
Realistic Facial Animation

Using Image-Based 3D Morphing

Frederic Pighin Joel Auslander Dani Lischinski

David H. Salesin Richard Szeliski

y

May 6, 1997

University of Washington

y

Microsoft Research

Technical report UW-CSE-97-01-03

Abstract

We present new techniques for creating a realistic textured 3D facial

model from several photographs of a human subject and for performing

facial animation by morphing between models corresponding to di�er-

ent facial expressions. Starting from several uncalibrated views of an

individual, we employ a user assisted technique to recover the camera

poses corresponding to the views, as well as the 3D coordinates of a

sparse set of chosen locations on the individuals face. A scattered data

interpolation technique is then used to deform a generic face mesh

into a 3D model of the individual's face. Having recovered the cam-

era poses and the facial geometry, we extract from the input images

a texture map for the model. An optical
ow technique is used for

improving the registration of the input images in texture space. This

process is repeated for several facial expressions of a particular indi-

vidual. To animate between these facial expressions we use 3D shape

morphing between the corresponding facial models, while at the same

time blending the corresponding textures. Using our technique we have

been able to generate highly realistic facial models and natural looking

transitions between di�erent expressions.

There is no landscape that we know as well as the human

face. The twenty-�ve-odd square inches containing the features

is the most intimately scrutinized piece of territory in existence,

examined constantly, and carefully, with far more than an intel-

lectual interest. Every detail of the nose, eyes, and mouth, every

1

regularity in proportion, every variation from one individual to

the next, are matters about which we are all authorities.

| Gary Faigin, from The Artist's Complete Guide to Facial

Expression [10]

1 Introduction

Realistic facial animation is one of the most fundamental problems in com-

puter graphics | and one of the most di�cult. Indeed, attempts to model

and animate realistic human faces date back to the early 70's [25], with

many dozens of research papers published since. The applications of facial

animation include such diverse �elds as character animation for �lms and

advertising, computer games [15], video teleconferencing [6], user-interface

agents and avatars [32], and medical facial surgery planning [33, 18]. Yet

it is fair to say that no perfectly realistic facial animation has ever been

generated by computer: no \facial animation Turing test" has ever been

passed.

There are several factors that make realistic facial animation so elusive.

First, the human face is an extremely complex geometric form. For example,

the human face models used in Pixar's Toy Story were modeled using several

thousand control points each [8]. Moreover, the face exhibits countless tiny

creases and wrinkles, as well as subtle variations in color and texture | all

of which are crucial for our comprehension and appreciation of facial expres-

sions. And as di�cult as the face is to model, it is even more problematic to

animate, since facial movement is a product of the underlying skeletal and

muscular forms, as well as the mechanical properties of the skin and subcu-

taneous layers (which vary in thickness and composition in di�erent parts

of the face). And all of these problem are enormously magni�ed by the fact

that we as humans have an uncanny ability to read expressions | an abil-

ity that is not merely a learned skill, but part of our deep-rooted instincts.

For facial expressions, the slightest deviation from truth is something any

human will immediately detect.

A number of approaches have been developed to model and animate

realistic facial expressions in three dimensions, including simple geometric

interpolation between digitized [25] or laser-scanned models; performance-

based animation, in which measurements from real human actors are used

to drive synthetic characters [4, 36]; and various forms of physically-based

animation, in which musculo-skeletal controls modeled with various degrees

of realism are used to create facial animations [34, 31]. However, for sheer

2

realism, one of the most e�ective approaches to date has been the use of 2D

morphing between photographic images [2]. Indeed, some quite remarkable

results have been achieved in this way | most notably, perhaps, the Michael

Jackson video produced by PDI in which very di�erent-looking actors are

seemingly transformed into one another as they move about. The produc-

tion of this video, however, required animators to painstakingly specify a

very large set of correspondences between physical features of the actors

in almost every frame. Another problem with 2D image morphing is that it

does not correctly account for changes in viewpoint or object pose. Although

this shortcoming has been recently addressed by a technique called \view

morphing"[29], 2D morphing still lacks some of the advantages of having a

3D model, such as the ability to composite the image with other 3D graphics.

In this paper, we show how 2D morphing techniques can be combined

with 3D transformations of a geometric model to automatically produce

true 3D facial animation with a higher degree of realism than any previous

method of which we are aware. The basic steps of our process are as follows.

First, we capture multiple views of a human subject (with a given facial

expression) using cameras at arbitrary locations. Next, we digitize these

photographs and manually mark a small set of corresponding points on the

face in the di�erent views (corners of the mouth, tip of the nose, etc.).

These points are then used to automatically recover the camera parameters

(position, focal length, etc.) corresponding to each photograph, as well as the

3D positions of the marked points in space. These 3D positions are then used

to deform a generic 3D face mesh into a closer correspondence with the face

of the particular human subject. Finally, we texture-map the photos onto the

3D model. This whole process is repeated for the same human subject, with

several di�erent facial expressions. To produce facial animations, we simply

blend between two di�erent 3D models constructed in this way, while at the

same time blending the textures. Since all the 3D models are constructed

from the same generic mesh, there is a natural correspondence between

all geometric points for performing the morph. Thus, transitions between

expressions can be produced entirely automatically once the di�erent facial

models have been constructed.

Our approach utilizes a photogrammetric technique, in which images are

used to create precise geometry. The earliest such techniques applied to fa-

cial modeling and animation employed grids that were drawn directly on the

human subject's face [25, 26]. One consequence of using these grids, how-

ever, is that the images used to construct geometry can no longer be used

as a valid texture maps for the subject. More recently, several methods have

been proposed for modeling the face photogrammetrically without the use

3

of grids [19, 1, 16]. These modeling methods are quite similar in their basic

concept to the modeling technique described in this paper. However, we im-

prove upon these previous methods in a number of ways, including allowing

fairly arbitrary camera positions and lenses (rather than using a �xed pair

that are precisely oriented); employing an optical pixel
ow technique for

�ne, subpixel registration of texture maps (which could also be used to re-

�ne the geometric model further). Furthermore, we employ these techniques

not only for creating realistic facial models, but also for performing realistic

facial animations in 3D | animations that we believe are more realistic than

any previous work not involving a huge degree of human interaction.

The rest of the paper is organized as follows. Section 2 describes our

method for �tting a generic facial mesh to a collection of simultaneous pho-

tographs of an individual's head. Section 3 describes our technique for ex-

tracting both view-dependent and view-independent texture maps for pho-

torealistic rendering of the face. Section 4 presents the face morphing algo-

rithm that is used to animate the facial model. Section 5 presents the results

of our experiments with the proposed techniques. Section 6 concludes this

paper and o�ers directions for further research.

2 Model �tting

The task of the model �tting stage is to adapt a generic face model to �t an

individual's face and facial expression. For our work, we use a generic face

model made available by Keith Waters [27] (Figure 2b). As inputs to this

stage, we take several images of the face from di�erent viewpoints (the exact

camera arrangement is described in Section 5). The output of this stage is a

face model which has been adapted to a given individual, as well as a precise

estimate of the camera locations.

The model �tting process consists of three stages. In the pose recovery

stage, we apply computer vision techniques to estimate the viewing param-

eters (position, orientation, and focal length) for each of the input cameras.

We simultaneously recover the 3D coordinates of a set of feature points on

the face. These feature points are selected interactively from among the face

mesh vertices, and their position in each image (where visible) is speci�ed by

hand. An example with nine selected feature points is shown in Figure 2a.

The second stage applies a scattered data interpolation algorithm to the

estimated 3D coordinates of the feature points to compute the positions of

the remaining facial mesh vertices. In the third stage, we specify additional

correspondences between facial vertices and image coordinates to improve

4

the estimated shape of the face (while keeping the camera pose �xed).

2.1 Pose recovery

Starting with a rough knowledge of the camera positions (e.g., frontal, side

view, etc.) and of 3D shape (given by the generic head model), we iteratively

improve the pose and 3D shape estimates in order to minimize the di�erence

between the predicted and observed feature point positions. Our formulation

is based on the non-linear least squares structure from motion algorithm

presented in [30]. Unlike this previous algorithm, which uses the Levenberg-

Marquardt algorithm to perform a complete iterative minimization over all

of the unknowns simultaneously, we break the problem down into a series

of linear least squares problems which can be solved using very simple and

numerically stable techniques [14, 28].

To formulate the pose recovery problem, we associate a rotation matrix

R

k

and a translation vector t

k

with each of the m camera poses (the three

rows of R

k

are r

k

x

, r

k

y

, and r

k

z

, and the three entries in t

k

are t

k

x

, t

k

y

, t

k

z

). We

write the coordinates of the n 3D feature points as p

i

, and the 2D screen

coordinates of point i in camera k as (x

k

i

; y

k

i

). In theory, we could have mn

such measurements, but in practice we will have fewer since some feature

points will not be visible in all views.

Assuming that the origin of the (x; y) image coordinate system lies at

the optical center of each image, i.e., where to optical axis intersects the

image plane, the traditional 3D projection equation for a camera with a

focal length f

k

(expressed in pixels) can be written as

x

k

i

= f

k

r

k

x

� p

i

+ t

k

x

r

k

z

� p

i

+ t

k

z

(1)

y

k

i

= f

k

r

k

y

� p

i

+ t

k

y

r

k

z

� p

i

+ t

k

z

(2)

(this is just an explicit rewriting of the traditional projection equation x

k

i

=

R

k

p

i

+ t

k

where x

k

i

= (x

k

i

; y

k

i

; f

k

)).

Instead of using the above equation, we reformulate the problem to es-

timate inverse distances to the object instead [30]. Let �

k

= 1=t

k

z

be this

inverse distance and s

k

= f

k

=t

k

z

be a world-to-image scale factor. The ad-

vantage of this formulation is that the scale factor s

k

can be reliably esti-

mated even when the focal length is long, whereas the original formulation

has a strong coupling between the f

k

and t

k

z

parameters.

5

Performing this substitution and bringing the denominators in (1{2) over

to the left hand side, we get the pair of equations

x

k

i

+ x

k

i

�

k

(r

k

z

� p

i

)� s

k

(r

k

x

� p

i

+ t

k

x

) = 0 (3)

y

k

i

+ y

k

i

�

k

(r

k

z

� p

i

)� s

k

(r

k

y

� p

i

+ t

k

y

) = 0: (4)

Notice that these equations are linear in all of the unknowns which we wish

to recover, i.e., p

i

, t

k

x

, t

k

y

, �

k

, s

k

, and R.

Given estimates for initial values, we can solve for di�erent subsets of

the unknowns. In our current algorithm, we solve for the unknowns in �ve

steps: s

k

; p

i

; R

k

; t

k

x

and t

k

y

; and �

k

. This order was chosen to re
ect which

parameters can most reliably be recovered given our crude initial pose and

shape estimates. For each set of parameters chosen, we solve for the un-

knowns by either computing a weighted mean (for the scalar problems of

estimating s

k

, t

k

x

, t

k

y

, and �

k

), or using linear least squares (solving 3 � 3

systems) for estimating the p

i

.

1

The simplicity of this approach is a result

of solving for the unknowns in �ve separate stages, so that the parameters

for a given camera or 3D point can be recovered independently of the other

parameters.

Solving for rotation is a little trickier than for the other parameters,

since R must be a valid rotation matrix. In our work, we use incremental

rotations, i.e., we replace the rotation matrix R

k

with [I +X (v)]R

k

, where

where X (v) is the cross product operator with the incremental rotation

vector v = (v

x

; v

y

; v

z

),

X (v) =

2

6

4

0 �v

z

v

y

v

z

0 �v

x

�v

y

v

z

0

3

7

5

: (5)

This leads to a 3 � 3 linear system in (v

x

; v

y

; v

z

). The angular rotation

can be converted to a true incremental rotation matrix using Rodriguez's

formula [11]:

�R(
^
n ; �) = I + sin �X (

^
n) + (1� cos �)X

2

(
^
n); (6)

where � = kvk and
^
n = v=�, and the new rotation matrix computed using

R

k

 �R(
^
n

k

; �

k

)R

k

:

1

To weight the equations properly in a least-squared error sense, we have to divide

each equation through by the current value of the denominator (1 + �

k

r

k

z

� p

i

).

6

2.2 Scattered data interpolation

Once we have computed an initial set of coordinates for the feature points

p

i

, we use these values to deform the remaining vertices on the face mesh.

We construct a smooth interpolation function to create a displacement map

which describes, the 3D displacement between the original point positions

and the new adapted positions for every vertex in the original generic face

mesh.

Constructing such an interpolation function is a standard problem in

scattered data interpolation [24]. Given a set of known displacements u

i

=

p

i

�p

(0)

i

at vertices i, we construct a function that gives us the displacement

u

j

for every unconstrainted vertex j. There are several general approaches

to solving this problem.

The �rst choice we must make is the selection of an embedding space,

i.e., the domain of the function we are computing (the range is vectors in

3D). The simplest choice is to use the original 3D coordinates of the points

as the domain. Another choice is to use some 2D parametrization of the

surface mesh, e.g., the cylindrical coordinates we use in Section 3. In our

work, we interpolate over a 3D domain, i.e., we �nd a smooth vector-valued

function f (p) �tted to the known data u

i

= f (p

i

), from which we can

compute u

j

= f (p

j

).

Again, several choices exist for how to construct the interpolating func-

tion [24]. We use a method based on radial basis functions, i.e., functions of

the form,

f (p) =

X

i

c

i

�(kp � p

i

k); (7)

where the �(r) are the radially symmetric basis functions (a more general

form of this interpolant also adds some low-order polynomial terms to model

global, e.g., a�ne, deformations).

To determine the coe�cients c

i

, we solve the set of linear equations

u

i

= f (p

i

). Observe that the x, y, and z components of the c

i

vectors can

be computed independently using the set of equations

u

i

=

X

j

c

i

�(r

ij

); where r

ij

= kp

i

� p

j

k;

i.e., by inverting the matrix � with �

ij

= �(r

ij

) and multiplying �

�1

by

(the x, y, or z coordinates of) u

i

. This matrix computation and inver-

sion can be performed once (it depends only on the original con�guration

of the vertices), unless more constraints are selected during a subsequent

correspondence-based shape re�nement stage.

7

Many di�erent functions for �(r) have been proposed [24]. After exper-

imenting with a number of functions, we have chosen to use �(r) = e

�r=64

,

where the diameter of the face model measured from side to side is on the

order of 6 units. For now, this choice has given us reasonable results, but

we would like to investigate even better interpolants in the future. Figure 2c

shows the shape of the face model after we have interpolated the set of com-

puted 3D displacements at the feature points and applied them to the whole

face.

2.3 Correspondence-based shape re�nement

After warping the generic face model into its new shape, we can further

improve the shape by specifying additional correspondences. Since these

correspondences may not be as easy to locate correctly, we do not use them to

update the camera pose estimates. Instead, we simply solve for the values of

the new feature points p

i

using a simple least-squares �t, which corresponds

to �nding the point nearest the intersection of the viewing rays in 3D. We can

then re-run the scattered data interpolation algorithm to update the vertices

for which no correspondences are given. This process can be repeated until

we are satis�ed with the shape.

Figure 2d shows the shape of the face model after thirteen additional

correspondences have been speci�ed. Since the pose of each camera is known,

we can easily compute and display the epipolar lines corresponding to a point

selected in one image [11]. This could be used to facilitate the process of

manually establishing correspondences. We could also allow the user to draw

corresponding curves (e.g., the pro�le, which corresponds to the midline in

the frontal view), and then automatically set up pointwise correspondences

using the epipolar geometry.

3 Texture extraction

In this section we describe the process of extracting from the input pho-

tographs the texture maps necessary for rendering realistic images of a

reconstructed facial model from various viewpoints. We �rst explain how

to compute a single view-independent texture map, which can be used for

quickly rendering the face from any viewpoint. Then we describe a view-

dependent texture mapping technique that is slower, but generates images

of higher �delity.

The texture extraction stage proceeds as follows:

8

jI

(x ,y)j j

(u,v)

p

Figure 1: Geometry for texture extraction

1. A mapping between 3D coordinates on the facial mesh and a 2D tex-

ture space is de�ned using a cylindrical projection, similarly to several

previous authors (e.g., [5, 21, 19]).

2. For each texture pixel centered at the cylindrical coordinates (u; v):

(a) Compute the 3D point p on the surface of the face whose cylin-

drical projection is (u; v) (see Figure 1).

(b) For each camera pose j compute (x

j

; y

j

), the projection of p

onto the corresponding image plane, and extract the color there

I

j

(x

j

; y

j

).

(c) Set the color of the texture at (u; v) to a linear combination of

the corresponding image colors:

T (u; v) =

X

j

w

j

(u; v) I

j

(x

j

; y

j

)

where w

j

(u; v) is the relative weight of the contribution of the

j-th input image to the (u; v) pixel of the texture map, with the

property that

P

j

w

j

(u; v) = 1. The computation of the weight

maps w

j

is described in section 3.1.

Computing the 3D point p corresponding to point (u; v) in texture space

can be accomplished by intersecting a ray with the surface of the face. In or-

der to avoid multiple intersection tests with triangles in the facial mesh, we

construct a map in texture space that speci�es for each point (u; v) the trian-

gle whose cylindrical projection covers that point. This map is constructed

in a pre-processing stage by rendering the cylindrical projection of each face

triangle using a unique color. (This technique is essentially a cylindrical vari-

ant of a well-known ray tracing acceleration technique, known as the item

9

bu�er [35].) Once the containing triangle is established, p is obtained by

performing a single ray{plane intersection.

3.1 Weight-map construction

Constructing the weight maps for blending the input images into a single

texture map is probably the trickiest and the most interesting component of

our texture-mapping technique. There are several desirable properties that

a weight map should have:

� If the facial surface point p corresponding to the texture map pixel

(u; v) is not visible in the j-th image, the weight w

j

(u; v) should be

zero.

� The weights in each weight map should vary smoothly, in order to

ensure a seamless blend between the input images.

� The weight w

j

(u; v) should depend on the \positional certainty" [19] of

the corresponding point p in the j-th image. The positional certainty

is de�ned as the dot product between the surface normal at p and the

direction of projection.

� Finally, to produce a view-dependent texture map, the weight w

j

(u; v)

should also depend on the similarity between the direction of projec-

tion of p onto the j-th image and the direction of projection in the

new view.

Previous authors used weighting function that satisfy only a subset of

these requirements. For example, Kurihara and Arai [19] use positional

uncertainty as their weighting function, but they do not account for self-

occlusion. Akimoto et al. [1] as well as Ip and Yin [16] blend the images

smoothly, but address neither self-occlusion nor positional certainty. De-

bevec et al. [7], who describe a view-dependent texture mapping technique

for modeling and rendering buildings from photographs, do address occlusion

but do not account for positional certainty. It should be noted, however, that

positional certainty is less critical in photographs of buildings, since most

buildings do not tend to curve away from the camera.

Our method for computing the weight functions satis�es all of the prop-

erties mentioned above. We �rst set each entry of w

j

to 1 if the corresponding

point p is visible in image j. We then smoothly ramp the values from 1 to

0 in the vicinity of boundaries in the resulting binary map. This smooth-

ing step helps eliminate seams in the �nal texture map. Finally, each pixel

10

w

j

(u; v) is multiplied by the positional certainty term, and the weights are

normalized so that they sum to 1.

To facilitate fast visibility testing of points on the surface of the face

from a particular camera pose we �rst render all the triangles in the mesh

from a view corresponding to the camera pose and save the resulting depth

map from the Z-bu�er. Then we render each triangle separately and compare

the depth values at the pixels covered by the triangle to the corresponding

saved depth values. This process allows us to classify each triangle as to-

tally visible, partially visible, or totally occluded. Whenever a pixel (u; v)

in the weight map w

j

is covered by a partially visible triangle, we project

the corresponding point p using the j-th camera settings and compare the

resulting depth value to the corresponding value in the j-th depth map.

3.2 View-dependent texture mapping

Rather than blending all of the input images into a single view-independent

cylindrical texture map once and for all, we can defer the blending until the

viewpoint from which the facial model is to be rendered has been speci�ed.

Each of the input images is warped into the cylindrical texture space and

stored along with its weight map. Once the viewpoint has been speci�ed,

we increase the relative weights of those texture maps whose correspond-

ing camera poses are closer to the new viewpoint. Blending the individual

texture maps together in this fashion results in a view-dependent texture

map [7]. View-dependent texture mapping is more expensive because the

texture has to be reassembled once per frame, however in our experience it

made little di�erence with respect to the faster view-independent texture

mapping.

3.3 Improving texture registration

While using smooth weight maps will remove most of the visible discon-

tinuities in the composite texture map, some residual ghosting or blurring

artifacts may still be visible due to small mis-registrations between the im-

ages (e.g., the geometry may be wrong or not detailed enough). To improve

the quality of the composite textures, we can locally warp each component

texture (and weight) map before blending.

To compute good values for the warping (i.e., the displacement map),

we use a classical optical
ow technique [22, 3], as described in Appendix

A. This algorithm registers two images I and I

0

by �nding two �elds u(x; y)

11

and v(x; y) which locally minimize the squared errors in

I

0

(x+ u(x; y); y + v(x; y)) � I(x; y): (8)

A summary of our algorithm looks like this:

1. Input the two images I and I

0

and any initial displacement estimates

(u; v) (if none are given, set (u; v) (0; 0)).

2. Resample I

0

(x; y) to yield I

0

(x

0

; y

0

), where x

0

= x+ u and y

0

= y + v,

and write this image out, if desired.

3. Compute the gradients at each pixel, f

x;y

and g

x;y

, and the intensity

(or color) error h

x;y

, and form the quantities a

x;y

: : : e

x;y

.

4. Sum these quantities around each pixel to get aggregated values a

0

x;y

: : : e

0

x;y

.

5. At each pixel, solve the linear system (12) given in Appendix A using

the aggregated values a

0

x;y

: : : e

0

x;y

. If the system is not of full rank or

is ill-conditioned, set (�u; �v) 0.

6. Update (u

x;y

; v

x;y

) (u

x;y

+ �u

x;y

; v

x;y

+ �v

x;y

) and write out this

displacement �eld.

7. Continue iterating at step 2 if the root mean squared correction to the

displacement �eld is above a threshold and the maximum number of

iterations has not been reached.

We have enhanced this basic algorithm in a number of ways. The weights

computed during the texture map blending stage are used to weight the

contributions of each pixel during the displacement map computation. This

leads to smoother changes in the
ow estimates near the borders of the

visibility map. Since the initial misregistration may be large, we use a coarse-

to-�ne algorithm based on an image pyramid to improve the convergence [3].

Figures 4a{b show two texture maps, in cylindrical coordinates, that

have been extracted from the original photos through projection onto the

geometric model. Because the geometry is imperfect, the extraction process

is inexact, which leads to local misregistrations between the two texture

maps. When the texture maps are blended, the result is loss of detail and

ghosting artifacts, as seen in �gure 4g. We can reduce this using optical

ow to warp one of the texture maps (in this case 4a) to better match the

other, before we do the blend. We compute a smooth warp that minimizes

the di�erence between the warped texture map 4a and the target texture

12

map 4b. This warp is shown in �gure 4d, with the di�erence before and after

the warp shown in 4e and 4f. By applying this warp before blending, the

resulting combined map is improved from that shown in 4g to that shown

in 4h. Notice, for example, how the ghosting in the eye region has been

eliminated.

4 Face morphing

In order to generate a continuous transition between key facial expressions

of the same person, we �rst utilize the techniques described in the previous

sections to construct a 3D textured facial model for each of the key expres-

sions. A continuous transition between these key expressions can now be

created as follows:

1. Obtain an intermediate geometric model of the face by 3D morphing

between the facial meshes corresponding to the key expressions.

2. Obtain a texture map for the intermediate expression by image mor-

phing between the corresponding texture maps.

3. Render the resulting texture-mapped facial model from the desired

viewpoint.

The problem of morphing between general polygonal meshes in 3D is

a di�cult one [17]. In our case, however, the topology of the two key face

meshes is identical. Thus, the correspondences between vertices in the key

meshes need not be computed. Furthermore, for most individuals, and most

pairs of facial expressions, we can assume that the geometry of the meshes

is fairly similar. Thus, a satisfactory morphing sequence can be obtained

by simple linear interpolation between the geometric coordinates of corre-

sponding vertices in each of the two face meshes.

In order to morph between a pair of textures we also need correspon-

dences between the two texture images [2]. These correspondences are given

to us by means of the texture coordinates of the facial mesh vertices in each

of the two meshes. Thus, in order to morph between the two textures, we

should compute the cylindrical coordinates for each vertex in the intermedi-

ate facial mesh, warp each of the two textures to the new coordinates, and

blend them together.

Note that if the texture coordinates were the same for each correspond-

ing pair of vertices in the facial meshes, there would be no need to warp

the textures before blending them. However, using the same set of texture

13

coordinates for each facial mesh is inconvenient, as it means that we would

not be able to simply use cylindrical coordinates as texture coordinates. As

a consequence, the computations to extract the textures would become more

complicated . Also,

Warping high-resolution textures can be time-consuming. Fortunately,

explicitly morphing between the textures is not always necessary. Typically,

we are interested in producing only a single image of each intermediate

expression from a particular viewpoint. In this case, instead of morphing

between the two key texture maps, we simply render the intermediate facial

mesh twice, once for each key expression, using the appropriate texture

map. The resulting images are then blended together. The blending can be

performed rapidly using the accumulation bu�er in OpenGL [23].

5 Results

In order to put our technique to the test, we photographed a female and

a male model in a variety of facial expressions. The photography was per-

formed using �ve cameras simultaneously. The cameras were not calibrated

in any particular way and the lenses had di�erent focal lengths. Since no

special attempt was made to illuminate the subject uniformly, the resulting

photographs exhibited considerable variation in both hue and brightness.

Five typical images (cropped to the size of the subject's head) are shown

in Figure 2a. The photographs were digitized using the Kodak PhotoCD

process.

We used the interactive modeling system described in sections 2 and 3

to create four facial models: (a) the female subject (Karla) with a neutral

expression, (b) Karla with an expression of fear mixed with pain, (c) the

male subject (Steve) with a neutral face, and (d) Steve smiling. Despite

the lack of hair, the resulting textured facial models look very lifelike and

bear a great deal of resemblance to the individuals in the photographs, as

demonstrated by the �rst and the last column of Figure 5.

Following the modeling stage, we generated a 3D morphing sequence

for each of the individuals using the technique described in section 4. The

two morphing sequences are shown on the accompanying video tape. The

second and the fourth rows in Figure 5 show a few frames from the transi-

tion between the expressions. In the video sequence, this transition appears

very natural and realistic, possessing a considerably less synthetic look than

typical 2D image morphing sequences.

14

6 Summary and future work

In this paper, we have presented a new approach to image-based realistic

facial animation. Rather than relying on pure 2D image morphing, we con-

struct a 3D model of the face and combine 3D shape morphing with 2D

image morphing to obtain realistic transitions between facial expressions.

Our method has the advantage over previous similar approaches that it

extracts textured facial models from photographs taken with uncalibrated

cameras from arbitrary locations. In addition, our method computes from

these photographs both view-independent and view-dependent textures, us-

ing carefully designed weight functions. We have also described an optical

pixel
ow technique that we use for improving the registration between

the images in texture space. This technique could also be used for adap-

tively improving the geometric accuracy of the facial model. With the aid

of these techniques, we have been able to generate some of the most realis-

tic 3D facial models to date. Furthermore, since these models have built-in

correspondences between them, we are able to generate realitic transitions

between facial expressions automatically, using a simple and inexpensive 3D

morphing technique.

The results that we have obtained with our current implementation are

indeed encouraging; however, we see this work as just the beginning of a

challenging research project to build a complete image-based facial anima-

tion system. Building this �rst prototype has given us several insights into

where the inherent di�culties lie.

Constructing accurate 3D models of the face from images has proven

to be a non-trivial task. One reason is that the current model we use only

covers the face and not the complete head, and establishing correspondences

at the edge of the face (especially near the ears) can be quite di�cult. A

second reason is that our current scattered data interpolant is not su�ciently

exible. We believe that it could be signi�cantly improved by better tuning

the radial basis functions and adding an a�ne registration component. A

third reason is that �nding accurate correspondences in the relatively smooth

regions such as the cheeks is quite di�cult (this is where active range�nders

such as laser scanners have a big advantage).

To improve the 3D model construction, we are developing an algorithm

to adjust the model geometry based on the local misregistration errors com-

puted during the texture map alignment process. In principle, small changes

in geometry correspond to motions in the (u; v) coordinate space, so it should

be possible to incrementally improve our 3D vertex positions by minimizing

misregistration errors. This idea is similar to model-based stereo matching

15

[12], and will use optimization techniques similar to those used in through-

the-lens camera control [13].

In addition to re�ning the positions of the face vertices, misregistrations

error could also be used to guide a localized subdivision step, which would

enable us to re�ne the generic face model to better preserve �ne facial fea-

tures. Note, however, that such a re�nement must be done identically for all

3D models between which we may wish to morph (say, all models of a given

person), if we are to use the same simple morphing algorithm described in

this paper.

Our ultimate goal, as far as the modeling stage is concerned, is to con-

struct a fully automated modeling system, which would automatically �nd

features and correspondences with minimal user intervention. This is a chal-

lenging problem indeed, but recent results on 2D face modeling in computer

vision [20] give us cause for hope. If we are successful in our quest, our

techniques could then be applied to a wider range of 3D image-based recon-

struction problems.

Creating photorealistic models from images is just one of the challenges

that stand before us. An even greater challenge is creating complex realistic

animations. Here, we must develop a rich vocabulary for describing facial

movements. Such a vocabulary will require the ability to blend between

several expressions, and to do so in a localized fashion (so that di�erent

parts of the face can have di�erent expressions or actions).

There are several potential ways to attack this problem. One would be

to adopt and adapt an action unit-based system such as the Facial Action

Coding System (FACS) [9]. Another possibility would be to apply modal

analysis (principal component analysis) techniques to describe facial expres-

sion changes using a small number of motions [20]. Finding natural control

parameters to facilitate animation, and developing realistic looking temporal

pro�les for such movements, is also challenging.

While constructing realistic facial animations is our �rst goal, ultimately

we would like to also support performance-driven animation, i.e., the ability

to automatically track facial movements in a video sequence, and to au-

tomatically translate these into animation control parameters. Our current

techniques for registering images and converting them into 3D movements

should provide a good start, although they will probably need to be en-

hanced with feature-tracking techniques and some rudimentary expression

recognition capabilities. Such a system would enable not only very realistic

and facile facial animation, but also a new level of video coding and com-

pression techniques (since only the expression parameters would need to be

encoded), as well as real-time control of avatars in 3D chat systems.

16

References

[1] Takaaki Akimoto, Yasuhito Suenaga, and Richard S. Wallace. Au-

tomatic creation of 3D facial models. IEEE Computer Graphics and

Applications, 13(5):16{22, September 1993.

[2] Thaddeus Beier and Shawn Neely. Feature-based image metamorpho-

sis. In Edwin E. Catmull, editor, Computer Graphics (SIGGRAPH '92

Proceedings), volume 26, pages 35{42, July 1992.

[3] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani. Hierar-

chical model-based motion estimation. In Second European Confer-

ence on Computer Vision (ECCV'92), pages 237{252, Santa Margherita

Liguere, Italy, May 1992. Springer-Verlag.

[4] Philippe Bergeron and Pierre Lachapelle. Controlling facial expressions

and body movements in the computer-generated animated short \tony

de peltrie". In SIGGRAPH '85 Advanced Computer Animation seminar

notes. July 1985.

[5] David T. Chen, Andrei State, and David Banks. Interactive shape

metamorphosis. In Pat Hanrahan and Jim Winget, editors, 1995 Sym-

posium on Interactive 3D Graphics, pages 43{44. ACM SIGGRAPH,

April 1995. ISBN 0-89791-736-7.

[6] C. S. Choi, H. Harashima, and T. Takebe. Highly accurate estimation

of head motion and facial action information on knowledge-based image

coding. IEICEJ, PRU90-68:1{8, October 1990.

[7] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling

and rendering architecture from photographs: A hybrid geometry- and

image-based approach. In Holly Rushmeier, editor, SIGGRAPH 96

Conference Proceedings, Annual Conference Series, pages 11{20. ACM

SIGGRAPH, Addison Wesley, August 1996. held in New Orleans,

Louisiana, 04-09 August 1996.

[8] Eben Ostby, Pixar Animation Studios. Personal communication, Jan-

uary 1997.

[9] P. Ekman and W. V. Friesen. Manual for the Facial Action Coding

System. Consulting Psychologists Press, Inc., Palo Alto, California,

1978.

17

[10] Gary Faigin. The Artist's Complete Guide to Facial Animation.

Watson-Guptill Publications, New York, 1990.

[11] O. Faugeras. Three-dimensional computer vision: A geometric view-

point. MIT Press, Cambridge, Massachusetts, 1993.

[12] P. Fua and Y. G. Leclerc. Registration without correspondences. In

IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR'94), pages 121{128, Seattle, Washington, June

1994. IEEE Computer Society.

[13] M. Gleicher and A. Witkin. Through-the-lens camera control. Com-

puter Graphics (SIGGRAPH'92), 26(2):331{340, July 1992.

[14] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The

Johns Hopkins University Press, Baltimore, Maryland, second edition,

1989.

[15] Bright Star Technologies Inc. Beginning Reading Software. Sierra On-

Line, Inc., 1993.

[16] Horace H. S. Ip and Lijun Yin. Constructing a 3D individualized head

model from two orthogonal views. The Visual Computer, 12:254{266,

1996.

[17] James R. Kent, Wayne E. Carlson, and Richard E. Parent. Shape

transformation for polyhedral objects. In Edwin E. Catmull, editor,

Computer Graphics (SIGGRAPH '92 Proceedings), volume 26, pages

47{54, July 1992.

[18] R. M. Koch, M. H. Gross, F. R. Carls, D. F. von B�uren, G. Fankhauser,

and Y. Parish. Simulating facial surgery using �nite element methods.

In Holly Rushmeier, editor, SIGGRAPH 96 Conference Proceedings,

Annual Conference Series, pages 421{428. ACM SIGGRAPH, Addison

Wesley, August 1996. held in New Orleans, Louisiana, 04-09 August

1996.

[19] Tsuneya Kurihara and Kiyoshi Arai. A transformation method for

modeling and animation of the human face from photographs. In Na-

dia Magnenat Thalmann and Daniel Thalmann, editors, Computer An-

imation '91, pages 45{58. Springer-Verlag, Tokyo, 1991.

18

[20] A. Lanitis, C. J. Taylor, and T. F. Cootes. A uni�ed approach for

coding and interpreting face images. In Fifth International Confer-

ence on Computer Vision (ICCV'95), pages 368{373, Cambridge, Mas-

sachusetts, June 1995.

[21] Yuencheng Lee, Demetri Terzopoulos, and KeithWaters. Realistic mod-

eling for facial animation. In Robert Cook, editor, SIGGRAPH 95

Conference Proceedings, Annual Conference Series, pages 55{62. ACM

SIGGRAPH, Addison Wesley, August 1995. held in Los Angeles, Cali-

fornia, 06-11 August 1995.

[22] B. D. Lucas and T. Kanade. An iterative image registration technique

with an application in stereo vision. In Seventh International Joint

Conference on Arti�cial Intelligence (IJCAI-81), pages 674{679, Van-

couver, 1981.

[23] Jackie Neider, Tom Davis, and Mason Woo. OpengGL Programming

Guide. Addison Wesley, 1993.

[24] Gregory M. Nielson. Scattered data modeling. IEEE Computer Graph-

ics and Applications, 13(1):60{70, January 1993.

[25] Frederic I. Parke. Computer generated animation of faces. Proc. ACM

annual conf., August 1972.

[26] Frederic I. Parke. A Parametric Model for Human Faces. Phd thesis,

University of Utah, Salt Lake City, Utah, December 1974. UTEC-CSc-

75-047.

[27] Frederic I. Parke and Keith Waters. Computer Facial Animation. A K

Peters, Wellesley, Massachusetts, 1996.

[28] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.

Numerical Recipes in C: The Art of Scienti�c Computing. Cambridge

University Press, Cambridge, England, second edition, 1992.

[29] Steven M. Seitz and Charles R. Dyer. View morphing. In Holly Rush-

meier, editor, SIGGRAPH 96 Conference Proceedings, Annual Confer-

ence Series, pages 21{30. ACM SIGGRAPH, Addison Wesley, August

1996. held in New Orleans, Louisiana, 04-09 August 1996.

[30] R. Szeliski and S. B. Kang. Recovering 3D shape and motion from

image streams using nonlinear least squares. Journal of Visual Com-

munication and Image Representation, 5(1):10{28, March 1994.

19

[31] D. Terzopoulos and K. Waters. Physically-based facial modeling, anal-

ysis, and animation. J. of Visualization and Computer Animation,

1(4):73{80, March 1990.

[32] K. R. Th�orisson. Gandalf: An embodied humanoid capable of real-

time multimodal dialogue with people. In First ACM International

Conference on Autonomous Agents, 1997. Mariott Hotel, Marina del

Rey, California, February 5-8.

[33] M. W. Vannier, J. F. Marsh, and J. O. Warren. Three-dimentional

computer graphics for craniofacial surgical planning and evaluation.

Computer Graphics, 17(3):263{273, 1983.

[34] Keith Waters. A muscle model for animating three-dimensional facial

expression. In Maureen C. Stone, editor, Computer Graphics (SIG-

GRAPH '87 Proceedings), volume 21, pages 17{24, July 1987.

[35] H. Weghorst, G. Hooper, and Donald P. Greenberg. Improved com-

putational methods for ray tracing. ACM Transactions on Graphics,

3(1):52{69, January 1984.

[36] Lance Williams. Performance-driven facial animation. In Forest Bas-

kett, editor, Computer Graphics (SIGGRAPH '90 Proceedings), vol-

ume 24, pages 235{242, August 1990.

20

A Optic
ow algorithm

In this appendix, we summarize the derivation of the optic
ow algorithm

�rst presented in [22] (for a more recent description with some useful gen-

eralizations, see [3]).

To register two images I and I

0

, we compute a displacement map, i.e.,

a 2-D displacement at each point, u(x; y) and v(x; y). We wish to compute

values of u and v which satisfy

I

0

(x+ u(x; y); y + v(x; y)) = I(x; y) (9)

In principle, we have twice as many unknowns as measurement. However, we

can turn this into an overconstrained problem by choosing a neighborhood

around each pixel (say 5 � 5), and solving the set of linear equations to

yield (u; v). To do this, we use a Taylor series expansion of (u; v) around its

current estimate,

I

0

(x+ u+ �u; y + v + �v) � I(x; y) �

I

0

(x

0

; y

0

) + I

0

x

(x

0

; y

0

)�u + I

0

y

(x

0

; y

0

)�v � I(x; y) = 0 (10)

where (x

0

; y

0

) = (x+u; y+v) are the warped pixel coordinates, and I

0

x

(x

0

; y

0

)

and I

0

y

(x

0

; y

0

) are the horizontal and vertical intensity gradients. To resam-

ple the image I

0

at location (x

0

; y

0

), we use bilinear pixel interpolation. To

simplify computation, we can also replace the gradient estimates I

0

x

(x

0

; y

0

)

and I

0

y

(x

0

; y

0

) by I

x

(x; y) and I

y

(x; y).

Recognizing that we are operating on a discrete pixel grid, let us re-write

the above equations as

f

x;y

�u+ g

x;y

�v = h

x;y

(11)

where f

x;y

= I

0

x

(x

0

; y

0

), g

x;y

= I

0

y

(x

0

; y

0

), and h

x;y

= I(x; y) � I

0

(x

0

; y

0

) is

the current intensity error. It is straightforward to show that the normal

equations arising from the above linear system have the form

X

(x;y)

"

a

x;y

b

x;y

b

x;y

c

x;y

"

�u

�v

#

=

X

(x;y)

"

d

x;y

e

x;y

#

; (12)

where a

x;y

= f

2

x;y

, b

x;y

= f

x;y

g

x;y

, c

x;y

= g

2

x;y

, d

x;y

= f

x;y

h

x;y

, and e

x;y

=

g

x;y

h

x;y

, are outer products of the gradients and errors, and the summation

21

is performed over a neighborhood surrounding each pixel.

2

For better condi-

tioning, we typically add a small stabilizing term � to the diagonal elements

of the left hand side, a

0

x;y

and b

0

x;y

.

The local summation in (12) can also be implemented by computing the

quantities a

x;y

: : : h

x;y

in parallel, and then applying a convolution operator.

For increased e�ciency, a separable convolution with a box �lter (using

running sums) can be used.

2

If we are working with color images, the computation is repeated for each color band

and the results are summed to product the 2 � 2 and 2 � 1 matrices appearing in the

normal equations.

22

eps/k_left.ps
eps/k_3qleft.ps eps/k_front.ps

eps/k_3qright.pseps/k_right.ps

(a)

eps/generic2.ps eps/9-pts.ps eps/22-pts.ps

(b) (c) (d)

Figure 2: Model �tting process: (a) a set of input images with marked fea-

ture points, (b) generic face geometry (shaded surface rendering), (c) face

adapted to initial 9 feature points (after pose estimation), (d) face after 22

additional correspondences have been given

23

eps/frown_right.ps eps/frown_front.ps

(a) (b)

eps/frown_vm_0.ps eps/frown_vm_2.ps

(c) (d)

eps/frown-blend.ps

(e)

Figure 3: Texture map blending: (a) and (b) show two of the input images af-

ter projection onto the face model, followed by cylindrical projection; (c) and

(d) show the corresponding weight maps; (e) shows the view-independent

texture blended from all �ve input images.

24

texture1.eps texture2.eps warped_texture.eps

(a) (b) (c)

warped_grid2.eps error_before2.eps error_after2.eps

(d) (e) (f)

blend_before.eps blend_after.eps

(g) (h)

Figure 4: (a){(b) sections of two cylindrical texture maps reconstructed from

di�erent photographs (c) the �rst texture map after optical
ow is used to

warp it to better match the second (d) the warping, visualized by applying

it to a regular test grid (e) the di�erence between the two original texture

maps (f) the di�erence after warping (g) 50-50 blend of the original texture

maps (h) the blend with optical
ow

25

eps/k_n_front.ps eps/k_f_front.ps

eps/kmorph0.ps eps/kmorph1.ps eps/kmorph2.ps eps/kmorph3.ps

eps/s_n_front.ps eps/s_s_front.ps

eps/smorph0.ps eps/smorph1.ps eps/smorph2.ps eps/smorph3.ps

Figure 5: Morphing between facial models. The top and the third rows each

show two photographs of an individual with two di�erent facial expressions.

The second and fourth rows show transitions between the corresponding

facial models.

26

