
The Cranium Network Interface Architecture:

Support for Message Passing on Adaptive

Packet Routing Networks

by

Neil R. McKenzie

A dissertation submitted in partial ful�llment of

the requirements for the degree of

Doctor of Philosophy

University of Washington

1997

Approved by

(Chairperson of Supervisory Committee)

Program Authorized

to O�er Degree

Computer Science and Engineering

Date

January 31, 1997

c

 Copyright 1997

Neil R. McKenzie

In presenting this dissertation in partial ful�llment of the requirements for the Doc-

toral degree at the University of Washington, I agree that the Library shall make

its copies freely available for inspection. I further agree that extensive copying of

this dissertation is allowable only for scholarly purposes, consistent with \fair use"

as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of

this dissertation may be referred to University Micro�lms, 1490 Eisenhower Place,

P.O. Box 975, Ann Arbor, MI 48106, to whom the author has granted \the right

to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed

copies of the manuscript made from microform."

Signature

Date

University of Washington

Abstract

The Cranium Network Interface Architecture:

Support for Message Passing on Adaptive

Packet Routing Networks

by Neil R. McKenzie

Chairperson of Supervisory Committee: Professor Carl Ebeling

Department of Computer Science

and Engineering

Cranium is a network interface architecture for message passing in a scalable

parallel computer system. Cranium provides the following features:

� Support for adaptive networks. Cranium is compatible with adaptive networks

that permit packets to overtake other packets in transit. The network interface

noti�es the processor after an entire message is received, independent of the

arrival order of its individual packets.

� User-level bus-master DMA for both low latency and high throughput. Cranium

connects at the processor-memory bus to bypass the bottleneck at the I/O

bus, without incurring the complexity of a design that is tightly coupled to

the processor. Direct access by user programs avoids the overhead of operating

system calls.

� Support for both short and long messages. Message tra�c in networks is bi-

modal: most messages are short, but long messages consume most network

bandwidth. Cranium directly supports messages ranging in length from a

cache line up to an MMU page. Bu�ered communication for small messages is

supported via a queue that is mapped into the user's address space. For large

messages, unbu�ered communication is implemented using automatic-receive

DMA to place packet data into the user's memory without copying.

Cranium provides high communication performance as well as excellent speedup of

parallel application programs. The Cranium application program interface introduces

minimal software overhead, yet provides functionality similar to a heavily-layered

approach such as Intel NX.

Analysis of Cranium's performance shows that the end-to-end latency of a short

message is 60 to 100 clock cycles; throughput is 90% of peak with messages as short

as 2K bytes. Cranium is evaluated empirically using a suite of hand-coded parallel

benchmark programs that run on the Talisman multiprocessor simulator and the

Chaos network simulator.

To demonstrate that a Cranium chip can be fabricated, we describe Teschio, an

ASIC implementation of Cranium. Teschio is estimated to require fewer than 400,000

gates and support a clock frequency of 100 MHz. Many implementation tradeo�s are

explored in the design of Teschio: performance of the memory system, depth of FIFO

bu�ers and support for multiple user contexts.

Table of Contents

List of Figures vii

List of Tables xi

Chapter 1: Introduction 1

1.1 MPP computers and scalable networks : : : : : : : : : : : : : : : : : 4

1.2 The communication bottleneck : 5

1.3 The role of the network interface in message passing : : : : : : : : : : 7

1.4 Packet length and routing algorithms : : : : : : : : : : : : : : : : : : 11

1.5 Performance of networks and network interfaces : : : : : : : : : : : : 13

1.6 Related work : 16

1.7 The thesis : 17

Chapter 2: Network interfaces 20

2.1 The physical interface : 21

2.1.1 Coupling the physical interface with the processing node : : : 21

2.1.2 Data movement : 25

2.1.3 Noti�cation and dispatch : 28

2.1.4 Argument checking and protection : : : : : : : : : : : : : : : 29

2.1.5 Fault handling : 34

2.2 The logical interface : 35

2.2.1 Systolic communication : 36

2.2.2 Remote memory : 36

2.2.3 Send/receive communication : : : : : : : : : : : : : : : : : : : 40

2.2.4 Protocol support : 40

2.3 Analysis : 42

2.4 Summary : 45

Chapter 3: The Cranium network interface architecture 47

3.1 Design goals : 47

3.2 The di�culty of interfacing with adaptive routers : : : : : : : : : : : 48

3.3 Cranium implementation-independent architecture : : : : : : : : : : : 51

3.3.1 Send channels and auto-receive channels : : : : : : : : : : : : 52

3.3.2 Queuing channels : 53

3.3.3 Protection : 55

3.3.4 Error handling in Cranium : 57

3.4 Cranium implementation-dependent architecture : : : : : : : : : : : : 58

3.4.1 The Cranium scheduler : 58

3.4.2 Support for cache coherence : : : : : : : : : : : : : : : : : : : 59

3.4.3 Multiple user contexts : 61

3.4.4 Gather-scatter support : 63

3.5 Summary : 65

Chapter 4: The Cranium software interface 67

4.1 Sending a message under Cranium : : : : : : : : : : : : : : : : : : : 68

4.2 Receiving a message under Cranium : : : : : : : : : : : : : : : : : : : 70

4.2.1 Unbu�ered communication : 70

4.2.2 Bu�ered communication : 70

4.3 Synchronization : 71

4.4 Interrupts and error diagnostics : 74

4.5 Comparison with other message passing interfaces : : : : : : : : : : : 74

4.5.1 Intel NX : 74

4.5.2 Active messages : 77

4.6 Summary : 78

Chapter 5: The test environment 80

5.1 Talisman : 82

5.1.1 Talisman's timing model : 83

5.2 Chaos network simulator : 86

5.3 Modeling the behavior of Cranium in the simulator : : : : : : : : : : 89

ii

5.3.1 Injection and delivery of packets : : : : : : : : : : : : : : : : : 90

5.4 Implementation: integrating the simulators : : : : : : : : : : : : : : : 90

5.5 Running the combined simulator : 94

5.6 Host execution performance of the combined simulator : : : : : : : : 95

5.7 Summary : 98

Chapter 6: Evaluation of Cranium 100

6.1 Performance analysis : 101

6.1.1 Latency of a single packet : 103

6.1.2 Throughput : 105

6.1.3 Broadcast : 108

6.2 Empirical evaluation of Cranium : 112

6.2.1 Goals : 113

6.2.2 Suite of parallel benchmark programs : : : : : : : : : : : : : : 114

6.2.3 Benchmark implementation : : : : : : : : : : : : : : : : : : : 120

6.2.4 Benchmark measurements : 121

6.2.5 Determining maximum speedup and e�ciency : : : : : : : : : 123

6.2.6 Determining the signi�cance of the communication cost : : : : 126

6.2.7 Putting it all together : 128

6.2.8 Performance of the communication system : : : : : : : : : : : 128

6.2.9 Summary : 132

6.3 Comparing Cranium against other network interface styles : : : : : : 134

6.3.1 Modifying Cranium to emulate other network interfaces : : : : 135

6.3.2 Analytical evaluation of the modi�cations : : : : : : : : : : : 136

6.3.3 Empirical evaluation of the modi�cations : : : : : : : : : : : : 137

6.3.4 Summary : 139

6.4 Related work : 140

6.4.1 Study #1: CM-5 vs. Paragon : : : : : : : : : : : : : : : : : : 140

6.4.2 Study #2: CM-5 vs. J-machine vs. Star-T : : : : : : : : : : : 141

6.4.3 Study #3: Meerkat vs. Delta : : : : : : : : : : : : : : : : : : 141

6.5 Summary : 142

iii

Chapter 7: Teschio: A VLSI chip implementation of Cranium 144

7.1 Teschio system environment : 146

7.1.1 Environment of a single node : : : : : : : : : : : : : : : : : : 146

7.1.2 The ADU bus : 147

7.1.3 The P link : 148

7.1.4 Node mapping : 149

7.1.5 Data redundancy : 149

7.2 Teschio internal structure : 151

7.2.1 Core module : 153

7.2.2 Inbox and outbox : 155

7.3 Internal micro-operations of Teschio : : : : : : : : : : : : : : : : : : : 158

7.3.1 Command and status interface with the host processor : : : : 159

7.3.2 Performing the table lookup functions : : : : : : : : : : : : : 160

7.3.3 Sending a packet : 162

7.3.4 Receiving a packet : 164

7.3.5 Updating the internal data structures : : : : : : : : : : : : : : 167

7.4 Timing analysis : 170

7.4.1 Design guidelines : 171

7.4.2 Latency : 171

7.4.3 Throughput : 175

7.4.4 Summary : 178

7.5 Fabrication parameters for Teschio : : : : : : : : : : : : : : : : : : : 178

7.6 Extensions to Teschio : 181

7.6.1 Packet scheduling and tra�c shaping : : : : : : : : : : : : : : 181

7.6.2 Fast context switching : 182

7.6.3 Gather-scatter support : 183

7.7 Summary : 185

Chapter 8: Conclusions 187

8.1 Cranium architecture : 187

8.2 Cranium application program interface : : : : : : : : : : : : : : : : : 189

8.3 Test environment : 189

iv

8.4 Performance analysis : 190

8.5 Empirical results : 190

8.6 Teschio : 191

8.7 Contributions of this dissertation : 191

8.8 Future work : 192

8.8.1 The Chaos-LAN project : 192

8.8.2 Additional performance studies : : : : : : : : : : : : : : : : : 194

8.9 Closing thoughts : 194

8.9.1 Message passing vs. shared memory : : : : : : : : : : : : : : : 194

8.9.2 The road ahead : 195

Bibliography 196

Appendix A: The Cranium application programmer's interface 208

A.1 Application program interface to the OS for message passing : : : : : 210

A.1.1 Initialization information : 210

A.1.2 Allocation and deallocation of DMA bu�ers : : : : : : : : : : 211

A.1.3 Interrupt handler : 212

A.2 Application program interface to Cranium : : : : : : : : : : : : : : : 212

A.2.1 Packet header : 212

A.2.2 Command word : 214

A.2.3 Cranium general interrupt mask : : : : : : : : : : : : : : : : : 217

A.2.4 Queue interface : 219

A.2.5 Cranium register map : 222

A.3 Interface between Cranium and the operating system : : : : : : : : : 223

A.3.1 Initializing and terminating a user message-passing context : : 225

A.3.2 Context switch : 225

A.4 Examples of message passing using the Cranium API : : : : : : : : : 226

A.4.1 Initialization : 227

A.4.2 Sending a message : 227

A.4.3 Receiving a message : 230

A.4.4 Discussion : 232

v

Appendix B: Measurements of programs in the parallel benchmark

suite 234

Appendix C: Measurements of communication cost in Gauss under

modi�cations to Cranium 242

Appendix D: Description of low-level details of Teschio 243

D.1 Handshaking signals and protocol of the P link : : : : : : : : : : : : : 243

D.2 Node mapping : 245

D.3 Sending and receiving a single-packet message : : : : : : : : : : : : : 247

vi

List of Figures

1.1 Overview of a scalable parallel computer system : : : : : : : : : : : : 4

1.2 One processing node of a scalable parallel computer system : : : : : : 5

1.3 Layers in a message passing system : : : : : : : : : : : : : : : : : : : 9

1.4 Processor overhead in message passing : : : : : : : : : : : : : : : : : 14

1.5 Performance of networks and network interfaces : : : : : : : : : : : : 15

2.1 Possible locations of the network interface in the processing node of a

multicomputer : 22

2.2 Implementation of argument checking and protection in the communi-

cation system : 30

2.3 Taxonomy of the receive interface : 41

3.1 Architecture of a network interface to support remote memory with an

out-of-order network : 50

3.2 Cranium architecture : 51

3.3 Cranium packet format : 53

3.4 Organization of circular bu�er in DRAM for queuing channel : : : : : 54

3.5 Protection for safe user-level access via mapping tables : : : : : : : : 56

3.6 The performance implications of timesharing on a multicomputer : : 62

3.7 Gather-scatter support in the network interface : : : : : : : : : : : : 64

4.1 Flow diagram for sending a message : : : : : : : : : : : : : : : : : : : 69

4.2 Flow diagram for receiving a message in an auto-receive channel : : : 70

4.3 Flow diagram for receiving a message in the user queue : : : : : : : : 71

4.4 Using local synchronization to support auto-receive : : : : : : : : : : 72

4.5 Synchronization for auto-receive using a global barrier : : : : : : : : : 73

4.6 Using barrier synchronization in a communication phase where every

node is both a message source and destination : : : : : : : : : : : : : 73

vii

5.1 Scheduling threads in Talisman : 84

5.2 Chaotic routing chip: external interfaces and internal bu�ering : : : : 88

5.3 Data paths in the chaotic routing chip : : : : : : : : : : : : : : : : : 89

5.4 Integration of Talisman and Chaos simulators : : : : : : : : : : : : : 91

5.5 Chaos network animation : 92

5.6 State machine for communication between Talisman and Chaos : : : 93

6.1 Latency of a single packet under the model \Cranium auto, cold" : : 104

6.2 Throughput of a point-to-point message : : : : : : : : : : : : : : : : 106

6.3 Sliding window protocol : 107

6.4 A hypercube topology for tree broadcast : : : : : : : : : : : : : : : : 109

6.5 Latency of optimal tree broadcast a single packet message : : : : : : 110

6.6 Throughput of broadcasting a 1 Kbyte message : : : : : : : : : : : : 112

6.7 Non-overlapping communication vs. overlapping communication : : : 122

6.8 Maximum speedup and e�ciency of benchmark programs : : : : : : : 124

6.9 Signi�cance of communication cost : : : : : : : : : : : : : : : : : : : 127

6.10 E�ciency of the benchmark suite when the cost of communication is

considered : 127

6.11 Raw performance of the communication system in bytes per cycle : : 129

6.12 Performance normalized to the maximum achievable throughput : : : 129

6.13 E�ective performance of the communication system in bytes per cycle 132

6.14 Communication performance of Cranium under modi�cations M1, M2

and M3 : 138

7.1 Simple block diagram of Teschio : 145

7.2 One node of a multicomputer system based on Teschio : : : : : : : : 146

7.3 ADU bus timing : 147

7.4 Using two-dimensional parity : 150

7.5 Structural diagram of Teschio : 152

7.6 Inbox and outbox : 156

7.7 Handshaking between inbox, outbox and surrounding environment : : 158

7.8 Accepting a command word from the host processor : : : : : : : : : : 161

7.9 The table lookup functions : 162

viii

7.10 The core module handler for injecting a packet into the outbox : : : : 163

7.11 Decoding and validating the header of a packet : : : : : : : : : : : : 165

7.12 Determining the proper queue for handling the arriving packet : : : : 166

7.13 Determining the proper automatic-receive channel for handling the

arriving packet : 167

7.14 Updating the queue structure : 168

7.15 Updating the send channel and auto-receive channel information : : : 169

7.16 Sequence of micro-operations involved in a packet send operation and

the minimum number of cycles taken at each step. : : : : : : : : : : : 172

7.17 Sequence of micro-operations involved in a packet receive operation

and the minimum number of cycles taken at each step. : : : : : : : : 174

7.18 An architecture for a hybrid MPP-SMP system that uses multiple Tes-

chio chips per processing node : 183

7.19 Supporting the scatter operation in Teschio : : : : : : : : : : : : : : 184

8.1 Overview of the Chaos-LAN research project : : : : : : : : : : : : : : 193

A.1 Schematic view of the interactions among the user application pro-

gram, the operating system and the network interface : : : : : : : : : 209

A.2 C structure describing the Cranium initialization information : : : : : 210

A.3 C structure for DMA bu�er allocation for Cranium : : : : : : : : : : 212

A.4 C structure describing the Cranium packet header : : : : : : : : : : : 213

A.5 C structure for the Cranium command word : : : : : : : : : : : : : : 215

A.6 C structure for the Cranium general interrupt mask : : : : : : : : : : 218

A.7 C structure for the Cranium queue pointer interface : : : : : : : : : : 220

A.8 C structure for the format of packets in the queue : : : : : : : : : : : 221

A.9 C structure for the Cranium register map : : : : : : : : : : : : : : : : 222

A.10 C structure describing the Cranium interface to the operating system 224

A.11 Example code for initialization and the two communication examples 228

A.12 Example code to send a message : 229

A.13 Example code to receive a message into the user queue : : : : : : : : 231

A.14 Example code to receive a message into an automatic channel : : : : 233

ix

D.1 Organization of the P link : 244

D.2 Node naming scheme used by Teschio : : : : : : : : : : : : : : : : : : 246

D.3 Organization of bit �elds placed on ADU bus by the processor to issue

a send or receive command : 248

D.4 Timing of a send or receive command on the ADU bus : : : : : : : : 248

D.5 Timing diagram for sending a single packet message : : : : : : : : : : 250

D.6 Timing diagram for receiving a single packet message : : : : : : : : : 251

x

List of Tables

2.1 Comparison of existing network interfaces : : : : : : : : : : : : : : : 43

2.2 Number of memory operations per word per message for the three data

movement types Systolic, PIO and DMA : : : : : : : : : : : : : : : : 44

3.1 Packet reordering example : 49

3.2 Attributes of the Cranium network interface architecture : : : : : : : 52

4.1 Comparison of message passing interfaces NX, AM and Cranium : : : 79

5.1 Host con�guration data : 95

5.2 Slowdown of combined simulator : 96

6.1 Latency of a single packet message : : : : : : : : : : : : : : : : : : : 103

6.2 Input data set sizes : 121

6.3 Maximum aggregate instructions per cycle executed when p = 16 : : 125

6.4 Throughput of a long message under the modi�cations to Cranium : 136

7.1 Description of �elds in one channel of the channel array : : : : : : : : 154

7.2 Description of �elds in one channel of the queue channel array : : : : 154

7.3 Impact of FIFO size on throughput (4K byte messages) : : : : : : : : 177

7.4 Total count of the number of bits of memory in Teschio : : : : : : : : 180

A.1 List of data structures to support message passing under Cranium : : 209

A.2 Interrupt mask state for a Cranium auto-receive channel : : : : : : : 217

A.3 Barrier state transition table : 223

B.1 Measurements of dense matrix multiplication (DMM). : : : : : : : : : 236

B.2 Calculated instructions per cycle, speedup and e�ciency of DMM. : : 236

B.3 Signi�cance of communication, actual throughput, percentage of ideal

throughput and e�ective throughput of DMM. : : : : : : : : : : : : : 236

xi

B.4 Measurements of fast Fourier transform (FFT). : : : : : : : : : : : : 237

B.5 Calculated instructions per cycle, speedup and e�ciency of FFT. : : : 237

B.6 Signi�cance of communication, actual throughput, percentage of ideal

throughput and e�ective throughput of FFT. : : : : : : : : : : : : : : 237

B.7 Measurements of Gaussian elimination (Gauss). : : : : : : : : : : : : 238

B.8 Calculated instructions per cycle, speedup and e�ciency of Gauss. : : 238

B.9 Signi�cance of communication, actual throughput, percentage of ideal

throughput and e�ective throughput of Gauss. : : : : : : : : : : : : : 238

B.10 Measurements of Jacobi successive over-relaxation (Jacobi). : : : : : : 239

B.11 Calculated instructions per cycle, speedup and e�ciency of Jacobi. : : 239

B.12 Signi�cance of communication, actual throughput, percentage of ideal

throughput and e�ective throughput of Jacobi. : : : : : : : : : : : : : 239

B.13 Measurements of Jacobi successive over-relaxation without global com-

bine (JacNoGC). : 240

B.14 Calculated instructions per cycle, speedup and e�ciency of JacNoGC. 240

B.15 Signi�cance of communication, actual throughput, percentage of ideal

throughput and e�ective throughput of JacNoGC. : : : : : : : : : : : 240

B.16 Measurements of bucket sort (Sort). : : : : : : : : : : : : : : : : : : : 241

B.17 Calculated instructions per cycle, speedup and e�ciency of Sort. : : : 241

B.18 Signi�cance of communication, actual throughput, percentage of ideal

throughput and e�ective throughput of Sort. : : : : : : : : : : : : : : 241

C.1 Cost of communication in Gauss under Cranium modi�cations M1,

M2, M3 and M1+M2. : 242

xii

ACKNOWLEDGMENTS

I thank the Department of Computer Science and Engineering at the Univer-

sity of Washington for its high quality and continuing commitment to excel-

lence. Everyone in CSE between the years 1987 and 1996 played some role

in my education. I can't possibly name everyone with whom I crossed paths,

hence the blanket inclusion. However, some people played a bigger role than

others, whom I wish to thank individually; I hope I do not overlook any of the

principal players.

Two research groups at UW-CSE provided the most signi�cant contribu-

tions to my education: the Chaos network and communication group, and

the computer architecture and distributed systems group. Within the Chaos

group I would like to thank my reading committee of Carl Ebeling, Larry

Snyder and Kevin Bolding, and fellow students Donald \DCI" Chinn, Sung-

Eun Choi, Melanie Fulgham, Magda Konstantinidou, Thu Nguyen and Bill

Yost. In the computer architecture and systems group I wish to thank fellow

students Craig Anderson, Rob Bedichek, Je� Chase, Ed Felten, Dave \Don

Pardo" Keppel, Alex Klaiber, Dylan McNamee and Chandu Thekkath. In

particular, Ed Felten's excellent dissertation on message passing provided a

wealth of information and the initial excitement to propel me into this arena.

Rob Bedichek provided the Talisman multiprocessor simulator, upon which my

performance results are based. Rob, Alex, Craig, Pardo and Dylan all inspired

many invigorating conversations on message passing and network interface de-

sign. Often, our disagreements helped reveal the deepest truths. Fortunately,

the design space is rich enough to accommodate all of us!

Research groups outside UW also played an important role in my disser-

tation work. I thank Greg Buzzard, Ian Robinson, John Wilkes and the rest

of the Hamlyn network interface development group at Hewlett-Packard Lab-

xiii

oratories in Palo Alto, California and Al Davis at the University of Utah for

providing an excellent sanity check for my ideas.

People connected with the Laboratory for Integrated Systems at UW-CSE

played an important role in my master's project, the UW MacTester. I thank

Tod Amon, Mary Bailey, Bill Barnard, Gaetano Borriello, Pai Chou, Darren

Cronquist, Paul Franklin, Soha Hassoun, Scott Hauck, Ken Hines, Ted Kehl,

Brian Lockyear, Larry McMurchie, Ross Ortega, ElizabethWalkup and Wayne

Winder for their support.

Fellow graduate students provided important friendships and made my life

within the con�nes of Sieg Hall more bearable than it otherwise might have

been. Thank you, Jim and Chris Ahrens, Juan Alemany, Franz Amador, Ruth

Anderson, Greg Barnes, Virgil Bourassa, Lauren Bricker, Reid Brown, Suzanne

Bunton, Brad Chamberlain, Travis Craig, Chris Fisher, Dan Kerns, Tracy

Kimbrel, Eric Koldinger, Tony LaMarca, Calvin Lin, Greg Linden, Vasily

Litvinov, E. Christopher Lewis, Gus Lopez, Ian McDu�, Dorothy Neville,

Ruben Ortega, Sean Sandys, Jason Secosky, Eric Selberg, Jean Schweitzer,

Kevin Sullivan, Radhika Thekkath, Wendy Thrash, Derrick Weathersby and

Ken Whaley. I also thank the faculty and sta� at UW CSE, in particular:

Brian Bershad, Frankye Jones, Warren Jessup, Stephen Lee, Mark Murray,

Larry Ruzzo, Alan Shaw and John Zahorjan.

Deep thanks are due to my current employer, MERL | A Mitsubishi Elec-

tric Research Laboratory in Cambridge, Massachusetts. MERL has provided

me with a wonderful opportunity to earn a living while �nishing the writing

of this dissertation. Thanks in particular to Les Belady, John Howard, Hugh

Lauer and Randy Osborne for making this dream possible. Thanks also go to

our former housemates Dave and Lisa Hubbell, for holding down the fort while

I was busy jet-setting between Seattle and New England during 1994-95.

Almost none of the above would have been possible without the �nancial

and emotional support of my parents Keith and Della McKenzie. I am inspired

by the life of my late paternal grandfather Ira McKenzie, a farmer whose hard

work made it possible to survive the Great Depression and the Dust Bowl.

Thankfully, he was able to attend our wedding in Seattle in 1991.

xiv

Finally, I thank my wife Angel Thalls. This dissertation is dedicated to

you, your love, your support, and your optimism. It's been a long, strange trip

from Santa Cruz, California to Arlington, Massachusetts by way of Seattle and

Providence. It's been an amazing, crazy, unbelievable time. I don't know how

we managed, but we did. May the future be as exhilarating as the past nine

years!

xv

To Angel.

xvi

Chapter 1

INTRODUCTION

Sit down before fact like a little child, and be prepared to give up every

preconceived notion, follow humbly wherever and to whatever abyss Nature

leads, or you shall learn nothing.

{ T. H. Huxley

Digital logic technology continues on a path of sustained increase in performance

and circuit density that is matched by its sustained decrease in power consumption

and cost. The current rate of improvement in the performance of high-end processors

is an impressive 55 percent per year; indeed this rate of increase exceeds the historical

trend of 35 percent per year [1]. This trend is expected to continue unabated for the

next two decades. Today's personal computers that cost a few thousand dollars

outperform multi-million-dollar supercomputers from the 1970s.

Nevertheless, there still exist problems in computer science whose computational

requirements exceed that of any single processor personal computer or workstation,

and will continue to do so for many years to come. For example:

� Real-time volume rendering.

Volume rendering is the transformation of the three-dimensional data set (such

as a set of medical scans collected by MRI or computed tomography) into a

two-dimensional representation for viewing on a high-resolution display. Ren-

dering in real-time means that changes to the viewpoint or the data set a�ect

the rendered image immediately. For the appearance of smooth motion, suc-

cessive two-dimensional views (frames) must be created and displayed ten to

twenty times per second. For high-resolution data sets consisting of 512

3

vol-

ume elements (voxels), the computational requirements of real-time, smooth

motion volume rendering are on the order of 10 billion operations per second.

2

Currently, this rate of computation is two to three orders of magnitude beyond

the capabilities of even the fastest personal computers and workstations that

do not contain special-purpose hardware to accelerate volume rendering.

� Finite element modeling and analysis. Applications of large �nite element com-

putations are ubiquitous in the physical sciences such as meteorology (weather

prediction), physics, chemistry, astronomy, civil and mechanical engineering,

and so on. Finite element problems can require as many as 10

15

operations.

Today's fastest personal computers can execute operations at a rate of roughly

10

8

operations per second. At this rate a fast PC would take approximately

10

7

seconds or about 4 months to execute 10

15

operations. Very little science

would be accomplished if single processor computers were the only choice for

solving problems of this magnitude.

Clearly, there exist many interesting problems in the sciences whose computa-

tional requirements are beyond the capabilities of today's PCs and workstations.

The capability of PCs in the next decade or two may become su�cient to solve these

problems, but researchers and surgeons need to be able to solve their problems now,

not ten or twenty years from now.

The most obvious and least expensive approach to achieve the required amounts of

computational performance is the construction of a parallel computer using standard

o�-the-shelf parts. For instance, it is possible to buy several personal computers

and connect them together with a local area network. A parallel program performs

both computation and communication. Communication is necessary to distribute

the computation, the initial data set and the user's input parameters. While the

program is running, di�erent processors often need to share intermediate results and

synchronize.

The challenge of parallel computing is achieving scalability. If we buy two personal

computers, we expect their combination to provide twice the computing performance

of a single personal computer. In general we expect to achieve linear speedup; if

we have N processors, then we want the parallel version of the program to run in

1/N of the time of the single processor version. The di�culty in making a parallel

computer from a collection of personal computers with a local area network is that

some programs achieve very poor speedups. The reason is that communication be-

3

comes the performance bottleneck. Here is an example. Assume that we are using a

top-of-the-line personal computer from current technology; at the time of this writ-

ing, such a PC uses a Intel Pentium Pro processor running at 200 megahertz. For

a particular computation it executes roughly 100 million instructions per second. In

a parallel version of the program, it must communicate an intermediate result after

every 100 instructions. The communication network is a standard Ethernet; it takes

approximately 1/1000 of a second to perform a communication. In that time the

Pentium Pro can execute 100,000 instructions. A parallel program that alternates

between the computation and communication portions of the program would spend

99.9 percent of its time communicating and only 0.1 percent computing. Slow com-

munication defeats the purpose of making the parallel program run faster than on a

single processor. It becomes necessary to design a communication infrastructure that

provides the required performance.

It is relatively easy to achieve linear speedup if the number of processors is small.

In a symmetric multiprocessor (SMP), all processors are plugged into the common

memory bus of the system. The symmetry of an SMP system is that the access time

to shared memory for each processor is the same; any program can run on any of

the processors and achieve the same performance. The limitation of a shared bus is

that it is like an old-style telephone party line; only one phone call can occupy the

wire at any given time. As the number of processors increases, the communication

requirements increase, but the bandwidth of the network does not increase. The

performance of an SMP system is limited to no more than a few dozen times that of

a uniprocessor system, no matter how many processors are available.

To achieve scalability to hundreds or thousands of processors, the communication

infrastructure must allow many or all of the processors to be involved in communica-

tion at the same time. The modern telephone network demonstrates an example of

a scalable system. Millions of people can talk on the phone at the same time making

separate calls and separate connections. Except in rare circumstances, a new call can

be initiated from any phone without having to wait for other customers of the phone

system to terminate their calls. The phone system is based on a multitude of point-

to-point links spanning the end users and the intermediate switching systems, rather

than being based on a single shared wire. When new users are added to the system,

there is no e�ect on the ability of other users to make and receive calls. By analogy,

4

Processing

Scalable network based on point-to-point links

node
Processing

node
Processing Processing

nodenode . . .
Figure 1.1: Overview of a scalable parallel computer system

in a scalable parallel computer each processor is a customer of the network. Each

processor should be able to communicate with any other processor in the network

with minimal or no interference from other communication currently in progress.

1.1 MPP computers and scalable networks

Figure 1.1 presents an overview of a scalable parallel computer system, consisting of

a scalable network and a collection of identical processing nodes. Scalable parallel

architectures have been referred to in the literature as MPP (massively parallel pro-

cessor) machines [2, 3, 4] to distinguish them from SMP machines. The remainder of

this dissertation is concerned only with scalable MPP architectures.

Many di�erent types of scalable networks have been developed for parallel com-

puter systems. There exists an extensive literature on this subject; for example, refer

to the proceedings of the Parallel Computer Routing and Communication Workshop

[5]. Scalable networks are constructed from a single basic circuit called the router or

routing node. The router is replicated potentially hundreds or thousands of times.

It is impractical for each router to connect directly to all the other routers in the

network; in general, each router has only a few ports that connect directly to other

routers. The number of ports is called the degree of the routing node. In most network

designs, the degree of the routing node is a small constant value (e.g. four, �ve, six

or seven). For ease of construction it is helpful if the con�guration can be extended

in an obvious way, in a fashion similar to the way Lego bricks are stacked together,

in either two or three dimensions [6]. The physical links between neighboring routers

are constructed using metal wires or in some cases using optical �bers. Information

propagates through the network by passing from neighbor to neighbor through these

links.

5

links to other routers

Processor
Network
interface

bus

Processing node

Shared

DRAM

Cache

Router

Figure 1.2: One processing node of a scalable parallel computer system

Each processor in an MPP system connects to one of the routers in the network

through a separate circuit called the network interface. The network interface is the

combination of hardware and software that provides the \glue" between the router

and the processor. Figure 1.2 shows a block diagram of a single processing node

in an MPP system. The processing node consists of a processor, cache memory,

one or more memory modules consisting of dynamic RAM and a network interface,

that are all connected together on a local shared bus. (In most MPP systems the

network interface connects to the processor-memory bus rather than an I/O bus; see

Section 2.1.1.) Note that the number of routers may be greater than the number of

processors; not every router is required to be attached to a processing node.

A processor communicates with other processors by injecting packets of informa-

tion into the network through the network interface. Each packet contains a header

�eld plus a payload �eld; the header contains the address of the destination processor

and the payload contains the application-speci�c information (i.e. the message to be

communicated). Once a packet is in the network, it may take one or more routing

hops before it arrives at the routing node directly connected to the destination pro-

cessing node. The router then delivers the packet to this processing node through its

network interface.

1.2 The communication bottleneck

A scalable point-to-point network is necessary but it is not a su�cient mechanism

for providing high-performance communication in an MPP computer system. The

term communication bottleneck describes the typical situation where one aspect of

the communication system severely limits the overall communication performance.

6

Traditionally, the bottleneck was due to the network itself. This bottleneck persists in

low-cost, general-purpose networks such as Ethernet, which was used in the example

on page 3. However, extensive research and development of the kinds of networks as

described in Section 1.1 have yielded a variety of moderate cost solutions providing

scalable performance. These scalable network designs have largely eliminated the

network as the source of the communication bottleneck. Today, the problem lies in

the software required to perform communication, the network interface hardware, or

both. In particular, software overhead greatly reduces the performance of message

passing. Software overhead is the number of clock cycles taken to execute all the extra

processor instructions needed to access remote memory locations that would not need

to be executed if the memory were local to the processor. Some software overhead

is intrinsic to the parallel application program that performs communication, but

a large percentage is due to the mismatch between what the program requires and

what the network interface hardware actually provides. For instance, the program

might transmit only small messages, whereas the hardware provides e�cient support

only for large messages, or vice versa. Some interfaces capture arriving messages

into a queue, which can be ine�cient for large messages. Other interfaces place

arriving messages directly into memory. If two or more messages are destined for

the same memory at roughly the same time, then the interface can present a race

condition or cause data to be lost. Invariably a software layer must be added to

the network interface to ensure the correct functionality at the cost of in
ating the

software overhead. An important goal in network interface design is to anticipate

the kinds of communication requirements of programs and provide direct hardware

support for the most frequently used operations, to minimize the software overhead

and achieve the highest communication performance.

The purpose of this dissertation is to advance the state of the art of the archi-

tecture and implementation of network interface circuits. The network interface ties

together many disparate levels of the complete parallel system. At the hardware level,

it ties together the processor, the memory and the network router. It provides services

for the operating system: argument checking, protection, atomicity and restartabil-

ity. It provides a medium of communication for application programs. It provides

a software interface to the network for application programmers and the authors of

run-time libraries and compilers. It is therefore not surprising that network interface

7

design is di�cult. The complexity of integrating all the levels of a scalable parallel

computer makes the design of the network interface a daunting task. A lack of de-

sign skill at any of these levels will result in a network interface that delivers poor

performance at best, or fail to produce a workable network interface at all. As the

performance of networks and processors increases, the performance of the network

interface becomes an increasingly signi�cant bottleneck in the overall performance of

the parallel system.

We devise a structured methodology for the design of network interfaces for MPP

computers by examining the network interfaces in existing designs. We extract the

key abstractions of these designs, by considering the logical design as well as the

physical design. These abstractions are independent of any particular compiler, pro-

gramming language, operating system, processor instruction set, network or hardware

implementation technology. Once the abstractions are understood, then a new type

of network interface can be synthesized. We set out to create the simplest network

interface design that provides all of the necessary functionality, one that provides

the best possible communication performance over a wide range of possible uses and

environments.

The remainder of this chapter is organized as follows. We take an in-depth look

into the role of the network interface in the message passing system of an MPP com-

puter in Section 1.3. In Section 1.4 we examine some additional issues in scalable

network design: packet length and routing algorithms. In Section 1.5 we comment

on the performance issues in networks and network interfaces. We brie
y intro-

duce related work in Section 1.6. In particular, we comment on two examples from

the literature concerning only the software aspect of interprocessor communication.

There has been signi�cant progress towards reducing this aspect of the communica-

tion bottleneck in recent years, but there are fundamental limitations to these kinds

of software-only approaches. Much more detail on related work is provided in Chap-

ter 2. Finally we state the thesis of this dissertation which concerns the architecture

and implementation of a network interface for an MPP computer system.

1.3 The role of the network interface in message passing

In general, scalable parallel computers use a style of communication known asmessage

passing [7, 8, 9]. The invocation of each message is stated explicitly in the program,

8

by means of send and receive commands

1

. A simple message consists of a block of

data, whose size may range from a single bit to millions of bits. A simple message

is uni-directional and asynchronous. After the sender places the message into the

network, it does not wait for the arrival of the message at the receiver.

The network interface occupies a crucial layer in the message passing system. The

message passing system consists of all the layers of hardware and software described

in Figure 1.3. It provides the abstraction that the application program itself sends

and receives data, as indicated by the dashed line. The application program accesses

the network by means of a message passing library and its associated application

program interface (API). The message passing library interacts with the operating

system, which acts as an intermediary between the library code and the network in-

terface hardware. The sender's network interface places data into the network and the

receiver's network interface takes data o� the network. The message passing library

handles the low-level details of message passing: bu�er allocation, packetization and

re-assembly, protocol processing and synchronization.

A typical message passing protocol for a simple message consists of the following

steps:

1. The application program running on the sending processing node prepares a

block of data to be sent, perhaps by allocating a message bu�er and writing the

outgoing message data into it.

2. The application program running on the sending processing node executes a

send command. The send command is realized by one of the following opera-

tions: a function call, a system trap, a read or write operation using a special

processor register or memory operand, or a special opcode in the processor

instruction set.

3. The arguments of the send command are checked. A typical send command

1

There exist scalable computers that share some attributes of SMP machines, in that they use a

shared-memory style of communication supported directly in the network interface hardware. The

underlying architecture is otherwise an MPP, based on a scalable, point-to-point interconnection

network. Without loss of generality, we assume that the explicit message passing paradigm is

supported directly in hardware and in the programming model for the system. In Chapter 2, we

argue that the shared memory paradigm can be considered just another message passing model.

9

Application
program

Message-

passing

library

system
Operating

Network

interface

Application
program

Message-

passing

library

system
Operating

Network

interface
Network

send

Processing node X Processing node Y

receive

Figure 1.3: Layers in a message passing system

speci�es the identi�er of the receiving processing node, the address of a data

bu�er or immediate data, the size of the data, and some optional information

specifying the message protocol or a message tag to be matched at the receiver.

If the destination identi�er, the bu�er address or the message tag are out of

range, then the send operation is rejected.

4. The message passing system partitions the message into packets and the network

interface injects each packet into the network. This partitioning step is not

necessary for a network that permits arbitrarily long packets (i.e. a wormhole

network); this issue is discussed in Section 1.4.

5. Packets that contain the message travel through the network and arrive at the

receiving processing node.

6. The network interface at the receiving processing node accepts the packets as

they arrive from the network and places them in a data bu�er.

7. The receiving processing node executes code representing a receive command.

In some systems, the receive command is explicitly executed by the application

program. In some systems, receiving a message happens automatically by means

of hardware, an interrupt handler, or a combination of both.

10

8. The application program at the receiving processing node is noti�ed that the

message has arrived, whereupon code is dispatched to perform any necessary

post-processing of the message.

Arbitrarily complicated message protocols can be built on top of simple messages.

A message protocol [10] is an agreement between the sender and the receiver concern-

ing the size, format and sequence of the message. Typically, message passing systems

provide a number of di�erent message protocols for the application programmer. One

example is a bi-directional, synchronous message protocol that involves a round trip

from sender to receiver back to the sender. Message protocols are needed to pre-

vent information loss and deadlock. Information may be lost if the receiver does not

allocate su�cient bu�er space for the incoming message. Deadlock occurs when a

sending processing node is never allowed to send. It can happen when two or more

processing nodes act as both senders and receivers and there is a cyclic dependency.

Message protocols represent a signi�cant source of processor overhead because it is

often necessary to copy data and exchange synchronization messages. The program-

mer, run-time library or compiler must choose the appropriate message protocol for

each message. An incorrect protocol choice may cause the program to achieve poor

speedups or manifest race conditions that cause unreliable operation.

To make message passing e�cient, a network interface design provides direct hard-

ware support for many aspects of the message passing system. Three important types

of support that have been explored in both research and commercial parallel systems

are support for argument checking, data movement and protocol processing, described

as follows.

� Argument checking is a signi�cant source of software overhead in a message

passing system. If argument checking is performed only in software, it is by

code that runs at supervisor level, as part of the operating system (i.e. in

a device driver). All interactions between the application program and the

operating system involve hundreds or thousands of processor instructions and

are fundamentally slow. Support for argument checking in the network interface

hardware can dramatically reduce this source of overhead.

� Hardware support for data movement is called Direct Memory Access (DMA).

DMA reduces the transfer time per message word for two reasons. First, DMA

11

can take advantage of a fast pipelined memory bus mode called burst mode.

Second, DMA allows packets to be sent or received while the processor attends

to other tasks. This ability to overlap communication with computation greatly

reduces the overhead of communication.

� Network interfaces can also provide direct support for message protocol process-

ing. Supported protocols run e�ciently. However, supporting every conceivable

protocol in hardware is impossible in practice. The best strategy for the design-

ers of the network interface is to identify the most common message protocols

and support them directly, and emulate the others in software.

The challenge to the designer of the network interface hardware is to manifest

all three types of support, ensure that the software layers of the message passing

system are able to take advantage of these hardware support features correctly and

e�ciently, yet avoid designing a circuit that is needlessly complicated and di�cult to

construct.

1.4 Packet length and routing algorithms

Two issues in network design have an impact on network interface design. The �rst

issue is packet length. Some networks are able to accept and deliver packets of

arbitrary length. This style of network is generally called wormhole. In e�ect, the

network temporarily builds a dedicated circuit between the router connected to the

sending processing node and the router connected to the destination processing node.

After the head of the \worm" arrives at the destination node, a packet payload of

arbitrary length follows. When the end of the packet (i.e. the tail of the worm)

passes through the network, the network links used by this packet are freed up and

can be subsequently allocated to other packets. A contrasting style to wormhole is

a network that assumes that the packet length is constant (or, more generally, the

network places an upper bound on the packet length). An advantage of using �xed-

length packets is that it simpli�es some design issues related to packet bu�ering both

in the network and in the network interface. A packet can be stored completely in a

bu�er within a single node and thereby it does not occupy any of the network links.

This packet can be forwarded to the next routing node when there is available bu�er

12

space at that node. Hence, a network that routes �xed-length packets is also called

store-and-forward. This property allows a wider variety of packet routing algorithms

to be used by the network than wormhole does, as we will discuss below. A tradeo�

is that some messages cannot be contained in a single packet. Either the processor or

the network interface at the sending node must subdivide long messages into a series

of packets, to be injected and delivered by the network separately. This aspect is

called packetization and re-assembly. An e�cient network interface design based on

DMA for �xed-length packets performs packetization and re-assembly automatically.

The second issue is the e�ect of the network routing algorithm on the arrival order

of packets comprising a long message. This issue is relevant only when considering

packetization and re-assembly; a wormhole packet that contains an entire message

does not require re-assembly. Since a scalable network is constructed from point-to-

point links, there are a multitude of paths from the sending node to the receiving

node. The network routing algorithm determines the routes taken by each packet

in the message. There are many di�erent routing algorithms. One class of routing

algorithms is known as oblivious or deterministic, wherein the path taken by the

packet is unambiguously determined by the addresses of the source node and the

destination node. Under oblivious routing, each packet in the message follows the

one in front along the same path; packets arrive in the same order as they were

injected. There are also adaptive routing algorithms. In an adaptive routing algorithm

[11, 12], the packets comprising a long message choose di�erent paths, depending on

the instantaneous level of congestion encountered at each router. Adaptivity often

increases the throughput of the network because it increases the number of paths

that can be taken and thereby helps distribute the workload. Adaptive routing has

several other advantages over oblivious routing. It improves the opportunities for

fault tolerance, the ability to operate in the presence of failed routers or processors

[13]. It also simpli�es some issues concerning the ability of the operating system

to manage multiple user contexts, by saving the state of the network and later re-

injecting packet tra�c. A network and parallel programming system that depends

on in-order packet delivery makes it very di�cult to provide this capability in an

e�cient way. Some examples of adaptive network routers that have been realized in

silicon are the CM-5 network router [14] and the Chaos router [15].

13

A potential disadvantage of adaptivity is that packets may arrive in a di�erent

order than they are sent. Multiple pathways allow packets to pass one another in the

network; packets travel at di�erent rates due to the local instantaneous congestion

encountered along the way. Out-of-order arrival complicates the task of re-assembly

and noti�cation to the processor that an entire message has arrived. Unlike in the

case of an oblivious router, the arrival of the last packet in the message is not a

guarantee that the entire message has arrived. The impact is to increase the amount

of processor overhead needed to handle adaptivity, increase the complexity of the

design and implementation of the network interface, or both.

Because there are many advantages to using adaptivity in a scalable network for

a parallel computer, its important to understand how to construct network interfaces

that work well with them. A well-designed network interface for an adaptive router

should be able to minimize any disadvantage posed by packets that arrive out-of-

order.

1.5 Performance of networks and network interfaces

There are two types of metrics that describe the performance of a network: transfer

time and capacity. Latency describes the time it takes to initiate and deliver a single

minimum length packet. Bandwidth is the capacity of a data channel, the maximum

quantity of data per unit time it is able to transfer. Throughput is the achieved rate

of transfer over the data channel, often described in terms of a percentage of the

bandwidth of the channel. If messages are su�ciently large, then the throughput has

the most signi�cant e�ect on the overall time it takes to transfer the message. For

su�ciently small messages, the capacity of the channel is not a concern, so the end-

to-end latency makes the most signi�cant contribution to the transfer time. Time is

measured in terms of clock cycles. The length of a clock cycle continues to decrease

as the underlying hardware technology improves. A clock cycle in a high-performance

network in current systems is roughly 10 nanoseconds, representing a clock frequency

of 100 megahertz. Today's state-of-the-art scalable networks have latencies on the

order of a few tens of clock cycles; a small message traverses the network in less than

a microsecond.

Ideally, the performance of message passing is the same as that of the underlying

communication network. In practice, the layers of the message passing system add a

14

time in network

Node X

Node Y

Time

receiver
overhead

overhead
sender

Effective latency of message

Figure 1.4: Processor overhead in message passing

considerable amount of latency. The message passing library, the operating system

and the network interface all contribute to the increase in latency that results in the

loss of performance. In some systems the processor overhead introduced by the mes-

sage passing system overwhelms the latency of the network, as shown in Figure 1.4.

The problem is that the processor ends up performing all of the required operations:

argument checking, data movement, noti�cation and dispatch, and protocol process-

ing.

Figure 1.5 illustrates the di�erence between the performance of networks and

that of network interfaces. In both sub�gures (a) and (b), transfer time is plotted

as a function of message size. Lower curves in the graph represent lower elapsed

times and consequently higher performance. Figure 1.5a plots curves B1 and B2 to

represent the end-to-end throughput of two di�erent networks. Note that B2 has

higher performance than B1 because both have the same Y-intercept (representing

the latency of a minimum-length message) and the slope of B2 is less than that of B1.

Figure 1.5b demonstrates the e�ect of coupling a network interface with the network.

The network interface attached to B1 has an intrinsic latency of L1 and provides a

total transfer time indicated by the curve NI1. Likewise, curve NI2 represents the

total transfer time bounded by L2 and B2. NI1 has lower intrinsic latency, and NI2

has higher intrinsic throughput. Even if the network interface represented by NI1

were connected to the higher bandwidth network, its performance curve would not

15

NI2

Transfer time Transfer time

L1

L2

Message size Message size

(a) (b)

B1 B2B2B1

NI1

Figure 1.5: Performance of networks and network interfaces. Transfer time is plotted

as a function of message size. The lower the graph, the better the performance.

Sub�gure (a) shows two graphs B1 and B2 that represent the transfer time of two

di�erent networks. Sub�gure (b) demonstrates the e�ect of network interfaces on

the overall latency and throughput of these networks. The intrinsic latencies of

two di�erent network interfaces are described by the curves L1 and L2. The curve

NI1 describes the performance of the network when combined with a low latency

network interface; it is bounded by the curves B1 and L1. The curve NI2 shows a

competing approach whose network interface is optimized for high throughput; its

curve is bounded by B2 and L2.

change, because the throughput of the network interface itself is the limiting factor.

Basic network interface designs that contain a single transfer mechanism must make

the choice between high throughput and low latency { no single transfer mechanism

has ever been shown to perform well for both cases.

Choosing between high throughput and low latency is di�cult because di�erent

parallel programs have di�erent requirements. Some programs involve bi-modal mes-

sage tra�c, in that they require both long and short messages. In one study of

message tra�c in a typical set of parallel program benchmarks, 98% of all messages

contained fewer than 40 bytes [16]. The same study showed that these small messages

16

comprised 55% of the total bytes communicated. The other 45% of the total bytes

came from the 2% of the messages that were 40 bytes or longer. Many other studies

con�rm the bi-modality of message tra�c. In general, the majority of messages are

small, but a signi�cant amount of the total number of bytes transferred comes from

large messages.

1.6 Related work

There are many network interfaces that have been designed for scalable parallel com-

puters. Some examples used in commercial systems are the network interfaces in the

Thinking Machines CM-1 and CM-5 [2, 14], the Paragon and Tera
ops multicomput-

ers by Intel [17, 18], and the Cray Research T3D and T3E [19, 20, 21]. In all of these

systems, the network interface is implemented using a separate chip, and the comput-

ing node is based on a standard processor architecture such as the SPARC, the DEC

Alpha or the Intel Pentium. Some examples from academic research projects are the

MIT Message-Driven Processor (MDP) [22], the CMU iWarp [23] and the Caltech

Mosaic [24]. In all of these projects, the network interface is tightly coupled with

the processor; i.e. the network interface and the processor are placed on the same

silicon. The motivation for the tight coupling is to reduce the overhead associated

with short messages. For instance, the MDP provides a hardware technique for fast

noti�cation and dispatch. Noti�cation and dispatch for an arriving message take only

three processor instructions, unlike the tens or hundreds of instructions required in

conventional designs.

Two other related projects address the performance problem in message passing

using software-only techniques: active messages and protocol compilers. The moti-

vation for active messages [25] is to improve the performance of data movement and

software handler dispatch. In an active message, values from the payload of the arriv-

ing packet are incorporated immediately into the computation instead of being stored

in memory as an intermediate step. This technique represents signi�cant savings in

overhead if the network interface does not use DMA. An active message includes the

address of the receiving node's software handler routine in the message itself, and

the overhead of dispatch is thereby reduced to a small �xed cost. Protocol compilers

address the protocol choice problem. Parachute [10] is one such protocol compiler

that analyzes message passing patterns in a parallel program; it automatically gen-

17

erates a new program where the optimal protocol is selected for each message in the

program. A protocol compiler can only choose from the existing protocols in the

message passing library; it does not re-implement the protocols within the library.

Software-only techniques provide a signi�cant savings in overhead over previous

implementations of message passing libraries. However, they cannot solve the perfor-

mance problems inherent in the network interface hardware. For instance, most net-

work interface designs implement only one message protocol directly. Other message

protocols must be realized by software emulation. Generally speaking, one protocol

works well for small messages, and another one does so for large messages. Since

most programs involve some kind of mix of small and large messages, all messages of

the \wrong type" will be ine�cient. This de�ciency cannot be cured by either active

messages or a protocol compiler.

The tension between low latency support and high throughput support motivates

the use of two di�erent mechanisms to deal with the two cases independently. The

challenge is to provide a uni�ed approach that avoids needless complexity. The ar-

chitecture presented in this dissertation indeed uses two di�erent mechanisms for

receiving packets but only one send mechanism. By contrast, most network interface

designs that contain two di�erent mechanisms use two completely separate strategies

for short and long messages. For instance, the MIT Alewife interface [26] provides

a message passing interface for long messages and a shared memory interface for

short messages. The iWarp chip [23] also provides two separate strategies, one for

large messages called memory communication and the other for small messages called

systolic communication. These designs therefore become more complex than is neces-

sary. We believe that our design represents the minimum complexity that is required

to achieve the desired performance.

1.7 The thesis

The issues presented in Sections 1.3, 1.4 and 1.5 demonstrate the intrinsic di�culty

associated with the design and implementation of network interfaces in scalable com-

puters. A network interface design needs to present a convenient programming model

to the software developer, provide the
exibility to work with a variety of modern

scalable networks, and yield the low latency and high throughput of these networks.

It also needs to be simple to design and independent from any given network or

18

processor design so that successive implementations can be produced to match the

current 55 per cent increase in processor performance per year.

This dissertation presents an architecture for network interfaces in scalable parallel

computer systems. This network interface architecture, called Cranium, satis�es the

following criteria:

� Cranium is a
exible solution that works with a wide variety of processor and

network designs. In particular, it is designed to work with adaptive routing

algorithms that allow packets to pass one another in the network and arrive

in a di�erent order than they were injected. The architecture uses �xed-size

packets with a payload the size of a processor cache line. A wormhole network

could be used given the restriction that the network interface only injects and

receives �xed-length packets.

� Cranium delivers the high throughput and low latency provided by modern scal-

able computer networks. To achieve low latency, it greatly reduces the overhead

of message passing through the use of hardware techniques for argument check-

ing, data movement, noti�cation and dispatch, and protocol processing.

� Cranium is integrated with an application programmer's interface (API) that

allows the programmer or compiler to take advantage of the features of the

architecture directly. Both a small message protocol and a large message pro-

tocol are supported directly, so that programs can achieve high communication

performance in a straightforward manner.

The organization of the rest of this dissertation is as follows. In Chapter 2 we out-

line the fundamental requirements for network interface design in parallel computers.

We examine both the physical (hardware) layer and the logical (software) layer. We

construct a taxonomy of network interface designs from the discussion. In Chapter 3

we explain the di�culty of interfacing processors to adaptive routers, through the use

of a speci�c design example. We then specify the Cranium architecture. Chapter 4

describes the software interface for Cranium, and compares it with other message

passing systems such as Intel NX [7]. Chapter 5 describes a simulation environment

that was developed to evaluate the performance of Cranium, based on the Talisman

19

processor simulator [27] and the Chaos router [15]. Chapter 6 characterizes the per-

formance of Cranium. We begin with an analysis of the basic latency and throughput

behavior of Cranium. We measure the performance of parallel programs that run on

the simulator. We introduce a methodology for comparing the Cranium network in-

terface architecture with other architectures, by factoring out details speci�c to the

implementation. The results of the evaluation show that Cranium meets the goal of

providing a general architecture with low processor overhead, as compared with net-

work interface styles in existing parallel computers. Chapter 7 presents a paper design

for an implementation of Cranium. Because the Cranium architecture is parameter-

ized, there is a spectrum of implementations that provide di�erent tradeo�s between

complexity and performance. The speci�c implementation called Teschio describes a

simple single-chip design that nonetheless provides excellent performance. We con-

clude the chapter by exploring implementation-speci�c extensions to the Cranium

architecture. We present our �nal thoughts on Cranium in Chapter 8.

Chapter 2

NETWORK INTERFACES

Order and simpli�cation are the �rst steps towards the mastery of a sub-

ject; the actual enemy is the unknown.

{ Thomas Mann

Every tiny step forward in the world was formerly made at the cost of

mental and physical torture.

{ Nietzsche

The network interface provides the glue between the processing node (consisting of

a processor and a memory) and the communication network in a massively parallel or

a distributed computer system. The purpose of the network interface is to move data

from the processing node out to the network, and from the network into the processing

node. A wide variety of communication networks have led to the development of

a wide variety of network interfaces. The goal of this chapter is to examine the

features of a number of network interface designs. We compare their similarities

and di�erences in order to construct a taxonomy. We examine features of network

interfaces in scalable, massively parallel (MPP) machines as well as systems based on

networks of workstations (NOW) [28].

Every network interface is a combination of two interfaces:

� The physical interface provides a data path between the computing node and

the network. The physical interface entails the location of the network interface

in the computing node, its data movement style, its noti�cation style, and its

interaction between data movement and noti�cation. It is also important to

handle faults in the network that cause packets to become lost or corrupted.

The physical interface itself consists of two parts: the send interface and the

receive interface.

21

� The logical interface provides the programmer a set of primitives for applica-

tion programs (and/or the operating system) to send messages to other nodes

and to receive messages from other nodes. The three primary styles of logical

interface are systolic communication, remote memory access, and send/receive

communication.

In the remainder of this chapter we examine the spectrum of choices that can

be taken for both the physical interface and the logical interface. The choices are

compared in terms of processor overhead. Through an analysis of the choices, we

determine the set of features that should be used in a network interface design to

achieve the best tradeo� between high performance and ease of implementation.

2.1 The physical interface

2.1.1 Coupling the physical interface with the processing node

There are many options for the location of the physical interface of the network

interface, the way in which the data path from the network connects to the computing

node. Figure 2.1 describes the spectrum of choices, listed in order of increasing

distance from the processor.

� A: the interface is integrated directly in with the processor. This style is also

called tightly-coupled.

� B: the interface is connected to the processor's external cache bus.

� C: the interface is connected to the memory bus (also known as the processor-

local bus).

� D: the interface is connected to an I/O bus, such as PCI or SCSI.

Tightly-coupled network interfaces

A tightly-coupled network interface brings the data path of the processor-network link

directly onto the chip through a set of dedicated chip pins. The network interface

becomes an extension of the processor architecture; the send and receive functionality

22

DDRAM

busI/O

B

ProcessorA C

Cache
Internal

Memory

I/O bridge

DRAM

bus

cache bus

Cache
External

Figure 2.1: Possible locations of the network interface in the processing node of a

multicomputer. Location A is tightly coupled in with the processor. Location B is

connected to the external cache bus. Location C is connected to the memory bus.

Location D is connected to an I/O bus.

23

is represented by special message registers (operands) and/or instructions (operators).

Most tightly-coupled interface designs use special-purpose message instructions (e.g.

a send command) in which general-purpose processor registers are the operands. Some

examples include the Message Driven Processor (MDP) [22], the Caltech Mosaic [24],

the Henry-Joerg network interface [29] and the Start (*T) [30] network interface.

An exception is iWarp from CMU [23] whose systolic communication model is based

on operands rather than operators. A send command is constructed by using a

message register as the destination of an arithmetic operation; a receive command

is constructed by using a message register as a source operand. Both the MDP and

the Mosaic are building blocks for an entire parallel computer { each chip contains

a processor core, a memory, a network interface and a network router. MDPs can

be connected in a three-dimensional grid to create an instance of the J-Machine, a

massively parallel architecture that scales up to thousands of nodes. The Mosaic is

similar except that it is based on a 2-D rather than 3-D mesh. The Myrinet network

[31] is constructed from arrays of Mosaic chips. The Henry-Joerg and *T network

interfaces were integrated into the Motorola 88110, a commercial superscalar RISC

processor.

The advantage of a tightly-coupled design is to be able to achieve the lowest

possible latency by bringing data from the network directly into processor registers,

the fastest layer in the memory hierarchy. There are however several drawbacks to

a tightly-coupled network interface. First, sustaining high throughput is di�cult

because the set of processor registers is small. Second, it is inherently not portable to

other processors and other architectures. Third, a tightly-coupled interface increases

the cost of the processor chip signi�cantly. The cost increases because the network

interface increases the number of processor pins, the size of the pad frame, the amount

of chip area and the power requirements of the chip. In the case of the *T project,

the area required for the on-chip interface is 15 per cent of the total chip area [32].

While the extra cost of the integrated interface may not seem to be overwhelming, it

is signi�cant enough to deter its acceptance into the commodity marketplace. Recall

that the commodity uniprocessor market drives the technology for multiprocessor and

scalable parallel systems. The vast majority of packaged systems are uniprocessor

machines like PCs in which a tightly-coupled network interface would not be useful.

For these reasons, tightly-coupled network interface projects tend to end when the

24

processor to which it is attached becomes obsolete. However, as local area network

and modem designs in PCs become standardized, we may eventually see processor

manufacturers return to a tightly-coupled network interface strategy if it can reduce

the overall parts count and cost in a commodity system.

Cache bus connected network interfaces

The closest network interface location that is not considered a tightly-coupled con-

nection is through the external processor cache bus. The advantage of using the

cache bus connection is that it is usually wider (providing higher throughput) and

faster (lower latency) than the memory bus or the I/O bus. Unlike a tightly-coupled

connection, a cache bus connected interface uses an existing data path and thereby

does not increase the number of pins in the processor. However, cache bus connected

designs are di�cult to implement and o�er very limited support for message passing

primitives. As a result, very few network interfaces connect through the cache bus.

One notable example is the architecture of the Kendall Square Research KSR-1 [33].

The design is based on a principle called COMA, meaning Cache-Only Memory Ac-

cess (also known as ALLCACHE

tm

). In essence, all memory is cache and there is no

main memory per se.

Memory bus connected network interfaces

In most scalable parallel computers the network interface is located at the memory

bus. Connecting through the memory bus provides greater
exibility than connecting

to the cache bus, and greater performance than connecting through an I/O bus.

Network interfaces in this category include the Thinking Machines CM-5 [14, 34], the

Cray Research T3D and T3E [19, 20, 21], the Intel Paragon [17] and University of

Washington Meerkat-1 [35].

I/O bus connected network interfaces

In parallel systems that use a local area network as its communication backbone,

the preferred location of the network interface is at the I/O bus. I/O bus cards are

relatively simple and inexpensive to create. They can be used with a wide variety of

systems that support the I/O bus. For instance, there are many personal computers

25

and workstations that are based on the PCI bus standard. The drawback of connect-

ing the network through the I/O bus is that it o�ers the lowest performance of the

four possible locations for the network interface: the lowest bandwidth and the high-

est latency. The I/O bus bridge usually becomes a performance bottleneck in message

passing as it increases latency and decreases the throughput. In some I/O bus based

network interface designs, dynamic RAM modules are added to the interface card

[36, 37, 38]. This technique is called outboard bu�ering. Examples of network inter-

faces that attach to the I/O bus are commercial Ethernet controllers, an ATM PCI

interface called DART [39, 40], a PCI-to-PCI bridge called Memory Channel [41], the

Myrinet network interface [31] and the Princeton SHRIMP network interface [42, 43].

2.1.2 Data movement

The fundamental purpose of the physical interface is data movement. The send

interface injects packets into the network and the receive interface ejects packets

from the network. The two competing styles for data movement are programmed

I/O (PIO) and direct memory access (DMA). The style of data movement represents

a classic tradeo� in network interface design: DMA provides higher throughput, and

PIO o�ers lower latency. DMA is also slightly more complex, and o�ers a wider range

of implementations. The style of data movement in tightly-coupled designs represents

a hybrid of both PIO and DMA.

Programmed I/O

Programmed input/output is the simplest mechanism for moving data between the

processing node and the network. The processor moves every byte of the message by

explicit load or store instructions to memory or I/O mapped addresses representing

the network interface. Under PIO the network interface is typically a slave-only

device that does not require bus master capability.

Direct memory access

Direct memory access is a common technique in I/O subsystem design. It implies the

use of a memory bus or I/O bus connected network interface. The DMA controller

contains bus master capability and moves data directly between the processing node's

26

DRAM and the I/O device (i.e. the network). DMA is a co-processor that allows

the processor to resume other processing tasks while message data are arriving or

being sent. In other words, DMA makes it possible to overlap computation with

communication. However, the cost of setting up a DMA transfer may be large in

some systems, making DMA less e�ective than PIO for small messages. Unlike PIO,

DMA can take advantage of burst-mode in the memory bus. DMA therefore achieves

higher throughput than PIO and is faster than PIO for large messages. DMA is almost

always used with network interface cards that connect at the I/O bus and contain

outboard bu�ering. DMA improves throughput signi�cantly over a non-outboard

solution because it eliminates the need to cross the I/O bridge while message transfers

are in progress. However, there is the additional latency penalty for processor access

to the outboard memory through the I/O bridge after DMA has completed.

Tightly coupled

Data movement in tightly-coupled interfaces is a hybrid of DMA and PIO. Like DMA,

data is moved automatically. Like PIO, access to memory is avoided entirely because

the sources and sinks for message data appear directly in the processor's register set.

The DMA cache coherence problem is also avoided (see below).

Cache coherence

A pitfall in using DMA is the cache coherence problem [44]. To send a message, the

processor writes values to memory and then initiates the DMA. If the processor cache

uses a write-back protocol, then live message data may be in the cache while stale

data remains in memory; it is necessary to
ush these cache lines to memory before

sending the message. The problem is similar for the receive interface. When data

from an arriving message are placed in memory, the corresponding cache lines in the

processor cache become invalid although they may have been marked valid. Therefore

these cache lines must be correctly marked as invalid after receiving a message, or

they must be updated with the correct data at the same time the message is stored

in memory.

There are many techniques for enforcing cache coherence in the presence of DMA.

The simplest technique for maintaining cache coherence is to mark all memory pages

that are used for message bu�ers as non-cacheable. An optimization for message

27

bu�ers that are always used as send bu�ers is to mark the memory pages as write-

through. These techniques permit a correct but comparatively slow implementation

compared with write-back caching. Techniques for cache coherence in the presence

of write-back caching are possible by means of software, hardware and hybrid ap-

proaches. A software technique for maintaining cache coherence is to execute a

cache-
ush operation before sending a message and after receiving a message. If the

processor architecture only supports a
ush of the entire cache then this technique

can be extremely slow, on the order of thousands of clock cycles. However, some ar-

chitectures support
ushing individual pages and cache lines. A hardware technique

for ensuring cache coherence with a write-back cache is cache snooping. The proces-

sor watches all tra�c appearing on the memory bus, and then performs updates or

invalidations on its internal cache state if it discovers that addresses corresponding

to active cache lines have appeared on the bus.

In general, hardware techniques for ensuring cache coherence provide better per-

formance than using software techniques or marking the message bu�ers as non-

cacheable. Most high-performance processor architectures provide hardware snoop-

ing capability, making this the preferred technique. See Section 3.4.2 for a related

discussion on hardware cache coherence.

Gather-scatter support

Gather-scatter support is an extension to standard DMA. Simple DMA requires mes-

sage bu�ers to be contiguous in memory. With gather-scatter capability, the sender's

network interface gathers non-contiguous data and sends it as a single message. The

network interface at the receiver does the inverse operation, by scattering data from

a single arriving message into non-contiguous places in memory. The typical appli-

cation of gather-scatter DMA is to pass array data with a constant o�set (stride)

between the memory locations of each array element, but implementations may gen-

eralize to allow arbitrary o�sets. As with ordinary DMA to contiguous memory, care

must be taken to ensure that cache and memory are kept coherent.

28

2.1.3 Noti�cation and dispatch

It is important for the network interface to notify the processor so that it can react to

changes in the status of the network and the network interface. After the processor

is noti�ed it is then able to dispatch a handler routine to execute the next part of

the message protocol. Status information that is commonly provided by the network

interface includes network busy , packet present and network error . Network busy

is used by the send interface to determine if packet injection will succeed. Packet

present is used by the receive interface to determine if a packet has arrived at the

destination node. Network error is used by the receive interface to signal a corrupted

packet in the network.

There are four styles of network interface support for processor noti�cation and

dispatch: stall, poll and interrupt, and no noti�cation. Network interface designs

often support more than one style of noti�cation. It is common for interfaces to

support both polling and interrupts, for example. Sometimes one form is used with

the send interface and another with the receive interface. Here are the four types

individually:

� Stall . The network interface stalls the processor until a state change occurs. In

the send interface, the processor stalls while the network is busy. In the receive

interface, the processor stalls until the packet arrives. Dispatch is implicit as

the processor resumes processing. Multicomputers that use stall noti�cation

include the Cray T3E [21], DASH [45] and the Tera MTA-1 [46]. The MTA-1

is a multithreaded processor; while the thread that is waiting for the network

is stalled, the processor automatically switches to another thread that is not

waiting for the network. Stalling often requires special support in the memory

system. In the Tera, each memory location contains its own synchronization

information, called full-empty bits. Full means that the location contains valid

information, and empty means that one node must write to that location before

another can read from it. Attempting to read from an empty location causes

the thread to stall, and the read operation is continually retried by the network

interface until it eventually succeeds. Similarly, the Cray T3E contains a set

of 512 special memory locations called E-registers that are used to stall and

resume execution.

29

� Poll . The processor explicitly tests the status register to determine the status

of the network interface. The handler is dispatched by a conditional branch

based on the contents of the status register. There are many machines that use

polling, including the CM-5 and the Paragon.

� Interrupt . The network interface interrupts the processor when the status reg-

ister changes state. The handler is dispatched automatically by the interrupt

vector. There are many machines that use interrupts, including the CM-5, the

MDP and Meerkat-1.

� No noti�cation upon message arrival. There is no explicit noti�cation provided

by the network interface when a packet arrives. A network interface in this

category is the Princeton SHRIMP [42].

2.1.4 Argument checking and protection

It is mandatory that commands and arguments to the message passing system are

checked by a secure, trusted entity. Checking is performed by either the operating

system software or hardware that acts on behalf of the operating system. The purpose

is to plug any loopholes in the communication system that could be used to snoop on

or corrupt the operating system and other user programs. Two schemes for argument

checking are described by Figure 2.2. In the sub�gure on the left, the application

program calls the operating system for each interaction with the network. In the

sub�gure on the right, the application program is able to access the network directly.

This technique in which the network interface hardware performs argument checking

on behalf of the operating system is called direct user-level access. Direct user-level

access is necessary for reducing the overhead of message passing. Operating system

calls for message passing are a primary source of processor overhead, on the order

of hundreds of processor instructions. Whereas it is not always possible to eliminate

every possible OS call that plays a role in message passing, direct user access provides

the ability to eliminate the vast majority of these OS calls.

30

(a) (b)

Application
program

Message-

passing

OS

library

Network

interface

Application
program

Message-

passing

library

system
Operating

Network

interface

Figure 2.2: Implementation of argument checking and protection in the communi-

cation system. Sub�gure (a) describes the typical system where all message passing

commands are checked by the operating system. Sub�gure (b) shows an optimization

that allows the user program to bypass the operating system. Argument checking is

performed in the network interface hardware. This capability allows direct access to

the network by user programs.

31

Required features

Proper implementation of hardware that provides protection for direct user access

requires the coordination of many layers, including the network, the network interface

and the operating system. Checking arguments and denying illegal access consists of

four parts: local memory protection, remote node protection, network protection and

task management.

� Local memory protection. A user program must be prevented from reading or

writing memory locations outside its protection domain. Under PIO, the mem-

ory management unit (MMU) in the processor su�ces to provide this function-

ality by issuing a bus fault on an access to a page that is not mapped by the

MMU. Under DMA, additional hardware in the network interface must exist to

prevent the use of improper memory addresses.

� Remote node protection. The architecture must ensure that user programs send

packets only to the set of other nodes that are running the same user program.

This feature is necessary for partitioning the system into separate sub-units, so

that each can run as an independent parallel system.

� Task management. The operating system should provide multiprogramming,

the ability to execute more than one user program concurrently. As in a unipro-

cessor computer, the operating system should be able to stop running the active

user program, deschedule it, schedule a di�erent one and start running the new

one.

� Network protection. Information in the packet header must distinguish user

packets from system packets. Alternatively, a separate virtual network could

be used for each. The \system bit" or virtual channel ID must be both gen-

erated and veri�ed in hardware. This requirement prevents the user program

from spoo�ng or intercepting system packets, which could circumvent the other

protection mechanisms. A buggy or malicious user program should not consume

all network bandwidth and cause the entire parallel system to thrash.

32

Mechanisms for implementing protection

� Address mapping (local memory protection). One technique for providing a

safe memory mapping is for the receiver to place incoming packet data into a

managed ring-queue. However, this style of bu�ering may be ine�cient for large

messages. Under unbu�ered automatic-receive DMA (see Section 2.2.4), the

sender directly speci�es the destination location of the packet payload through

either a message tag or a global virtual address (GVA) in the packet header (see

Section 2.2.2). To implement protected address mapping, the network interface

hardware translates the message tag or GVA into a local physical address used

by the DMA engine. In most implementations the translation is performed

by means of a translation lookaside bu�er (TLB) using a content-addressable

memory (CAM). In principle, a static RAM could be used instead of a CAM,

but the input tag or address is often 32 or more bits, implying an intractably

large SRAM. If the TLB maps the header of an incoming packet to an invalid

local physical address, then the packet is dropped and the network interface can

signal a protocol error. Address protection for gather-scatter hardware uses an

extra level of indirection to generate the set of non-contiguous valid addresses,

usually by means of a look-up table in memory.

� Logical node identi�ers (remote node protection). Under the basic version, the

network interface hardware simply veri�es that the remote node identi�er is

valid and otherwise generates a protection violation. A more
exible version

uses a mapping table. In this scheme, the user program provides a logical node

ID, and the hardware translates it into a system-speci�c physical node ID. The

logical-to-physical mapping feature makes partitioning and the avoidance of

faulty nodes completely transparent to the user program.

� Atomic packet injection (task management). When the operating system in-

tends to perform a context switch, it must ensure that restarting the user pro-

gram is a reliable operation. Because packets must be injected atomically,

partially injected packets and messages are a problem for task management.

Atomicity is easily guaranteed by the use of DMA. If the DMA of a single

packet is in progress, it is simply allowed to complete. The context of a long

transfer that involves multiple packets must be saved and then restored so that

33

the remaining packets in the message are sent when the user process is restarted.

Save-restore doesn't work under PIO because a partial packet is not guaranteed

to contain su�cient routing information to be routable by the network. Two

solutions to the PIO partial packet problem are cancel-retry and RAS. Under

cancel-retry the network interface destroys the partially constructed packet and

noti�es the user program running on the sending node that the injection failed,

and the user program must retry the operation when it resumes execution. An-

other technique is to use a restartable atomic sequence (RAS) [47]. The segment

of the user code that sends or receives a packet is marked as a critical section.

If a context switch occurs inside the critical section, the operating system ker-

nel rolls the user task forward; it executes instructions on behalf of the user

program until all the critical section code is executed.

� Network-drain (network protection, task management). A network-drain al-

lows packets already injected to propagate through the network and eject, and

it prevents the injection of new packets into the network. Some versions of

network-drain cause packets to be ejected to a nearby processing node instead

of the packet's destination. This option takes much less time than the worst

case where all packets in the network are destined for a single receiver. One

purpose of network-drain is to remove all user packets associated with the cur-

rent user process, in preparation for a context switch. In systems like the CM-5,

user packets do not contain a process identi�er. These packets must be saved

and later re-injected into the network when the user process is resumed. Other

systems contain a process identi�er in the packet header to allow packets from

more than one user process to coexist in the network, so that a network-drain

is not strictly necessary to prepare for a context switch.

� Guaranteed delivery of operating system messages (network protection, task

management). It may be possible for a runaway user process to inject messages

without ever attempting to receive them. In this case, the network becomes sat-

urated with packets, and it can cause the parallel computer system to thrash.

At worst it is necessary to shut down the entire machine and start over, which

may be time-consuming and di�cult. A preferred solution is for the operating

system to detect this situation and issue a \cease and desist" message to the

34

o�ending user program. If user packets and operating system packet share the

same network, then this strategy will be thwarted if these operating system

packet do not get delivered ahead of the user packets. Therefore the network

design must guarantee delivery of operating system packets regardless of the

size of its workload. There are several techniques. One technque is to priori-

tize operating system packets, so that they are delivered ahead of user packets.

Another technique is to use a separate physical or logical network for operating

system packets, in which the OS packets are guaranteed to be delivered. An

example of this technique is to have a separate network for barriers and eu-

rekas. A message placed on the barrier-eureka network can signal to all nodes

a network-drain of the main network. Once the main network is drained, it is

guaranteed to deliver operating system packets in a timely fashion.

2.1.5 Fault handling

Parallel computer architectures are designed for scalability, to permit the construction

of systems with thousands of processing nodes. Implementers and users of physically

realized parallel systems face the problem of faulty connections, routers and process-

ing nodes. Although individual components have a very low chance of failure, the

aggregate chance of failure anywhere in a large system is potentially high. The com-

putation aborts in the presence of a system failure, either because it cannot continue

or because it is using incorrectly transmitted data. A failed router or processing node

is therefore likely to cause the entire machine to stop functioning. A more pernicious

problem is the case in which the computation completes but incorrect information

was propagated through the network causing an improper result to be computed.

Therefore the primary concern is detecting and reacting to corrupted packets. Cor-

ruption has many forms: bit errors, packet length errors, and packet duplication or

loss. Bit errors and packet errors are detected by adding redundant information in the

packet header in the form of checksums or error correcting codes (ECC). In principle

the application program could supply and verify packet checksums but it would add

a very large amount of processor overhead. For the highest communication perfor-

mance, checksums are encoded in the network interface at the sender and veri�ed in

the network interface at the receiver automatically. A mismatched checksum causes

the receiving node to drop the packet and signal an error to the operating system

35

to abort the computation. ECC could be used instead of a checksum, so that the

error can be corrected on-the-
y without requiring termination of the computation.

However, ECC is more expensive to implement in terms of network bandwidth and

circuitry. If the error rate is very low then the overhead of an occasional corrupted

packet is relatively insigni�cant, meaning that ECC is not necessary.

If the network delivers packets in-order, then detecting duplicated and lost packets

is relatively straightforward. Hardware in the sender's network interface computes a

sequence number for each packet which is inserted into the packet header. The net-

work interface at the receiver veri�es the packet header. For any particular message,

sequence numbers are unique. Packets are sent in increasing serial order, so that a

lost or duplicated packet is easily discovered by comparing the sequence numbers of

two consecutive packets for that message.

If the network does not deliver packets in-order, it is somewhat more di�cult to

detect lost and duplicated packets. Single errors can be detected through the use

of the packet counting scheme described in Section 2.2.4. Lost packets are detected

through the use of an application-program timeout. Another technique is used in the

CM-5 [14] { the global packet count in the entire system is continually computed and

propagated to all nodes. The idea is like Kircho�'s Law, where the sum of everything

that went in should be equal to everything that comes out. Detecting multiple errors

is tricky, because the packet count is correct if one packet is lost at the same time

that another packet in the same message is duplicated. To detect duplicates, the

network interface maintains a bit
ag for each sequence number for each message.

The tradeo� is that it may increase the amount of memory needed in the network

interface signi�cantly.

2.2 The logical interface

The logical interface or communication model comprises the set of internode com-

munication primitives directly accessible by the user program. A variety of di�erent

communication models have been designed and implemented, as there is no single

model of communication that is the best for all application programs. There are

three basic communication models: systolic, remote memory and send/receive. There

are also a number of systems that use more than one of these models, and some are

hybrid solutions.

36

2.2.1 Systolic communication

Systolic communication works much the same as the pipe abstraction supported by

the UNIX

tm

operating system. Communication requires two phases. First, the net-

work and network interface layers set up a persistent virtual circuit between the

sending node and the receiving node. Once the virtual circuit is established, the

sender writes values to the pipe input register and the receiver reads from the pipe

output register. When the virtual circuit is no longer required in the computation

the application program must terminate it explicitly. The semantics require the data

to appear at the receiver's end of the pipe in the same order as it is sent.

Systolic communication requires PIO for both the sender and receiver. For
exi-

bility there is usually a hardware FIFO between the sender and receiver, so that the

sender can send information before the receiver is ready to use it. The granularity of

synchronization may be as small as a single value; that is, a packet is sent every time

the sender stores a value into the pipe input register. For e�ciency, multiple writes

may be aggregated into a single packet. Under this implementation, a separate send

command may be required to
ush the pipe (i.e. to send a non-full packet). Systolic

communication provides very e�cient data movement. Once the virtual circuit is

created, the application program passes values only as it does not need to pass node

IDs or bu�er addresses.

The iWarp system [23] provides a canonical example of systolic communication

through its tightly-coupled interface. It uses a custom RISC processor core with

on-chip message registers: two pipe inputs for sending and two pipe outputs for

receiving. Information is sent immediately on every write to the pipe input register.

Circuit switching is supported directly in the network architecture. The network

ensures node protection because a sender can only send to a node where the circuit

is already established. A limitation of iWarp is that it is limited to a single-user

system; there is no hardware support for task management, meaning that it cannot

be multiprogrammed.

2.2.2 Remote memory

The remote memory model is popular for scienti�c computing systems. There are

many examples of multicomputers that use this communication model, including Cray

Research T3D and T3E [19, 20, 21], Fujitsu AP1000 [48, 49], Stanford DASH [45],

37

Tera MTA-1 [46] and Kendall Square Research KSR-1 and KSR-2 [33].

Under the remote memory communication model (also known as remote

load/store, put/get, shared memory or non-uniform memory access) processors access

remote memory locations directly using load and store operations. Remote memory is

actually two communication models: a remote load model and a remote store model.

The entire shared memory of the parallel system uses a common global virtual ad-

dressing scheme that uniquely identi�es every location (see Section 2.1.4). The upper

bits of the address uniquely identify the remote node, known as the home node, that

contains the corresponding memory location. When a processor issues a store instruc-

tion, a valid virtual address that does not map to a local memory location is placed

on the address lines of the local processor bus. The network interface observes this

address on the local processor bus and handshakes with the processor in the manner

of a local memory module, then the network interface sends a packet to the home

node. When this packet arrives at the home node, the receive interface translates

the global virtual address in the packet header into a local physical address and com-

pletes the memory write to that location. Remote load works somewhat the same

way, except that it requires two packets: a request packet and a reply packet. The

processor issuing the load sends the request packet and waits for the reply. When the

request packet arrives at the remote node, the network interface performs a memory

fetch at that location and sends the reply packet. When the reply packet arrives

at the originating node, the processor loads the value into a processor register and

continues processing.

The remote memory abstraction requires several kinds of support in the network

interface. It requires DMA for all data movement. It must provide protection for safe

user-level access. The network interface must distinguish requests from replies, requir-

ing either extra information in the packet header or separate logical networks. The

receive interface must be automatic and therefore must provide a TLB to translate

the global virtual address into its local physical address. Also, the receive interface

under remote store provides no noti�cation to the processor. At the application pro-

gram level, it is still necessary to be able to �gure out when a message has arrived.

Since the interface doesn't notify, the application program must construct its own no-

ti�cation information by the use of a separate message, often called a sync message.

When the sync message is detected at the receiving node by polling some mutually

38

agreed upon shared memory location, it implies that a previous communication has

completed. Note that polling is the only option. This model for application-level

synchronization requires the sync information to arrive after the data portion of the

message has been delivered. One type of support is an in-order network: given any

two nodes A and B in the network, if a packet A1 is sent from A, and packet A2

is subsequently sent, packet A2 is guaranteed to arrive after packet A1. Another

technique is network drain: the entire network is �rst drained of packets, and then

sync packet is sent afterward.

Remote memory systems span a wide variety of di�erent styles, which are too

numerous to completely encapsulate in this dissertation. Nevertheless, it is important

to mention several important common subclasses and a few systems that provide

unusual features.

� Globally coherent remote memory. This variant is also called cache-coherent

non-uniform memory access or CC-NUMA. The idea is for the network interface

to act as a cache for remote data. If the data is locally cached, it eliminates

the need for a message to be passed, thereby reducing the latency of multiple

accesses to the same location. There are several tradeo�s to globally coherent

memory. Each node maintains a directory of its home cache lines that are cached

on remote nodes. These cache directories often require a signi�cation amount

of additional memory. Maintaining global coherence generates network tra�c

which would often not be necessary under non-globally coherent systems. The

extra directory memory and the coherence logic make global coherency much

more complicated to implement compared with the basic model. Examples of

globally coherent remote memory systems are Stanford DASH [45], MIT Alewife

[26] and Convex Exemplar, based on the Scalable Coherent Interconnect (SCI)

memory interface [50]. All of these systems are based on networks that provide

in-order packet delivery.

� Princeton SHRIMP [42, 43]. SHRIMP is a hybrid of the systolic and remote

store models. When two nodes wish to communicate, there must �rst be a

logical link constructed between the two nodes via an operating system call. A

segment of the sender's memory is mapped onto the receiver's; any write into

locations within this segment causes the sender's network interface to send a

39

packet to the corresponding receiver. There is no remote load in SHRIMP. There

are several advantages over a canonical systolic communication style. It uses

a standard packet switching network, rather than the special-purpose circuit-

switching network such as in iWarp. Furthermore there can be a comparatively

large number of concurrent logical links, up to the number of entries in the

TLB in its network interface. By contrast, iWarp's systolic communication is

limited to two physical connections into and two out from each processing node.

SHRIMP is also based on a network that delivers packets in-order.

� Tera MTA-1 [46]. The MTA-1 is unusual for several reasons. Each network

node contains either a memory module or a processor, but not both. Both re-

mote load and remote store are necessary because processors do contain neither

caches nor local memory. Each memory location contains a synchronization

tag called a full-empty bit, as described in Section 2.1.3. A remote store to a

memory location sets its corresponding F-E bit to the full state. An attempt

to load from a location which is empty causes the processor to stall, and its

network interface continually retries the operation until it succeeds. Success

implies that another thread has stored a value to the location; the synchroniz-

ing thread could run on the same processor, or on any other processor in the

entire system. The MTA-1's full-empty bit scheme requires noti�cation infor-

mation to be stored with every memory location, but it allows the use of an

out-of-order network, unlike most other remote memory systems.

There are also a number of software-based schemes for supporting the remote

memory abstraction without requiring explicit support for it in the network inter-

face. These schemes require the compiler or the linker to automatically convert

remote loads and stores in parallel programs into other communication primitives,

such as send and receive primitives. Some examples are Ivy [51], Munin [52], Midway

[53], Tempest and Blizzard [54], and TreadMarks [55]. These schemes help improve

the portability of programs across parallel systems, regardless of the organization of

the network interface. For some programs, the performance of these software schemes

approach that of native hardware support for remote memory. While remote mem-

ory is an important abstraction for the programmer, it is not strictly necessary to

incorporate this model directly into the network interface.

40

2.2.3 Send/receive communication

The send/receive model is also a popular communication model in scalable scienti�c

computers. Examples of parallel systems that use send/receive communication in-

clude the Thinking Machines CM-1, CM-2 and CM-5, the Intel Delta and Paragon,

Meerkat-1 and Caltech Mosaic. The send/receive model re
ects the low-level ab-

straction of the underlying functionality of the network interface. In principle, bring-

ing the programmer's model as close as possible to the hardware often provides the

greatest opportunity for compiler optimizations. The disadvantage is that di�er-

ent optimization techniques may need to be developed for every implementation of

the send/receive abstraction, because the implementation styles vary greatly. Un-

der send/receive there is little restriction on the type of network, packet size or the

built-in support provided by the network interface. The CM-5 [14] network interface

provides the canonical example of a simple send/receive model under PIO. To send a

packet, the user program stores the destination node ID, the packet payload and the

packet length into the memory-mapped network interface registers. Arriving packets

are placed into a FIFO that the user program can read directly.

2.2.4 Protocol support

A key to making the network interface as e�cient as possible is support for message

passing protocols directly in hardware. A message passing protocol involves the

interaction of data movement, noti�cation and dispatch and management of bu�ers.

Figure 2.3 describes a taxonomy of strategies for the receive interface. Under PIO,

noti�cation always comes �rst, and then the processor moves the data. Under DMA

there are two options. If DMA is processor-initiated, then it is like PIO: noti�cation

occurs �rst, then DMA is dispatched. If the DMA style is automatic-receive, the data

movement occurs �rst, and the processor is optionally noti�ed afterward.

There are two styles of protocol support: bu�ered and unbu�ered. Under the

bu�ered protocol, incoming packets are placed into bu�ers managed by the receiver,

such as hardware FIFO or a ring-queue in the main memory of the processing node.

Under the unbu�ered protocol, data from incoming packets are passed directly into

pre-allocated locations in memory, whose destinations are speci�ed by the sender.

The unbu�ered protocol can be supported only under a particular type of automatic-

receive DMA; all other interfaces use a bu�ered protocol. The Hamlyn network

41

PIO DMA

Automatic

Buffered

Proc. initiated

Unbuffered

Receive interfaces

Figure 2.3: Taxonomy of the receive interface

interface from HP Labs [56, 57, 58] supports automatic, unbu�ered DMA. The au-

thors' terminology for this property is sender-managed communication. Hamlyn is

also one of the few network interface architectures that supports a network that

delivers packets out-of-order.

The principal advantage of an unbu�ered protocol is the ability to �lter noti�ca-

tion information. The network interface passes a noti�cation to the processor only

when an interesting packet has been received, such as one that denotes the end of

a message. The overhead of noti�cation can be signi�cant, on the order of tens to

hundreds of processor instructions. Therefore, any noti�cation that is not passed on

to the processor reduces the overhead of communication. This reduction in overhead

can be substantial when packets are small and messages are large. (Remote memory

designs that do not notify the processor at all represent an extreme case of noti�cation

�ltering.)

Two techniques that the receiver's network interface can use to detect the end

of a message are end-of-message tagging and packet counting. Under the end-of-

message tag technique there is a reserved �eld in the packet header set by the send

interface to designate the last packet in a message. The processor at the receiver is

noti�ed only when the receiver's network interface detects the end-of-message tag.

The second technique, packet counting, is similar to credit-based schemes commonly

associated with asynchronous transfer mode (ATM) local and wide area networks.

In the packet counting scheme, the sending node and the receiving node agree in

advance on the length of the message. When the proper number of packets (credits)

arrive, then the entire message has arrived. The advantage of the end-of-message

tagging scheme is that it is simple, but like the remote memory model, it requires

42

an in-order network. The advantage of the packet counting scheme is that it can be

used with either in-order or out-of-order networks.

2.3 Analysis

In this chapter we have developed a taxonomy of attributes of network interfaces,

with the following categories and instances within each category:

� Physical coupling: tight, cache bus, memory bus, I/O bus.

� Network order: in-order, out-of-order.

� Data movement: systolic, PIO, DMA.

� Noti�cation style: poll, stall, interrupt, none.

� Argument checking: direct user-level access, system call.

� Communication model: systolic, remote load, remote store, send/receive.

� Receive DMA style: processor-initiated, automatic-receive, not applicable.

� Protocol support: bu�ered, unbu�ered.

Table 2.1 describes the attributes of eight di�erent network interfaces: University

of Washington Meerkat-1 [35], Intel Paragon, Princeton SHRIMP [42], CMU iWarp

[23], Stanford DASH [45], Thinking Machines CM-5 [14], MIT MDP [22] and HP

Labs Hamlyn [57, 58]. Some entries appear more than once because there are mul-

tiple attributes to many of these network interfaces. For instance, iWarp contains

both systolic communication and DMA. These systems were chosen as representative

examples of the wide span of possibilities that are available to the network interface

designer.

In order to achieve the highest performance and lowest possible processor over-

head, we compare and contrast the instances within each category. As described in

Section 2.1.1, tight coupling of the network interface with the processor makes pos-

sible the highest performance and lowest overhead. Due to the di�culty of making

43

Table 2.1: Comparison of existing network interfaces

Name

I/OSHRIMP

coupling
Physical

Memory

Memory

Tight

Yes

Yes

Network
in-order?

Yes

YesParagon

Meerkat-1

movement
Data

PIO

DMA

DMA

Intr

none

Stall

n.a.

DMA style
Receive

Proc. initiated

Automatic

Automatic

Unbuffered

Buffered

Buffered

Buffered

Protocol
support

Notification
level access

Systolic

Send/recv

Send/recv

Remote store

Systolic

Logical
interface

Direct user

No

Unbuffered

No

Yes

YesiWarp (systolic)

iWarp (DMA)

DASH (rem-write)

DASH (rem-read)

CM-5

MDP (send)

MDP (receive)

Memory

Memory

Memory

Tight

Tight

Yes

Yes

Yes

Yes

No PIO

PIO

DMA

DMA

DMA

none

Stall

Poll/Intr

Stall

Intr

n.a.

n.a.

Automatic

Automatic

Automatic

Unbuffered

Unbuffered

Buffered

n.a.

Buffered

Remote store

Remote load

Send/recv

Send/recv

Send/recv

Yes

Yes

Yes

Yes

Yes

Tight Yes DMA Poll/Intr Yes Send/recv Automatic Unbuffered

Poll/Intr

Hamlyn Memory No DMA Poll/Intr Yes Send/recv Automatic

this interface style economical, the best alternative is to connect at the memory bus

and use hardware to maintain cache coherence.

DMA provides the most e�cient data movement for large messages. DMA allows

the use of burst-mode in the memory bus, and it allows the processor to compute while

a messages are arriving or being sent. DMA can also be made e�cient: in remote-

memory systems, a single load or store operation initiates a DMA. Send/receive

interfaces can also be designed with the same property. Table 2.2 contrasts the three

options for data movement: systolic (within a tightly-coupled interface), PIO and

DMA. The table describes the number of memory operations needed at the receiver

for each word of each message under two models: the small message model and the

large message model. The large message model takes into account the need to spill

message values into memory if there is not enough register space to hold the entire

message at once. With the systolic interface, no load or store instructions are needed

to load a word of a small message; two operations are needed if the value is spilled to

memory (one store followed by one load). Under PIO, one load instruction is needed

for a small message, and three memory operations are needed for a large message

(load, store, load). Under DMA, no more than one load instruction is needed, because

the value comes directly from memory, eliminating the spill. Systolic communication

is the most e�cient, but only for small messages, and it is only available in systems

44

Table 2.2: Number of memory operations per word per message for the three data

movement types Systolic, PIO and DMA. Two types of messages are compared: small

messages, in which the data value can be used immediately, and large messages, in

which message values must be spilled to memory �rst before they can be used.

Type Small message Large message

Systolic 0 2

PIO 1 3

DMA 1 1

with tightly-coupled interfaces.

For large messages, the most e�cient style for receive DMA is automatic-receive,

using the unbu�ered protocol. Message data are placed automatically and immedi-

ately into their �nal destination, rather than storing data in an intermediate bu�er.

The unbu�ered protocol is best able to �lter noti�cation information, which is impor-

tant for reducing the amount of processor overhead due to noti�cation and dispatch.

This is important if packets are small and messages are large. The unbu�ered proto-

col however makes it di�cult to reconstruct the sequence of events that caused the

receiver's memory to be updated. For instance, say that node C receives two packets,

one from A and one from B. If the information from both packets is sent directly to

memory, it may be impossible for C to tell which packet arrived �rst. In particular, if

data from both packets are written to the same location it can potentially cause a race

condition. In a bu�ered interface, the sequence of events can be easily reconstructed

by looking at the state of the ring-queue. Therefore, the bu�ered protocol is more

exible than the unbu�ered protocol, and is a superior model for small messages.

Noti�cation style is a tradeo� between latency and fairness. Stalling always in-

troduces the least overhead and therefore the lowest latency { no instructions are

executed while the processor is stalled, and when processing resumes, there is no

overhead for restoring the state, unlike returning from an interrupt hander in which

the stack and the processor registers are restored. However, consider the situation

where the processor is waiting on more than one external event, e.g. a network event

and a disk event. While stalled on the network event, it is unable to respond to

45

the disk event. Both polling and interrupts o�er greater fairness than stalling at the

cost of increasing the overhead. On standard RISC processors, an interrupt is more

expensive than a poll. On the CM-5, which uses Sparc processors, interrupts take ten

times as many processor cycles as polling [59]. Special-purpose processors have hard-

ware support for fast interrupt handling. For example, the MDP in the J-machine

can dispatch an interrupt handler to react to an incoming packet in only three clock

cycles [22]. However, even if interrupts are more expensive than polling, they may

introduce less overhead if they occur only in rare circumstances. For instance, for

a given network architecture and application program, injection failure may be very

infrequent. If the processor must poll to test if the network is available, then this

cost is paid unconditionally for every packet. In the case of injecting packets on the

CM-5, interrupting would be preferable to polling if the network is busy less than

10% of the time.

2.4 Summary

In this chapter we more closely examine the fundamental attributes of network in-

terfaces that were introduced in Chapter 1: data movement, argument checking,

noti�cation and dispatch, and protocol processing. We conclude that DMA provides

the most e�cient data movement. Hardware support for argument checking is nec-

essary to eliminate expensive calls into the operating system. Supporting more than

one style of noti�cation is helpful to best address a wide variety of algorithms and

communication patterns. The most e�cient protocol for large messages is unbu�ered

{ it allows the network interface to shield the processor from most network events that

are uninteresting to the processor. The unbu�ered protocol depends on automatic-

receive DMA. The bu�ered protocol is the most
exible for small messages.

An out-of-order network a�ects the styles of logical interface that can be supported

directly. In-order interfaces make it much easier to support the remote memory model.

If the remote memory model is supported by the network interface in a system with

an out-of-order network, the processing node requires additional features, such as a

synchronizing memory system like the one in the Tera MTA-1. A simpler solution

is to use the send/receive logical interface instead of the remote memory model.

Out-of-order networks have many advantages that make them important to support.

They can provide greater throughput and lower average latency than their in-order

46

counterparts. They o�er greater opportunity for fault tolerance due to adaptivity.

Finally, they make the design of support for network drain and reinjection much

simpler, wherein it may be impossible to enforce the in-order requirement. A network

interface that supports out-of-order networks is universal, as it supports in-order

networks as well.

We use the conclusions of this chapter to motivate the design of the Cranium

network interface architecture, introduced in the next chapter.

Chapter 3

THE Cranium NETWORK INTERFACE

ARCHITECTURE

Architecture is frozen music.

{ Goethe

This chapter describes the design of the Cranium network interface architec-

ture. The initial motivation for Cranium came from a requirement to design a

high-performance companion interface to the Chaos network router [15, 60]. The

Chaos router has two interesting attributes. It routes small �xed-size packets, using

a payload the size of a processor cache-line (e.g. 32 bytes). It also uses adaptivity

to improve its throughput and reduce its average latency; as a result, packets may

overtake one another in the network, resulting in out-of-order arrival. The name Cra-

nium comes from the acronym for Chaos Router Autonomous Network Interface for

User-level Message passing. However, the Cranium approach is broadly applicable to

many di�erent network routers.

3.1 Design goals

To make it as general as possible, Cranium addresses a number of di�erent goals:

� Cranium provides low-latency, high-throughput communication over a wide spec-

trum of MPP workloads. Tra�c in networks tends to be bi-modal: most mes-

sages are small, but a substantial fraction of packets are associated with a few

large messages. Cranium supports small messages e�ciently through protected,

direct access by user-level programs. Cranium uses DMA to support large mes-

sages e�ciently and it reduces the amount of processor overhead by �ltering

unnecessary noti�cations.

� The processor and memory in the computing node are built using commodity

components. A tightly-coupled interface between the network and the processor

48

was ruled out. Designs that require synchronizing memory or multi-threaded

processors in an architecture like the Tera MTA-1 [46] were also ruled out.

Cranium is coupled to the memory bus and takes advantage of hardware cache

coherence that is built into most modern high-performance processors (see Sec-

tion 3.4.2).

� Cranium provides support for general-purpose scienti�c computing. The system

must run a wide variety of di�erent compute-bound tasks. It is important

to be able to run several di�erent jobs concurrently and to provide e�cient

management for di�erent user contexts (see Sections 3.3.3 and 3.4.3). This

requirement rules out a special-purpose approach like that of iWarp [23], an

architecture that is best suited to systolic array processing applications such as

real-time vision and image processing.

3.2 The di�culty of interfacing with adaptive routers

To illustrate the di�culty associated with the design of a network interface for an

out-of-order network, we present an interface based on the remote memory model. As

described in Section 2.2.2, the remote memory model has a number of advantages. It

�lters out noti�cation information to the processor, making it more e�cient than an

interface that must notify the processor for every arriving packet. Synchronization

between sender and receiver is provided by an additional sync packet that occurs at

the end of a message. For example, say that processing node A sends a message to

node B that consists of four data packets, P1 through P4. The sync packet becomes

the �fth packet, P5. Under an in-order network the arrival of P5 tells node B that all

the data packets have arrived. Under an out-of-order network, the arrival of P5 does

not guarantee that all the data packets have arrived. If P5 arrives too early, then it

must be delayed by the network interface.

Figure 3.1 is a block diagram of a network interface architecture that reorders

packet arrivals. The receiver's interface contains an outboard memory that stores

packets arriving from the network. As packets arrive, they are reordered and propa-

gated to the processing node's DRAM. Table 3.1 describes a potential packet arrival

ordering from the network, and the resulting sequence of packets emitted from the

outboard memory.

49

Table 3.1: Packet reordering example. The �rst column describes a time line with

seven discrete timesteps T1 through T7 that are in increasing time order. The sec-

ond column describes a possible arrival order of packets coming from an out-of-order

network that are placed into an outboard memory. The third column describes the

timing of packets that are transferred from the outboard memory into system DRAM.

If the packet stream is completely in-order, arriving packets are transferred imme-

diately. If packets arrive out-of-order, packet deliveries to the processor node are

reordered, but bubbles must be inserted into the packet stream.

Time Arriving packet Departing packet

T1 P1 P1

T2 P3 .

T3 P4 .

T4 P2 P2

T5 P5 P3

T6 . P4

T7 . P5

50

Processor

bus

Network

Shared

Cache

DRAM
Network
interface

Outboard

Static RAM

message

buffers

interface

Send

interfaceReceive

Figure 3.1: Architecture of a network interface to support remote memory with an

out-of-order network

The reordering scheme described by Figure 3.1 is feasible, but it is not a good

solution. Table 3.1 demonstrates the performance problem. Note that the reordering

interface can only output one packet during one time slot. Out-of-order packets cause

bubbles to appear in the stream. The e�ect is to increase the latency of a message and

decrease its throughput considerably. The performance problem can be reduced but

not completely solved by increasing the bandwidth between the outboard memory

and system DRAM.

A second problem with this architecture is the complexity of the design. A typical

implementation of a scalable system might have 256 processing nodes and a message

size of up to 8K bytes (the size of a typical page frame in current processor technol-

ogy). The outboard memory would need to be large enough to handle a worst-case

situation involving all-to-all communication of page-sized messages. The network in-

terface at each processing node would therefore need a 2 megabyte outboard memory.

The outboard memory would need to be constructed from static RAM to achieve high

performance. Such a network cache would be similar in size and performance to a

processor's external cache.

51

Router

Auto-receive
channels channels

Queuing

CRANIUM

channels
Send

DRAM CPU

Network

Figure 3.2: Cranium architecture

The approach described in this section is complex yet o�ers comparatively poor

performance. The problem with the combination of the remote memory model and

an out-of-order network is the cost and complexity of regenerating the necessary

synchronization information. By basing Cranium on a send/receive model, much

of the cost and complexity in the network interface can be eliminated. It becomes

unnecessary to insist on a particular arrival order of packets { it is only necessary to

count the number of packets associated with a particular message and re-assemble

the message in memory. Packets arrive directly into the processing node's DRAM

without temporarily residing in an outboard memory. Furthermore, the sync packet

can be eliminated entirely. In Table 3.1, this means that packet P5 can be eliminated.

Given the same arrival order of packets P1 through P4, the complete message arrives

at time T4 instead of T7, resulting in much lower latency and achieving a higher

percentage of the full bandwidth of the interconnect.

3.3 Cranium implementation-independent architecture

This section discusses the fundamental concepts of the Cranium architecture. Fig-

ure 3.2 is a block diagram showing the structure of Cranium and Table 3.2 describes

its attributes. Two types of receive interface are supported: an unbu�ered interface

called the auto-receive channels and a bu�ered interface called the queuing channels.

52

Table 3.2: Attributes of the Cranium network interface architecture

Name coupling
Physical Network

in-order? movement
Data

DMA style
Receive Protocol

support

Auto, pkt count

Notification
level access

Logical
interface

Direct user

Memory DMA Send/recvNo

Memory DMA BufferedSend/recvNo

Cranium (auto-recv)

Cranium (queuing)

Poll, Intr

Poll, Intr

Yes

Yes

Unbuffered

Auto, ring-queue

The send interface contains the send channels and mirrors the unbu�ered receive in-

terface in form. The send and auto-receive channels support DMA transfers up to the

size of an MMU page. Each queuing channel manages a separate ring-queue. Each

channel represents a complete context for a message, including the physical address

of the local message bu�er, the remote node name, the number of packets to send or

receive, and transfer completion status. The send channels convert long messages into

separate packets; the auto-receive channels re-assemble these packets into messages.

Cranium is activated by channel commands issued by the processor. Cranium

then autonomously schedules and executes its channel operations independent from

and concurrent with processor execution. Cranium is multithreaded in the sense that

multiple message commands can be in progress simultaneously. Cranium provides

protected direct access to user-level programs. Channel registers are loaded and stored

directly using memory mapped read and write operations. The overhead of sending

and receiving messages is minimal, on the order of a few user-level instructions.

Figure 3.3 describes the format of a Cranium packet. Packets are composed of

three �elds: a network header, a Cranium header and the packet payload. The

network header is used only by the network routers. The packet payload is the size of

a cache line, typically 16, 32 or 64 bytes. The Cranium header contains the process

ID, the send channel number, the auto-receive channel number, a message sequence

number, some miscellaneous
ags including the queue
ag and the system
ag, and

a redundancy code to protect the Cranium header.

3.3.1 Send channels and auto-receive channels

The send channels and the auto-receive channels are symmetric; the programmer

model for both sets of channels is nearly identical. At any time, a send channel

or auto-receive channel is either in the idle state or in an active state where it is

transmitting or receiving packets. Each activation of a channel initiates a block

53

Routing information

Process ID
Send channel #
Receive channel #

Flags (queue flag, system flag)
Packet sequence #

Cranium header

Network header

Packet payload
One cache line
(e.g. 32 bytes)

Redundancy code

Figure 3.3: Cranium packet format

transfer of up to an MMU page. If a cache line is 32 bytes and an MMU page is 8K

bytes, then there are up to 256 packets per channel command. Each send channel

and auto-receive channel maintains a packet count, a node ID and a physical bu�er

base address. The packet counter in the send channel is copied into the sequence

number �eld in the packet header. For each packet that is sent, the physical address

of the payload data is computed by adding the physical base address to the packet

counter times the size of a cache line. The auto-receive channels place incoming

packet data into memory in the proper location by the same o�set from the receiver's

physical base address. The processor can load the packet counter value from the send

and auto-receive channels to determine completion status of the transfer. Optionally,

Cranium can interrupt the processor when the counter reaches zero, indicating that

the transfer has completed. Note that any send channel can send to any auto-receive

channel at any node. A restriction is that an auto-receive channel must be activated

before the send channel starts sending packets to it. A protocol error is signaled when

a packet arrives into an inactive auto-receive channel, or if one or more of the �elds

in the packet header do not match that expected by the auto-receive channel.

3.3.2 Queuing channels

The queuing channels implement the bu�ered interface. Packets in the queue are not

serialized by the interface; they appear in the ring-bu�er in memory in the order they

are ejected from the network. Queue memory is implemented using main memory;

54

Tail

P T P T P P

SP EP

T

P = entire packet (includes header)

T...
T = tag (full/empty)

Head

Figure 3.4: Organization of circular bu�er in DRAM for queuing channel

queue bu�ers are locked into the physical memory map. User programs access queue

memory directly using load and store operations. By using main memory to hold the

ring-queues, it becomes possible to reduce the size of the hardware FIFO in the receive

interface. DRAM memory is much cheaper and lower power than comparably sized

SRAM needed in the FIFO. Main memory storage also allows the operating system

to change the size of queue memory when the user program is started, rather than

requiring the network interface hardware to be recon�gured. Like the auto-receive

channels, data is moved �rst by DMA and the processor is noti�ed afterward. Unlike

the auto-receive channels, every packet that arrives into the queuing channels sends

a noti�cation to the processor.

There are four queuing channels: the user queue, the user error queue, the system

queue and the hardware error queue. Packets that have the queue
ag in the packet

header enabled are routed to the user queue. The user error queue is used for packets

that signal a protocol (soft) error (see Section 3.3.4). Both the user queue and the

user error queue bu�ers are mapped into user space.

Figure 3.4 shows the organization of queuing channel memory. For each queu-

ing channel, the channel context is a set of four pointers into main memory, called

the start pointer (SP), the end pointer (EP), the head pointer and the tail pointer.

Queue memory is organized as a circular bu�er based on a simple producer-consumer

protocol, with Cranium as producer and the user program as consumer. The net-

work interface places incoming packet data at the tail pointer and the user program

accesses packet data from the head pointer. At initialization, the start pointer, the

head pointer and the tail pointer all point to the start of the queue bu�er. When a

packet arrives, Cranium writes the entire packet (including header) into the packet

55

�eld (P), writes a nonzero value

1

to the tag �eld (T) and advances the tail pointer.

The user program detects the presence of a packet by polling the tag �eld. If a packet

is present, the user program reads the packet information, processes it, then executes

an Advance Queue operation to clear the tag �eld and advance the head pointer to

release the space back to Cranium. If advancing the tail pointer causes it to become

equal with the head pointer, then Cranium signals queue over
ow. If an Advance

Queue operation is executed when there is no packet in the queue (i.e. the head and

the tail pointer are equal), the network interface signals queue under
ow. A condi-

tion of either over
ow or under
ow will cause the network interface to interrupt the

processor (see Section 3.3.4).

3.3.3 Protection

Cranium provides the protection features that were outlined in Section 2.1.4: address

mapping, logical node identi�ers, atomic packet injection, network drain and guaran-

teed delivery of operating system messages. To implement protected, safe user-level

access, Cranium does not allow the user program to write the physical base address

of the send or auto-receive channel directly. Similarly, the user program cannot load

the node ID directly, because there may be destination nodes that the user should

not be able to access. In each case there is a level of indirection provided by mapping

tables, one for node IDs and one for bu�er addresses. Each mapping table occupies

the node's DRAM in a protected location, accessible only to the operating system and

pinned into physical memory. User programs can specify only the indices into these

tables. Cranium performs a table lookup in each case. If the table entry contains

a valid value, then the translation succeeds. If the table entry contains an invalid

value, then the translation fails and the transfer is canceled.

Figure 3.5 shows the two mapping tables: the node map and the bu�er map. The

network interface contains a pair of hardware registers that contain the base physical

addresses for each mapping table. Node Map Ptr points to the base of the node map,

and Buf Map Ptr points to the base of the bu�er map. An entry in the node map

is the physical identi�er for a remote node, or zero to indicate an unmapped node

1

One option is to write a 64-bit timestamp into the tag �eld to represent the nonzero value (the

least signi�cant bit is always 1). Timestamp information can be used by the user program for

performance analysis.

56

OS tables User space

B Buffer B

Buffer A

A

Buf map

Node mapCRANIUM

Node_map_ptr

Buf_map_ptr

Figure 3.5: Protection for safe user-level access via mapping tables

entry. An index into the node map (i.e. the o�set from the base address of the

table) is called a node handle. An index into the bu�er map is called a bu�er handle.

In order to construct entries in the node map or the bu�er map, the user program

must call the operating system and pass a user virtual address or node identi�er as an

argument. The OS performs the mapping and returns the handle to the user program.

When a bu�er is mapped, the OS must also pin its page into physical memory. For

reasons of e�ciency, it makes sense for the programmer to map all message bu�ers

during an initialization phase of the user program, so that all subsequent network

commands are performed at user level. Figure 3.5 shows two user bu�ers, A and B,

that the user program has registered with the OS and thereby entered into the bu�er

map. When the user program wishes to send a message to node X using bu�er A,

it passes X's node handle and A's bu�er handle to a Cranium send channel. The

interface performs a table lookup on each handle to verify that their corresponding

table entries contain valid data, and places the results of the lookup operations into

the send channel's node ID and physical bu�er address registers. An advantage of

using handles for argument checking and mapping is that it requires the user program

to pass only a small number of bits to Cranium instead of providing an entire global

virtual address (GVA). The size of a GVA is 48 to 64 bits in current high performance

processor architectures. If a Cranium bu�er handle is 16 bits and the size of a page

is 8K bytes, then the total amount of address space that can be devoted to message

bu�ers is 2

16+13

= 2

29

bytes. It is impossible for a user program to spoof handles

for either message bu�ers or remote nodes. An attempt to issue a send or receive

command using handles that have not been granted by the OS causes the network

interface to load an invalid value and abort the operation.

57

The operating system can control the
ow of packets into and out from Cranium

by setting the control
ow state. The NORMAL state is used for normal operation.

The FLUSH state is used to drain the network: packets are ejected but not injected.

In the FREEZE state, Cranium does not allow packets to be injected or delivered.

Cranium also has the ability to save the state of the active channels representing the

DMA transfers in progress belonging to the current user process. The OS speci�es a

location in DRAM to write out this information. This feature ensures that partially

injected multi-packet messages will complete when the user process is restarted.

The Chaos network does not provide a separate data network for operating system

packets. In order to guarantee the delivery of system packets, the system relies on the

existence of a separate control network dedicated to global operations such as barriers

and eurekas. The Express Broadcast Network (EBN) [61] describes the design and

implementation of one such control network that can be used in conjunction with the

Chaos data network. In the presence of an overwhelming amount of congestion that

may prevent operating system packets from even being injected, any node may send

a broadcast message to all the other nodes to put their interfaces into the FLUSH

mode. The inclusion of this kind of secondary network is necessary to create a robust

system based on the Chaos router. It also provides the opportunity to improve its

performance substantially. Further descriptions of the interaction between Chaos and

the broadcast network are given in Section 4.3 and Section 6.1.3.

3.3.4 Error handling in Cranium

When Cranium encounters a run-time error, it sends an interrupt to the processor.

There are two kinds of errors: protocol errors and hardware errors. Protocol errors

are caused by an illegal access to Cranium by the user program, such as trying

to initiate a new command on an already active channel, passing the handle of an

unmapped node or bu�er, or accessing a privileged channel. Hardware errors arise

when a packet arrives from the network, but Cranium cannot process it normally,

so the operating system must intervene. There are several di�erent kinds of packet

errors and corresponding error handling mechanisms.

� Network hardware error . Symptom: Redundancy-code mismatch on incoming

packet. Action: the packet is sent to the hardware error queue.

58

� Protocol error . Symptom: either the auto-receive channel for the packet is

inactive, or the packet header does not match the expected information in the

channel context

2

. Action: the packet is sent to the user error queue.

� Queue over
ow . Symptom: the tail pointer runs into the head pointer when a

packet arrives (see Section 3.3.2). Action: hold packet data, wait for operating

system command. To prevent live packet data from being overwritten,
ow

control is automatically set to the FREEZE state and is thawed when directed

by the operating system. To ensure that queue over
ow rarely occurs, frequently

accessed queues (such as the user queue) must be made su�ciently large even

in the presence of highly bursty tra�c.

� Queue under
ow . Symptom: the user program pops the user queue while it is

empty. Action: do nothing (just interrupt the processor).

3.4 Cranium implementation-dependent architecture

The following subsections discuss features of Cranium that are left to the imple-

mentation: the packet scheduling algorithm, cache coherence strategy, multiple user

contexts and gather-scatter support. Except for gather-scatter support, changes at

this level of the architecture are invisible to the application program except that they

may reduce the execution time.

3.4.1 The Cranium scheduler

If two or more send channels are active, the Cranium architecture does not spec-

ify the order in which the packets are sent. For the sake of correctness it does not

matter if the packets are sent in an interleaved or a non-interleaved fashion. From a

performance standpoint, di�erent strategies have di�erent performance implications.

The simplest scheduling algorithm for the Cranium scheduler is FCFS (�rst-come,

�rst-served). Send channel commands under FCFS are not pre-emptive; they sim-

ply run to completion. FCFS has the drawback that small messages can get stuck

waiting behind large messages in progress. If the small messages are on the critical

2

For instance, the source node ID in the packet header does not match the source node ID of the

auto-receive channel.

59

path, then the large messages cause a loss of performance. Di�erent scheduling algo-

rithms can improve the performance of small messages. One example of an algorithm

that improves performance in this setting is round-robin (RR). Under RR, the sched-

uler switches to a di�erent send channel after every packet is sent, analogous to the

behavior of a multithreaded processor such as the Tera MTA-1 processor. Priority-

round-robin (PRR) is a simple modi�cation to RR employing a single priority bit

per queue entry to designate high or low priority. The priority bit comes from the

host processor as part of the command word. If the priority bit is set for the send

command at the head of the scheduler queue, the behavior is the same as in FCFS;

if the bit is not set, the scheduler treats it the same as in RR.

Another packet scheduling algorithm that has been discussed in the literature is

alpha scheduling [62, 63]. In alpha scheduling, the priority of a message is a function

of its arrival time, the length of the message and a tuning factor called alpha (�).

The priority of a message is t

arrival

+ � � l where t

arrival

is the arrival time and l is

the length of the message in bytes. The lower the value, the higher the priority. If

� is zero then the behavior is the same as FCFS; if � is much greater than 1, then

the behavior is Shortest Message First (SMF). Like RR, SMF favors short messages

over long messages. A weakness of SMF is the potential for starvation; a continual

stream of commands for short messages will prevent the completion of long message

commands. Selecting an appropriate value for � permits good performance while

avoiding starvation. The drawback of alpha scheduling is that it is complicated to

implement. The ability to insert a new command into the queue in constant time

requires hardware support for a priority queue. It also requires an ALU to compute

the multiply-accumulate function. Therefore, alpha scheduling is not likely to be

implemented in a Cranium-compliant network interface.

3.4.2 Support for cache coherence

Cranium uses DMA for all movement of packet data; it is used in conjunction with

the send channels, the auto-receive channels and the queuing channels. As discussed

in Section 2.1.2, DMA capability in the network interface introduces a cache coher-

ence problem. The preferred solution is to use the bus snooping capability that is

included in most modern high performance processors. Because processor designs

vary, the design of the cache coherence strategy is implementation-dependent. For

60

economic reasons, processors that support cache coherence need to support symmet-

ric multiprocessing (SMP) e�ciently. Because SMP and MPP systems have di�erent

requirements, it is important to identify the cache coherence capabilities targeted for

SMP that can be used e�ciently for an MPP node.

Cache coherence protocols are maintained on a cache-line basis. Each processor

in an SMP snoops memory transactions on the shared bus and updates the state

of its internal cache lines in response. States for cache lines a typical SMP system

are called Invalid, Dirty-Exclusive, Clean-Exclusive and Clean-Shared. Invalid means

that no processor maps the cache line. The exclusive states describe the case where

exactly one processor currently maps the line in its cache. The shared state means

that two or more processors currently map the cache line. In the nominal case for

MPP assumed in this chapter, there is only one processor and one network interface

per processing node. The network interface itself does not maintain a memory cache.

With only one processor there is no sharing. This aspect can help simplify both the

implementation and veri�cation of the system by eliminating cache states that are

never used.

There are two cases to consider for maintaining coherence: message sending and

message receiving. Sending is handled simply. If the cache line is invalid or clean,

message data come from memory. If the line is dirty, then the processor overrides

the memory module and places the cached data on the memory bus for the network

interface to inject by DMA into the network. The line remains dirty in the cache

afterward. Receiving is the more complicated case. When a packet arrives and

network interface sets up a DMA-write to memory at an address that corresponds

to a clean cache line, the processor can choose to either invalidate the cache line or

update it using the incoming data from the memory bus. A particular strategy that

works well for both MPP and SMP is multi-level, a strategy supported by the bus

used in the Alpha Demonstration Unit (ADU) [64] (see Section 7.1.2). The message

data are written to memory and selectively invalidated or updated in the processor

cache. This model requires the processor to have a multi-level cache with the inclusion

property: everything valid in level k is also valid in level k + 1. If the line is valid

in both L

k

and L

k+1

, it is invalidated in L

k

and updated in L

k+1

. If the line is only

valid in L

k+1

but not in L

k

it is invalidated everywhere. The bene�t of multi-level is

that it adapts to the size of the message. If the processor is actively polling a section

61

of memory (e.g. waiting for a packet to arrive into the user queue) then the line is

kept clean in �rst level cache, and it will be updated in the external cache when the

packet arrives. Otherwise, the line is not kept in cache and the message simply goes

to memory. The polling strategy helps reduce the latency for small messages, and

the processor cache is not updated indiscriminately for large messages.

3.4.3 Multiple user contexts

The basic Cranium architecture contains only one physical set of channel registers.

There are cases where it becomes desirable to include additional physical resources

to support two or more user contexts e�ciently. The �rst case is that the entire

parallel system is a hybrid, consisting of an MPP in which each processing node is an

SMP. Each processing node is capable of running multiple user programs concurrently.

For full generality, each user program in the SMP node should be able to send and

receive messages without interference from other user programs. The second case is to

improve the performance of context switching in a uniprocessor node of an MPP. The

usual technique for scheduling work on a MPP is to use gang-scheduling, in which all

threads belonging to one user process run concurrently. When another user process

is ready to run and the scheduling quantum expires, all the processors in the MPP

switch to the new user task. All the relevant state in the network interface including

the bu�er map and the node map must be saved and later restored by the operating

system. The performance problem of context switching in an MPP is illustrated

by Figure 3.6a. The trapezoid on the left represents the packet tra�c injected by

user process A; the height of the trapezoid represents the saturation point of the

network. At the beginning of a context switch, packets from process A are drained

from the network. Once the network is empty, packets from the next runnable process

(process B) are injected into the network by the operating system. When all packets

for process B have been re-injected, process B is allowed to start running again. This

sequence of saving packets and re-injecting them is time-consuming and di�cult for

the operating system designer to implement.

The solution for both the hybrid MPP-SMP system and the slow context switch

problem is to include multiple sets of channel registers in the network interface. In the

hybrid system, each active user context in the SMP node corresponds to a physically

separate register set. To improve the performance of context switching in MPP, we

62

Time

(b)

Network

load

Process A Process B

context
switch

Time

(a)

Network

load

switch
context

Process A Process B

Figure 3.6: The performance implications of timesharing on a multicomputer. In

sub�gure (a), at any instant in time the only packets in the network belong to a

single user process, either process A or process B. When the operating system grabs

control and switches the context from A to B, it must �rst drain the network of all

packets belonging to A and store them as part of A's process context. In sub�gure (b),

packets from process A remain in the network when the operating system switches

context. Packets from both processes A and B co-exist simultaneously in the network;

the process ID is denoted by a �eld in the packet header. If a packet for process A

arrives while the processor is running process B, the network interface acts on behalf

of process A to place its payload into the proper area of memory. The result is that

(b) provides a faster context switch while maintaining the same degree of protection

as in (a).

63

use two sets of channel registers per node. One set of registers is dedicated to the

departing user process and the other is dedicated to the incoming user process. In this

implementation it is not necessary to drain the packets of the departing process from

the network (Figure 3.6b). Memory pages for the departing process are kept pinned.

The result is that there is no operating system overhead for packets that arrive for the

most-recently-run process. A generalization of this technique is to include physical

resources for U+1 user contexts, where U is the number of processors in an MPP

processing node.

There are two techniques for implementing multiple user contexts in Cranium. In

an integrated approach, two physical user contexts are placed on the same chip. In

a discrete approach, there is only one physical user context per chip, but it is simple

to tile the chips to scale the amount of resources to the particular node architecture.

The integrated approach reduces the chip count but it does not scale easily. The

discrete approach is more
exible as it applies to both MPP and hybrid MPP-SMP

systems. The tradeo� is that there is some additional complexity involved. The

processor-network link must connect to each network interface in the SMP node, all of

which are attached to the memory bus. When a packet arrives, all network interfaces

observe it but exactly one network interface must handle it, to avoid packet loss or

duplication.

3.4.4 Gather-scatter support

It is common in parallel application programs to move selected data from di�erent

parts of memory by means of a single data transfer. For instance, consider the case

where the application program allocates an N dimensional array at each processing

node. Only one of the N dimensions can be allocated in contiguous (consecutively-

addressed) memory. In Section 6.2.2 we introduce a parallel benchmark applica-

tion called Jacobi, whose primary data structure is a large two-dimensional array of

oating-point values. Row values are passed to the north and south nearest neighbors

of each processing node, while column values are passed to the east and west nearest

neighbors. Either the row values or the column values are in contiguous memory, but

not both at the same time. The impact is that under standard DMA, one of the di-

mensions cannot be sent as a single message. The programmer has two choices. The

�rst choice is to issue a separate message for each array element. The second choice

64

buffer at destination node

message in network

buffer at source node

Figure 3.7: General idea of gather-scatter support in the network interface. Data not

allocated contiguously (e.g. column data in a row-major-order array) are gathered

into a single contiguous message that is packetized and injected into the network.

When packets arrive at the receiver, the contiguous message is recreated, and the

message data are scattered into discontiguous memory. In Cranium, the minimum

grain of allocation is a cache line; in other network interfaces, the grain size may be

as small as a single byte.

is for the sender to marshal all of the array elements: a contiguous block of memory

is allocated, and the program copies all of the array elements into this memory block.

Through DMA the entire memory block is sent as a single message. At the receiving

node, the inverse operation occurs: the data arrive as a contiguous message, and

the processor un-marshals the data by distributing the elements of the array to their

non-contiguous locations. Both solutions cause a reduction in performance over the

case where the message data are contiguous in memory, because the host processor

performs expensive data copying.

Gather-scatter functionality is an extension to the standard direct-memory-access

hardware. Gather-scatter hardware performs the same function as marshalling with-

out copying the data: the data are gathered at the sender into a contiguous message,

and scattered at the receiver into non-contiguous memory. There are two common

forms of gather-scatter DMA hardware in I/O interfaces. The �rst case is for access

to array data, in which it is su�cient for the sender to increment the memory address

using a constant stride. However, the receiver must be more sophisticated in the case

where packets arrive out-of-order, as is the case with the Chaos network. In Cranium

the address must be computed using a shift-accumulate or multiply-accumulate func-

65

tion involving the sequence number �eld of the packet. The second case is completely

general, where the stride is not consistent from element to element. In this case, a

lookup table at the sender and the receiver can be used with the sequence number as

the index into the table. The host processor loads the addresses into the lookup table

at both the sending and receiving nodes. The lookup table solution is more general

than the constant stride version, but implementing the table increases the amount of

memory needed.

3.5 Summary

The Cranium network interface architecture provides a framework for constructing

processing nodes of a scalable parallel computer system from commodity processors

and memories. Cranium connects at the memory bus of the processing node, pro-

viding higher communication performance than interfaces that connect at the I/O

bus. Cranium is designed to work well in the presence of bi-modal network tra�c:

few large messages and many small single-packet messages. Large messages are most

e�ciently handled by unbu�ered, automatic DMA in the form of the auto-receive

channels that provide packet counting. Small messages are handled by the queuing

channels.

Cranium's channels permit the architecture to be scaled. A simple, low-cost

implementation can be based on a small number of channels. Greater performance

can be achieved by scaling up the amount of resources in the network interface. The

implementation of Cranium described in Chapter 7 contains 32 send channels and

32 auto-receive channels. The amount of memory required is on the order of a few

kilobytes, a tiny fraction of that required by the interface design in Section 3.1.

Cranium provides complete support for protected, safe access by user programs.

It performs argument checking through the use of bu�er mapping and node mapping

tables. These tables are indexed by handles that are passed to the user program from

the operating system. Using handles instead of physical addresses reduces the number

of bits that the user program must pass to the network interface. It also eliminates

the need for a content-addressable memory that is typically used to implement a

translation-lookaside bu�er. Cranium requires only regular system DRAM to hold

the translation tables.

66

The bu�er mapping feature of Cranium is very
exible. There is no distinction

between a send bu�er and a receive bu�er; the same bu�er can be used to collect a

message from one node and then pass it to another node without copying. A single

bu�er can be used for multicast, that is, to send several messages at once to a set of

nodes. Note also that the bu�er map and the node map are completely orthogonal.

This technique contrasts with SHRIMP [42], in which an entry in the bu�er map and

the node map are tied together; a given bu�er can only be transferred to its associated

node. This coupling between bu�er and node is less
exible than Cranium's orthog-

onal approach. Further description of the operating system interface to Cranium is

provided in Section A.3 in Appendix A. It discusses support in Cranium for atomic

packet injection, network drain and guaranteed delivery of operating system packets.

The mechanisms in Cranium were designed to provide the lowest possible commu-

nication overhead to the processor, in the context of a scalable architecture that can

be adapted to many di�erent networks. The remainder of this dissertation provides

the proof of the architectural concepts developed in this chapter. Chapter 4 describes

the Cranium software interface. Chapter 5 describes the test environment, that was

used to run message-passing programs on a simulated Cranium-based system and

provide timing information. Chapter 6 describes an analysis of the mechanisms of

Cranium and provides measurements of a number of parallel programs. Chapter 7

describes Teschio, a implementation of Cranium that provides an interface between

the DEC Alpha processor and the Chaos network router.

Chapter 4

THE Cranium SOFTWARE INTERFACE

We can never, never describe all the features of the total situation, not

only because every situation is in�nitely complex, but also because the

total situation is the universe. Fortunately, we do not have to describe

any situation exhaustively, because some of its features appear to be more

important than others for understanding the behavior of the various or-

ganisms within it.

{ Alan Watts, The Book

This chapter describes the Cranium application program interface (API). The API

provides the user with all of the essential services of Cranium: registering message

bu�ers with the operating system, sending messages, receiving messages using the

bu�ered interface, receiving messages using the unbu�ered interface, detecting the

completion of a message transfer and error detection. Careful attention was paid to

the organization of the Cranium API. There are a number of criteria that must be

considered in the design of an API for any set of services that are external to the

user's application program:

� Complexity: the di�culty of implementing the interface from the service

provider's point of view.

� Performance: the in
uence that the API has on the user's ability to extract the

underlying performance out of the external service.

� Separability: the applicability of the API to di�erent services or di�erent imple-

mentations of the service. A �le system API is designed to be separable as it

applies to many di�erent sizes and types of physical media. A low-level device

driver is more typical of a non-separable interface.

� Usability: the ease of writing application programs that make use of the services

accessed through the API.

68

For the particular instance of the Cranium API, the service provided is the ability

to pass messages between di�erent threads of control that execute on separate pro-

cessing nodes. There is a tension in network interface design between deep layering

for separability and usability, and thin layering for high performance and low com-

plexity. Because the primary design goal was to produce an API with the highest

possible performance, the layer between the application program and the network is

as thin as possible. Although thin layering often results in an interface that is di�cult

to use, the Cranium API nevertheless provides good usability.

This chapter is intended as an introduction to the Cranium API, so that the reader

can grasp the basic concepts without having to read code. The full API is described

in depth in Appendix A; the reader is referred there for detailed explanations of

all the data structures, operations and code examples. Here is the organization of

this rest of this chapter. Section 4.1 explains how messages are sent using Cranium.

Section 4.2.1 describes the two mechanisms for receiving a message, the auto-receive

channels and the user queue. Section 4.3 motivates the use of synchronization and

its interaction with send and receive. Section 4.4 covers miscellaneous topics such

as interrupts and error checking. In Section 4.5, the Cranium API is compared with

Intel NX and active messages (AM). Finally, Section 4.6 summarizes the chapter.

4.1 Sending a message under Cranium

The basic scenario for sending a message under Cranium is described by the
ow

diagram in Figure 4.1. The circle containing the S represents the thread of control

that is sending the message. Each rectangular box in the
ow diagram represents a

step involved in sending the message; each step is small and can be implemented easily

using a few lines of C code. The �rst step is the allocation of a DMA bu�er. The

next step is to store the contents of the message into this DMA bu�er. A command

word is then constructed that describes the entire context for the message: the receive

node ID, the sender's DMA bu�er handle, the destination for the packet (either the

user queue or an auto-receive channel) and whether the packet causes an interrupt

at the receiver. The send operation is kicked o� by storing the command word into

a Cranium send register. There is an array of memory-mapped send registers that

correspond to the physical send channels. By polling a status bit, the program can

determine when the send operation has completed at the sending node and all packets

69

Allocate DMA buffer

Put information to be sent in the DMA buffer

Build Cranium send command word

Store the send cmd word into a send register

S

Wait until send DMA completes

Deallocate the DMA buffer

Figure 4.1: Flow diagram for sending a message

in the message have been injected into the network. The program can then safely

deallocate the DMA bu�er.

If the send command is used multiple times or in a loop, then the sequence of

steps to send a message can be streamlined. Allocating and deallocating a DMA bu�er

requires an expensive operating system call. It is more e�cient to allocate a DMA

bu�er once and then use it for many di�erent message transfers. It is also e�cient

to pre-compute a set of command words that can be readily loaded into Cranium

send channel registers. By allocating DMA bu�ers and creating command words in

advance, the only operations that are necessary in the body of the loop are represented

by the second, fourth and �fth boxes in Figure 4.1. This streamlining greatly reduces

the processor overhead of sending messages and improves the performance of the

application program.

70

Wait until receive DMA completes

Deallocate the DMA buffer

Allocate DMA buffer

Build Cranium receive command word

Store the recv cmd word into a recv register

Access information in the DMA buffer

Ra

Figure 4.2: Flow diagram for receiving a message in an auto-receive channel

4.2 Receiving a message under Cranium

4.2.1 Unbu�ered communication

The Cranium auto-receive channels are used in a fashion similar to the send channels.

Figure 4.2 shows the
ow diagram for receiving into the auto-channels; it is nearly

the same as Figure 4.1, except that the information in the DMA bu�er is accessed

after the message arrives, rather then before it is sent in the sending case. The receive

command word is constructed in the same way as the send command word, indicating

the handle of the local DMA bu�er and the context of the sender's environment.

The receive operation is kicked o� by storing the command word into a Cranium

receive register. By polling a status bit, the program can determine when the receive

operation has completed when all packets in the message have arrived.

4.2.2 Bu�ered communication

Figure 4.3 is a
ow diagram describing the actions required by the program to access

packets that arrive into the user queue. Queue memory is pre-allocated for the user

program by the operating system. When a packet arrives it appears in the user's

71

Mark packet as empty

Wait until packet arrives in queue

Rq

Access information in queue memory

Figure 4.3: Flow diagram for receiving a message in the user queue

protection domain (address space). The user program takes whatever information

it needs from the packet and then it must eventually return the bu�er to the queue

by marking the packet as empty. In essence, the allocation step comes at the end

rather than at the beginning. While accessing the user queue seems to involve fewer

steps than the auto-receive channels do, the steps in Figure 4.3 are repeated for every

packet of the message. The steps outlined in Figure 4.2 su�ce for receiving an entire

message consisting of multiple packets, up to an MMU page in length. For a long

message, the auto-receive channels are more e�cient than the queue.

4.3 Synchronization

The semantics of an auto-receive channel require the receiver to be ready before

any packets destined for that channel arrive. If the receiving node has not posted

the receive command into its auto-receive channel register, then a protocol error is

signaled for each packet that arrives for that channel. To ensure correct operation, we

must guarantee that the receiver is ready before the sender sends. (This requirement

is not necessary for the user queue { the queue is always in a ready state as long as

queue memory is not full.) We use robust message passing protocols to ensure that

the program semantics are repeatable and portable across implementations.

Figure 4.4 describes one technique for synchronization called local synchroniza-

tion. In this case there are only two processing nodes involved in the synchronization

step: the sending node (S) and the node receiving into its auto-receive channel (Ra).

Node Ra �rst sets up its auto-channel. Then it sends a sync packet to the user queue

72

Send (QUEUE)Q u e u e

P o l l

Send (AUTO)

S

single packet

large data block

P o l l

A u t o

C h a n n e l

Init Auto

Channel

Ra

Figure 4.4: Using local synchronization to support auto-receive

of node S. When node S detects the sync packet in its queue, it starts sending data

to Ra's auto-channel. Local synchronization is useful for transferring long messages

(see Section 6.1.2).

Another technique used for synchronization is called barrier synchronization. The

semantics of a barrier are simple: a node enters the barrier and waits until all other

nodes have entered the barrier; when all nodes have entered, the barrier is complete

and all nodes exit the barrier at approximately the same time. Barriers are therefore

fundamentally global in scope. Also, many scalable computer systems support barrier

synchronization directly in hardware [14, 49, 66]. The latency of a global barrier is

often an order of magnitude less than the latency of a regular message. Figure 4.5

is a
ow diagram showing the interaction between nodes S and Ra when barrier

synchronization is used. The barrier must occur AFTER node Ra sets up its auto-

receive channel and BEFORE node S initiates its send operation.

The greatest bene�t of global synchronization occurs during a phase in the parallel

program's execution where all nodes are communicating concurrently and are simul-

taneously acting as both senders and receivers. For instance, a program may require

every node n to send a message to its neighboring nodes n � 1 and n + 1 and also

receive messages from these nodes at the same time. Figure 4.6 illustrates how this

73

Enter global barrier; wait until all nodes have entered the barrier

Wait until receive DMA completes

Deallocate the DMA buffer

Wait until send DMA completes

Deallocate the DMA buffer

Allocate DMA bufferAllocate DMA buffer

Put information to be sent in the DMA buffer

Store the recv cmd word into a recv register

Build Cranium receive command word

Store the send cmd word into a send register

Build Cranium send command word

Access information in the DMA buffer

S Ra

Figure 4.5: Synchronization for auto-receive using a global barrier

...S e n d S e n d S e n d S e n d

Init Recv Init Recv Init Recv Init Recv

...Recv Wait Recv Wait Recv Wait Recv Wait

G L O B A L B A R R I E R

...
0 p-121

Figure 4.6: Using barrier synchronization in a communication phase where every node

is both a message source and destination

74

communication pattern can be realized in a program using global synchronization.

(The wraparound case is omitted to simplify the diagram, but in general any node

can send to any other node during a communication phase.) It is common for parallel

programs to exhibit this kind of communication pattern where all nodes communicate

with other nodes at the same time and act as both senders and receivers. Most of the

benchmark programs described in Chapter 6 have this property { see Section 6.2.3.

4.4 Interrupts and error diagnostics

When Cranium generates an interrupt, the operating system hands control o� to a

user-level interrupt handler. Cranium provides an interrupt status register so that the

application program can determine the source of the interrupt and react accordingly.

There are two classes of interrupts generated by Cranium: user-programmable inter-

rupts and error interrupts. Cranium provides a wide variety of user-programmable

interrupts. Cranium can generate an interrupt on a channel-by-channel basis for ev-

ery packet or for the last packet in a channel transfer. The sending node can set

speci�c interrupt bits in the header of a packet to cause an interrupt at the receiving

node. The receiving node has the option of ignoring these interrupts, depending on

how the user sets up the interrupt mask.

There are a number of error conditions that cause Cranium to interrupt the proces-

sor. The most common situation is called a protocol error, when a packet is destined

for an auto-receive channel that is not ready. A second example occurs if a channel

transfer is in progress (i.e. its command has not yet completed) and a new command

is issued to the same channel. A third situation is when the sender's speci�cation

for the message does not agree with the receiver's. A complete breakdown of the

interrupt mask and status registers is described in Section A.2.3 in Appendix A.

4.5 Comparison with other message passing interfaces

4.5.1 Intel NX

The Intel NX message passing interface is a canonical deeply-layered message passing

interface for scalable parallel computing [7, 17, 35]. It is the message passing system

used in every scalable parallel machine produced by Intel, from the earlier iPSC/2

and iPSC/860 machines to the later machines such as the Touchstone Delta and the

75

Paragon. NX has proven to be quite separable; it has been implemented on a wide

variety of non-Intel systems such as Stanford DASH [45], Princeton SHRIMP [42, 43]

and UW Meerkat [35]. NX is similar to PVM (Parallel Virtual Machine) and MPI

(Message Passing Interface) [8, 9].

The basic subset of the NX interface is described by function calls csend() and

crecv() that provide blocking communication. The parameter list for the NX func-

tions is similar to the command structure for Cranium's send channels and auto-

receive channels. The argument list for both functions includes a message tag type,

a bu�er address and length, the remote node and a process type. The message tag in

NX is like the channel number in Cranium but more general. For instance, a message

tag of �1 can match any incoming message; in contrast, Cranium requires an exact

match on the channel number. Importantly, the dynamic properties of the two inter-

faces di�er. Under NX, the call to crecv() at the receiving node may occur either

before or after the call to csend() at the sender, unlike Cranium's semantics that

require the receiver to be ready before the sender sends. Under NX, if the message ar-

rives before the receiver is ready, the operating system intervenes and provides bu�er

space for the message; the subsequent call to crecv() causes the message to be copied

from system bu�ers into the user's space. The semantics of blocking communication

implemented by csend() and crecv() make it di�cult to overlap communication

and computation and avoid relying on the operating system for message bu�ering.

Take the example where two nodes exchange messages: each sends a message to and

receives a message from the other. The strategy under Cranium is straightforward:

both nodes post their receive commands, the global barrier occurs and then the send

commands are executed, followed by arbitrary computation while the messages are

in transit. Under NX, if both nodes post their receive commands before executing

send commands, deadlock results because each node waits inde�nitely. Therefore, at

least one node must send before it receives to break the deadlock. The result is that

the operating system must provide bu�ering.

To overcome the limitations of blocking communication, NX also provides non-

blocking communication via the functions isend() and irecv(). A third variation is

provided by the functions hsend() and hrecv() that use interrupt handlers. These

variations on the basic send/receive interface make it possible to overlap commu-

nication and computation and avoid using operating system bu�ers. Furthermore,

76

there exists a little-known variation on non-blocking communication called force-type

messages [10]. Force-type messages provide an unbu�ered message protocol to the ap-

plication program. An NX message is designated as force-type if certain high-order

bits in the message tag are set (resulting in a very large unsigned or negative tag

value). The data of a force-type message are sent immediately through the network

by the sending processor. If the receiver has posted a matching receive call before

the message is sent, the receiver takes the data. Otherwise, the message is simply

ignored; neither the sender nor the receiver are noti�ed. Force-type messages allow

the operating system to be bypassed completely (in principle) and represent the most

streamlined mode of communication in NX.

Because NX is a higher level interface than Cranium, it is possible to implement

NX on top of Cranium. An advantage of this emulation is that it allows all the

programs written for NX to run directly on a Cranium-based system. A drawback

of emulating NX on top of Cranium is that there would be a considerable increase

in communication overhead compared with programs that use the native Cranium

interface. The two primary sources of the extra overhead in NX concern bu�er allo-

cation and data alignment. Bu�er allocation for message passing directly in
uences

the resource management strategy of the operating system; in general, an expen-

sive operating system call is needed to allocate message bu�ers. Under NX, message

bu�ers are allocated every time a message is sent or received. The native Cranium

interface separates the allocation of a bu�er from its use; an application program can

allocate a bu�er once and then use it for multiple messages. Data alignment in NX

is unrestricted { a message bu�er can start and end anywhere; messages may be as

short as a single byte in length. Data alignment in Cranium is oriented around cache

lines and MMU pages { messages must be aligned to a cache line and consist of an

integral number of cache lines that all occupy a single MMU page at both the sender

and the receiver. These restrictions make it possible for the hardware to transmit

the message at the full performance of the network and the memory system without

sacri�cing protection. To implement arbitrary message alignment on Cranium, the

processor must copy data. In general, emulating NX on top of Cranium increases the

amount of bu�er allocation and data copying. Because both of these operations are

expensive, NX emulation results in a signi�cant loss of performance compared with

the native Cranium interface.

77

The major di�erences between NX and Cranium can be summarized as follows:

� Bu�er allocation in NX is tightly bound to the send and receive operations,

unlike in Cranium where bu�er allocation is separate from send and receive.

Bu�er allocation is an expensive operation as it requires an operating system

call. Cranium makes it possible to greatly reduce the number of times bu�ers

are allocated compared with NX.

� In NX, the operating system bu�ers incoming messages. This strategy requires

an expensive protection boundary crossing to copy messages from system space

to user space. In Cranium, messages always originate in and are delivered to

user space directly, without crossing a protection boundary.

� NX permits the use of force-type messages to bypass the operating system.

However, there are no diagnostics if the receiver was not initialized before the

sender begins sending the message and the transfer fails. In Cranium, there is

an extensive provision for error checking to inform the user of protocol errors.

� NX uses arbitrary message alignment and sizing. Cranium requires alignment

along cache lines and MMU pages. Cranium's restrictions allow a simple hard-

ware implementation that delivers the full performance of the network and the

memory system.

4.5.2 Active messages

An alternative strategy to the heavily-layered approach of Intel NX is the thinly-

layered technique known as active messages or AM [25]. Every packet in an active

message contains a pointer to a handler function. When the packet arrives at the

receiving node, the handler function is dispatched immediately and it runs to com-

pletion. AM is fundamentally non-blocking and o�ers fast recovery of message bu�er

space. It is ideally suited to a user-level interface that provides a bu�ered communi-

cation protocol, like the user queue in Cranium or the FIFO interface of the CM-5

[14]. The advantages of AM are that it is very simple and it introduces minimal

overhead on top of the resources provided by the hardware. Dispatching the handler

function is usually signi�cantly faster than the tag matching approach of NX, which

78

requires a slow switch/case or if-then-else construct. The primary limitation of AM is

that it is very low-level. Message passing protocols must be built on top of AM prim-

itives to prevent deadlock and data loss. In the speci�c case of Cranium, AM can be

implemented on top of the user queue very simply. AM does not apply in a straight-

forward fashion to the auto-receive channels because they implement an unbu�ered

communication protocol. The upshot is that a canonical AM implementation cannot

easily take advantage of Cranium's auto-channels to achieve high performance on long

messages. This characteristic is not surprising because AM was originally based on

the CM-5's programmed-I/O network interface, providing bu�ered communication

that works well with small messages but poorly with large messages. However, it is

possible that a rewrite of AM for unbu�ered communication may be able to address

the large-message case e�ciently.

4.6 Summary

The basic operations of the Cranium application programmer's interface (API) were

introduced: sending, receiving, synchronization and interrupt handling. The Cranium

API provides two primitives for receiving: the auto-channels for large messages and

the user queue for small messages. It provides two techniques for synchronization:

local synchronization and barrier synchronization. Cranium's user-programmable

interrupts provide
exibility in parallel program development. Together, all of these

features provide high performance for both short and long messages and a software

interface that is reasonably easy to program and to implement.

The Cranium API is compared against two popular interfaces for message passing

on scalable computers { the Intel NX message passing interface and active messages

(AM). NX is a deeply-layered, heavyweight interface that requires a system call to

send or receive a message, unlike Cranium that o�ers direct user access to the network.

AM is antithesis of NX { it is a very lightweight, thinly-layered interface but unlike NX

it pushes much of the programming burden onto the user. AM provided a signi�cant

improvement over the previous state-of-the-art for software interfacing with network

hardware. However, advances in hardware technology such as Cranium that have

occurred since AM was development have revealed the limitations of AM. Like AM,

the Cranium API closely matches the services o�ered directly by the network interface

hardware; however, the Cranium API provides higher performance on long messages

79

Table 4.1: Comparison of message passing interfaces NX, AM and Cranium

Criterion Intel NX Active messages Cranium

Ease of implementation Poor Very good Fair

Usability Very good Fair Good

Separability Very good Fair Poor

Small message performance Poor Very good Very good

Large message performance Good Poor Very good

than AM alone does.

Table 4.1 summarizes the comparison of the APIs discussed in this chapter. The

advantages of Intel NX are its high usability and separability; its weaknesses are its

complexity and its performance, especially with small messages. The advantages of

AM are its simplicity and its performance with small messages; it is comparatively

di�cult to use because it is very low level. The Cranium API permits the network in-

terface to achieve high performance on both small and large messages while providing

good usability and it is only moderate complex to implement. Because the Cranium

API is deeply embedded in the Cranium network interface hardware, its separability

is poor { it would be quite di�cult or ine�cient to implement the Cranium API on

top of non-Cranium hardware.

Now that the Cranium architecture and application programmer's interface have

been introduced, the next step is to evaluate the performance. The following two

chapters show the approach taken in the evaluation of Cranium. Chapter 5 describes

the design and development of the simulator used for the Cranium evaluation environ-

ment. Chapter 6 provides both an analysis of Cranium's performance and empirical

results using the simulator described in Chapter 5. A complete description of the

Cranium API can be found in Appendix A, including all the data structures and

modes of operation. Examples of sending and receiving messages are illustrated with

a few lines of C code.

Chapter 5

THE TEST ENVIRONMENT

Each mind has its own method.

{ R. W. Emerson, Essays

This chapter describes the Cranium test environment. This environment was used

to test the Cranium network interface architecture both for functional correctness and

for performance evaluation. Establishing functional correctness was an important

initial goal because there had been no prior experience in network interface design

with Cranium's properties: automatic-receive DMA, native support for an unbu�ered

message protocol, packet counting and noti�cation �ltering. After functional correct-

ness was established, the environment was used to evaluate performance on a set of

scienti�c parallel benchmarks. The evaluation of these benchmarks is discussed in

Chapter 6.

The test environment models the processing node (processor and memory sub-

system), the network interface and the network. Our goals for the Cranium test

environment were the following:

� The environment needed to evaluate an entire parallel system. The size of

the state of each modeled node and the amount of time taken per instruction

modeled had to be kept small enough so that the environment could scale to a

large number of nodes.

� The environment needed to provide timing information to make it possible to

compare the performance of di�erent approaches. It was important to make

comparisons at many di�erent levels of the design: the memory organization,

architectural support in the network interface and implementations of algo-

rithms used in the benchmark programs.

81

� The environment needed to be easy to modify and instrument. For example,

it needed to provide the user with the ability to trace execution, gather timing

information and other statistics, and manage execution by setting breakpoints.

� Finally, the environment had to be constructed quickly, in a time frame of a few

weeks to a few months. If the environment took a year or longer to construct,

then the focus of the project would have shifted to that of an implementation

project rather than a research project.

The only reasonable solution for the Cranium test environment was a simulator.

Building a real hardware system, especially a multiprocessor system, would have

been too expensive, di�cult and time-consuming. We evaluated three techniques for

simulating a computing system: functional simulation, software structural simulation

and hardware simulation.

� Functional simulation is simulating only the functionality of the hardware and

o�ering only a coarse level of timing information, such as ensuring the proper

sequentiality of global barriers. A functional simulator, also known as an em-

ulator, works in the same basic manner as an interpreter. The functionality

of the simulated hardware system is usually captured as a C program. Func-

tional simulators are relatively easy to construct and instrument, and they run

on standard platforms such as workstations and PCs. The most e�cient func-

tional simulators impose a slowdown of 10 to 100 host cycles per simulated

cycle. In the literature there are a wide variety of processor simulators that

provide functional simulation; an excellent survey of techniques can be found

in the papers on Shade [67, 68].

� Structural simulation is simulating at the register-transfer level of the architec-

ture of the underlying hardware (the network router or processor). Structures

such as the cache, the memory system, the routing algorithm of the network,

etc. are closely modeled on a cycle by cycle basis. The functionality of the

simulated hardware system is usually captured as a Verilog or VHDL program.

The advantage of structural simulators is the ability to provide cycle level accu-

racy. The disadvantage is that they run very slowly. Structural simulators are

more di�cult to construct and instrument than functional simulators are, and

82

require far more memory per simulated processing node to contain intermediate

state. Due to the large memory requirement they usually run only on high-end

workstations and servers, but not on entry-level workstations and PCs. The

focus of a structural simulator is accuracy rather than host execution speed; it

is common for a structural simulator to impose a slowdown of 10000 to millions

of host cycles per simulated cycle.

� Hardware simulation is like structural simulation but it requires a special-

purpose programmable hardware system. The host system is constructed from

an array of programmable logic devices such as Xilinx FPGAs. Two examples

of hardware simulators are the Teramac from Hewlett-Packard Labs [69] and

the System Realizer M3000 from Quickturn [70]. Hardware simulators provide

the same degree of �ne-grain detail as structural simulators, except that exe-

cution speed is comparable to a very fast functional simulator. The primary

disadvantage is cost, on the order of tens of thousands to millions of dollars.

The Cranium test environment is based on a hybrid of functional simulation and

structural simulation. The processing node and memory are simulated by Talisman

[27], a functional simulator augmented with a timing model. The Cranium network

interface model was added to Talisman. The network is simulated by the Chaos

network simulator [12, 15], a structural simulator written in C. The remainder of this

chapter discusses the background of both simulators and the model for Cranium in

the test environment.

5.1 Talisman

Talisman [27] is a processor simulator created by Robert Bedichek. The strength

of Talisman is its fast host execution performance. Functional processor simulation

requires two parts: translation from the target instruction set to the host instruction

set and execution of host instructions on the host. Of the two parts, translation (de-

coding) is much slower than execution (dispatch). A simple but slow simulator uses

the standard fetch-decode-dispatch loop: at the conclusion of a previous operation,

it fetches a target instruction from the input �le, translates it and executes it. To

improve host execution speed, the program can be statically translated into the host's

83

native binary format. Static translation (essentially, recompiling from one binary for-

mat to another) avoids the decoding step entirely at run-time. This strategy was used

by DEC to migrate VMS programs from the VAX to the Alpha AXP [71]. However,

static translation prevents some types of programs from executing correctly, including

programs that modify their instruction space on-the-
y (i.e. self-modifying or run-

time compiled code). For generality, Talisman translates instructions at run-time.

To optimize host execution performance, Talisman caches the decoded information.

Subsequent hits to recently decoded instructions are handled at a small fraction of the

cost of a full decode. This technique works well in practice because most programs

exhibit good locality.

Talisman runs programs that are cross-compiled into a Motorola 88000 binary �le

and can simulate either a uniprocessor or a parallel processor. The native commu-

nication model in the parallel version is a subset of the Intel NX message passing

run-time system. This communication model was replaced by the Cranium applica-

tion programmer interface.

5.1.1 Talisman's timing model

The timing model used in Talisman is based on a black-box cost analysis of each of

the major structural units in the Motorola 88100 [72]. Talisman maintains models of

the memory system, the instruction cache and data cache, the translation lookaside

bu�er, the execution pipeline and the write bu�er (a three-element FIFO). The timing

model in Talisman was calibrated against the Meerkat-1 hardware prototype [35].

Through the use of a hand-tuned set of approximately 30 timing parameters, the

timing of Talisman concurs with the timing measured in Meerkat-1 within a few

percent. The results were veri�ed over a wide range of benchmark programs. These

timing parameters represent subtleties in the instruction pipeline and the memory

system, such as the overhead of the DRAM refresh cycle.

A number of modi�cations were made to Talisman when it was integrated with

Cranium and the network model. Changes made to the process scheduler and the

memory system model are described as follows.

84

3D

C

B

A

Quantum 1 Quantum 2 Quantum 3

6

3 1 1 1

2

1

t0 t0+q t0+2q t0+3q

Simulated time

1 2

6

1 1 6

1

3

3 3

3

1

Figure 5.1: Scheduling threads in Talisman

Process scheduling in Talisman

Each simulated processor in Talisman executes as a separate lightweight thread within

a single Unix process on the host. One or more instructions are executed in sequence

on a single simulated processor. When the local time counter of a simulated processor

is greater than or equal to the value of the global virtual time counter, then Talis-

man switches context to the next simulated processor using a round-robin algorithm.

When all simulated processors are at or beyond global virtual time, the GVT counter

is incremented by the value of the scheduling quantum. Figure 5.1 illustrates the ba-

sic idea. Four simulated nodes are represented by the four rows labeled A, B, C and

D. Simulation begins at time t0. The scheduling quantum is 4 clock cycles. The arcs

with arrows indicate the execution sequence performed by Talisman. Talisman starts

by executing instructions on node A. The �rst instruction takes one clock cycle. Since

this isn't beyond the quantum (t0+q), Talisman stays at node A and executes the

next instruction which takes two clock cycles. Again it stays at A and executes the

next instruction taking three cycles. Since this is at or over the quantum, Talisman

switches to node B. This instruction takes 6 cycles. Note that the number of clocks

per instruction can be greater than the size of the quantum. The light stipple pattern

indicates all the instructions that are executed in the context of the �rst quantum

period. The dark stipple pattern corresponds to the second quantum period and the

medium pattern corresponds to the third period. Note that for node C there is no

85

instruction executed in the second period; node C is not even scheduled during this

interval.

The value of the scheduling quantum has a signi�cant impact on host execution

performance. Increasing the quantum improves the host execution performance by

reducing the amount of context switching. If nodes are not involved in communication

then the size of the quantum has no impact on simulated timing. When nodes com-

municate, the scheduling algorithm can introduce jitter. Nodes early in the schedule

that receive messages may not get informed until one or more quantum periods later

than nodes that are late in the schedule. The larger the quantum is, the greater the

error. Setting the quantum to one minimizes this jitter as it forces the scheduler

to switch contexts after every instruction. The drawback is that it causes Talisman

to run very slowly. There are two techniques that allow faster host execution. The

simplest technique is to increase the quantum to a moderately small value (e.g. 5

clock cycles) to provide reasonable performance with only a small amount of error.

The e�ect of the jitter on software timing is relatively small because the time it takes

the processor to poll or interrupt on the arrival of a packet is much greater than

the uncertainty the jitter introduces. The second technique is to adjust the quan-

tum dynamically. When there is no activity in the network, the quantum is set to

a large number (e.g. 10 or more). Whenever the network is routing one or more

packets, the quantum is set to 1. This technique speeds up execution very well be-

cause most programs spend a small fraction of the total running time communicating;

tens of thousands of cycles are spent in initialization routines, such as the one for

the malloc() memory allocator. The di�erences in simulated time between the two

techniques are very small, on average less than half a percent of the total simulated

running time. The results reported in Chapter 6 and Appendices B and C re
ect the

use of the second technique where the quantum is changed dynamically.

The memory system

Two modi�cations were made to Talisman's memory system model when it was inte-

grated with the Cranium network interface model. Talisman uses a simple reservation

scheme to model the memory bus. When Cranium wishes to access the bus to per-

form DMA, it waits until the bus is free, and then reserves the bus for the appropriate

number of clock cycles. Two memory bus models are used. The �rst model comes

86

directly from the memory model in Talisman, based on the Meerkat hardware pro-

totype. Meerkat uses a 32 bit data bus running at 20 MHz. Burst transfers move a

four-byte word of memory every clock cycle, so the peak rate is 80 MB/s. The over-

head of starting a memory transfer is high; accessing the �rst word of DRAM costs

up to 10 clock cycles. Since the bus is non-pipelined, achieving a good fraction of the

peak rate requires long transfers. The problem is that the Chaos network router is

based on small packets whose payload is the size of a cache line. Every time a cache

line moves in or out of memory it costs 10 cycles for DRAM latency plus 8 cycles for

data transfer. The e�ective transfer rate is therefore slightly less than half the peak

rate.

Modern high-performance memory bus technology uses a pipelined or split-

transaction protocol to hide DRAM latency and achieve nearly the full bandwidth of

the bus under small transfers. The �rst modi�cation to the memory system captures

the behavior of high-performance split-transaction bus technology. This alternative

models only the clock cycles in which data is transferred on the bus and omits the

DRAM latency. The di�erence in running times of the same benchmark on the two

memory models indicates the sensitivity of the benchmark to memory performance.

See Section 6.2.4 for further discussion of the two memory models supported in the

Talisman simulator.

5.2 Chaos network simulator

Chaotic routing is a non-minimal adaptive algorithm for routing �xed-length packets.

It was invented by Magda Konstantinidou and Lawrence Snyder as an algorithm for

routing in hypercube networks [73]; the algorithm was adapted by Kevin Bolding and

Melanie Fulgham to apply it to mesh and torus networks [12, 74]. Konstantinidou,

Bolding and Fulgham and many others

1

created a structural simulator called the

Chaos simulator to evaluate the performance of the routing algorithm. In its current

form, it simulates complete networks of chaotic routers organized as two-dimensional

meshes or tori. The Chaos simulator achieves cycle-level accuracy at the cost of

relatively slow host execution performance; it is perhaps an order of magnitude slower

than Talisman (see Table 5.2 in Section 5.6). Nevertheless, it has been widely used

1

Donald Chinn, Sung-Eun Choi, Melanie Fulgham, Neil McKenzie, Thu Nguyen and Bill Yost

87

to measure many di�erent kinds of network con�gurations, routing algorithms and

workloads.

The rest of this section is a brief overview of chaotic routing in general and the

design of a prototype CMOS chip that implements the algorithm. Much more detail

on chaotic routing can be found in the literature [12, 15, 13, 66, 73, 74, 75].

The chaotic routing algorithm uses �xed-length packets and a packet routing

technique called virtual cut-through [76]. A packet consists of a sequence of words

called phits (physical units); each phit is the width of a router link. A packet in
ight

in the network has two modes, similar to a slinky. When the network is lightly utilized,

the packet's phits spread out over multiple links and routers, as in an extended slinky.

In the presence of congestion, the packet condenses into a single routing node, like

a compressed slinky. The e�ect is like wormhole routing when there is no resource

con
ict, and store-and-forward under heavier network utilization. (See Section 1.4

for an introduction to wormhole and store-and-forward routing.) Since a packet can

reside fully within a single node, it requires the node to contain one or more packet

bu�ers. Unlike in a wormhole router, packets in a cut-through router have the tail-

following property: once the �rst phit of the packet is transmitted, subsequent phits

are assumed to follow on subsequent clock cycles

2

.

Adaptive routers such as Chaos make their routing decisions dynamically. The

router makes its routing decision for an arriving packet using both the information

in the packet header and the current state of the routing node. A packet makes

progress if it is routed to a node that takes the packet closer to its destination. If

possible, a packet makes progress with every hop. If it can't make progress, the Chaos

router stores the packet into a node bu�er. If bu�er space is exhausted, packets in

the bu�er pool may become de-routed (sent in an un-pro�table direction) to make

room for subsequent arriving packets. In a lightly loaded network, packets travel in

minimal paths. In a heavily loaded network, de-routing can take a packet along a

non-minimal path. Since packets take di�erent paths even in a lightly loaded network,

the presence of instantaneous congestion can cause packets to overtake one another

and arrive out-of-order.

Bolding's dissertation [15] describes the simulation results of chaotic routing com-

2

It is also possible to construct asynchronous versions of chaotic routing, but for simplicity syn-

chronous circuitry is assumed here.

88

W

P

N

S

E

Figure 5.2: Chaotic routing chip: external interfaces and internal bu�ering

pared with two other routing algorithms: the standard dimension-order oblivious

algorithm and de
ection routing, another adaptive algorithm, under both uniform

random tra�c and hot-spot tra�c. Bolding discovered that on mesh topologies,

chaotic routing performs no better than the other algorithms, but on hypercube and

torus topologies chaotic routers perform signi�cantly better than both oblivious and

de
ection routers. The strength of the results provided the motivation to implement

a prototype chaotic router. The router was implemented as a 132-pin CMOS chip,

created by a team of graduate students supervised by Bolding and Ebeling [75].

Figure 5.2 is a diagram showing the external interfaces to the router. There are

�ve bi-directional channels: the NEWS channels (north, east, west and south) that

connect to other routing nodes and the P channel that connects to the processing

node. Also shown are the packet bu�ers, called frames. Each frame is a FIFO for a

full packet. Packets are 20 phits in length. Rectangles shown in light gray represent

input and output frames. The dark gray rectangles represent frames in a separate

bu�er pool known as the multi-queue. The input frames, output frames and the

multi-queue together yield a total of 15 frames. Figure 5.3 is data-
ow diagram of

the chip, organized so that all packets
ow from left to right. This diagram shows

the internal switching network comprising three crossbars. The multi-queue provides

storage for packets that can't make immediate progress because of contention for

network links. The routing algorithm continually tries to set up a connection on the

crossbar from an unconnected input or multi-queue frame to an output frame in a

pro�table direction. If no pro�table direction exists and the multi-queue is full, the

89

input crossbar output crossbar

main crossbar

input frames multi-queue output frames
N

S

E

W W

N

S

E

P P

Figure 5.3: Data paths in the chaotic routing chip

router may de-route one of the packets in the multi-queue by sending the packet to an

output frame of an un-pro�table channel. The input crossbar is slightly asymmetric

because there are no links from the injection frame into the multi-queue.

5.3 Modeling the behavior of Cranium in the simulator

In this section we describe how some of the implementation-dependent features of

Cranium are modeled in the simulator: packet scheduling, number of user contexts,

gather-scatter support and cache coherence (see Section 3.4). In some cases, simple

approximations were used if it was too di�cult to model the intended feature precisely.

The packet scheduling algorithm is �rst-come, �rst-served (FCFS). Only one user

context is supported; multiprogramming and its associated overhead is not modeled.

Gather-scatter capability is not modeled.

The simulator supports both the write-invalidate and write-update models for

cache coherence. Ideally, we would like Talisman to model the multi-level scheme for

coherence discussed in Section 3.4.2. However, Talisman models only a single-level

cache, because it was based on the Meerkat-1 hardware prototype. The single-level

cache in Meerkat-1 is implemented by the Motorola 88200 cache-MMU chip [77]. It

90

was judged to be too di�cult to modify Talisman to model a two-level cache (both on-

chip and external). As an approximation, multi-level is modeled using write-invalidate

with the auto-channels and write-update with the user queue.

5.3.1 Injection and delivery of packets

When Cranium attempts to inject a packet into a router while the router is busy, the

packet goes into an injection queue. Similarly, when the router delivers a packet and

the memory bus is busy, the packet goes into a delivery queue. In hardware these

queues correspond to FIFOs in the router or in the incoming and outgoing links of

the network interface. The default model for Chaos contains an in�nite injection

queue. This in�nite queue model was modi�ed to model a bounded queue by using

backpressure messages from the Chaos simulator back to Talisman. The results in

Chapter 6 show that for the selected benchmarks the size of the injection queue

directly a�ects the maximum delivery queue length. Therefore, a bounded queue

is implemented in the simulator only for injection; the simulator models an in�nite

delivery queue, but in practice the delivery queue is bounded.

5.4 Implementation: integrating the simulators

The implementation of the combined Talisman and Chaos simulator runs Talisman

and Chaos in separate Unix processes, as illustrated by Figure 5.4. The two simu-

lators were compiled and linked together to create a single host executable binary

�le. Upon start-up, Talisman is invoked �rst and then performs a fork-exec to run

the Chaos simulator. After initialization, the two simulators communicate using a

pair of Unix pipes called the request pipe and the reply pipe. Talisman injects sim-

ulated packet tra�c by sending messages to Chaos over the request pipe. Similarly,

Chaos delivers simulated packet tra�c by sending messages over the reply pipe. Pipe

communication transmits packet timing information and synchronizes the two sim-

ulators. Chaos can optionally open an X window and display an animation of the

routing algorithm. Figure 5.5 shows a snapshot of an X window displaying the state

of a simulated 12x12 network of chaotic routing nodes con�gured as a torus. The

colors indicate the utilization of the packet frames inside each router: black indicates

that all frames are idle, dark gray indicates light utilization, and light gray indicates

91

nodesp

Network

X clientM88K + DRAM

CRANIUM

Talisman process Chaos process

Figure 5.4: Integration of Talisman and Chaos simulators. Talisman and Chaos

execute as separate Unix processes. The two communicate using a pair of Unix

pipes, one for requests to the network (e.g. packet injection) and one for replies to

the processor (e.g. packet delivery). The Talisman simulator is itself multithreaded;

each simulated node (processor, memory and network interface) runs as a separate

thread. Chaos opens an X window and updates the display after every simulated

clock cycle.

heaviest utilization. Link utilization is also indicated by the same means. Only the

routing nodes are shown; the processing nodes are omitted for simplicity. Animation

is a very e�ective tool for demonstrating the routing algorithm and for debugging

message-passing programs.

The structure of the combined simulator has a small e�ect on host execution

performance. Using separate processes causes the combined simulator to run slightly

more slowly than if both were run together in the same address space, due to the

overhead of operating system calls to perform interprocess communication. However,

the requirement for rapidly developing the environment was more important than

optimal host execution performance. In particular, minimizing the e�ort required to

bring up and debug the combined simulator was an important goal. Both simulators

by themselves are large stand-alone applications. One potential source of bugs is the

potential for collisions in the global variable name-space. A memory leak in either

simulator might cause no problem by itself but could manifest a serious bug when

the two were combined. Therefore, it was important to integrate the simulators in a

way that isolated bugs due to integration to the communication link. As Section 5.6

explains, the performance of the combined simulator turned out not to be an issue.

The amount of information per message passed between Talisman and Chaos is

92

Figure 5.5: Chaos network animation. Each square represents a Chaos routing node.

The node color indicates activity level; dark squares indicate nodes with no packet

activity, and nodes that are lighter in color re
ect correspondingly greater numbers

of packets occupying internal FIFOs in the routing node. This snapshot was taken

in a network with 144 nodes where the central 64 nodes in the inner 8 by 8 grid are

connected to processing nodes executing a parallel sorting algorithm.

93

CT

Ack
Deliver

Null command

Inject

Figure 5.6: State machine for communication between Talisman and Chaos

minimal. An injection message contains only the start and end node identi�ers, the

cycle count at injection and a packet identi�er; a delivery message contains only the

cycle count at delivery and the packet ID. Talisman maintains a list of packets that are

in
ight in Chaos; entries in this list contain the matching ID and the contents (header

and payload). Chaos does not model the contents of the packet other than its length.

In essence, all Chaos provides for Talisman is timing information. Minimizing the

amount of information per message makes it easy to adapt other networks or routing

algorithms to Talisman.

Figure 5.6 shows the state machine describing the handshake between Talisman

and Chaos. Talisman runs its simulation in state T, and Chaos runs its simulation

in state C. Talisman advances its virtual clock ahead of Chaos's virtual clock. In

state T, Chaos waits for input on the request pipe, either an Inject message or a Null

Command message. When Talisman sends a message to Chaos the state machine

makes a transition to state C. Chaos then runs until its cycle count catches up to the

cycle count of Talisman. Talisman waits for any number of Deliver messages followed

by an Ack message on the reply pipe. As Talisman runs it sends Null Commands to

update the global cycle count and pull the Chaos simulation along. Since Talisman's

virtual clock runs ahead of Chaos, the e�ect is to delay the arrival of packets at the

simulated processors. We compensate for this delay by incorporating it in with the

FIFO latency at the receiving node.

In a preliminary version of the state machine, the arc for Inject was the mirror

image of the Deliver arc. However, space in the pipe is limited. In somes cases

with large numbers of nodes injecting simultaneously, all space in the request pipe

would �ll and cause deadlock. The current solution eliminates deadlock at the cost

94

of requiring an Ack message for every message from Talisman.

5.5 Running the combined simulator

Talisman uses the GNU debugger gdb as its user interface. The executable version of

Talisman is called g88; the name represents the combination of the front end based

on gdb and the Motorola 88000 architecture. Parallel programs that run on the

simulator are written in C and cross-compiled to Motorola 88000 binary format; this

binary �le is the input to the simulator. All processing nodes run the same static

executable program, but may have di�erent dynamic behavior as the program can

compare and branch on the value of the node's identi�er. Nodes communicate by

using the Cranium application programmer interface to send and receive messages.

Cranium appears in the user's address space as a set of memory-mapped registers.

Executable programs for the simulator contain the su�x .88k to distinguish them

from host executable �les. To run the simulator on the program prog.88k, the user

enters a string of the following form to the Unix shell:

% g88 con�g prog.88k arglistT -- arglistC

The con�guration of Talisman is determined entirely at run-time. The user selects

the number of nodes as a starting con�guration, which must be a square number

between 1 and 256, inclusive. Individual nodes can be disabled after start-up, in order

to run with a non-square number of nodes. By contrast, the physical con�guration

of Chaos including topology and number of nodes is determined at compile-time.

Therefore it is necessary to recompile to run with a di�erent network. The con�g

su�x denotes the network con�guration; e.g. the 64-node version is called g88 64.

Talisman checks the number of processing nodes selected; it must be equal to or less

than the number of routing nodes. If there are fewer processing nodes than routing

nodes, the processing nodes are connected to routing nodes in the central square of

the network. This is illustrated in Figure 5.5 where there are 144 routing nodes and

64 processing nodes.

The user speci�es options to both Talisman and Chaos on the command line.

The Talisman argument list arglistT appears �rst and is separated from the Chaos

argument list arglistC by the double dash. Talisman uses all the standard command

95

Table 5.1: Host con�guration data

Parameter Description

Platform Sun Microsystems SPARCstation 10/61

Processor Ross Technologies hyperSPARC 90 MHz (4)

Operating system SunOS 4.1.3 U1

Window system X version 11 release 5 with Motif 1.2.2

Native compiler GNU C compiler 2.4.0

Cross compiler GNU C compiler 2.2.2

line
ags of gdb. Several important options for Chaos are -A to suppress animation,

-I to model an in�nitely fast network and -V to save a trace of all packet tra�c.

The trace indicates all routing decisions made for every packet, including de-routing

decisions. Tracing is useful for replaying a particular animation sequence o�-line.

5.6 Host execution performance of the combined simulator

Table 5.1 displays the programming environment for the simulator. The host

system, a SPARCstation 10/61, is itself a multiprocessor containing four 90-MHz

hyperSPARC processors, each rated at 100 SPECint92. The extra processors con-

tribute little to improving host execution latency but make it possible to run several

independent simulations concurrently. The simulated target architecture is based on

a 20-MHz Motorola 88100 processor [72] and a pair of 88200 cache/memory units

[77]. One 88200 is used as an instruction cache and another as a data cache; they

complement the 88100's separate instruction and data busses. (This separation is also

known as a Harvard architecture.) The 88200 contains 16K bytes of data organized

as 16 byte lines with four-way set associativity. Pages are 4K bytes. Each 88200

contains a hardware translation lookaside bu�er (TLB) with 56 entries for the most

recently used page translations. A physical analog of the simulated system called the

Hypermodule consisted of a plug-in card that contains the 88100 and two 88200s.

The performance of the Hypermodule as measured using the Meerkat-1 hardware

prototype is about 15 SPECint92.

Table 5.2 shows typical values for host execution performance of the combined

simulator, evaluated using a Fast Fourier Transform benchmark running with 16

96

Table 5.2: Slowdown of combined simulator

Option Chaos
ags Wall-clock time (sec) Slowdown

Animation, visible none 606 285

Animation, iconi�ed none 422 198

Generate trace �le -A -V trace�le 208 98

Base rate -A 176 83

In�nitely fast network -I 72 34

simulated processors and a 4x4 network. The simulated execution time is 0.133

seconds. Figures in the slowdown column are calculated by dividing the wall-clock

time of the simulation run by 2.128, the simulated execution time times the number

of simulated processors.

The simulator was run under �ve di�erent options, selected through command-

line arguments to Chaos. The �rst option is to run the simulator with animation

enabled and visible on the desktop. The second option is similar except that the

animation window is iconi�ed (not visible on the desktop). Under the third option,

animation is disabled and Chaos saves a trace of packet tra�c to a disk �le. The

fourth option is the base rate with neither animation nor tra�c tracing selected. The

�fth option selects the in�nitely fast network model, in which the network delivers

packets immediately.

A number of conclusions can be drawn from the timings. Slowdowns are signi�-

cantly worse when the animation is running, even when the X server has relatively

little work to do. By contrast, tracing increases the slowdown only slightly over the

base rate. The in�nitely fast network model shows that Chaos takes about two to

three times as many host CPU cycles as Talisman over the run of the entire program.

When both Chaos and Talisman are active, Chaos takes four to ten times as much

host CPU time as Talisman. However, the simulated network is only active a frac-

tion of the entire running time. While Chaos imparts a signi�cant slowdown, it is not

prohibitive. The aggregate simulated performance of the system is approximately the

same as a machine with a SPECint92 rating of 1.2 (assuming the base version). Large

con�gurations of the combined simulator run proportionally slower than the 16-node

system described in Table 5.2. Given the same base slowdown rate, one simulated

97

second on 256 processing nodes requires about 25,000 host seconds or about 7 hours,

which is within the scope of an overnight batch run.

Overall, the host execution performance of the combined simulator has been ac-

ceptable. Should the need arise in the future, host execution performance may be

improved signi�cantly by focusing on the following aspects:

� Packet ID matching. When a packet is ejected from Chaos, Talisman looks up

the ID in the table of packets in
ight. Currently a linear search is used. A

data structure such as balanced tree or hash table would improve performance

over the linear list when the table becomes large.

� Event driven simulation. Chaos uses a node-based iterator to walk through ev-

ery node in the network on every simulated cycle. Converting the iteration loop

from node-based to event-driven (i.e. packet-based) would signi�cantly reduce

the number of host cycles per simulated cycle when there is little tra�c in the

network. It is unknown how much faster Chaos would run after this conver-

sion. However, it should be signi�cant; tra�c in networks tends to be cyclical,

alternating between periods of high and low activity. Currently, the only opti-

mization in Chaos is to test if the network is empty and return immediately if

so.

� Print functions. It is useful for a parallel program running on the simulator

to call printf() to display the intermediate results at each processing node.

All nodes print directly to the Unix terminal session where g88 was invoked.

Barriers are used to sequentialize printing and prevent interleaving the output

from the simulated nodes at the ASCII character level. Pseudo-code for a

typical print function in a parallel benchmark looks like the following:

/*

* N is the total number of nodes.

* All N nodes execute the same code together.

* Node IDs range from 0 to N-1.

* `my_node' identifies the node ID running this

* invocation of the code.

*/

98

for i = 0 to (N-1) {

if (i == my_node) {

print node i's information

}

global_barrier(N);

}

Node 0 prints �rst, followed by node 1, up to node N-1. From a host execution

standpoint, the problem is that all nodes execute simulated cycles but only

one node performs useful work; all nodes except one simply spin and wait

for barriers to complete. The slowdown becomes quite pronounced when a

large number of nodes are in use. It is usually not important to time the

execution of print functions. One solution is to improve the intelligence of

the Talisman processor scheduler speci�cally to support printing. For instance,

say that when a designated print function is entered, only node 0 is allowed

to execute. Talisman keeps executing instructions on a single node until it is

speci�cally directed to deschedule that node and then schedule the successor

node. Thus, only the node that is actively printing is allowed to execute. The

result is that instructions are executed on the node performing useful work and

no simulated node spends time uselessly spin-waiting for barriers.

The in�nitely fast network was developed to provide faster host execution per-

formance, to help bring up and debug a benchmark quickly before it is run with the

Chaos simulator. However, it has many side bene�ts. It provides a lower bound for

the benchmark's simulated running time; the di�erence in execution time between the

in�nite network and Chaos provides a rough estimate of the cost of communication

in the benchmark. It provides an alternative set of network timings, to help debug

programs that might be incorrectly based on delays or timing loops instead of robust

message passing protocols. It also helps isolate simulator bugs to either Chaos or

Talisman.

5.7 Summary

A test environment was constructed for evaluating Cranium. A software environ-

ment was used because it was easier to construct, more
exible and less expensive

99

than a hardware prototype or a hardware simulator. The test environment was con-

structed from two readily-available software simulation tools: the Talisman processor

simulator and the Chaos network simulator. The test environment allows testing of

simulated parallel systems up to 256 nodes. Host execution performance is reason-

able, with a slowdown on the order of 100 host instructions per simulated instruction

per processor. The logical separation between the processor and the network made

the environment easy to create and debug, and it permits the use of di�erent models

for the network, the memory system and other attributes. The combined simulator

was used to generate all the test results in Chapter 6 and Appendices B and C.

The combined simulator turned out to be an excellent vehicle in general for par-

allel program development. Since the environment is self-contained and runs on a

standard workstation, it greatly reduces the cost of parallel program development

compared with developing directly on a massively parallel computer. The debugging

and animation capabilities provide much more of a hands-on feel than a native system

provides. The detailed timing information is very useful for helping the programmer

locate the bottlenecks in the parallel algorithm. Beyond the scope of this disserta-

tion, the combined simulator has the potential to �nd use in education, such as in an

introductory course in parallel programming.

Chapter 6

EVALUATION OF Cranium

Comparisons are odious.

{ Christopher Marlowe

All unhappiness is caused by comparison.

{ D. A. Burns & Sons, Inc. (Seattle carpet cleaner store)

In this chapter we evaluate Cranium both analytically and empirically. First, we

provide an analysis of the underlying latency and throughput that can be achieved

by an implementation of Cranium. We follow with two types of empirical studies:

one that measures the communication performance of a set of parallel benchmark

application programs and the speedups of these benchmarks, and one that compares

Cranium with other network interfaces. The analysis of latency and throughput

provides bounds on performance that apply to all programs and all message traf-

�c patterns. If messages are long and the communication patterns are simple, then

the resulting performance of the communication system approaches that of the up-

per bound on throughput. However, in many cases the tra�c patterns are complex

and/or the messages are small. These situations increase the software overhead and

reduce the measured performance of the communication system. The empirical stud-

ies complement the analysis by characterizing the performance of the communication

system achieved by real parallel programs.

A goal of the evaluation of Cranium is to compare and contrast its performance

with that of other network interfaces. However, such a comparison is di�cult to per-

form directly. Network interfaces designed for di�erent scalable parallel systems are

seldom interchangeable. For instance, the CM-5 network interface is tailored to the

CM-5 network consisting of two data networks and a control network. The SHRIMP-I

and SHRIMP-II interfaces require the network to deliver packets in order. None of

these interfaces can be plugged directly the chaotic routing network used to evaluate

Cranium. Furthermore, there are too many other variables that a�ect performance:

processor architecture, memory bus and memory module design, and the implemen-

101

tation technology. Our approach to comparing Cranium with other network interface

styles is to use the same processor, memory and network organization, and change

only the network interface. We extract the underlying abstractions upon which the

other network interfaces are based, and modify Cranium in a way that provides the

best approximates these abstractions. Then the performance of the systems using

the modi�ed versions of Cranium are evaluated and compared.

The rest of this chapter is organized as follows. Section 6.1 presents a perfor-

mance analysis of Cranium to determine lower bounds on latency and upper bounds

on throughput. Both point-to-point and broadcast messages are analyzed. Section 6.2

discusses the experiments used to evaluate Cranium empirically. The benchmark suite

consists of �ve parallel programs that were selected by three criteria: relevance, sim-

plicity, and requiring signi�cant communication. The benchmark programs execute

on the Talisman simulator described in Chapter 5. The timing information provided

by Talisman is used to calculate the throughput of the communication system. The

message tra�c patterns used in the benchmarks are broader in scope than the sim-

ple point-to-point and broadcast patterns assumed in the analysis. Cranium allows

the overlap of communication and computation and thereby increases the e�ective

communication performance. Section 6.3 abstracts the logical interface of three other

network interfaces (CM-5, SHRIMP-I and SHRIMP-II) into modi�cations to Cranium

and evaluates them. Section 6.4 describes related work that concerns the comparison

of di�erent network interface styles.

6.1 Performance analysis

Performance analysis results are given in terms of the following parameters based on

the timing models used in the combined Talisman/Chaos simulator (see Chapter 5)

and the implementation of Cranium (see Chapter 7). The relevant parameters are the

network latency, the width of the processor-network link, the packet format, the soft-

ware overhead of slave accesses to the network interface and the performance of the

memory subsystem. We use cycle counts rather than absolute time (e.g. microsec-

onds). As the underlying implementation technology continues to improve over time,

the relative performance of processors and routers is expected to remain constant in

terms of clock cycles [45]. Even though DRAM access latency is not improving at

102

the same rate as processors and networks are, the throughput of memory subsystems

are keeping pace by means of pipelining and widening the memory bus.

� Network latency. The network is a square two-dimensional torus mesh. The

routing decision at each node requires four cycles. The minimum latency for a

packet taking j network hops is 4 � (j + 1) cycles plus the length of the packet.

In particular a single-hop path involving two nearest-neighbor routers requires

8 cycles plus the packet length. These assumptions are based on the routing

algorithm used in the Chaos router [15].

� Processor-network link. The processor-network link is four bytes wide; the max-

imum throughput into or out from the processing node is four bytes per cycle.

Data movement on the link is bi-directional and half-duplex. The direction can

be switched at the beginning of a new packet. (See Section 7.1.3 and Section D.1

in Appendix D.)

� Packet format. A packet consists of 44 bytes. In both the processor-network

link and in the links between routers, the packet is structured as eleven con-

secutive 32-bit physical digits (phits

1

). The �rst three phits are packet header

information; the last 8 phits are packet payload (application program data).

� Network interface. It takes 10 cycles to transfer command or status information

takes between the processor and network interface. The network interface regis-

ters are mapped into the user program's address space. The user program stores

values to these registers to initiate send and receive commands; the program

loads these registers to retrieve status information from the network interface.

These timing assumptions are based on the Motorola 88100 processor [72].

� Memory performance. It takes 10 cycles to load or store 32 bytes (the size of

the packet payload, also the size of a cache line). The bus is synchronous; it is

1

There is a distinction between a physical digit (phit) and a
ow-control unit (
it). A phit is the

amount of information that is transferred in parallel in a single clock cycle. A
it is the amount

of contiguous information that can be halted by backpressure due to congestion in the network.

In a wormhole router a phit and a
it are often the same size; in the J-machine a
it is 36 bits

consisting of two 18-bit phits [22]. In a store-and-forward or virtual-cut-through router such as a

chaotic router, the entire packet can be considered a single
it.

103

Table 6.1: Latency of a single packet message

Network interface Latency cost Total

Send SW Send HW Recv HW Recv SW One hop 8 hops

Ideal, no mem 10 0 0 10 28 56

Ideal, w/mem 10 5 11 10 44 72

Cranium auto, warm 10 7 17 13 55 83

Cranium queue, warm 10 7 22 13 60 88

Cranium auto, cold 10 22 17 13 70 98

Cranium queue, cold 10 22 22 13 75 103

8 bytes (64 bits) wide and it multiplexes address and data. One address cycle

is followed by four data cycles. There is a �ve cycle delay between the address

cycle and its corresponding data cycles. The bus is pipelined and allows the

network interface to read or write memory at the rate of two packet payloads

every ten cycles. These timing assumptions are based on the system bus used

in the Alpha Demonstration Unit (ADU) [64].

6.1.1 Latency of a single packet

Table 6.1 breaks down the latency of a single packet into four components: the

software overhead at the sending node (Send SW), the network interface hardware

latency at the sending node (Send HW), the network interface hardware latency at

the receiving node (Recv HW) and the software overhead at the receiving node (Recv

SW). The �gures for the sender indicate the latency of inserting the head of the packet

into the network; the �gures for the receiver include the latency due to the length of

the packet (11 cycles). The two columns at the right side of Table 6.1 display the total

cycle counts for two di�erent network distances. Values under the column labeled

\One hop" represents the total cycle count based on a nearest-neighbor network

distance of one hop which requires eight cycles to cross. Values under the column

labeled \8 hops" represents the total cycle count based on the network distance of 8

hops which requires 36 cycles to cross. The latter �gure is derived from the average

distance on a 16� 16 torus.

104

10

13

10

5

10

2

10

2

Msg buffer read

FIFO entry/exit

FIFO entry/exit

Header decode/verify

Msg buffer write

10

Receiving

node

Store cmd

Sending

node

Load status and test

network distance

Address lookup

Node lookup

Figure 6.1: Latency of a single packet under the model \Cranium auto, cold"

The table contains six rows describing the cycle counts for six di�erent cases. The

�rst two rows represent lower bounds that a real network interface cannot exceed.

The �rst row, labeled \Ideal, no mem," represents an interface that does not transfer

information to or from the memory subsystem; it assumes that all packet data are

transferred directly to and from network interface registers. The second row, labeled

\Ideal, mem," includes the DRAM access latency at both the sender and the receiver.

The cycle counts for the two rows representing the ideal network interface re
ect only

the command and status accesses by the processor in the non-memory case, plus the

cost of the memory accesses for the packet payload in the memory case. The cost of

FIFO entry/exit, header decode and the receiving node's test and branch are omitted.

The cost of this test and branch can be eliminated when the processor architecture

uses a synchronization mechanism like the full-empty bits in the Tera MTA-1 [46].

The cycle counts contained in the four following rows are based on the simulator

described in Chapter 5 and the timing analysis of the Teschio implementation of Cra-

nium presented in Section7.4. The four cases come from two situations at the sender

(cold channel, warm channel) and two at the receiver (automatic receive channel,

queue channel). Recall that in the cold channel case, the physical node identi�er

and the physical bu�er address must be fetched by the network interface from main

memory. In the warm channel case, the physical node ID and the physical bu�er

address have been accessed recently and are cached in the network interface, thereby

avoiding this lookup step.

Figure 6.1 shows an in-depth breakdown of the components of latency under

the case \Cranium auto, cold". Each rectangle in the �gure represents a di�erent

105

component; total time accumulates from left to right. In some circumstances, the

rectangles are overlapped to represent internal pipelining. The �rst component is a

store command from the processor. Since the send channel is cold, both the bu�er

address and the node identi�er must be looked up in memory. These lookups are

pipelined and take a total of 15 cycles; this cost is zero when the send channel is

warm. The next component is reading the packet payload out of memory. This

operation takes a total of 10 cycles but the �rst phit of the payload is ready at the

sixth cycle. The packet goes into a FIFO and from the FIFO into the network; it

takes one cycle to enter the FIFO and one to enter the network. When the packet

is delivered from the network it again takes two cycles to enter and exit the FIFO

at the receiver. It takes four cycles for the receiver to decode and verify the header.

Then it takes 10 cycles to write the packet payload into memory. The processor at

the receiving node takes 13 cycles to load the status information from the interface,

then test the status and branch.

6.1.2 Throughput

The per-node throughput is the e�ective rate at which the network interface injects

or delivers a message, calculated as the total number of bytes divided by the total

number of clock cycles. The throughput of the processor-network link is a function of

the implementation parameters w, y, h, v

msg

, v

packet

and g. w is the raw bandwidth

the processor-network link. y is the length of the packet payload in bytes, the portion

of the packet that is usable by application programs. h is the length of the packet

header in bytes. v

msg

and v

packet

represent software costs: v

msg

describes the number

of cycles lost to software overhead per message and v

packet

is the number of overhead

cycles per packet. g is number of cycles it takes to send a single packet in a multiple

packet message, equal to the length of a whole packet (the header plus the payload)

plus w times v

packet

. Equation 6.1 calculates the peak throughput TP

peak

given w,

y, h and v

packet

.

TP

peak

= y=g =

w � y

y + h+ w � v

packet

(6:1)

v

packet

can be reduced to zero if the network interface uses DMA (see Sec-

tion 2.1.2), but not if it is based on programmed I/O. In the implementation of

106

32 128 512 2048 8192

Message size (bytes)

0.0

1.0

2.0

3.0

B
yt

es
 p

er
 c

yc
le

(a) Nearest neighbor

32 128 512 2048 8192

Message size (bytes)

0.0

1.0

2.0

3.0

(b) 8 network hops

Ideal interface
Cranium, warm
Cranium, cold

Figure 6.2: Throughput of a point-to-point message

Cranium in Chapter 7, w is four bytes per cycle, y is 32 bytes, h is 12 bytes and

v

packet

is zero. Therefore TP

peak

is 4� 32=44 = 2:91 bytes per cycle.

The actual throughput of a multiple-packet message is somewhat less than TP

peak

due to the startup cost l of sending the �rst packet, i.e. the latency due to the distance

the packet travels through the network plus the length of the packet. Pipelining in

the network and the network interface hides this latency for subsequent packets.

Equation 6.2 calculates TP(k), the throughput of a k-packet message:

TP(k) =

k � w � y

w � (l + v

msg

) + k � (y + h+ w � v

packet

)

(6:2)

Figure 6.2 displays a pair of semi-log graphs of TP(k) describing the throughput

of a point-to-point message. Each graph contains three curves representing two cases

for Cranium (auto-channel cold and auto-channel warm) and the ideal interface. We

assume that messages must start and end in memory, so the non-memory ideal case

from Table 6.1 is not included. Figure 6.2a represents the throughput when sending

to a nearest-neighbor node and Figure 6.2b represents the throughput when sending

to a node eight network hops away from the sender. Higher curves in the graphs

represent higher performance. As the length of the message increases, the di�erence

between any two of the three graphs becomes increasingly small. For a message size of

2048 bytes, Cranium yields 95% of the throughput that is achievable using the ideal

network interface. The worst case for Cranium is for a cold channel with a message

length of a single packet and a network distance of a single hop; the throughput in this

107

time

time

A

B

A

B

(a)

(b)

Figure 6.3: Sliding window protocol

case is only 60% of the achievable throughput using the ideal interface. Replacing the

cold channel with a warm channel and keeping the other parameters �xed improves

the percentage of throughput achieved from 60% to 80%.

Very long messages

Cranium cannot directly transmit a message longer than an MMU page directly

using a single channel. Very long messages are handled by using a software layer

on top of Cranium that partitions the transfer across multiple channels. A message

whose length is only a few pages can be transmitted by activating several channels

concurrently. However, in general the length of the message in pages may be larger

than the total number of channels. Therefore a software protocol manages the reuse

of channels for a very long transfer. One such protocol is known as the sliding-window

protocol. Figure 6.3a illustrates how the protocol works. Node B waits to receive a

page of data from node A; a page of data is represented in the �gure by each group of

four consecutive downward diagonal lines. When all packets in the page arrive, node

B sends a synchronization packet back to node A; the sync packets are represented by

the upward diagonal lines immediately to the right of each group of data packets. The

sync packet indicates that the receiver is ready to receive the next page of data from

the sender. After sending the page, node A waits until it receives the sync packet from

108

B before continuing. In Figure 6.3a there is only one channel used for sending. The

problem with using a single channel is that the bandwidth of the network link is not

utilized e�ciently; node A does not transmit while it is waiting for the sync packet

to arrive. To increase the network link utilization and decrease the cycle count, two

channels are used concurrently (Figure 6.3b). One channel actively transmits while

the other waits to synchronize.

Equation 6.3 describes TP(k;m), the throughput of very long transfers (i.e.

greater than two MMU pages in length) using the scheme described above. k is

the number of data packets transferred and m is the number of packets per page.

TP(k;m) =

k � w � y

w � (l + v

msg

) + (k + dk=me � 2) � (y + h+ w � v

packet

)

(6:3)

The subexpression dk=me � 2 in Equation 6.3 represents the number of sync

packets needed when two channels are used. In essence, the only extra cost incurred

for transmitting very long messages is the bandwidth penalty of the additional sync

packets. There is no additional latency penalty assessed for the sync packets. The

processor and the network interface operate independently; Cranium allows send or

receive commands to be accepted while DMA is in progress. The extra processor

instructions required to react to the sync packet and start the next send channel

transfer are overlapped with the DMA in progress.

For message sizes of 16K bytes and above, Cranium achieves 98% or greater of

the peak throughput of the channel. This result comes from using Equation 6.3 with

k = 512, l = 50 and m = 128. A plot of TP(k;m) as k increases beyond 512 for

the three cases used in Figure 6.2 is practically
at with the three curves closely

approaching the asymptotic value of 2.91. Indeed, software support for very large

messages is e�cient enough to eliminate the need for supporting this feature directly

in hardware.

6.1.3 Broadcast

A broadcast operation distributes information from a single node (known as the root

node) to all the other nodes. Broadcasting is a common operation in many parallel

application programs. An example is the Gaussian elimination program described

in Section 6.2.2, in which the pivot row located at the root node is broadcast to all

109

Root Root Root Root4 4 4

6 62 2

15

7 3

Figure 6.4: A hypercube topology for tree broadcast

other nodes. Two operations related to broadcasting are barriers and global com-

bines. Barriers and global combines execute in two phases: a reverse broadcast

(fan-in) followed by a broadcast (fan-out). The di�erence between a barrier and a

global combine is that a barrier carries synchronization information only. In a global

combine, values are sent to the root node and combined using a binary arithmetic

operation that is associative and commutative. Common combining operations are

addition, multiplication and maximum. The root node serializes the execution of

both types of operations; all nodes must enter the barrier or global combine before

any node observes the end of the barrier or the result of the global combine.

There are a variety of methods for implementing a broadcast on a point-to-point

network [78]. The most obvious approach is for the root node to send single messages

directly to all the other nodes. In a system with p nodes, the root node sends p� 1

messages. This approach works well only if p is small. The time it takes for the last

node to receive the message is the single message latency plus the time it takes the

root node to inject the previous p�2 messages. As the number of nodes increases, the

bandwidth bottleneck at the root node dominates the total time. A more e�cient

technique for large p is a tree broadcast. One type of tree broadcast is based on

hypercubes of increasing dimension [4]. The root node (node 0) sends to nodes p=2,

3p=4, 7p=8 and so on. Node p=2 sends to node p=4, 3p=8, and so on, recursively. In all

there are log p phases. Figure 6.4 illustrates the case for p = 8. If the receiving nodes

could retransmit at the same instant that the sender stopped sending then the total

time would be exactly kg log p, where k is the number of packets in the message; this

expression is a lower bound on the latency of tree broadcast. By similar reasoning an

upper bound on throughput of a tree broadcast of a long message is TP

peak

/log p.

Under realistic assumptions of network traversal time and the overhead at the receiver,

the messages comprising a phase of the broadcast are not perfectly synchronized.

110

4 16 64 256 1024

Number of nodes

16

32

64

128

256

512
T

im
e

(c
lo

ck
 c

yc
le

s)

Cranium, cold
Cranium, warm
Ideal interface, uses memory
Ideal interface, no memory
EBN

Figure 6.5: Latency of optimal tree broadcast a single packet message

For example, in Figure 6.4, the packet from the root node to node 6 would arrive

sooner than the packet from node 4 to node 2 due to the receive overhead at node

4. When these assumptions are taken into account, it turns out that the hypercube

scheme is not always the optimal pattern for tree broadcast. Culler et al. describe

the construction of the optimal pattern for broadcast on a point-to-point network

[79, 80, 81]. The pattern for optimal tree broadcast is a function of the relative

values of the g, the network distance and the software overhead. In general a faster

broadcast pattern is constructed by increasing the branching factor at each sending

node to decrease the height of the tree compared with the hypercube scheme.

The bounds on latency and throughput of tree broadcast determine the bounds

on latency and throughput for barriers and global combines based on trees. The

optimal pattern for the fan-in phase of the global combine is exactly the reverse

of the optimal pattern for broadcast [80]. The lower bound on execution time for

barriers and global combines is therefore twice the lower bound for broadcast. Global

combines are slightly slower than barriers due to the extra time needed to execute

the combining operation. A lower bound on latency of barriers and global combines

is 2kg log p. An upper bound on throughput of global combines is TP

peak

/log p,

the same as the throughput bound on broadcast, because twice the number of bytes

are communicated in twice the time. Thus, it is simple to apply the analysis of the

performance of tree broadcast to determine bounds on the performance of barriers

and global combines based on trees.

To improve the performance of application programs that use broadcast, some

111

multicomputers use dedicated hardware and/or a separate broadcast network to re-

duce the latency of broadcasting. A well known example in a commercial system is

the CM-5 control network [14]. For the torus network, an elegant solution is provided

by the Express Broadcast Network (EBN) [61]. EBN is a low-cost extension to mesh

and torus data networks for supporting low-latency broadcast of control messages.

EBN increases the width of each link in the existing network by one extra wire. The

broadcast pattern in EBN on the torus is a wavefront that expands by one hop per

clock cycle. The total broadcast time is

p

p, the diameter of the network, plus the

software overhead at the sender and receiver. The latency of broadcasting under EBN

grows according to the square root instead of the log of the number of nodes, but

its constant factor is much lower than that of the point-to-point network broadcasts.

For a network whose size is a few thousand nodes or less, EBN provides a much more

e�cient mechanism than point-to-point broadcast.

Figure 6.5 is a log-log graph that plots the latency in clock cycles of an optimal

broadcast of a single packet versus network size. Lower curves indicate better per-

formance. Assuming the standard point-to-point network is used for broadcasting,

four kinds of network interfaces are compared: the two Cranium auto-channel models

(warm and cold) and both the with-memory and non-memory versions of the ideal

interface. For comparison, a �fth curve displays the latency of EBN. The curves

for Cranium do not converge with the curves for the ideal interface; the di�erence

between the two pairs of curves is slightly less than a factor of two. The reason is

that broadcasting a single packet is not as e�cient as sending a long point-to-point

message under Cranium. Each packet in the broadcast requires a separate send com-

mand; in a point-to-point message up to a page in length, one send command su�ces.

The software overhead of one send command per packet increases the gap between

packets from 11 to 20 cycles. In the ideal interface the gap between packets in a

single packet broadcast is 11 cycles, the same as in a long message.

Figure 6.6 is a log-log graph that shows the throughput of a broadcast of a 1K byte

message in bytes per cycle. For comparison, the curve for the upper bound described

by TP

peak

/log p is included. In this case, Cranium achieves the large message gap

of 11 cycles rather than 20 cycles in the single packet broadcast case. The three

curves describing Cranium auto-channel warm, Cranium auto-channel cold and the

ideal interface are nearly coincident.

112

4 16 64 256 1024

Number of nodes

0.25

0.35

0.50

0.71

1.00

1.41

B
yt

es
 p

er
 c

yc
le

 p
er

 n
od

e
BWpeak / log p
Ideal interface
Cranium, warm
Cranium, cold

Figure 6.6: Throughput of broadcasting a 1 Kbyte message

The performance results from this study show that Cranium is an e�ective in-

terface for broadcasting data values. Cranium provides performance that is within

a factor of two of the ideal interface for the broadcast of minimum sized messages,

and virtually identical performance for tree broadcast of long messages. However,

the broadcast of control information (i.e. support for barrier synchronization) is bet-

ter suited to a faster mechanism provided by the network if possible. The Express

Broadcast Network is one such facility that works directly with torus networks. The

latency of broadcast under EBN is a tiny fraction of the latency of tree broadcast

over the standard point-to-point network.

6.2 Empirical evaluation of Cranium

A suite of parallel benchmark programs was created to evaluate Cranium empirically.

This evaluation technique complements the analytic approach by providing a more

realistic determination of the performance of the communication system. The bench-

marks involve a mix of large and small messages using a variety of communication

tra�c patterns; they are computation-intensive and the interaction between compu-

tation and communication is complex. Execution time is minimized by overlapping

communication and computation; wherever possible, the programs communicate one

set of data while simultaneously operating on a di�erent set of data.

The rest of this section is organized as follows. Section 6.2.1 introduces the goals

used in creating the benchmark suite. Section 6.2.2 motivates and describes each of

113

the �ve benchmarks in the suite. Section 6.2.3 discusses the implementation of the

benchmarks. Section 6.2.4 lists the quantities measured in each run of the simulator.

Section 6.2.5 shows the computation of the maximum performance of the benchmarks

if the communication cost is ignored. Section 6.2.6 describes the signi�cance of the

communication cost; Section 6.2.7 shows the actual performance (speedup) of each

benchmark. Section 6.2.8 compares the empirical performance of the communica-

tion system with the analysis from Section 6.1. Section 6.2.9 summarizes the ideas

presented in this section.

6.2.1 Goals

A good parallel benchmark has three qualities: relevance, simplicity and signi�cant

communication. The parallel programs in the benchmark suite are based on relevant

problems in computer science or one of the physical sciences such as chemistry. Sim-

plicity provides several bene�ts for a benchmark: quick construction, ease of analysis

and ease of source-level optimization. Simple programs can �t entirely within the

instruction cache and thereby reduce cache e�ects on the running time.

The time spent communicating should comprise a signi�cant fraction of the total

running time of the parallel program. The idea is to avoid so-called embarrassingly

parallel applications that perform very little communication. These applications often

deliver good speedups using even a low-bandwidth communication subsystem such

as Ethernet. Since there is little stress on the communication system, embarrassingly

parallel applications provide no compelling reason to improve the performance of the

network interface. On the other hand it makes no practical sense to insert unnecessary

communication into a benchmark. Therefore it is equally important is to minimize

the computation time by making the benchmark as e�cient as possible. Otherwise,

ine�ciencies in the computation may mask the role of communication as a factor in

the overall performance of the benchmark.

There are two contrasting styles of parallel program execution: balanced and un-

balanced. Communication patterns in a balanced program tend to be regular. All

processors share the workload equally; no processor spends considerably more time

waiting than any of the others. Unbalanced programs on the other hand tend to

be irregular. The communication patterns are often dependent on the input data

and cannot be statically optimized. Some processors are idle while others are busy,

114

resulting in less than optimal speedups. Load imbalance often dominates the total

running time of the parallel application program. A well-balanced program is more

likely to isolate the network interface as the performance bottleneck than an unbal-

anced program is. Problems that have sparse data structures, such as particle-in-cell

simulations, tend to be di�cult to load-balance [82]. While these types of computa-

tions are important and would need to work well with Cranium in principle, they are

less suitable as benchmarks for detailed comparison of network interface features.

The most popular choice for an e�cient implementation language style is the

sequential imperative style. Usually a C or Fortran program is augmented with a

message-passing library such as the Intel NX library [7]. This technique for parallel

program development is known as hand-crafted code, where each communication

operation is stated explicitly in the program. The competing approach is to write

programs in a high-level language that is designed for parallel programming. The

HLL program is translated into a message-passing program by a source-to-source

compiler. While research prototypes of parallel HLL implementations are improving

[83], the message-passing programs produced by commercially available parallel HLL

compilers do not yet provide the e�ciency of hand-crafted message-passing code.

6.2.2 Suite of parallel benchmark programs

The following subsections describe the benchmarks that comprise the suite used to

evaluate Cranium: Fourier transform, bucket sort, Jacobi successive-over-relaxation,

Gaussian elimination and dense matrix multiply.

Fast Fourier Transform

The discrete Fourier Transform (DFT) [84] is a standard computation in digital signal

processing for converting a vector of k complex points sampled in the time domain into

a vector of k complex points in the frequency domain. DFT generalizes to multiple

dimensions; for simplicity the benchmark used in this chapter uses one-dimensional

input and output data sets. A straightforward coding of DFT is a matrix-vector

product that requires O(k

2

) complex multiplications. Fast Fourier Transform [85] is

a variant of DFT that is more computationally e�cient; the FFT algorithm executes

O(k log k) complex multiplications.

115

FFT executes in log k phases of computation. The �rst log p phases require both

communication and computation, where p is the number of processing nodes. Each

node in each phase communicates with the conjugate node speci�c to the phase. The

ID of the conjugate node is the ID of the given node with one of the bits comple-

mented. In the �rst phase, this bit is the most signi�cant bit of the ID. On each

successive phase the next least signi�cant bit is complemented, on down to the least

signi�cant bit. The �nal (log k � log p) computation phases require no interprocessor

communication

2

. The computation in FFT consists of the k complex multiplications

per phase plus some bookkeeping such as computing the complex roots of unity

needed for the phase. Each complex multiplication requires four scalar multiplication

operations. Communication is overlapped with the bookkeeping operations but not

the multiplications. Nevertheless, FFT parallelizes very well even when the input

data set is relatively small compared with the number of processing nodes.

Bucket sort

Sorting is a ubiquitous computer application. A sizable fraction of the world's com-

puting cycles go to sorting database records, bank transactions and so on. The sorting

benchmark given here is bucket sort, similar to radix sort. For simplicity only the

keys are sorted. Each processing node begins with an initial set of keys and sorts

them locally, then partitions them into buckets. Each bucket is sent to its designated

destination processor, where a �nal merge is performed. In general, load balancing

may be a problem for the �nal merge if the number of keys in each bucket varies

greatly. One strategy to improve load balancing is to perform a two-pass algorithm.

In the �rst pass the input data set is sampled to determine the boundaries of each

bucket dynamically [86], so that all buckets will contain roughly the same number of

keys when the sorting operation is complete. To simplify this implementation of the

sorting benchmark, the bucket boundaries are determined statically. The keys are

generated using a uniform random distribution. During most runs of the program,

the variation in bucket size tends to be small; the overhead due to load imbalance does

2

There is a �nal communication phase in FFT called descrambling that places the output data

in the same order as the input data set. In descrambling, each node communicates with its

conjugate node whose ID is the ID of the original node with the bits in reverse order. For

simplicity, descrambling is not implemented in this FFT benchmark.

116

not dominate the running time. The communication pattern in the parallel bucket

sort algorithm is all-to-all. There is no overlap between sorting and communication,

but communication overlaps with other communication. Since the number of keys

per bucket varies across di�erent runs of the program, the length of each message is

determined at run-time.

Jacobi successive-over-relaxation

The Jacobi algorithm provides a solution to a �nite-element problem such as a heat-

transfer problem. Its output is a discrete approximation rather than an exact analytic

solution. The simplest non-trivial version is in two dimensions. The data set consists

of a rectangular 2-D array of real numbers. Values on the edges of the array are

constant through the entire execution. The interior values of the array change on each

iteration and converge to their �nal values. For each iteration, each value is computed

as the average of its four nearest neighbor values to the north, south, east and west.

The di�erence in the value in the same location on two successive generations is called

the error term. The largest error over the entire array is computed on every iteration;

when this maximal error is smaller than a user-speci�ed constant value, the algorithm

terminates.

To parallelize the sequential version of Jacobi, the array is divided into rectangular

tiles. Each processor updates the values in its tile on each iteration. Internode com-

munication is necessary for computing values on the edges and corners of each tile but

not for values in the interior of a tile. Processing nodes that share a north-south tile

border pass row values, and nodes that share an east-west border pass column values.

Because column values are not contiguous in memory, they must be gathered into a

contiguous block for DMA transfer before sending, and scattered from a contiguous

block into columns at the receiver. The global error term is collected and distributed

via a global combine operation. Communication is overlapped with computation in

two ways: computation of the tile interior values is overlapped with nearest neighbor

communication, and the local copying operations to implement gather and scatter

are overlapped with the global combine. As a result, Jacobi achieves good speedups

when the data set size is su�ciently large. If the data set size is small, the global

combine is the critical delay in the benchmark.

117

Two versions of Jacobi were developed: one that performs a global combine to

test the termination condition for every iteration, and another that performs a �xed

number of iterations and terminates. Because the error term decreases monotonically,

the termination test could occur less frequently (e.g. once every four iterations) and

the resulting program would still return the correct result. The tradeo� is that the

program will execute a number of extra iterations and may cause the program to run

more slowly. Determining the optimal number of iterations to skip seemed to be a

di�cult problem; the simplest solution was to eliminate the global combine entirely.

The latter version more closely re
ects the maximum throughput that the benchmark

can achieve from the network interface.

Gaussian elimination

Gaussian elimination (or Gauss for short) is a standard algorithm for inverting an n�n

matrix to solve a system of linear equations [87]. Here is the implementation used in

this chapter. The matrix is partitioned into rows, with one or more rows allocated to

each processing node. The algorithm has n phases. In phase k, the values in every row

of the matrix are divided by the value in the kth column of that row (if it is nonzero).

By subtracting row k (the pivot row) from all the other rows, the values in column k

of the other rows are zeroed (eliminated). By repeating this process, nonzero elements

are left only along the diagonal of the matrix. Because the same value is used as the

divisor for every value in the row, a simple optimization is to take the reciprocal of the

divisor and multiply every value in the row by this reciprocal. The computation runs

faster because
oating-point multiplication is about six times as fast as
oating-point

division on the 88100. The algorithm performs n � k multiplications per phase per

row, for a total of n

2

=2 multiplications per row per processor. The communication

pattern is a broadcast from the pivot row processor to all the other processors on

each phase. The size of the message that is broadcast is the entire length of the row

during the �rst iteration; after each iteration there is one fewer value that needs be

transferred, so the size of the message declines linearly until the �nal iteration where

the length of the message to broadcast is a single packet. Gauss parallelizes well with

a su�ciently large input data set because it is able to overlap its communication with

the multiplication operations.

118

Dense matrix multiply

Computing the product of two matrices is a common operation in many scienti�c pro-

grams. There are two common cases: dense, where the input matrices contain mostly

non-zero elements, and sparse, where the input matrices contain mostly zero elements.

In an optimal computation of a sparse matrix product, most of the multiplication op-

erations can be eliminated. However the remaining multiplication operations may be

unevenly distributed across the computing nodes, creating a load balancing problem.

By contrast, all the partial products in a dense matrix product must be computed,

and it is simple to distribute them evenly across all the computing nodes. Therefore

the dense matrix product solver has good load balance and is a better benchmark for

evaluating network interfaces than sparse matrix product is.

The standard algorithm for dense matrix multiplication (DMM) is called Cannon's

algorithm [88]. The algorithm is very regular and well suited to special-purpose

systolic cellular automata hardware [89]. It has been implemented on general-purpose

multicomputers using a variety of parallel high-level languages including C* [90], Spot

[91] and Orca C [92]. Here is a brief description of the algorithm. For simplicity, the

two input matricesA and B are square and each contains n�n elements. The desired

product C is AB and is also an n � n matrix. The initialization step in Cannon's

algorithm requires the array elements in the rows of A and the columns of B to be

rotated around (skewed) as follows:

A

0

[i; j] = A

input

[i; (i+ j) mod n] (6:4)

B

0

[i; j] = B

input

[(i + j) mod n; j] (6:5)

The algorithm proceeds as a series of n iterations. In the �rst iteration, the skewed

arrays A and B are overlaid and the scalar product at each array position is stored

into C. For each subsequent iteration, the rows of A are rotated one position left and

the columns of B are rotated one position up. Again the scalar products are taken

at each array position and summed into C. Another way to state the algorithm is

through the recurrences:

C

0

[i; j] = A

0

[i; j] �B

0

[i; j] (6:6)

119

A

k

[i; j] = A

k-1

[i; (j + 1) mod n]; for k = 1 to n� 1 (6:7)

B

k

[i; j] = B

k-1

[(i+ 1) mod n; j]; for k = 1 to n� 1 (6:8)

C

k

[i; j] = C

k-1

[i; j] +A

k

[i; j] �B

k

[i; j]; for k = 1 to n� 1 (6:9)

In each iteration there are n

2

multiplications and n

2

additions. For the complete

algorithm there are a total of n

3

multiplications and n

3

� n

2

additions.

Cannon's algorithm parallelizes very intuitively. The array data are distributed

equally across the computing nodes. Rotating the input arrays requires only nearest-

neighbor communication. The standard approach alternates communication and com-

putation phases without overlap, but a simple transformation makes it possible to

overlap communication and computation.

There are two approaches to distributing the array data across the processing

nodes [93]. The two-dimensional approach is to divide the arrays into rectangular

tiles as in Jacobi. The one-dimensional approach is to distribute rows of the input

arrays across the processing nodes as in Gauss. In the two-dimensional approach, row

information from A is sent to the neighbor on the left and received from the neighbor

on the right. Likewise, column information from B is sent to the neighbor above

and received from the neighbor below. If gather-scatter hardware is available it can

be used to aggregate the values in each row into one DMA operation and the values

in each column into a second DMA operation. Otherwise there must be a separate

message for each row and each column in the tile managed by the processing node.

The communication pattern is simpler under the one-dimensional partitioning

than under the two-dimensional approach. In the one-dimensional approach, each

processor contains all the row information from A it needs at initialization. Only

column information from B is communicated at each iteration. Furthermore the

column information from B becomes a single contiguous DMA transfer and thereby

eliminates the need for gather-scatter operations. A single long DMA is more e�cient

than a series of short DMA transfers. The impact is that the one-dimensional data

partitioning improves the performance of the communication system substantially

over the two-dimensional partitioning and results in a higher performance implemen-

120

tation of the benchmark. Therefore the implementation of DMM in the benchmark

suite uses a one-dimensional partitioning.

6.2.3 Benchmark implementation

The benchmarks used in this chapter were written in C and make direct use of

the Cranium message-passing primitives. Every e�ort was made to ensure a high

quality implementation of each benchmark. Where appropriate, optimizations were

performed in the source code. Loops were unrolled to take advantage of the �xed size

of the input set. The programs were then compiled by GCC version 2.2.2 with full

optimization enabled.

In order to measure everything needed to evaluate the network interface, three

di�erent versions of each benchmark were created:

� A uniprocessor version that provides the basis for computing speedups.

� A message-passing version that has alternating phases of communication and

computation that do not overlap, so that each can be measured separately.

� A message-passing version that overlaps communication and computation in

order to minimize the total execution time.

The implementation of the benchmarks requires the number of processors p to

either be a power of 2 or a square number. The values chosen for p for the measure-

ments of the parallel versions of the benchmarks were 4, 8 or 9, 16, 32 or 36, and

64.

The input data sets for each benchmark are described in Table 6.2. All the bench-

marks use a constant size input data set across all con�gurations of the simulator.

The impact of a constant size input set is that the relative cost of communication

becomes increasingly large as the number of nodes increases. The goal is to make

communication signi�cant rather than to determine the most e�cient problem size

for a given number of nodes. An alternative strategy is to scale the input data set

with the number of nodes, and as a result the relative cost of communication may or

may not increase as the number of nodes increases.

121

Table 6.2: Input data set sizes

Benchmark Input data set

DMM 8192 (2x64x64) double-precision values

FFT 2048 (2x1024) double-precision values

Gauss 4096 (64x64) double-precision values

Jacobi 4096 (64x64) single-precision values

Sort 8192 integer keys

6.2.4 Benchmark measurements

Using the three versions of the benchmarks, the following quantities are measured

with respect to p:

� I

comp

(1) is the number of instructions executed in the uniprocessor version of

the benchmark. Integer and
oating-point instructions are weighted equally.

� C

comp

(1) is the number of clock cycles executed in the uniprocessor version of

the benchmark.

� C

ol

(p) and C

nol

(p) are the numbers of clock cycles it takes to execute the over-

lapping and the non-overlapping parallel versions of the benchmark, respec-

tively. In programs that are able to overlap communication and computation,

C

ol

(p) < C

nol

(p). In benchmarks such as Sort that do not overlap communica-

tion and computation, C

ol

(p) = C

nol

(p).

� C

comp

(p) and C

comm

(p) are the numbers of clock cycles it takes to execute only

the computation part and only the communication part of the non-overlapping

version of the benchmark, respectively. By de�nition, C

nol

(p) = C

comp

(p) +

C

comm

(p). Computation and communication occur in alternating phases. Each

phase is concluded using a global synchronization operation; the cycle count in

each phase represents the maximum time taken across all nodes to complete the

phase. The number of clock cycles lost to load imbalance in either computation

or communication is not measured. The communication measurement includes

122

C_compC_comm

C_nol

C_comm

C_comp

C_diff

C_ol

(a) (b)

Figure 6.7: Non-overlapping communication vs. overlapping communication

all the software overhead associated with message passing: setting up send and

receive bu�ers, computing addresses and indices, polling, etc.

� The derived quantity C

di�

(p) is equal to C

ol

(p)� C

comp

(p). It is the e�ective

cost of communication, the total cost of communication minus the part that is

overlapped with computation. See Figure 6.7.

� B

comm

(p) is the total number of bytes communicated in the benchmark per

node averaged over all nodes. Because packets are both sent and received, each

byte is counted twice: once in the sender's interface and once in the receiver's.

Two separate measurements are taken for C

ol

(p), C

comm

(p) and B

comm

(p) in order

to re
ect two models of the memory system that are simulated. The measurements

provided by the two models bound the performance of the communication system.

The upper bound (pessimistic) measurement is based on the default memory timing

model used in Talisman. In this model, only one memory transaction may be in

progress at a time, and the DRAM access latency is 10 clock cycles. Pipelined or

split-transaction memory busses have become commonplace in 1995 for connecting

high-performance RISC processors with memory; the default DRAM timing model

in Talisman does not re
ect this trend. Therefore a second memory bus model is

used to approximate this modern high performance memory bus technology. In this

model, the DRAM access latency for the network interface is zero. However when the

processor misses in the cache and accesses main memory, the DRAM latency is kept

at 10 cycles in order to keep the computation cost the same under both models. The

zero-latency memory model provides a lower bound on the communication cost and it

better approximates the performance of long messages, because the latency of nearly

123

every DRAM access can be hidden (overlapped). This assumption is optimistic in

the case of short messages because the DRAM latency is less likely to be hidden. The

di�erence between the two measurements indicates the sensitivity of the benchmark

to the performance of the memory system. The impact of the optimistic model is

to remove the memory system bottleneck from the communication system, so that

messages can utilize the full bandwidth of the network link.

Both memory models that are simulated are di�erent than the memory model

used in the implementation of Cranium in Chapter 7. The memory model described

in Section 6.1, based on the Alpha Demonstration Unit's system bus, is the model

used in the implementation chapter. The implementation's data bus is twice as wide

as the simulated data bus (64 bits vs. 32); the former has higher throughput than the

latter (a cache line every �ve cycles vs. a cache line every eight or eighteen cycles).

The network is the same in all three versions. The impact of using a fast memory

bus is that it improves the performance of the processor by servicing requests to the

external cache more rapidly. However, the network is the performance bottleneck for

both the implementation and the optimistic simulated memory model; consequently

the peak throughput of the interface is the same for these two cases.

Sections 6.2.5 through 6.2.9 present the results of the experiments based on the

�ve parallel benchmark programs. The raw measurements and the derived quantities

based on these measurements for the selected values of p are displayed in Appendix B.

6.2.5 Determining maximum speedup and e�ciency

The maximum speedup of a parallel benchmark is the speedup that could be achieved

if the cost of communication were zero; it is the amount of speedup that the implemen-

tation is guaranteed not to exceed. Equation 6.10 is used to determine the maximum

speedup:

SU

max

(p) = C

comp

(1)=C

comp

(p) (6:10)

Figure 6.8a represents a typical format for displaying speedup curves. Both axes

of the graph are logarithmic to make better use of the area of the graph; with linear

axes most of the points are bunched at the lower left corner of graph. All �ve of

the benchmark programs exhibit good speedups as they lie on or near the diagonal

representing linear speedup. Since it becomes di�cult to distinguish points from

124

1 4 16 64

Number of nodes

1

2

4

8

16

32

64

Sp
ee

du
p

(a)

4 8 16 32 64

Number of nodes

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

E
ff

ic
ie

nc
y

(b)

Linear
Gauss
DMM
Jacobi
FFT
Sort

Figure 6.8: Maximum speedup and e�ciency of benchmark programs

di�erent curves because they lie nearly on top of one another, Figure 6.8b plots

e�ciency instead of speedup. The e�ciency is the speedup divided by the number of

nodes. The maximum e�ciency E�

max

(p) is calculated using Equation 6.11:

E�

max

(p) = C

comp

(1)=(p � C

comp

(p)) (6:11)

Figure 6.8b is a semi-log graph of maximum e�ciency as a function of the num-

ber of nodes. Linear speedup is represented by the solid horizontal line at 1.0. The

speedup is linear or better than linear in the number of nodes (superlinear) for all

applications with eight or fewer nodes. Superlinear speedup happens because p pro-

cessors contain p times the amount of cache memory. In the parallel versions of the

benchmark programs the larger aggregate amount of cache reduces the systemwide

number of capacity misses. The bene�t of the extra cache to is the most pronounced

with a small number of processors. Load imbalance and the overhead of synchroniza-

tion decrease the speedups of the benchmarks as the number of nodes increases. The

speedup curve for Sort drops o� the most rapidly because Sort is the most susceptible

to these factors.

A metric related to speedup is IPC(p), the aggregate number of instructions the

parallel system executes per clock cycle. Achieving a linear increase in execution rate

means that IPC(p) = p � IPC(1). Because the underlying architecture is a RISC that

executes up to one instruction per cycle, a team of p processors can execute up to

p instructions per cycle. In practice the IPC of the Motorola 88100 is as little as

125

Table 6.3: Maximum aggregate instructions per cycle executed when p = 16

Benchmark IPC

max

(16)

Sort 10.1

Gauss 6.08

Jacobi 6.21

FFT 4.85

DMM 2.96

one instruction every eight cycles, due to memory latency and the latency of
oating-

point arithmetic. IPC

max

(p) is the maximum rate of instruction execution that could

be achieved if the cost of communication were zero; it is calculated using Equation

6.12:

IPC

max

(p) = I

comp

(1)=C

comp

(p) (6:12)

Table 6.3 displays the values of IPC

max

(p) for the �ve computation-intensive

benchmarks using p = 16 as the representative number of processing nodes. Note

that IPC

max

(p) varies from about 3 to 10 with 16 processors. Sort achieves the highest

IPC because it uses no
oating point arithmetic. DMM has the lowest IPC but the

highest speedup as it makes extensive use of the
oating point unit. FFT, Gauss and

Jacobi achieve IPC ratings greater DMM but less than Sort. FFT and Gauss use a

mix of
oating point and integer arithmetic; Jacobi uses single-precision instead of

double-precision
oating point arithmetic. The benchmarks that achieve the lowest

IPC shown in Table 6.3 are most likely to achieve a substantial improvement in IPC

when run on today's high-performance multi-scalar processor architectures. As IPC

increases, the relative cost of computation decreases, and consequently the relative

cost of communication increases. The impact on performance studies of network

interfaces is that the benchmark sizes may need to be scaled up so that the cost of

communication does not completely dominate the running time of the benchmark.

The relative costs of communication and computation are discussed in greater detail

below.

126

6.2.6 Determining the signi�cance of the communication cost

In a parallel implementation of a benchmark designed to evaluate the network inter-

face, how much time should be spent on communication? On one hand, the cost of

communication cannot be trivial, because the point of the experiment is to have a sig-

ni�cant amount of communication. On the other hand, if the cost of communication

is very large then the resulting speedup will be poor. Ideally the communication cost

is within a range that is both high enough to be signi�cant and low enough to permit

good speedup. Assume that the execution time of the serial version (C

comp

(1)) is

known. If the maximum speedup of a parallel implementation is approximately lin-

ear, then the cost of computation for p nodes is approximately C

comp

(1)=p. For the

purposes of this chapter, the cost of communication ought to be less than C

comp

(1)=p

but not more than an order of magnitude or two less. Equation 6.13 de�nes S

comm

(p)

as the signi�cance of the communication cost, the ratio of the communication time to

the computation cost predicted by the serial version of the computation:

S

comm

(p) = C

comm

(p)=(C

comp

(1)=p) = p � C

comm

(p)=C

comp

(1) (6:13)

De�ning the signi�cance in this way makes it independent of the parallel imple-

mentation of the computation. For applications that parallelize well, C

comp

(p) is

approximately the same as C

comp

(1)=p. However, the computation alone may not

parallelize well, so it may be misleading to assume that C

comp

(p) � C

comp

(1)=p.

Figure 6.9 displays a pair of log-log graphs that plot S

comm

(p) versus p for each

benchmark. The graph on the left uses the optimistic memory model (DRAM access

latency = 0 cycles) and the graph on the right uses the pessimistic model (DRAM

access latency = 10 cycles). The slope of each curve shows how fast the communica-

tion cost grows as the number of nodes increases. The horizontal line shows the 10%

threshold of signi�cance, where the communication cost is an order of magnitude less

than C

comp

(1)=p. In all the benchmarks the signi�cance of the communication cost is

greater than 10% when 32 or more nodes are used; it is greater than 1% (two orders

of magnitude less than C

comp

(1)=p) in all cases except DMM running on four proces-

sors. These graphs show that the amount of communication is indeed signi�cant for

the given problem sizes. The applications that are most sensitive to the performance

of the memory system are DMM and Gauss. DMM sends long �xed-size messages;

127

4 8 16 32 64

Number of nodes

0.010

0.032

0.100

0.316

1.000

Si
gn

if
ic

an
ce

 o
f

co
m

m

(a) 0 cycle DRAM latency

4 8 16 32 64

Number of nodes

0.010

0.032

0.100

0.316

1.000

(b) 10 cycle DRAM latency

Gauss
Sort
Jacobi
FFT
DMM
Threshold

Figure 6.9: Signi�cance of communication cost

4 8 16 32 64

Number of nodes

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

E
ff

ic
ie

nc
y

(a) 0 cycle DRAM latency

4 8 16 32 64

Number of nodes

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

(b) 10 cycle DRAM latency

Linear
DMM
Jacobi
FFT
Gauss
Sort

Figure 6.10: E�ciency of the benchmark suite when the cost of communication is

considered

128

the broadcast pattern in Gauss makes the communication time sensitive to the inter-

packet gap (and hence the memory performance) at the sending node. Jacobi sends

shorter messages and its communication performance is limited by software overhead

rather than the communications hardware. FFT and Sort show aspects of both cases:

the long message case when the number of nodes is small (16 or fewer) and the small

message case with 32 or more nodes.

6.2.7 Putting it all together

By combining the e�ciency of the computation with the signi�cance of the communi-

cation, a complete picture emerges for the actual e�ciency of each benchmark. The

actual e�ciency E�

act

(p) is calculated using Equation 6.14:

E�

act

(p) = SU

act

(p)=p = (C

comp

(1)=C

ol

(p))=p (6:14)

Figure 6.10 displays a pair of semi-log graphs that plot E�

act

(p) for each bench-

mark under the two models of the memory system. It is instructive to compare

Figure 6.10 with Figure 6.8b. All three graphs use the same scale in order to simplify

the comparison. With 16 or fewer nodes, all the benchmarks achieve an actual e�-

ciency rating of 85% or better. The actual e�ciencies of both Sort and Gauss drop

o� quickly with 32 or more nodes. Sort has three strikes against it: its computation

does not balance perfectly, it does not overlap communication and computation, and

it passes an increasing number of smaller messages as the number of nodes increases.

In Gauss, the communication pattern plays a role in making its performance di�cult

to scale up. The performance of Gauss would scale better if the broadcast of long

messages were supported directly in the network.

6.2.8 Performance of the communication system

The performance of the communication system is the number of bytes it moves in a

given number of clock cycles. TP(p) is the number of bytes moved per node per clock

cycle; its equation is

TP(p) = B

comm

(p)=C

comm

(p) (6:15)

129

4 8 16 32 64

Number of nodes

0.06

0.12

0.25

0.50

1.00

2.00

4.00

B
yt

es
 p

er
 c

yc
le

 p
er

 n
od

e

(a) 0 cycle DRAM latency

4 8 16 32 64

Number of nodes

0.06

0.12

0.25

0.50

1.00

2.00

4.00

(b) 10 cycle DRAM latency

BWpeak
DMM
FFT
JacNoGC
Sort
Gauss
Jacobi

Figure 6.11: Raw performance of the communication system in bytes per cycle

4 8 16 32 64

Number of nodes

0

20

40

60

80

100

P
er

ce
nt

 o
f

pe
ak

 b
an

dw
id

th

(a) 0 cycle DRAM latency

4 8 16 32 64

Number of nodes

0

20

40

60

80

100

(b) 10 cycle DRAM latency

DMM
Gauss
FFT
JacNoGC
Sort
Jacobi

Figure 6.12: Performance normalized to the maximum achievable throughput

130

The maximum throughput is TP

peak

, introduced in Equation 6.1. Under the

optimistic memory model, the processor-network link is the limiting factor, so it

takes 11 cycles to inject or deliver a packet with its payload of 32 bytes. Under

the pessimistic memory model, the memory system is the limiting factor; it takes

8 + 10 = 18 cycles to store the 32 bytes into memory. The values for TP

peak

under

the two memory models are:

TP

peak,opt

= 32=11 = 2:91 bytes per cycle (6:16)

TP

peak,pess

= 32=18 = 1:78 bytes per cycle (6:17)

The network itself never becomes a performance bottleneck in either the point-

to-point messages or in any of the selected benchmark programs with the given data

set sizes. If the data set sizes were larger and subsequently the network needed to

handle a large number of large messages simultaneously, then internal congestion

in the network can cause a performance bottleneck. The impact of the network on

communication performance has been the focus of other research projects [12, 15, 74].

Figure 6.11 contains a pair of log-log graphs that plot TP(p) versus p. They

demonstrate that the communication performance achieved by these benchmarks is

spread over a wide range. The horizontal solid lines in the two graphs represent

TP

peak

for the two cases. DMM achieves the highest communication performance

as it has the best �t between hardware capability and software requirements { one

message per communications phase per node, a relatively large number of packets

per message and a �xed communication pattern that is the same for every phase.

FFT bears some similarities to DMM: one message per communications phase per

node and a �xed communication pattern. However in FFT the size of each message

falls o� by a factor of two for every factor of two increase in the number of nodes.

FFT also incurs the software overhead of calculating the destination node ID which is

di�erent in every phase. For these reasons, the communication performance of FFT

falls o� more rapidly than that of DMM as the number of nodes increases. Jacobi is

displayed using two curves: the original application (Jacobi) and a modi�ed version

with no global combine operation (JacNoGC). Global combine makes use of only a

small fraction of the potential throughput. Without global combine, Jacobi achieves

much a greater fraction of the peak throughput. However, Jacobi must copy data

to perform gather and scatter operations for communicating column data between

131

east-west neighbors, resulting in lower communication performance than DMM and

FFT. The communication performance of Sort drops o� rapidly as the number of

nodes grows. As message sizes become shorter, the communication cost becomes

dominated by software overhead and the cost of synchronization.

A limitation of Figure 6.11 it that it is di�cult to determine visually the percentage

of peak throughput that Cranium achieves. To address this concern, Figure 6.12

provides the same information as Figure 6.11 using a percentage format. Figure 6.12

contains a pair of semi-log graphs that plot TP

pct

(p), the percentage of maximum

throughput achieved by the benchmarks for the two memory models. In the general

case, Equation 6.18 is used to compute TP

pct

(p):

TP

pct,general

(p) = 100 � TP(p)=TP

peak

(6:18)

Gauss is treated as a special case because the only tra�c pattern it uses is a tree

broadcast. As shown in Figure 6.6, the throughput of a tree broadcast operation is

bounded by TP

peak

/log p. Equation 6.19 computes the peak achievable throughput

of a broadcast:

TP

pct,bcast

(p) = 100 � log p � TP(p)=TP

peak

(6:19)

Figure 6.12 demonstrates that Cranium is an e�ective interface for a number of

benchmarks, notably for DMM and FFT, and also for Sort with a small number of

nodes and Gauss with a large number of nodes. It also highlights the cost of copying

data: even when the global combine is omitted, the achieved throughput in Jacobi is

less than 50% of the maximum.

In the case where the application program overlaps communication and compu-

tation, it is interesting to calculate the e�ective performance of the communication

system. The e�ective communication cost in the overlapped version of the benchmark

is C

di�

(p), de�ned in Section 6.2.4. The e�ective performance of the communication

system is given by Equation 6.20:

TP

e�

(p) = B

comm

(p)=C

di�

(p) = B

comm

(p)=(C

ol

(p)� C

comp

(p)) (6:20)

132

4 8 16 32 64

Number of nodes

0.06

0.12

0.25

0.50

1.00

2.00

4.00

8.00

16.00

B
yt

es
 p

er
 c

yc
le

 p
er

 n
od

e

(a) 0 cycle DRAM latency

4 8 16 32 64

Number of nodes

0.06

0.12

0.25

0.50

1.00

2.00

4.00

8.00

16.00

(b) 10 cycle DRAM latency

DMM
FFT
JacNoGC
Sort
Gauss
Jacobi

Figure 6.13: E�ective performance of the communication system in bytes per cycle

using Equation 6.20

Figure 6.13 displays a pair of log-log graphs that plot TP

e�

(p) versus p. The

graphs show that the e�ective communication performance is boosted above the cor-

responding base communication performance in Figure 6.11. All the benchmarks

except Sort achieve a moderate to high amount of overlap between communication

and computation. The e�ective throughput of DMM is greater than TP

peak

across all

con�gurations; also, it is quite sensitive to the performance of the memory system,

shown by the di�erence in the height of the curves for DMM in Figure 6.13a and

Figure 6.13b. FFT and Gauss exhibit a good degree of overlap between communica-

tion and computation. Both Jacobi and JacNoGC achieve a high degree of overlap

with nine nodes. The reason for the spike at nine nodes is an artifact of the imple-

mentation. The other instances of Jacobi and JacNoGC send less data per node or

spend more time in synchronization and thereby reduce the e�ective communication

performance.

6.2.9 Summary

Methodology

A high-level benchmark suite was created for evaluating Cranium, consisting of �ve

application programs: dense matrix multiply, fast Fourier transform, Gaussian elimi-

133

nation, Jacobi iteration and bucket sort. Three di�erent versions of each benchmark

were created: a serial version, a parallel version with separate communication and

computation phases, and a parallel version that overlaps communication and com-

putation for the shortest overall execution time. The measurements from the serial

version were used as the basis for computing speedup and e�ciency. The maximum

speedup and e�ciency are determined for each benchmark. The di�erence between

the ideal speedup and the actual speedup demonstrates the impact of the cost of com-

munication on the overall performance of the benchmarks. The measurements also

provided the necessary information to calculate a number of interesting derived val-

ues: the signi�cance of communication, the throughput, the percentage of achievable

throughput and the e�ective throughput due to the overlap between communication

and computation.

Two di�erent memory models are used to bound the performance of the communi-

cation system. The optimistic (lower bound) model assumes the latency of accessing

DRAM to be zero cycles; this assumption models the use of a split-transaction or

overlapping memory bus to hide DRAM latency. The pessimistic (upper bound)

model assumes that the DRAM access latency is 10 cycles and represents the default

timing used in the simulator. The di�erence between the two measurements indicates

the sensitivity of the benchmark to the performance of the memory system. The ap-

plications that show the most sensitivity are the ones that send large messages and

achieve the highest percentage of peak throughput. The di�erence between the two

bounds is small if the benchmark sends small messages or its communication perfor-

mance is otherwise limited by software overhead. Since the di�erence is small in the

small message case, and the optimistic model is more accurate than the pessimistic

model in the long message case, the optimistic model is overall the more accurate

indicator of performance.

Results

The selected parallel benchmarks demonstrate that Cranium is capable delivering

more than 50% of the peak throughput that is achievable on very long point-to-point

messages. Cranium achieves this level of communication performance despite the

overhead of allocating bu�ers and synchronization, the use of complex communica-

tion patterns and the use of small input data set sizes. One benchmark, dense matrix

134

multiply, achieves more than 70% of the peak throughput when run on a system with

4 to 32 processing nodes (Figures 6.11 and 6.12). High throughput in the commu-

nication system does not come at the expense of parallel program performance: the

benchmarks achieve excellent speedup �gures despite the small input data set sizes

(Figure 6.10). The ability of Cranium to overlap communication with computation

improves the e�ective performance of the communication system (Figure 6.13). In

the following section we show that Cranium's high communication performance is

achieved by the combination of its low latency logical interface (the queue channels)

and the high throughput logical interface (the auto-channels). The omission of either

style of communication primitive causes a substantial reduction in both communica-

tion performance and the speedup of the parallel benchmarks.

6.3 Comparing Cranium against other network interface styles

The Cranium programming model allows the user to access the three principal struc-

tures in the network interface hardware directly: the send channels, the automatic-

receive channels and the queue channels. The send channels allow a node to send

a multiple-packet message with single software command, and allow more than one

multiple-packet message send to be in progress. The automatic-receive channels com-

plement the send channels and permit the reception of one or more multiple-packet

messages from one or more source nodes. The automatic-receive channels implement

the non-bu�ered communication style directly. Non-bu�ered means that there is no

auxiliary bu�er for temporary storage of incoming packet data; the processor never

needs to transfer data from auxiliary bu�ers to the user program's address space.

The restriction with non-bu�ered communication is that the incoming message must

be anticipated { the source node and the size of the message have to be known in ad-

vance. In case the message's source and size are not knowable in advance, a bu�ered

communication style is preferable. Cranium's receive queue implements bu�ered com-

munication directly. The auxiliary bu�er memory is organized as a circular queue

in the user's address space; when it is necessary to copy data from the queue to a

bu�er allocated by the application program, the potential cost of crossing a protection

boundary is avoided.

135

6.3.1 Modifying Cranium to emulate other network interfaces

A hypothesis of this dissertation is that the full Cranium programming model pro-

vides application programs with a minimum set of features needed to extract the

full performance out of the underlying communications hardware. The hypothesis

can be tested by modifying the Cranium programming model to emulate competing

designs. The e�ects of these modi�cations can be evaluated by observing the change

in maximum throughput achievable by the interface and the change in the cost of

communication for application programs. The competing network interfaces of in-

terest are the interfaces in the CM-5, SHRIMP-I and SHRIMP-II [14, 42, 43]. The

following list of modi�cations M1 through M4 transform Cranium into interfaces that

bear a close resemblance to one of the three competing network interface styles. In

general, these modi�cations describe interfaces that have less hardware complexity

than Cranium and potentially reduce the cost of implementation.

� M1: Each send command results in the injection of one packet into the network.

Software is responsible for breaking long messages into separate packets and

staging their injection into the network. The implementation is simpler than

the Cranium send channel architecture that automatically packetizes and injects

messages up to an MMU page in length.

� M2: Each incoming packet causes the processor to be noti�ed; packet data are

volatile and must be consumed by the processor or copied to a user memory

bu�er before the next incoming packet is processed. This modi�cation simpli�es

Cranium by omitting the automatic-receive channels.

� M3: There is a one-to-one mapping between a physical message bu�er on the

sending node and a physical message bu�er on the receiving node. Distribut-

ing a message to multiple destinations requires the sending node to copy the

contents of the message bu�er locally to other message bu�ers in the sending

node's memory. This modi�cation may simplify the implementation by reduc-

ing the number of bits passed from the processor to the network interface in

the send command. The name of the bu�er provides su�cient information to

the network interface to select the destination node.

136

Table 6.4: Throughput of a long message under the modi�cations to Cranium

Model g (cycles) TP

peak

(bytes/cycle)

Cranium unmodi�ed 11 2.91

M1 18 to 31 1.03 to 1.78

M2 31 to 113 0.28 to 1.03

M3 29 to 111 0.29 to 1.10

M4 11 2.91

� M4: Only the unbu�ered style of communication is supported. This mod-

i�cation to Cranium simpli�es the implementation by omitting the queuing

channels.

The modi�cations to Cranium that make it the most similar to the CM-5 are M1

and M2. The CM-5 uses only programmed I/O; the CM-5 processor creates, injects

and retrieves each packet separately. Modi�cation M3 is based on the SHRIMP-I

interface. Modi�cation M4 applies to both SHRIMP-I and SHRIMP-II.

6.3.2 Analytical evaluation of the modi�cations

There is very little di�erence in the minimum latency of packets under all four mod-

i�cations. However, the throughput of large multi-packet messages decreases dra-

matically. The modi�cations greatly increase the value g from Equation 6.1 in Sec-

tion 6.1.2. g is the minimum gap between successive injections or deliveries of packets.

Table 6.4 summarizes the e�ect of each modi�cation on g and the throughput of long

messages. Under modi�cations M2 and M3, g is increased by the cost of copying the

packet payload. Based on the timing information in the Talisman simulator, the cost

of copying 32 bytes between two di�erent memory bu�ers on the same processing

node is 21 cycles if every load and store is a cache hit and 103 cycles neither the

source nor the destination is resident in the cache when the copy is initiated. Under

M2 this cost is paid at the receiving node and under M3 it is incurred at the sending

node. The following analysis explains how the �gures in Table 6.4 were derived for

each of the four cases.

137

� M1: the sender is the bottleneck. The gap betwen packets is limited by the

send command (10 cycles) and reading packet payload from DRAM (8 cycles).

If the sender tests for network-busy status before injecting a packet, there are

another 13 cycles needed for the test and branch.

� M2: the receiver is the bottleneck. The total cost is the cost of copying plus

10 cycles to increment the queue pointer.

� M3: the sender is the bottleneck. In principle, M3 requires the sender to copy

data when data from the source bu�er are sent to two or more nodes. This case

turns out to common to four of the �ve benchmark programs. In FFT, data

from a single bu�er are sent to all the conjugate nodes; in Sort, data from the

sorted list are distributed to all other nodes. Gauss uses broadcast to distribute

the pivot row. In Jacobi the values at the corners of a tile must be sent to both

the horizontal and the vertical neighbors. DMM provides the only exception in

which each node sends data to exactly one other node; the tra�c pattern is a

ring. Therefore the numbers for M3 include the cost of copying to re
ect the

common case, plus another 8 cycles to fetch the packet payload from memory.

� M4: on a long message the queue would not be used, so the result is the same

as Cranium unmodi�ed.

6.3.3 Empirical evaluation of the modi�cations

The results of the performance analysis above were con�rmed empirically using Gauss

as a representative example from the benchmark suite. Modi�cations M1, M2 and

M3 were implemented in the simulator and in the communication routines in Gauss.

The cost of communication was measured for each modi�cation. Figure 6.14 plots the

cost of communication in Gauss for �ve di�erent versions: Cranium unmodi�ed, M1,

M2, M3 and the combination M1+M2, the latter being the closest approximation

of the CM-5 interface. The optimistic memory model was assumed in all cases.

Values in the graph are in thousands of clock cycles; lower values indicate better

performance. These measured values are also displayed numerically in Table C.1

in Appendix C. As expected, both M3 and the pseudo CM-5 interface (M1+M2)

yielded the largest communication costs, approximately a factor of four greater than

138

4 8 16 32 64

Number of nodes

0

200

400

600

C
lo

ck
 c

yc
le

s
x

10
00

M3
M1+M2
M2
M1
Cranium unmodified

Figure 6.14: Cost of communication in the Gauss benchmark for unmodi�ed Cranium

and the modi�cations M1, M2, M3 and M1+M2. Plotted values represent thousands

of clock cycles.

Cranium unmodi�ed. As the number of nodes increases, the cost of communication

due to M3 increases the most because the gap between packets at the sender becomes

the critical bottleneck under a broadcast. Normally, the send cost and the receive

cost can be overlapped; the cost of communication is usually the maximum of the

send and receive cost. However if the tra�c pattern is a broadcast under the pseudo

CM-5 interface (M1+M2), the e�ects of both costs are cumulative.

Together, Table 6.4 and Figure 6.14 con�rm the assertion that modi�cations M1,

M2 and M3 cause a a signi�cant loss of performance both analytically and empiri-

cally. Modi�cation M4 has little impact on the maximum throughput of the interface.

However there are three important reasons for not eliminating the queuing channels

from Cranium.

� Polling overhead. Cranium's user queue funnels the arrival of unexpected pack-

ets into a centralized location. Polling the queue for an arrival of any packet

involves a single access to memory. Without the queue, the receiver must al-

locate a separate bu�er for each potential sender and then test the contents of

the bu�er to discover when a packet has arrived. If there are p potential source

nodes then the cost of a poll is p memory accesses. In Table 6.1 the cost of

polling at the receiving node ranges from one eighth to one quarter of the total

latency of a single packet message. In a system with 64 nodes, the latency of a

139

single packet message under an application program that expects a packet from

any node increases by a factor of 8 to 16 in the worst case. The queue makes it

much easier for the programmer to avoid this kind of worst-case behavior.

� Scalability. In many application programs, as the number of nodes increases the

number of channels or virtual connections between nodes also increases. The

queue is universal in that the only limitation on the number of virtual connec-

tions it supports is the size of the bu�er memory. It is simple to increase the size

of the bu�er memory by adding DRAM chips and changing a parameter in the

operating system. By contrast, the number of DMA channels in the network

interface is hardwired. The network interfaces in SHRIMP-I and SHRIMP-II

require a content addressable memory to support the virtual connections be-

tween source and destination node. In particular, SHRIMP-II uses a CAM

called the Network Interface Page Table. The NIPT is indexed with 15 bits to

map 32K distinct remote pages [43]. The number of simultaneous mappings is

not speci�ed. The scalability of the size, cost and latency of the NIPT may be

a concern in the implementation of the SHRIMP-II network interface.

� Ease of use. The queue provides an interface that is familiar to users of pro-

grammed I/O interfaces such as the network interface of the CM-5. The queue

serializes packet arrivals and provides fairness. Unless queue memory is full,

packets may arrive at any time. In many cases it is possible to eliminate barrier

synchronization operations that are necessary to support Cranium's automatic-

receive channels (see Section 4.2).

6.3.4 Summary

The full Cranium model consists of three high-level features: the send channels, the

automatic-receive channels and the queuing channels. The automatic-receive chan-

nels implement unbu�ered communication; the queuing channels implement bu�ered

communication. All of these features are necessary for providing high performance

communication. Attempts to simplify the feature set result in a loss of performance

or a loss of
exibility. A set of four simplifying modi�cations M1 through M4 were

proposed and evaluated both analytically and empirically. Modi�cations M1 and M2

together create an interface that is very similar to the CM-5 interface; modi�cations

140

M3 and M4 create an interface very similar to the SHRIMP-I interface. Modi�cations

M1 through M3 result in an increase in the cost of communication ranging between

50% to 300% greater than Cranium unmodi�ed.

The principal problem in the SHRIMP-I interface is that it often requires the

processor at the sending node to copy data. The SHRIMP-II interface is a signi�cant

improvement over SHRIMP-I because it does not have this limitation; the SHRIMP-

II interface appears to be very similar in performance to Cranium for a variety of

application programs. SHRIMP-II however lacks the
exibility of Cranium's queuing

channels. Also, SHRIMP-II does not work with networks that deliver packets out of

order; these adaptive networks have been demonstrated to have higher performance

than oblivious networks constructed from the same technology.

6.4 Related work

To date there does not appear to be a de�nitive study and comparison of network

interfaces in the literature. However there are several papers that have been published

that address some of the same issues that are presented here. Network interfaces that

were previously studied included those in the Thinking Machines CM-5, the Intel

Paragon, the MIT J-machine, the Motorola Star-T, the Intel Touchstone Delta and

the UW Meerkat.

6.4.1 Study #1: CM-5 vs. Paragon

This study by Kwan, Totty and Reed [94] focused on the measurements gathered

from the CM-5 and the Paragon. Through the use of simple throughput and latency

benchmarks, the authors demonstrated that the CM-5 achieves a throughput rating

of 8 MB/sec out of 20 MB/sec maximum and the Paragon achieves 20 MB/s out of

200 MB/sec maximum. From their analysis they concluded that software overhead

limits the peak achievable throughput of both systems. The weakness of this study

was that there is little insight into how the structure of the network interface forces

the software overhead to be much larger than necessary.

141

6.4.2 Study #2: CM-5 vs. J-machine vs. Star-T

This study by Spertus et al [59] provided much more insight into how the structure of

the network interface a�ects the overall performance of scalable systems. In particu-

lar, the CM-5 and the J-machine were compared. A related study by Papadopoulos,

Boughton, Greiner and Beckerle from MIT and Motorola included a comparison of

the *T (Star-T) interface [30]. In both studies the abstracted versions of each system

were evaluated and compared. The abstracted version of the CM-5 was called CM-5'

and likewise the J-machine was abstracted into a system called J'. The CM-5' had

two signi�cant improvements over the CM-5: the maximum packet size was increased

from �ve 32-bit words to sixteen 32-bit words, and it could poll both data networks

in a single operation rather than requiring a separate poll for each data network.

The actual J-machine contains neither a
oating-point unit nor a cache; these miss-

ing components were added to the J' processor to make it equivalent to the Sparc

processor in the CM-5. With these improvements, J' was determined to be more e�-

cient than CM-5' over a variety of computation-intensive benchmark programs. The

strength of the study by Spertus et al was that it identi�ed a number of weaknesses

in the CM-5'. In particular, sending is ine�cient because the processor must always

poll the interface before injecting a packet. Polling accounts for 33% of the send cost.

The weakness of this study was that it used an unconventional language and run-time

system to perform the evaluation. The benchmarks were written in the data
ow lan-

guage Id90; the run-time system is called TAM (Threaded Abstract Machine) [95].

An artifact of TAM is that it only uses small messages of no more than sixteen 32-bit

words. While this study was interesting in the case of small messages, it provided

little insight into the study of systems and benchmarks that perform well using large

messages. As the paper stated, \A complete quantitative comparison in this regime is

very di�cult because there are so many variables that can in
uence performance and

there is little consensus on what constitutes a representative workload." Arguably, a

representative workload should include programs written in a conventional language

such as C or Fortran and contain a wide range of message sizes.

6.4.3 Study #3: Meerkat vs. Delta

This study was performed by Bedichek for his PhD dissertation [35]. Bedichek de-

signed and implemented a four-node hardware prototype of Meerkat and also devel-

142

oped the software simulator described in the previous chapter of this dissertation. A

set of parallel benchmarks were written in C and made use of the Intel NX message-

passing library. They were compiled and executed on both Meerkat and the Intel

Touchstone Delta. Both a simple set of latency and throughput tests and a suite of

computation-intensive benchmarks were measured. Bedichek discovered that Meerkat

achieves better speedups than the Delta does on three di�erent computation-intensive

benchmarks: FFT, red-black successive-over-relaxation (similar to Jacobi) and SIM-

PLE, a hydrodynamics benchmark. The strength of this study was that unlike the

Spertus and Papadopoulos studies, it used a conventional language and run-time

system for benchmarking. The weakness was that Meerkat di�ers from the Delta

in almost every facet: the processor, network and network interface are all di�erent,

making it di�cult to pinpoint where the advantage lies. In the computation-intensive

benchmarks there is no indication of what fraction of execution time is spent in com-

munication.

The Cranium test environment and the Meerkat project are based on the same

node architecture (processor, cache and memory). Despite the similarity, the two

systems nevertheless di�er in many ways. Meerkat uses a grid of busses for its net-

work, whereas Cranium uses a point-to-point torus network with chaotic routing.

The network interfaces are di�erent in four signi�cant ways. First, the Meerkat log-

ical interface is based directly on the Intel NX model, unlike Cranium which has

its own custom set of primitives. Second, the processor at the receiving node under

Meerkat must
ush the cache explicitly for each message. The cache
ush operation

itself represents about 30% of the cost of communication when using messages with

sizes between 128 bytes and 1K bytes [35]. Under Cranium, cache and memory are

kept locally coherent. Third, the processors in Meerkat stall during communication.

This feature precludes the possibility of overlapping communication and computation.

Fourth, Meerkat's interface mandates interrupting the processor at the receiving node

for every packet; there is no automatic-receive DMA as in Cranium.

6.5 Summary

Our analysis showed that Cranium delivers both low latency and high throughput on

both point-to-point messages and broadcast messages. In Section 6.1 we explained

that the end-to-end latency of a one-way, single-packet message is approximately

143

60 to 100 clock cycles. Cranium achieves 90% of the maximum possible sustained

throughput with messages as short as 2048 bytes, and 96% of this maximum with

8K byte messages. The performance of broadcast is within a factor of two of the

bound for any tree-based broadcast algorithm. The performance of broadcast can be

improved substantially by using a network that supports broadcast directly.

We created a test suite for Cranium consisting of �ve parallel benchmark

programs, described in Section 6.2. All of the benchmarks are written using hand-

crafted message-passing code. These programs are executed on the combined Talis-

man/Chaos simulator described in Chapter 5. We observed that these benchmarks

yield excellent speedups as well as high communication performance, even though the

input data set sizes were very small. The selected parallel benchmarks demonstrate

that Cranium is capable delivering more than 50% of the peak throughput. The

dense matrix multiply benchmark achieves more than 70% of the peak throughput

with up to 32 nodes.

In Section 6.3, we compared the logical interface (programmer's model) of Cra-

nium against that of other network interfaces. Evaluation is performed by modifying

Cranium to more closely model the abstractions of these other network interface

architectures. Three di�erent modi�cations to Cranium independently increase the

communication cost to be 50% to 300% greater than Cranium unmodi�ed. A fourth

modi�cation does not a�ect throughput directly, but it increases the latency of small

messages, reduces
exibility and increases the di�culty of writing message passing

programs. In Section 6.4, we examined the literature to research other methodolo-

gies used in comparison studies of network interfaces. The lack of other comparison

studies demonstrates the opportunity for further work in this area, and that we have

introduced a new approach for these kinds of comparisons.

The performance analysis and empirical studies presented in this chapter con�rm

that the Cranium architecture provides an e�cient, powerful and
exible network

interface. The comparison with other network interface styles demonstrates that

all of the features in Cranium are necessary to deliver the full performance of the

communication system. The following chapter presents the Teschio implementation

of Cranium which was used to provide the timing information assumed in the analysis

and the simulation studies presented here.

Chapter 7

TESCHIO: A VLSI CHIP IMPLEMENTATION OF

Cranium

Ah, to build, to build! That is the noblest of all the arts.

{ Longfellow

Teschio is a paper design of a chip based on the Cranium network interface ar-

chitecture that was introduced in Section 3.3. It is con�gured as a single ASIC that

can be fabricated using standard CMOS VLSI technology. Teschio combines these

features:

� It connects directly to the multicomputer network. The network used in this

implementation is based on the Chaos router, described in Chapter 5.2. The

Chaos network uses a two dimensional torus mesh topology.

� It connects directly to the processor-memory bus in the computing nodes of the

multicomputer. The processor-memory bus used in this implementation is a

split-transaction bus similar to the one designed for the Alpha Demonstration

Unit [64]. Connecting at the processor-memory bus yields higher performance

than connecting through an I/O bus such as PCI (see Section 2.1.1).

� It requires implementation technology that is well within the limits of today's

CMOS fab lines. We estimate that the circuit can be implemented using fewer

than 400,000 gates. The number of external signals is approximately 150, which

can be supported easily using ball grid array (BGA) packaging technology. The

projected clock rate is 100 MHz (see Sections 7.1.2, 7.1.3 and 7.5).

Figure 7.1 shows a simple block diagram of Teschio comprising four primary struc-

tural modules: the bus interface, the core, the inbox and the outbox. The bus interface

allows two types of access: slave access by the host processor and bus master (DMA)

145

Inbox

P link

Outbox

Bus interface

bus

Core

Control and
header

Slave access

Memory

DMA data in DMA data out
from network to network

(to network)

Figure 7.1: Simple block diagram of Teschio

access to the DRAM-based memory modules. The core module contains all the chan-

nel information visible to the application program. It schedules packets to be sent,

constructs and validates packet headers and sets up DMA addresses for the bus inter-

face. The inbox and outbox are complementary modules that connect directly to the

processor-network link (P link). The inbox contains FIFO

1

bu�ering for packets de-

livered from the network waiting to be processed; the outbox likewise contains FIFO

bu�ering for packets waiting to be injected into the network. More detail on the

internal organization of Teschio is shown in the block diagram in Figure 7.5 located

in Section 7.2.

The rest of this chapter is organized as follows. Section 7.1 describes the envi-

ronment external to Teschio. The internal structure of Teschio introduced above is

described in greater detail in Section 7.2. We describe the interactions among Tes-

chio's internal modules in Section 7.3. We discuss the timing of Teschio in Section 7.4.

We estimate the area and pin requirements of a single-chip implementation of Teschio

1

While the terms FIFO and queue are often used interchangeably, there is a subtle but important

distinction in the use of these terms in this chapter. We refer to a FIFO as a dedicated hardware

structure, and a queue as a general concept that could be realized in hardware or as a combination

of hardware and software (e.g. the queue channels).

146

N link

TeschioDRAMProcessor

Synchronous clock domain

busADU P link

S link

W link E link
Router
Chaos

Figure 7.2: One node of a multicomputer system based on Teschio

in Section 7.5. Extensions to Teschio are explained in Section 7.6. We summarize

our �ndings in Section 7.7.

7.1 Teschio system environment

This section describes the external environment that surrounds Teschio. We discuss

both the environment of a single node and the environment of the whole system.

7.1.1 Environment of a single node

Figure 7.2 describes the organization of a single node of the multicomputer. Each

node contains a processor, a DRAM-based memory module and the Teschio interface

chip connected together via the processor-memory bus. The other side of Teschio

connects to the router chip via the processor link (P link). The entire node is a

synchronous clock domain encapsulating the processor, memory, Teschio chip and P

link. Because it may be di�cult to construct a large multicomputer that is globally

synchronous, we allow each node to be placed into its own separate synchronous clock

domain. The whole multicomputer system is a globally asynchronous collection of

these synchronous domains. The linkage between the clock domains is implemented

in the router chip using an asynchronous design methodology such as self-tuning [96]

or self-timing [97].

147

. . .

Data Data Data DataAddr

Data Data Data DataAddr

DataAddr . . .

Clock

Bus state

Transfer 1

Transfer 2

Transfer 3

A.1 A.2 D.10 D.11 D.12 D.13 A.3 D.20 D.21 D.22D.00 D.01 D.02 D.03 D.23 A.4 D.30 . . .

Figure 7.3: ADU bus timing

7.1.2 The ADU bus

The processor-memory bus is a representative design based on the Alpha Demon-

stration Unit [64], known in this dissertation as the ADU bus. The ADU bus is

synchronous and it multiplexes address and data onto the same 64 wires. In principle

the address bus is 64 bits wide, but for practical reasons only the lower 48 lines are

used, to yield an addressable memory space of 2

48

bytes (64 terabytes). All transac-

tions on the ADU bus are the size of a cache line (32 bytes). Since the bus is eight

bytes wide, it takes four cycles to transfer a cache line. A complete transfer requires

�ve cycles on the bus: one for address and four for data. The lowest 5 bits of the 48

bit address �eld are not needed because data are always transferred in 32 byte blocks

that are aligned on cache-line boundaries.

The ADU bus uses a split-transaction protocol to overlap the DRAM access

penalty of one bank of memory with the time to transfer a cache line into or out

from a second bank of memory. Figure 7.3 is a timing diagram that describes the ba-

sic idea. The three traces labeled Transfer 1, Transfer 2 and Transfer 3 indicate three

overlapping memory transactions. The ADU bus itself re
ects the superposition of

these transactions over the same wires, but it is broken out this way in the diagram

for clarity. The trace labeled Bus State is used to infer the type of information that

is placed on the bus. Bus masters place address information on the ADU bus only

during bus states labeled with an A (e.g. A.1). The data �elds corresponding to the

address �eld at state A.n occupy states D.n0 through D.n3. This organization allows

the DRAM to delay its response by �ve bus states. Memory is interleaved into two

or more banks, and each bank is itself four-way interleaved to allow four 64-bit words

to be transferred on four consecutive cycles.

148

The ADU bus allows the processor to take advantage of cache coherence in hard-

ware. The ADU bus protocol uses �ve states: each cache line can be marked

as exclusive-clean, exclusive-dirty, shared-clean, shared-dirty or invalid. Cache co-

herency issues are not discussed further in this chapter. The interested reader may

refer to Sections 2.1.2 and 3.4.2 in this dissertation and the article by Thacker, Conroy

and Stewart [64] for more detail.

Our implementation of the ADU bus is clocked at 100 MHz and the cycle time

is 10 nsec. This clock rate was chosen to match the access delay of standard DRAM

technology, which is roughly 50 nsec. DRAM latencies are not improving at the same

rate that processor clock speeds are increasing. To increase the throughput of split-

transaction busses, it becomes necessary to increase the depth of pipelining from two

to three or more overlapping memory accesses as processor clock rates continue to

outpace the DRAM access delay.

7.1.3 The P link

The P link is the interface between Teschio and the network router chip. Like the

ADU bus, the P link is synchronous and runs at 100 MHz. The data path is 32 bits

wide, half the width of the ADU bus. The data path in the P link is bi-directional and

half-duplex. A packet is injected into the network or delivered from the network via

the same wires, so that both cannot happen simultaneously. This strategy contrasts

with full-duplex communication in which two uni-directional data busses are used

instead of a single bi-directional data bus. Full-duplex allows simultaneous packet

injection and delivery. The advantage of half-duplex over full-duplex is that the

average throughput is higher. For a fair comparison between the two, it is assumed

that the total number of pins in the data path is the same for both full-duplex and

half-duplex. At high levels of utilization, the throughput is the same because all wires

are continuously in use. At low levels of utilization, there are occasions in which only

one packet needs to move in or out at a time. With a full-duplex link only half the

number of wires are used; the throughput is half that of the half-duplex solution.

A detailed description of the handshaking signals used in the P link are described

in Section D.1 in Appendix D.

149

7.1.4 Node mapping

Each processing node in a multicomputer must have a unique, global identi�er to make

the system programmable. The identity of a node is usually provided in hardware in

the form of a binary signature, usually coming from a �eld programmable logic device.

An FPLD simpli�es the manufacturing step: if the signature were hard-wired into the

printed circuit board, then a unique circuit board layout would be needed for every

processing node. One standard for these binary signatures is called the Universal

Logical Address, a 48-bit code de�ned by IEEE speci�cation 802.3 [98]. While this

code guarantees uniqueness it may contain no information about the topology of the

network.

Application programs do not directly use the naming scheme described above. A

common naming scheme for remote nodes for user programs is one that starts with 0

and goes up to p�1 where p is the total number of nodes involved in the computation.

The naming scheme known to the application program is known as the logical node

map. Mapping the node names in this way allows two copies of the same program

to run simultaneously in di�erent logical partitions without colliding. It also permits

the system to avoid allocating faulty processing nodes to the application program.

There is a third name space for processing nodes { the naming scheme used di-

rectly by the network router hardware. In many network routers, including the Chaos

network router, nodes are addressed by their relative position, rather than using abso-

lute addressing. We call this node naming scheme the physical node mapping. Teschio

performs the translation from logical node names used by the application program to

physical node names used by the routers, by means of a lookup table. This mapping

scheme implements the node protection requirement described in Section 2.1.4 and

Section 3.3.3. See Section D.2 in Appendix D for an example of node mapping in

Teschio speci�c to the Chaos network.

7.1.5 Data redundancy

Data integrity is a concern in all multicomputer designs: it is the ability to detect

and correct errors due to noise on the busses and network links. Teschio implements

redundant information in two ways. First, all network links (including the P link)

use one bit of parity per byte. Second, it is particularly important to include re-

dundant information for the packet header; the sixth word of the packet header is

150

0

0

1

1

1

1

01

0

1

datatime(B)

0 1 1 0 0 0 1 1

0 1 1 0 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 0 1 1 1 1

redundancy code

0 1 1 0 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 0 1 1 1 1

redundancy code

0 1 1 1 0 0 1 1

0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1

(A) paritydatatime parity

Figure 7.4: Using two-dimensional parity as a substitute for the Cyclic Redundancy

Code. Odd parity is used horizontally and even parity is used vertically. Sub�gure

a shows the header packet as it was originally sent. Sub�gure b shows an example

where the packet header contains four single-bit errors. This is the minimum number

of errors needed to bypass the parity check at the receiver. Such a situation is

extremely unlikely to happen, because the erroneous bits must also form a rectangle.

reserved expressly for this purpose. The solution provided in Teschio is bit-serial

(vertical) parity for the packet header. (The �rst 16-bit �eld of the header is always

0 under normal circumstances when the packet is ejected from the network.) The

e�ect is that parity bits protect the header in both the usual (horizontal) direction as

well as the orthogonal (vertical) direction (Figure 7.4a). For additional protection,

complementary forms of parity are used: odd parity is used horizontally and even

parity is used vertically. The reason is to detect erroneous packets that consist of all

ones or all zeros, a situation that might arise early in the debugging stage. An odd

parity error is detected for the all-zero packet and an even parity error is detected for

a packet consisting entirely of ones. Two-dimensional parity is a vast improvement

upon parity in only one dimension. In one-dimensional parity, two single-bit errors in

the same byte will cancel each other out, potentially allowing the passage of incorrect

data. With two-dimensional parity, it takes a minimum of four single-bit errors to

pass undetected. Furthermore the erroneous bits must form the corners of a rectangle

to be undetectable (Figure 7.4b).

An alternative to Teschio's bit-serial parity is the standard cyclic redundancy

code (CRC) [99, 100]. A 16-bit CRC code can be encoded serially using 16 bit

shifts per word using very simple hardware, but this implementation is very slow.

Implementations of a parallel CRC encoder and decoder tend to be complicated

151

[100]. By contrast, the vertical parity circuitry is trivial to implement as it requires

only an XOR gate per bit.

7.2 Teschio internal structure

Figure 7.5 is a block diagram of Teschio that describes its structure at an additional

level of detail beyond that shown in Figure 7.1. The top part of the diagram (bus

interface and core) describe the control structures; the bottom part of the diagram

(inbox and outbox) shows the
ow of data from left to right. The P link appears at

both the lower left and right sides of the diagram. At the lower left it is a source of

information for packets arriving from the network, and at the lower right it is a sink

for packets that are injected into the network. Likewise, the symbol for the ADU bus

appears twice { once at the top of the diagram to represent slave access by the host

processor, and at the bottom to represent DMA access for packet payloads.

Finite state control in Teschio is implemented in eleven communicating �nite state

machines (FSMs). Three are depicted explicitly in Figure 7.5: the core FSM, the bus

interface FSM and the packet interface FSM. Each of the �ve FIFO submodules

contains its own FSM. The other three are not shown: the inbox FSM, the outbox

FSM and the P link FSM. The collective purpose of the �rst three FSMs and the

scheduler FIFO is to allocate the ADU bus among its tasks, in order of increasing

priority: reading packet payload data from DRAM and writing the data to the outbox

FIFOs, reading packet payload data from the inbox FIFOs and writing the data

to DRAM, and supporting slave mode access for transfer of command and status

information to the host processor. The inbox FIFO coordinates the activities of the

inbox header FIFO and the inbox payload FIFO; it splits the packet into header and

payload. The function of the outbox FIFO is similar; it joins the header and payload

portions of the packet into a whole packet. The P link FSM handles the arbitration

and handshake of the P link between Teschio and the network router. The purpose

of the FIFOs in the inbox and outbox modules is to decouple the ADU bus from the

P link. This decoupling helps manage the complexity of the design. The P link FSM

can be developed without knowledge of the processor bus timing and architecture;

the core and bus interface can be developed without dependence on the timing and

architecture of the P link.

152

selector

Bus
interface

FSM

channel

Hdr encoder

OutboxInbox

interface

interface
FSM

Packet

Channel

FSM

Node lookup table

Global variables Queue channels

Send channels

Auto recv channels

bypass

P linkP link

Host access
(command / status)

bus

ADU
Bus interface

Core

ADU bus

Scheduler FIFO

Inbox packet header FIFO Outbox packet header FIFO

Inbox packet payload FIFO Outbox packet payload FIFO

Hdr verify

Figure 7.5: Structural diagram of Teschio

153

7.2.1 Core module

The core module is the most complex module in Teschio. It consists of seven sub-

modules as shown in Figure 7.5: the core �nite state machine (CFSM), the sched-

uler FIFO, the node lookup table, a set of persistent global variables, the send and

automatic-receive channel array, the queue channel array and the packet interface

FSM (PIFSM). All of these submodules are constructed using static RAM. For the

CFSM, the RAM is used as its writable control store. This capability is needed

only for debugging the �rst prototype run. Production runs could be built using

mask-programmed ROM.

The scheduler FIFO contains the active list of pending channel commands. When

the core FSM is in a state where it is ready to execute a command (such as sending

a packet) it uses the value at the head of the scheduler FIFO to select the channel

context for the command. If the scheduler is empty and Teschio is not in the process of

actively completing a command, the core FSM assumes an idle state. New commands

arrive into the scheduler FIFO from the host processor. During the handshake with

the bus interface, the scheduler is bypassed so that state information is deposited

directly into the channel array. Upon con�rmation that the command is valid, the

channel number is entered into the scheduler. Typically, three subsequent actions

occur:

� The address handle is translated into a physical address by looking up the value

in DRAM.

� The node handle is translated into a physical node address by looking up the

value in the node lookup table.

� If the head of the scheduler FIFO contains an auto-receive channel and both

translations have completed, the channel number is popped. (Auto-receive

channels are scheduled automatically when a packet arrives from the network.)

Otherwise, if the head of the scheduler FIFO contains a send channel, and all

packets for that channel have been sent, then the channel number is popped.

The node lookup table is a 256-element SRAM indexed by logical node number

whose contents contain physical node numbers. The on-chip lookup-table eliminates

154

Table 7.1: Description of �elds in one channel of the channel array

Field name Width (bits) Field name Width (bits)

Node handle 12 Physical node ID 16

Address handle 15 Physical address 38

Number of packets 12 Sequence number 12

Remote channel 8 Flags 6

Table 7.2: Description of �elds in one channel of the queue channel array

Field name Width (bits) Field name Width (bits)

Queue bu�er start 42 Head pointer 42

Queue bu�er end 42 Tail pointer 42

the need to go to o�-chip DRAM to perform the translation for logical nodes 0 to 255.

It is worth noting that the majority of physically-realized scalable multicomputers

contain 256 or fewer nodes. Also, the simulator described in Chapter 5 simulates a

maximum of 256 nodes.

The set of global variables includes a number of di�erent �elds. Many of these

�elds are privileged to the operating system and are therefore unavailable to applica-

tion programs directly. One example is the �eld that describes the MMU page size

currently in use by the processor. A second example is the application program's

process identi�er. A third example is the FREEZE mask and status information (see

Section A.3 of Appendix A). The FREEZE mask information tells Teschio to allow

or deny packet injection and/or delivery. This capability is useful during special cir-

cumstances such as switching the user context or assisting the network in performing

an error recovery operation. Application programs can read and write certain �elds

directly, such as the interrupt mask and status �elds that govern the situations in

which the send and automatic-receive channels generate interrupts.

The channel array and the queue channel array embody the primary data struc-

tures in Teschio that re
ect its high-level programming model. Table 7.1 is a de-

scription of the �elds in the channel array and Table 7.2 describes the �elds in the

155

queue channel array. The channel array consists of an equal number of send channels

and automatic-receive channels. The channel number �eld in the packet header ad-

dresses up to 256 send channels and 256 auto-receive channels in the channel array.

In this implementation there are 32 send channels and 32 auto-receive channels. The

queue channel array contains four queue channel entries to represent the user queue,

the user error queue, the system queue and the system error queue. For each queue

channel, the �elds Queue Bu�er Start and Queue Bu�er End are static pointers into

DRAM that delimit the start and end of queue memory; they are changed only dur-

ing initialization. The �elds Head Pointer and Tail Pointer are updated continually

during normal operation. Teschio inserts packet information into the tail and the host

processor removes packet information from the head. Teschio updates the hardware

head and tail pointers as a consequence of insertion and removal of packet data.

The width of the pointer �elds in the queue channels is 42 bits, whereas the width

of the physical address �eld in the send and auto channels is 38 bits. The reason for

42 bits in the former case is that two cache lines are stored for every queue entry; two

caches lines = 64 bytes requiring log(64) = 6 bits of address; 6 + 42 = 48. The reason

for 38 bits in the latter case is that it only needs to address MMU page boundaries.

The minimum page size supported is 1K (10 bits); i.e. 38 + 10 = 48. The largest

page size is 128K (17 bits), for which only its topmost 31 bits physical address �eld

are used (i.e. 31 + 17 = 48).

7.2.2 Inbox and outbox

The outbox and the inbox are mirror images of each other, both in function and in

form. The outbox provides four services. It accepts packet payload information from

the bus interface. It accepts packet header information from the core module. It

appends a redundancy code to the end of the packet header. It merges the header

and the payload, and ships the whole packet out to the network. The inbox performs

the inverse operations. It accepts a full packet from the network and splits the packet

into header and payload �elds. It veri�es the header using its redundancy code. It

presents the packet header to the core module for post-processing. It ships the packet

payload to the bus interface.

The inbox and the outbox decouple the ADU bus side of Teschio (the core and bus

interface) from the P link side. While Teschio is a synchronous circuit overall, there

156

time

stamp

64 bit
64

64

32

32

64

32

32

3232

Outbox FSM

FIFO FSM

encoder
parity
Serial

FIFO FSM

Payload FIFO

Header FIFO

HdrOut

HOHand

POHand

PayOut

FIFO FSM

32

64

PIHand

PayIn

Inbox FSM
Serial
parity
check

HIErrIHand

IData HIHand

HdrIn

OData32

OHand

(a)

(b)

Payload FIFO

FIFO FSM

Header32 FIFO

32

32

64

32

64

FIFO FSM

Header64 FIFO

Figure 7.6: Block diagrams of the outbox and the inbox. Sub�gure a illustrates the

outbox; sub�gure b is a diagram of the inbox.

exists a signi�cant \impedance mismatch" between the ADU bus and P link. The

ADU bus is 64 bits wide and uses a split-transaction protocol; its maximum e�ective

data rate is 640 MB/sec. The P link is 32 bits wide and uses a single-transaction

protocol; its maximum e�ective data rate is 291 MB/sec. The ADU bus has higher

bandwidth than the P link because the host processor uses a signi�cant fraction of its

bandwidth to transfer cache lines to and from DRAM. The di�erence in bus width

and timing makes it necessary to hold packets temporarily in the interface, in the

FIFO queues of the inbox and the outbox. By making the pipelining as e�cient as

possible, it is possible for a packet to encounter only a small number of cycles of

delay when the interface is lightly loaded. At heavy loads, Teschio delivers the full

bandwidth of both the ADU bus and the P link. Thus, the inbox and the outbox

provide a smooth impedance match between the ADU bus and the P link.

Figure 7.6 displays block diagrams of both the outbox in Figure 7.6a and the

inbox in Figure 7.6b. Each module contains a pair of FIFO queues, one for storing

header information and the other for storing payload information. Separate FIFOs

are used for header and for payload for two reasons. The �rst reason is that data

going to or coming from the ADU bus are presented 64 bits wide; it makes sense

for the payload FIFOs to be the same width as the processor bus. Packet header

information is more conveniently presented 32 bits at a time, the same as the width

of the P link. A second reason is that it is convenient to be able to construct or verify

the header concurrently with the
ow of payload data.

157

Figure 7.6 shows both the data path and the �nite state control used in the outbox

and the inbox. To pass data from the outbox payload FIFO to the P link, the 64-

bit wide data path is converted to a 32-bit wide data path by using a 32-bit wide

register. The wide FIFO is popped every other cycle; the 32-bit path takes the lower

or upper bits on alternate cycles. The packet header is passed through the serial

encoder; its output is also merged into the 32-bit wide stream destined for the P link.

The outbox FSM (OFSM) coordinates the activities of both FIFOs and performs

handshaking with the P link FSM (PLFSM). Similarly, the payload FIFO in the

inbox composes 64-bit wide words from a pair of 32-bit wide words on alternating

cycles. The serial parity decoder veri�es the packet header; an error signal (HIErr)

is passed to the core module.

The inbox must save a copy of the packet header that is stored in memory if and

only if the packet is destined for a queue channel. In the queue channels, the packet

payload is stored into one cache line, and the packet header, a 64-bit timestamp and

a presence
ag are stored into the subsequent cache line. If the packet is stored into

an auto-channel, the header information is not stored into memory. Since the core

module performs the header decode, the inbox must assume that the packet is for a

queue channel; the header is discarded if it turns out not to be needed. Figure 7.6b

shows two logically distinct FIFOs for holding 64-bit data: the payload FIFO and

a second header FIFO called Header64. The handshaking signals between the core

and the Header64 FIFO (collectively known as PIHand) include the signal (PIAuto)

from the core module; if this signal is true, the packet header in the Header64 FIFO

is dropped. While it is conceptually useful to make the payload and the Header64

FIFOs logically distinct, it is possible to combine them into a single larger FIFO in

the implementation.

Handshaking signals are used at all the interfaces between the inbox and the

outbox and environment that surrounds them (Figure 7.7). A separate �nite state

machine called the P link FSM (PLFSM) coordinates the activities of the inbox,

outbox and the P link. The PLFSM implements the structure and behavior described

in Figure 7.1.3, including the tiebreaker information for negotiating the data direction

of the P link. The handshaking signals used internally follow the same name and

function as the signals used at the P link itself. For instance, the P link uses handshake

signals RTS, CTS, RTR and CTR. The interface between the outbox and the PLFSM

158

Payload FIFO

Payload FIFO

Header FIFO
32

Header FIFO
32

module)

P link

FSM

RTS

CTS

RTR

CTR

TB

Data

Parity

PLState

ORTS

OCTS

ICTR

IRTR

PLState

PLState

64

64

Outbox

Inbox

ADUData

HRTS

HCTR

PCTR

PCTS

PRTS

HCTS

HRTR

HdrIn

HdrOut

I/F

Bus

PRTR

OData

IData

ADUState

Packet

interface

FSM

(Core

Figure 7.7: Handshaking between inbox, outbox and surrounding environment. All

the internal handshaking signals are similar in name and function to the handshaking

signals used at the P link (external interface between Teschio and the network router

chip).

uses handshake signals ORTS and OCTS; the interface between the inbox and the

PLFSM uses IRTR and ICTR. For consistency the interfaces between the core and

the outbox, the bus interface and the outbox, the inbox and the core, and the inbox

and the bus interface all bear the same naming convention and format.

7.3 Internal micro-operations of Teschio

So far in this chapter we have described the external environment to Teschio and pro-

vided an introduction to its internal block structure. What follows now are detailed

explanations of the internal micro-operations of Teschio, the interactions between

pairs of modules that describe how Teschio operates internally. These explanations

use diagrams to explain the behavior and do not precisely describe the structure.

Nonetheless the correspondence between behavior and structure is straightforward;

these diagrams could be easily converted into their structural counterparts.

There are three uses for a given ADU bus cycle that involves Teschio, in order of

decreasing priority:

159

� Command and status interface with the host processor

� Writing the payload into DRAM of a packet received from the network

� Reading the payload from DRAM of a packet ready for injection into the net-

work

One and only one of these actions can occur on any given bus cycle. If more than

one of these actions is ready to happen, the highest priority action takes place. This

mutual exclusion greatly simpli�es the design, because the state machines for the

three activities can be single-threaded. However, the pipelined nature of the ADU

bus means that there may be several bus cycles in progress at the same. We require

Teschio to make maximal use of the ADU bus whenever possible. Teschio is capable of

any combination of activities on consecutive ADU bus cycles: injecting two packets

into the outbox, storing two packets from the inbox into memory, and injecting a

packet into the outbox and storing a packet from the inbox, in either order.

We now describe the various micro-operations: command and status requests from

the host processor, performing table lookup functions, composing a packet header for

sending, decoding a packet header for receiving, placing a packet into a queue channel,

placing a packet into an automatic-receive channel, and updating data structures as

a consequence of sending or receiving a packet.

7.3.1 Command and status interface with the host processor

Figure 7.8 is a data
ow diagram describing the acceptance of a channel command

from the host processor. The bus interface continually decodes the ADU bus to

detect slave accesses from the host processor. When the physical address matching

Teschio appears on the bus, the signal SelectNI becomes active (see in Figure D.3

in Section D.3 in Appendix D). The corresponding command word is then latched by

the bus interface module and presented to the core module. The core module indexes

into the channel array using the channel number in the �eld ChannelID directly, by

bypassing the scheduler. Since the ADU bus is busy transferring the command word

from the host processor, the bus interface is momentarily prevented from accessing

DRAM to load or store a packet payload. This means that the core module can

160

be dedicated to the processing of the command word, and there is no other module

contending for the channel array.

Acceptance of the incoming command depends on the state of the Reset bit from

the command word and the Busy bit from the channel structure. There are three

cases:

� If Reset is true, then the channel becomes inactive regardless of the previous

state of the channel.

� If Reset is false and Busy is true, then there is a previous command loaded

into the channel that has not yet completed. In this case the new command is

ignored, and Teschio generates an interrupt to the host processor.

� If both Reset and Busy are false, then the command is accepted.

When a new command is accepted from the host, two structures are updated

immediately: the scheduler and the selected channel structure from the channel array

(Figure 7.8). The channel ID �eld is placed into the scheduler. Most of the �elds

in the channel structure are initialized directly by copying the information from the

command word into these �elds. The exceptions are the reset logic as noted above,

and the physical node ID �eld and the physical bu�er address �eld. The latter two

�elds are �lled in later as the result of the table lookup operations (Section 7.3.2).

However, an optimization is possible. If the new value of the bu�er handle matches

the previous value of the bu�er handle, and the previous value of the physical bu�er

address is a valid address, then the lookup operation will load the identical value of

the bu�er address. In this case, the lookup operation is redundant; the optimization

eliminates the lookup in this case to save the cost of an ADU bus transaction. The

same optimization applies to the node handle and physical node ID lookup.

7.3.2 Performing the table lookup functions

Figure 7.9 is a data
ow diagram that describes the table lookup functions. The

channel ID at the head of the scheduler FIFO indexes into the channel array. Two

�elds are examined: the physical node ID and the physical bu�er address. If either one

of these �elds is not valid, then its corresponding table lookup function is performed.

161

38

12 node handle

flags
8 remote channel

12
12 # of packets

sequence #

15 addr handle

busy1

select

8
12
12
15
12

addr handle
node handle

of packets
start packet
remote channel
flags5

channel ID8
1 reset

5

Command word

Scheduler queue

array

Channel structure

Channel

logic
reset

physical node ID16

physical address

Figure 7.8: Behavioral description of the handler in the core module for accepting a

command word from the host processor. A channel structure is selected using the

channel ID �eld of the command word. Most of the �elds in this channel structure

are initialized directly by copying from corresponding �elds in the command word.

The channel ID �eld is also entered into the scheduler FIFO.

162

sequence #

remote channel

flags

busy

38

12

12

8

5

1

of packets

sequence #

remote channel

flags

busy

12

12

8

5

1

of packets

physical address

15

scheduler

Channel

array

table
lookup

(DRAM)

8
12

15
physical node ID16

node handle

addr handle
physical address

Channel structure
before lookup

Channel structure
after lookup

(on-chip)
table

lookup

Node

Address

38

physical node ID16

node handle12

addr handle

Figure 7.9: Behavioral description of the table lookup functions. The node lookup

table is in SRAM within the Teschio chip. The bu�er address lookup table is located

in DRAM.

The on-chip node lookup table contains 256 entries; in the common case, the node ID

lookup stays on-chip. The address lookup table is in DRAM and requires an ADU

bus transaction to access it. In the case that both lookup functions are required, it

is very likely that both are performed in parallel. At the conclusion of the lookup

operation, the channel ID at the head of the scheduler is re-examined. If the channel

is a send channel, it remains in the scheduler; if the channel is a receive channel then

it is popped from the queue.

7.3.3 Sending a packet

Figure 7.10 describes the construction of packet headers using the information in

the send channel structure, selected by the channel number �eld at the head of the

scheduler FIFO. The �rst �eld of the packet header, Dest Node ID, comes directly

from the physical node ID �eld of the channel structure and consists of the two eight-

bit �elds [Y,X] (see Sections 7.1.1 and D.2). The second �eld of the packet header,

Source Node ID, contains the two's complement of both eight-bit �elds in Dest Node

ID [�Y,�X]. The third �eld, Process ID, is copied from its corresponding global

variable. The fourth �eld, Dest Channel, comes from the remote channel �eld of the

send channel. The �fth �eld, Source Channel, is a copy of the channel number at

163

generator

DRAM

Address

1

flags
8 remote channel

12 sequence #

physical node ID16

physical address

5

channel
Send

array

Send channel structure

scheduler

global.page_size

12 sequence #

16 dest node ID
16
16 process ID
8
8

dest channel

4 flags

payload256
16

Packet to send

scheduler

PID

parity gen
redund code

src node ID

src channel

Phit #

0

1

2

3-10

38

[-Y,-X]
node handle

addr handle

of packets

busy

12

15

12

Figure 7.10: Behavioral description of the core module handler for injecting a packet

into the outbox. The DMA address for reading the packet payload from DRAM comes

from the MMU page in the physical address register plus the o�set, the sequence

number multiplied by the size of a cache line (32 bytes). Many di�erent page sizes

are supported, consisting of all powers of two between 1K to 128K bytes, inclusive.

164

the head of the scheduler FIFO. The sixth �eld, Sequence Number, is copied from

the Sequence Number �eld in the send channel. The seventh �eld, Flags, is a copy

of the
ags �eld in the send channel. The eighth and �nal �eld of the packet header,

Redundancy Code, is constructed by the outbox. The outbox also merges the packet

header with the packet payload coming from DRAM.

The address of the packet payload is computed from the Physical Address �eld

and the Sequence Number �eld in the channel structure. The address generator takes

into account the page size to determine how many bits of the Sequence Number �eld

to use. The lowest �ve bits of the address are always 0. If the page size is p then

the number of bits from the Sequence Number �eld is p � 5. The number of bits

contributed from the Physical Address �eld is 48 � log p. The size of the physical

address used by the bus interface module is 48 bits.

7.3.4 Receiving a packet

Receiving a packet is handled as two operations. The �rst operation is to decode and

validate the packet header. Once the packet header is decoded, it is then handled

using either an automatic receive channel or a queue channel.

Decoding and validation of the header are outlined in Figure 7.11. There are four

bit
ags that are computed in the process: the system
ag, the system error
ag, the

user
ag and the user error
ag. Some of these
ags can be triggered in two or more

ways. For instance, there are four di�erent ways to cause the user error
ag to be set.

All the individual triggers for a
ag variable are combined through an OR gate. To

simplify the diagram the other OR gates are not drawn. If any of the four bit
ags

are set then the packet is sent to a queue channel; otherwise the packet is sent to an

automatic-receive channel.

The state machine for decoding and validation uses the following sequence. When

phit 0 is received into the core, the Destination Node ID �eld is compared with zero;

if it is non-zero, the system error
ag is activated. The Source Node ID �eld is saved

for a later comparison. When phit 1 arrives, the third, fourth and �fth �elds are

presented as operands. The Process ID �eld in the packet header is compared with

the Process ID �eld in the core module's global variable structure; if they contain

di�erent values, the system
ag becomes active. The Destination Channel �eld selects

the automatic-receive channel from the channel array. (This path was omitted from

165

!=? user error

!=0?

=pid?

Recv
channel

array 8 remote channel

physical node ID16

!=?

=0?

Receive channel structure

flags.user

flags.sys system

system

sys error

sys error
user

validate

16 dest node ID
16
16 process ID
8
8

dest channel

flags
16
4

redund code

src channel

src node ID

Packet receivedPhit #

0

1

2

3-10

sequence #12

payload256

node handle

physical address

address handle

sequence #

flags5

12

38

15

12

of packets12

busy1

Figure 7.11: Behavioral description of the actions taken by the core module to decode

and validate the header of a packet arriving from the inbox. The execution of this

behavior determines the subsequent handler for the packet payload, which is either the

handler for the queue channel handler (Figure 7.12) or the handler for the automatic-

receive channel (Figure 7.13).

166

DRAM

sys error

user error

queue buffer end

address

packet (header+data)

channel
array

Queue

select

Queue structure

tail pointer
priority

encoder 42

system

user

head pointer

42

42

42

queue buffer start

Figure 7.12: Behavioral description for determining the proper queue channel for

handling the arriving packet. The tail pointer is read from the queue channel structure

and is used as the DMA address for the ensuing write to DRAM over the ADU bus.

Figure 7.5 to simplify the diagram). The Physical Node ID �eld in the channel

structure is compared with the Source Node ID �eld in the packet header. Likewise

the Remote Channel Field in the channel structure and the Source Channel �eld in

the packet header are compared. If a mismatch occurs in either case, the user error

ag is set. Note that at this point, the packet could be destined for the user queue

and no actual error occurs. The third phit of the packet header contains the Sequence

Number, Flags and the Redundancy Code. The system and user
ags are selected

from the
ags �eld. The inbox validates the Redundancy Code. If it is not valid then

the system error
ag is set. Two other conditions are tested: the packet count �eld

and the busy bit in the auto-receive channel structure. If either of these are zero, the

user error
ag becomes active.

The four
ags described above are inputs to a priority encoder (Figure 7.12). If

at least one of these
ags is set, the
ag with the highest priority selects one of the

four queue channels. The highest priority
ag is the system error
ag, followed by

the system
ag, the user
ag and the user error
ag, with the lowest priority. A user

error comes only as the result of a failed access to an automatic-receive channel; the

user queue
ag in the packet header takes precedence over the user error
ag. The

output of the priority encoder is a selector that selects a queue structure from the

queue channel array. The tail pointer is extracted from the selected queue structure

(see Table 7.2). The packet payload is stored �rst, followed by the packet header,

into two consecutive cache lines in DRAM starting at the address in the tail pointer

�eld.

167

DRAM

address
generator

4

12 sequence #

8

payload256

Packet received

global.page_size

Recv
channel

array

physical address38

physical node ID

node handle

address handle

sequence #

of packets

remote channel

flags

busy

12

16

15

12

8

12

5

1

dest node ID

source node ID

dest channel
process ID

source channel

flags

redundancy code

16

16

16

8

16

Figure 7.13: Behavioral description for determining the proper automatic-receive

channel for handling the arriving packet. The generation of the DMA address for

writing the packet payload into memory uses the same technique as in Figure 7.10.

If none of the bit
ags described above are active, then the packet is sent to the

automatic-receive channel selected by the Destination Channel �eld. Figure 7.13 de-

scribes the situation where the packet is destined for an automatic-receive channel.

The physical address from the receive channel structure is combined with the Se-

quence Number �eld in the packet header, using the same sizing technique described

in Section 7.3.3.

7.3.5 Updating the internal data structures

After Teschio sends a packet, receives a packet into a queue or receives a packet into

an automatic-receive channel, it updates its internal data structures. Figure 7.14

shows the behavior required for updating the queue channel structures. The actions

in Figure 7.14a occur when a packet is deposited into queue memory. Teschio de-

posits packets into memory into the tail of the queue and the application program

removes packets from the head of the queue. There are two conditions that may occur

when a packet arrives: wraparound and over
ow. Wraparound means that pointer is

beyond the end of its allocated memory, so it is wrapped back to the beginning. The

wraparound condition is detected by comparing the tail pointer with Queue Buf End.

168

overflow

Queue structure

select

<?

=?

+1

(b)

42
42
42
42

tail pointer
head pointer
queue buf end
queue buf start

0

1underflow=?
0

1

select

+1

<?

Queue structure

(a)

tail pointer
head pointer
queue buf end
queue buf start42

42
42
42

Figure 7.14: Behavioral diagram for updating the queue structure. Sub�gure a shows

the actions taken when a packet is deposited in the queue; sub�gure b shows the

actions taken when the application program advances the head pointer. In both

cases, the wraparound condition is detected and used to compute the successor of the

head or tail pointer. Error conditions are also detected: over
ow in a and under
ow

in b.

If the result is less-than, then no wraparound occurs and the tail pointer is simply

incremented. Otherwise the new value for the tail pointer is copied from Queue Buf

Start. The over
ow condition is calculated by comparing the result of the tail pointer

computation with the head pointer; if they are equal then the tail pointer has run

into the head pointer. Note that there is no immediate loss of information, but a sub-

sequent packet arrival for that channel would overwrite data from a previous message

that has not been handled by the application program. The complementary opera-

tion is advancing the head pointer (Figure 7.14b) which occurs when the application

program running on the host processor sends an Advance Head Pointer command

to Teschio. As in advancing the tail pointer, there are two conditions to consider in

advancing the head pointer: wraparound and under
ow. The wraparound test and

calculation in advancing the head pointer is exactly the same as in advancing the tail

pointer. The test for under
ow di�ers from the test for over
ow in one small detail:

the under
ow test occurs before the new head pointer is calculated, whereas over
ow

test occurs after the new tail pointer is calculated. Both the over
ow and under
ow

conditions can be used to generate an interrupt or freeze the interface, depending

on the state of the interrupt mask and the freeze mask in the core's global variable

structure.

169

-1

=0?

5flags

12
12 # of packets

sequence #

5

Channel structure
before

12
12 # of packets

1

channel transfer complete

interrupt

Channel structure
after

sequence #

busy

+1

12

physical node ID

node handle

16

38

15 addr handle

physical address

remote channel8

busy1

flags.intr_mask

12 node handle

16

addr handle

physical node ID

15

physical address38

remote channel8

flags

Figure 7.15: Behavioral model for updating the send channel and auto-receive channel

information in the channel array. The channel structure is selected from the channel

array using the channel ID at the head of the scheduler FIFO.

170

Figure 7.15 describes the behavioral model for updating send channel and auto-

receive channel information in the channel array. After a packet is sent or received

the number of remaining packets in the channel transfer operation is decremented.

For the send channels, the next packet to send is indicated by incrementing the

sequence number. Because packets arrive out-of-order in the Chaos network, it is not

meaningful to compare the sequence number of the packet with the sequence number

in its auto-receive channel. However, the situation would be di�erent if the network

architecture guarantees in-order delivery (such as an oblivious network or ATM). In

that case, comparing the sequence number in the channel with that in the packet

header could be included in the list of sanity checks in Figure 7.11. The interrupt bit

is set according to the state of the interrupt status register, either after every packet

is sent or received, or when the channel transfer completes (the packet counter �eld

becomes 0).

The scheduler FIFO is updated whenever a new command arrives from the host

processor or a command in progress completes. The update occurs when the last

packet in the transfer has been sent or has been received. When one send channel

transfer completes, the next send channel transfer begins on the next available ADU

bus cycle.

7.4 Timing analysis

In this section we provide a timing analysis of Teschio. We start by stating the guide-

lines for the design that allow a smooth transition between the Cranium architecture

and the Teschio implementation. We then derive the timing behavior of Teschio by

counting the number of clock cycles it takes to send or receive a packet. This tim-

ing behavior is constrained by both the timing of the external environment and the

sequence of the internal micro-operations. We focus on the internal timing behavior

in this section; a detailed description of the external timing behavior can be found

in Section D.3 in Appendix D. We follow the latency subsection with a discussion of

the throughput requirements and the impact on the sizes of the FIFOs in the inbox

and the outbox.

171

7.4.1 Design guidelines

The design guidelines consist of four main points:

� All of the logic internal to Teschio is synchronous and edge-triggered using the

rising edge of the clock. For �nite state control, Teschio uses Moore machines

rather than Mealy machines. In other words, outputs come directly from state

variables to ensure that they do not glitch.

� The pin drivers for Teschio use registers for both incoming and outgoing signals.

The impact is that signals going on or o� chip are delayed by one clock cycle.

� Internal FIFOs impose a one clock cycle delay. The architecture of the FIFOs is

based on a scheme using a dual-port SRAM and two counters representing the

head and tail pointers [15]. The dual-port property permits the FIFO to accept

an incoming value and propagate an outgoing value concurrently at separate

memory locations.

� All ALU functions are relatively simple and execute within a single clock cycle.

Teschio requires only a small set of standard ALU operations: add, subtract,

AND, OR and XOR. Other operations include table lookup and priority en-

coding. The number of inputs to the priority encoder is small, with 4 or fewer

inputs in all cases.

One rami�cation of these assumptions is that it takes at least three clock cycles

for any input signal at the chip's pins to in
uence the output signals of the chip. It

takes one cycle to bring the signal on-chip, one cycle to pass the signal through a

FIFO and perform simple arithmetic on the signal, and one cycle to send the signal

o�-chip. A more aggressive architecture might specify that information is allowed to

propagate across the chip in as few as two clock cycles or even a single clock cycle.

By restricting the timing to be less aggressive, an implementation can be developed

more easily because fewer bypass paths are required.

7.4.2 Latency

We evaluate the latency and throughput results for Teschio. For latency there are

three cases of interest: sending a single packet message, receiving a single packet

172

Teschio send operation: 27 cycles

performed in parallel

into the scheduler FIFO
Enter the send command

from the host processor

Perform table lookups (if necessary)

Load the packet payload from DRAM

Accept a send command 6

2

S1

S2

S3

S4

S5

Attach the payload to the header

S6

S7

10

3

1

10

Place the head of the packet onto the P link

performed in parallel

0

Min. cyclesStep

Create the packet header inside core module

Figure 7.16: Sequence of micro-operations involved in a packet send operation and

the minimum number of cycles taken at each step.

message into an automatic-receive channel and receiving into a queue channel. All of

the latency �gures assume the context of an otherwise idle system, as they represent

the minimal amount of delay imposed by Teschio on message passing.

Figure 7.16 describes the minimum-latency timing of sending a packet in Teschio,

in which this operation is the only activity present in the network interface. Sending

a packet consists of the steps S1 through S7. The total latency is computed from

the latencies of each step subject to the dependencies between steps. We consider

only the time it takes to place the head of the packet onto the P link. (We account

for the length of the packet in the time it takes to receive a packet.) Step S1, the

arrival of a send command, takes six cycles. The limiting factor is the ADU bus.

In principle, under a non-multiplexed bus, the time to execute S1 could be reduced

to as little as one cycle. S2 follows S1 and adds two cycles: one to retrieve the

information from the bus interface, and one to place it into the scheduler FIFO. S3

173

follows S2. We assume that there is exactly one table lookup that involves the ADU

bus. Typically the physical node ID lookup is performed using the on-chip node

lookup table, whereas the bu�er address lookup requires an access to DRAM. The

next available address bus state in the ADU bus occurs in two cycles; Teschio places

a DMA address for table lookup in this clock cycle. One clock cycle is taken by

the bus interface, leaving one cycle to compute the DMA address. Computing the

DMA address is illustrated in Figure 7.10. It involves indexing into the channel array

using the channel number at the head of the scheduler FIFO, retrieving two �elds

from the selected channel structure and a shift-and-combine operation to complete

the computation. Since there are two RAM accesses plus an arithmetic operation, it

may take more than one clock cycle to complete. The case where the send command

is executed immediately after the command is accepted from the host processor is

handled specially and involves a bypass path to eliminate one of the RAM accesses so

that it completes in one cycle. The data accessed over the ADU bus is returned after

another six cycles. Steps S4 and S5 follow S3 and both proceed in parallel. Of the

two operations, S5 is the limiting factor because it involves an ADU bus access that

adds ten cycles. Assembly of the header can be performed in as few as three cycles

(Figure 7.10), so it is not on the critical path. The header cannot arrive too soon

because the entire packet must be contiguous when it is handed o� to the P link. The

header is placed into the header FIFO in the outbox and waits until the payload is

placed into the payload FIFO in the outbox, whereupon the two are combined. One

cycle is taken by S6, in which the P link FSM places the �rst
it of the packet header

onto the P link. S7 is omitted from this analysis because we are only concerned with

the time to place the �rst packet onto the P link. The total minimum latency is 27

cycles.

To simplify the implementation we are concerned with the timing in only two

cases: the packet arrives into its selected automatic-receive channel, or the packet

arrives into the user queue. It is much less likely for packets to arrive into the other

three queue channels, and we do not worry about those cases being handled more

slowly.

Evaluating the latency of receiving a packet is complicated by the timing of the

ADU bus. Recall that the ADU bus is on a �xed schedule of one address �eld followed

by four data �elds. Data that
ows from the P link to the ADU bus may therefore

174

Validate the packet header

Min. cyclesStep

Teschio receive (auto): 17 cycles

R1

R2

R3

R4 Store the packet payload into DRAM

3

2

3

9

Compute the DMA address

Get the packet from the P link

Wait for ADU bus (average)

Figure 7.17: Sequence of micro-operations involved in a packet receive operation and

the minimum number of cycles taken at each step.

encounter up to four extra cycles of delay. We make the assumption that the P link

and the ADU bus are independent, meaning that any of the �ve states of the ADU

bus are equally likely. The equally weighted average of the arithmetic sequence 0 to 4

is two, meaning that two extra cycles of delay are added to packets received from the

P link and written to DRAM. Conversely, there is no extra delay needed to evaluate

the latency of sending a packet, because the P link is not subject to the same �xed

schedule as the ADU bus. When the P link is idle, it can become active on the very

next cycle.

Receiving a packet into an auto-receive channel consists of the steps R1 through R4

in Figure 7.16. We assume that the command to initialize the channel has been issued

far enough in advance so that its lookup table operations have completed and the

channel is ready to accept a packet. Refer back to Figure 7.11 for a description of the

behavior involved in R2. The most important deadline to meet is computing the DMA

address for storing the packet into DRAM. By the guidelines set in Section 7.4.1,

there are a minimum of three clock cycles from the receipt of the third
it (the �nal

it of the packet header) to when the DMA address is placed on the ADU bus during

an address bus state. For the case of the user queue, the address of the tail pointer in

the user queue structure can be read directly into a temporary variable. For the case

of the automatic-receive channels, the address of the selected channel is determined

175

based on the channel ID in the second
it of the packet header. The user queue

address or the auto-channel address is selected based on the value of the user queue

ag in the third
it of the header.

The total number of states for handling the auto-channel case is seventeen: an

average of two wait states imposed by the ADU bus, three to validate the packet

header, three to place the DMA address onto the ADU bus, and nine to write the

entire payload to memory. For the queue case there are �ve more states associated

with writing the packet header to memory, for a total of 22. In the event that neither

of these cases applies, the DMA access is quashed and an error handler for the packet

is invoked. This error handler places the DMA address on the ADU bus �ve clock

cycles later during the next available memory address bus state.

A more detailed description of the transactions that occur on the ADU bus for

sending and receiving a packet are covered in Section D.3 in Appendix D.

7.4.3 Throughput

In addition to supporting low latency, Teschio must also support high throughput.

Teschio must be able to sustain throughput at the rate of the P link: one packet may

be sent or received every 11 clock cycles. Teschio must also be able to handle burst

throughput at the rate of the ADU bus: two packets may be sent or received every 10

cycles, thus one every �ve cycles. Since the throughput requirement of the ADU bus

is more stringent than that of the P link, we will focus our discussion on the timing

of the ADU bus.

Teschio must perform the update tasks listed in Section 7.3.5 at the rate of one

every �ve cycles. When a packet is sent or received, an entry in the send/receive

channel array or the queue array is updated. When a send channel or an automatic-

receive channel command completes, the scheduler FIFO is updated. Comparatively

little computation is needed to perform these updates. Updating the queue channels

involves two subtractions and one increment operation using 42-bit operands (Fig-

ure 7.14). Updating the send/receive channels involves an increment, a decrement

and a wide OR gate on 12-bit operands (Figure 7.15). Updating the scheduler FIFO

involves popping one value from the FIFO and potentially pushing one value onto

the FIFO. The most obvious implementation is to transform the data
ow diagrams

directly into structural elements. It is possible to reduce the amount of silicon needed

176

to implement these update tasks by multiplexing the arithmetic units, which is possi-

ble because there are enough clock cycles available. However there is little motivation

for doing so because the amount of area saved is tiny compared with the area needed

to implement the large structures of the chip such as the send/receive channel array.

Teschio's inbox and outbox contain FIFO bu�ering in order to provide an

\impedance match" between the ADU bus and the P link. It is important to quantify

the sizes of the FIFOs and the impact on the performance. The sizes of the FIFOs

determine the amount of burstiness Teschio is able to handle. Increasing the sizes

of the FIFOs increases the performance by reducing the number of bubbles in the

packet stream. The incremental improvement in performance drops o� sharply when

the FIFO size is larger than a particular threshold. The goal is to make the FIFOs

as small as possible to minimize the amount of chip area needed, while providing

performance that is very nearly optimal. Note that the sizes of the inbox FIFOs and

the outbox FIFOs may be di�erent. In this context, the outbox FIFO is the combi-

nation of the outbox header FIFO and the outbox payload FIFO; similarly the inbox

FIFO is the sum of the inbox header FIFO and the inbox payload FIFO. The inbox

payload FIFO contains more space per entry than the outbox payload FIFO due to

the special handling of packets destined for the queue channels (see Section 7.2.2),

but our concern here is the total number of packets per FIFO rather than the details

of its implementation.

Our estimates for the sizes for the FIFOs in the inbox and outbox are based on

the following analysis. We assume that Teschio is used in the context of the Chaos

network. We used the combined Talisman/Chaos network simulator to quantify the

performance with both large and small FIFOs. In our experiment we varied three

simulation parameters: the size of the outbox FIFO, the memory model and the

message-passing program. The size of the inbox FIFO was left unbounded. Three

quantities were measured: the sustained message throughput of the program, the

maximum measured length of the send (outbox) FIFO, and the maximum measured

length of the receive (inbox) FIFO. We ran two di�erent message-passing programs

that involved an exchange of page-length messages. We assumed a page size of 4K

bytes. In the single message program, node A sends a 4K byte message to node

B; when B receives the entire message it repeats the message back to A. The dual

message program has two 4K byte messages in
ight at once: node A sends to node B

177

Table 7.3: Impact of FIFO size on throughput (4K byte messages)

Test Outbox 0 cycle DRAM latency 10 cycle DRAM latency

program FIFO T'put QLen QLen T'put QLen QLen

size % of peak Send Recv % of peak Send Recv

Single 4 91 4 5 83 4 6

message 100 93 20 5 83 6 7

Dual 4 98 4 4 88 4 4

message 100 98 36 4 88 4 4

and B sends to A simultaneously. The two memory models used in the experiments

in Chapter 6 were used: the fast memory model (0-cycle DRAM delay) and the slow

memory model (10-cycle DRAM delay). We chose two sizes for the outbox FIFO:

small (4 packets) and large (100 packets).

Table 7.3 displays the results of the experiment. The three input axes are the

test program, the size of the outbox FIFO and the memory model. The results are

the sustained throughput (T'put) and the maximum measured lengths of the outbox

queue (QLen Send) and the inbox queue (QLen Recv). The receiver code in each test

program uses only the automatic-receive channels. For 0-cycle DRAM delay model,

the peak throughput is 2.91 bytes per clock cycle; for the 10-cycle delay model, the

peak throughput is 1.78 bytes per cycle. With the large outbox FIFO under the fast

memory model, the sustained throughput is 2.65 bytes/cycle (91%) with the single

message test and 2.71 bytes/cycle (93%) on the dual message test. Under the slow

memory model the throughputs are 1.48 bytes/cycle (83%) for the single message test

and 1.57 bytes/cycle (88%) for the dual message test. When the size of the outbox

FIFO is reduced to 4 packets, the performance is practically identical in three of the

four tests, and is diminished by less than 2% in the fourth test. The longest queue

length measured in the inbox FIFO over all four tests is seven packets. This behavior

was typical of all the test programs used to measure the impact of queue length on

network throughput. All of the computation-intensive programs showed negligible

di�erence in running time when outbox queue size was varied from 4 to 100. From

these experiments, we conclude that an outbox FIFO size of four packets and an

inbox FIFO size of eight packets is su�cient.

178

The experiments that were used to determine the size of the inbox and outbox

FIFOs in Teschio were run only in the context of the Chaos network. Each Chaos

router contains bu�er space for up to 15 packets. Placing bu�ering in the network

node is a well-recognized technique for improving throughput. Many commercially-

available network routers (such as ATM switches) contain a moderate to large amount

of bu�ering for this reason. However, there are networks that have very little internal

bu�ering, such as wormhole networks that use oblivious routing (see Section 1.4). In a

system where neither the network nor the network interface has much FIFO bu�ering,

performance is expected to be relatively poor. Such a system can be improved by

increasing the amount of bu�ering in either the network interface or in the network

routers. The amount of extra bu�ering needed in Teschio to help overcome the

limitations of a wormhole network is unknown and worthy of future study.

7.4.4 Summary

In Section 7.4.1 we stated a set of guidelines for transforming the behavioral model of

Teschio into a structural model, from which Teschio's timing information is derived.

These guidelines keep the implementation relatively simple and provide a realistic

expectation of the number of clock cycles per each micro-operation. In Section 7.4.2

we provided an analysis of the latency of sending a packet and receiving a packet.

This analysis was used to construct Table 6.1 in Chapter 6 and provides essential

timing information that was used in the simulator (see Chapter 5). In Section 7.4.3

we determined the minimal con�guration of the input and output FIFOs that would

yield virtually optimal performance when Teschio is used in conjunction with the

Chaos network. The FIFO depths were determined to be four packets for the output

(send) FIFO and eight packets for the input (receive) FIFO. The results might di�er

if Teschio is used with a di�erent network architecture and routing algorithm.

7.5 Fabrication parameters for Teschio

The description of Teschio presented in this chapter is a paper design; a physical chip

has not been fabricated. To ensure that our paper design can be implemented in

silicon successfully, it must satisfy a number of physical constraints. In this section

we focus on three issues: clock frequency, pin count and gate count (area).

179

Clock frequency

A representative ASIC vendor is Mitsubishi Electric's Electronic Device Group (EDG)

[101]. EDG supports many di�erent ASIC chip processes, including the 0.6, 0.5 and

0.35 �m fabs. All three support clock rates of 100 MHz or more. Chips built using

the 0.35 �m technology runs at speeds up to 200 MHz internally, and can support

external clocking at this rate if di�erential signaling is used.

Pin count

The number of pins required for Teschio is computed from the sum of number of

signals used its two external linkages { the ADU bus and the P link { plus some

extra pins for \glue." The ADU bus contains 102 signals [64]. The P link contains

41 signals (see Section D.1). We assume that there are another 12 signals devoted to

clocks, built-in self-test and other auxiliary functions. The total number of signals is

102 + 41 + 12 = 155. If there is one pin per signal plus another 80 pins for power

and ground, the total number of pins in the Teschio package is 235. This number of

pins is easily addressed by using a ball grid array (BGA) package o�ered with EDG's

processes. Standard molded BGAs contain up to 456 pins, and cavity-type BGAs can

contain up to 672 pins. This packaging capability makes it possible to use di�erential

signaling for every signal in Teschio to ensure reliability, at the cost of requiring two

pins per signal rather than one per signal.

Area

We estimate the area of Teschio by counting the number of bits of memory that are

implemented on-chip. In many custom VLSI chips the amount of static RAM is a

good predictor of the total area. Most large ASICs contain a large amount of SRAM,

such as the on-chip caches in modern high-performance processors. This SRAM

usually accounts for more than 50% of the total chip area. Table 7.4 is a summary of

the amount of memory within the submodules of Teschio. The bus interface does not

contain an appreciable amount of memory, so it is not listed in the table. The memory

sizes are listed in decreasing order. The second �eld in the table (Dimensions) lists

two or three �gures that describe the dimensionality of the memory array.

The largest amount of memory in Teschio is used by the send and automatic-

180

Table 7.4: Total count of the number of bits of memory in Teschio

Field name Dimensions Memory size (K bits)

Core: S/AR channel array 64� 120 < 8

Core: Node lookup table 256� 16 4

Inbox: Payload FIFO 8� 4� 64 2

Inbox: Header FIFO 8� 6� 32 < 2

Outbox: Payload FIFO 4� 4� 64 1

Core: Queue channel array 4� 4� 42 < 1

Core: Scheduler 64� 6 < 0:5

Outbox: Header FIFO 4� 4� 32 < 0:5

Total < 20

receive channel array in the core module. Since there are 32 send channels and 32

auto-receive channels, the total number of channels is 64. Each channel contains

roughly 120 bits, yielding a total of just under 8K bits. The node lookup table

contains 256 entries of 16 bits (4K bits). The inbox payload FIFO holds up to eight

cache lines each consisting of four 64-bit words (2K bits). The inbox header FIFO

contains two copies of eight packet headers (see Section 7.2.2). Each packet header

contains three 32-bit words. The total number of bits for the inbox header FIFO is

2 � 8 � 3 � 32 (less than 1K bits). The queue channel array consists of four groups of

four 42-bit addresses (see Table 7.2). The outbox payload FIFO contains space for

four cache lines (1K bits). The scheduler FIFO in the core module contains 64 six-bit

channel identi�ers { one for each send channel and each automatic-receive channel

(less than 0.5K bits). Finally, the header FIFO in the outbox contains storage for

four packet headers requiring three 32-bit phits per header (less than 0.5K bits).

Altogether, Teschio contains approximately 20K bits, less than 3K bytes of memory.

We construct a conservative estimate of gate count via the following line of reason-

ing. It takes 10 gates to implement one bit of SRAM memory that includes self-test

capability [101]. The total number of gates devoted to Teschio's memory is there-

fore approximately 200,000. To calculate an upper bound on chip area, we use the

assumption that SRAM occupies 50% or more of the total area. Therefore we add

another 200,000 gates to account for the bus interface, datapath bu�ers and multi-

181

plexors, �nite state machines and control store memory. Therefore our estimate for

the number of gates in the entire chip is fewer than 400,000. All three of the EDG fab

processes listed above (0.6, 0.5 and 0.35 �m) allow 400,000 or more gates per chip;

the 0.35 �m process supports up to 2 million gates.

We conclude that all three implementation requirements of Teschio (clock fre-

quency, pin count and area) can be achieved using today's high performance fabrica-

tion technology.

7.6 Extensions to Teschio

The Teschio implementation of Cranium can be extended in many di�erent ways. We

comment on three possible extensions: packet scheduling, support for fast context

switching and gather-scatter support.

7.6.1 Packet scheduling and tra�c shaping

In Section 3.4.1 we discussed the tradeo�s involved with scheduling packets coming

from competing send channels. The base case is FCFS (�rst come, �rst served). The

cost of implementing round-robin scheduling in Teschio is an extra data path to bring

the output of the scheduler back to the input. After a packet is sent, the channel ID

at the head of the queue is popped and then pushed onto the tail of the same queue.

The packet injection side of Teschio does not perform ATM-style tra�c shaping.

That is, the scheduler assumes that the full bandwidth of the P link is always con-

sumed (except when the network approaches saturation, in which the router prevents

packets from injection). A typical example of tra�c shaping in an ATM network

interface is leaky bucket tra�c shaping. A packet is sent every R'th cycle, where R is

greater than L, the number of
its in a packet [40]. The advantage of tra�c shaping is

that it prevents the network from saturation and provides throughput guarantees. In

the multicomputer domain, tra�c shaping is performed in the application program,

if at all. However, there is trend towards lowering the cost of parallel computing by

using networks of inexpensive workstations instead of tightly-coupled multicomput-

ers. This trend may in turn spur a merging of the designs of network interfaces for

both tightly-coupled multicomputers and LAN-connected workstations.

182

7.6.2 Fast context switching

In Section 3.4.3 we introduced the performance problem due to the need to support

multiple user contexts. The solution was to provide physical channel resources for

U+1 user contexts where U is the number of processors per node of the MPP system.

Two approaches to implementing multiple user contexts were to place two complete

sets of Cranium registers (e.g. a second core module) on a single Teschio chip, or to

allow multiple Teschio chips to be tiled together externally. Deciding to use multiple

cores on a chip versus external tiling depends on economic factors. A dual-core

version is more di�cult to build than a single-core version as it requires more area to

hold the extra blocks of static RAM and more development e�ort to test and verify

it. However, it also helps reduce the chip count in systems that require the highest

performance.

Here is how an externally-tiled version of Teschio might work. Figure 7.18 de-

scribes a hybrid MPP-SMP system with two processors and two Teschio network

interface chips per MPP node. The purpose of the second Teschio chip is only to

replicate the internal channel structures in a single chip. The throughput of the P

link does not increase; only one Teschio chip can use the P link at a time. Such a

multiple-Teschio con�guration requires some additional control signals in the P link.

An additional signal is needed to arbitrate when both network interfaces are ready to

inject a packet. Another set of signals is needed so that when a packet arrives, one

and only one network interface chip handles the packet and stores its payload into

memory. If the process ID of the packet matches the current context of one of the

network interface chips, it signals a match and handles the packet. If the packet's

process ID does not match any of the current contexts, one chip must be designated

as its handler.

Evaluation and implementation of the multiple-user-context versions of Teschio

are left to future work. Evaluating even a two context version is much more di�cult

than the already di�cult task of evaluating the single context version. The di�culty

stems from the combinatorial explosion in trying to benchmark a multitasking time-

sharing workload. If there are N separate benchmark programs, then there are roughly

N

2

possible workloads that can be constructed by choosing two of these benchmarks.

The number of workloads employing all N benchmarks in succession is the factorial

of N (N!). To our knowledge there is no universal standard for the evaluation of time-

183

P link

TeschioDRAMProcessor

busADU

S link

W link E link
Router
Chaos

N link

TeschioDRAMProcessor

Figure 7.18: An architecture for a hybrid MPP-SMP system that uses multiple Tes-

chio chips per processing node

sharing workloads on multicomputers. Another di�culty comes from the handling

of exceptional conditions under a multitasking workload. For instance, if the arrival

of a packet signals an interrupt (such as an end-of-channel-transfer interrupt) then

the interrupt should be serviced only if the packet belongs to the user process that

is currently executing. Interrupts for user processes that are not running must be

saved and then executed when the process runs again. The techniques for handing

these cases and the measurement of their impact on performance have not yet been

explored.

7.6.3 Gather-scatter support

The basic strategy for incorporating gather-scatter capability in Cranium was intro-

duced in Section 3.4.4. Adding gather-scatter functionality to Teschio is straightfor-

ward. In Teschio, we assume the limitation that the minimum size access to memory

is a cache line. If the stride size is approximately the size of a cache line or smaller,

then it is necessary to send the entire array if it is desirable to make it a single mes-

sage. However, if the stride size is much larger than a cache line, but on the same

MMU page, the following scheme could be used. The packet sequence number is

used as the index into a gather or scatter lookup table, to look up the address o�set

from the base MMU page. Figure 7.19 describes an implementation of this scheme on

184

generator

DRAM

address

Scatter

table
lookup

12 sequence #

8

payload256

Packet received

global.page_size

Recv
channel

array

physical address

physical node ID

node handle

address handle

sequence #

of packets

remote channel

flags

busy

12

16

15

12

8

12

5

1

dest node ID

source node ID

process ID

source channel

flags

redundancy code

16

16

16

8

16

4

38

dest channel

Figure 7.19: One technique for supporting the scatter operation in Teschio. The

sequence number of the packet performs a lookup into a scatter table located in

on-chip static RAM for low latency.

the receive (scatter) side, as an extension to the standard automatic-receive channel.

Both the sending node and the receiving node require lookup tables. For highest

performance, these additional lookup tables are located on-chip. Each table is an

SRAM that uses 12 bits of address and 12 bits of data. Each SRAM contains 12�2

12

bits or 6K bytes, for a total of 12K additional bytes of storage. Since the access stays

on the same MMU page, the access protection mechanism stays exactly the same.

There are many possible variations on the basic scheme outlined above to overcome

the restriction that the gathered or scattered data �t in a single MMU page. For

instance, each slot in the lookup tables can store a complete physical memory address,

or include both a page o�set and an address handle. In addition to increasing the

size of on-chip memory needed to contain this additional information, the design must

ensure that the same level of memory protection is provided, to prevent a malicious

user program from overwriting the operating system, for instance. The simplest

version is to restrict access to lookup table memory to the operating system, instead

of letting the application program access it directly as in the basic scheme.

The e�cacy of a gather-scatter scheme depends on its ability to amortize the

overhead of initializing the lookup tables. If the number of elements to transfer is

185

small, then marshalling the data might be more e�cient than gather-scatter support.

The improvement in performance gained by gather-scatter hardware depends strongly

on the set of benchmarks used to evaluate it. Performing this evaluation in the context

of Teschio is left to future work.

7.7 Summary

This chapter presents a paper design of Teschio, an instance of the Cranium network

interface architecture. Teschio is a synchronous single-chip VLSI ASIC that connects

directly to both the processor-memory bus in the processing node and the processor-

network link of the network router. In Section 7.1 we de�ned the system environment

for Teschio, including the ADU (memory) bus, the P link and the node mapping

strategy. Teschio uses two-dimensional parity for improving data integrity with very

little circuitry.

We described the internal organization of Teschio in Section 7.2. There are four

primary structural modules within Teschio: the bus interface, the core module, the

inbox and the outbox. In Section 7.3 we explained how these modules function as

a team. The bus interface provides both slave and bus master access to the ADU

bus. The core module schedules packet departures. It also provides table lookup

functionality for node and message bu�er address mapping to implement fast, secure

argument checking that acts on behalf of the operating-system. Packet headers are

assembled in the core module. Packet payload data comes directly from memory via

bus master DMA. The outbox joins the packet header with the payload and provides

bu�ering for packets to be injected into the network. Similarly, the inbox provides

bu�ering for packets ejected from the network. The inbox separates the packet header

from the payload; the header goes to the core and the payload goes to the ADU bus.

In Section 7.4 we provided cycle-by-cycle timing for Teschio from the timing of

the external environment (the ADU bus and the P link) and the interactions of the

internal modules. We assumed a set of design guidelines that help make the chip easy

to implement by reducing the number of long paths between registers. We measured

the impact of internal FIFO size on the performance of Teschio. We found that a

transmit FIFO that contains as few as four packets and a receive FIFO that contains

as few as eight packets performs equally well as an interface with space for 100 packets

in both directions. Our belief is that through the use of a high-performance network

186

such as one based on the Chaos router, it is necessary to include only a small amount

of bu�ering in the network interface hardware to achieve the same throughput as an

interface with a large on-chip FIFOs. Another way to interpret this �nding is that the

entire Chaos network behaves as a large FIFO. A di�erent result might be found if a

network architecture such as the wormhole-oblivious router is used instead of Chaos,

because that style of network contains only a very tiny amount of internal bu�ering.

In that case it may be necessary to greatly increase the amount of bu�ering in the

network interface in order to compensate.

In Section 7.5 we argued that today's high performance fabrication technology is

more than adequate to fabricate Teschio in a single VLSI ASIC chip. The internal

circuitry of Teschio, the ADU bus and processor-network link (P link) form a single

clock domain that runs at speeds up to 100 MHz. Since the performance �gures from

Chapter 6 indicate that the peak throughput delivered to the application program is

2.91 bytes per cycle, the peak throughput of Teschio is 2.91 � 100 = 291 MB/sec.

We conclude that the Teschio implementation is feasible. It takes an order of mag-

nitude less chip area than a companion high-performance processor. It is relatively

simple to implement: it requires nothing more than the standard set of structural

elements such as SRAM, adders, comparators and data paths. There are no content-

addressable memories in Teschio, whose performance does not scale well with size.

Despite the simplicity of the implementation, Teschio delivers the high performance

capability shown by the simulation studies in the previous chapter. Nevertheless,

Teschio is only the �rst implementation of the Cranium architecture. In Section 7.6

we examined three potential areas for future work: tra�c shaping, support for fast

context switching and gather-scatter capability.

Chapter 8

CONCLUSIONS

We must have new solutions to new problems.

{ J. Kennedy Toole, A Confederacy of Dunces

In this dissertation we introduced the Cranium architecture as a solution to

the network interface problem in massively parallel processing (MPP) computers.

Cranium di�ers from previous network interface designs by providing hardware sup-

port for three important features in a single architecture: support for adaptive net-

works, user-level, bus-master DMA for both low latency and high throughput, and

support for both the bu�ered and unbu�ered message protocols. Cranium reduces the

cost of communication by providing parallel application programs with e�cient mech-

anisms for both small messages and large messages. User programs have direct access

to Cranium's communication primitives through its integrated application program

interface, which greatly reduces software overhead compared to a heavily-layered mes-

sage passing library such as the Intel NX library. Our performance results con�rm

that the Cranium approach achieves low latency on small messages and asymptoti-

cally optimal throughput as message size increases beyond a few thousand bytes.

The remainder of this chapter is organized as follows. We summarize the Cranium

architecture, its application program interface (API), the test environment, our per-

formance results and our paper design for a VLSI chip implementation of Cranium.

We list the principal contributions of this dissertation and cover two interesting areas

of future work. We close with some thoughts on network interface design in general.

8.1 Cranium architecture

Cranium is located at the memory bus of the processing node and it accepts mes-

sage passing commands from the host processor via memory-mapped load and store

commands. This organization permits the use of bus-master DMA but with higher

performance than connecting at an I/O bus. It also isolates the network interface

188

architecture from the processor architecture, unlike designs that involve a tight cou-

pling between network interface and processor. To adapt Cranium to work with

future processor and network designs, it is necessary to change only Cranium's ex-

ternal connections: its memory bus interface and its network link interface. Future

implementations of the Cranium architecture retain the same low-level programming

interface, and we expect e�cient message-passing programs to be ported to new gen-

erations of hardware with a minimum of e�ort.

Cranium provides direct user-level access to application programs. Direct user

access allows application programs to send and receive messages with no overhead

from the operating system in the common case. The only mode of message passing

that involves operating system overhead is the allocation of DMA bu�ers. Bu�er

allocation can be localized to the program's initialization phase so that all subsequent

message passing commands are performed at user level.

Cranium handles both large and small messages e�ciently using separate mecha-

nisms. Over a wide range of parallel benchmark programs, most messages are small

but a sizable fraction of the number of bytes in network tra�c come from large

messages. It is important to support both cases independently, because no single

mechanism has been demonstrated that supports both cases well. Cranium's user

queue provides low latency on small messages and its automatic-receive channels

provide high throughput on large messages. In both mechanisms, the network inter-

face writes packet payload data directly into message bu�ers in DRAM-based memory

whose pages are pinned and mapped into the user's address space. The user queue

implements the bu�ered message protocol; queue space is pre-allocated by the oper-

ating system, but directly available at user level. The auto-channels implement the

unbu�ered message protocol; the application program pre-allocates bu�er space be-

fore packets are sent to that channel. Message data are reassembled in-place without

copying or requiring processor intervention, and the processor is noti�ed only at the

completion of a message transfer, rather than every time a packet (i.e. a cache line)

arrives. Thus, the auto-channels deliver the highest performance for large messages.

Cranium's automatic channels provide compatibility with adaptive packet-routing

networks such as the Chaos network, by counting packets to determine the complete

delivery of a message. It is important to support adaptive routing directly in the

network interface to reduce processor overhead. Adaptive routers are important be-

189

cause they deliver a higher percentage of the raw bandwidth of the network than

an oblivious router does, thereby providing higher e�ective throughput and latency

under high network loads. Adaptive routers therefore are excellent candidates to be

used as the backbone of an MPP interconnection network.

8.2 Cranium application program interface

A primary design goal of the Cranium project was to provide a clean, powerful and

robust programming interface for interprocessor communication. The Cranium API is

a very thin layer on top of the underlying hardware architecture. It takes only a single

store operation to a memory-mapped network interface register to initiate sending

or receiving a message up to the size of an MMU page. Cranium accommodates

MMU pages sizes ranging from 2K to 64K bytes. These send and receive operations

are asynchronous and non-blocking. Because Cranium uses bus-master DMA to move

data between DRAMmemory and the network, messages can be sent or received while

the processor is performing computation. Implementing blocking communication on

top of the asynchronous message primitives is as simple as waiting for an interrupt

or polling a status register. The Cranium API provides the e�ciency of a lightweight

message passing kernel such as active messages with nearly all the generality of a

heavyweight message passing interface such as Intel NX or MPI.

8.3 Test environment

The test environment for Cranium was created from a combination of simulation

strategies. The processor, memory and network interface were simulated using an

extended version of Talisman, a functional simulator augmented with a statistically

accurate timing model. We used a structural simulator that provides exact cycle-

by-cycle timing to simulate the Chaos network. The Chaos simulator can display

a graphical animation of packet tra�c. Animation was helpful for debugging and

demonstration purposes. The combined simulator simulates a parallel computer with

up to 256 processing nodes. Host execution performance of the simulator was rea-

sonable; it was fast enough to run a wide variety of experiments and thereby help

re�ne the design iteratively. The slowdown factor per simulated processing node was

approximately 100 without animation or about 300 when animation was activated.

190

8.4 Performance analysis

Our performance analysis in Section 6.1 demonstrated that Cranium is capable of

both low latency and high throughput. The end-to-end latency of a one-way, single-

packet message is approximately 60 to 100 clock cycles, i.e. between 0.6 and 1.0

microsecond if the clock frequency is 100 MHz. End-to-end latency is the sum of

the following cycle counts: 17 to 32 cycles at the sender's network interface, 8 to 36

cycles in the network and 30 to 35 cycles at the receiver's network interface. These

�gures incorporate the time charged to processor overhead and to the bandwidth and

latency penalty for accessing DRAM. The latency �gures for Cranium are comparable

to those in tightly-coupled network interface designs. Cranium achieves 90% of the

maximum possible sustained throughput with messages as short as 2048 bytes, and

96% of this maximum with 8K byte messages.

8.5 Empirical results

Proving the e�ectiveness of a network interface design requires more than just an

analysis of latency and throughput. It is necessary to demonstrate that parallel

programs are capable of achieving linear speedup when used in conjunction with the

network interface. Parallel programs expose the software overhead of the interface

and thereby provide a more realistic determination of the communication performance

than the simple latency and throughput measures do.

In Section 6.2 we outlined our suite of parallel benchmark programs: fast Fourier

transform, bucket sort, Jacobi, Gaussian elimination and dense matrix multiply. All

of the benchmark programs were run with small data set sizes that were kept �xed

while the number of processors was increased from 4 to 64 in power-of-two incre-

ments. The purpose was to emphasize the communication component of total exe-

cution time. Despite the small input data set sizes, the selected parallel benchmark

programs achieved both high communication performance and excellent speedups. In

particular, the dense matrix multiply benchmark achieved nearly perfect overlap of

computation and communication and sustained network throughput that was up to

90% of the maximum possible.

In Section 6.3 we compared Cranium to other network interface styles. Our ap-

proach was to omit features of Cranium that were not available with these other

191

network interfaces. The resulting modi�cations to the network interface increased

the time spent in communication on the Gauss benchmark by factors of 1.5 to 4. We

conclude that Cranium provides a more complete set of communication primitives

than the other approaches do, so that Cranium provides e�cient, high-performance

communication over a wider range of programs and tra�c patterns than the other

interface approaches.

8.6 Teschio

In Chapter 7, we described Teschio, a paper design for a VLSI chip implementation

of Cranium. Teschio is composed of four modules: the bus interface, the core module,

the inbox and the outbox. The core module contains all of the data structures that

re
ect Cranium's high-level programming model including the send and auto-receive

channel structures and the queue for scheduling send operations. The inbox contains

FIFO bu�ering for arriving packets and the outbox contains bu�ering for packets to

be injected into the network. Simulations showed that when Teschio is used with the

Chaos network, an FIFO size of eight cells (packets) in the inbox and four cells in

the outbox was su�cient. Teschio does not use a TLB; rather, all that is required to

ensure protection for remote node IDs and local physical message bu�ers is a lookup

table implemented simply by using a static RAM. The total number of memory bits

needed to construct Teschio is less than 20,000, i.e. less than 3K bytes. We estimated

that Teschio can be implemented using fewer than 400,000 gates and support a clock

frequency of 100 MHz. We conclude that Teschio is a feasible design that is relatively

simple to construct.

8.7 Contributions of this dissertation

This dissertation advances the science of computer architecture by providing a tax-

onomy of network interface designs in Chapter 2. To our knowledge, no previous

taxonomy covers as broad a range of issues in network interface design. We use

the taxonomy to characterize a set of selected network interfaces in Table 2.1. We

showed that previous work tends to focus on a single design issue. For example,

tightly-coupled designs focus on achieving the lowest possible latency on small mes-

sages, and do not achieve high throughput on large messages. Furthermore, there has

192

been little previous work on network interfaces that work e�ciently with adaptive net-

works (the Hamlyn project from HP Labs is a notable exception). It is necessary to

identify all of the important design issues to ensure that a network interface design

achieves su�cient coverage to be e�ective.

The Cranium architecture was developed to provide an example of a minimally

complex network interface that contains all of the necessary functionality identi�ed

in the taxonomy. Despite its simplicity, Cranium achieves both low latency and

high throughput. The process of developing the simulation environment to evaluate

Cranium produced a testbed for evaluating new ideas in network interface design in

general. The environment simulates a large number of processing nodes yet achieves

su�ciently fast host execution speed to allow interactive execution and debugging on

real applications. This makes the environment amenable to future studies in network

interface development.

8.8 Future work

8.8.1 The Chaos-LAN project

A team of researchers and undergraduate students at the University of Washington

are actively working on the Chaos-LAN project. The purpose of this project is to

investigate the use of adaptive routing in a local area network, through the con-

struction of a high performance network of workstations (NOW) [28]. The proposed

con�guration of Chaos-LAN is described in Figure 8.1. The environment consists

of a collection of workstations from Digital Equipment Corporation based on the

Alpha processor. They are connected to a central hub containing a Chaos network

consisting of 16 Chaos routers connected as a two-dimensional torus. Up to 16 work-

stations can be used. The link between each workstation and the hub is based on

the Fibrechannel physical layer. The network interface is the DEC PCI Pamette card

[102], a PCI card that sits between the Alpha and the Fibrechannel encoder-decoder.

The Pamette contains several Xilinx �eld programmable gate arrays (FPGAs) that

can be programmed, tested and debugged using a variety of circuits. The develop-

ment environment for the Pamette makes use of the Verilog hardware description

language and a set of logic synthesis tools.

To complete the construction of the hardware environment, there are two primary

193

station
Work

station
Work

station
Work

station
Work

station
Work

station
Work

station
Work

station
Work

station
Work

Fibrechannel link

Chaos-LAN hub

PCI Pamette board

DEC Alpha
Workstation based on

Figure 8.1: Overview of the Chaos-LAN research project

remaining tasks. The �rst task is to tape out a new version of the Chaos router; Kevin

Bolding is expected to complete this aspect of the project by summer 1997. The

second task is to develop the network interface circuit in the FPGAs in the Pamette

board, guided by the principles of the Cranium network interface architecture. Since

a full Cranium implementation is too large for the Pamette, the challenge will be

to identify the minimal set of features that will nevertheless yield the underlying

performance of the Chaos-LAN network.

To evaluate the e�ectiveness of Chaos-LAN and the Pamette-based network inter-

face, we plan to run a software environment called the Global Memory System (GMS)

[103, 104] on the NOW. GMS is based on the idea of paging over the network to idle

workstations instead of to local disk. As network bandwidth is becoming comparable

to disk bandwidth, paging over the network becomes the faster solution once the la-

tency of the network interface becomes su�ciently low. A network interface based on

Cranium is expected to work well with GMS because the unit of transfer in GMS is an

MMU page, the same as the maximum unit of transfer for a Cranium auto-channel.

Cranium also supports sub-page transfers e�ciently. The user queue can receive the

�rst cache line of a page transfer and then subpages can be subsequently transferred

using one or more auto-channels.

The goals of the Chaos-LAN project are similar to that of the Myrinet NOW

[31]. At its conclusion, we plan to demonstrate that Chaos-LAN delivers superior

performance for comparable cost with Myrinet, or equivalent performance at lower

cost.

194

8.8.2 Additional performance studies

In addition to the Chaos-LAN hardware implementation project, there are additional

performance studies that can be performed. These studies are better suited to running

on the simulator than on the Pamette because they are in the initial evaluation phase.

� Fast context switching . Presently, the performance of context switching is not

measured in the simulator. As explained in Section 3.4.3, the performance of

context switching is expected to be improved by implementing a second set

of channel registers in the network interface circuit, or ganging together two

network interface chips (see Section 7.6.2)).

� Gather-scatter support . The goal is to explore and quantify the tradeo�s

in di�erent approaches to supporting gather-scatter under Cranium (see Sec-

tion 7.6.3). The impact of gather-scatter support would be measured using a

set of applications that are likely to bene�t from this feature.

8.9 Closing thoughts

8.9.1 Message passing vs. shared memory

This dissertation was undertaken with the intuition that message passing provides

a superior communication model to that of distributed shared memory in a scalable

parallel computer. It became obvious early on that the message passing (send/receive)

model was simpler to construct and simpler to interface with adaptive routers than

its shared memory counterpart. Support for this point of view was con�rmed by the

two following observations.

� The granularity of transfer in Cranium is a cache line. This unit of transfer

turned out to be quite e�cient, especially when used in conjunction with a

memory bus architecture that works directly with cache line units of data, such

as the ADU bus [64] (see Section 7.1.2). A message passing system or shared

memory system that implements with a smaller unit of transfer directly is likely

to increase the complexity of implementation signi�cantly without increasing

its performance. To transfer a sub-cache-line unit of data under Cranium, the

receiving node receives a cache line into its user queue and then the application

195

program copies the required data. The cost of copying is small in this case

because the size of the data object itself is small. If possible the data object is

simply integrated into the ongoing computation (e.g. through its active message

handler) and does not need to be stored in memory as an intermediate step.

� Since the size of packet used by Cranium is small, the size of the packet header

directly a�ects the maximum throughput of the network seen by application

programs. The Cranium packet header does not contain a global virtual ad-

dress (GVA); instead it uses a channel number that identi�es how the packet is

handled at the receiver. Channel numbers are small (16 bits or less) compared

with GVAs (48 to 64 bits). Therefore, Cranium's smaller packet headers reduce

the amount of bandwidth lost, hence yielding higher e�ective throughput. Fur-

thermore, a small channel number can take advantage of directly indexing into

SRAM instead of using a content-addressable memory. This means that under

the Cranium architecture, the network interface at the receiver can be made

simpler and its latency is lower than in a system that uses a GVA in the packet

header.

8.9.2 The road ahead

We do not expect that Cranium is the �nal word in network interface architecture.

There are a myriad of trends that will a�ect the design and implementation of future

scalable parallel computers. The greatest impact comes from the opposite ends of

the spectrum: the trends in VLSI technology and the trends in system level design.

VLSI technology continues to follow Moore's Law [1], but there are signs that the

historical exponential growth in chip density and performance will �nally level o� in

the next decade or two. The trend in system level design is away from large mono-

lithic systems and is heading towards networks of workstations. The combination of

these trends will modify the tradeo�s in the network interface design and where the

interesting implementation points will lie in the design spectrum. Nevertheless the

underlying principles of Cranium will remain important: support for both large and

small messages, support for adaptive networks, and direct access by the application

program to the most frequently used features of interprocessor communication so that

they incur the smallest possible amount of processor overhead.

Bibliography

[1] David A. Patterson. Microprocessors in 2020. Scienti�c American, September

1995, pp. 48-51.

[2] W. Daniel Hillis. The Connection Machine. MIT Press, Cambridge MA, 1985.

[3] Charles L. Seitz. The Cosmic Cube. Communications of the ACM 28(1), Jan-

uary 1985, pp. 22-33.

[4] William C. Athas and Charles L. Seitz. Multicomputers: message-passing con-

current computers. IEEE Computer 21(8), August 1988, pp. 9-24.

[5] Kevin Bolding and Lawrence Snyder, eds. Proc. of Parallel Computer Routing

and Communication Workshop, Seattle WA, May 1994, Springer-Verlag.

[6] William J. Dally. Wire-e�cient VLSI multiprocessor communication networks.

Advanced Research in VLSI: Proc. of the 1987 Stanford Conference, MIT

Press, 1987, pp. 391-415.

[7] Paul Pierce. The NX message passing interface. Parallel Computing 20(4),

April 1994, pp. 463-80.

[8] J. J. Dongarra, R. Hempel, A. J. G. Hey and D. W. Walker. A draft standard

for message passing in a distributed memory environment. Proceedings of the

Fifth ECMWF Workshop on the Use of Parallel Processors in Meteorology:

Parallel Supercomputing in Atmospheric Science, Reading, UK, Nov. 1992,

pp. 465-81.

[9] J. Bruck, D. Dolev, Ching Tien Ho, M. C. Rosu and R. Strong. E�cient

message passing interface (MPI) for parallel computing on clusters of work-

stations. Proc of 7th Annual ACM Symposium on Parallel Algorithms and

Architectures (SPAA '95), Santa Barbara, CA, July 1995, pp. 64-73.

197

[10] Edward W. Felten. Protocol compilation: high-performance communication

for parallel programs. PhD dissertation, University of Washington, Dept. of

CSE, Sept. 1993, UW-CSE-TR 93-09-09.

[11] John Y. Ngai and Charles L. Seitz. A framework for adaptive routing in mul-

ticomputer networks. Proc. of the Symposium on Parallel Architectures and

Algorithms, May 1989.

[12] Kevin Bolding and Lawrence Snyder. Mesh and torus chaotic routing. Ad-

vanced Research in VLSI and Parallel Systems; Proc. of the 1992 Brown/MIT

Conference, March 1992, pp. 333-347.

[13] Kevin Bolding andWilliamYost. Design of a router for fault-tolerant networks.

Proc. of Parallel Computer Routing and Communication Workshop, Seattle

WA, May 1994, Springer-Verlag, pp. 226-240.

[14] Charles Leiserson, Z. S. Abuhamdeh, D. Douglas, C. Feynmann, M. Ganmuki,

J. Hill, W. D. Hillis, B. Kuszmaul, M. St. Pierre, D. Wells, M. Wong, S.-

W. Yang and R. Zak. The network architecture of the CM-5. Symposium on

Parallel Algorithms and Architectures, 1992, pp. 272-285.

[15] Kevin Bolding. Chaotic routing: design and implementation of an adaptive

multicomputer network router. PhD dissertation, University of Washington,

Dept. of CSE, Seattle WA, July 1993.

[16] Alexander C. Klaiber. Architectural support for compiler-generated data-

parallel programs. PhD dissertation, University of Washington, Dept. of CSE,

Sept. 1994, UW-CSE-TR 94-09-09.

[17] Paul Pierce and Greg Regnier. The Paragon implementation of the NX mes-

sage passing interface. Proc. of the Scalable High Performance Computing

Conference (SHPCC94), May 1994, pp. 184-190.

[18] Joseph Carbonaro and Frank Verhoorn. Cavallino: the Tera
ops router and

NIC. Proc. of Hot Interconnects IV, Stanford University, Palo Alto CA, August

1996, pp. 157-160.

198

[19] Steve Scott and Greg Thorson. Optimized routing in the Cray T3D. Proc. of

Parallel Computer Routing and Communication Workshop, Seattle WA, May

1994, Springer-Verlag, pp. 281-294.

[20] Steve Scott and Greg Thorson. The Cray T3E network: adaptive routing in a

high performance 3-d torus. Proc. of Hot Interconnects IV, Stanford Univer-

sity, Palo Alto CA, August 1996, pp. 147-156.

[21] Steve Scott. Synchronization and communication in the T3E multiprocessor.

Proc. of ASPLOS VII, Cambridge MA, October 1996, pp. 26-36.

[22] William J. Dally, J. A. S. Fiske, John S. Keen, Richard A. Lethin, Michael D.

Noakes, Peter R. Nuth, Roy E. Davison and Gregory A. Fyler. The Message-

Driven Processor: a multicomputer processing node with e�cient mechanisms.

IEEE Micro, April 1992, pp. 23-39.

[23] Shekhar Borkar, R. Cohn, G. Cox, T. Gross, H. T. Kung, M. Lam, M. Levine,

B. Moore, W. Moore, C. Peterson, J. Sussman, J. Sutton, J. Urbanski and

J. Webb. Supporting systolic and memory communication in iWarp. Proc. of

the 17th Annual International Symposium on Computer Architecture, Seattle

WA, May 1990, pp. 70-81.

[24] Charles L. Seitz and Wen-King Su. The design of the Caltech Mosaic C Mul-

ticomputer. Proc. of the 1993 Symposium on Integrated Systems, Seattle WA,

April 1993, pp. 1-22.

[25] Thorsten von Eicken, David E. Culler, Seth C. Goldstein and Klaus E.

Schauser. Active messages: a mechanism for integrated communication and

computation. 19th Annual International Symposium on Computer Architec-

ture, May 1992, pp. 256-266.

[26] Anant Agarwal et al. The MIT Alewife machine: a large-scale distributed-

memory multiprocessor. Proc. of Workshop on Scalable Shared Memory Mul-

tiprocessors, Kluwer Academic Publishers, 1991.

199

[27] Robert Bedichek. Talisman: fast and accurate multicomputer simulation. Pro-

ceedings of ACM SIGMETRICS '95, Ottawa, Ontario, Canada, May 1995.

[28] Thomas E. Anderson, David E. Culler and David A. Patterson. A case for

networks of workstations (NOW). IEEE Micro, Feb. 1995.

[29] Dana S. Henry and Christopher F. Joerg. A tightly coupled processor-network

interface. Proc. of the 5th ASPLOS, October 1992, pp. 111-122.

[30] Greg M. Papadopoulos, G. A. Boughton, R. Greiner and M. J. Beckerle. *T:

integrated building blocks for parallel computing. Proc. of Supercomputing

'93, Portland OR, November 1993, pp. 624-635.

[31] Nanette J. Boden et al. Myrinet: a Gigabit-per-Second Local Area Network.

IEEE Micro, February 1995. Also available on the World Wide Web through

http://www.myri.com/research/index.html .

[32] Greg M. Papadopoulos. Personal communication. Supercomputing '93, Port-

land OR, November 1993.

[33] Gordon Bell. Ultracomputers: a Tera
op Before Its Time. Communications of

the ACM 35(8), August 1992, pp. 26-47.

[34] John Palmer and Guy L. Steele Jr. Connection Machine Model CM-5 Sys-

tem Overview. IEEE 4th Symposium on the Frontiers of Massively Parallel

Computation, 1992, pp. 474-483.

[35] Robert Bedichek. The Meerkat multicomputer: tradeo�s in multicomputer ar-

chitecture. PhD dissertation, University of Washington, Dept. of CSE, Seattle

WA, June 1994, UW-CSE-TR 93-09-05.

[36] Peter Steenkiste. A systematic approach to host interface design for high-speed

networks. IEEE Network, July 1993, pp. 8-17.

[37] Peter Druschel, Mark Abbott, Michael Pagels and Larry Peterson. Network

subsystem design. IEEE Network, July 1993, pp. 8-17.

200

[38] Chris Dalton, Greg Watson, David Banks, Costas Calamvokis, Aled Edwards

and John Lumley. Afterburner: a network-independent card provides archi-

tectural support for high-performance protocols. IEEE Network, July 1993,

pp. 36-43.

[39] Randy Osborne. A hybrid deposit model for low overhead communication in

high speed LANs. Technical report TR 94-02, MERL | A Mitsubishi Electric

Research Laboratory, June 1994.

[40] Randy Osborne, Qin Zheng, John Howard, Ross Casley, Doug Hahn and Takeo

Nakabayashi. DART: a low overhead ATM network interface chip. Proc. of Hot

Interconnects '96, Stanford University, August 1996, pp. 175-186.

[41] Richard Gillett and Richard Kaufmann. Experience using the �rst-generation

Memory Channel for PCI network. Proc. of Hot Interconnects '96, Stanford

University, August 1996, pp. 205-214.

[42] Mattias A. Blumrich, Kai Li, R. Alpert, Cezary Dubnicki, Edward W. Fel-

ten and J. Sandberg. A virtual memory-mapped network interface for the

SHRIMP multicomputer. Proc. of the 21st International Symposium on Com-

puter Architecture, Chicago IL, April 1994, pp. 142-153.

[43] Mattias A. Blumrich, Cezary Dubnicki, Edward W. Felten and Kai Li. Pro-

tected, user-level DMA for the SHRIMP network interface. Proc. of High-

Performance Computer Architecture 2, San Jose CA, February 1996.

[44] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-

titative Approach. Morgan-Kaufmann, 1990, chapter 9.7, pp. 535-537.

[45] Daniel Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J.

Hennessy, M. Horowitz and M. S. Lam. The Stanford DASH multiprocessor.

IEEE Computer 25(3), March 1992, pp. 63-79.

[46] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter�eld and B.

Smith. The Tera computer system. Proc. of 1990 International Conference on

Supercomputing, Amsterdam, Netherlands, June 1990, pp. 1-6.

201

[47] Brian N. Bershad, David D. Redell and John R. Ellis. Fast mutual exclusion

for uniprocessors. Proc. of the 5th Annual International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, October

1992, pp. 223-233.

[48] H. Ishihata, T. Shimizu, M. Ikesaka, S. Inano and M. Ikesaka. Architecture

of [the] highly parallel AP1000 computer. Systems and Computers in Japan,

24(7), 1993, pp. 69-77.

[49] K. Hayashi, T. Doi, T. Horie, Y. Koyanagi, O. Shiraki, N. Imamura, H. Ishi-

hata and T. Shindo. AP1000+: architectural support of PUT/GET interface

for parallelizing compiler. SIGPLAN Notices, 29(11), Nov. 1994, pp. 196-207.

[50] D. V. James et al. Distributed directory scheme: Scalable Coherent Interface.

IEEE Computer 23(6), June 1990, pp. 74-77.

[51] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Sys-

tems. ACM Transactions on Computer Systems 7(4), November 1989, pp.

321-359.

[52] John B. Carter, John K. Bennett and Willy Zwaenepoel. Implementation and

Performance of Munin. Proc. of 13th ACM Symposium on Operating Systems

Principles, October 1991, pp. 92-103.

[53] B. N. Bershad, M. J. Zekauskas and W. A. Sawdon. Midway distributed shared

memory system. Proc. of COMPCON, 1993, pp. 528-537.

[54] Mark D. Hill, James R. Larus and David A. Wood. Tempest: a substrate for

portable parallel programs. Proc. of COMPCON, Mar. 1995.

[55] Christiana Amza et al. TreadMarks: shared memory computing on networks

of workstations. IEEE Computer, February 1996, pp. 18-28.

[56] John Wilkes. Hamlyn: an interface for sender-based communications. Techni-

cal report HPL-OSR-92-13, Hewlett-Packard Company, HP Labs, Operating

System Research Dept., November 1992.

202

[57] Greg Buzzard, David Jacobson, Scott Marovich and John Wilkes. Hamlyn:

an high-performance network interface for sender-based memory management.

Proc. of Hot Interconnects III Symposium, Stanford University, Palo Alto, CA,

August 1995. Also available as technical report HPL-95-86, Hewlett-Packard

Company, HP Labs, Computer Systems Laboratory, July 1995.

[58] Greg Buzzard, David Jacobson, Milton Mackey, Scott Marovich and John

Wilkes. An implementation of the Hamlyn sender-managed interface architec-

ture. Proc. of the 2nd Symposium on Operating Systems Design and Imple-

mentation, Seattle WA, October 1996.

[59] Ellen Spertus, S. C. Goldstein, K. E. Schauser, T. von Eicken, D. E. Culler and

W. J. Dally. Evaluation of mechanisms for �ne-grained parallel programs in the

J-machine and the CM-5. Proc. of the 20th Annual International Symposium

on Computer Architecture, May 1993, pp. 302-313.

[60] Neil McKenzie, Kevin Bolding, Carl Ebeling and Lawrence Snyder. Cranium:

an interface for message passing on adaptive packet routing networks. Proc. of

Parallel Computer Routing and Communication Workshop, Seattle WA, May

1994, Springer-Verlag, pp. 266-280.

[61] William Yost. Cost e�ective fault tolerance for network routing. Technical

Report UW-CSE-95-03-03, University of Washington, Dept. of CSE, March

1995.

[62] Ludmila Cherkasova and Tomas Rokicki. Alpha message scheduling for op-

timizing communication latency in distributed systems. Proc. of 13th IFAC

Workshop on Distributed Computer Control Systems, 1995.

[63] Ludmila Cherkasova, Vadim Kotov and Tomas Rokicki. The impact of mes-

sage scheduling for packet switching interconnect fabrics. Proc. of 29th Hawaii

International Conference on System Sciences, 1996.

[64] Charles P. Thacker, David G. Conroy and Lawrence C. Stewart. The Alpha

Demonstration Unit: a high-performance multiprocessor. Communications of

the ACM 36(2), February 1993, pp. 55-67.

203

[65] ChangYun Park. Predicting deterministic execution times of real-time pro-

grams. PhD dissertation, University of Washington, Department of CSE, Sum-

mer 1992, UW-CSE-TR 92-08-02.

[66] Kevin Bolding and William Yost. The Express Broadcast Network: a network

for low-latency broadcast of control messages. Proc. of 1995 Intl. Conf. on

Algorithms and Architectures for Parallel Processing, April 1995.

[67] Robert F. Cmelik and David Keppel. Shade: a fast instruction-set simulator

for execution pro�ling. Technical report UW-CSE 93-06-06, June 1993. Also

available as Sun Microsystems Laboratories technical report SMLI 93-12.

[68] Robert F. Cmelik and David Keppel. Shade: a fast instruction-set simulator

for execution pro�ling. Proceedings of ACM SIGMETRICS '94, Nashville TN,

May 1994, pp. 128-137.

[69] W. Culbertson, R. Amerson, R. Carter, P. Kuekes and G. Snider. The Teramac

con�gurable custom computer. Proc. of the International Society of Optical

Engineering (SPIE) Field Programmable Gate Arrays (FPGAs) for Fast Board

Development and Recon�gurable Computing, Philadelphia, PA, Oct. 1995, pp.

201-209.

[70] Quickturn Design Systems, Inc. System Realizer Family page on the World

Wide Web, accessed on October 17, 1996. URL: http://www.quickturn.com-

/prod/realizer/sysreal.htm

[71] Nancy Kronenberg, Thomas R. Benson, Wayne M. Cardoza, R. Jagannathan

and Benjamin J. Thomas. Porting OpenVMS from VAX to Alpha AXP. Com-

munications of the ACM 36(2), February 1993, pp. 45-53.

[72] Motorola Inc. The MC88100 RISC Microprocessor User's Manual, second edi-

tion. Prentice-Hall, Englewood Cli�s NJ, 1990.

[73] Smaragda Konstantinidou and Lawrence Snyder. The Chaos router. IEEE

Transactions on Computers, Dec. 1994.

204

[74] Melanie Fulgham and Lawrence Snyder. A study of chaotic routing with non-

uniform tra�c. Technical Report UW-CSE-93-06-01, University of Washing-

ton, Dept. of CSE, June 1993.

[75] Kevin Bolding, Sen-Ching Cheung, Sung-Eun Choi, Carl Ebeling, Soha Has-

soun, Ton Ngo and Robert Wille. The Chaos router chip: design and imple-

mentation of an adaptive router. Proceedings of IFIP Conf. on VLSI, Sept.

1993.

[76] Parviz Kermani and Leonard Kleinrock. Virtual cut-through: a new computer

communication switching technique. Computer Networks 3, 1979, pp. 267-286.

[77] Motorola Inc. The MC88200 Cache/Memory Management Unit User's Man-

ual, second edition. Prentice-Hall, Englewood Cli�s NJ, 1990.

[78] M. Barnett, R. Little�eld, D. G. Payne and R. van de Geijn. Global combine

algorithms on mesh architectures with wormhole routing. Proc. of 7th IPPS,

Newport Beach CA, April 1993.

[79] David Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R. Subramonian and T. von Eicken. LogP: towards a realistic model of paral-

lel computation. Proc. of 4th Principles and Practices of Parallel Processing,

1993, pp. 1-12.

[80] R. M. Karp, A. Sahay, E. Santos and K. E. Schauser. Optimal broadcast

and summation in the LogP model. 5th Symp. on Parallel Algorithms and

Architectures, June 1993.

[81] Albert Alexandrov, Mihai Ionescu, Klaus E. Schauser and Chris Scheiman.

LogGP: incorporating long messages into the LogP model: one step closer

towards a realistic model for parallel computation. 7th Annual Symposium on

Parallel Algorithms and Architectures (SPAA'95), July 1995.

[82] S. S. Mukherjee, S. D. Sharma, Mark D. Hill, James R. Larus, Anne Rogers

and Joel Saltz. E�cient support for irregular applications on distributed-

memory machines. Proc. of the 5th ACM SIGPLAN PPoPP, July 1995.

205

[83] Manish Gupta, Sam Midki�, Edith Schonberg, Ven Seshadri, David Shields,

Ko-Yang Wang, Wai-Mee Ching and Ton Ngo. An HPF Compiler for the IBM

SP2. Proc. of Supercomputing '95, San Diego CA, December 1995.

[84] E. Oran Brigham. The Fast Fourier Transform. Copyright 1974 Prentice-Hall,

Englewood Cli�s NJ. ISBN 0-13-307496-X.

[85] J. W. Cooley and J. W. Tukey. An algorithm for the machine computation

of complex Fourier series. Mathematics of Computation 19(90), 1965, pp. 297-

301.

[86] Guy E. Blelloch, Charles Leiserson, Bruce M. Maggs, C. Greg Plaxton,

Stephen J. Smith and Marco Zagha. A comparison of sorting algorithms for

the Connection Machine CM-2. Proc. of 3rd Annual ACM SPAA, Hilton Head

SC, 1991, pp. 3-16.

[87] Gilbert Strang. Linear Algebra and Its Applications, second edition. Academic

Press, New York NY, 1980, ISBN 0-12-673660-X.

[88] L. F. Cannon. A cellular computer to implement the Kalman �lter algorithm.

PhD dissertation, Montana State University, 1969.

[89] H. T. Kung and C. E. Leiserson. Systolic arrays. In Introduction to VLSI

Systems, C. A. Mead and L. A. Conway, Addison-Wesley, 1980, section 8.3,

pp. 271-292.

[90] W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Communi-

cations of the ACM 29(12), December 1986, pp. 1170-1183.

[91] David G. Socha. Supporting �ne-grain computation on distributed-memory

parallel computers. PhD dissertation, University of Washington, Department

of CSE, June 1991, UW-CSE-TR 91-07-01.

[92] Calvin Lin. The portability of parallel programs across MIMD computers.

PhD dissertation, University of Washington, Department of CSE, December

1992, UW-CSE-TR 92-12-04.

206

[93] Calvin Lin and Lawrence Snyder. Accommodating polymorphic data decom-

positions in explicitly parallel programs. Proceedings of the 8th International

Parallel Processing Symposium, April 1994, pp. 68-74.

[94] Thomas T. Kwan, Brian K. Totty and Daniel A. Reed. Communication and

computation performance of the CM-5. Proc. of Supercomputing 93, Portland

OR, November 1993, pp. 192-201.

[95] David E. Culler, Seth C. Goldstein, Klaus E. Schauser and Thorsten von

Eicken. TAM: a compiler controlled threaded abstract machine. J. of Parallel

and Distributed Computing 18(3), July 1993, pp. 347-370.

[96] Ted Kehl, Steve Burns and Chris Fisher. Self-tuned clocks and crystal clocks.

Technical report TR 94-05-03, Dept. of CSE, University of Washington, May

1994.

[97] Scott Hauck. Asynchronous design methodologies: an overview. Proceedings

of the IEEE 83(1), pp. 69-93, January 1995. Also available as University of

Washington Dept. of CSE TR 93-05-07, May 1993.

[98] Greg Chesson. HIPPI-6400 overview. Proc. of Hot Interconnects '96, Stanford

University, August 1996, pp. 121-128.

[99] Tenaski V. Ramabadran and Sunil S. Gaitonde. A tutorial on CRC computa-

tions. IEEE Micro 8(4), Aug. 1988, pp. 62-75.

[100] Guido Albertengo and Riccardo Sisto. Parallel CRC generation. IEEE Micro

10(5), Oct. 1990, pp. 63-71.

[101] Walter A. Hiatt. Mitsubishi Electric Semiconductor Products. Marketing liter-

ature from the Electronic Device Group (EDG) division of Mitsubishi Electric

America (MEA). Presentation given on January 9, 1997 at MERL | A Mit-

subishi Electric Research Laboratory, Cambridge MA.

[102] Mark Shand et al. The DEC PCI Pamette V1. World Wide Web site,

http://www.research.digital.com:80/SRC/pamette/.

207

[103] M.J. Feeley, W.E. Morgan, F.H. Pighin, A.R. Karlin, H.M. Levy, and C.A.

Thekkath. Implementing global memory management in a workstation cluster.

Proceedings of the 15th ACM Symposium on Operating Systems Principles,

December 1995.

[104] H.A. Jamrozik, M.J. Feeley, G.M. Voelker, J. Evans II, A.R. Karlin, H.M.

Levy, and M.K. Vernon. Reducing network latency using subpages in a global

memory environment. Proceedings of the Seventh ACM Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS

VII), October 1996.

Appendix A

THE Cranium APPLICATION PROGRAMMER'S

INTERFACE

The Cranium application programmer's interface (API) is depicted in Figure A.1

by the dashed line between the application program and the entities with which it

interacts directly. Message passing systems have three modes of operation: bu�er

allocation, data movement and synchronization. In many message passing environ-

ments, all three modes require a system call per operation (Figure A.1a). Under

Cranium, two of these modes are optimized { the user program bypasses the operat-

ing system and interacts directly with the network when performing data movement

and synchronization (Figure A.1b).

The application programmer interface consists of a set of data structures and their

associated operations. Table A.1 shows a list of the data structures relevant to mes-

sage passing under the Cranium interface. The �rst four structures in the list are the

microstructures and the last �ve structures are the macrostructures. A microstruc-

ture is a set of bit �elds packed into a 32-bit or 64-bit word. A macrostructure

describes the organization at a higher level than the microstructures do. For in-

stance, a microstructure may describe a single network interface register, whereas a

macrostructure may describe a set of network interface registers.

For clarity and readability, all of the data structures use a consistent naming

scheme. All of the structure names use the word \cranium" as a pre�x, as shown in

the �rst column of Table A.1. All of the elements within a structure use the same

pre�x. The naming convention for the pre�x is \NI�" where � is a capital letter,

as shown in the second column of the table. (NI stands for network interface.) For

instance, all of the elements of the microstructure cranium command word use the

pre�x NIC in the names of the elements. The third column indicates the type of the

structure, micro or macro. The fourth column is a terse description of the purpose of

the structure. The following sections discuss the purpose of each structure in greater

depth.

209

Application

Operating System

Network Interface

Application

Operating System Network Interface

(a) (b)

Sec. A.1 Sec. A.2

Sec. A.3

Figure A.1: Schematic view of the interactions among the user application program,

the operating system and the network interface. The dashed line represents the

application programmer interface. Sub�gure (a) represents the traditional layered

approach in which the network is a service provided by the operating system. Sub�g-

ure (b) represents the Cranium approach that allows the user program to access the

network directly. Each arc is labeled with the number of the section in this chapter

that describes the interactions between the two entities connected by the arc.

Table A.1: List of data structures to support message passing under Cranium

Structure name Pre�x Type Section Description

cranium command word NIC micro A.2.2 command word

cranium packet header NIH micro A.2.1 packet header

cranium gen intr mask NII micro A.2.3 interrupt mask

cranium queue ptr NIQ micro A.2.4 queue pointers

cranium buf alloc NIB macro A.1.2 DMA bu�er allocation

cranium init info NIN macro A.1.1 initialization information

cranium OS reg map NIO macro A.3 operating system interface

cranium queue packet NIP macro A.2.4 format of packet in user queue

cranium register NIR macro A.2.5 command register array

210

typedef struct cranium init info s f

unsigned NIN num nodes; /* total number of nodes p */

unsigned NIN my node; /* linear node ID of this node */

unsigned NIN rows; /* height of node array */

unsigned NIN columns; /* width of node array */

void * NIN reg map base; /* base of Cranium register map */

void * NIN user queue base; /* start of user queue */

unsigned NIN user queue length; /* size of user queue in bytes */

void * NIN err queue base; /* start of error queue */

unsigned NIN err queue length; /* size of error queue in bytes */

unsigned NIN phys node map[p]; /* table of physical node IDs */

g cranium init info t;

Figure A.2: C structure describing the Cranium initialization information

A.1 Application program interface to the OS for message passing

A.1.1 Initialization information

The operating system call cranium get init info() provides the user program

with all the information it needs to access Cranium. The user program passes a

pointer to block of user-space memory, and then the operating system �lls in this

memory with all the �elds of the structure cranium init info displayed in Fig-

ure A.2. The �rst two �elds of this structure, NIN num nodes and NIN my node,

provide the total number of nodes in the system (hereafter also referred to as p) and

the linear identi�er of the node that the code is currently executing upon (also called

the absolute or virtual node identi�er). Nodes are numbered serially between 0 and

p� 1, inclusive; the value of NIN my node is guaranteed to be in this range.

The �elds NIN rows and NIN columns provide topological information to the user

about the layout of processes onto processing nodes. The product of these two �elds

equals NIN num nodes. This organization is used assuming that the network topology

is a rectangle (two-dimensional); the extension to higher dimensions is straightfor-

ward.

The pointer NIN reg map base is the user virtual base address of the register

map in the network interface. The user program casts this pointer to the type

cranium register t * (see Section A.2.5) and then performs structure accesses to

read and write Cranium registers directly.

211

The pointers NIN user queue base and NIN err queue base point to the base

address of the user queue and user error queue, respectively. They are cast to

the type cranium queue ptr t * and thereafter are used to access packets arriv-

ing in the queue (see Section A.2.4). The values NIN user queue length and

NIN err queue length denote the sizes of the queues in bytes. Memory allocated

to the queues by the operating system is guaranteed to be page-aligned and contain

an integral number of MMU pages.

The array NIN phys node map id permits the user look up a physical node ID

given the linear node ID. When packets are placed into the user queue, the header

�eld contains the physical source ID; the table makes it possible to perform pattern

matching to determine the linear node ID of the node that sent the packet. See

Section A.2.1.

A.1.2 Allocation and deallocation of DMA bu�ers

Before the send channel can send any message or the automatic-receive channels can

receive any message, the user program must allocate one or more message bu�ers for

DMA by the network interface. These bu�ers are used with both the send channels

and the automatic-receive channels; one bu�er can be used as a source, a destination

or both. A message bu�er is the size of an MMU page; the semantics of Cranium

requires that these message bu�ers are pinned into physical page frames by the op-

erating system. The system call alloc cranium buffer() encompasses all of these

operations: a bu�er is allocated, its page is pinned in memory, the physical address

of the frame is entered into the bu�er map, and both the user virtual address and the

handle of the bu�er are returned to the user program. The operating system places

the allocated pages onto contiguous user virtual page addresses; the e�ect is similar

to standard contiguous memory allocators such as malloc() or sbreak(). Note that

the physical DRAM backing the virtual store for the DMA bu�ers does not need to

be allocated into contiguous physical frames.

alloc cranium buffer() takes two arguments. The �rst argument is a pointer

to a block of user-space memory, which the operating system treats as an ar-

ray of structs of type cranium buf alloc (Figure A.3). The size of the array is

equal to the requested number of pages to allocate, given in the second argument.

alloc cranium buffer() returns a boolean value representing success or failure. Al-

212

typedef struct cranium buf alloc s f

void * NIB base; /* User virtual addr of pinned page */

unsigned NIB handle; /* Cranium buffer handle */

g cranium buf alloc t;

Figure A.3: C structure for DMA bu�er allocation for Cranium

location failure results from either an improper input parameter or a shortage of

physical page frames. If the system call succeeds, each struct in the array of structs

consists of a user virtual address pointer (NIB base) and a handle (NIB handle) for

each DMA bu�er allocated.

Deallocation of Cranium bu�ers is performed by the system call free cranium -

buffer(). The user program passes the handle of the bu�er to be deallocated as

the single input parameter. The operating system must verify that the bu�er handle

already has a valid mapping and has no outstanding message passing commands

associated with it. Then the bu�er can be safely deallocated.

A.1.3 Interrupt handler

The operating system call set user intr handler() passes the address of a user-

level function to the operating system. When an interrupt occurs that was caused

by the network interface, the operating system passes control to the function at this

address. If the user program does not initialize the user-level handler address, a

Cranium-generated interrupt is treated as an abort signal (e.g. SIGABRT under

Unix) and causes the user program to terminate.

A.2 Application program interface to Cranium

A.2.1 Packet header

The packet header (Figure A.4) is a fundamental data structure of the Cranium

architecture. It contains the packet's location information for both its source and

destination nodes (bu�er address and o�set), the context (user process ID) and re-

dundancy information for error detection. The packet header is visible directly to

213

typedef struct cranium packet header s f

unsigned NIH dest ph id: 16; /* dest node id (physical) */

unsigned NIH src ph id: 16; /* source node id (physical) */

unsigned NIH proc id: 16; /* user process id */

unsigned NIH dest chan: 8; /* dest node recv channel */

unsigned NIH src chan: 8; /* source node send channel */

unsigned NIH sequence: 12; /* seq number (memory offset) */

unsigned NIH intr every: 1; /* interrupt flags */

unsigned NIH intr final: 1; /* interrupt flags */

unsigned NIH q flag: 1; /* user queue flag */

unsigned NIH sys flag: 1; /* system queue flag (OS only) */

unsigned NIH crc: 16; /* redundancy code */

g cranium packet header t;

Figure A.4: C structure describing the Cranium packet header

the user program in the case of packets that arrive in the user queue. The size of the

packet header is 96 bits (six 16-bit words).

The �rst two �elds, NIH dest ph id and NIH src ph id, are 16-bit �elds contain-

ing the physical identi�ers of the destination and source nodes in the network. The

values used in these �elds are dependent on the implementation. For concreteness it is

assumed that the network is a two-dimensional torus using chaotic routing. Physical

node identi�cation under chaotic routing is relative (di�erential). Both 16-bit �elds

are subdivided into two 8-bit �elds describing the horizontal and vertical di�erences

as signed two's complement quantities. From the point of view of the network, only

the �rst 16-bit �eld NIH dest ph id is meaningful for routing the packet. Normally

when the packet is ejected, NIH dest ph id is 0 to indicate that the packet has arrived

at its destination. During testing, error detection and recovery, this �eld may be non-

zero to indicate that the packet has not been delivered to its proper destination. (In

some cases the receiving node is obligated to save the packet for later re-injection).

It is often useful to the user program to determine the originating nodes of the pack-

ets in the user queue. Application programs use linear node identi�ers for Cranium

channel operations rather than the physical IDs in the packet header. The operating

system provides a look-up table to the user program to allow the user to convert

NIH src ph id into a linear node ID (see NIN phys node map in Section A.1.1).

214

NIH proc id is the process ID of the user program. The network interface does

a simple comparison to verify that the process ID �eld in the packet matches the

process ID of the NI context. Normally a match is found; a mismatch causes the NI

to handle the packet specially. (See Section 8.2 for discussion of multiprogramming

support in Cranium.)

NIH dest chan and NIH src chan identify the receive channel at the destination

node and the send channel at the source node, respectively. Both �elds are 8 bits to

address up to 256 send channels and 256 receive channels; a typical implementation

is likely to use smaller numbers than these, such as 64 send channels and 64 receive

channels.

NIH sequence is the sequence number of the packet. Since we are assuming a

cache line size of 32 bytes, the o�set in memory is determined by multiplying the

sequence number by 32, i.e. shifting left by 5 bit positions. This 12-bit �eld allows a

page size as large as 2

17

or 128K bytes. For a page size of 8K, only 8 bits of the �eld

are used. Normally the o�set applies to both the source address and the destination

address. In a variation on this scheme, NIH sequence is used to index a table in the

receiver's memory to look up the destination address. This variant scheme forms the

basis for the gather-scatter extension { see Section 3.4.4 for a discussion of scatter-

gather support in Cranium.

The remaining �elds are a set of boolean
ags and the CRC �eld. There are

two maskable interrupt
ags: NIH intr every and NIH intr final. When set,

NIH intr every causes the receiving node to interrupt if its corresponding inter-

rupt mask bit is set. When set, NIH intr final causes an interrupt at the receiving

node if the packet is received by an auto-channel, the packet turns out to be the

�nal packet of the transfer, and the corresponding mask bit for the channel is en-

abled. NIH q flag tells the receiving node to enter the packet into the user queue.

NIH sys flag tells the receiving node to place the packet into the system queue.

A.2.2 Command word

A message is sent using the send channels or received using the automatic-receive

channels by storing a 64 bit command word into a network interface register. The

command word is a bit �eld described by the C language structure shown in Fig-

ure A.5.

215

typedef struct cranium command s f

unsigned NIC channel reset: 1; /* reset the channel */

unsigned NIC buffer handle: 15; /* handle of local buffer */

unsigned NIC remote node id: 12; /* handle of remote node */

unsigned NIC remote channel: 8; /* channel ID on remote node */

unsigned NIC num packets: 12; /* number packets to send/rcv */

unsigned NIC start packet: 12; /* first packet (send only) */

unsigned NIC queue flag: 1; /* queue flag (send only) */

unsigned NIC chan intr mask: 3; /* channel interrupt mask */

g cranium command t;

Figure A.5: C structure for the Cranium command word

The �rst �eld is the boolean
ag NIC channel reset. When this bit is set, the

channel is cleared (placed into an inactive state); all the other �elds in the command

are ignored.

The �eld NIC buffer handle is a bu�er handle passed back to the user from the

system call alloc cranium buffer(). This �eld is a maximum of 15 bits; up to 2

15

or

64K distinct handles may be allocated. The handle indicates to the network interface

to send or receive data in or out of its corresponding user bu�er. The message

passing semantics used by the send channels and the auto-receive channels is called

unbu�ered; no auxiliary bu�ering is involved in the transfer. If a send command is

issued, followed by an immediate store operation to the same bu�er memory, the value

transmitted may be the old value or the new value. It is simple to avoid such race

conditions by testing the status of the channel. In the context of the given example,

the status of the channel performing the send operation can be tested to ensure that

the store operation waits until after the send completes.

The �eld NIC remote node id is the linear node identi�er of the remote node.

This �eld is a maximum of 12 bits; up to 2

12

or 4K distinct remote nodes can be

identi�ed. For a send channel the �eld indicates the ID of the receiving node. The

sender's network interface uses this linear node ID as an index into the node ID

translation table. The value at this slot in the table is the corresponding physical

ID to be copied into the packet header �eld NIH src ph id of every packet in the

transfer. For a receive command the �eld indicates the linear node ID of the sending

216

node. As in the sending case, this value is looked up in the node ID translation table

using the linear node ID as the table index. The physical node ID from the table

is matched against the source node �eld of each packet destined for this channel.

Normally the IDs match and the packet is accepted. If a mismatch occurs then the

NI signals a protocol error and interrupts the processor.

The �eld NIC remote channel identi�es the remote channel at the remote node.

For a send operation, this �eld is copied into the packet format �eld NIH dest chan

for every packet in the transfer. For a receive operation, this �eld is compared against

NIH dest chan in the header of incoming packets. Again, a mismatch in the channel

numbers indicates a protocol error.

The �eld NIC num packets is used by both the sender and the receiver to spec-

ify the number of packets to send in a channel transfer. An additional �eld,

NIC start packet, is used only with send channels to identify the sequence num-

ber of the �rst packet sent in the transfer. Ordinarily the �rst packet sent has a

sequence number of zero. The packet number counter is incremented after each

packet is sent; if the packet number is equal to the number of packets per page (e.g.

PAGESIZE/32) then the count rolls over to zero. For example, if NIC num packets

is 9, NIC start packet is 60 and the number of packets per page is 64, then the

sequence numbers of packets to be sent are 60, 61, 62, 63, 0, 1, 2, 3 and 4, in that

order.

The boolean �eld NIC queue flag is used only by the send channels; this bit is

copied into the �eld NIH q flag in the header of every packet in the transfer, to steer

packets to the user queue at the receiving node.

The three-bit �eld NIC chan intr mask is used di�erently for sending and receiv-

ing. When used with the send channels, the �rst two bits are copied into the �elds

NIH intr every and NIH intr final in the header of every packet in the transfer.

The third bit is the send channel's interrupt mask; if it is set, then an interrupt is

raised when the send operation completes. When receiving, NIC chan intr mask de-

�nes the interrupt mask for the selected auto-receive channel. There are two types of

interrupt: interrupt on every packet received (Every) and interrupt on the �nal packet

of the transfer (Final). Each auto-receive channel is in one of three states for each

type of interrupt: ALWAYS, SOMETIMES and NEVER. ALWAYS means that the

interrupt is always taken, regardless of the state of the corresponding interrupt
ag

217

Table A.2: Interrupt mask state for a Cranium auto-receive channel

NIC chan intr mask type = Every type = Final

000 NEVER NEVER

001 NEVER SOMETIMES

010 NEVER ALWAYS

011 SOMETIMES NEVER

100 SOMETIMES SOMETIMES

101 SOMETIMES ALWAYS

11x ALWAYS ALWAYS

in the packet header. NEVER means that this interrupt type is masked and ignored.

SOMETIMES means that the interrupt is taken if and only if the corresponding bit

in the packet header is set. With two types of interrupt (Every and Final) and three

states for each type, the number of possible states of the receive channel interrupt

mask is 3

2

or 9, but only 7 states are logically distinct { if every packet causes an

interrupt (i.e. Every = ALWAYS) then the �nal packet of a transfer must also cause

an interrupt (i.e. Final = ALWAYS is implied). These seven states are encoded by

the three bits of NIC chan intr mask. See Table A.2.

A.2.3 Cranium general interrupt mask

The general interrupt mask complements the set of auto-channel interrupt masks. It

is general because it applies to all interrupt activity in the network interface, but

it is local to a particular node and not globally exported to all nodes. The general

interrupt mask has two parts: a read mask and a write mask. The read mask (i.e. the

interrupt status register) contains all the information required to identify the event

that caused the interrupt; the user program may perform di�erent actions depending

on the event that caused the interrupt. The write mask is set by the user program to

tell the network interface what events are allowed to cause interrupts. The general

interrupt mask supercedes the auto-channel write mask state; i.e. the appropriate

�elds of the general interrupt mask must be enabled before selected auto-channel

interrupt events take place. However, certain types of events (in particular, error

events) cannot be masked.

218

typedef struct cranium gen intr mask s f

unsigned NII intr type: 2; /* interrupt type (r/o) */

unsigned NII error mask: 3; /* interrupt error mask (r/o) */

unsigned NII channel id: 8; /* pointer to channel (r/o) */

unsigned NII multiple: 1; /* multiple interrupts (r/o) */

unsigned NII send complete: 1; /* send chan xfer done (r/w) */

unsigned NII recv single: 1; /* recv chan one pkt (r/w) */

unsigned NII recv complete: 1; /* recv chan xfer done (r/w) */

unsigned NII recv user q: 2; /* recv user queue packet (r/w) */

unsigned NII barrier done: 1; /* barrier complete (r/w) */

g cranium gen intr mask t;

Figure A.6: C structure for the Cranium general interrupt mask

Table A.6 shows the C structure for the Cranium general interrupt mask. All

�elds labeled r/o are read-only and cannot be masked by the user program. All

other �elds (labeled r/w) refer to interrupt types that are maskable. The �rst �eld

NII intr type identi�es the type of interrupt { a send event, an auto-channel event,

a queue event or a miscellaneous event. If the event was a send or auto-channel

event, the �eld NII channel id identi�es the associated channel number. The �eld

NII error mask encodes seven kinds of error status:

� Channel was busy when another non-reset command was issued for that channel

� Packet arrived for an inactive auto-receive channel

� Auto-channel protocol error, if the remote node or remote channel declared in

the receive command does not match the remote node or remote channel in the

packet header

� Bu�er handle or node handle in channel command references an uninitialized

(NIL) physical entry in the look-up table

� User queue over
ow, if a packet arrives when the queue is full

219

� User queue under
ow, if the user program advances the head pointer when the

queue is empty

� Illegal barrier synchronization operation

The �eld NII multiple indicates that there was more than one event that caused

the interrupt. The way that multiple interrupts are handled by the interface is left to

the implementation. In one possible implementation, only the �rst event is noted in

the interrupt mask; subsequent events are discarded, requiring the program to �gure

out the other events by some other means. In a second version, the events are queued;

reading the mask multiple times reveals the entire sequence. Queuing interrupt events

requires a more sophisticated hardware implementation, but it simpli�es the software

support required.

The �nal set of �elds represents all the maskable interrupt types.

NII send complete indicates that the send channel completed its operation.

NII recv single indicates that a single packet was received by an auto-receive chan-

nel. NII recv complete indicates that an auto-receive channel completed its oper-

ation. NII recv user q indicates that a packet was received by the user queue.

The write mask requires this �eld to contain two bits to encode the states NEVER,

SOMETIMES and ALWAYS; it is analogous with the write mask for the auto-receive

channels. NII barrier done indicates that a global barrier synchronization operation

completed.

A.2.4 Queue interface

The two queues that are directly accessible by the user program are the user queue

and the user error queue. Packets arrive in the user queue when the boolean �eld

NIH q flag is set in the packet header. A packet arrives in the user error queue as

the result of a channel protocol error. In both cases, packets that arrive from the

network are placed at the tail of the queue and the user program consumes packets

from the head of the queue. At a high level, the user's interface to the queue consists

of three parts: testing the presence of a packet in the queue, accessing the packet and

discarding the packet. It is necessary for the user program to discard packets from

the queue in order to free up space and permit the safe arrival of subsequent packets.

220

typedef struct cranium queue s f

unsigned NIQ head ptr: 32; /* pointer to head of queue */

unsigned NIQ tail ptr: 32; /* pointer to tail of queue */

g cranium queue t;

Figure A.7: C structure for the Cranium queue pointer interface

The implementation of the queues is a combination of hardware and software.

Physically, queue memory is a circular bu�er in DRAM that is pinned and mapped

into the user's address space. The head and tail pointers to the queue are realized in

the network interface hardware; these pointers can be copied into software by loading

the network interface register containing the queue pointers (Figure A.7). When a

packet arrives, the network interface writes the packet payload into one cache line

and its auxiliary information into a second cache line, consisting of the packet header,

a timestamp for performance analysis and a presence
ag, set to a non-zero value to

indicate that the packet has arrived.

Once the user program has loaded the head pointer, it can poll the presence �eld in

queue memory to detect packet arrivals. A logically equivalent test for packet arrivals

is to load the queue pointers and compare them; if the head and queue pointers are

not equal, the queue is not empty. However, the presence �eld technique is more

e�cient than loading the queue pointers. Every access to a network interface register

generates tra�c on the memory bus. The presence �eld is just a memory location

that can be cached reduce bus tra�c. After the �rst access to queue memory, testing

the presence �eld generates no activity on the memory bus because the line is loaded

into the cache. The arrival of a packet causes an invalidation or update of the line to

keep cache and DRAM coherent (see Sections 2.1.2 and 3.4.2).

After the presence of a packet has been detected, the user program accesses the

packet directly in memory. Figure A.8 shows the format of packets placed into the

queues by the network interface. (The type uint32 is a 32-bit unsigned integer;

the type uint64 is a 64-bit unsigned integer, equivalent to unsigned long long in

many C compilers.) Because queue memory is just standard cacheable DRAM, the

user program is free to read or modify any of the �elds in the queue packet structure.

In particular, there are twelve bytes in the structure that are used only to pad the

221

typedef struct cranium queue packet s f

uint64 NIP payload[4]; /* 32 bytes */

uint32 NIP flag; /* 4 bytes (presence flag) */

uint32 NIP pad[3]; /* 12 bytes (app defined) */

uint32 NIP timestamp; /* 4 bytes (arrival time) */

cranium packet header t NIP header; /* 12 bytes */

g cranium queue packet t;

Figure A.8: C structure for the format of packets in the queue

structure to a total of 64 bytes (two cache lines); this extra space can be used by the

application as scratch memory. The user program sets the presence �eld NIP
ag

to zero to indicate that the packet is discarded. The network interface never reads

this memory location, but it writes a non-zero value to it to indicate the presence of

a subsequent packet. (To ensure proper operation in the presence of an optimizing

compiler, every �eld in the structure should be declared volatile).

Two actions are required for the user program to discard a packet from the queue.

First, it clears the presence �eld in queue memory. Second, it advances the head

pointer in the network interface. The head pointer is advanced by reading from a

second network interface register for the queue. As a side e�ect, the new value of

the head pointer is returned. Since the bu�er is circular, the new value may be

either 64 bytes beyond the previous head pointer or the base address of the queue

for the wraparound case. Computing this value in hardware is more e�cient than in

software, as the latter would require a test for the wrap condition and a branch.

There are two types of exceptional conditions for the queue: under
ow and over-

ow. The network interface hardware detects both types of exceptions and there-

upon signals the processor with an interrupt. The network interface compares the

head and tail pointers for every packet arrival and head pointer advance. Under
ow

results when the head pointer and tail pointer were equal (i.e. the queue is empty)

and the user advances the head pointer. Over
ow results when a packet arrives and

advancing the tail pointer causes it to become equal with the head pointer.

222

typedef struct cranium register s f

cranium command t NIR send channel[64]; /* read/write */

cranium command t NIR recv channel[64]; /* read/write */

uint64 t NIR send chan busy; /* read only */

uint64 t NIR recv chan busy; /* read only */

cranium queue ptr t NIR user queue[2]; /* read only */

cranium queue ptr t NIR error queue[2]; /* read only */

uint64 t NIR barrier; /* read/write */

g cranium register t;

Figure A.9: C structure for the Cranium register map

A.2.5 Cranium register map

The Cranium register map consists of all the network interface registers that the

user program is permitted to access directly (Figure A.9). There are 135 regis-

ters in all. For compatibility with busses that require all memory accesses to be

cache-line aligned, all registers are placed on 32-byte boundaries. 64 registers access

the send channels and an additional 64 access the automatic-receive channels; the

nth register corresponds to the nth channel. All the send and auto-receive registers

are read/write. As write registers, they take a command word as described in Sec-

tion A.2.2. As read registers, they return the number of packets remaining in the

transfer; a zero value means that the operation has completed. The read-only regis-

ters NIR send chan busy and NIR recv chan busy are bit vectors; if bit n is set then

channel n is busy. The bit vectors reduce the number of network interface accesses

when the user program is waiting for more than one channel operation to complete.

There are two read-only registers apiece for the user queue and the user error

queue. Reading the �rst register returns the queue pointer microstructure; reading the

second register has the side e�ect of incrementing the head pointer before returning

the pointer information (see Section A.2.4).

The �nal register supports global barrier synchronization. Global barrier synchro-

nization is a useful abstraction in parallel programming, particularly in the context

of data-parallel programs. The basic idea is to guarantee that all threads of execu-

tiong have reached a particular statement in the program. In the case of message

passing using unbu�ered communication, the barrier ensures that all receivers have

223

Table A.3: Barrier state transition table. The states are I (idle), W (wait), C (com-

plete) and A (abstain). The events that can cause a state change are generated by

one of three sources { the processor (write 0 or write 1), the network or a timer. The

�rst column represents the input state. Values in the other columns represent the

next state. The pseudo-state e represents an error condition.

Input Event

state write 0 write 1 net event timer event

I A W

W e e C

C e e I

A e W

been initialized before any node performs a send operation.

A node can be in one of four states with respect to barrier synchronization (Ta-

ble A.3). The initial state is idle (I). Entering the barrier causes the node to move

to one of two states: barrier-wait (W) where it waits for the barrier to complete, or

barrier-complete (C) if the node was the last node to enter the barrier. If a node

is in the barrier-wait state, it remains there until all nodes have entered the barrier,

whereupon it moves to the barrier-complete state. After a short time delay, the node

moves from barrier-complete to idle. A fourth state is called abstain (A), in which

the node opts to not participate in barrier processing. A node can move from idle to

abstain, and from abstain to barrier-wait by entering the barrier.

See Section 6.1.3 for a related discussion on the implementation of fast barrier

synchronization.

A.3 Interface between Cranium and the operating system

The operating system interface to Cranium provides all the necessary information for

the Cranium device driver developer. This level of detail is hidden from application

programs and is not necessary knowledge for parallel program development. However

it is necessary for the design and development of the network interface itself. This

part of the interface between the network interface hardware and the software is

224

typedef struct cranium OS reg map s f

cranium register t NIO user reg map; /* OS copy of user reg map */

unsigned NIO process ID; /* OS process ID for the user */

unsigned NIO flow control; /* packet flow in/out of NI */

void * NIO node map ptr; /* user node map pointer */

void * NIO buffer map ptr; /* user buffer map pointer */

void * NIO user q ptr[4]; /* user queue pointers */

void * NIO error q ptr[4]; /* user error queue pointers */

void * NIO sys q ptr[4]; /* sys queue pointers */

void * NIO syserr q ptr[4]; /* sys error queue pointers */

void * NIO save context; /* save user context */

void * NIO restore context; /* restore user context */

unsigned NIO blt status; /* block transfer status */

g cranium OS reg map t;

Figure A.10: C structure describing the Cranium interface to the operating system

important for making a system that is both secure and usable. The operating system

must be able to perform three operations: initialize a context for a newly running

user program, terminate a user program context and switch user program contexts.

Performing a context switch requires the internal state of the network interface to be

saved and a saved user state to be restored.

The structure of the operating system interface is described by Figure A.10. At

boot time, the operating system is given the physical base address of Cranium; regis-

ters are accessed by reading and writing the elements of this structure. The OS uses

a separate window into the Cranium user message passing registers, in addition to

any dedicated send registers dedicated to the OS that are provided by the particular

hardware implementation. When the OS send a message using this separate window

into the Cranium register set, the packet header
ag NIH sys flag is set by default

(see Section A.2.1). An important control that the operating system has over the

network is the control of packet
ow in or out of the processing node. Writing to

the register NIO flow control sets the
ow control: NORMAL (packets
ow in and

out), FLUSH (packets
ow in but not out) and FREEZE (no packets
ow in or out).

The other registers are used to initialize, save and restore the user context, and are

explained below.

225

A.3.1 Initializing and terminating a user message-passing context

The operating system must set up the message passing context for the user program

and then load the pointer registers inside Cranium to point to the proper memory

locations. The message passing context includes the bu�er map, the node map, the

user queue and the user error queue and all the associated pointers inside Cranium.

First the OS sets the interface's
ow control to the FREEZE state. The OS clears

the bu�er map by setting all entries in the bu�er map to the value NIL. The node

map is initialized with all the topology information to map the linear sequence 0

through (p � 1) into the physical node IDs. If the network uses relative physical

node ID mapping (as is the case with chaotic routing) then each node receives a

custom version of this map. Entries in the node map with index p or greater are

also set to NIL. This map is also exported to the user program via the system call

cranium get init info() (see Section A.1.1). There are four queue contexts: the

user queue, the user error queue, the system queue and the system error queue. Each

queue context requires four pointers in the network interface hardware: the beginning

of queue memory, the end of queue memory, the head pointer and the tail pointer.

When a queue is initialized, the head and tail pointer are set equal to the beginning

of that queue's memory. The remaining steps of initializing the network interface for

a new user context is setting the process ID register NIO process ID and setting all

send channels and all auto-receive channels to an idle state.

A user message-passing context is terminated by �rst
ushing the network to

deliver all the packets intended for that user process, then clearing all the channel

operations, then freezing the interface. At this point a new user context can be started

up or a ready context can be made runnable, as shown in the following section under

context switching.

A.3.2 Context switch

A context switch in Cranium consists of the following sequence of operations:

� The operating system sets the
ow control to FREEZE.

� The OS writes a memory address to the NI register NIO save context. The

network interface responds by executing a block write of all its internal user

226

state beginning at this address. (The size and format of this information is left

up to the implementation.) The OS tests the completion of the block transfer

by polling the register NIO blt status.

� The OS writes a memory address to the NI register NIO restore context. This

command causes the network interface to perform a block read from memory

to restore a previously saved user state. Again, NIO blt status provides the

completion status of the block transfer.

� The operating system sets the
ow control to NORMAL.

Note that part of the message passing state is in user-space memory (such as the

user queue). Since user memory is saved in the normal course of a context switch (e.g.

user-owned memory becomes paged or swapped out), there is no special command

or mode needed in the network interface to support this part of saving and restoring

the message-passing state.

There are other details not noted here that are left to the implementation. See

Sections 3.4.3 and 7.6.2 for more discussion on hardware support in Cranium for

multiple user contexts.

A.4 Examples of message passing using the Cranium API

Figures A.11 through A.14 present a series of code modules that access the Cranium

API; all the modules are linked together to form a complete application program.

Figure A.11 contains the top-level function main(); it in turn calls the subfunctions

send message(), receive message queue() and receive message auto() shown

in Figures A.12, A.13 and A.14, respectively. All the code examples are in ANSI C.

Code fragments such as pointer casts and function prototype declarations are omitted

for clarity. The purpose of these �gures is to illustrate the basic functionality of the

message passing system, rather than provide literal examples of code that would

appear in an implementation tuned for the highest performance.

227

A.4.1 Initialization

When a parallel application program starts up, it begins executing a separate

thread of execution on every processing node in its partition. In the example in Fig-

ure A.11, all nodes start executing by entering the function main() at approximately

the same time. Two local functions are called: set cranium gen intr mask() to

set the general interrupt mask and set cranium user intr handler() to set up the

user's interrupt handler

1

. At each node the application program executes the system

call cranium get init info() to return the initialization information. Fields within

this structure identify the node number of each thread of execution. This informa-

tion allows the code running on a particular node to identify itself as the source or

destination of a message. In the block of code labeled \Bu�ered communication,"

every node running a copy of the program performs one of three actions. The code

running on node 0 calls the function send message(). The code running on node

3 calls the function receive message queue(). All other threads take the default

action, which is to do nothing. The e�ect is that a message is sent from node 0 to

node 3. In the following code block labeled \Unbu�ered communication" the same

division of labor occurs: node 0 sends a message to node 3, but the automatic-receive

channels are used instead of the user queue. In this code block a barrier synchro-

nization is performed. The default nodes (i.e. nodes other than nodes 0 and 3) enter

the barrier by calling the function barrier synch(); each node spin-waits until all

nodes have entered the barrier. Both send message() and receive message auto()

contain calls to barrier synch(), so that all nodes will eventually enter the barrier.

A.4.2 Sending a message

Figure A.12 displays the function send message(). This function sends a message

consisting of a single packet to the node whose linear ID is dest. The
ag qflag

determines the destination of the packet when it arrives at the receiving node (either

an auto-channel or the user queue). The �rst action taken in the function is the

allocation of a message bu�er; if this allocation step fails then the entire function

returns FAILURE. The next action is to place information into the message bu�er.

1

The message passing examples presented here do not use interrupts. For brevity, the code imple-

menting these two functions is omitted.

228

/�

�� A separate copy of this code runs on each processing node

�/

#include <craniumAPI.h>

void main(void) f

cranium init info t info;

set cranium gen intr mask();

set cranium user intr handler();

cranium get init info(&info);

if (info.NIN num nodes < 4) f

error("Sorry, not enough nodes");

exit();

g

/* Buffered communication */

switch (info.NIN my node) f

case 0:

send message(&info, 3, QUEUE);

break;

case 3:

receive message queue(&info, 0);

break;

default:

; /* do nothing */

g

/* Unbuffered communication */

switch (info.NIN my node) f

case 0:

send message(&info, 3, AUTO); /* contains barrier synch */

break;

case 3:

receive message auto(&info, 0); /* contains barrier synch */

break;

default:

barrier synch();

g

g

Figure A.11: Example code for initialization and the two communication examples

229

/�

�� Simple message sending example

�/

int send message(cranium init info *P info, int dest, int qflag) f

cranium command t cmd;

cranium buf alloc t sbuf;

cranium register t *cranium;

if (!alloc cranium buffer(&sbuf, 1))

return FAILURE;

strcpy(sbuf.NIB base, "Hello from Node 0nn");

cmd.NIC buffer handle = sbuf.NIB handle;

cmd.NIC channel reset = 0; /* don't reset the channel */

cmd.NIC remote node id = dest; /* send to node `dest' */

cmd.NIC remote channel = 6; /* send to rcvr's channel 6 */

cmd.NIC num packets = 1; /* send one packet */

cmd.NIC start packet = 0; /* first cache line in buffer */

cmd.NIC queue flag = (qflag == QUEUE); /* set rcvr type */

cmd.NIC chan intr mask = 0; /* don't use interrupt flags */

if (qflag != QUEUE) /* Only if sending to auto-channel */

barrier synch(); /* Synch occurs BEFORE send cmd */

cranium = P info->NIN reg map base;

cranium->NIR send channel[2] = cmd; /* Execute send cmd */

while (cranium->NIR send channel[2])

; /* wait until send cmd completes */

dealloc cranium buffer(sbuf.NIB handle);

return SUCCESS;

g

Figure A.12: Example code to send a message

230

In this simple example, the text string "Hello from Node 0nn" is copied into the

message bu�er. Since this string is less than 32 characters (bytes) in length, it is sent

to the destination node in a single packet.

The next eight lines of code describe how the command word is built by setting

up the bu�er handle, remote node ID, remote channel, number of packets, start

packet, queue
ag and send channel interrupt mask. This code sends the message

using send channel 2. The message is received into the user queue if qflag is set

to the constant QUEUE, otherwise the message is received into auto-receive channel 6

at the destination node. The choice of channel is arbitrary in this case { any send

channel and any receive channel could be used as long as the transfer information at

the receiver matches that of the sender. If qflag is set to AUTO, then the barrier

synchronization function is called. The call could come anywhere in the function as

long as it occurs before executing the send command.

After both the command word and the message bu�er are initialized, the message

is ready to send. The user virtual address attached to the physical base address

for the Cranium command register comes from the �eld NIN reg map base in the

initialization struct. The line with the comment \Execute send cmd" causes the

command word to be written into Cranium, thereby initiating the send command.

The two subsequent lines of code test the completion status by loading the channel's

read register indicating the remaining number of packets to be sent, and looping back

if the value is not zero. When the send command has completed, the message bu�er

can be safely deallocated.

A.4.3 Receiving a message

Figure A.13 shows the implementation of the function recv message queue().

The semantics of this function are to wait for a single packet to arrive, and if the

node ID of the sender of the packet matches the parameter src, then the contents of

the packet are printed as a text string. The node ID comparison is included only for

illustration because it is unnecessary { there is only one source node sending packets

in this example.

The block of code labeled \Initialization" shows the initialization of the queue

head pointer P user q; this code is executed no more than once at each node every

time the program runs. The queue pointer variable must be either be static or global

231

/�

�� Simple message receiving example using the queue

�� Wait for a packet to arrive; if it's from `src', print it as text

�/

int recv message queue(cranium init info *P info, int src) f

int retflag = FAILURE;

static cranium queue packet t *P user q;

static int initflag = TRUE;

/* Initialization */

if (initflag == TRUE) f /* init pointer to user queue */

P user q = P info->NIN user queue base;

initflag = FALSE;

g

while (P user q->NIP flag == 0) /* Wait for a packet to arrive */

;

/�

�� Compare node ID in packet header against `src' ID

�/

if (P user q->NIP header.NIH src ph id == P info->NIN phys node map[src]) f

retflag = SUCCESS;

printf(&(P user q->NIP payload[0]));

g

P user q->NIP flag = 0; /* mark packet for recycling */

P user q = P info->NIN reg map base->NIR user queue[1].NIQ head ptr;

/� advance user queue pointer �/

return retflag; /� return SUCCESS or FAILURE �/

g

Figure A.13: Example code to receive a message into the user queue

232

so that its value persists beyond the function's scope.

The presence of a packet in the user queue is determined by polling the
ag

�eld in queue memory. After determining that a packet has arrived, the program

compares the node ID in the packet header against the expected node ID passed in

the parameter src. The translation table P info->NIN phys node map[] is used to

convert the linear ID in src into a physical ID for comparison against the physical

ID in the packet header. If the match succeeds then printf() is called the address

of the packet payload to print the packet as a text string. After the last use of the

payload occurs, the program marks the packet for recycling by writing a zero into

the
ag and advancing the queue head pointer. The queue head pointer is updated

to prepare for subsequent calls to recv message queue().

Figure A.14 shows the implementation of the function recv message auto(). Its

implementation is quite similar that of send message() { a message bu�er is allo-

cated, the channel command is composed, the command is executed and the program

waits until the message arrives before returning from the function. Note that the bar-

rier synchronization function call must occur AFTER the receive command executes.

A.4.4 Discussion

This section displays a series of �gures describing examples of message passing in par-

allel application programs using the Cranium API. These functions are intended only

for illustration and do not achieve the highest performance. The basic strategy for

performance optimization is to eliminate operations that increase the overhead un-

necessarily. For instance, the implementations presented here allocate and deallocate

message bu�ers every time a message is sent or is received with an automatic-receive

channel. A more streamlined implementation separates message bu�er allocation

from the send and receive code. Another topic that was omitted for simplicity con-

cerns error detection and recovery. In both code examples for message receive, if no

packet ever arrives then the program waits forever. An implementation including a

timeout or a maximum loop count would terminate the function gracefully and yield

a parallel application program that is easier to debug.

233

/�

�� Simple message receiving example using auto channels

�/

int recv message auto(cranium init info *P info, int src) f

cranium command t cmd;

cranium buf alloc t rbuf;

cranium register t *cranium;

if (!alloc cranium buffer(&rbuf, 1))

return FAILURE;

cmd.NIC buffer handle = rbuf.NIB handle;

cmd.NIC channel reset = 0; /* don't reset the channel */

cmd.NIC remote node id = src; /* recv from node `src' */

cmd.NIC remote channel = 2; /* sender sends from channel 2 */

cmd.NIC num packets = 1; /* recv one packet */

cmd.NIC start packet = 0; /* first cache line in buffer */

cmd.NIC chan intr mask = 0; /* don't use interrupt flags */

cranium = P info->NIN reg map base;

cranium->NIR recv channel[6] = cmd; /* recv into channel 6 */

barrier synch(); /* occurs AFTER recv command */

while (cranium->NIR recv channel[6])

; /* wait until recv cmd completes */

printf(rbuf.NIB base);

dealloc cranium buffer(rbuf.NIB handle);

return SUCCESS;

g

Figure A.14: Example code to receive a message into an automatic channel

Appendix B

MEASUREMENTS OF PROGRAMS IN THE

PARALLEL BENCHMARK SUITE

This appendix contains tables of �gures that were produced by running the com-

bined Talisman/Chaos simulator (see Chapter 5) on the benchmark programs de-

scribed in Section 6.2: dense matrix multiplication (DMM), fast Fourier transform

(FFT), Gaussian elimination (Gauss), Jacobi successive over-relaxation (Jacobi) and

parallel bucket sort (Sort). Measurements of DMM are in Table B.1 and the cor-

responding derived values are in Tables B.2 and B.3. Measurements of FFT are in

Table B.4 and the corresponding derived values are in Tables B.5 and B.6. Mea-

surements of Gauss are in Table B.7 and the corresponding derived values are in

Tables B.8 and B.9. Measurements of Jacobi are in Tables B.10 and B.13 and the

corresponding derived values are in Tables B.11, B.12, B.14 and B.15. Measurements

of Sort are in Table B.16 and the corresponding derived values are in Tables B.17

and B.18. Section 6.2.4 provides the background for the tables of measurements; Sec-

tions 6.2.5 through 6.2.8 provide the background for the tables of derived �gures. The

following list reviews the parameters, measurements and derived values that appear

in the tables.

� p (parameter): the number of nodes used in the execution of the simulator.

� DRAM latency (parameter): the model for the memory system used in the execution

of the simulator. The optimistic model assumes zero-cycle DRAM access latency; the

pessimistic model assumes 10 cycle DRAM access latency. See Section 6.2.4.

� Zero communication cost (parameter): assumed for computing the hypothetical max-

imum IPC, speedup and e�ciency.

� I

comp

(1) (measurement): the number of instructions executed in the uniprocessor

version of the benchmark.

� B

comm

(p) (measurement): the total number of bytes communicated in the benchmark

per node averaged over all nodes.

� C

comp

(p) (measurement): the number of clock cycles it takes to execute only the

computation part of the non-overlapping version of the benchmark.

235

� C

comm

(p) (measurement): the number of clock cycles it takes to execute only the

communication part of the non-overlapping version of the benchmark.

� C

ol

(p) (measurement): the number of clock cycles it takes to execute the overlapping

parallel version of the benchmark.

� IPC

max

(p) (derived value): the aggregate number of instructions executed per cycle

if the cost of communication were zero.

� SU

max

(p) (derived value): the relative speedup compared to the serial version of the

benchmark if the cost of communication were zero.

� E�

max

(p) (derived value): equal to SU

max

(p)=p.

� SU

act

(p) (derived value): the actual relative speedup compared to the serial version

of the benchmark.

� E�

act

(p) (derived value): equal to SU

act

(p)=p.

� S

comm

(p) (derived value): the signi�cance of the communication cost, equal to

p � C

comm

(p)=C

comp

(1).

� TP(p) (derived value): simple throughput, equal to B

comm

(p)=C

comm

(p).

� TP

pct

(p) (derived value): simple throughput times 100 divided by the upper bound

on throughput.

� TP

e�

(p) (derived value): e�ective throughput, equal to B

comm

(p)=C

di�

(p) =

B

comm

(p)=(C

ol

(p)� C

comp

(p)).

Measurements in slanted type were measured using the serial version of the bench-

mark. Measurements in normal type were measured using the non-overlapping par-

allel version of the benchmark. Measurements in bold type were measured using the

overlapping parallel version of the benchmark.

The su�x \(p)" is omitted in the tables to conserve horizontal space.

236

Table B.1: Measurements of dense matrix multiplication (DMM).

DRAM latency = 0 DRAM latency = 10

p I

comp

(1) B

comm

C

comp

C

comm

C

ol

C

comp

C

comm

C

ol

1 1344023 0 7904960 0 7904960 7904960 0 7904960

4 1344023 49152 1751842 19091 1755403 1752018 30755 1773885

8 1344023 57344 877756 23129 886058 877730 36261 908013

16 1344023 61440 454449 25441 466555 454334 40700 490342

32 1344023 63488 245952 30134 258173 245837 45672 282422

64 1344023 64512 144550 38706 156904 144485 52228 177890

Table B.2: Calculated instructions per cycle, speedup and e�ciency of DMM.

Zero communication cost DRAM latency = 0 DRAM latency = 10

p IPC

max

SU

max

E�

max

SU

act

E�

act

SU

act

E�

act

1 0.170 1.00 1.00 1.00 1.00 1.00 1.00

4 0.767 4.51 1.13 4.50 1.13 4.46 1.11

8 1.53 9.01 1.13 8.92 1.12 8.71 1.09

16 2.96 17.4 1.09 16.9 1.06 16.1 1.01

32 5.47 32.1 1.00 30.6 0.957 28.0 0.875

64 9.30 54.7 0.854 50.4 0.787 44.4 0.694

Table B.3: Signi�cance of communication, actual throughput, percentage of ideal

throughput and e�ective throughput of DMM.

DRAM latency = 0 DRAM latency = 10

p S

comm

TP TP

pct

TP

e�

S

comm

TP TP

pct

TP

e�

4 0.010 2.58 88.5 13.8 0.016 1.60 89.9 2.25

8 0.023 2.48 85.2 6.91 0.037 1.58 89.0 1.89

16 0.051 2.42 83.0 5.08 0.082 1.51 84.9 1.71

32 0.122 2.11 72.4 5.20 0.185 1.39 78.2 1.74

64 0.313 1.67 57.3 5.22 0.423 1.24 69.5 1.93

237

Table B.4: Measurements of fast Fourier transform (FFT).

DRAM latency = 0 DRAM latency = 10

p I

comp

(1) B

comm

C

comp

C

comm

C

ol

C

comp

C

comm

C

ol

1 181714 0 579402 0 579402 579402 0 579402

4 181714 8192 142344 3358 145275 142526 5265 147308

8 181714 6144 72395 3305 74767 72625 4313 76444

16 181714 4096 37438 3124 39112 37430 3901 40228

32 181714 2560 19780 2915 20895 19751 3574 21561

64 181714 1536 10922 2618 11747 10936 3028 12185

Table B.5: Calculated instructions per cycle, speedup and e�ciency of FFT.

Zero communication cost DRAM latency = 0 DRAM latency = 10

p IPC

max

SU

max

E�

max

SU

act

E�

act

SU

act

E�

act

1 0.314 1.00 1.00 1.00 1.00 1.00 1.00

4 1.28 4.07 1.02 3.99 0.997 3.93 0.983

8 2.51 8.00 1.00 7.75 0.969 7.58 0.947

16 4.85 15.5 0.967 14.8 0.926 14.4 0.900

32 9.19 29.3 0.919 27.7 0.867 26.9 0.840

64 16.6 53.1 0.829 49.3 0.771 47.6 0.743

Table B.6: Signi�cance of communication, actual throughput, percentage of ideal

throughput and e�ective throughput of FFT.

DRAM latency = 0 DRAM latency = 10

p S

comm

TP TP

pct

TP

e�

S

comm

TP TP

pct

TP

e�

4 0.023 2.44 83.8 2.79 0.036 1.56 87.6 1.71

8 0.046 1.86 63.9 2.59 0.060 1.42 79.8 1.61

16 0.086 1.31 45.1 2.45 0.108 1.05 59.0 1.46

32 0.161 0.878 30.2 2.30 0.197 0.716 40.4 1.41

64 0.289 0.587 20.2 1.86 0.334 0.507 28.7 1.23

238

Table B.7: Measurements of Gaussian elimination (Gauss).

DRAM latency = 0 DRAM latency = 10

p I

comp

(1) B

comm

C

comp

C

comm

C

ol

C

comp

C

comm

C

ol

1 2319321 0 8241581 0 8241581 8241581 0 8241581

4 2319321 23040 1863019 66163 1928809 1863122 80708 1942007

8 2319321 30464 781103 87820 840279 781141 110729 858536

16 2319321 34560 380554 100566 467081 380546 132080 497386

32 2319321 36736 204997 132377 322489 205025 177653 367745

64 2319321 37824 117567 152952 255266 117484 205974 307624

Table B.8: Calculated instructions per cycle, speedup and e�ciency of Gauss.

Zero communication cost DRAM latency = 0 DRAM latency = 10

p IPC

max

SU

max

E�

max

SU

act

E�

act

SU

act

E�

act

1 0.281 1.00 1.00 1.00 1.00 1.00 1.00

4 1.24 4.42 1.11 4.27 1.07 4.24 1.06

8 2.96 10.6 1.32 9.81 1.23 9.60 1.20

16 6.08 21.6 1.35 17.6 1.10 16.6 1.04

32 11.3 40.2 1.26 25.6 0.799 22.4 0.700

64 19.7 70.1 1.10 32.3 0.504 26.8 0.419

Table B.9: Signi�cance of communication, actual throughput, percentage of ideal

throughput and e�ective throughput of Gauss.

DRAM latency = 0 DRAM latency = 10

p S

comm

TP TP

pct

TP

e�

S

comm

TP TP

pct

TP

e�

4 0.032 0.348 23.9 0.350 0.039 0.285 32.1 0.292

8 0.085 0.347 35.8 0.515 0.107 0.275 46.4 0.394

16 0.195 0.344 47.3 0.399 0.256 0.262 58.9 0.296

32 0.514 0.278 47.7 0.313 0.690 0.207 58.2 0.226

64 1.19 0.247 51.0 0.275 1.60 0.184 62.0 0.199

239

Table B.10: Measurements of Jacobi successive over-relaxation (Jacobi).

DRAM latency = 0 DRAM latency = 10

p I

comp

(1) B

comm

C

comp

C

comm

C

ol

C

comp

C

comm

C

ol

1 3874266 0 10794936 0 10794936 10794936 0 10794936

4 3874266 17120 2387345 50504 2426428 2387381 55214 2431534

9 3874266 17636 1144649 66172 1160492 1144628 74260 1163988

16 3874266 14232 624173 80404 674009 624097 87508 679351

36 3874266 15556 309582 94242 366027 309694 103490 372502

64 3874266 9926 174477 103069 232521 174456 111538 237956

Table B.11: Calculated instructions per cycle, speedup and e�ciency of Jacobi.

Zero communication cost DRAM latency = 0 DRAM latency = 10

p IPC

max

SU

max

E�

max

SU

act

E�

act

SU

act

E�

act

1 0.359 1.00 1.00 1.00 1.00 1.00 1.00

4 1.62 4.52 1.13 4.45 1.11 4.44 1.11

8 3.39 9.43 1.05 9.30 1.03 9.27 1.03

16 6.21 17.3 1.08 16.0 1.00 15.9 0.993

32 12.5 34.9 0.969 29.4 0.819 29.0 0.805

64 22.2 61.9 0.967 46.4 0.725 45.4 0.709

Table B.12: Signi�cance of communication, actual throughput, percentage of ideal

throughput and e�ective throughput of Jacobi.

DRAM latency = 0 DRAM latency = 10

p S

comm

TP TP

pct

TP

e�

S

comm

TP TP

pct

TP

e�

4 0.019 0.339 11.7 0.438 0.020 0.310 17.4 0.388

8 0.055 0.267 9.16 1.11 0.062 0.237 13.4 0.911

16 0.119 0.177 6.09 0.286 0.130 0.163 9.15 0.258

32 0.314 0.165 5.67 0.276 0.345 0.150 8.46 0.248

64 0.611 0.096 3.31 0.171 0.661 0.089 5.01 0.156

240

Table B.13: Measurements of Jacobi successive over-relaxation without global com-

bine (JacNoGC).

DRAM latency = 0 DRAM latency = 10

p I

comp

(1) B

comm

C

comp

C

comm

C

ol

C

comp

C

comm

C

ol

1 3874266 0 10794936 0 10794936 10794936 0 10794936

4 3874266 14336 2365565 14525 2379334 2365673 17111 2382784

9 3874266 14336 1138511 16586 1142703 1138547 22387 1145862

16 3874266 10752 620330 14888 628860 620406 19068 633859

36 3874266 11947 307300 15181 314371 307224 19682 319487

64 3874266 6272 172706 13001 178136 172744 15369 180308

Table B.14: Calculated instructions per cycle, speedup and e�ciency of JacNoGC.

Zero communication cost DRAM latency = 0 DRAM latency = 10

p IPC

max

SU

max

E�

max

SU

act

E�

act

SU

act

E�

act

1 0.359 1.00 1.00 1.00 1.00 1.00 1.00

4 1.64 4.56 1.14 4.54 1.13 4.53 1.13

8 3.40 9.48 1.05 9.45 1.05 9.42 1.05

16 6.25 17.4 1.09 17.2 1.07 17.0 1.06

32 12.6 35.1 0.976 34.3 0.954 33.8 0.939

64 22.4 62.5 0.977 60.6 0.947 59.9 0.935

Table B.15: Signi�cance of communication, actual throughput, percentage of ideal

throughput and e�ective throughput of JacNoGC.

DRAM latency = 0 DRAM latency = 10

p S

comm

TP TP

pct

TP

e�

S

comm

TP TP

pct

TP

e�

4 0.005 0.987 33.9 1.04 0.006 0.838 47.1 0.838

8 0.014 0.864 29.7 3.42 0.019 0.640 36.0 1.96

16 0.022 0.722 24.8 1.26 0.028 0.564 31.7 0.799

32 0.051 0.787 27.1 1.69 0.066 0.607 34.1 0.974

64 0.077 0.482 16.6 1.16 0.091 0.408 23.0 0.829

241

Table B.16: Measurements of bucket sort (Sort).

DRAM latency = 0 DRAM latency = 10

p I

comp

(1) B

comm

C

comp

C

comm

C

ol

C

comp

C

comm

C

ol

1 1372014 0 2056942 0 2056942 2056942 0 2056942

4 1372014 12619 475122 6876 481998 478200 9307 487508

8 1372014 7966 251492 6221 257713 251453 8718 260171

16 1372014 5604 136494 9727 146221 136533 11376 147909

32 1372014 5658 76541 17478 94019 76538 19207 95745

64 1372014 8516 46624 34318 80942 46626 36966 83592

Table B.17: Calculated instructions per cycle, speedup and e�ciency of Sort.

Zero communication cost DRAM latency = 0 DRAM latency = 10

p IPC

max

SU

max

E�

max

SU

act

E�

act

SU

act

E�

act

1 0.667 1.00 1.00 1.00 1.00 1.00 1.00

4 2.89 4.33 1.08 4.27 1.07 4.22 1.06

8 5.46 8.18 1.02 7.98 0.998 7.91 0.988

16 10.1 15.1 0.942 14.1 0.879 13.9 0.869

32 17.9 26.9 0.840 21.9 0.684 21.5 0.671

64 29.4 44.1 0.689 25.4 0.397 24.6 0.384

Table B.18: Signi�cance of communication, actual throughput, percentage of ideal

throughput and e�ective throughput of Sort.

DRAM latency = 0 DRAM latency = 10

p S

comm

TP TP

pct

TP

e�

S

comm

TP TP

pct

TP

e�

4 0.013 1.84 63.1 1.84 0.018 1.35 76.2 1.35

8 0.024 1.28 44.0 1.28 0.034 0.914 51.4 0.914

16 0.076 0.576 19.8 0.576 0.088 0.493 27.7 0.493

32 0.272 0.324 11.1 0.324 0.299 0.295 16.6 0.295

64 1.068 0.248 8.53 0.248 1.150 0.230 13.0 0.230

Appendix C

MEASUREMENTS OF COMMUNICATION COST IN

GAUSS UNDER MODIFICATIONS TO Cranium

Section 6.3 provides the background for the measurements in Table C.1. The

following list summarizes the modi�cations to Cranium used in the measurements of

the Gauss benchmark. In all cases, the DRAM access latency is zero cycles for the

network interface.

� M1: Each send command results in the injection of one packet into the network.

� M2: Each incoming packet causes the processor to be noti�ed. Packet data are

volatile and must be read into processor registers or copied to memory before

accessing data from subsequent packets.

� M3: There is a one-to-one mapping between a physical message bu�er on the

sending node and a physical message bu�er on the receiving node.

� M1+M2: Modi�cations M1 and M2 are applied together to the benchmark

and the simulator.

Table C.1: Cost of communication in Gauss under Cranium modi�cations M1, M2,

M3 and M1+M2.

C

comm

p Cranium M1 M2 M3 M1+M2

4 66163 108515 247626 206219 269183

8 87820 166400 304223 308314 341894

16 100566 199440 314230 338057 383108

32 132377 280056 342193 502234 460063

64 152952 310569 466154 607040 586091

Appendix D

DESCRIPTION OF LOW-LEVEL DETAILS OF

TESCHIO

Teschio is a paper design of the Cranium network interface architecture. Its

context and overall structure are described in Chapter 7. This appendix contains

low-level descriptions of the following aspects of Teschio:

� P link handshake

� Node mapping using the Chaos network

� Sending and receiving a packet

D.1 Handshaking signals and protocol of the P link

Figure D.1a describes the signals used in the processor-network link (P link). The

P link uses �ve signals for handshaking: RTS (ready to send), CTS (clear to send),

RTR (ready to receive), CTR (clear to receive) and TB (tie breaker). (All the names

of the handshaking signals assume the point of view of Teschio.) There are also state

registers associated with the P link, represented by the virtual signal bus PLState.

PLState does not need to be exposed as an external signal because both Teschio

and the router chip maintain separate copies of the state registers. Hence, the bus

is drawn using a dotted line. There are 23 states for the P link: an idle state (0),

eleven states for sending a packet (1-11) and eleven states for receiving a packet

(12-22) (Figure D.1b). State changes are synchronous and occur every clock cycle.

The states of the P link are unconstrained by the states of the ADU bus; each state

machine sequences independently. When both the handshake signals RTS and CTS

are true, then Teschio has a packet ready for injection while the router is ready to

accept a packet. The signal pair RTR and CTR work similarly for packet delivery.

When all four signals are true, a packet may either be injected or delivered. Teschio

and the router chip must negotiate the direction of packet
ow. Sending and receiving

244

State 11

State 22

(b)

RTS

CTS

RTR

CTR

TB
ChaosTeschio

router

Data

Parity

32

4

5PLState

State 1

State 0

State 2

State 12 State 13

. . .

. . .

S

R

R

S

S
I

I

R I

(a)

Figure D.1: Organization of the P link. Sub�gure a describes the data path and

handshaking signals. Sub�gure b is a state transition diagram for PLState. Condition

S is shorthand for (RTS and CTS and (TB or !RTR or !CTR)). Condition R is (RTR

and CTR and (!TB or !RTS or !CTS)). Condition I is (!S and !R). The initial condition

is that PLState is in state 0 and TB is false.

is interleaved at the packet level, but not at the phit (physical transfer unit) level.

Therefore when the �rst phit of a packet is placed on the data bus of the P link, the

other ten phits of the packet follow in succession. Fairness is ensured using the signal

TB: when TB is false, packet delivery has higher priority, and when TB is true, packet

injection has higher priority. The initial state for TB is false. TB changes state if

and only if it is used to break a tie. In the implementation, TB is an output from

Teschio and an input into the router chip. In principle, TB could be an internally

generated signal like PLState, but by making it an explicit external signal, there is

more leeway for experimenting with di�erent algorithms to provide fairness.

Figure D.1b shows the transitions among the states of the P link according to the

conditions S, R and I. Condition S means that RTS and CTS are true, and either

RTR or CTR are false or TB is true. Condition R means that RTR and CTR are

true, and at least one of RTS, CTS and TB is false. Condition I is true if neither

condition S nor condition R holds. The data direction changes only after states 0,

11 and 22, whereupon a whole packet has been sent or received. The state transition

diagram demonstrates that there are no wait states needed to reverse the direction

of the data path, to ensure that the P link delivers its peak throughput under heavy

utilization.

245

D.2 Node mapping

In the Chaos network, the physical name for a remote node is its relative position

in the Y dimension (the north-south axis) and the X dimension (the east-west axis).

To send a packet from node A to node B, the network interface at node A speci�es

the tuple [y,x] indicating the di�erence in the Y dimension and the X dimension.

The north and west directions are negative and the south and east directions are

positive. Note that the tuple for sending a packet in the opposite direction from B

to A is calculated simply by taking the complement of both values, i.e. [�y,�x]. In

the implementation of the network, each dimension is represented by a signed byte,

allowing a maximum con�guration of 256� 256 nodes.

Because physical addressing is relative, each node requires a unique con�guration

of the node lookup table. Figure D.2 illustrates the relationship between the logical

node names and the physical node names for logical node 0x1C in an 8 � 8 node

network. The diagram shows the 4 � 4 node local neighborhood of logical node

0x1C. Because the network is a torus and there are no edges to the network, this

scheme generalizes very easily. Each rectangle in Figure D.2 represents the processing

node connected to a Chaos network router. Three lines of text describe the node's

names: the logical node identi�er (Logical), the physical node identi�er to indicate the

destinations of packets to be sent (Phy Dst) and the physical ID for the source node

of packets that are received (Phy Src). Logical node 0x1C is highlighted using a thick

rectangle to indicate that all the physical names in this diagram are relative to this

node. Since the displacement from node 0x1C to itself is zero, both the destination

and source physical IDs are zero.

When a packet is sent, the sending node places the destination physical ID into the

�rst 16 bit �eld of the packet header and the source physical ID into the second 16 bit

�eld. As the packet traverses the network, the network routers update the destination

ID �eld in place, by incrementing or decrementing the X or Y displacement �eld at

each network hop. When both X and Y are zero, then the packet has arrived at its

destination node and it is ejected from the network. Since the destination ID �eld has

been modi�ed, the receiver's network interface must detect and verify the packet's

sender by using the source ID �eld. In principle, the receiver's interface circuit could

send a reply packet back to the sender directly, by copying the source ID �eld of the

original packet into the �rst 16 bit �eld of the reply packet, taking the complement

246

Logical:

Logical:

Logical:

Logical:

Logical:
0xFE01

Logical:

Logical:

Logical:

Logical:

Logical:

Logical: 0x1C

0x0000

Logical:

0x14

0x0C

0x24

Logical:

Logical:

Logical:

Logical:

0x0B0x0A

0x130x12

0x1B0x1A

0x0D

0x15

0x1D

0x250x22 0x23

0x0100
0xFF00

0x0000

0xFF00
0x0100

0x0200
0xFE00

0x0002
0x00FE 0x00FF

0x0001
0x0001
0x00FF

0xFFFF

0xFFFF
0x0101

0x01010x0102
0xFFFE

0x01FE
0xFF02

0xFEFE
0x0202

0xFEFF
0x0201

0xFF01
0x01FF

0x01FF
0xFF01

Phy Src:

Phy Src:

Phy Src:

Phy Src:
Phy Dst:

Phy Dst:

Phy Dst:

Phy Dst:

Phy Src:

Phy Src:

Phy Src:

Phy Src:
Phy Dst:

Phy Dst:

Phy Dst:

Phy Dst:

Phy Src:

Phy Src:

Phy Src:

Phy Src:
Phy Dst:

Phy Dst:

Phy Dst:

Phy Dst:

Phy Src:

Phy Src:

Phy Src:

Phy Src:
Phy Dst:

Phy Dst:

Phy Dst:

Phy Dst:

0x02FF

Figure D.2: Node naming scheme used by Teschio. The node names known to the

application program are called the logical or linear node names (see Section A.1.1 in

Appendix A). The node names known to the router hardware are called the physical

node names. Teschio performs the logical-to-physical mapping using a lookup table.

The diagram shows a 4� 4 submesh of an 8� 8 torus network. In this example, all

physical names are relative to logical node ID 0x1C, highlighted by a thick rectangle.

Physical names are 8-bit signed displacements in both the Y and X dimensions. The

physical identi�er for the source node (Phy Src) can be calculated from the physical

identi�er for the destination node (Phy Dst) by negating both 8-bit �elds in the

identi�er.

247

of both the X and Y displacements and placing this value into the second 16 bit �eld

of the reply packet. However, this version of Teschio does not automatically generate

reply packets.

D.3 Sending and receiving a single-packet message

This section describes the behavior of Teschio at its external interfaces { the ADU

bus and the P link. We explain behavior in two parts: the values that are propagated

and the timing of these values on the chip's pins.

Figure D.3 shows the organization of the bit �elds that de�ne a send or receive

command issued by the processor. In assembly language the instruction is of the form

store An, Dm

meaning that the quantity in the data register Dm is stored into memory at the address

held in the address register An. The address in An is a user virtual address that is

mapped by the processor's MMU into a physical address corresponding to Teschio.

The page table for this MMU page is marked non-cacheable, to mandate an ADU

bus transaction whenever this instruction is executed. Two di�erent mappings are

maintained in the MMU: one for user processes and another for the operating system.

The MMU prevents user programs from accessing the mapping that is privileged to

the OS.

The amount of data to be transferred in a send or receive command is 71 bits.

Since the number of bits is larger than size of a data register (64 bits), the remaining

bits must come from somewhere else; in our implementation they come from the

address register. The lowest �ve bits of the address register are ignored. The next 8

bits select the channel number. The next 35 bits select the MMU page. The top 16

bits are ignored.

Figures D.4, D.5 and D.6 describe the timing of Teschio's external environment:

the ADU bus and the P link. In these diagrams the wide busses are divided into

multiple 16-bit �elds for readability. In this example we show what happens when a

packet is sent from logical node 0x1C to logical node 0x24. Figure D.4 displays the

timing of a host-initiated send or receive command on the ADU bus. All the wide

busses are three-state (one, zero or high-Z). The line in the center of its high-low

range represents the high-impedance state across all 16 wires in each �eld. In this

248

71 bits

channel ID

size
VM base addr35

zero fill

vaddr paddrprocessor

TLB

command

word

8
5

match

address

node handle
addr handle
of packets
start packet
remote channel
flags

12

12
12
8

15

1
4

reset

select NI

flags.sys

Data fieldsize

Address field

Figure D.3: Organization of bit �elds placed on ADU bus by the processor to issue a

send or receive command

D.33

Clock

Bus state

Arbitrate

CPU owns

0007

0040

0000

0014

00000000

00000000

00000000

0000

ADU bus 3

ADU bus 2

ADU bus 1

ADU bus 0 0000

FFFF

FFFF

A360

FFFF

FFFF

FFFF

FFFF

0240

01B0

0102

3020

0001

address

CPU issues command to Teschio

address

Teschio performs table lookup in DRAM

CPU writes data Teschio reads data

A.1 A.2 A.3 A.4. . . D.00 D.01 D.02 D.03 D.10 D.11 D.12 D.13 D.20 D.21 D.22 D.23 D.30 D.31 D.32

Figure D.4: Timing of a send or receive command on the ADU bus

249

example, user virtual addresses in the range 0xFFFF00070000 to 0xFFFF0007FFE0 are

mapped to the Teschio send channels. The address 0xFFFF00070040 maps to Teschio

send channel 2; in general 0xFFFF000700S0 maps to Teschio send channel S/2. In

this example the data �eld of the send command arrives on the ADU bus during

bus state D.10. The values that the processor places on the ADU bus during states

D.11, D.12 and D.13 are null and are discarded by Teschio. Two other bus signals

to note are Arbitrate and CPU Owns. Since both the processor and Teschio are bus

masters, they must arbitrate for the bus one cycle prior to issuing the address. For

the purpose of this diagram, Arbitrate is a wired-OR signal that is enabled whenever

one or more bus masters are requesting the bus during the clock cycle just prior to an

address �eld. Bus-master priority is maintained using a simple round-robin scheme

that allocates the bus bandwidth fairly [64]. The signal CPU Owns shows that the

processor has won the arbitration and is placing the address on the bus during bus

state A.1. The value placed on the ADU bus in state D.10 is 0x024 001B 001 023

02 0 to represent logical node ID 0x24, address handle 0x001B, a message length of

1 packet, a starting address o�set of 0x023 cache lines, auto-receive channel number

0x02 and
ag values of 0. In Teschio the size of an MMU page is programmable at

boot time. In this example the page size is 8K bytes; each page contains 256 (0x100)

32-byte cache lines.

The second bus access shown in Figure D.4 is a DRAM table lookup. Teschio

becomes a bus master, arbitrates for the bus and wins the arbitration. Teschio places

its DMA address on the ADU bus at bus state A.3. Teschio performs two table

lookups: one to translate the address handle into a physical bu�er address and the

other to translate the logical node ID into a physical node ID. The table lookup shown

is the translation of the address handle into the physical bu�er address. The address

handle speci�ed in the previous bus transaction was 0x1B or binary 0011011. By

shifting this value �ve bits to the left, the result is binary 001101100000 or 0x360.

The base address of the table in DRAM is 0x00000000A000. Therefore the DMA

engine issues a read command at ADU bus address 0x00000000A360. The value

read at this location in DRAM is 0x000100140000, the physical address of the bu�er

page that is pinned and mapped into the user program's virtual address space. The

complete DMA address of the packet payload is 0x000100140460, the base address

plus the o�set �eld (0x023 shifted left �ve bits, i.e. 0x460).

250

A.8

Clock

Bus state

Arbitrate

640A646573655369

00016C69616C676E

020376656564

040572652C20

0000

0460

0203640A766564656564

0405000172656C692C20

736565645369002301950100

616C2C20676E0202FF00

ADU bus 3

ADU bus 2

ADU bus 1

ADU bus 0

P link hi

P link lo

0001

0014

Header Payload

FE94

D.33 A.5 D.40 D.41 D.42 D.43 A.6 D.50 D.51 D.52 D.53 A.7 D.60 D.61 D.62 D.71D.70D.63

Figure D.5: Timing diagram for sending a single packet message

Upon the completion of the table lookup operations, Teschio is ready to start

sending packets. Figure D.5 shows an example where the message to be sent is

the ASCII string \Signed, sealed, delivered". In hexadecimal notation the string

is 53 69 67 6E 65 64 2C 20 73 65 61 6C 65 64 2C 20 64 65 6C 69 76 65 72

65 64 0A. The hex values 0 through 5 �ll the �nal 6 bytes of the 32-byte payload.

At bus state D.33, Teschio arbitrates for the bus and wins the arbitration. At bus

state A.5, Teschio puts DMA address 0x000100140460 on the ADU bus. States D.40

through A.6 are wait states. Durings state D.50 through D.53, Teschio access both

the ADU and the P link simultaneously. Teschio reads the payload data from DRAM

while writing the �rst 16 bits of the header onto the P link. The pattern \6564 2C20"

or \ed, " on the ADU bus repeats in states D.50 and D.51. At subsequent bus states

D.53 through D.70, Teschio writes the payload onto the P link.

The header of the packet is the hexadecimal string 0100 FF00 0195 0202 0023

FE94. The �rst 16-bit �eld 0100 is the destination physical node identi�er for logical

node 0x24 from the point of view of logical node 0x1C, and the second �eld FF00

is the corresponding source physical node identi�er (the inverse of the destination).

The third �eld 0195 is the user process ID. The fourth �eld 0202 represents the send

channel and the receive channel, both equal to 2. The �fth �eld 0023 four zero
ag

bits plus a 12-bit packet o�set (sequence number) of 023. The sixth �eld, FE94, is

the redundancy code.

251

D.92

0000

0460

5369

676E

6564

2C20

7365

616C

6465

6C69

7665

7265

640A

0001

0203

0405

Clock

Bus state

ADU bus 3

ADU bus 2

ADU bus 1

ADU bus 0

Header Payload

002301950000

0202FF00

5369

676E

6564

2C20

7365

616C

6564

2C20

6465

6C69

7665

7265

640A

0001

0203

0405

P link hi

P link lo

0097

0001

FE94

A.aD.83 D.90 D.91 D.93 D.a0 D.a1 D.a2 D.a3A.b A.c D.b1 D.b2 D.b3 . . .D.b0

Figure D.6: Timing diagram for receiving a single packet message

To complete the example we follow the packet as it arrives at logical node 0x24.

Figure D.6 shows the timing for Teschio as it receives the packet from the P link

and stores the data into DRAM. We assume that the receive command has been

posted far enough in advance so that the translation steps have already completed,

so that receive channel 2 is ready. When the packet arrives it is identical to the packet

that was originally sent, with the exception that the �rst 16-bit �eld in the header

becomes 0 because it was modi�ed by the network routers. Teschio becomes a bus

master, and arbitrates for and wins the ADU bus in preparation for a DMA write

to memory. The DMA address in this case is 0x000100970460. The top 35 bits of

the address come from a combination of the way the application program is written

and the operating system's virtual-to-physical mapping algorithm. The bottom 13

bits represent the memory o�set within the 8K byte page, e.g. the sequence number

(0x023) shifted �ve bits to the left.

Note that the timing constraints imposed by the design guidelines in Section 7.4.1

are re
ected in Figures D.4, D.5 and D.6. In particular, it takes three cycles for

information presented to Teschio at one side of the chip to have an in
uence on the

data values at the other side of the chip. In Figure D.5, values that appear on the

ADU bus due to Teschio's DMA read of DRAM during bus state D.50 a�ect values

on the P link three cycles later during bus state D.53. Similarly in Figure D.6, values

that arrive from the network on the P link during bus state D.91 are used to calculate

the DMA address in bus state A.b.

Vita

Neil R. McKenzie was born in Watsonville, California on March 13, 1961.

He received the Bachelor of Science degree in Electrical Engineering and Com-

puter Science, With Honors, from the University of California at Berkeley in

1983. He entered the graduate school at the University of Washington in Seat-

tle in 1987. He received the Master of Science degree in Computer Science

and Engineering in 1989. He worked for LaserAccess Corporation in Both-

ell, Washington during 1990-91. He returned to the University of Washington

in 1991. He completed the Ph.D. in Computer Science and Engineering in

1997. Dr. McKenzie is currently employed by MERL | a Mitsubishi Electric

Research Laboratory, in Cambridge, Massachusetts.

