
A Performance Evaluation of Cluster-based Architectures

Abstract

This paper investigates the performance of shared-memory cluster-based architectures where

each cluster is a shared-bus multiprocessor augmented with a protocol processor maintaining

cache coherence across clusters. For a given number of processors, sixteen in this study, we

evaluate the performance of various cluster con�gurations. We also consider the impact of

adding a remote shared cache in each cluster. We use Mean Value Analysis to estimate the

cache miss latencies of various types and the overall execution time. The service demands of

shared resources are characterized in detail by examining the sub-requests issued in resolving

cache misses. In addition to the architectural system parameters and the service demands

on resources, the analytical model needs parameters pertinent to applications. The latter, in

particular cache miss pro�les, are obtained by trace-driven simulation of three benchmarks.

Our results show that without remote caches the performance of cluster-based architectures is

mixed. In some con�gurations, the negative e�ects of the longer latency of inter-cluster misses

and of the contention on the protocol processor are too large to counter-balance the lower

contention on the data buses. For two out of the three applications best results are obtained

when the system has clusters of size 2 or 4. The cluster-based architectures with remote caches

consistently outperform the single bus system for all 3 applications. We also exercise the model

with parameters re
ecting the current trend in technology making the processor relatively faster

than the bus and memory. Under these new conditions, our results show a clear performance

advantage for the cluster-based architectures, with or without remote caches, over single bus

systems.

Keywords: shared-memory multiprocessors, clusters, protocol processors, mean value analysis.
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1 Introduction

Single bus shared-memory multiprocessors, or multis [4], have enjoyed a tremendous success. How-

ever, the number of processors that can be incorporated in the system is limited since the single

bus soon becomes an overcommitted resource. The lack of expansion is exacerbated by the fact

that the rate of increase in processor speed grows faster than the corresponding increase in bus

bandwidth and decrease in memory latency. For example, systems that were balanced with a dozen

processors of the x86 vintage might become saturated if more than four processors of the Pentium

Pro class are attached to the single bus. One way to expand the number of processors while keeping

the shared-memory paradigm is to consider each multi as a cluster and to link clusters together

using some interconnection network such as one (or two) mesh [12] or an SCI ring [14].

In cluster systems, memory requests are satis�ed either locally, i.e., within a cluster (intra-cluster),

or externally, i.e., by another cluster (inter-cluster). Intra-cluster cache coherence is enforced using a

snoopy protocol while some form of directory-based coherence is used for inter-cluster transactions.

Intra-cluster misses utilize the internal resources of the cluster, namely the common bus, the local

memory, the snooping caches of the other processors in the cluster, and, on occasion, the protocol

processor (see below). Inter-cluster misses utilize the network and additional logic for managing

the directory information and for transmitting control information and data between clusters. The

current trend[8, 14, 17] is to use programmable processors, hereafter called protocol processors,

rather than hardwired controllers for the management of inter-cluster transactions. This choice

is motivated by the ease in expansibility, the opportunity of tailoring coherence protocols to the

needs of an application, and the possibility of introducing user-directed communication primitives.

The drawback is that inter-cluster misses, that already su�er a delay an order of magnitude longer

than that of intra-cluster misses because of the network latency, will be more costly than in the

hardwired approach. A balanced system should then be such that the number of intra-cluster

misses does not saturate the cluster buses and at the same time the number of inter-cluster misses

should not be too large since it takes much longer to resolve them.

In this paper, we evaluate cluster-based architectures where each cluster is a shared-memory single

bus multiprocessor to which is associated a protocol processor. We use Mean Value Analysis (MVA)

to estimate the contention at major shared resources, the cache miss latencies, and the overall

execution time. The input parameters of the analytical model include architectural parameters

such as the cache and line sizes as well as the number of cycles needed for primitive, contention-free,

operations, and application dependent parameters such as the cache miss pro�les. These application

dependent parameters are obtained via trace-driven simulation. We compare the performance of

various cluster-based con�gurations with di�erent application parameters, including systems that

contain a remote cache for reducing inter-cluster references.

The rest of the paper is organized as follows. In section 2, we present the basic architectural

model and its variations. In section 3, we introduce the analytical model showing how to get

an estimate of the cache miss latencies and overall execution time. In section 4, we describe our

choice of architectural parameters and how we obtained the application parameters needed for the

evaluation. In Section 5, we show the quantitative results obtained by exercising the model and we

highlight where performance bottlenecks might arise and what con�gurations are best for various

parameters. Section 6 presents related work. Finally, we summarize our results in Section 7.

2



2 Architectural models

2.1 Base architecture and alternatives

.
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Figure 1: The architectural models

The base architecture, shown in Figure 1a, consists of clusters connected to each other by an

interconnection network such as a mesh. Each cluster is a single bus shared-memory multiprocessor

augmented with a protocol processor. A private cache (or cache hierarchy) is associated with each

processor in a cluster. The caches are kept coherent via a snoopy protocol. Memory modules can be

accessed through the bus and through the protocol processor. Thus, local memory accesses, such as

cache misses for private data, can be directly placed on the bus instead of being routed through the

protocol processor. In addition to data, the memory also contains the coherence directory for the

(shared) memory associated with the cluster. From the directory's viewpoint, nodes are clusters

not individual processors. Data that is not local is called remote.

The protocol processor in the base architecture, Figure 1b, contains a protocol processing core

for running protocol handlers (we assume a full directory coherence protocol), a network interface

for sending and receiving inter-cluster messages, a bus interface for communicating with the intra-

cluster, or local, processors, and a memory interface for accessing memory. In order to decrease the

load on the protocol processing core and to reduce inter-cluster latencies, we include a forwarding

module between the bus and network interfaces for those messages where it is easy to decide that

they do not need access to local memory and/or directory. Examples of such messages would be

a read request whose home node is another cluster and the corresponding \write-back" from the

home cluster.

Because there is a large discrepancy between the latencies of intra-cluster and inter-cluster misses,

the performance of cluster-based architectures is sensitive to the proportion of the two kinds of

misses. Intuitively, this proportion is closely related to the number of processors in the cluster. If
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we increase this number, the ratio of intra-cluster misses to inter-cluster misses will increase. At

one extreme, as all processors reside in a single cluster, all cache misses become intra-cluster. At

the same time, contention on the bus will degrade performance. On the other hand, if the number

of processors per cluster is too small, then we might have too many inter-cluster misses with long

latency. At the other extreme, each cluster has only one processor and all cache misses not serviced

by the local memory are inter-cluster misses. One purpose of this study is to evaluate cluster-based

architectures when we vary the number of processors per cluster; we will monitor how the cache

miss distribution reacts to this parameter and what impact it has on overall performance.

One variant to the base architecture that we will also study is clusters with large remote caches like

those found in two recent systems [14, 17]. The remote caches are shared by all processors in the

cluster and contain only remote data. Including a remote cache in a cluster will reduce the number

of inter-cluster misses; we will assess the bene�ts of introducing this new resource in the system.

2.2 Classi�cation of misses

Cache coherence in the hierarchical architecture is maintained by using a combination of snoopy

and directory-based cache coherence mechanisms. Detailed protocol operations are similar to those

found in [12]. For our modeling purposes, we need to classify the cache misses according to their

service demand on the shared resources. In Table 1 we summarize the actions needed for each type

of read misses. A similar table for write misses is given in Appendix A.

3 Analytical model

3.1 Estimating the execution time

A program's execution time can be estimated as:

T

execute

= T

instrs

+

X

r

M

r

� L

r

(1)

where T

instrs

is the time to execute the instructions on each processor (assuming good load balance),

M

r

is the number of type r cache misses and L

r

is the latency for type r misses. If there is no

contention, L

r

is the summation of service times of the resources used by a type r miss. If there

is contention, then L

r

is the summation of service times plus the queuing times on those resources,

i.e.:

L

r

=

X

k

(W

k;r

+ S

k;r

) (2)

In Equation (2), W

k;r

is the total waiting time of a request of type r on a resource of type k, and

similarly S

k;r

is the total service demand of request of type r on resource of type k. As shown in

Table 1 each miss request of a given type generates a speci�c sequence of sub-requests. These sub-

requests, the resources they use, and their semantics are shown in Table 2. Table 3 is a synthesis

of Table 1 and Table 2 showing in detail the sub-requests and associated resources for each miss
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Miss Types Resources Situations and Operations

Intra R1 Bus Requested data exists in one of the local caches.

Cache The snoopy mechanism transfers data from cache to cache.

The directory state does not change,

and the protocol processor is not involved.

Intra R2 Bus Home node is local, requested data is not in local caches.

PP Home node issues a memory read and updates the directory.

Memory

Inter R3 Bus Home node is local, data is owned by a remote cluster.

PP Home node sends a write-back to the owner.

Network When the data comes back, it is supplied to the

Cache requesting processor and written back to memory.

Memory Home node updates the directory.

Inter R4 Bus Home node is remote, data is clean.

PP Request is forwarded to home node.

Network Home node issues a memory read, sends the data

Memory to the requesting node, and updates the directory.

Inter R5 Bus Home node is remote, data is owned by the home cluster.

PP Request is forwarded to home node.

Network Home node issues a write-back locally. When the data

Cache comes back, it is forwarded to the requesting node and

Memory written to memory. Home node updates the directory.

Inter R6 Bus Home node is remote, data is owned by a third cluster.

PP Request is forwarded to home node.

Network Home node requests the owner to write back. When data

Cache arrives, it is forwarded to the requesting cluster and

Memory written back to memory. Home node updates the directory.

Table 1: Classi�cation of read misses. This table lists six types of read misses, resources used by

each type, and a high-level description of the protocol followed on a miss.

type (similar tables for write misses can be found in Appendix B). For example, a read miss of

type Inter R3 �rst generates the following 4 sub-requests in its home cluster:

1. Request for data on cluster's address bus (Areq on resource Abus)

2. Insertion in the input queue of the bus interface (BreqI on BI(I))

3. Protocol processing operation (PPops on PPcore)

4. Send a write-back request to a remote cluster (NreqO on NI(O))

Then in the remote cluster, the write-back request will pass through the network input queue

(NreqI), the forwarding module (Freq), the bus interface output queue (BreqO), and be placed on

the address bus (Areq). From there on, there will be another sequence of sub-requests to get the

data from one of the caches or local memory of the remote cluster, pass it to the bus interface,

forwarding module, network interface, and network. Finally, there will be a last sequence of sub-

requests in the home node.
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Sub-requests Resources: Abbrev. Meaning

Areq Address bus: Abus Request data/write-back

invalidation/ownership

Xdat/Xack/Xown Data bus: Dbus Transfer data/acknowledgement/

ownership

Rl2 L2 cache: L2 Read data from L2 cache

Rmem/Wmem Memory: Mem Read/Write memory

Rrc/Wrc Remote cache: RC Read/Write remote cache

BreqI/BdatI/BackI Bus interface (IN): BI(I) Receive req/dat/ack from BI

BreqO/BdatO/BownO Bus interface (OUT): BI(O) Send req/dat/own to BI

NreqI/NdatI/NackI/NownI Network interface (IN): NI(I) Receive req/dat/ack/own from NI

NreqO/NdatO/NackO/NownO Network interface (OUT): NI(O) Send req/dat/ack/own to NI

Freq/Fdat/Fack/Fown Forwarding module: Fwd Forward messages

PPops PP core: PPcore Protocol processing operations

e.g., PPrecv/PPsend, PPsched,

DIRstatus, DIRadd, etc

PPrecv/PPsend PP core: PPcore Send/Receive message by PP core

PPsched PP core: PPcore Dispatch/Invoke protocol handler

DIRstatus PP core PPcore Look up status of a cache block

DIRadd PP core: PPcore Add a node

DIRdel PP core: PPcore Delete a node

DIRrtrv PP core: PPcore Retrieve a node

Table 2: De�nitions of sub-requests and resources required. This table shows the sub-requests,

their names, the resources they use with their abbreviated names, and the actions following each

sub-request. Only a subset of the protocol processing operations are displayed.

3.2 Architectural assumptions

As evidenced by the example in the previous paragraph and by Tables 3, 11, and 12, our architec-

tural model is quite detailed. Nonetheless, we make a few assumptions and simpli�cations to keep

the analysis computationally tractable and e�ective.

To start with, we consider only symmetric systems, i.e., each cluster contains the same number of

processors, same amount of memory, and remote cache if any. Then looking at each component of

a cluster, we assume the following:

� The instructions executed on the compute processor are perfectly pipelined. Therefore the

CPI is one under an ideal memory system.

� L2 cache misses block the compute processors that must wait for the memory requests to

complete before executing their next instructions.

� The L2 caches have dual ported tags. Hence, snooping on the bus does not interfere with

a processor accessing its L2 cache if the processor and the snoop controller access di�erent

cache lines. We will ignore contention at the L2 level since the concurrent access to the same

L2 cache line by the processor and by the snoop controller is extremely rare.
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Type of Sub-requests

Misses Abus Dbus L2 Mem BI(I) BI(O) NI(I) NI(O) Fwd PPcore

Intra R1 Areq Xdat Rl2

Intra R2 Areq Xdat Rmem BreqI PPops

Inter R3 Areq Xdat Wmem BreqI BdatO NdatI NreqO PPops

Areq Xdat Rl2 BdatI BreqO NreqI NdatO Freq

Fdat

Inter R4 Areq Xdat BreqI BdatO NdatI NreqO Freq

Fdat

Rmem NreqI NdatO PPops

Inter R5 Areq Xdat BreqI BdatO NdatI NreqO Freq

Fdat

Areq Xdat Rl2 Wmem BdatI BreqO NreqI NdatO PPops

Inter R6 Areq Xdat BreqI BdatO NdatI NreqO Freq

Fdat

Wmem NreqI NreqO PPops

NdatI NDatO

Areq Xdat Rl2 BdatI BreqO NreqI NdatO Freq

Fdat

Table 3: Service demands of read misses on shared resources. Rows of this table show the sub-

requests and the resources needed (each resource has its own column) in a given cluster for a

particular type of read miss (cf. Table 2 for the meanings of abbreviations). For misses involving

multiple clusters, the �rst row shows the service demands for the local cluster; the second and third

rows (if present) are the service demands for the second and the third clusters involved.

� The cluster buses are split transaction [7]. The address bus and the data bus are two separated

resources and can be used simultaneously for di�erent transactions.

Finally, we do not consider the contention on the network for three reasons: (1) The bandwidth pro-

vided by current network technology appears to be su�cient for the size of the systems investigated

in this paper and contention is not an important factor; (2) Many models have been developed to

analyze the performance of various networks [1, 13, 5]; and (3) The MVA (Mean Value Analysis)

technique we use cannot cope easily with the network contention directly. If need be the results of

the contention models just alluded to could be incorporated in the analysis (cf. Section 6).

3.3 Modeling contention

Returning to Equation (2), S

k;r

and W

k;r

are respectively the summations of the service times and

waiting times of the sub-requests issued to k by a type r miss. While the S

k;r

's are architectural

parameters, contention is present in the determination of the W

k;r

's. We use a closed queuing

network to model the cluster architectures, with compute processors as customers, and buses,

memories, and protocol processors as service centers. We will use the MVA technique and the
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following notations to solve W

k;r

.

� N is the total number of processors in the system.

� N

c

is the number of processors per cluster, i.e., the cluster size.

� P

r

is the probability that a miss request is of type r.

� I is the average number of instruction cycles between cache misses.

� R is the mean total time between cache misses.

� U

k

is the utilization at type k center.

� Q

k;loc

(Q

k;rmt

) is the arrival queue length at k observed by a local (remote) request.

� s

k;r;i;loc

(s

k;r;i;rmt

) is the service demand of the ith sub-request to k from a local (remote) r

miss. Recall that a cache miss may issue multiple sub-requests to a service center.

� s

k

is the average sub-service demand on type k center.

� m

k;r;loc

(m

k;r;rmt

) is the number of sub-requests to k issued by a local (remote) r miss. If r

does not require local (remote) k resource, m

k;r;loc

= 0 (m

k;r;rmt

= 0).

� m

k;r

is the number of local and remote sub-requests issued to type k resource by a type r

miss. m

k;r

= m

k;r;loc

+m

k;r;rmt

. If r does not use type k resource at all, m

k;r

= 0.

� w

k;loc

(w

k;rmt

) is the waiting time at k for a sub-request issued by a local (remote) miss.

Based on the assumption that a cache miss blocks the compute processor, each processor alternates

between executing instructions and waiting for miss requests served by the memory system. Thus

the mean total time between cache misses can be expressed by the instruction cycles between two

misses under an ideal memory system plus the time spent in the memory system:

R = I +

X

r

(P

r

�

X

k

(W

k;r

+ S

k;r

)) (3)

where

W

k;r

=

(

0; if k is L2 cache or network

m

k;r;loc

� w

k;loc

+m

k;r;rmt

�w

k;rmt

; otherwise

(4)

S

k;r

=

m

k;r;loc

X

i=1

s

k;r;i;loc

+

m

k;r;rmt

X

j=1

s

k;r;j;rmt

(5)

Equations (4) and (5) express the total waiting time and total service time in terms of the waiting

time and the service time of sub-requests respectively. We now consider the queuing e�ect at each

type of service center on the waiting time of each sub-request. Suppose a type r miss issued from

cluster C requires resource k of the local cluster, and the same type of resource k of a remote cluster.

Since the system is symmetric, for each service performed at a remote cluster, resource k of C will

need to perform the equivalent service on behalf of a request of type r issued from a remote cluster.

Therefore, for any request issued from the local cluster (C), the arrival queue length at k (Q

k;loc

)

is contributed by (1) all the sub-requests issued by the other N

c

� 1 local processors and (2) by

the remote requests of the N �N

c

remote processors, with each request having a probability

N

c

N�N

c

of requesting cluster C. Similarly, for any request issued from a remote cluster, the arrival queue

length at k (Q

k;rmt

) is contributed by the sub-requests issued by the local N

c

processors and

N

c

N�N

c
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of the sub-requests issued by the other N � N

c

� 1 remote processors. Hence, the arrival queue

lengths at center k observed by a local or a remote request are:

Q

k;loc

=

P

r

P

r

�[(N

c

�1)�

P

m

k;r;loc

i=1

(w

k;loc

+s

k;r;i;loc

)+(N�N

c

)�

N

c

N�N

c

�

P

m

k;r;rmt

j=1

(w

k;rmt

+s

k;r;j;rmt

)]

R

Q

k;rmt

=

P

r

P

r

�[N

c

�

P

m

k;r;loc

i=1

(w

k;loc

+s

k;r;i;loc

)+(N

c

�

N

c

N�N

c

)�

P

m

k;r;rmt

j=1

(w

k;rmt

+s

k;r;j;rmt

)]

R

(6)

Finally, we can estimate the waiting time for each sub-request by the arrival queue lengths and

utlization.

w

k;loc

= (Q

k;loc

� U

k

)� s

k

+ U

k

� s

k

=2

w

k;rmt

= (Q

k;rmt

� U

k

)� s

k

+ U

k

� s

k

=2

(7)

where

s

k

= (

X

r use k

P

r

�

S

k;r

m

k;r

)=(

X

r use k

P

r

) (8)

U

k

= N

c

�

P

r

P

r

� S

k;r

R

(9)

Since Equations (3)-(9) contain cyclic interdependencies, W

k;r

will be solved iteratively with w

k;loc

and w

k;rmt

initialized to 0.

4 Model parameters

The input parameters of the model consist of those solely determined by the architectures, such as

the service demands of the sub-requests listed in Table 3, and of those that are dependent upon

the applications as well as the hardware and software systems, such as the numbers and types of

cache misses.

4.1 Architectural parameters

We �x the total number of processors (16 processors) and the total amount of memory in the

system. We will vary the number of processors in each cluster, or cluster size, from a single

processor per cluster (as in FLASH [8]), to 2, 4, 8, and �nally 16, i.e., a single cluster corresponding

to a conventional shared-bus multiprocessor. In the alternative designs that employ remote caches,

we will keep the remote cache size per processor a constant while altering the cluster size, so that

comparisons between various con�gurations are as fair as possible. Other architectural parameters

such as those related to the L2 caches and the cluster bus are given in Table 4. The latencies of

the sub-requests are given in Table 13 in the Appendix C. The network latency is 24 cycles.
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size = 64kb

L2 cache line size = 64byte

assoc = 1

Remote cache size = 256kb

per processor line size = 64byte

assoc = 4

Datapath width of PP 64bits

Data bus width 64bits

CPU clock/bus clock 2

Table 4: Architectural parameters

Program Problem size Total instr(M) Shared read(M) Shared write(M)

FFT 64k points 33.32 6.00 5.73

RADIX 0.5M integers, 1024 radix 29.55 6.70 3.46

RAYTRACE teapot 375.93 54.60 0.22

Table 5: Applications: problem sizes, number of instructions executed (in millions), number of

shared read references (in millions), number of shared write references (in millions).

4.2 Applications parameters

In order to exercise the model properly we need reasonably balanced workloads. To that e�ect, we

selected FFT, RADIX, and RAYTRACE from the SPLASH-2 benchmark suite [23]. The algorithms

for FFT and RADIX are given in [3] and [6] respectively. RAYTRACE is an image processing

program which renders a three-dimensional scene using ray tracing [18]. Table 5 summarizes some

pertinent statistics about the applications: problem size, number of instructions, number of read

and write references to shared data.

For determining the application dependent parameters, we have performed trace-driven simulations

in which we assume that cache misses are insensitive to the accurate timing information, hence we

use constant latencies for cache misses. The assumption is reasonable for many applications for

which false sharing is a rare case such as FFT

1

The application dependent parameters of principal

interest are the numbers of cache misses of each type and the probability that a replaced cache

block is dirty and, in that case, whether its home node is local or remote. To gather these statistics,

we use Mint [20] as the simulation tool. Mint is a software package that emulates multi-processing

execution environments and generates memory reference events which drive a memory system

simulator.

Figures 2, 3, and 4 show the cache miss pro�les of the three applications. The four and half pairs

of cache miss pro�les correspond to architectures of cluster size 16, 8, 4, 2, and 1 respectively;

1

The version we use has been optimized to eliminate false sharing and to facilitate bulk data transfer.
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Figure 2: The cache miss pro�le of FFT. The left (right) bar of each pair corresponds to an

architecture not containing (containing) remote caches. Intra R1; 2 and Intra W1; 2 are intra-

cluster read and write misses. Inter R3; 4; 5 and Inter W3; 4; 5; 6 are inter-cluster misses which

involve two clusters. Inter R6 and Inter W7; 8 are misses involving three clusters. Tables 1 and

10 give detailed explanation of each type of misses.

the left (right) bar of each pair corresponds to an architecture not containing (containing) remote

caches. Since the chosen applications have not been programmed to take advantage of the cluster

architectures, the numbers of intra-cluster misses of shared references drop, as expected, when

the cluster size decreases. In the cases of FFT and RADIX, when the cluster size halves, the

intra-cluster misses reduce by half approximately. A plausible explanation for this is that data in

processor caches and/or cluster memories is uniformly distributed and that the average number of

processors sharing a piece of datum is 2. Therefore when the cluster size reduces by half, nearly one-

half of the intra-cluster misses have to cross the cluster boundary. For RAYTRACE, the average

number of processors sharing a datum is higher. As a result, when a cluster splits into two, a

smaller portion of the intra-cluster misses turn into inter-cluster misses.

Adding remote caches changes signi�cantly the cache miss pro�les. The presence of remote caches

increases the retention of remote data. When a line, whose home is in a remote cluster, is replaced

in an L2 cache, it may still exist in the remote cache either because of some inclusion property or

because on a replacement the �rst option is to write to the remote cache. Thus, the remote caches

can transform some of the inter-cluster misses caused by con
ict mapping or capacity limitation in

the L2 caches into intra-cluster misses. The extent of the reduction in the inter-cluster misses is

determined by the proportion of con
ict and capacity misses in these inter-cluster misses.

From [23], we know that when processor caches are of limited size, both RADIX and RAYTRACE

encounter signi�cant amounts of capacity misses. For these two applications, the remote caches are

very e�ective in transforming the inter-cluster misses into intra-cluster misses. On the other hand,

FFT has a smaller proportion of capacity misses, therefore the remote caches are not as helpful. As

we increase the size of L2 caches (not shown), the bene�t of the remote cache diminishes. Finally,
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Figure 3: The cache miss pro�le of RADIX. The left (right) bar of each pair corresponds to an

architecture not containing (containing) remote caches. Intra R1; 2 and Intra W1; 2 are intra-

cluster read and write misses. Inter R3; 4; 5 and Inter W3; 4; 5; 6 are inter-cluster misses which

involve two clusters. Inter R6 and Inter W7; 8 are misses involving three clusters. Tables 1 and

10 give detailed explanation of each type of misses.
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Figure 4: The cache miss pro�le of RAYTRACE. The left (right) bar of each pair corresponds to

an architecture not containing (containing) remote caches. Intra R1; 2 and Intra W1; 2 are intra-

cluster read and write misses. Inter R3; 4; 5 and Inter W3; 4; 5; 6 are inter-cluster misses which

involve two clusters. Inter R6 and Inter W7; 8 are misses involving three clusters. Tables 1 and

10 give detailed explanation of each type of misses.
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we note that remote caches also bring a negative impact. Because they tend to retain data in remote

clusters longer, they increase the 3-hop inter-cluster misses (misses involving three clusters).

5 Exercising the model: performance evaluation

The cache miss pro�les by themselves are not su�cient to assess the performance of the architec-

tures. For example, in a single bus system, all cache misses are intra-cluster misses. However if the

bus is saturated, the miss latency of the intra-cluster misses will signi�cantly increase. When we

use a balanced multi-cluster architecture, the inter-cluster misses may still incur a latency longer

than that of the misses of the saturated single bus system but the overall performance may be

better since the intra-cluster misses of the multi-cluster architecture can be resolved faster.

5.1 Average service demand and contention

We have shown in Tables 3 and 11 the service demands of each type of cache misses. Based on

these tables, the parameters given in Table 13, and the cache miss pro�le, we can compute an

application's average service demand (per processor) for each resource (cf. Equation (8) of Section

3.3). Table 6 displays average service demands for the RADIX application. The magnitude of the

resource service demands determines the relative intensity of contention. The resource with the

highest demand is subject to the highest contention and will be the �rst to saturate among all. As

can be seen in Table 6, of the 10 shared resources, the data bus and the protocol processing core

are the two resources with the heaviest demand. This is true not only of RADIX but also of the

other two applications FFT and RAYTRACE. We will therefore focus our attention on these two

resources.

As the cluster size becomes smaller, the number of intra-cluster misses decreases. The reduction

in the number of intra-cluster misses does not imply a reduction in service demand on the data

bus. Independently of whether the miss is intra or inter-cluster, the data has to transit on the local

cluster's bus. In fact, the demand on the bus might increase in inter-cluster misses if the data is

owned by a cache of the remote cluster. In that case, the data bus of the remote cluster is used

rather than the direct link from protocol processor to memory. According to the symmetry principle

that we used earlier, the overall demand on the data bus service center is therefore increased. In

our experiments, most of the remote requests were serviced by memory and the demand on the

data bus remained practically unchanged with cluster size. Of course, as the number of requesters

in the cluster decreased, contention for the bus decreased.

For the protocol processing core, a larger inter-cluster miss ratio certainly leads to a higher service

demand. Like in the case of the data bus, the increase is rather limited. For example, looking at

RADIX, the percentage of the inter-cluster misses rises from 50% to 75% (cf. Figure 3), but the

service demand increases by less than 10% when the cluster size is halved from 8 to 4. There are

two reasons that can explain this fact. First, some of the intra-cluster misses, speci�cally Instr R2

or Intra W2, also require the service from the protocol processing core. Second, the design of the

forwarding module o�oads the service demand from the protocol processor for the inter-cluster

misses.
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Average service demands

Cluster NO remote cache

size Abus Dbus RC Mem BI(I) BI(O) NI(I) NI(O) Fwd PPcore

16 6.69 31.46 0.00 10.12 0.00 0.00 0.00 0.00 0.00 0.00

8 7.32 33.07 0.00 11.48 10.17 4.90 11.80 18.84 10.16 71.43

4 7.48 33.34 0.00 11.95 10.47 6.42 18.50 29.59 15.99 77.00

2 7.59 33.60 0.00 12.41 10.83 7.43 21.46 34.23 18.53 80.88

1 7.56 33.56 0.00 12.54 10.85 8.06 23.85 38.02 20.54 81.61

WITH remote cache

8 7.38 33.50 3.00 8.47 6.78 4.35 6.35 10.50 5.47 52.21

4 7.68 34.35 4.62 7.60 5.61 5.56 10.66 17.66 9.26 49.73

2 7.93 35.21 5.28 7.59 5.49 6.54 12.81 21.07 11.11 50.85

1 7.91 35.53 5.43 7.62 5.58 7.04 14.43 23.57 12.43 51.05

Table 6: RADIX's average service demands.

Note than when remote caches are employed, the demand on the data bus is barely altered while

the demand on the protocol processing core drops signi�cantly. In this architectural variation, the

contention on the protocol processor will be governed by the cluster size as well as by the presence

of the remote caches.

5.2 Overall performance

In order to assess the overall performance, i.e., execution time, of the various con�gurations we

exercise the model presented in Section 3.3. We �rst compute the waiting times of each cache miss

type on a given resource (cf. Equation (4) that has to be solved iteratively) and combine them

with the service demands computed as in the previous section to obtain the cache miss latencies.

These latencies are shown in Table 7 for the RADIX application. We obtain the execution time by

applying Equation (1). The results for the three applications are shown in Table 8, which shows

the execution times of the 3 applications normalized to the execution in a single cluster.

From Table 7 we see that both the intra and the inter-cluster miss latencies decrease monotonically

as more resources are added to the system. The large di�erences (from 60% to 270%) between the

intra-cluster miss latency of the single bus system and those of other architectures indicate that

the contention in the former system is substantial. When the single cluster system splits into two,

the contention on the data bus drops dramatically but the intra-cluster miss latency remains high.

This is because the contention on the protocol processor is severe. As mentioned before, some

of the intra-cluster misses (Intra R/W2 and local replacement of a dirty line) of the multi-cluster

architectures call for the service of the protocol processor. In other words, the intra-cluster miss

latency is a�ected by the contention on the protocol processor.

The normalized execution time is determined principally by the number of instructions executed

between cache misses (I in Equation (3)) and the average service demand on each resource, rather
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Miss latencies

NO remote cache WITH remote cache

Cluster size Intra-cluster Inter-cluster Intra-cluster Inter-cluster

16 259 - - -

8 158 416 119 384

4 80 278 60 278

2 71 235 50 244

1 71 222 42 234

Table 7: RADIX's average cache miss latencies

than by the shared miss ratio. RADIX and RAYTRACE have almost the same miss issuing rate.

Therefore, even though RADIX has a much higher miss ratio (6.8%) than RAYTRACE does (2.7%),

their normalized execution times do not di�er considerably as long as there are at least 4 clusters.

The reason that RAYTRACE has slightly better normalized execution times is that its average

service demand on the protocol processor is signi�cantly less. As a result, when there are as many

as 8 processors in each cluster, the overall performance of RAYTRACE surpasses the single cluster

system, while for RADIX, the turning point occurs at the cluster size of 4. FFT, on the other

hand, has a miss issuing rate lower than RADIX and RAYTRACE. Its contention on the single

bus system is not as high as those of the other two applications. Thus, for this speci�c application,

when no remote caches are employed, the performances of cluster architectures do not match up

that of the single bus system.

When remote caches are included the cluster architectures consistently perform better than the

single cluster system on all three applications from 15% to 33%. The bene�ts incurred by the

presence of the remote caches derive from the fact that they increase the proportion of the intra-

cluster misses and they also reduce the intra-cluster miss latency while increasing the inter-cluster

miss latency to a smaller extent (cf. Table 7). The latency of intra-cluster misses decreases because

the data supplied by remote cache do not involve the protocol processor. The slightly larger inter-

cluster miss latency is caused by higher 3-hop inter-cluster miss ratio, not by the contention on the

protocol processor, which, in fact, is reduced by the presence of the remote caches.

In summary, our model shows that cluster architectures, with no optimization in the software to

take advantage of the architectural organization, would provide little bene�t over a 
at architecture.

However, by increasing the con�gurations with remote caches, the performance improvements are

quite noticeable. This last observation certainly justi�es the design decisions in recent cluster

architectures [14, 17].

The architectural parameters of Table 4 are justi�able with the current technology for processors,

caches, and buses. As newer processor designs adopt more aggressive superscalar techniques the

miss issuing rate will increase. In other words, the number of instruction cycles between misses

decreases. Second, CPU clocks are getting faster, making the bus and memory relatively slower.

This translates into larger (in terms of CPU cycles) service demands on these resources. Obviously,

both trends tend to increase the contention on these shared resources. A feature that would counter
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Normalized execution time

RADIX FFT RAYTRACE

Cluster size No RC With RC No RC With RC No RC With RC

16 1.00 - 1.00 - 1.00 -

8 1.17 0.88 1.22 0.90 0.79 0.69

4 0.94 0.71 1.07 0.85 0.82 0.67

2 0.89 0.70 1.06 0.87 0.85 0.68

1 0.90 0.71 1.06 0.88 0.91 0.70

Table 8: Execution times of the 3 applications for various con�gurations. The execution times are

normalized to the execution time on a single cluster. RC stands for remote cache.

balance these e�ects would be the presence of wider cluster data buses and wider data paths in the

protocol processor. Data transfers in these resources that are potential bottlenecks would be sped

up.

As a simple experiment to see the e�ects on cluster architectures of these technological trends, we

doubled four parameters:

1. The ideal miss issuing rate (or 1=I), i.e., we assume that the CPI of each processor was halved.

2. The ratio of CPU clock rate vs. bus clock rate, i.e., we assumed that the CPU clock will

improve at twice the rate of the bus clock.

3. The width of the data bus.

4. The width ofthe data path of the protocol processor, with the increase of this parameter

reducing the latency of data transactions in the protocol processor.

With these changes in parameters, the service demand on the data bus remains approximately the

same since the doubling of the CPU to bus clock ratio is counter-balanced by the doubling of the

width in the data bus. However, contention is increasing since the issue rate is also doubled.

The results of exercising the model with these new parameters are shown in Table 9. Now cluster

architectures, with and without remote caches, are clearly more advantageous. When there are 4

processors in each cluster, the cluster architectures perform 29%-46% better than the single bus

system without the remote caches, and 43%-57% better with the remote caches. This is because

the contention on the data bus of the single bus system will be intensi�ed at a rate faster than the

contention on the protocol processor of the cluster architectures.

6 Related work

The behaviors of the service centers contained in our model generally satisfy the two assumptions re-

quired by the MVA technique, i.e., routing homogeneity and service time homogeneity [11]. Vernon,

Lazowska and Zahorjan have shown that the MVA technique applied to shared-bus multiprocessor
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Normalized execution time

RADIX FFT RAYTRACE

Cluster size No RC With RC No RC With RC No RC With RC

16 1.00 - 1.00 - 1.00 -

8 0.86 0.66 0.84 0.65 0.58 0.55

4 0.71 0.57 0.66 0.50 0.54 0.43

2 0.69 0.57 0.62 0.49 0.55 0.42

1 0.69 0.57 0.62 0.49 0.60 0.43

Table 9: Normalized execution time for the \faster" architecture.

systems is of remarkable accuracy [22]. Vernon et al. applied the same technique to studying

the performance of purely bus-based hierarchical multiprocessors [21]. Our model and theirs share

some common elements because of the similarity in the architectures. Torrellas, Hennessy and Weil

also developed analytical models to investigate the impact of several architectural and application

parameters in shared-memory processors based on DASH [19]. The main di�erences between their

model and ours are that they used an open queuing network and that the inter-cluster interface was

hardwired [12]. They found that contention for the bus dominated that of the cluster interface

2

.

We show that this conclusion is no longer true in all cases when the design shifts from hardwired

controller to protocol processor.

Holt et al. studied, via simulation, the e�ects of the occupancy of the protocol processor and of

the latency of the network for a Flash-like architecture where the number of processors per cluster

is one [9]. They showed that the time consumed by the protocol processors did have an impact on

the performance, especially with a fast network. However it is not clear whether contention causes

considerable delay in protocol processors or not. Cluster-based architectures where inter-cluster

communication is provided by a (hierarchy of) bus and a shared cache(s) have been studied also via

simulation by Nayfeh et al. [15, 16] and by Anderson [2]. Conclusions on the viability of clusters

are mixed depending on the amount of memory requests and their locality.

As several processors share a protocol processor, the latter is likely to become the performance

bottleneck. Some researchers have looked at the idea of using one of the processors in the cluster

as a protocol processor. If a cache or page miss blocks the computation, the compute processors

may as well be used to resolve the fault. Karlsson and Stenstrom simulated such a scheme for

a multiprocessor which used an ATM network to link clusters of bus-based multiprocessors [10].

The intra-cluster coherence is maintained by cache snoopy hardware while inter-cluster coherence

is maintained at the page level by distributed virtual shared memory software. With a network

latency of 100us, the chance of �nding a compute processor idle is quite high (52%-92% for 4

processors/cluster) even when a simple round-robin policy is used for scheduling the task of protocol

processing. The bottleneck is in the ATM interface and the software must be tailored to the

application for signi�cant speed-ups to occur. The authors conclude that in the context of such

an architecture, and accompanying software, the presence of a separate protocol processor is not

necessary.

2

The number of processors per cluster was �xed at four.
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In our study we assumed that the interconnection network is of su�cient bandwidth and used a

contention-free network latency in the model. However a network model can be easily incorporated

in the evaluation if the contention is not negligible. There exists a rich set of analytical models

for various network topologies [1, 13, 5]. These models usually take the request rate as an input

parameter and compute the network latency taking into e�ect the contention. This latency could

be used in our model instead of the contention-free network latency to achieve a more accurate

response time for inter-cluster misses. The response time then would in turn a�ect the request rate

issued to the network. The two models would have to iterate until they both converge.

7 Conclusion

In this paper, we have applied Mean Value Analysis to assess the performance of cluster-based

architectures. We have accurately characterized the service demand of shared resources by ex-

amining in detail the sub-requests involved in the resolution of cache misses. In addition to the

overall system parameters and the service demands on shared resources, the analytical model needs

parameters pertinent to applications, i.e., the cache miss pro�les. These parameters were obtained

via trace-driven simulation for three applications.

We have compared the performance of cluster-based architectures of various cluster sizes with and

without remote caches. Our simulation and analytical results shed some light on three di�erent

aspects of the impact of cluster-architectures

3

: the applications' cache miss pro�le, the service

demand and the contention for shared resources, and the overall performance normalized to the

single bus system. We summarize these results as follows:

� Many existing parallel programs, and our example programs, are written for machines with

a 
at architectural model. For these applications, and for the cluster-based architectures

without remote caches, a signi�cant portion of intra-cluster misses (33% to 50%) becomes

inter-cluster misses of longer latency when the cluster size is reduced by half.

� When large remote caches are present, they retain, as expected, much of the remote data in

the cluster. They prevent part of the intra-cluster misses (capacity misses and con
ict misses)

from becoming inter-cluster misses when the cluster size decreases.

� In the cluster-based architectures which employ protocol processors and maintain cache coher-

ence in software (i.e., the protocol processor is distinct from the bus and network interfaces),

the protocol processor and the data buses are the resources for which there is the greatest

service demand.

� Service demand on the data bus remains approximately the same independently of the cluster

size (although contention decreases with cluster size). The service demand on the protocol

processor increases as the cluster size decreases, but it does not increase as fast as the rate

of inter-cluster misses.

� Remote caches reduce the service demand on the protocol processor signi�cantly but have

little impact on the service demand on the data bus.

3

We are in the process of validating the models with simulations.
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� The contention for shared resources is determined mainly by three factors: the miss issuing

rate, the cluster size, and the presence of a remote cache. The contention on the data bus and

on the protocol processor are the prime factors in
uencing the performance of the cluster-

based architectures.

� Without the remote caches, the performance of the cluster-based architectures is mixed. For

two out of the three applications, a cluster size of 2 or 4 gives the best results (improvements

in the range of 6% to 18%.

� When remote caches are present, all con�gurations consistently outperform the 
at architec-

ture (improvements in the range 15-33%).

� Finally, if we modify the service demand parameters to re
ect the technological trend of

faster processors with respect to the speed of buses and latency of memories, we see that

the cluster-based architectures will have an increasing performance edge over the single bus

system.
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A Classi�cation of shared write misses

Miss Types Resources Situations and Operations

Intra W1 Bus Requested data is owned by one of the local caches.

Cache Requesting processor issues an ownership request on bus.

Data is transferred from cache to cache with ownership

while local cache copies are invalidated.

Intra W2 Bus Home node is local, requested data is clean in local cluster only.

PP Requesting processor issues an ownership request on bus.

Cache or Data is transferred from cache/memory/ , local copies are invalidated.

Memory Home node grants ownership and updates the directory.

Inter W3 Bus Home node is local, data is owned by a remote cluster.

PP Request for ownership is submitted to home node.

Network Home node requests the owner to write back/invalidate data.

Cache When data arrives, home node supplies it to the requesting

processor with ownership, and updates the directory.

Inter W4 Bus Home node is local, data is clean in remote clusters too.

PP Requesting processor issues ownership request on bus.

Network Data is transferred from cache/memory/ , local copies are

Cache or invalidated. Home node sends invalidation to remote

Memory clusters caching the data. After receiving acknowledgments

home node grants ownership and updates the directory.

Inter W5 Bus Home node is remote, data is owned by the home node.

PP Request for ownership is forwarded to home node.

Network Home node issues a write-back/invalidation locally,

Cache sends the data with ownership to the requesting cluster,

and updates the directory.

Inter W6 Bus Home node is remote, data is clean in local cluster only.

PP Request for ownership is forwarded to home node.

Network Data is transferred from cache/memory/ , local copies are invalidated.

Cache or Home node grants ownership and updates the directory.

Memory

Inter W7 Bus Home node is remote, data is owned by a third cluster.

PP Request for ownership is forwarded to home node.

Network Home node issues a write-back/invalidation to the owner.

Cache When data comes back, home node sends the data with ownership

to the requesting cluster and updates the directory

Inter W8 Bus Home node is remote, data is clean in remote clusters.

PP Request for ownership is forwarded to home node.

Network Data is transferred from cache/memory/ , local copies are invalidated.

Cache or Home node sends invalidations to clusters caching the data.

Memory After receiving acknowledgments, home node grants ownership

and updates the directory.

Table 10: Classi�cation of write misses. This table lists eight types of write misses, resources used

by each type, and a high-level description of the protocol followed on a miss.

21



B Service demand of shared write misses and cache replace-

ments

Type of Sub-requests

Misses Abus Dbus L2 Mem BI(I) BI(O) NI(I) NI(O) Fwd PPcore

Intra W1 Areq Xdat Rl2

Xown

Intra W2 Areq [Xdat] [Rl2] [Rmem] BreqI PPops

Xown BownO

Inter W3 Areq Xdat BreqI BdatO NdatI NreqO PPops

Xown BownO

Areq Xdat Rl2 BdatI BreqO NreqI NdatO Freq

Fdat

Inter W4 Areq [Xdat] [Rl2] [Rmem] BreqI NackIs NreqOs PPops

Xown BownO

Areq Xack BackI BreqO NreqI NackO Freq

Fack

Inter W5 Areq BreqI NreqO Freq

Xdat BdatO NdatI Fdat

Xown BownO NownI Fown

Areq Xdat Rl2 BdatI BreqO NreqI NdatO PPops

NownO

Inter W6 Areq BreqI NreqO Freq

[Xdat] [Rl2] [BdatO] [NdatI] [Fdat]

Xown BownO NownI Fown

[Areq] [XAck] [Rmem] [BackI] [BreqO] NreqI [NdatO] PPops

NackO

Inter W7 Areq BreqI NreqO Freq

Xdat BdatO NdatI Fdat

Xown BownO NownI Fown

NreqI NreqO PPops

NdatI NdatO

NownO

Areq Xdat Rl2 BdatI BreqO NreqI NdatO Freq

Fdat

Inter W8 Areq BreqI NreqO Freq

[Xdat] [Rl2] [BdatO] [NdatI] [Fdat]

Xown BownO NownI Fown

[Areq] [Xack] [Rmem] [BackI] [BreqO] NreqI NreqOs PPops

NackIs [NdatO]

NownO

Areq Xack BackI BreqO NreqI NackO Freq

Fack

Table 11: Service demands of write misses on shared resources. Rows of this table show the sub-

requests and the resources needed (each resource has its own column) in a given cluster for a

particular type of write miss. For misses involving multiple clusters, the �rst row shows the service

demands for the local cluster; the second and third rows (if present) are the service demands for

the second and the third clusters involved.
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Type of Sub-requests

Replacement Abus Dbus L2 Mem BI(I) BI(O) NI(I) NI(O) Fwd PPcore

Dirty Areq Xdat Wmem BreqI PPops

HomeLocal BdatI

Areq Xdat BreqI NreqO Freq

Dirty BdatI NdatO Fdat

HomeRemote Wmem NreqI PPops

NdatI

Table 12: Service demands for replacing dirty data in cache. Rows of this table show the sub-

requests and the resources needed (each resource has its own column) in a given cluster for the two

possible replacement requests. For the replacement type involving two clusters, the �rst row shows

the service demands for the local cluster; the second row shows the service demands for the second

cluster involved.

C Sub-request latencies

Sub-requests Cycles Resource Meaning

abbrev.

Areq 2 Abus Request data/write-back

invalidation/ownership

Xdat/Xack/Xown 2 Dbus Transfer data/acknowledgement/

ownership

Rl2 4 L2 Read data from L2 cache

Rmem/Wmem 8 Mem Read/Write memory

Rrc/Wrc 8 RC Read/Write remote cache

BreqI/BdatI/BackI 2 BI(I) Receive req/dat/ack from BI

BreqO/BdatO/BownO 2 BI(O) Send req/dat/own to BI

NreqI/NdatI/NackI/NownI 4 NI(I) Receive req/dat/ack/own from NI

NreqO/NdatO/NackO/NownO 8 NI(O) Send req/dat/ack/own to NI

Freq/Fdat/Fack/Fown 3 Fwd Forward messages

PPops PPcore Protocol processing operations

e.g., PPrecv/PPsend, PPsched,

DIRstatus, DIRadd, etc

PPsend/PPrecv 3/8 PPcore Send/Receive message by PP core

PPsched 4 PPcore Dispatch/Invoke protocol handler

DIRstatus 5 PPcore Look up status of a cache block

DIRadd 6 PPcore Add a node

DIRdel 6 PPcore Delete a node

DIRrtrv 3 PPcore Retrieve a node

Table 13: Latencies of sub-requests. The table is produced from Table 2 by replacing the \resources"

column with the number of cycles taken by each sub-request. The bus transactions are counted in

bus clock cycle. The latencies of data transactions are for the �rst 8 bytes.
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