
On the Limitations of Ordered

Representations of Functions

(Revised Version)

Jayram S. Thathachar

Technical Report UW-CSE-97-02-01

February 1997

Department of Computer Science and Engineering

University of Washington

Box 352350

Seattle, WA 98195

On the Limitations of Ordered Representations of Functions

(Revised Version)

Jayram S. Thathachar

�

jayram@cs.washington.edu

Department of Computer Science and Engineering

University of Washington

Box 352350

Seattle, Washington 98195{2350

Abstract

We introduce a lower bound technique that applies to a broad spectrum of functional represen-

tations including Binary Decision Diagrams (BDDs), Binary Moment Diagrams (*-BMDs), Hybrid

Decision Diagrams (HDDs), and their variants. These representations have been widely used for for-

mal veri�cation of hardware systems, particularly symbolic model checking and digital-system design,

testing and veri�cation. We de�ne a representation called the Binary Linear Diagram (BLD) that

generalizes all these representations and then apply our lower bound technique to show exponential

size bounds for a wide range of functions. We also give the �rst examples of integer functions includ-

ing integer division, remainder, high/low-order words of multiplication, square root and reciprocal

that require exponential size in all these representations. Finally, we show that there is a simple

regular language that requires exponential size to be represented by any *-BMD, even though BDDs

can represent any regular language in linear size.

1. Introduction

In recent years, symbolic methods have become one of the most important techniques for formal veri�ca-

tion of hardware systems. Central to these symbolic methods is an underlying representation for various

boolean and integer functions. Ideally, these representations have to be concise, canonical and easy to

manipulate. The Ordered Binary Decision Diagram (OBDD) representation due to Bryant [Bry86] has

been successfully used as the underlying representation in a variety of symbolic techniques for veri�ca-

tion. The main drawback of OBDDs is in concisely representing some important functions, particularly

integer functions such as multiplication which requires exponential size. Therefore, a large number of

other representations, such as Multi-Terminal Binary Decision Diagrams (EVBDDs) [CMZ

+

93], Edge-

Valued Binary Decision Diagrams (EVBDDs) [McM93], Binary Moment Diagrams (*-BMDs)

1

[BC95]

and Hybrid Decision Diagrams (HDDs) [CFZ95], have been proposed and applied to overcome some of

the limitations of OBDDs. This research aims at understanding the power of these representations.

�

This work was supported by the National Science Foundation under Grant CCR-9303017.

1

*-BMDs have generated considerable excitement in the formal veri�cation community because of their ability to

e�ciently represent many integer functions. They have been used to verify and identify errors in a SRT division circuit

similar to the one used in Pentium.

1

We demonstrate the weakness of all of the representations above by showing that none of them can

represent many important boolean and integer functions concisely. We de�ne a general representa-

tion, called the Binary Linear Diagram(BLD), that encompasses all of these representations. We then

show that a variety of integer and boolean functions from arithmetic, formal languages, and graph

theory have exponential complexity in the BLD representation. Our bounds also apply to other ordered

representations such as Functional Decision Diagrams (FDDs) [KSR92] and *-BDDs [End95].

Bryant [Bry86] introduced the OBDD representation for boolean functions and showed that OBDDs

can be manipulated e�ciently and can compactly represent many useful functions, thereby enabling

many tasks in digital-system design, veri�cation and testing to be performed e�ciently. Subsequently,

OBDDs were also used as the underlying representation in symbolic model checking to alleviate the

state explosion problem (see, for example, [BCM

+

90], [BCL

+

94] and [McM93]). Despite its success, the

OBDD representation has proved to be unsatisfactory for many important functions. To overcome some

of its limitations, there have been several e�orts to extend the OBDD concept to various ordered repre-

sentations that, like OBDDs, still preserve the notion of an implicit order on the variables, but represent

functions with boolean, integer or real ranges. Thus, representations such as MTBDDs [CMZ

+

93] and

EVBDDs [LS92] were de�ned that have been e�ective for some additional functions but still have expo-

nential size complexity for other functions such as multiplication and exponentiation. Progress in the

direction of concisely representing the multiplication function was made by Bryant and Chen [BC95]

who proposed the *-BMD representation for e�ciently representing multiplication and other integer

functions. An immediate and important question that arose was whether *-BMDs are more powerful

than MTBDDs or EVBDDs or, at the least, OBDDs. This question was answered in the negative by

Enders [End95], who exhibited functions with exponential complexity in the *-BMD representation but

only need polynomial size OBDDs. Recently, Clarke et al. (see [CFZ95] and [CKZ96]) de�ned a gener-

alization of MTBDDs and BMDs, called HDD, that combines the advantages of both representations.

It is essential to understand the power and usefulness of all these representations by characterizing the

complexity of various important functions in these representations.

We derive our results by showing that for any function f , the size of any BLD for f is bounded by

the rank of a certain matrix associated with f . This matrix is the standard communication complexity

matrix applied to the best-case partition of the inputs. Note that this matrix is usually considered for a

�xed partition of the inputs and handling the best-case partition is considerably harder. (An excellent

source for results and references pertaining to the two kinds of partition is [KN95].) Our technique is

analogous to that used in characterizing the minimum size of a multiplicity automaton [Fli74, CP71]

computing some function in terms of the rank of the Hankel matrix associated with that function.

Our technique provides insight into the contrast between boolean and integer representations. For

example, consider the multiplication function. For the boolean function which computes the middle bit

of the product, one of our results shows that the associated matrix has exponential rank, but it can be

easily veri�ed that the matrix of the integer function has constant rank! This gives insight as to why

the integer function has linear-sized *-BMDs but the middle-bit version requires exponential size in all

of the ordered representations.

We show that in contrast to multiplication, other integer functions such as integer division (Div),

remainder (Mod), high-order word (HiMult) and low-order word (LoMult) of multiplication, integer

square root (Sqrt), and reciprocal (Inv) require exponential-sized BLDs by directly bounding the rank

2

of the associated matrix.

2

These are the �rst theoretical results that show the limitations of the ordered

representations, particularly *-BMDs and HDDs, for representing integer functions.

We also get exponential bounds for many boolean predicates including factor veri�cation, pattern

matching, selection/equality, membership in a deterministic context free language, shifted equality,

and �nally graph predicates such as connectivity, s-t connectivity and bipartiteness. These results

are a byproduct of two main approaches that have been traditionally used for bounding the best-

case communication complexity of boolean functions. For the graph predicates stated above, Hajnal et

al. [HMT88] bounded the rank directly by using deep algebraic and combinatorial arguments and showed

that the matrix associated with each predicate has exponential rank. In general, directly bounding the

rank seems to be a hard problem, so there are fewer results of this kind. The other method that we use

for bounding the rank is to construct large fooling sets. Dietzfelbinger et al. [DHS94] showed that for

any boolean function, the rank is at least the square-root of the size of any fooling set; applying this, we

can recast all the fooling set bounds for boolean functions as size bounds for the BLD representation.

Examples of boolean functions that have exponentially large fooling sets | including those that have

been stated above | can be found in Lipton and Sedgewick [LS81], Papadimitriou and Sipser [PS84]

and Bryant [Bry91].

Our �nal result concerns the separation between *-BMDs and OBDDs. We know that *-BMDs

can e�ciently represent many arithmetic functions that have exponential complexity in the OBDD

representation. However, Enders [End95] showed that the graph-predicate that checks whether a graph

is a triangle has polynomial-sized OBDDs but has exponential complexity in the *-BMD representation.

An interesting problem is to contrast these representations for natural classes of languages. For regular

languages, we know that OBDDs can represent any regular language in linear size. Therefore, a natural

question to ask is whether *-BMDs can also represent regular languages e�ciently. We answer this in the

negative, by exhibiting a simple regular language requiring exponential size in the *-BMD representation.

The paper is organized as follows. In Section 2, we de�ne the BLD representation and illustrate how

it generalizes all the ordered representations. Section 3 describes the connection between multiplicity

automata and BLDs and how standard results on multiplicity automata size can be applied to get size

bounds for BLDs; this section can be skipped, if necessary. In Section 4, we describe our approach of

directly bounding the minimum size of a BLD computing some function in terms of the ranks of certain

matrices associated with that function. Applying this technique, we prove in Section 5.1 that the integer

functions Div , Mod , HiMult , LoMult , Sqrt and Inv require exponential-sized BLDs. In Section 5.2 and

Section 5.3, we describe the fooling set approach for boolean functions and give exponential lower bounds

for many boolean functions by either using fooling sets or directly bound the rank. Finally, in Section 6,

we demonstrate for a simple regular language that the *-BMD complexity is exponential.

2. Binary Linear Diagrams

Let X be any �nite variable set. Informally, each function f that we deal with in this paper is de�ned

by associating f with a variable set and de�ning the inputs to f to be the various 0-1 assignments to

the variables. Formally, a boolean input assignment � : X ! f0; 1g, or input for short, is an assignment

of 0-1 values to X. For technical reasons, we will also allow X to be the empty set in which case � is

2

For n-bit integers x and y, HiMult(x; y)

def

= bxy=2

n

c, LoMult(x; y)

def

= xy mod 2

n

, Sqrt(x)

def

=

�

p

x

�

, and Inv(x)

def

=

�

2

2n

=x

�

.

3

the (unique) empty input. We will use monomials to denote inputs; for example, xyz denotes an input

� : fx; y; zg ! f0; 1g, where �(x) = 0 and �(y) = �(z) = 1. De�ne f to be a pseudo-boolean function

on X if its domain is the set of inputs that assign 0-1 values to the variables of X and its range is

some �xed ground �eld K.

3

To simplify things, whenever it is clear from the context, we will refer to

a pseudo-boolean function plainly as a function and we will not mention the variable set on which it is

de�ned.

An important concept that will be used throughout the paper is the notion of restricting some of the

variables of X to �xed values and considering the resulting function. Given two inputs � : Y ! f0; 1g

and � : Z ! f0; 1g, where Y and Z are disjoint, let � � � : Y [Z ! f0; 1g denote their union, that is,

(� � �)(x) = �(x) when x 2 Y , and (� � �)(x) = �(x) when x 2 Z. Fix an input � : Y ! f0; 1g, and let

�

0

be the restriction of � to Y \X. The subfunction f

�

of f denotes a function that depends on the

variable set XnY such that for each input � : XnY ! f0; 1g, f

�

(�) = f(�

0

� �).

We now de�ne our abstraction of the ordered representations, the (Ordered) Binary Linear Dia-

gram (BLD). Let X = fx

1

; x

2

; : : : ; x

n

g be a set of variables and let x

p

1

; x

p

2

; : : : ; x

p

n

be an order imposed

on the variables of X. The basic structure of a BLD is a labeled, directed acyclic graph. The nodes

that have out-degree 0 are called the sinks; each sink is labeled with an element of K. Every other node

v has out-degree two and the two edges that are directed from v are distinguished as the 0-edge and

1-edge, respectively. The node that the 0-edge (respectively, 1-edge) is incident to is called the 0-child

(respectively, 1-child). The node v is labeled with a variable from X and a 2� 2 matrix

"

v

00

v

01

v

10

v

11

#

,

with entries in K. The BLD is required to satisfy the constraint in every directed path, the sequence of

variables appearing in order along that path must be a subsequence of x

p

1

; x

p

2

; : : : ; x

p

n

. In other words,

if u is a node labeled with the variable x

p

i

, for some i, and v is either a 0-child or a 1-child of u labeled

with the variable x

p

j

, for some j, then j > i.

The 2 � 2 matrix associated with a node describes the linear relationship between the function

computed at the node and the two functions computed at its children. Formally, we de�ne the semantics

of computation in a BLD by associating a node function g

v

with each node v.

4

For a sink node v, g

v

is a constant function (on the empty variable set) as given by its label. For a non-sink node v labeled

with the variable x

p

k

for some k, 1 � k � n, g

v

is de�ned on the variable set fx

p

k

; x

p

k+1

; : : : ; x

p

n

g in

terms of its 0-child u and 1-child w as follows:

"

(g

v

)

x

p

k

(g

v

)

x

p

k

#

=

"

v

00

v

01

v

10

v

11

#

�

"

g

u

g

w

#

:

Finally, there is a designated node with in-degree 0 called the source. We say that the BLD computes

the node function associated with the source node and the size of the representation is the number of

nodes that it contains. It is important to note that unlike many of the ordered representations that

have canonical representations of functions, it is possible to have di�erent BLDs computing the same

function. However, this is not a drawback since our technique for proving lower bounds for functions

does not require their BLD representations to be unique.

Given the description of a function in any of the known ordered representations, there is a natural

3

For boolean functions, this �eld is GF [2].

4

The easiest way to compute these node functions is to evaluate them in a bottom-up fashion, starting from the sinks

and then proceeding towards the root.

4

and easy transformation to a BLD of the same size computing the same function. For example, given an

OBDD or an MTBDD for a function f , the BLD for f has the same underlying acyclic graph with the

same variable and sink labelings and with the associated matrix for each node being the 2� 2 identity

matrix. The transformation of *-BMDs to BLDs is best illustrated in Example 1 that we give below.

HDDs are oblivious forms of BLDs. Here the BLD is a leveled acyclic graph with all its edges going

between adjacent levels. All the nodes in any level (except the level corresponding to the sinks) are

labeled with the same variable and the same matrix that the HDD associates with that variable.

Example 1: To illustrate BLDs and the transformation of *-BMDs to BLDs, consider the integer

multiplication function for a pair of two-bit numbers. Figure 1 shows both the *-BMD representation

and the corresponding BLD representation of that function. Using our de�nition, we can compute and

show that the node function at node d is y

0

and at node c is (1�y

1

)�(1�y

0

+0�2)+y

1

�(1�y

0

+1�2) = y

0

+2�y

1

.

Note that in the BLD, the matrix associated with node a abstracts both the Galois expansion and the

weight associated with the 1-edge of the corresponding node in the *-BMD.

x0

x1

1y

0y

0 1 2

x0

x1

1y

0y

0 1 2

2

1

1 2

0

1

1 1

0

1

1 1

0

1

1 1

0

*-BMD BLD

b

c

d

a

Figure 1: The *-BMD (left) and BLD(right) for the multiplication function with the order of variables

being x

1

; x

0

; y

1

; y

0

. The dashed lines denote the 0-edges and the solid lines denote the 1-edges.

In Section 4, we describe our main result for getting BLD size lower bounds for a function that holds

independent of the order of the variables. A variation of this result can be proved by transforming BLDs

to multiplicity automata, and applying a fundamental theorem of multiplicity automata. We describe

this approach in the next section and can be skipped if so desired. Our approach, which we describe in

5

Section 4, is to avoid the transformation to multiplicity automata and directly analyze the structure of

BLDs. The bounds we obtain here can be applied to get size bounds for multiplicity automata as well.

Moreover, our approach leads naturally to considering partitions rather than orders of the variable set,

which is more helpful in getting bounds for BLD size that hold for all orders of the variables.

3. Transformation to Multiplicity Automata

A multiplicity automaton of size r consists of r states Q = f1; 2; : : : ; rg, where 1 is the start state, two

r � r matrices �

0

and �

1

and a vector = (

1

;

2

; : : : ;

r

) with entries in some �eld K. We interpret

[�

0

]

i;j

and [�

i

]

i;j

to be the weights of the edge (i; j) corresponding to the symbols 0 and 1 respectively,

and

i

to be the weight of state i. De�ne �(�) to be the identity matrix and �(x), for any binary

string x = x

1

; x

1

; : : : x

n

to be the product of the matrices �

x

1

� �

x

2

� � ��

x

n

. We de�ne the function

g : f0; 1g

�

! K computed by this automaton as g(x)

def

= [�(x)]

1

� , where [�(x)]

1

is the �rst row

of �(x). In other words, for each sequence of n + 1 states 1 = q

1

; q

2

; : : : q

n+1

, we take the product

[�

x

1

]

q

1

;q

2

� [�

x

2

]

q

2

;q

3

� � � [�

x

n

]

q

n

;q

n+1

�

q

n+1

, and sum over all possible sequences.

Multiplicity automata are an important generalization of classic automata and have been used in a

variety of areas. In learning theory, they have attracted a lot of attention because of their implications

in the learnability of several classes of DNF-formulae (see [BBB

+

96] for references to work in this area).

In conjunction with the theory of formal series, they have been used to solve some old problems in

automata theory (see, for example, [HK91]). They have also been used to model certain Markov-like

stochastic processes with external inputs [CP71]. In this case, �

0

and �

1

are the stochastic matrices

containing the transition probabilities corresponding to the external inputs 0 and 1 respectively, and

is the characteristic vector of the desirable �nal states.

Given any BLD P computing a function f on the variable set X, and using the order x

p

1

; x

p

2

; : : : ; x

p

k

,

we can transform it to a multiplicity automaton N that computes a related function f

0

with at most a

linear blow-up in size. For this we de�ne a correspondence between input assignments to the variables

X and strings in f0; 1g

n

as follows: Given any string b = b

1

b

2

: : : b

n

2 f0; 1g

n

, we de�ne an input

assignment �

b

that assigns b

i

to x

p

i

. The transformation should satisfy the property that for any string

in b 2 f0; 1g

n

, f

0

(b) = f(�

b

). (We don't care about the values that f

0

takes for other strings in f0; 1g

�

.)

Before we describe the construction, we note that for a family of BLDs, we are constructing a family of

multiplicity automata, one for each BLD in the family.

First, we transform P to an oblivious BLD P

0

of size at most n � size(P). A brief sketch of this

transformation is as follows: We divide the nodes of P into n+ 1 levels, where the i

th

level consists of

nodes that have the label x

i

, for 1 � i � n, and the n + 1

th

level contains the sinks. For each node v

in level i, we add i � 1 dummy nodes, one in each of the levels 1 through i � 1 (call them v as well).

A dummy node v in level j is labeled by the variable x

j

, the identity matrix

"

1 0

0 1

#

, and both its

0-child and 1-child are the node v in level j +1. For any edge in P from a node u in level i to a node v

in level j > i + 1 (that skips levels), we delete that edge in P

0

and add an edge from u to the dummy

node v in level i+1. It is easy to see that P

0

computes f , is oblivious, and has size at most n � size(P).

Now, we view P

0

as the multiplicity automaton N as follows: The nodes of P

0

become the states of

N , and the source node of P

0

becomes being the start state of N . For a node v in P

0

with the associated

6

matrix

"

v

00

v

01

v

10

v

11

#

, and whose 0-child and 1-child are u

0

and u

1

respectively, we de�ne the weight of

the edge (v; u

b

) in N corresponding to the symbol b

0

, where b; b

0

2 f0; 1g, to be [�

b

0

]

v;u

b

def

= v

b

0

b

. Edges

which are absent have zero weights on them corresponding to any symbol. The vector in N has an

entry equal to the label of v for each sink node v and zero entries elsewhere. We can now show that N

0

computes the same value for strings in f0; 1g

n

as P for the corresponding input assignments.

An important property of a multiplicity automaton is that the rank of a certain matrix bounds its

size. For a function f : f0; 1g

�

! K, de�ne its Hankel matrix F as an in�nite matrix consisting of rows

and columns labeled by strings in f0; 1g

�

. The (x; y)

th

entry of F for binary strings x and y is f(x � y).

It has been shown ([Fli74, CP71]) that the size of a minimal automaton that computes f is equal to

the rank of its Hankel matrix F over K. Thus, we can get lower bounds for BLD size as well but with

a loss of the O(1=n) factor due to making the BLD oblivious.

4. The Rank Bound for BLDs

In this section, we show that we can prove size lower bounds for BLDs computing a function f by

computing the ranks of various special matrices associated f .

Let X = fx

1

; x

2

; : : : ; x

n

g be the variable set of f and �x an order of variables x

p

1

; x

p

2

; : : : ; x

p

n

. Fix

a k, 0 � k � n, let L = fx

p

1

; x

p

1

; : : : ; x

p

k

g be the �rst k variables in this order and R be the remaining

variables. For each input � : L! f0; 1g, we can associate a unique node in the BLD that can be reached

from the source by tracing the path of 0-edges and 1-edges as de�ned by � and stopping as soon as

either a sink or a node labeled with a variable of R is reached. For example, in the BLD of Figure 1,

if we choose k = 2 so that L = fx

1

; x

0

g and R = fy

1

; y

0

g, then the nodes corresponding to the inputs

x

1

x

0

and x

1

x

0

are the sink labeled with 0 and the node labeled with y

1

respectively. Let V

k

denote the

set of nodes associated, in the manner described above, with all the inputs that assign 0-1 values to the

variables of L. The following lemma shows that the subfunction f

�

, for any input � : L ! f0; 1g, is

linearly related to the node functions associated with the nodes in V

k

.

Lemma 1: Let X, f , P , k, L and V

k

be as de�ned above. Then, for any input � : L! f0; 1g, there

exist scalars t

�;w

, w 2 V

k

, in the ground �eld such that

f

�

=

X

w2V

k

t

�;w

� g

w

:

Proof: The proof is by induction on k.

Basis (k = 0:) Here L = ; and � is the empty input so f = f

�

= g

s

, where s 2 V

0

is the source node.

Induction Let k > 0 and suppose the statement is true for k � 1. Let L

0

= Lnfx

k

g and R

0

= XnL

0

.

Fix any input � : L ! f0; 1g, and note that we can express it either as �

0

� x

p

k

or as �

0

� x

p

k

, for some

input �

0

: L

0

! f0; 1g. Assume that � = �

0

�x

p

k

; the proof for the other case is similar. By the induction

hypothesis, there exist scalars t

�

0

;w

0

, w

0

2 V

k�1

, such that f

�

0

=

P

w

0

2V

k�1

t

�

0

;w

0

� g

w

0

. Therefore,

f

�

= (f

�

0

)

x

p

k

=

X

w

0

2V

k�1

t

�

0

;w

0

� (g

w

0

)

x

p

k

: (1)

7

Note that each w

0

in the sum above is either a sink or labeled with the variable x

p

j

, for some j � k.

For any w

0

2 V

k�1

labeled by x

p

k

in the sum above, there exist the 0-child u 2 V

k

and 1-child v 2 V

k

in

P such that (g

w

0

)

x

p

k

= w

0

10

� g

u

+ w

0

11

� g

v

. Substitute this expression into Equation 1 for each such w

0

.

On the other hand, for any w

0

2 V

k�1

labeled by x

p

j

, for some j > k, (g

w

0

)

x

p

k

= g

w

0

. Moreover, w

0

is the (unique) node in P associated with the input � so w

0

also belongs to V

k

.

Combining the two observations above, we can see that f

�

is a linear combination of the node functions

associated with the nodes in V

k

, proving the lemma. 2

We will describe the linear relationship of Lemma 1 by a matrix equation. Again, �x a 0 � k � n,

and let L, R and V

k

be as in the statement of Lemma 1 above. De�ne a matrix M

f

associated with f of

2

k

rows, one for each input � : L ! f0; 1g, and 2

n�k

columns, one for each input � : R ! f0; 1g. The

(�; �)-th entry of M

f

is f(� � �). Similarly, de�ne a jV

k

j � 2

n�k

matrix M

g

associated with the node

functions in V

k

. In this matrix, the (w; �)-th entry, for each w 2 V

k

and each input � : R ! f0; 1g, is

g

w

(�

0

), where �

0

is the input � restricted to the variable set of g

w

. Finally, let T denote the 2

k

� jV

k

j

matrix that expresses the linear relationship between M

f

and M

g

. In other words, the (�;w)-th entry

of T , for each input � : L! f0; 1g and each node w 2 V

k

is the t

�;w

of Lemma 1.

The relationship between M

f

and M

g

, as given by Lemma 1 is M

f

= T �M

g

. Therefore, we can infer

from elementary linear algebra that

rank(M

f

) � rank(M

g

) � jV

k

j:

Thus, we can prove lower bounds on the size of P by bounding the rank of M

f

. The power of this

approach is that since M

f

depends only on f and not on P , we can ignore the structure of P or any

other BLD that computes f and can get bounds that hold uniformly in all the ordered representations

by solely concentrating on f .

Example 2: Consider the multiplication function f of Example 1. If we use the order x

1

; x

0

; y

1

; y

0

,

as in the BLD in Figure 1 and �x k = 2, we get the following matrix:

y

1

y

0

y

1

y

0

y

1

y

0

y

1

y

0

x

1

x

0

x

1

x

0

x

1

x

0

x

1

x

0

2

6

6

6

4

0 0 0 0

0 1 2 3

0 2 4 6

0 3 6 9

3

7

7

7

5

Notice that this matrix has rank 1 (over reals or rationals). It is easy to verify that for larger input

sizes, the ranks of the associated matrices remain constant at 1.

In contrast, consider the bit-level multiplication function f

0

representing the middle (second least

signi�cant) bit of the product:

y

1

y

0

y

1

y

0

y

1

y

0

y

1

y

0

x

1

x

0

x

1

x

0

x

1

x

0

x

1

x

0

2

6

6

6

4

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

3

7

7

7

5

In this case, the associated matrix has rank 2 over GF [2]. We will see shortly that this rank increases

exponentially for larger input sizes (for this and any other order of the variables).

8

In determining the complexity of a function in the BLD representation, we must consider all possible

orders of variables. Therefore, to prove lower bounds using the rank method above, we must show that

for any order, there is always a partition of X into L and R such that the associated matrix has high

rank. We state these observations as a theorem below:

Theorem 2: For any k, 0 � k � n, and for any order of the variables x

p

1

; x

p

2

; : : : ; x

p

n

, letM

p

1

;p

2

;:::;p

n

f;k

denote the matrix where the (�; �)-th entry is f(� � �), for each � and � that assign 0-1 values to

fx

p

1

; x

p

2

; : : : ; x

p

k

g and fx

p

k+1

; x

p

k+2

; : : : ; x

p

n

g, respectively. Then, any BLD that computes f must have

size at least

min

p

1

;p

2

;:::;p

n

max

k

rank(M

p

1

;p

2

;:::;p

n

f;k

):

Corollary 3: The statement in Theorem 2 holds when we substitute any of the ordered representa-

tions like MTBDDs, EVBDDS, *-BMDs, HDDs in place of BLDs.

5. BLD Lower Bounds for Integer and Boolean Functions

We now consider the various methods to obtain lower bounds on the rank of many important functions

that holds independent of the order imposed on the variables. We will be primarily interested in those

functions that have exponential rank.

We will use a weaker form of Theorem 2 that is simpler to deal with and still allows us to prove

exponential bounds. Notice that once we �x an order of the variables and k in that theorem, the

rank of the matrix M

p

1

;p

2

;:::;p

n

f;k

depends only on L and R and not on the order of the variables in L

or R. Therefore, let us denote this matrix by M

L;R

f

. Call a family of partitions P � f(L;R) j R =

XnLg as balanced if for every order x

p

1

; x

p

2

; : : : ; x

p

n

of the variables, there is at least one k such that

(fx

p

1

; x

p

2

; : : : ; x

p

k

g; fx

p

k+1

; x

p

k+2

; : : : ; x

p

n

g) belongs to P. Now, any bound that shows that the rank of

M

L;R

f

is large for all partitions in a balanced family also implies a lower bound on the BLD size. Thus,

we are interested in choosing a balanced family of partitions and then proving lower bounds for the

best-partition rank which is de�ned as the minimum rank of M

L;R

f

over all partitions in that family.

5.1. Integer Functions with Exponential BLD Size

In this section, we show that many natural integer functions that compute integer division, remainder,

high/low-order words of multiplication, square root, and reciprocal require exponential-sized BLDs.

Formally, the input for all these functions consists of possibly many integers x, y, etc., each of which is

represented as an unsigned integer of n bits. We de�ne division function Div(x; y) as bx=yc and the mod

function Mod(x; y) as x mod y. The functions HiMult(x; y) and LoMult(x; y) represent the high-order

word and low-order word, respectively of the product xy, that isHiMult(x; y) =

�

xy

2

n

�

and LoMult(x; y) =

xy mod (2

n

). Finally, let the square root function Sqrt(x) denote b

p

xc and the reciprocal function

Inv(x) denote

j

2

2n

x

k

.

The following theorem shows that the BLD complexity of each of these integer functions is exponen-

tial. The exact size bounds that we prove is listed in Figure 2.

9

f Minimum Size

Div 2

n=16

� 1

Mod 2

n=16

� 3

HiMult 2

n=16

� 1

LoMult 2

n=16

� 3

Sqrt 2

(n)

Inv 2

(n)

Figure 2: The BLD size bounds that we prove for each of the integer functions

Theorem 4: The functionsDiv ,Mod , HiMult , LoMult , Sqrt and Inv require exponential-sized BLDs

over any �eld that includes the integers.

Proof: We will �rst describe the general paradigm for proving exponential lower bounds for an

integer function f(x; y; : : :). We will then use this paradigm to prove lower bounds for the speci�c

functions mentioned above. Let the variable sets X = x

n�1

x

n�2

: : : x

0

, Y = y

n�1

y

n�2

: : : y

0

, etc., each

represent n-bit integer inputs of f (corresponding to x, y, etc.). In all of the functions that we consider,

we will choose a consecutive set of 2m variables in the integer input X, for some m. Call this set Z.

We de�ne the balanced family of partitions as P = f(L;R) j R = XnL; jL \ Zj = jZj=2g, We will refer

to assignments to the variables of L (respectively, R) as row (respectively, column) assignments.

Suppose that we �xed Z = U [V � X, where U = fx

`+2m�1

; x

`+2m�2

; : : : ; x

`+m

g and V =

fx

`+m�1

; x

`+m�2

; : : : ; x

`

g, for some �xed `. Let (L;R) be any partition in P. The following proposition

which is proved in [Bry91] will be used to construct a submatrix of M

f

= M

L;R

f

having exponential

rank.

Proposition 5 ([Bry91, Lemma 3]): There exists an index set I � f1; 2; : : : ;mg, with jIj � m=8,

and integers p, `+m � p � `+max(I), and q, `+ 2m � q � `+m+max(I) such that the two sets

A = fx

q�i

j i 2 Ig � U and B = fx

p�i

j i 2 Ig � V;

satisfy the property that either A � L and B � R or A � R and B � L.

Thus, the words U and V can be aligned in a such a way that the variables in A and B can be \matched"

(see Figure 3). Without loss of generality, assume from the proposition above that A � L and B � R.

Once we obtain A and B, the lower bound argument proceeds by restricting all the variables that are

not in A[B (and only those variables) to certain �xed values that depends on the function f . We will

then show that the submatrix N

f

= N

A;B

f

that consists of only those row and column assignments in

M

f

that conform to these restrictions has (almost) full rank. Since there is no restriction on the values

that the variables in A and B can be set to, N

f

has 2

jIj

rows and columns; therefore if m =
(n), then

N

f

and consequently M

f

has exponential rank.

We will adopt the following conventions in referring to the various assignments (�xed or varying).

Each set of boolean values b

i

, i 2 I, can be thought of as assigning values to the variables of A or B

and thus can be associated with a unique row or column of N

f

. We will identify the set b

k

, k 2 I, with

10

q p

l+2m l+m l

U V

U

V

Figure 3: This �gure illustrates Proposition 5 for a particular U and V . The sets A � U and B � V

(shown shaded in the �gure) which are obtained via the proposition can be matched by suitably aligning

the words U and V .

the (unique) number

P

k2I

b

k

2

�k

. Let 0 � s

1

< s

2

< : : : < s

2

jIj

< 1 be all the numbers arising this

way; note that for each i, s

i

= 2

max(I)

a

i

for some integer a

i

. Permute the rows and columns of N

f

so

that the j

th

row and and j

th

column are associated with s

j

, for 1 � j � 2

jIj

. Let t be the integer which

corresponds to the �xed assignment of values to the variables of Xn(AUB).

5

Note that the input X

which corresponds to the i

th

row and j

th

column is X

ij

= 2

q

s

i

+ 2

p

s

j

+ t.

Intuitively, for each function f(X; : : :), t will be chosen in such a way that when computing f(X

ij

; : : :),

the integers 2

q

s

i

and 2

p

s

j

will be multiplied by suitable factors so as to obtain a term which aligns s

i

and s

j

. Since these numbers a�ect the same bit positions, we will use the alignment to a�ect the value

of f for the various X

ij

's in a way that N

f

(and consequently M

f

) has almost full rank.

The following elementary properties of rank will be used (implicitly) in these proofs:

1. rank(M +N) � rank(M)� rank(N), and for any non-zero c, rank(cM) = rank(M).

2. Let c, a

1

; a

2

; : : : ; a

k

, b

1

; b

2

; : : : ; b

k

be some numbers and let M denote a k � k matrix where the

(i; j)

th

entry is a

i

+ b

j

+ c. Then M has rank at most 2.

We now describe the details speci�c to each function for proving exponential bounds. For each

function f , we will choose U and V , and apply Proposition 5 to obtain I, p, q, A, and B. Then, we will

set all the variables except for those in A [B to a particular set of �xed values and �nally prove that

the resulting matrix N

f

as de�ned above has almost full rank.

5

By this, we mean that if each x

j

2 Xn(A [B) is set to c

j

2 f0; 1g, then the integer

P

x

j

2Xn(A[B)

c

j

2

j

evaluates to t.

11

(a) Div

Let n = 2m. Choose U = fx

2m�1

; x

2m�2

; : : : ; x

m

g, and V = fx

m�1

; x

2m�2

; : : : ; x

0

g and apply Proposi-

tion 5 to obtain I, p, q, A, and B. Set each of the variables in Xn(A[B) to 0 so that X

ij

= 2

q

s

i

+2

p

s

j

.

Fix Y to be the integer 2

q�max(I)

+ 2

p�max(I)

by setting both y

p�max(I)

and y

q�max(I)

to 1 and each

remaining variable in Y to 0.

To analyze the (i; j)

th

entry of N

Div

, Div(X

ij

; Y), we �rst observe that

X

ij

= (2

max(I)

s

i

)Y + 2

p

(s

j

� s

i

):

Moreover, j2

p

(s

j

� s

i

)j < 2

p

< Y . From these observations, we can deduce that

� Div(X

ii

; Y) = 2

max(I)

s

i

, and

� for all j < i, Div(X

ij

; Y) = 2

max(I)

s

i

� 1:

It is now an easy exercise in linear algebra to show that this matrix has rank at least 2

jIj

�1 � 2

n=16

�1.

(b) Mod

For the same parameters considered in part (a) above, note that N

Mod

= M � Y � N

Div

, where the

(i; j)

th

entry of M is 2

q

s

i

+ 2

p

s

j

(= X

ij

). Therefore,

rank(N

Mod

) � rank(N

Div

)� rank(M) � rank(N

Div

)� 2 � 2

jIj

� 3 = 2

n=16

� 3:

(c) HiMult

Let n = 2m. Choose U = fx

2m�1

; x

2m�2

; : : : ; x

m

g, and V = fx

m�1

; x

2m�2

; : : : ; x

0

g and apply Propo-

sition 5 to obtain I, p, q, A, and B. For each k 2 I

0

= f1; 2; : : : ;max(I)gnI, we set the variable

x

q�k

2 Xn(A [B) to 1, and all the remaining variables in Xn(A [B) to 0; these variables form the

integer 2

q

r, where r =

P

k2I

0

2

�k

. Therefore, X

ij

= 2

q

(s

i

+r)+2

p

s

j

. We also set both y

2m�q

and y

2m�p

to 1 and the remaining variables in Y to 0 so that the input Y corresponds to the integer 2

2m�q

+2

2m�p

.

First, we compute HiMult(X

ij

; Y) =

j

X

ij

�Y

2

2m

k

:

HiMult(X

ij

; Y) =

$

2

2m�p+q

(s

i

+ r) + 2

2m�q+p

s

j

+ 2

2m

(s

i

+ s

j

+ r)

2

2m

%

= 2

q�p

(s

i

+ r) +

�

(s

i

+ s

j

+ r) + 2

p�q

s

j

�

(2)

We analyze the expression in Line 2 as follows:

� 2

p�q

s

j

< 2

�max(I)

.

� s

i

+ s

j

+ r = a

ij

2

�max(I)

, for some integer a

ij

. Therefore, b(s

i

+ s

j

+ r) + 2

p�q

s

j

c = bs

i

+ s

j

+ rc.

12

� Let i

�

= 2

jIj

� i+ 1. If s

i

=

P

k2I

b

k

2

�k

, for some b

k

, k 2 I, then s

i

�

=

P

k2I

b

k

2

�k

, that is, s

i

�

is

the one's complement of s

i

with respect to the bit positions in I. Therefore, s

i

+ s

i

�

=

P

k2I

2

�k

,

so

s

i

+ s

i

�

+ r =

max(I)

X

i=1

2

�i

= 1� 2

�max(I)

: (3)

� Using Equation 3, we have for j � i

�

that bs

i

+ s

j

+ rc = 0, but on the other hand, s

i

+s

i

�

+1

+r �

s

i

+ s

i

�

+ 2

�max(I)

+ r = 1, implying that bs

i

+ s

i

�

+1

+ rc � 1.

Therefore, when j � i

�

, HiMult(X

ij

; Y) = 2

q�p

(s

i

+ r), whereas HiMult(X

i

�

+1;j

; Y) � 2

q�p

(s

i

+ r) + 1.

It follows that N

HiMult

has rank at least 2

jIj

� 1 � 2

n=16

� 1.

(d) LoMult

Observe that with the same parameters as in part (c) above, N

LoMult

= M � 2

m

N

HiMult

, where the

(i; j)

th

entry of M is X

ij

� Y = (2

2m�q

+ 2

2m�p

)X

ij

. Therefore,

rank(N

LoMult

) � rank(N

HiMult

)� rank(M) � rank(N

HiMult

)� 2 � 2

jIj

� 3 = 2

n=16

� 3:

(e) Sqrt

Let n = 10m, for large enoughm. Choose U = fx

5m�1

; x

5m�2

; : : : ; x

4m

g, V = fx

4m�1

; x

4m�2

; : : : ; x

3m

g,

and apply Proposition 5 to obtain I, p, q, A, and B. Fix each of the variables x

2q�2max(I)�2

,

x

2p�2max(I)�2

, x

p+q�2max(I)�1

(which are in Xn(A [B) because 2p � 2max(I) � 2 > 5m) to 1 and

all the remaining variables in Xn(A [B) to 0. Therefore, X

ij

= r

2

+ 2

q

s

i

+ 2

p

s

j

, where r =

2

q�max(I)�1

+ 2

p�max(I)�1

.

For each i � 2, (r+2

max(I)

s

i

)

2

= r

2

+2

q

s

i

+ 2

p

s

i

+ (2

max(I)

s

i

)

2

. Since 3max(I) � 3m � p, it follows

that (2

max(I)

s

i

)

2

< 2

2max(I)

� 2

p�max(I)

� 2

p

(s

i+1

� s

i

), implying that

X

ii

< (r + 2

max(I)

s

i

)

2

< X

i;i+1

:

Moreover, since p � 3max(I) and q � p � max(I),

(r + 2

max(I)

s

i

� 1)

2

= r

2

+ 2

q

s

i

� (2

q�max(I)

� 2

p

s

i

)� (2

p�max(I)

� 2

max(I)

s

i

� 1)

2

) � r

2

+ 2

q

s

i

� X

ij

;

for each j. Therefore, for each j � i, Sqrt(X

ij

) = r+2

max(I)

s

i

� 1 whereas Sqrt(X

i;i+1

) � r+2

max(I)

s

i

,

from which we can verify that the rank of N

Sqrt

is at least 2

jIj

� 2 = 2

(n)

.

(f) Inv

Let n = 18m, U = fx

2m�1

; x

2m�2

; : : : ; x

m

g, and V = fx

m�1

; x

2m�2

; : : : ; x

0

g and apply Proposition 5

to obtain I, p, q, A, and B. Fix each of the variables x

14m

, x

6m�p�1

, x

6m�q�1

and x

q�k

, for all k 2

I

0

= f1; 2; : : : ;max(I)gnI to 1 and all the remaining variables in Xn(A[B) to 0. If r denotes the value

P

k2I

0

2

�k

, then we can check that X

ij

= 2

14m

+�

ij

, where �

ij

= 2

6m�p�1

+2

6m�q�1

+2

q

(s

i

+ r)+2

p

s

j

.

13

Now, we compute Inv(X

ij

), for j � 2:

$

2

2n

X

ij

%

=

$

2

36m

2

14m

+ �

ij

%

=

$

2

22m

1 +

�

ij

2

14m

%

= 2

22m

� 2

8m

�

ij

+

$

�

2

ij

2

6m

�

�

3

ij

2

20m

(1 +

�

ij

2

14m

)

%

(4)

(Using the elementary equation

1

1+z

= 1� z + z

2

�

z

3

1+z

)

To simplify the expression in Line 4, we �rst compute

�

2

ij

= (2

6m�p�1

+ 2

6m�q�1

)

2

+ 2

6m�p+q

(s

i

+ r)

+ 2

6m

(s

i

+ s

j

+ r) + 2

6m�q+p

s

j

+ (2

q

(s

i

+ r) + 2

p

s

j

)

2

:

Therefore,

�

2

ij

2

6m

= (2

3m�p�1

+ 2

3m�q�1

)

2

+ 2

q�p

(s

i

+ r) (5)

+ (s

i

+ s

j

+ r) + 2

p�q

s

j

+

(2

q

(s

i

+ r) + 2

p

s

j

)

2

2

6m

Observing that the expression in Line 5 is an integer, we can simplify

Inv(X

ij

) = 2

22m

� 2

8m

�

ij

+ (2

3m�p�1

+ 2

3m�q�1

)

2

+ 2

q�p

(s

i

+ r) (6)

+

$

(s

i

+ s

j

+ r) + 2

p�q

s

j

+

(2

q

(s

i

+ r) + 2

p

s

j

)

2

2

6m

�

�

3

ij

2

20m

(1 +

�

ij

2

14m

)

%

(7)

To simplify the expression in Line 7, observe the following:

�

(2

q

(s

i

+r)+2

p

s

j

)

2

2

6m

< 2

2q�6m

� 2

�2m

� 2

�q

.

� Since �

ij

< 2

6m

,

�

3

ij

2

20m

(1 +

�

ij

2

14m

)

�

�

3

ij

2

20m

<

2

18m

2

20m

� 2

�q

:

� Combining the last two inequalities,

�

�

�

�

�

(2

q

(s

i

+ r) + 2

p

s

j

)

2

2

6m

�

�

3

ij

2

20m

(1 +

�

ij

2

14m

)

�

�

�

�

�

< 2

�q

� 2

p�q�max(I)

:

� 2

p�q

s

j

= 2

p�q�max(I)

a

j

, for some positive integer a

j

, and 2

p�q

s

j

< 2

�max(I)

.

� s

i

+ s

j

+ r = 2

�max(I)

a

ij

, for some integer a

ij

.

14

Therefore, the expression in Line 7 equals bs

i

+ s

j

+ rc.

Let i

�

= 2

jIj

� i+1. Similar to the case of HiMult, we can show that for all j � i

�

, bs

i

+ s

j

+ rc = 0,

but on the other hand, bs

i

+ s

i

�

+1

+ rc � 1. Since the expression in Line 6 can be expressed as

us

i

+ vs

j

+ w, for some constants u, v and w, it follows that for all j � i

�

, Inv(X

ij

) = us

i

+ vs

j

+ w,

but Inv(X

i;i

�

+1

) = us

i

+ vs

j

+ w + 1. Thus, N

Inv

has rank 2

(n)

.

2

5.2. Rank versus Fooling Sets

For this and the next section, we will focus on boolean functions and obtain exponential bounds on the

rank for many boolean functions that hold over any �eld.

6

These results imply exponential size bounds

for BLDs computing such functions over any �eld. We will �rst describe an approach that computes this

measure indirectly and is easier to apply; we will then describe the results that compute this measure

directly.

For a �xed partition of X into L and R, the matrix M

L;R

f

is also the matrix of the two party

communication complexity for f ([Yao79]). One method for getting good lower bounds on this measure

is to construct large boolean fooling sets. A fooling set A consists of pairs of inputs that assign values

to the variables of L and R, such that for some � 2 f0; 1g, the following hold:

(a) for each pair (�; �) in A, f(� � �) = �, and

(b) for any two distinct pairs (�; �) and (�

0

; �

0

) in A, either f(� � �

0

) 6= � or f(�

0

� �) 6= �.

For our application, we are interested in knowing how the fooling set size relates to the rank. The

following proposition due to Dietzfelbinger et al. [DHS94] shows that if the fooling set size is exponential,

then so is the rank. Although they considered equipartitions, the proof can be extended to handle

unequal-sized partitions as well.

Proposition 6 ([DHS94]): For any boolean function f , and any partition of its variable set into L

and R, let M

L;R

f

be the associated matrix of f with respect to this partition. Suppose s is the size of

any fooling set and suppose r is the rank of M

L;R

f

over any �eld. Then, r �

p

s� 1.

Since we are interested in the best-partition rank, the more relevant measure is the best-partition

communication complexity ([PS84]) in which one computes the communication cost for the best choice

of a partition into L and R in some �xed balanced family of partitions. Proposition 6 implies that

any scheme that gives lower bounds on the best-partition communication complexity by constructing

exponential size fooling sets for all partitions in a balanced family also gives bounds on the best-partition

rank and consequently gives exponential size bounds for the BLD representation.

In general, constructing fooling sets is easier than computing the rank directly. However, there

are functions for which the rank is exponentially larger than the size of any fooling set. In fact,

Dietzfelbinger et al. [DHS94], in the same paper referred to above, showed that almost all boolean

functions satisfy the property that the rank is exponential but no fooling set is larger than linear in

6

We are dealing with 0-1 matrices here, so the rank is well-de�ned over any �eld.

15

size. Therefore, for some functions we have to resort to computing the rank directly. This again is a

classic problem that has been extensively studied in communication complexity. As shown by Mehlhorn

and Schmidt [MS82], the �xed-partition communication complexity of any function is bounded below

by the logarithm of the rank of the associated matrix. In terms of the best-partition model, this means

that the logarithm of the best-partition rank is a lower bound on the best-partition communication

complexity. Since there a few results that take this approach, they directly give bounds for the BLD

size.

5.3. Boolean Functions with Exponential BLD Size

In this section, we list some important boolean functions/predicates that we can show to require ex-

ponential size BLDs over any �eld; for each function, we will indicate the approach that was taken to

show that the rank is exponentially large.

Pattern Matching: Verify if the binary pattern string of �n bits occurs in the binary text string of

(1� �)n bits, where 0 < � < 1. (Fooling Set) [LS81]

Factor Veri�cation: Verify if the product of two n-bit numbers equals a 2n-bit number. (Fooling

Set) [LS81]

Middle bit of Product: In contrast with the previous function, here we compute the middle bit of

the product of two n bit numbers. (Fooling Set) [Bry91]

Selection/Equality Testing: Given two n bit numbers, x and y such that x has exactly n=2 bits set to

1, check if the n=2-bit number obtained by selecting those bits in y at the positions corresponding

to the 0s in x equals the remaining n=2-bit number in y. (Fooling Set) [LS81]

A Deterministic Context-Free Language: The input is an encoding of a string u 2 f0; 1; c; �g

�

and we have to verify that the string with the �'s removed from u is of the form wcw

R

, for some

w 2 f0; 1g

�

. (Fooling Set) [LS81]

Shifted Equality: Given two input strings and a number i, the function evaluates to 1 if and only if

the �rst string equals the second shifted circularly to the right i times. (Fooling Set) [Len90]

The proof that this function has fooling sets of exponential size under all partitions was generalized

by Lam and Ruzzo [LR92]. Using this result, one can transform a function f that has a large

fooling set under some �xed partition to a shifting version of f which can be shown to have large

fooling sets under all partitions. The drawback is that these shifted versions may not be natural.

Graph Properties: Verifying any of the following predicates on undirected graphs: Connectivity,

Bipartiteness, and s-t-Connectivity. (Rank) [HMT88]

For more details on these and other functions, see [LS81], [PS84], [Bry91] and [HMT88].

16

6. *-BMDs and Regular Languages

In the earlier sections, we saw that the rank method is a useful tool for proving bounds that hold

uniformly in all the ordered representations. A related and important problem is to contrast speci�c

representations in order to understand what representations are best suited for a class of functions or

languages. For regular languages, we know that OBDDs can represent any regular language in linear

size by keeping track of the state in the automaton that represents it. In this section, we show that

there is a simple regular language that has exponential complexity in the *-BMD representation. In

order to prove this, we use Enders' [End95] approach in bounding the number of distinct path functions.

We now state our main result of this section.

Theorem 7: Let the sets A

i

, for i = 0; 2; 3; 4, be de�ned as A

i

= fw 2 f0; 1g

7

: w has i 1s g. Then,

any *-BMD representing the regular language

S = A

�

0

A

3

(A

0

[A

2

)

�

[A

�

0

A

4

A

�

0

requires size 2

(n)

.

We will �rst describe the technique that Enders introduced to derive bounds for the *-BMD represen-

tation and then apply it to prove our result.

Fix an order x

p

1

; x

p

2

; : : : ; x

p

n

on the variables and a *-BMD that computes f = f

S

n

. For any input �

that assigns values to the �rst k variables in this order, for some k � n, let v

�

be the node reached in

the *-BMD by taking the path corresponding to � and let E

�

denote the product of the edge weights

from the source to v

�

. As before, we will denote the node function corresponding to a node v by g

v

.

Let the path

7

function h

(�)

, corresponding to �, be de�ned as h

(�)

= E

�

�g

v

�

. Enders showed that the

path function can also be expressed in terms of the subfunctions using Mobius inversion. To describe this

equation, we will need the following two notations: for any input �, j�j denotes the number of variables

set to 1 by � and for any two inputs �; � : Y ! f0; 1g, we denote � � � to mean that �(y) � �(y) for

each variable y 2 Y . As before, partition X into L and R, where L = fx

p

1

; x

p

1

; : : : ; x

p

k

g. For any input

� : L! f0; 1g, we have the following equations:

Proposition 8 (Enders [End95]):

f

�

=

X

���

h

(�)

:

h

(�)

=

X

���

(�1)

j�j�j� j

f

�

: (8)

To bound the number of nodes in any particular level, we de�ne a variant of the fooling set that we

used earlier. This variant is similar in spirit to the one used by Enders [End95] and Bryant [Bry91].

Here, the fooling set A consists of inputs that assign values to the variables of L only and satis�es the

property that for any two distinct inputs �; � : L! f0; 1g in A, there exist �; � : R! f0; 1g such that

h

(�)

(�)h

(�)

(�) 6= h

(�)

(�)h

(�)

(�): (9)

7

We use h

(�)

rather than h

�

to emphasize the fact that this is not a subfunction.

17

We claim that the *-BMD must have at least jAj nodes. For otherwise, by the pigeon-hole principle,

there are two inputs � and � in A such that v

�

= v

�

. But this implies that for all �; � : R! f0; 1g

h

(�)

(�)h

(�)

(�) = E

�

E

�

g

v

�

(�)g

v

�

(�)

= E

�

E

�

g

v

�

(�)g

v

�

(�)

= h

(�)

(�)h

(�)

(�);

which contradicts Equation 9.

With this machinery, we are now ready to prove the result.

Proof:[Of Theorem 7] Assume that n = 14m, for some large enough m. Divide the variables

X = fx

1

; x

2

; : : : ; x

14m

g into 2m blocks of seven consecutive variables each. In other words, the block

B

i

, for 1 � i � 2m, will contain the variables x

j

, for 7(i� 1) < j � 7i. Any input � that assigns values

to the variables of a block B

i

, for some i, induces a binary string �(7(i� 1)+ 1)�(7(i� 1)+2) : : : �(7i).

We will be interested in the various binary strings that are induced by the inputs in the appropriate

blocks.

Fix an order x

p

1

; x

p

2

; : : : ; x

p

n

on X and also �x a *-BMD that uses this order to compute the

characteristic function f = f

S

n

of S. Let L = fx

p

1

; x

p

1

; : : : ; x

p

n=2

g and R = XnL be an equipartition of

X.

A simple counting argument shows that we can always �nd 2s blocks, for some even s � m=8, indexed

by the set I (jIj = 2s), such that for ` 2 I, jB

`

\ Lj � 3. For each ` 2 I, we will arbitrarily choose

three variables in B

`

\ L and call them special. Similarly, we can �nd a single block B

r

, r =2 I, such

that jB

r

\Rj � 4 and arbitrarily choose four special variables in B

r

\R. We will call the blocks B

i

, for

i 2 I [frg, special as well.

The set of inputs that we will deal with will be obtained by carefully assigning values to the special

variables. By default, the non-special variables in any input are always assigned to 0 and we will not

mention that henceforth. Note that this means that each non-special block induces the binary string

0000000, which is the unique element of A

0

.

The fooling set A consists of inputs that correspond to the various ways of choosing a set I

0

� I of

cardinality s; for each such choice of an I

0

, the corresponding input is de�ned as follows: For each ` 2 I,

(a) if ` 2 I

0

, then the three special variables in B

`

\ L are each set to 1.

(b) Otherwise, if ` 2 InI

0

, then set the special variable with the smallest index in B

`

\L to 0 and the

other two to 1.

The fooling set has the right size of

2s

s

!

= 2

(n)

:

Note that if (a) (respectively, (b)) above was used to assign values to the special variables of a block,

then assigning a 0 to each of the other variables (which are non-special and hence get a 0 value eventually

anyway) induces a string in A

3

(respectively, A

2

).

We will now show that the set we have constructed is indeed a fooling set by exhibiting two inputs

�; � : R! f0; 1g such that

18

1. for all � in A, h

(�)

(�) = 1, and

2. h

(�)

(�) is distinct for each � 2 A.

Then, by Equation 9, we will have proved the theorem.

De�ne the input � : R ! f0; 1g by setting all the four special variables in B

r

to 1. To see that

h

(�)

(�) = 1, for any � 2 A, via Equation 8, note that the induced string in block B

r

is an element of

A

4

. The only way to ensure that � � � and f

�

(�) 6= 0 is by having � assign 0s to all the variables of L

so that � � � induces an element of A

�

0

A

4

A

�

0

in all the blocks put together. Then,

h

(�)

(�) = (�1)

j�j�j� j

f

�

(�) = 1;

since s is even and � assigns 5s variables to 1 whereas � assigns no variable to 1.

On the other hand, the input � : R! f0; 1g is de�ned by assigning a 0 to all the special variables in

B

r

(and hence to all variables in R). For each � 2 A, we will obtain an exact expression for h

(�)

(�) via

Equation 8 and then show that it is distinct for each �.

Notice that � � � induces an element of A

3

in each of some s special blocks, an element of A

2

in each

of some other s special blocks and the element of A

0

in each of the rest. To obtain a � � � such that

f

�

(�) 6= 0, the only choice is in assigning values to those blocks in which � � � does not induce the

element of A

0

. Moreover, the string that �:� induces contains no block that can be a member of A

4

, so

this string must be a member of A

�

0

A

3

(A

0

[A

2

)

�

. This implies that j�j � j� j is odd so that h

(�)

(�) is

negative and its magnitude is the number of � � � such that � � � induces a string in A

�

0

A

3

(A

0

[A

2

)

�

.

In the string induced by � � �, delete all the blocks corresponding to A

0

and call the resulting string

of length 14s as w. Let w = w

2s

w

2s�1

: : : w

1

, where w

i

2 A

2

[A

3

, and let n

s

> n

s�1

> � � � > n

1

be the

positions such that for 1 � j � s, w

n

j

2 A

3

. From the discussion above, it is clear that the magnitude

of h

(�)

(�) is exactly the number of strings u in A

�

0

A

3

(A

0

[A

2

)

�

such that u has the same length as w

and the bit value for each position in u is no more than the bit value for the corresponding position in

w. Let u = u

2s

u

2s�1

: : : u

1

, where u

i

2 A

0

[A

2

[A

3

, for 1 � i � 2s. For each j, 1 � j � s, observe that

the number of u's in which u

n

j

2 A

3

is exactly 2

n

j

�j

4

j�1

= 2

n

j

+j�2

. Summing up over all j, we have,

h

(�)

(�) = �

X

1�j�s

2

n

j

+j�2

:

By a similar argument one can show that for an input �

0

2 A di�erent from �, by deleting the blocks

corresponding to A

0

in the string induced by �

0

� �, if m

s

> m

s�1

> � � � > m

1

are the positions where

the elements of A

3

appear, then,

h

(�

0

)

(�) = �

X

1�j�s

2

m

j

+j�2

:

By our construction of the fooling set, the vectors (n

s

; n

s�1

; : : : ; n

1

) and (m

s

;m

s�1

; : : : ;m

1

) are

di�erent . Let q be the largest integer such that n

q

6= m

q

and assume, without loss of generality, that

n

q

> m

q

. Then,

h

(�

0

)

(�)� h

(�)

(�)

=

X

1�j�q

2

n

j

+j�2

�

X

1�j�q

2

m

j

+j�2

19

= 2

n

q

+q�2

� (2

m

q

+q�1

� 1)

> 0:

This proves our claim that h

(�)

(�) is distinct for each � 2 A and completes the proof of the theorem. 2

7. Conclusions

We have shown that a variety of integer functions such as integer division, remainder, high/low-order

words of multiplication, square root, and reciprocal require exponential-sized BLDs. We then showed

that a variety of boolean functions have exponential complexity in all the ordered representations by

relating its complexity to two measures, the fooling set size and the rank. The general de�nition of

the BLD representation implies that minor variations in the known ordered representations will not

su�ce to handle a broader class of functions and we have to go beyond the \linear nature" implicit in

their de�nitions to be able to handle these hard functions. Another direction that can be taken is to

study the power of read-once representations that relax the notion of an implicit order on the variables.

An important example is the Free Binary Decision Diagram [GM92] representation but we could also

consider generalizations of this representation similar to the BLD representation.

Acknowledgments

I am indebted to Paul Beame for his invaluable guidance and support during the course of this work

and for his comments and clari�cations in the paper. I also thank Richard Anderson for his guidance

and for directing me towards studying the *-BMD-complexity of regular languages. Finally, I thank

Martin Tompa and William Chan for their comments and suggestions.

References

[BBB

+

96] Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Stefano Var-

ricchio. On the applications of multiplicity automata in learning. In 37th Annual Symposium

on Foundations of Computer Science, Burlington, Vermont, 14{16 October 1996. IEEE. To

appear.

[BC95] R.E. Bryant and Y.-A. Chen. Veri�cation of arithmetic circuits with binary moment

diagrams. In 32nd ACM/IEEE Design Automation Conference, Pittsburgh, June 1995.

Carnegie Mellon University.

[BCL

+

94] J.R. Burch, E.M. Clarke, D.E. Long, K.L. MacMillan, and D.L. Dill. Symbolic model

checking for sequential circuit veri�cation. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 13(4):401{424, April 1994.

[BCM

+

90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model

checking: 10

20

states and beyond. In Proceedings of the Fifth Annual IEEE Symposium

on Logic in Computer Science, pages 1{33, Washington, D.C., June 1990. IEEE Computer

Society Press.

20

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transac-

tions on Computers, C-35(8):677{691, August 1986.

[Bry91] R. E. Bryant. On the complexity of VLSI implementations and graph representations of

boolean functions with application to integer multiplication. IEEE Transactions on Com-

puters, 40(2):205{213, February 1991.

[CFZ95] E. M. Clarke, M. Fujita, and X. Zhao. Hybrid decision diagrams | overcoming limitations

of MTBDDs and BMDs. In International Conference on Computer Aided Design, pages

159{163, Los Alamitos, Ca., USA, November 1995. IEEE Computer Society Press.

[CKZ96] E.M. Clarke, Manpreet Khaira, and Xudong Zhao. Word level symbolic model checking

| avoiding the Pentium FDIV error. In 33rd ACM/IEEE Design Automation Conference,

pages 645{648, 1996.

[CMZ

+

93] E. Clarke, K.L. McMillian, X. Zhao, M. Fujita, and J.C.-Y. Yang. Spectral transforms

for large boolean functions with application to technologie mapping. In 30th ACM/IEEE

Design Automation Conference, pages 54{60, Dallas, TX, June 1993.

[CP71] J. W. Carlyle and A. Paz. Realizations by stochastic �nite automata. Journal of Computer

and System Sciences, 5(1):26{40, February 1971.

[DHS94] M. Dietzfelbinger, J. Hromkovic, and G. Schnitger. A comparison of two lower bound

methods for communication complexity. In Symposium on Mathematical Foundations of

Computer Science, pages 326{335, 1994.

[End95] R. Enders. Note on the complexity of binary moment diagram representations. Manuscript,

1995.

[Fli74] M. Fliess. Matrices de Hankel. J. Math. Pures et Appl., 53:197{224, 1974.

[GM92] J. Gergov and Ch. Meinel. E�cient boolean manipulation with OBDD's can be extended

to read-once only branching programs. Technical report, Univ. Trier, 1992.

[HK91] Harju and Karhumaki. The equivalence problem of multitape �nite automata. Theoretical

Computer Science, 78, 1991.

[HMT88] Andr�as Hajnal, Wolfgang Maass, and Gy�orgy Tur�an. On the communication complexity of

graph properties. In Proceedings of the Twentieth Annual ACM Symposium on Theory of

Computing, pages 186{191, Chicago, Illinois, 2{4 May 1988.

[KN95] E. Kushilevitz and N. Nisan. Manuscript, 1995.

[KSR92] U. Kebschull, E. Schubert, and W. Rosenstiel. Multilevel logic synthesis based on functional

decision diagrams. In 29th ACM/IEEE Design Automation Conference, pages 43{47, 1992.

[Len90] Thomas Lengauer. VLSI theory. In Handbook of Theoretical Computer Science, Ed. Jan

van Leeuwen, Elsevier and MIT Press (Volume A (= \1"): Algorithms and Complexity),

volume 1. The MIT Press/Elsevier, 1990.

21

[LR92] Tak Wah Lam and Larry Ruzzo. Results on communication complexity classes. Journal of

Computer and System Sciences, 44, 1992.

[LS81] Richard J. Lipton and Robert Sedgewick. Lower bounds for VLSI. In Conference Proceed-

ings of the Thirteenth Annual ACM Symposium on Theory of Computation, pages 300{307,

Milwaukee, Wisconsin, 11{13 May 1981.

[LS92] Y.-T. Lai and S. Sastry. Edge-valued binary decision diagrams for multi-level hierarchical

veri�cation. In 29th ACM/IEEE Design Automation Conference, pages 608{613, 1992.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell Mas-

sachusetts, 1993.

[MS82] Kurt Mehlhorn and Erik M. Schmidt. Las Vegas is better than determinism in VLSI and

distributed computing (extended abstract). In Proceedings of the Fourteenth Annual ACM

Symposium on Theory of Computing, pages 330{337, San Francisco, California, 5{7 May

1982.

[PS84] C. Papadimitriou and M. Sipser. Communication complexity. Journal of Computer and

System Sciences, 28, 1984.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (pre-

liminary report). In Conference Record of the Eleventh Annual ACM Symposium on Theory

of Computing, pages 209{213, Atlanta, Georgia, 30 April{2 May 1979.

22

