
A Generalization and Improvement

to PPM's \Blending"

1

Suzanne Bunton

Technical Report UW-CSE-97-01-10

Department of Computer Science and Engineering

University of Washington

Abstract

The best-performing method in the data compression literature for com-

puting probability estimates of sequences on-line using a su�x-tree model is

the blending technique used by PPM. Blending can be viewed as a bottom-

up recursive procedure for computing a mixture, barring one missing term for

each level of the recursion, where a mixture is basically a weighted average of

several probability estimates. We show by decomposition into an inheritance

evaluation time and a mixture weighting function that mixtures generalize the

techniques used in PPM variants. Doubly controlled experiments with our ex-

ecutable taxonomy of on-line sequence modeling algorithms and the Calgary

Corpus demonstrate the impact of varying inheritance evaluation time, mixture

weighting function, and including update exclusion.

Keywords: data compression, universal coding, on-line stochastic model-

ing, statistical inference, �nite-state automata

1

Portions of this paper also appear in Proceedings of the DCC, March 1997

Generalization and Improvement to PPM's

\Blending"

Suzanne Bunton

The University of Washington

The best-performing method in the data compression literature for computing

probability estimates of sequences on-line using a su�x-tree model is the blending

technique used by PPM [CW84, Mof90]. Blending can be viewed as a bottom-up

recursive procedure for computing a mixture, barring one missing term for each level

of the recursion, where a mixture is basically a weighted average of several probability

estimates. We shall show by decomposition that mixtures generalize the techniques

used in DMC variants [CH87, TR93], as well as PPM variants, and thus these tech-

niques, along with other variants of mixtures, are interchangeable.

1 Recursive Mixtures

We are concerned with estimating a probability P

e

(a

i

ja

1

a

2

� � �a

i�1

) using the frequen-

cies stored at the excited states of a su�x-tree FSM (see Chapter 2 of [Bun96]), where

the excited states are those states of the FSM whose associated conditioning context

partitions contain the sequence a

1

a

2

� � �a

i�1

2 A

�

. At any time, the excited states

of a su�x-tree FSM are linked, at least abstractly, by an unbroken chain of su�x

pointers, which, for a given state s, point to the state with the smallest conditioning

context that properly contains the conditioning context of s.

Let s

0

and s

�1

be the order 0 and order �1 states of a su�x tree, respectively,

and de�ne �(s) to be the number of times a novel event has occurred at a given state

s. That is,

�(s) = jfa : count[a; s; u(s)] > 0gj;

where a 2 A, the �nite input alphabet, and u : S ! f0; 1g selects between full-

update frequencies given by count[-,s,0] and update-excluded

2

frequencies given by

count[-,s,1] at state s. Thus,

u(s) =

(

0 if s = s

0

, the selected state;

X otherwise,

where X is a global binary variable denoting whether update exclusions are enabled

for the model. Note that count[a; s; 1] = 0, count[a; s; 0] = 0, so the value of u(s)

does not a�ect the value of �(s): Let count(a; s) = count[a; s; u(s)] + k; where k is

the initial frequency value (ideally, k = 0), and k is a global constant that remains

�xed for the lifetime of the model. Lastly, let the node-count function count : S ! R

be de�ned as follows:

count(s) =

X

a:count[a;s;u(s)]>0

count(a; s):

2

Chapter 5 of [Bun96] explains that the ability to dynamically select update-excluded frequencies

or full-update frequencies on a per-state basis is required for correctly combining mixtures, update

exclusion (introduced in [Mof90]), and state selection.

1

Given the above de�nitions, a simple bottom-up procedure for recursively com-

puting a mixture that estimates the probability of a given event, a

i

= a, starting from

an excited state s, is

P

e

(ajs; i) =

8

<

:

W (s) �

count(a;s)

count(s)

+ (1�W (s)) � P

e

(ajsu�x(s); h(s; a; i)) if s 6= s

�1

1

jAj+1��(s

0

)

otherwise

where 0 � W (s) < 1, and h(s; a; i) � i.

Assuming the mixture computation is initiated at the maximum-order excited

state, this procedure computes a mixture of maximum-likelihood probability esti-

mators for all excited states, except for the order �1 state, which contributes an

explicitly assumed initial distribution that must be non-zero for all possible symbols

in A.

The inheritance evaluation time h(s; a; i) de�nes when, relative to the input

sequence, the ancestor's contribution to the mixture, P

e

(ajsu�x(s); h(s; a; i)), is

computed. The recursive mixture weighting function W () determines the degree of

inuence the ancestor's contribution will have relative to the contribution of the fre-

quencies local to state s.

There are two essential questions that must be addressed when de�ning an

e�ective mixture:

� How do we de�ne the mixture weighting function W ()?

� How do we de�ne the inheritance evaluation time h(s; a; i)?

2 Mixture Weights

Our goal is to de�ne an easily computable weighting functionW : S ! [0::1) that will

cause P

e

(ajs) to assign the greatest likelihood to the currently scanned symbol, on

average. This implies, for one thing, that our weighting function should assign a low

value to W (s) whenever it is likely that the currently scanned symbol corresponds to

an event that has never occurred when s was excited, so that the weight 1 �W (s)

of the ancestors' contribution to the mixture is relatively high. Thus the choice of

weighting function reduces to a solution to an ancient problem|the \zero-frequency

problem," or how to assign a likelihood to an event that has never occurred before|for

which it is widely agreed that no principled solution exists, in the absence of a priori

knowledge [WB91]. Therefore, the merit of any weighting function for a universal

model is determined analytically by how the assumptions it imposes interact with

other assumptions made in the model, and empirically by its performance on actual

data.

Several approaches to solving the zero frequency problem, known as \escape"

mechanisms, have been used successfully with PPM implementations. Four of the

simplest and best-performing escape mechanisms are known in the literature as `A,'

`B,' `C,' and `D' [WB91]. In this section, we shall show how these simple escape

mechanisms correspond to di�erent weighting functions W (s). We introduce a gen-

eral formula for W (s) that relies upon global changes to the initial values of event

frequencies to express each of these escape mechanisms exactly, and which allows

e�cient implementation of the mixture computation.

2

2.1 Mixture Weights with Variable Initial Frequencies

Each of the escape mechanisms `A'{`D' can be described exactly as a general weighting

function W (s), where

W (s) =

count(s)

count(s) +

�(s)

d(s)

;

if we let the escape mechanism determine the global constant k (which is ideally

zero) such that count(a; s) = count[a; s; u(s)] + k if count[a; s; u(s)] > 0, and

count(a; s) = 0 if count[a; s; u(s)] = 0. This way, the four escape mechanisms

are given by the following assignments to d(s) and initial frequency value k:

A: d(s) = �(s) k = 0

B: d(s) = 1, k = �1

C: d(s) = 1, k = 0

D: d(s) = 2, k = �

1

2

.

What assumptions about the input data do these choices of weighting formulas

impose? Each of these weighting functions base the weights on the number of times in

the past that a node s has \missed," that is, failed to assign a non-zero likelihood to

the scanned symbol when excited. The key di�erence among the escape mechanisms

is how much emphasis is placed on the predictions conditioned by excited low order

states relative to the predictions conditioned by excited high order states.

In the general weighting formula for W (s) above, more emphasis is placed on

higher order states as d(s) increases in numerical value. Thus, if we sort the escape

mechanisms by increasing values of d(s), we get `B' � `C' � `A' � `D', when �(s) < 2

and `B' � `C' � `D' � `A', otherwise. With larger values of k, more emphasis is placed

upon higher order states. Thus if we sort the escape mechanisms by increasing values

of k, we get `B' � `D' � `C' � `A'. Clearly `B' places the lowest relative emphasis

on high order states, while `A' tends to place the greatest emphasis on high order

states. Mechanisms `D' and `C', which consistently and signi�cantly outperform `A'

and `B' in practice, are somewhere in the middle. Method `D' systematically favors

deterministic states (i.e., states that recognize only one input symbol|they are always

among the highest order excited states), and tends to slightly outperform `C'.

One clear bene�t of these particular escape mechanisms is that they simplify the

algebra required to compute the mixture. With escape formulas `A'{`D', the general

mixture formula becomes:

P

e

(ajs; i) =

8

>

<

>

:

count(a;s)+

(

�(s)

d(s)

�P

e

(ajsu�x(s);h(s;a;i))

)

count(s)+

�(s)

d(s)

if s 6= s

�1

1

jAj+1��(s

0

)

otherwise

where 0 � W (s) < 1.

2.2 Inherited Frequencies

In general, given any of the weighting formulae above, we can express the mixture as

P

e

(ajs; i) =

8

>

<

>

:

numerator(W (s))

count(s)

�count(a;s)+I(a;s;i)

denominator(W (s))

if s 6= s

�1

1

jAj+1��(s

0

)

otherwise,

3

where I(a; s; i) = (�(s)=d(s)) � P

e

(ajsu�x(s); h(s; a; i)): I(a; s; i) is the inherited fre-

quency for event ajs at time i. The next section covers the computation of I(a; s; i)

and how di�erent computation times a�ect the model.

3 Inheritance Evaluation Times

There is a spectrum of evaluation times for inherited frequencies, which denote when

�(s)=d(s) � P

e

(ajsu�x(s); h(s; a; i)) is computed, relative to the lifetimes of state s

and event ajs. We use inheritance evaluation time h(s; a; i) to explicitly specify

P

e

(ajsu�x(s)) as a function of the frequency data that are available at one of the

following times:

� inherit at model creation: P

e

(ajsu�x(s); h(s; a; i)) is computed when the initial

model consisting of state s

�1

is created; h(s; a; i) = 0.

� inherit at state creation: P

e

(ajsu�x(s); h(s; a; i)) is computed when state s is

added to the model; h(s; a; i) equals the length of the input sequence that had

been processed so far when s was added to the model.

� inherit before novel event update: P

e

(ajsu�x(s); h(s; a; i)) is computed when

novel event ajs �rst occurs, before its frequency is incremented; h(s; a; i) equals

the length of the input sequence that had been processed so far when a occurred

for the �rst time when s was excited.

� inherit at every event visit: P

e

(ajsu�x(s)) is (re)computed each time event ajs

occurs; h(s; a; i) = i.

Inheritance evaluation time is a global option that remains �xed for the lifetime

of the model. In the remainder of this work we will usually simplify the notation by

making evaluation times i and h(s; a; i) implicit, thus replacing P

e

(ajs; i), I(a; s; i),

and P

e

(ajsu�x(s); h(s; a; i)) with P

e

(ajs), I(a; s), and P

e

(ajsu�x(s)) respectively.

There are two important features that must be considered in the choice of an

inheritance evaluation time. The computational and memory cost of its implemen-

tation, and what the inheritance evaluation time assumes about the data, relative

to the other times. Once the relative di�erences in inheritance evaluation times are

understood, the model designer can intelligently trade o� the appropriateness of the

assumption about the target data versus the space and time requirements of an im-

plementation.

3.1 Inheritance Evaluation Times in Practice

Probably the most natural time for computing inherited frequencies I(a; s) is every

single time the state s becomes excited: in this case, the mixture is simply a weighted

average of the probabilities estimated from the current frequency data at each excited

state. In [BCW90] this approach is called \full blending." However, computing such

weighted averages is expensive, and computations cannot be reused between visits to a

given set of excited states. Furthermore, there was no published evidence prior to this

work that it produces better probability estimates|no published on-line algorithms

use it. The remaining alternatives generally allow faster implementations.

At the other extreme, inherit at model creation corresponds to adding a constant

assumed initial frequency distribution to the observed frequencies at any given node.

This approach leads to simple analyses and does not a�ect asymptotic convergence.

4

Thus it is employed by most theoretical constructions that use information-theoretic

state-selection. However, our experiments show that the probability estimates pro-

duced by using this inheritance evaluation time are not competitive with the other

inheritance times considered here, even when they are combined with state selection.

The DMC algorithm, which originally used a binary alphabet, adds each new

state to its model by \cloning" an eligible parent state. Each clone receives a scaled

copy of the parent state's frequency distribution the moment it is added. Since,

as we proved in Chapter 4 of [Bun96], the conditioning context relationship among

clones and parent states is equivalent to that among su�xes in other su�x-tree mod-

els, inherit at state creation corresponds to the numerical aspects of cloning. For

non-binary input alphabets and aggressive model growth heuristics, evaluating every

symbol's inherited frequency at every new state is prohibitive, in terms of memory

and computation costs, as was historically demonstrated with larger-alphabet pa-

rameterizations of the DMC algorithm. We include this inheritance time only for

completeness, and do not evaluate its performance.

Overall, the best approach practically, and performance-wise, is the evaluation

of inherited frequencies whenever a novel event a is seen at state s. This is similar

to blending in PPM variants, and can also be used in lazy implementations of large-

alphabet DMC variants.

3.2 The Signi�cance of Inheritance Evaluation Time

Basically, inheritance evaluation times select the degree to which recent vs. relatively

historical event frequencies that are conditioned by a given set of contexts predict

the behavior of the events conditioned by proper subclasses of those contexts. In

contrast, mixture weighting functions determine the degree to which inherited vs.

observed event frequencies predict the behavior of events conditioned by a given set

of contexts.

There are more direct and quanti�able ways of establishing how much more

recent events should matter than events that happened long ago. For example, a

sliding window of input history can be kept, and as sequence symbols that have

passed through the bu�er pass out of the bu�er, the event frequencies originally

incremented by these symbols can be decremented [Wil91]. Alternatively, at regular

intervals, all the frequencies in the model can be scaled by a small constant, which

would implement an exponential decay function [How93]. Or, the same process could

be carried on locally, on a per-state basis, when the state's total frequency exceeded

a threshold [Mof90].

However, regardless of whatever merit direct techniques for recency-weighting

stored frequencies may have (none has been shown to consistently improve predictions

of blended techniques), these approaches each add an additional feature to the model.

Even without such an added feature, every on-line model must by default implement

an inheritance evaluation time; and, the selection of an inheritance evaluation time

should be made with some consideration of its appropriateness for the input data.

In fact, we can compare the relative e�ect that di�erent inheritance evaluation times

have on model inferences by means of an analogy to family traditions for passing

parental knowledge and experience down to children.

5

3.2.1 Some Intuition

Suppose instead of stochastic models, our su�x-trees represent family trees, where the

nodes correspond to people (for simplicity, consider family members of only one sex),

the events correspond to situations that the people may �nd themselves in (such as

handling a bully, training a puppy, initiating courtship, buying a used car), and the

su�x relationship corresponds to the parent relationship. Here, the \inheritance"

received by children is parental knowledge, which is based upon the parent's past

experiences plus the parent's own inheritance from the grandparent. Each inheritance

evaluation time corresponds to a family tradition for passing knowledge down to

children that is strictly maintained by the descendants in each family tree. Note that

in this analogy, as in su�x-tree stochastic models, the weight that a child assigns to

the advice received (inherited) from his parent, relative to his own experience, is a

matter completely independent from when he receives advice.

The most conservative family tradition allows each parent to pass down only

what was passed to him from his parent. This results in each child receiving only

the ancient laws that trace back to the family's progenitor. In this tradition, children

cannot bene�t from their parent's (or grandparent's, : : :) experience, and therefore

must learn mostly from their own experience. Clearly younger children born to such

traditions would have trouble competing with same-age children from more commu-

nicative families, although this competitive di�erence diminishes among older, more

experienced children. This corresponds to inherit at model creation.

In contrast, the most liberal family tradition requires that every child, before

handling any event in his lifetime, regardless of his own experience, listen to advice

from his parent, based upon the parent's and other ancestor's current knowledge.

The drawback of this approach is frustratingly high communication overhead. How-

ever, the bene�t is that a parent is able to completely revise the poor advice on a

given subject he may have given when he himself was relatively inexperienced. This

corresponds to inherit at every event visit.

In the middle lies the approach that is taken naturally by most actual fami-

lies: children consult parents when they face a completely novel situation, and rely

increasingly on their own experience with each recurrence of the situation. This cor-

responds to inherit at novel event occurrence. Blending is a simpli�cation of this

approach: children consult parents for novel events but rely thereafter upon their

own experience with each recurrence.

Last is the rather anxious approach in which the parent coaches each child on

how to handle every imaginable situation as soon as the child is able to record the in-

formation, rather than as the situations occur. Assuming a �nite number of situations

and that the child has perfect memory, there remain two problems with this approach.

First, the parent is constantly learning and revising his own knowledge about each

of these situations. The later he passes down his knowledge, the higher-quality the

advice. In this tradition, children born to inexperienced parents su�er, compared to

children born as the parents grow more mature, and they su�er far more than they

would if the parents were allowed to revise their early advice. Second, when there

are a lot of possible situations, the cost of communicating and remembering them is

high, and most of the information will never be of use to the child. This corresponds

to inherit at state creation and the number of \life's situations" correspond to the

size of the input alphabet.

6

4 Computing the Probability Estimate

Once a mixture weighting function W (s) and an inheritance evaluation time have

been decided upon, how do we express these decisions in an on-line estimation of the

probability of a sequence? In on-line probability estimation, we must compute the

sum of the likelihoods P

e

(a

i

jŝ

i

) for each a

i

in a

1

a

2

� � �a

n

, where ŝ

i

is a state that is

specially selected as the starting node for the recursive mixture computation using the

states excited by a

1

a

2

� � �a

i�1

. (State selection is the topic of the companion paper

[Bun97].) For the present discussion, assume that ŝ

i

is the maximum-order excited

state at time i). If we are performing (arithmetic) coding or decoding, we must also

compute the sum of the conditional probabilities, P

e

(bjŝ

i

), of each b preceding a

i

in

the (arbitrarily) ordered list of events bjŝ

i

.

Recall that computing P

e

(bjŝ

i

) requires access to the ancestor likelihood

P

e

(bjsu�x(ŝ

i

)). Now, for inheritance evaluation times other than at every visit,

by de�nition, for each event bjŝ

i

, we will not recompute the ancestor likelihood

P

e

(bjsu�x(ŝ

i

)) for every b that precedes a

i

in ŝ

i

's (the selected state's) event list.

Nonetheless, for all states s it is necessary that

P

a2A

P

e

(ajsu�x(s)) � 1, regardless

of when the individual P

e

(ajsu�x(s)) are computed. Ideally we want that sum to

be as close to 1 as possible, otherwise, codespace is wasted. The problem is that

we cannot count on the current ancestor likelihoods of already-seen events to equal

or exceed the ancestor likelihoods we computed for them earlier, since those events

may have been seen arbitrarily many times since their likelihoods were computed.

Solutions to this problem generally

� under-estimate ancestor likelihoods of veteran events so that their ancestor like-

lihoods are guaranteed to be less than what they would be if they were recom-

puted, and

� over-estimate ancestor likelihoods of novel events as they occur to reclaim the

ancestor codespace that is wasted by underestimating ancestor likelihoods of

veteran events.

4.1 Exclusion

We can reclaim the codespace wasted by over-estimated novel-event likelihoods by

subtracting the proportion of the ancestor codespace that corresponds to veteran

events, before computing a novel event's proportion of the ancestor codespace. This

is best accomplished with a technique known as exclusion (not to be confused with

update exclusion), which was developed for PPM [Mof90]. The basic idea is this: when

exclusion is enabled for the model, only consider the frequencies of event ajsu�x(s)

if the higher-order descendant s is currently excited and event ajs has not occurred

before. More precisely, rede�ne count : S ! R to be the sum of the event counts for

all unexcluded events that have occurred previously following a given state, where a

symbol a is de�ned to be excluded at state s if s has an excited child s

0

such that

count[a; s

0

; u(s)] > 0. That is,

count(s) =

X

a : a is not excluded

count[a; s; u(s)] > 0

count(a; s):

7

Unless stated otherwise, we shall assume that exclusions are enabled in all computa-

tions described from here on.

4.2 Blending's Missing Term

Blending [CW84] evaluates the ancestor likelihood P

e

(ajsu�x(s)) before novel event

updates, but at all subsequent occurrences of any string in the set L(s) � a. Blending

assumes that P

e

(ajsu�x(s)) = 0, and thereby drops a term of our mixture formula,

for events that are not novel. This certainly ensures that the reused ancestor likeli-

hoods for veteran events are less than they would be if they were recomputed from

the current frequencies at s's ancestors. The result is that subsequently computed

probability estimates of the veteran event ajs are slightly deated, while exclusions

ensure that future estimates of all symbols that have yet to be seen following the a

member of the context L(s) will be slightly inated.

4.3 State Variables for Mixture Computation

In general, the inheritance evaluation time before novel event updatesmakes it di�cult

to ensure that

X

a:count[a;s;u(s)]>0

P

e

(ajsu�x(s)) +

X

a:count[a;s;u(s)]=0

P

e

(ajsu�x(s)) � 1:

However, an alternative is to satisfy the requirement that

(1�W (s))�

0

@

X

a:count[a;s;u(s)]>0

P

e

(ajsu�x(s)) +

X

a:count[a;s;u(s)]=0

P

e

(ajsu�x(s))

1

A

� (1�W (s));

which can be accomplished less drastically than blending's solution of setting the

ancestor likelihood P

e

(ajsu�x(s)) to zero for any veteran event ajs. Instead, we

subtract (1�W (s)) � P

e

(ajsu�x(s)) from the ancestor code space (1 �W (s)) after

the ancestor likelihood is �rst computed. This is accomplished by implementing the

mixture formula using the additional state-variables �[s], which replace �(s)=d(s);

and I[a; s], which is required for computing I(a; s) when inheritance evaluation time

equals before novel event updates (although we use use it for all evaluation times

in our cross-product implementation). The other required state variables are the

event frequencies, count[a; s; 0] and count[a; s; 1], which are required for correctly

combining state selection with either type of update exclusion (i.e., regular update

exclusion or maximum-order updates); plus an exclusion vector, Excluded[a], which

records which symbols were excluded by higher order excited nodes, and which must

be reset for each input sequence symbol a

i

.

Initially, count[a; s; 1] = count[a; s; 0] = 0, and �[s] = z(s), where z(s) = 1

if weighting function `A' is used, and z(s) = 0 for the mixture variants discussed so

far.

3

Then, for each input symbol a

i

, after a

i

's probability has been computed and

its codepoint transmitted, the frequencies corresponding to a

i

must be updated at all

states excited by a

1

a

2

� � �a

i�1

as follows:

3

For DMC variants, z(s) will be initialized to the frequency of the edge redirected when s was

added to the model.

8

8s : s 2 S; a

1

a

2

� � �a

i�1

2 L

i

(s);

�[s] =

(

�[s] + 1 if ajs is novel and WeightFunction 6= `A',

�[s] otherwise.

count[a; s; 1] =

8

>

>

<

>

>

:

count[a; s; 1] + 1 if s has no excited children;

count[a; s; 1] + 1

if MaxOrderUpdates = FALSE and

ajs or ajs

0

is novel, where s = su�x(s

0

);

count[a; s; 1] otherwise.

count[a; s; 0] = count[a; s; 0] + 1:

The value of I[a; s] is determined during probability estimation, for each excited

state s that equals the selected state ŝ

i

or one of its ancestors. In a compressor

or decompressor, probability estimation is intertwined with arithmetic coding. The

relationship between arithmetic (de)coding and probability estimation that computes

mixtures of su�x-tree frequency distributions is described in the recursive procedure

code: S � A� f0; 1g ! [0 : : : 1) given in Figure 1.

The procedure in Figure 1 shows how the set of inheritance times a�ect the

recursive mixture computation when applied to on-line coding. However, the pseu-

docode is designed for generality without obfuscating the conceptual simplicity: any

actual implementation (including ours) must di�er to be more computationally e�-

cient and to avoid the instabilities of oating-point arithmetic. One optimization in

particular bears mention: with any of the escape mechanisms `A', `B', `C', or `D', and

inherit before novel event update, I[a; s] can be permanently subtracted from �[s] if

count() is rede�ned to be count(a; s) = count[a; s; u(s)] + k + I[a; s]:

During compression, code(ŝ

i

; a

i

,1) computes and returns the probability of the

currently scanned sequence symbol a

i

and incrementally transmits the high-order bits

of the decoder's global variable Codepoint, which identi�es the unique subinterval of

[0 : : : 1) that corresponds to a

i

, using an arithmetic coder. During decompression,

code(ŝ

i

; �; 0) incrementally receives the high-order bits of the Codepoint, and computes

and returns the probability of the symbol, a

i

, that corresponds to the unique subin-

terval of [0 : : : 1) that contains the value of Codepoint. (The probability of a

i

equals

the width of a

i

's subinterval in [0 : : : 1).) The procedures arith renorm transmit() and

arith renorm receive() manage the arithmetic coder's and decoder's internal states,

respectively, including the decoder's Codepoint. The Codepoint is incrementally trans-

mitted (high-order bits �rst) using the subinterval endpoints that are speci�ed at the

low end by

sum=denominator(W (s));

and at the high end by

(sum+ numerator(W (s)) � count(a

i

; s) + I(a

i

; s))=denominator(W (s))

if event a

i

js is not novel, or

(sum+ �[s])=denominator(W (s))

if a

i

js is novel.

9

procedure code(s 2 S, a 2 A [f�g, Coding 2 f0; 1g)

r; x; sum; I

s

2 <; b 2 A;

sum 0:0; r numerator(W (s))=count(s); I

s

P

c:Excluded[c]

I [c; s];

repeat b symbol of next unexcluded event in s's event list;

if Exclusion then Excluded[b] True endif

if Inherit Time = At Every Event Visit then

8p 2 ancestors(s) [fsg; I [b; p] P

e

(bjsu�x(p)) � �[p]

endif

I

s

 I

s

+ I [b; s]; x r � count(b; s) + I [b; s];

if Coding then

if b 6= a then sum sum+ x

else arith renorm transmit(sum; x; denominator(W (s)))

endif

else

if sum+ x < Codepoint � denominator(W (s)) then sum sum+ x

else a b; output a;

arith renorm receive(sum; x; denominator(W (s));Codepoint)

endif

endif

until b = a or s's event list is exhausted;

if b 6= a then

if Coding then arith renorm transmit(sum; �[s]� I

s

; denominator(W (s)));

else arith renorm receive(sum; �[s]� I

s

; denominator(W (s));Codepoint);

endif

Insert novel event ajs into s's event list;

I [a; s] (�[s]� I

s

) � code(a; su�x(s)); x I [a; s]

else if Exclusion then 8bjs 2 s's event list, Excluded[b] False endif

return(x=denominator(W (s)))

end procedure

Figure 1: On-line (de)coding of event a = a

i

using recursive mixture with inheritance.

10

Table 1: How average compression performance on the Calgary Corpus as a whole

is a�ected by varying mixture inheritance times and mixture weight functions, in

models with and without (percolating) state selection.

Inherit Time A*9X B*9X C*9X D*9X A*9XS B*9XS C*9XS D*9XS

M

0

2.965 4.695 2.825 2.767 2.602 2.925 2.522 2.508

M

2

2.631 2.505 2.365 2.306 2.386 2.674 2.227 2.206

M

3

2.767 2.688 2.329 2.281 2.475 2.559 2.197 2.191

M

5

2.851 2.520 2.300 2.302 2.482 2.419 2.203 2.238

Table 2: The percent improvement of models using update exclusion over the same

model variants without update exclusion.

Inherit Time A*9X B*9X C*9X D*9X A*9XS B*9XS C*9XS D*9XS

M

0

1.8 -6.5 1.1 2.9 2.0 0.2 6.9 2.1

M

2

5.5 3.2 2.2 5.9 5.7 3.7 3.2 5.4

M

3

5.9 -0.8 2.9 7.5 5.5 2.7 3.8 6.5

M

5

5.8 5.3 4.3 10.2 1.4 6.2 4.3 6.4

5 Empirical Comparisons

In this section we address the following questions:

1. Which mixtures perform best?

2. How do the various mixture weighting formulae and inheritance times interact?

3. Is the e�ectiveness of update exclusion a�ected by the mixture with which it is

combined?

Table 1 shows the relative e�ectiveness of most combinations of mixture weight-

ing functions and inheritance evaluation times. Inheritance time M

1

(inherit at state

creation) was omitted because it exhibits impractical space consumption for models

with 256-character input alphabets. As expected from past experience with PPM,

weight functions C and D produce the best results.

Table 2 is a study on the value of using update exclusion, especially in models

using state selection. This study is important because the largest cost of correctly

implementing state selection with lazily evaluated model re�nements, or of combining

approximate state selection with mixtures, is keeping two counts for every transition:

an update-excluded count and a full-update count. For example, since the percolat-

ing state selector S

3

improves an order-9 model with mixtures DM

3

i

0

and update

exclusion X

1

by about 8:3%, and update exclusion improves an order-9 model with

mixtures DM

3

i

0

and percolating state selector S

3

by about 6.5%, it probably would

not be worth the trouble to implement state selection if doing so would require dis-

posing of update exclusion. Basically, the later the inheritance evaluation time, the

more update exclusions improve performance.

Table 3 shows how the better performing mixtures, highlighted in bold in Figure

1, perform on individual �les.

11

Table 3: Compression performance for the best inheritance times given each weighting

mechanism

size A*9X B*9X C*9X D*9X A*9XS B*9XS C*9XS D*9XS

File (bytes) M

2

M

2

M

5

M

3

M

2

M

5

M

3

M

3

bib 111,261 2.089 2.129 1.895 1.884 1.910 2.025 1.809 1.794

book1 768,771 2.576 2.438 2.391 2.393 2.223 2.238 2.194 2.198

book2 610,856 2.175 2.152 1.987 1.996 1.938 1.990 1.876 1.871

geo 102,400 6.081 4.460 4.842 4.724 4.939 4.432 4.455 4.511

news 377,109 2.666 2.623 2.385 2.363 2.465 2.546 2.300 2.298

obj1 21,504 4.555 3.973 3.785 3.737 4.343 3.956 3.654 3.704

obj2 246,814 2.755 2.699 2.368 2.340 2.657 2.657 2.317 2.302

paper1 53,161 2.579 2.652 2.347 2.340 2.397 2.579 2.268 2.250

paper2 82,199 2.552 2.527 2.354 2.347 2.299 2.412 2.232 2.219

pic 513,216 0.889 0.804 0.817 0.807 0.820 0.781 0.790 0.797

progc 39,611 2.669 2.728 2.373 2.365 2.514 2.650 2.305 2.301

progl 71,646 1.777 1.962 1.600 1.590 1.677 1.878 1.576 1.548

progp 49,379 1.878 2.055 1.652 1.659 1.737 1.940 1.603 1.566

trans 93,695 1.598 1.864 1.396 1.389 1.483 1.786 1.377 1.320

Avg. 2.631 2.505 2.300 2.281 2.386 2.419 2.197 2.191

Our controlled component-wise experiments with the Calgary Corpus show that

the best-performing mixtures outperform models that assume a uniform prior fre-

quency distribution at every state by about 23% in models without state selection,

and by about 16% in models that use state selection, on the Calgary Corpus. We

also demonstrated how mixtures interact with update exclusion, which improves per-

formance as much as 6� 10%. Broadly speaking, the later the inheritance evaluation

time, the greater the impact of update exclusion.

Not surprisingly, the overall best-performing weighting formulas (escape mech-

anisms) were C and D. Regardless of the other parameters, mixtures that inherit

before novel event updates consistently outperform blending by about 1%, when used

with the competitively performing mixture weights C and D or with state selection.

6 Conclusion

We must always compute some sort of mixture when computing on-line probability

estimates with su�x-tree FSMs, and a recursive mixture is completely de�ned in

terms of its recursive weighting function W (s), and its inheritance evaluation time.

For example, PPM's blending is a forgetful type of mixture that lazily evaluates its

inheritances as novel events occur, while DMC's \cloning" [CH87] produces a mixture

that evaluates its inheritances when new states are added, but which also subtracts

the inherited frequency from the parent distribution (see Chapter 6 of [Bun96] for

details). The weighting functions and inheritance evaluation times are independent

of each other and of whether inheritances are subtracted from parent distributions;

thus mixtures generalize both PPM's blending and the quantitative aspects of DMC's

cloning.

12

References

[BCW90] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Advanced Reference Series.

Prentice-Hall, Englewood Cli�s, New Jersey, 1990.

[Bun96] S. Bunton. On-Line Stochastic Processes in Data Compression. PhD thesis, University

of Washington, December 1996.

[Bun97] S. Bunton. A percolating state selector for su�x-tree context models. In Proceedings Data

Compression Conference. IEEE Computer Society Press, March 1997.

[CH87] G. V. Cormack and R. N. S. Horspool. Data compression using dynamic Markov mod-

elling. The Computer Journal, 30(6):541{550, 1987.

[CW84] J. G. Cleary and I. H. Witten. Data compression using adaptive coding and partial string

matching. IEEE Transactions on Communications, 32(4):396{402, 1984.

[How93] P. G. Howard. The Design and Analysis of E�cient Lossless Data Compression Systems.

PhD thesis, Brown University, 1993.

[Mof90] A. Mo�at. Implementing the PPM data compression scheme. IEEE Transactions on

Communications, 38(11):1917{1921, 1990.

[TR93] J. Teuhola and T. Raita. Application of a �nite-state model to text compression. The

Computer Journal, 36(7):607{614, 1993.

[WB91] I. H. Witten and T. C. Bell. The zero-frequency problem: Estimating the probabilities

of novel events in adaptive text compression. IEEE Transactions on Information Theory,

37(4):1085{1094, 1991.

[Wil91] R. N. Williams. Adaptive Data Compression. Kluwer Academic Publishers, Norwell,

Massachusetts, 1991.

13

