n≥ 0, o≥ 0,
(∀i ∈{1,...,n} . (∃f(i) ∈{1,...,k} .
it′i = arrow(τvi,τir)
anditf(i) = arrow(τvf(i),τf(i)r)),

(∀j ∈{1,...,o} . (∃g(j) ∈{1,...,l} .
at′j = assignable(τv′j,τ′jr)
andatg(j) = assignable(τv′g(j),τ′g(j)r)))

80

BeCecil Chambers & Leavens

For example, ifLarch_rep denotesclass(idL) and if Larch denotes the type attributeµL, then the
declaration below would be recorded by the direct conformance relation{(idL, µL)}.

Larch_rep conforms Larch

Figure C-8 extends a direct conformance relation,χ, to a relation,<:, that takes subtyping into account.

C.2.6 Exact Types for Generic Functions and Exact Cases

An exact type contains all the information about an object’s generic function value. That is, an objecto
conforms to an exact type,et, just when the object’s generic function value has all the invocable and
assignable cases described inet, and no additional cases. Because this information is exact, fromo <: et, one
can conclude that some cases are not present in the generic function value ofo. This kind of negative
information cannot be obtained from inexact types, because subtyping can be used to forget the types of
some cases. Because of this requirement, exact types do not have interesting subtypes. Since a given object
conforms to only one exact type, the following declarations are in error.

-- at least one of these is wrong
foo conforms exact{(int_rep:int)->int}
foo conforms exact{(int_rep:int)->int, (myclass:mytype)->foo}

The rule for checking that an object conforms to just one each type is given in Figure C-9.

As noted above, a programer would not normally declare conformance to an exact type, since the exact type
of an object’s generic function value is inferred by the type system.

An exact type is composed of a pair of sets: aninvocable case set and anassignable case set. Each is a set
of exact cases, which are contain a tuple of specializers and anexact branch. An exact branch is either an
invocable type or an assignable type. In the invocable case set the exact branches are all for invocable types,
and similarly in the assignable case set the exact branches are all assignable types. Given an exact case,ec,
we write specializers(ec) for the tuple of specializers ofec, argtypes(ec) for the tuple of argument types of
ec, andrestype(ec) for the result type ofec.

specializers: ExactCase→ ObjectId*
specializers((id1,...,idm), eb)) = (id1,...,idm)

argtypes: ExactCase→ TypeAttribute*
argtypes((id1,...,idm), arrow(τv,τr))) = τv
argtypes((id1,...,idm), assignable(τv,τr))) = τv

restype: ExactCase→ TypeAttribute
restype((id1,...,idm), arrow(τv,τr))) = τr
restype((id1,...,idm), assignable(τv,τr))) = τr

Figure C-8:Inference rule for conformance.

[conforms]
ζ |− τ′ ≤subτ

———————————
(χ,ζ) |− id <: τ

where(id,τ′) ∈χ

Figure C-9: Rule for checking that a class has just one exact type.

[one-exact]
(χ,ζ) |− id one-exact-type wheres= {(ics,acs) | (χ,ζ) |− id <: exact(ics,acs)},

| s | = 1

81

BeCecil Chambers & Leavens

As for cases in the dynamic semantics, we extend an inheritance relation to a partial order on exact cases by
comparing their specializers pointwise. The rule for this relation is given in Figure C-10. The rule for when
one exact case overrides another is also analogous to the rule for invocables. It is given in Figure C-11.

As with invocables, two exact casesclash when they have the same tuples of specializers. We also give
analogous definitions for the disjoint union () and overriding () notations for sets of exact cases.

nonclashing: Powerset(ExactCase) × Powerset(ExactCase) → Boolean
nonclashing(ecs1, ecs2) = ((specializers(ecs1) ∩ specializers(ecs2)) = {})
⋅ ⋅: Powerset(ExactCase) × Powerset(ExactCase) → Powerset(ExactCase)
ecs1 ecs2 = if nonclashing(ecs1, ecs2) then ecs1 ∪ ecs2 else

⋅ ⋅: Powerset(ExactCase) × Powerset(ExactCase) → Powerset(ExactCase)
ecs1 ecs2 = ecs2 ∪ {ec | ec∈ecs1, specializers(ec) ∉ specializers(ecs2) }

The rules for when an exact case applies to a tuple of actual argument pairs are given in Figure C-12; this
is nearly identical to a similar rule in the dynamic semantics, and uses a helping definition from the dynamic
semantics. Also similar to the dynamic semantics are the rules for finding the most specific exact case in a
set of exact cases; these rules are given in Figures C-13 and C-14.

C.2.7 Type Contexts, Type Information, and Type Environments

A type context records information from declarations that can be used in type checking. A type context is
modeled as a tuple of a type environment, a direct inheritance relation, some information about classes, a
direct conformance relation, a direct subtype relation, and some information about type names. We
sometimes use the following auxiliary functions to extract parts of a type context.

tenv: TypeContext→ TypeEnv
tenv(π, ι, φ, χ, ζ,ψ) = π
directSubtypes: TypeContext→ Subtypes
directSubtypes(π, ι, φ, χ, ζ,ψ) = ζ

Recall, from the informal discussion in Section 3, that the information kept for each type name is the
inheritance relation of the recursive declaration sequence in which the name was declared, and the set of
objects that are known to conform to it in the recursive declaration sequence in which it was declared. The
way in which the type information for a set of declared classes is formed from a direct conformance relation,
a direct subtypes relation, and a direct inheritance relation is given in Figure C-15.

Similarly, for each class, the inheritance relation of the recursive declaration sequence in which it was
declared is kept.

Figure C-10: Rule for extending a direct inheritance relation to an ordering on exact cases.

Figure C-11: Rule for when one exact case overrides another.

[inh-eb]
ι |− id1,1 ≤inh id2,1, ...,ι |− id1,n ≤inh id2,n

———————————————————————————————
ι |− ((id1,1,...,id1,n), eb1) ≤inh ((id2,1,...,id2,n), eb2)

wheren ≥ 0

[overrides-eb]
ι |− ec1 ≤inh ec2

——————————————
ι |− ec1 overrides ec2

wheren ≥ 0,
specializers(ec1) ≠ specializers(ec1)

∪. ∪

∪. ⊥
∪. ⊥

∪
∪

82

BeCecil Chambers & Leavens

C.2.8 Type Elaborateds

A type elaboratedrecords type information from the elaboration of declarations. It is a kind of type context
used internally by the semantics. It differs from a type context in that it lacks the type information
component, and instead contains a “has-type-environment” that records information from extension (has)
declarations in BeCecil. The following is sometimes used to extract the type environment of a type
elaborated.

tenv: TypeElaborated→ TypeEnv
tenv(π, ι, ρ, H, χ, ζ) = π

The operator is used to collapse the type elaborateds produced by declarations at the same level into a
single elaborated. For finite functions, and thus for the type environment, is a disjoint union operator. As
for type contexts, the noncyclic union of the direct inheritance relations is used. The direct conformance
relations are simply unioned together, as are the direct subtype relations. However, for the has-type-
environment, if the same object identity has two pairs of invocable and assignable case sets, then the
corresponding sets of cases must not clash, to ensure that certain obvious “message ambiguous” errors

Figure C-12: Rule for when an exact case applies to a tuple of typed actuals. See Figure
A-12 for the rules forok-dir.

Figure C-13: Rule for when an exact case is best in a set for a given inheritance relation
and assumed tuple of typed actuals.

Figure C-14: Axiom and rule for when one actual is better than others. Note that these are
mutually exclusive.

[applies-to]

ι |− id1,a ≤inh id1 , ...,ι |− idn,a ≤inh idn,
ι |− idsdir,1 ok-dir id1 , ...,ι |− idsdir,n ok-dir idn,

———————————————————————————————————————
ι |− ((id1,...,idn), eb) applies-to((id1,a,idsdir,1), ..., (idn,a,idsdir,n))

wheren ≥ 0

[is-best-for]

(ι, aav) |− ec better-than ec1,
...,

(ι, aav) |− ec better-than ecn
————————————————————

(ι, aav) |− ec is-best-for ecs

whereecs′ = {ec′ | ec′ ∈ecs, ι |− ec applies-to aav},
ec∈ecs′,
{ec1, ..., ecn} = ecs′,
n ≥ 1

[better-

than-reflex]

(ι, aav) |− ec better-than ec

[better-

than]

ι |− ec overrides ec′
——————————————————
(ι, aav) |− ec better-than ec′

whereec≠ ec′

Figure C-15: Rule for finding the type information for a set of types.

[type-info-is]
(χ,ζ,ι) |− {id1,...,idn} type-info-isψ

wheren ≥ 0,
(∀i . i ∈{1,...,n} ⇒
idsi = {idc | (χ,ζ) |− idc<: idi}),

ψ = ∪i ∈ { 1,...,n} {(idi:(ι,idsi))}

∪.

∪.

83

BeCecil Chambers & Leavens

cannot occur. Hence disjoint union is used for blending the has-type-environments, as described in the
auxiliary functionblendGfTypes below.

⋅ ⋅: TypeElaborated× TypeElaborated→ TypeElaborated

(π1, ι1, H1, χ1, ζ1) (π2, ι2, H2, χ2, ζ2) =
(π1 π2, ι1 ι2, blendGfTypes(H1, H2), χ1 ∪ χ2, ζ1 ∪ ζ2)

blendGfTypes: HasTypes× HasTypes→ HasTypes

blendGfTypes(H1, H2) = {(id:(ics,acs) | (id:(ics1,acs1)) ∈H1, (id:(ics2,acs2)) ∈H2,
ics =ics1 ics2, acs =acs1 acs2}

 {(id:(ics1,acs1)) | (id:(ics1,acs1)) ∈H1, id ∉dom(H2)}
 {(id:(ics2,acs2)) | (id:(ics2,acs2)) ∈H2, id ∉dom(H1)}

C.3 Type Checking Rules

In this section we explain the type checking rules given in Figures C-22 through C-38. The order of
presentation follows the order of the syntax of Figure 3-1. The table in Figure C-16 gives an overview of
the types of sequents used in the type system.

C.3.9 Implementation-Side Type Checks

For each class declared, its generic function value must conformingly, completely, and consistently
implement the inexact types that it conforms to. In BeCecil, this means that for every inexact generic
function type that a class conforms to, if there are classes that conform to the argument types, then there
must be a unique, most-specific applicable case that can handle a possible call that type checks against that
inexact type. The check for arrow types is a translation of the condition given in [Chambers & Leavens 95,
Section 4.2]. The check for assignable types takes into account that the “result type” for an assignable type
really describes the value used in an assignment, and hence describes an additional argument.

The rules for implementation-side type checking are given in Figures C-17 to C-19. The rule in Figure C-
17 generates all the inexact types that a given class conforms to, and then uses the rule given in Figure C-
18 to check that each such inexact type is implemented. The rule given in Figure C-18 generates all tuples
of wildcards or classes that conform to the argument types of the inexact type in question, using the
following auxiliary functions, and tests that for each possible tuple, there is a single best exact case and that
the best exact case passes the conformance tests. Wildcards, written aswild, are needed because the type
system places no restrictions on conformance to invocable, assignable, or exact types; hence regardless of
whether there are classes in the assumed type context that conforms to such types, there is always the
possibility that there will be such one. However, such conformance relationships may also be declared in
the assumed type context, and thus invocables may be specialized on particular objects having some such
type; thus the first auxiliary function below allows for both wildcards and declared classes that conform to
such types. Technically, wildcards are used whenever a type has a subtype that is an invocable, assignable,
or exact type. This is sensible because every such type allows arguments that are not restricted to known
classes by the type system.

conformers: TypeEnv× Conforms× Subtypes× TypeAttribute→ Powerset(ObjectId+ wild)
conformers(π, χ, ζ, τ) = { idc | idc ∈ range(classes(π)), (χ,ζ) |− idc <: τ}

∪ {wild | ζ |− arrow(τv,τr) ≤subτ} ∪ {wild | ζ |− assignable(τv,τr) ≤subτ}
∪ {wild | ζ |− exact(ebs) ≤subτ}

Tuples of wildcards and conforming classes are generated using the following auxiliary function.
conformers: TypeEnv× Conforms× Subtypes× TypeAttribute*→ Powerset((ObjectId+ wild)*)
conformers(π, χ, ζ, (τ1,...,τn)) = {(id1,...,idn) | idi ∈ conformers(π,χ,ζ,τi), i ∈ {1,...,n}}

∪. ⊥
∪.

∪. ∪

⊥

∪. ∪.

∪.

∪.

84

BeCecil Chambers & Leavens

To make wildcards act as their name implies, they must inherit from every class and conform to every
suitable type. Thus the axiom in Figure C-20 is added to those already given (Figure A-3) for inheritance
relationships, and we consider≤inh to be a binary relation on the extended domainObjectId+ wild from
now on. Similarly, the rules in Figure C-21 are added to those already given for conformance relationships.
These rules make wildcards conform to every type for which they can be introduced byconformers. We
hereinafter consider conformance relations to also relatewild to type attributes.

Figure C-16: Sequents used in the static semantics. This table includes sequents for imple-
mentation-side type checking and a sequent for every syntactic category; see Figure C-2
for auxiliary sequents. For each kind of sequent, the types it relates are shown in three parts
on its row; what it assumes, what it works on, and what it produces.

type

prototype sequent
assumes
(inherits)

works on
(category)

produces
(synthesizes)

defined
in Figure

(π,ι,χ,ζ) |−
id impl-type-checks

TypeEnv
× Inherits
× Conforms
× Subtypes

ObjectId C-17

|− P : τ Program TypeAttribute C-22

Κ |− RDS➢ Κ′ TypeContext Recursive-
Declaration-
Sequence

TypeContext C-23

Κ |− (π,ι,χ,ζ) nests-ok TypeContext TypeEnv
× Inherits
× Conforms
× Subtypes

C-24

Κ |− B : τ TypeContext Block TypeAttribute C-27

Κ |− D* ➢ ξ TypeContext Declaration* TypeElaborated C-28

Κ |− D ➢ ξ TypeContext Declaration TypeElaborated C-29

π |− CN ➩class τ TypeEnv Class-Name TypeAttribute C-30

Κ |− GF ➩ (ics,acs) TypeContext Generic-Function InvokeCaseSet
× AssignCaseSet

C-31

π |− T ➩ τ TypeContext Type-expression TypeAttribute C-32, C-33

π |− TN ➩type τ TypeEnv Type-Name TypeAttribute C-34

Κ |− E : τ TypeContext Expression TypeAttribute C-35, C-36

π |− I ➩ θ TypeEnv Identifier TypeDenotable C-37

Κ |− AA➧ (τ, ids) TypeContext Acutal-Argument TypeAttribute
× Powerset(ObjectId)

C-38

85

BeCecil Chambers & Leavens

C.3.10 Type Checking Programs

The type checking of a program produces a type for the block that makes up the program’s body. The formal
rule is given in Figure C-22.

Figure C-17: Rule for when an implementation type checks.

Figure C-18: Rules for when a class implements an inexact type.

Figure C-19: Rules for when a class implements an inexact type for a particular vector of
argument classes.

[impl-type-

checks]

(π,ι,χ,ζ) |− id impls it1, ...,
(π,ι,χ,ζ) |− id impls itn,

(π,ι,χ,ζ) |− id impls at1, ...,
(π,ι,χ,ζ) |− id impls atm

—————————————————————
(π,ι,χ,ζ) |− id impl-type-checks

wheren ≥ 0,m ≥ 0,
{it1,...,itn} =

{arrow(τvi,τi,r) | (χ,ζ) |− id <: arrow(τvi,τi,r)},
{at1,...,atm} =

{assignable(τvj,τj,r) |
(χ,ζ) |− id <: assignable(τvj,τj,r)}

[impls-

arrow]

(ι,χ,ζ) |− id implsarrow(τv,τr) for idv1,
...,

(ι,χ,ζ) |− id implsarrow(τv,τr) for idvm
——————————————————————————
(π,ι,χ,ζ) |− id implsarrow((τ1,...,τn),τr)

wherem ≥ 0,
{ idv1,...,idvm} = conformers(π,χ,ζ,τv)}

[impls-

assign-

able]

(ι,χ,ζ) |− id implsassignable(τv,τr) for idv1,
...,

(ι,χ,ζ) |− id implsassignable(τv,τr) for idvm
—————————————————————————————

(π,ι,χ,ζ) |− id implsassignable(τv,τr)

wherem ≥ 0,
{ idv1,...,idvm} = conformers(π,χ,ζ,τv)}

[impls-

for-

arrow

1]

(χ,ζ) |− id <: exact(ics, acs),
(ι,aav) |− (idv, arrow((τ′1,...,τ′n),τ′r)) is-best-for ics,

(χ,ζ) |− id1 <: τ′1, ..., (χ,ζ) |− idn <: τ′n,
ζ |− τ′r ≤subτr

————————————————————————————————————
(ι,χ,ζ) |− id implsarrow((τ1,...,τn),τr) for (id1,...,idn)

wheren ≥ 0,
aav = ((id1,{}),...,(idn,{}))

[impls-

for-

assign-

able]

(χ,ζ) |− id <: exact(ics, acs),
(ι,aav) |− (idv, assignable((τ′1,...,τ′n),τ′r)) is-best-for acs,

(χ,ζ) |− id1 <: τ′1, ..., (χ,ζ) |− idn <: τ′n,
ζ |− τr ≤subτ′r

———————————————————————————————————————
(ι,χ,ζ) |− id implsassignable((τ1,...,τn),τr) for (id1,...,idn)

wheren ≥ 0,
aav = ((id1,{}),...,(idn,{}))

Figure C-22: Static semantics for programs.

[tc program]

({}, {}, {}, {}, {}, {}) |− RDS➢ Κ,
Κ |− B : τ

—————————————————————————
|− RDS; B : τ

86

BeCecil Chambers & Leavens

The declarations in the recursive declaration sequence that forms the prelude are checked starting from an
empty type context. The details of the checking process are described below. This process produces a type
context κ that is used to check the block.

C.3.11 Type Checking Recursive Declaration Sequences

The type checking of a recursive declaration sequence in an assumed type context produces a new type
context. The formal rule is given in Figure C-23.

As in the dynamic semantics, the rule for checking a recursive declaration sequence is a bit tricky. The
checking of the declaration sequence,D* , like the checking of an individual declaration, does not produce
a type context, but a type elaborated (see Section C.2.8). The type elaborated,(π,ι,H,χ,ζ), that results from
the checking of the declaration sequence is used to form a new type context,(π′,ι′,φ′,χ′,ζ′,ψ′), in which
names declared inD* shadow those from the assumed context (henceπ′ = π0 π) and in which the other
information is essentially unioned together. Assuming this new type context when checking the declaration
sequence itself allows the declarations to be mutually recursive.

The following auxiliary function uses the type environment and the has-type-environment of the elaborated
to produce a direct conformance relation that contains exact type information for each class declaredD* .

Figure C-20: Axiom that a wild card inherits from every object.

Figure C-21: Rules for when a wild card conforms to a type.

[inh-wild] ι |− wild ≤inh id

[conforms-wild1]
ζ |− arrow(τv,τr) ≤subτ
————————————————

(χ,ζ) |− wild <: τ

[conforms-wild2]
ζ |− assignable(τv,τr) ≤subτ
———————————————————

(χ,ζ) |− wild <: τ

[conforms-wild3]
ζ |− exact(ics, acs) ≤subτ

——————————————
(χ,ζ) |− wild <: τ

Figure C-23: Static Semantics of recursive declaration sequences.

[tc rec-

decl-

sequence]

(π′,ι′,φ′,χ′,ζ′,ψ′) |− D* ➢ (π,ι,H,χ,ζ),
(χ′,ζ′) |− id1 one-exact-type,

...,
(χ′,ζ′) |− idn one-exact-type,

(π′,ι′,χ′,ζ′) |− id1 impl-type-checks,
...,

(π′,ι′,χ′,ζ′) |− idn impl-type-checks,
(χ′,ζ′,ι′) |− idstypestype-info-isψ,

(π0,ι0,φ0,χ0,ζ0,ψ0) |− (π,ι,χ,ζ) nests-ok
——————————————————————————————
(π0,ι0,φ0,χ0,ζ0,ψ0) |− D* ➢ (π′,ι′,φ′,χ′,ζ′,ψ′)

wheren ≥ 0,
π′ = π0 π,
ι′ =s ι0 ι,
φ = {(id:ι′) | (I:class(id)) ∈π},
φ′ =s φ0 φ,
χ′ = χ0 ∪ χ ∪ exactConforms(π,H),
ζ′ = ζ0 ∪ ζ,
ψ′ =s ψ0 ψ,
¬hasOrphans(π,H),
{id1,...,idn} = range(classes(π)),
idstypes = range(types(π))

∪
∪

∪.

∪.

∪

87

BeCecil Chambers & Leavens

exactConforms: TypeEnv× HasTypes→ Conforms
exactConforms(π, H) = {(id:exact(ics,acs)) | (id:(ics,acs)) ∈H}

∪ {(id:exact({},{})) | id ∉dom(H), id ∈ range(classes(π))}

The class information for each class declared inD* is formed by pairing each class with the direct
inheritance relationι′. The direct inheritance relationι′ is formed as the noncyclic union of the inheritance
relation of the surrounding contour and the direct inheritance relation of the elaborated. (Recall that =s is
strict equality; hence if the combined inheritance relation is cyclic, the side condition is false.) The process
of extracting the type information for the types declared is given in Figure C-15.

Several checks are performed on the elaborated at this time. Every declared class must have just one exact
type, and each class’s implementation must type check against the inexact types to which it conforms. These
checks are described in Figures C-9 and C-17. As in the dynamic semantics, there is the possibility of
“extension orphans:” object identities bound to extensions in the has-type-environment that are not for
objects declared in the block. This error is checked with the aid of the following auxiliary function.

hasOrphans: TypeEnv× HasTypes→ Boolean
hasOrphans(π, ρ, H) = (∃id . id ∈dom(H) ∧ id ∉ range(classes(π)))

Recall from Section 3.5 that we also impose certain restrictions on nested contours to ensure that
assumptions used in type checking their surrounding contours remain valid. These restrictions are stated in
Figures C-24 through C-26. The rule fornests-ok given in Figure C-25 checks that for each class that
conforms to a type declared in an outer contour, the class singly-inherits from a class known (in the
surrounding contour) to conform to that type. The rule given in Figure C-25 checks that the class inherits
from some class that is known in the surrounding contour, and that for each pair of classes that it inherits
from, those classes are ordered.

C.3.12 Type Checking Blocks

Type checking a block in an assumed type context produces a type attribute for the block’s value. The formal
rules are given in Figure C-27. The second of these rules merely allows the type produced to be converted
to a supertype. We now explain the details of the first rule.

In a block, of the formRDS E, the recursive declaration sequenceRDS is checked as described above and
produces a new type context,Κ. This context is used to check the expression,E.

In a block, the type of the expression cannot involve type names declared in the block itself. This condition
is tested by the sequentπ0 |− τ is-well-formed. The rules for this sequent are given in Figures C-4 and C-5,
which simply checks that all named types and classes inτ are known in the assumed type environmentπ0.

Figure C-27: Static semantics for blocks.

[tc block]

(π0,ι0,φ0,χ0,ζ0,ψ0) |− RDS➢ Κ,
Κ |− E : τ,

π0 |− τ is-well-formed
——————————————————————————

(π0,ι0,φ0,χ0,ζ0,ψ0) |− RDS E: τ

[subsume-block]
(π,ι,φ,χ,ζ,ψ) |− B : τ′, ζ |− τ′ ≤subτ
—————————————————————————

(π,ι,φ,χ,ζ,ψ) |− B : τ

88

BeCecil Chambers & Leavens

C.3.13 Type Checking Declaration Sequences

The checking of a declaration sequence in an assumed type context produces a type elaborated. The type
checking rule is given in Figure C-28.

When a declaration sequence is complete, the type elaborateds that result from the checking of the
individual declarations are collapsed into a single type elaborated, which combines all of their information.
The error checking that is done at this time is analogous to that done in the dynamic semantics; it is
accomplished by the disjoint union operator on type elaborateds, .

C.3.14 Type Checking Declarations

The checking of a declaration in an assumed type context produces a type elaborated. The formal semantics
is given in Figure C-29.

Figure C-24: Rule for when a new context nests correctly with respect to an assumed con-
text.

Figure C-25: Rule for when a class singly inherits from a class that is known to conform to
a type.

Figure C-26: Rules for when two objects are ordered by an inheritance relation.

[nests-

ok]

(ι′,ψ0) |− (id1,tid1) inherits-above,
...,

(ι′,ψ0) |− (idn,tidn) inherits-above
——————————————————————————
(π0,ι0,φ0,χ0,ζ0,ψ0) |− (π,ι,χ,ζ) nests-ok

wheren ≥ 0,
ι′ =s ι0 ι,
{(id1,tid1),...,(idn,tidn)} =

{(id,tid) | (I:namedtype(tid)) ∈ π0,
id∈conformers(π0 π, χ0 ∪ χ, ζ0 ∪ ζ,

namedtype(tid))}

[inherits-

above]

ι |− id ≤inh idc,
ι′ |− (id1,1,id1,2) ordered,

...,
ι′ |− (idn,1,idn,2) ordered

————————————————————————
(ι,ψ) |− (id,tid) inherits-above

wheren ≥ 0,
(tid:(ι′,ids)) ∈ ψ,
idc ∈ ids,
{(id1,1,id1,2),...,(idn,1,idn,2)} =
{(ida,idb) | ida∈ids, idb∈ids,

ι |− id ≤inh ida, ι |− id ≤inh idb}

[ordered1]
ι |− id1 ≤inh id2

——————————————
ι |− (id1,id2) ordered

[ordered2]
ι |− id2 ≤inh id1

——————————————
ι |− (id1,id2) ordered

∪

∪

Figure C-28: Static semantics of declaration sequences.

[tc declaration

sequence]

Κ0 |− D1 ➢ ξ1, ..., Κ0 |− Dn ➢ ξn
—————————————————————

Κ0 |− (D1 ...Dn) ➢ ξ

wheren ≥ 0,
ξ =s i ∈ { 1,...,n} ξi∪.

∪.

89

BeCecil Chambers & Leavens

An object declaration, of the formobject I, is elaborated by allocating a fresh object identity, and binding
the identifierI to it. A type declaration, of the formtype I, is handled similarly.

An inheritance declaration is elaborated by producing a direct-inheritance relation that relates the first class
named to the second. The rules for elaborating conformance and subtyping declarations are similar. The
classes involved in these rules cannot be formal parameters, since the identity of a formal parameter cannot,
in general, be known statically, and thus is not tracked by the type system.

An extension declaration, of the formCNhasGF, is elaborated by evaluating the generic function attribute
GF, obtaining a pair of exact case sets, and then binding the identity ofCN to that pair.

In a hide declaration, of the formhide RDSin D* end, recall that both sets of declarations are mutually
recursive with each other. As in the dynamic semantics, extension declarations can only appear in the same
part of a hide declaration as the object declarations they refer to. The side condition checks that the same
name is not declared in both parts of the hide declaration.

C.3.15 Static Semantics of Class Names

A class name is looked up in the assumed type context, and its identity is returned. The formal axiom is
given in Figure C-30. Note that the identifier in question must denote a class, not a type or a formal.

Figure C-29: Static semantics of declarations.

[tc object

declaration]

Κ |− object I ➢ ({I:class(id)}, {}, {}, {}, {}) whereπ = tenv(κ),
id ∉range(classes(π))

[tc inherits

declaration]

π |− CN1 ➩classid1, π |− CN2 ➩classid2
——

(π,ι,φ,χ,ζ,ψ)|− CN1inherits CN2 ➢({},{(id1, id2)},{},{},{})

[tc extension

declaration]

π |− CN ➩classid, (π,ι,φ,χ,ζ,ψ) |− GF ➩ (ics,acs)
———————————————————————————————————————

(π,ι,φ,χ,ζ,ψ) |− CNhas GF ➢ ({}, {}, {id:(ics,acs)}, {}, {})

[tc hide

declaration]

(π0,ι0,φ0,χ0,ζ0,ψ0) |− RDS➢ (π′,ι′,φ′,χ′,ζ′,ψ′),
(π′,ι′,φ′,χ′,ζ′,ψ′) |− D∗ ➢ ξ

——————————————————————————————————
(π0,ι0,φ0,χ0,ζ0,ψ0)|− hide RDSin D∗ end ➢ ξ

where π = tenv(ξ),
(∀I . I ∈dom(π)

⇒π0(I) = π′(I))

[tc type

declaration]

Κ |− type I ➢ ({I:namedtype(tid)}, {}, {}, {}, {}) whereπ = tenv(κ),
tid ∉range(types(π))

[tc con-

forms decla-

ration]

π |− CN ➩classid, π |− T ➩ τ
——————————————————————————————————

Κ |− CN conforms T ➢ ({}, {}, {}, {(id, τ)}, {}) whereπ = tenv(κ)

[tc subtypes

declaration]

π |− TN ➪typetid, π |− T ➩ τ
——————————————————————————————————

Κ |− TN subtypes T ➢ ({}, {}, {}, {}, {(tid, τ)}) whereπ = tenv(κ)

90

BeCecil Chambers & Leavens

C.3.16 Type Checking Generic Function Attributes

The evaluation of a generic function attribute in an assumed type context produces a set of exact cases. The
formal semantics is given in Figure C-31.

Figure C-30: Static semantics of class names.

[tc class name] π |− I ➩classid where (I:class(id)) ∈ π

Figure C-31: Static semantics of generic function attributes.

[tc identi-

fier

attribute

1]

π |− I ➩ class(id),
(χ,ζ) |− id <: exact(ics,acs)
————————————————

(π,ι,φ,χ,ζ,ψ) |− I ➩ (ics,acs)

[tc identi-

fier

attribute

2]

π |− I ➪ formal(τ),
ζ |− τ ≤subexact(ics,acs)
—————————————————

(π,ι,φ,χ,ζ,ψ) |− I ➩ (ics,acs)

[tc method

attribute]

π |− CN1 ➩classid1, ...,π |− CNn ➩classidn,
π |− T1 ➩ τ1, ...,π |− Tn ➩ τn, π |− Tr ➩ τr,

(π′′,ι,φ,χ,ζ,ψ) |− B : τr
——
(π,ι,φ,χ,ζ,ψ) |− method(I1@CN1:T1,...,In@CNn:Tn):Tr {B} ➪

({((id1,...,idn),arrow((τ1,...,τn),τr))},{})

wheren ≥ 0,
π′ =s
{I1:formal(τ1)} ...

 {In:formal(τn)},
π′′ = π π′

[tc storage

attribute]

π |− CN1 ➩classid1, ...,π|− CNn ➩classidn,
π |− T1 ➩ τ1, ...,π |− Tn ➩ τn, π |− Tr ➩ τr,

(π,ι,φ,χ,ζ,ψ) |− E : τr
——

(π,ι,φ,χ,ζ,ψ) |− storage(I1@CN1:T1,...,In@CNn:Tn) :=E:Tr ➩

({((id1,...,idn),arrow((τ1,...,τn),τr))},
{((id1,...,idn),assignable((τ1,...,τn),τr))})

wheren ≥ 0,
theI1,...,In are distinct

[tc

acceptor

attribute]

π |− CN1 ➩classid1, ...,π |− CNn ➩classidn,
π |− T1 ➩ τ1, ...,π |− Tn ➩ τn, π |− Tr ➩ τr,

(π′′,ι,φ,χ,ζ,ψ) |− B : τr
——
(π,ι,φ,χ,ζ,ψ) |− acceptor(I1@CN1:T1,...,In@CNn:Tn):= I:Tr

{B} ➪ ({},{((id1,...,idn),assignable((τ1,...,τn),τr))})

wheren ≥ 0,
π′ =s
{I1:formal(τ1)} ...

 {In:formal(τn)}
 {I:formal(τr)},

π′′ = π π′

[tc combi-

nation

attribute]

Κ |− GF1 ➩ (ics1,acs1), Κ |− GF2 ➩ (ics2,acs2)
—————————————————————————————————

Κ |− GF1 & GF2 ➩ ebs

where
ics= ics1 ics2
acs= acs1 acs2

∪.

∪.

∪

∪.

∪.

∪.

∪

∪
∪

91

BeCecil Chambers & Leavens

An identifier attribute, of the formI, produces a pair consisting of an invocable case set and an assignable
case set. These are taken from the exact type ofI. Notice that a formal parameter that has an exact type can
be used as an identifier attribute. This is because with an exact type, the exact type information needed for
this rule is known.

A method attribute produces a pair whose invocable case set contains a single exact case. Its specializers
and argument types are determined by the formals. Storage table attributes are treated similarly, except that
for methods, the block must be checked, while for storage tables, it is the initialization expression that must
be checked. The checking of an acceptor is similar to that of a method, but the block has access to the value
parameter as an additional formal. The type of the block or expression may be a subtype of the stated type,
as allowed by the subsumption rules (given in Figures C-27 and C-36).

A combination attribute, of the formGF1 & GF2, produces a pair of exact case sets that contain the exact
cases ofGF2 and those fromGF1 that do not clash with those inGF2. Each set of exact cases produced
includes all the exact cases fromGF2. For both the invocables and assignables, if an exact case ofGF1

clashes with an exact case inGF2, then only the exact case fromGF2 remains, but the exact cases ofGF1 that
do not clash with those ofGF2 are also included. (Thus, if there are no clashes, then the exact cases of both
generic functions are returned.)

C.3.17 Static Semantics of Type Expressions

The static semantics of a type expression in an assumed type context produces a type attribute. The formal
rules are given in Figures C-32 and C-33.

C.3.18 Static Semantics of Type Names

A type name is looked up in the assumed type environment, and its identity is returned. The formal rule is
given in Figure C-34.

C.3.19 Type Checking Expressions

The checking of an expression in an assumed type context produces a type attribute. The type checking rules
are given in Figures C-35 and C-36.

An identifier used as an expression may either be the name of a class or a formal. If it is a class name that
denotes a class with identity,id, then its type is the type to whichid conforms. If it is a formal parameter,
its type is the type to which the formal is bound in the surrounding type context. (The first of these rules
could be made more deterministic by producing the conjunction of all the types to which the name
conforms, but the type system can already generate such a type by using the structural rules for conjunctive
types.)

For type checking an application expression, of the form,E0(AA*), there are two cases. If none of the actuals
are directed, then the operator,E0, must have an arrow type and each actual argument must have a type that
is the same (or by subsumption, a subtype of) the corresponding formal argument type. Otherwise, the
operator must be a class name, and a more complex process is used to determine whether there is the
possibility of an error in the invocation, and if not, what the result type will be. The idea is that for each
tuple of conforming classes that could be arguments (i.e., that conform to the types of the actuals), there

Figure C-34: Static semantics of type names.

[tc type name] π |− I ➩typetid where (I:namedtype(tid)) ∈ π

92

BeCecil Chambers & Leavens

must be a most specific applicable exact case. From the set of all these selected cases, the least upper bound
of their result types is returned as the result type of the invocation.

The auxiliary function zip, used in the rules for applications and assignments with directed actuals, is
defined below.

zip: ObjectId* × Powerset(ObjectId)* → ActualArgPair*
zip((id1,...,idn),(ids1,...,idsn)) = ((id1,ids1),...,(idn,idsn))

Figure C-32: Static semantics of type expressions.

Figure C-33: Static semantics of exact types.

[named

type]

π |− TN ➩typetid
—————————————————
π |− TN ➩ namedtype(tid)

[arrow

type]

π |− T1 ➩ τ1, ...,π |− Tn ➩ τn, π |− Tn ➩ τr
—————————————————————————————
π |− (T1,...,Tn)->Tr ➪ arrow((τ1,...,τn),τr)

wheren ≥ 0

[assignable

type]

π |− T1 ➩ τ1, ...,π |− Tn ➩ τn, π |− Tn ➩ τr
————————————————————————————————
π |− (T1,...,Tn):=Tr ➩ assignable((τ1,...,τn),τr)

wheren ≥ 0

[and

type]

π |− T1 ➩ τ1, π |− T2 ➩ τ2
———————————————————————
π |− T1 & T2 ➩ andtype({ τ1, τ2})

[or

type]

π |− T1 ➩ τ1, π |− T2 ➩ τ2
—————————————————————
π |− T1 | T2 ➩ ortype({ τ1, τ2})

[exact

type]

π |− ETf(1) ➩ (idv1,arrow(τv1,τ1)),
...,

π |− ETf(n) ➩ (idvn,arrow(τvn,τn)),
π |− ETf(n+1) ➩ (idvn+1,assignable(τvn+1,τn+1)),

...,
π |− ETf(n+k) ➩ (idvn+k,assignable(τvn+k,τn+k))

————————————————————————————————————
π |− exact{ET1, ..., ETn+k} ➩

exact({(idv1,arrow(τv1,τ1)),...,(idvn,arrow(τvn,τn))},
{(idvn+1,assignable(τvn+1,τn+1)),
...,(idvn+k,assignable(τvn+k,τn+k))})

wheren ≥ 0,k ≥ 0,
f is a bijection
on {1,...,n+k},

all of theETi
are distinct.

[exact arrow]

π |− CN1 ➩classid1, ...,π |− CNn ➩ classidn,
π |− T1 ➩ τ1, ...,π |− Tn ➪ τn, π |− Tr ➩ τr

——
π |− (CN1:T1,...,CNn:Tn)->Tr ➩ ((id1,...,idn),arrow((τ1,...,τn),τr))

wheren ≥ 0

[storage type]

π |− CN1 ➩classid1, ...,π |− CNn ➩ classidn,
π |− T1 ➩ τ1, ...,π |− Tn ➩ τn, π |− Tr ➩ τr

——
π |− (CN1:T1,...,CNn:Tn):=Tr ➩ ((id1,...,idn),assignable((τ1,...,τn),τr))

wheren ≥ 0

93

BeCecil Chambers & Leavens

Figure C-35: Static semantics of expressions.

[tc identifier

expression 1]

π |− I ➩ class(id)
———————————————————

(π,ι,φ,χ,ζ,ψ) |− I : τ

where
(id,τ) ∈ χ

[tc identifier

expression 2]

π |− I ➩ formal(τ)
————————————————

(π,ι,φ,χ,ζ,ψ) |− I : τ

[tc applica-

tion

expression 1]

Κ |− E0 : arrow((τ1,...,τn),τr),
Κ |− AA1 ➧ (τ1, {}) , ..., Κ |− AAn ➧ (τn, {})

——————————————————————————————
Κ |− E0(AA1,...,AAn) : τr

wheren ≥ 0

[tc applica-

tion

expression 2]

(π,ι,φ,χ,ζ,ψ) |− I ➩classid0
(χ,ζ) |− id0 <: exact(ics,acs),

(π,ι,φ,χ,ζ,ψ) |− AA1 ➧ (τ1, ids1) ,
...,

(π,ι,φ,χ,ζ,ψ) |− AAn ➧ (τn, idsn),
(ι0, aav1) |− ec1 is-best-for ics,

...,
(ι0, aavm) |− ecm is-best-for ics,

ζ |− (τ1,...,τn) ≤subτv1, ...,ζ |− (τ1,...,τn) ≤subτvm
————————————————————————————————

(π,ι,φ,χ,ζ,ψ) |− I (AA1,...,AAn) : τr

wheren ≥ 0,m ≥ 0,
ι0 = φ(id0)
{ idv1,...,idvm} =

conformers(π,χ,ζ,(τ1,...,τn)),
(∀i . i ∈ {1,...,m} ⇒

eci ∈ icsand
τvi = argtypes(eci) and
aavi = zip(idvi, (ids1,...,idsn))),

τr = ortype({ restype(ec1), ...,
restype(ecm)})

[tc assign-

ment

expression 1]

κ |− E0 : τ,
ζ |− τ ≤sub assignable((τ1,...,τn),τn+1),

κ |− AA1 ➧ (τ1, {}) , ..., κ |− AAn ➧ (τn, {}),
κ |− En+1 : τn+1

—————————————————————————————
κ |− E0(AA1,...,AAn):=En+1 : τ

wheren ≥ 0,
ζ = directSubtypes(κ)

[tc assign-

ment

expression 2]

(π,ι,φ,χ,ζ,ψ) |− I ➩classid0
(χ,ζ) |− id0 <: exact(ics,acs),

(χ,ζ) |− id0 <: τ,
(π,ι,φ,χ,ζ,ψ) |− AA1 ➧ (τ1, ids1) ,

...,
(π,ι,φ,χ,ζ,ψ) |− AAn ➧ (τn, idsn),

(π,ι,φ,ξ,ζ,ψ) |− En+1 : τn+1
(ι0, aav1) |− ec1 is-best-for acs,

...,
(ι0, aavm) |− ecm is-best-for acs,

ζ |− (τ1,...,τn) ≤subτv1, ...,ζ |− (τ1,...,τn) ≤subτvm,

ζ |− τn+1 ≤subτr,1, ...,ζ |− τn+1 ≤subτr,m
————————————————————————————————

(π,ι,φ,χ,ζ,ψ) |− I (AA1,...,AAn):=En+1 : τ

wheren ≥ 0,m ≥ 0,
ι0 = φ(id0)
{ idv1,...,idvm} =

conformers(π,χ,ζ,(τ1,...,τn)),
(∀i . i ∈ {1,...,m} ⇒

eci ∈ acsand
τvi =argtypes(eci) and
τr,i =restype(eci) and
aavi = zip(idvi, (ids1,...,idsn)))

[tc sequence

expression]

Κ |− E1 : τ1, Κ |− E2 : τ2
——————————————————

Κ |− E1;E2 : τ2

94

BeCecil Chambers & Leavens

For type checking an assignment, the process is similar to type checking an invocation. If none of the actuals
are directed, then the first form may be used, in which the operator must have an assignable type. The actuals
and the value being assigned must be the same as (or subtypes of) the argument and result types of this
assignable type. If some of the actuals are directed, then the operator must again be a class name, and each
selected case must be a storage table with appropriate types for arguments and the result.

A sequence expression has the type of the second expression in the sequence.

There is also a subsumption rule for expressions, given in Figure C-36.

C.3.20 Static Semantics of Identifiers

An identifier is looked up in the assumed type environment, and a type denotable is returned. The identifier
must denote either a class or a formal. The axioms are given in Figure C-37.

C.3.21 Static Semantics and Type Checking of Actual Arguments

The static semantics of an actual argument in an assumed type context produces a typed actual. A typed
actual is a pair of a type attribute and a set of class identities. The type checking rules are given in Figure
C-38. For both kinds of actuals, the expression must type check, and its type attribute,τ, is returned as part
of the pair. For a directed actual, each named class must be a class, not just a formal parameter with an exact
type, so that its identity is known.

Figure C-36: Subsumption rule for expressions.

[tc subsume-

expression]

(π,ι,φ,χ,ζ,ψ) |− E : τ′, ζ |− τ′ ≤subτ
—————————————————————————

(π,ι,φ,χ,ζ,ψ) |− E : τ

Figure C-37: Static semantics of identifiers

[tc identifier 1] π |− I ➩ class(id) where (I:class(id)) ∈ π

[tc identifier 2] π |− I ➩ formal(τ) where (I: formal(τ)) ∈ π

Figure C-38: Static semantics of actual arguments.

[tc undirected

actual]

Κ |− E : τ
———————————————

Κ |− E ➧ (τ, {})

[tc directed

actual]

(π,ι,φ,χ,ζ,ψ) |− E : τ ,
π |− CN1 ➩classid1, ...,π |− CNn ➩classidn

————————————————————————————————————
(π,ι,φ,χ,ζ,ψ) |− E@CN1,...,CNn ➧ (τ, {id1,...,idn})

wheren ≥ 0

95

BeCecil Chambers & Leavens

Appendix D Design Decisions and Alternatives for the BeCecil Type System

In this section we describe some alternatives in the design of the BeCecil type system, and the reasons for
our decisions.

D.1 Separation of types and classes

A fundamental design decision in the type system is the separation of the notions of type and class, and thus
of subtype and subclass. Although it would simplify the type system if it relied on the identification of types
and classes, there are well-known limitations in languages that identify the notions [Snyder 86]. However,
it might be reasonable to only “half” separate the two notions, by making types be classes, but introducing
two notions of inheritance (public and private). For example, in C++, every subtype must be a subclass, but
not all subclasses are subtypes. This compromise also has well-known limitations. However, from the point
of view of a theoretical study, there are two different kinds of relationships in either case (subtyping and
subclassing, or public and private inheritance), and it seems to be cleaner to use the distinction between
subtyping and subclassing. We use the notion of conformance to bridge the gap between the two worlds of
objects and types.

D.2 Structural vs. by Name Subtyping and Conformance

Another fundamental distinction is that between structural and “by name” type checking. This decision
subsumes the finer distinction between structural and by name subtyping. In a language that distinguishes
types and classes, one can also distinguish between structural and by name conformance; that is, does an
object conform to a type simply by virtue of supporting the appropriate methods, or is an explicit declaration
of conformance needed? The advantage of structural notions are that they work well with separate
typechecking and with independent development of code; the disadvantage is that there sometimes there
may be superficial matches (subtype relationships, conformance relationships) where the semantics of the
types involved would say that the types should not be treated as matching. Languages like Modula-3
[Nelson 91, Harbison 92] allow the programmer to have it both ways, using structural relationships by
default and allowing the programmer to explicitly “brand” types to prevent superficial matches.

In BeCecil, a fundamental problem with structural notions of typing, subtyping, and conformance is that
named types and objects have no structure. Inexact types, that is invocable types and assignable types, do
have structure, and there are structural rules that apply to them. There are also structural subtyping rules for
conjunctive and disjunctive types. However, a named type has no such structure. Similarly, except in its
capacity as a generic function, an object itself has no structure on which to base structural conformance
rules. In the absence of such explicit structure, structural rules would have to be based on declared interfaces
(protocols) for types. Such declarations are available in BeCecil, and thus structural subtyping could be
based on the declared types of generic functions that are applicable to the types in question. However, such
a notion is less fixed than similar notions for ADT or single-dispatch OO languages, because there is no
clear distinction between “primitive” and “client” operations that apply to a type. Thus adding a new generic
function that applied to a given type could change many subtype relationships in a program, possibly in
subtle ways. Similarly, one could decide whether an object conforms to a type on the basis of what generic
functions apply to it, but again this could change if new generic functions were defined. Furthermore, type
names, since they correspond to ADTs, seem more likely to want “brands” to prevent superficial matches,
but we wanted to avoid the extra complexity of dealing with both structural and by name relationships for
type names in our theoretical language. For these reasons, we have only investigated by name subtyping and
conformance for type names. We leave the investigation of structural relationships, and ways to explicitly
declare type interfaces as future work.

96

BeCecil Chambers & Leavens

D.3 Dealing with Nested Scopes

The trickiest aspect of the type system is in dealing with nested scopes. Recall from the discussion in Section
3 that the problem of types acquiring new conformers can lead to incompleteness, and the problem of
relating unrelated conformers can lead to inconsistency. These problems have two different origins in our
type system. The problem of types acquiring new conformers is caused by our separation of types and
classes (i.e., by our separation of the notions of subtyping and inheritance). If every subtype had to be
implemented by a class that inherited from a class that implemented the supertype in question, then this
problem would disappear. Indeed this would also be a problem in single dispatch languages that had block
structure and separated subtyping and inheritance.* The problem of relating unrelated conformers is due to
multiple dispatch and our refusal to linearize the type hierarchy. With multiple dispatch and without
linearization, the possibility of inconsistency in handling applications arises.

It may be instructive to briefly consider some ideas that we rejected for making the type system sound in
the face of these problems. An early idea was to recheck that each generic function of a surrounding contour
was properly implemented, in the context of each nested contour; the idea was that if the new object and
inheritance declarations in the nested recursive declaration sequence did not invalidate the assumptions used
in type checking the outer contour, then when objects created in the inner contour were passed out to
surrounding contours, they would not cause problems. This is similar to what is the current type system
does, but it is less conservative, and also less constructive. It is less constructive in the sense that it does not
tell the programmer what situations to avoid in as much detail as our present rule.

Another idea was to prevent the “escape” from nested contours of all objects that did not inherit from classes
known in outer contours. This would be sound, but was too restrictive, as it prevented almost all uses of
inheritance in nested contours. The current rule is less restrictive, because it only prevents the uses of
inheritance in nested contours that may cause the two problems mentioned above.

It should be noted, however, that nested contours are still not very useful. One basic feature of the dynamic
semantics is that from within a nested contour, one cannot extend the generic functions or inheritance
relationships of the surrounding contour in a way that will directly affect the surrounding contour. Thus,
most programs will make most of their declarations at top-level.

D.4 Dealing with Directed Actual Arguments

In type checking applications with directed actual arguments, we chose to require that the operator be
statically known (a class name). The reason for this is that to do the type checking for directed actuals, the
inheritance relation closed with the class is needed to mimic the dynamic semantics.

We briefly considered putting information about the inheritance relation of a generic function into some
form of exact type; the problem is that the classes that might be related by such inheritance relationships
would not necessarily be statically known, which could happen if the generic function was defined in a
contour other than a surrounding contour. Thus it is hard to envision how to write down such inheritance
relations involving unknown class names; even class names that look as if they referred to classes in the
surrounding contour might not be intended to do so. In any case the syntax would be messy and there
seemed no great need for the capability of using directed actuals with unknown generic functions. Indeed it
is somewhat against the spirit of OO programming to be able to invoke a particular method in an unknown
generic function; it would be like extracting and calling a particular method of an unknown object in a
single-dispatch language.

* Beta [Madsen et al. 93] is a block-structured OO language, but does not separate types and class.

97

BeCecil Chambers & Leavens

D.5 Inference vs. Declaration for Generic Function Types

The typing rules for BeCecil could either infer the generic function types of objects or require them to be
declared. The present type system infers the exact types of objects (i.e., the types of all generic function
attributes). Thus programmers are not required to declare generic function types for objects, as they can
always be inferred. However, programmers can still declare that generic functions must conform to a given
type, and such declarations are checked against the declared exact types during implementation-side type
checking. This has an advantage, in that one can specify that all objects that conform to a given type must
implement a particular operation.

There is a small disadvantage to inferring inexact types from exact types, however. It is that programmers
have to be careful to not make the result types of methods too specific, relative to their declared argument
types, as described in Section 3.2.2. Language changes that would prevent such problems would be to
require inexact type declarations instead of inferring them, or to allow the programmer to have some way
to turn off the inference for particular methods. This second solution would complicate the language in a
way that does not seem orthogonal, and so was rejected. The first solution seems workable, but would be
farther away from a practical language, because most generic function type declarations would be redundant
with generic function attributes. We leave investigation of this solution as an alternative for future work.

D.6 Object Roles (abstract vs. concrete objects)

In early versions of BeCecil (and in our previous work [Chambers & Leavens 94, Chambers & Leavens
95]), we distinguished tworoles for objects. Anabstract object could not be used in an expression, while a
concrete object could be used in an expression. This distinction mimicked the distinction between abstract
and concrete classes in languages such as Eiffel [Meyer 88, Meyer 92], C++, Dylan, and many others.

In a language where classes are types and subclasses generate instances that are subtypes, such a distinction
is necessary. The reason is so that the programmer does not have to implement all methods that are
specialized on abstract classes, since such classes cannot be directly used to create instances. A method that
is not implemented in an abstract class, and which must be overridden in all subclasses is called a “pure
virtual method” in C++, and a “deferred method” in Eiffel. Examples of such methods include theif
method in the classic coding of the Booleans with an abstract classBoolean and two subclasses,True
andFalse [Goldberg & Robson 83]. Forcing the programmer to implement such methods in the abstract
class would cause programmers to write methods that looped or gave errors when called; but such code is
completely worthless. At best such code will never be called, and at worst a run-time error will occur,
essentially reducing what should be a static error to a dynamic error. It is better to follow languages like
C++, where one can declare that an abstract class has some pure virtual methods, and thus inform the type
system that the method does not have to be implemented in that class.

However, a distinction between abstract and concrete objects turned out to be an unnecessary complication
in BeCecil, because in BeCecil objects and types are completely separated. To declare that an object is an
abstract class, one simply does not declare that it conforms to any type. Such an object cannot be used as an
object in an expression (although it can be used as a generic function), and therefore it is abstract. This also
simplifies the type system, which no longer has to deal with abstract objects that conform to various types.

D.7 Should Specializers Conform to Declared Argument Types?

It might seem natural to require that specializers of formal arguments should conform to their declared
argument types. For example, in the following method, the first argument conforms in this way, but the
second does not, becauseGenericFun_rep does not conform to ()->Top .

98

BeCecil Chambers & Leavens

ifTrue has method(b@boolean_rep:boolean,
c@GenericFun_rep:()->Top): Top {...}

Methods that use the specializerany would also not conform to their declared argument type. Such
examples are common, and the use ofany in particular is a pattern that makes an argument effectively
“unspecialized” (if every class is assumed to inherit fromany , as in Cecil).

The above discussion shows, however, only that it is a considerable programming convenience to permit
specializers to conform not conform to their declared argument types. One could, less conveniently, declare
a less restrictive type, or a more restrictive specializer class. In a language in which classes and types were
identified (and subtyping is identified with subclassing), such inconveniences would seem more natural.

However, in BeCecil, there is also another reason for permitting specializers that do not conform to their
declared argument types. The reason is that if one programs using an ADT pattern, then one will hide object
names but make conformance relationships public. (See Section 2.6 for an example.) Doing this would
prevent clients from inheriting certain operations, but that is a property of ADT languages (such as Ada 83
and CLU) as well. If one did that, then it would be necessary for client functions to use a specializer other
than the class name, because the class name would be hidden. So to support this ADT pattern of completely
hiding an implementation, and for reasons of convenience, the specializers of formal arguments need not
conform to their declared types.

99

BeCecil Chambers & Leavens

Appendix E Notations for Finite Functions, Stores, Environments, and Relations

E.1 Finite Functions

Finite functions are widely used in semantics to model environments and stores. In this section we describe
notation for finite functions and finite, binary relations. There is an embedding of finite functions into
relations, which we exploit to more easily describe finite functions. This embedding is just the traditional
mathematical view that a function,f, is the same as its graph, the relation{(x, f(x)) | x ∈dom(f)}.

We first describe finite functions and how to extract their graphs.
f ∈ FiniteFun[A,B] = A → B
dom: FiniteFun[A,B] → Powerset(A)
dom(f) = {a | f(a) ≠ }
graph: FiniteFun[A,B] → FiniteRel[A,B]
graph(f) = {(a, b) | a ∈dom(f), f(a) = b}

Finite relations are modeled as sets of ordered pairs. We consider the empty set,{}, singleton sets, and set
union as generators for sets when writing inductive definitions over sets.

R ∈ FiniteRel[A,B] = Powerset(A × B)
dom: FiniteRel[A,B] → Powerset(A)
dom(R) = {a | (a, b) ∈R }
maps: FiniteRel[A,B] × A → Powerset(B)
maps(R, a) = {b | (a, b) ∈R }
isFunction: FiniteRel[A,B] → Boolean
isFunction(R) = (∀a . a∈dom(R) ⇒ |maps(R, a)| = 1)
apply: FiniteRel[A,B] × A → B

apply(R, a) = if isFunction(R) ∧ a ∈dom(R) then (let {b} = maps(R, a) in b) else
toFun: FiniteRel[A,B] → FiniteFun[A,B]
toFun(R) =λa . apply(R, a)

It is well known thattoFun(graph(f)) = f, and that ifisFunction(R) holds, thengraph(toFun(R)) = R. Thus
throughout the rest of this paper, we freely use this dual point of view, writing definitions from whichever
point of view is suitable, omitting the various uses ofgraph andtoFun.

Some of the following notation is from David A. Schmidt’s bookThe Structure of Typed Programming
Languages (MIT Press, 1994).

⋅[⋅ := ⋅]: FiniteFun[A,B] × A × B → FiniteFun[A,B]
f[a1 := b] = λa2 . if a2 = a1 then b else f(a2)

disjoint: FiniteRel[A,B] × FiniteRel[A,B] → Boolean
disjoint(f1, f2) = ((dom(f) ∩ dom(f)) = {})
⋅ ⋅: FiniteFun[A,B] × FiniteFun[A,B] → FiniteFun[A,B]

f1 f2 = if disjoint(f1, f2) then f1 ∪ f2 else

⋅ ⋅: FiniteFun[A,B] × FiniteFun[A,B] → FiniteFun[A,B]
f1 f2 = λa . if a ∈dom(f2) then f2(a) else f1(a)

bind: A* × B* → FiniteFun[A,B]

bind((a1,...,an), (b1,...,bn)) = {(a1,b1)} ... {(an,bn)}

Following Schmidt, we also use the notationa:b for the ordered pair (a, b). Such a pair is called abinding.
Thus we have the following abbreviations.

(a:b) ∈f ≡ (a, b) ∈f
{a1:b1,...,an:bn} ≡ {(a1,b1),...,(an,bn)}.

⊥

⊥

⊥
⊥

∪. ⊥
∪. ⊥

∪
∪

⊥
∪. ∪.

100

BeCecil Chambers & Leavens

E.2 Stores

A store maps locations to stored values.
σ ∈ Store = FiniteFun[Location, StoredValue]
l ∈ Location = Nat
emptystore: Store
emptystore= {}
allocate : Store× StoredValue→ Location× Store
allocate(σ,v) = (l, σ[l := v]), where l ∉ dom(σ)

lookup: Store× Location→ StoredValue

lookup(σ,l) = σ(l)

E.3 Environments

An environment maps identifiers to denotable values.
η ∈ Environment = FiniteFun[Identifier, DenotableValue]
emptyenv: Environment
emptyenv = {}
applyenv: Environment× Identifier→ DenotableValue

applyenv(η, I) = η(I)

E.4 Relations

The following additional operations on the typeFiniteRel[A,A] are also useful.

⋅+ : FiniteRel[A,A] → FiniteRel[A,A]
R+ = R ∪ {(a1, a2) | a1 R band b R+ a2, for someb ∈A}
⋅* : FiniteRel[A,A] → FiniteRel[A,A]
R* = R+ ∪ {(a, a) | a ∈dom(R))}
cyclic: FiniteRel[A,A]→ Boolean
cyclic(R) = (∃a . a ∈dom(R) ∧ a R+ a)

⋅ ⋅: FiniteRel[A,A] × FiniteRel[A,A] → FiniteRel[A,A]

R1 R2 = if cyclic(R1 ∪ R2) then else R1 ∪ R2

⊥

⊥

∪ ⊥
∪ ⊥

