
An Executable Taxonomy

of On-Line Modeling Algorithms

1

Suzanne Bunton

Technical Report UW-CSE-97-02-05

Department of Computer Science and Engineering

University of Washington

Abstract

This paper gives an overview of our decomposition of a group of existing

and novel on-line sequence modeling algorithms into component parts. Our

decomposition, and its implementation, show that these algorithms can be im-

plemented as a cross product of predominantly independent sets. The result

is all of the following: a test bed for executing controlled experiments with al-

gorithm components, a framework that uni�es existing techniques and de�nes

novel techniques, and a taxonomy for describing on-line sequence modeling algo-

rithms precisely and completely in a way that enables meaningful comparison.

Keywords: data compression, universal coding, on-line stochastic model-

ing, statistical inference, �nite-state automata

1

A version of this paper appears in Proceedings of the DCC, March 1997. This report contains

minor corrections to the DCC97 version.

An Executable Taxonomy of On-Line Modeling

Algorithms

Suzanne Bunton

The University of Washington

This paper gives an overview of our decomposition of a group of existing and

novel on-line sequence modeling algorithms into component parts. Our decomposi-

tion, and its implementation, show that these algorithms can be implemented as a

cross product of predominantly independent sets. The result is all of the following:

a test bed for executing controlled experiments with algorithm components, a frame-

work that uni�es existing techniques and de�nes novel techniques, and a taxonomy

for describing on-line sequence modeling algorithms precisely and completely in a way

that enables meaningful comparison.

Full descriptions of the algorithms, and de�nitions of the technical terms used

in this overview, are given in Chapters 2{6 of [Bun96], excerpts of which appear as

the companion papers [Bun97b, Bun97a].

1 Design Philosophy

The executable cross product and nomenclature described here are used to produce

and describe the experimental results of [Bun97b, Bun97a], which evaluate di�erent

state selection and probability estimation techniques, respectively. The cross product

is also used in [Bun97c], which signi�cantly improves the performance and memory

requirements of PPMC [Mof90] and PPM* [CTW95]. The design of our software

involved the following steps:

1. Identify a set of basic, independent features that most sequential models share.

2. Transform inuential techniques from the literature to a unifying control and

data structure that decomposes into the basic features.

3. For each basic feature, de�ne the set of interchangeable options corresponding

to existing, abstractly distinct implementations of that feature.

4. For each basic feature, try to improve upon the existing solutions, and add those

improvements to the set of options.

5. Implement the cross product of the sets of interchangeable options for each

feature. Each element in the cross product should be a viable, working on-

line modeling algorithm. The cross product will properly include the original

algorithms from the literature, and should reproduce their results exactly.

Because we combine major components (e.g., state selection and mixtures) and sev-

eral minor components (e.g., update exclusions and inheritance times) for the �rst

time, and because we added novel options to the component sets (e.g., percolating

and bottom-up state selection, and new edge-redirection tree structures), the cross

product implements many genuinely novel on-line modeling algorithms. Furthermore,

it provides complete experimental control for the evaluation of individual model fea-

tures.

1

2 The Common Control Structure

The main control loop of the cross-product implementation performs the following

computations in sequence for each input symbol, using an adaptive FSM model of

the input sequence:

1. Excite the model states whose conditioning context partitions contain the pro-

cessed input sequence, and make the transition into the next maximum order

excited state, initially the root node, and subsequently determined in step 6.

2. Select the coding model, which is represented by one of the excited states.

3. Estimate the probability of the currently scanned symbol using the frequencies

at the selected state and possibly its ancestors.

4. Add new descendants to the maximum-order excited state via splitting or redi-

rection of the incoming transition taken, if it is eligible. The maximum-order

novel descendant becomes the new maximum order excited state.

5. Add a novel event (i.e., out-transition) corresponding to the currently scanned

symbol to each novel excited state or any excited state that \missed." (They

will be the highest-order excited states.)

6. Compute the next maximum-order excited state and prepare the next-state tran-

sitions into all simulated models. This step also manages the su�x-linked virtual

nodes in the string-transition su�x-tree implementation.

7. Update the MDLs at all currently excited states.

8. Compute before-update inheritances at excited actual states, if applicable.

9. Update frequencies at excited states.

10. Compute after-update inheritances at excited states, if applicable.

3 The Cross Product of Distinguishing Features

The algorithmic variants presented and tested in [Bun97b, Bun97a] are speci�ed in

the column headings of the tables using the conventions described below for describing

the major features of modeling algorithms: model structure, probability estimation,

frequency updates, and state selection. The description below accomplishes four

goals:

� It assigns English names to each feature option, to form a language for precisely

describing on-line statistical algorithms.

� The symbols accompanying the English names give a terse labeling system that

completely describes on-line algorithms.

� It explains our software's command-line options (see Figure 1).

� It synopsizes the modeling concepts presented in [Bun96, Bun97b, Bun97a,

Bun97c].

2

Usage: runDMC [-B(atch)-U(decode)-b-e-s-v-o-r-P-y-z-s-w-i-m-K-x-G-D-M-c] file

::

Alphabet_Bits: (the log of the input alphabet size)

-b {1, ..., 16} (Default = 8)

neg_log_EPSILON: (EPSILON = minimum frequency. Resolution R of floating point

arithmetic coder (R >= 32) and Max File Size determine Minimum EPSILON.

-e {1, ..., R} (DEFAULT = 10 allows a Max File Size of 4.19 M symbols).

(Max Frequency = Max File Size = 2^{R-(-log_2(EPSILON))}.

State_Selection:

-s 0 (Default) select no state

-s 2 select min-order deterministic excited state; else select no state

-s 3 select excited state on Min-Entropy frontier; else select no state

-s 5 same as 3, but approx Min-Entropy frontier top-down;

-s 6 same as 3, but approx Min-Entropy frontier bottom-up;

State_Selection_Threshold: (small means nodes mature at young age)

-v <integer> (Default = 0, actual threshold == n/1024)

Minimum_Order: (max order of nodes added by string event splitting)

-o -1 Infinite Order (PPM_Star)

-o 0 Zero Order + nodes added by edge reclassification (Default, DMC)

-o {1, ..., 32767} (PPM, PPM-DMC hybrid where higher-than-min-order

nodes are added by eligible event reclassification)

Reclassification_Eligibility; (for last_taken guest in_event)

-r 0 Never (Default, PPM, nodes are added ONLY by string-event splitting)

-r 1 FREQUENCY: if freq(curr_node)+ 1.0 - freq(in_edge) > Thresh'd,

-r 2 MDL: if guest dest'n->parent->MDL- dest'n->parent->extnsMDL > Thresh_other

-r 3 Destination Order < Min_Order;

Owner_Edge_Protection: (don't redirect edges more than once);

-P (DEFAULT= off)

Reclassification Thresholds: (small value speeds growth)

-y <integer> (edge threshold = v/1024.0, Default = 0.0)

-z <integer> (other threshold = w/1024.0, Default = 0.25)

Reclassification_Tree_Structure: (redirect guest events/edges to new classes/states)

-t 0 one edge to one new state (DMC)

-t 1 chain of linked guest_edges to one new state

-t 2 chain of linked guest_edges to sibling set of new states

-t 3 chain of linked guest_edges to suffix chain of new states

Mixture_Weights: P_est(a|n) = #n/(#n+q) * #a/#n + q/(#n+q) * P_est(a|n->parent)

where #n = Sum_{b:count(b|n) >= 1}{#b}, and

-w A #a = count(a|n); q = Initial_Mass_Of_Parent_Mixture;

-w B #a = count(a|n) - 1; q = |{b: count(b|n) >= 1 }|

-w C #a = count(a|n); q = |{b: count(b|n) >= 1 }|

-w D #a = count(a|n) - 0.5; q = 0.5* |{b: count(b|n) >= 1 }|

Initial_Mass_Of_Inheritance: (new nodes'initial escape counts before updates)

-i <integer> Default: = 0.0(do not use 0.0 with -p A)

Mixture_Inheritance_Time: (when is P_est(a|n->parent) computed relative to n?)

-m 0 at model creation Uniform Prior

-m 1 at node creation DMC

-m 2 at novel event prediction, Blending:

count(a|n) >=1 => P_est(a|n->parent)=0.0

-m 3 before novel event updates

-m 4 after novel event updates (like 3, slightly more aggressive)

-m 5 at every event visit

Satisfy_Kirchoff: Subtract inheritance from parent's distribution.

-K (DEFAULT = off). In edge's counts will equal out_edge's counts.

Update_Exclusion: (which nodes use in_situ freqs, or subtree freqs too)

-x 0 Off (Default): every state uses counts gathered from its entire subtree

-x 1 PPM Update Exclusion: Only selected state uses counts from its subtree.

-x 2 Maximum-Order Update Exclusion

::

Figure 1: The command-line options of the executable taxonomy.

3

3.1 Model Structure and Growth

Su�x-tree model

2

structure is determined by the size of the input alphabet, the initial

model, any order bounds, and whether the model is implemented with symbol-labelled

transitions or string-labelled transitions (which are described in [Bun96, Bun97c] and

denoted with a `*'). Thus, the following features specify model structure:

Alphabet Bits, b: DMC uses a binary input alphabet, with b = 1; the other tech-

niques we test use a 256-ary alphabet, with b = 8.

Minimum Order: This global bound o guarantees that at time i, for every unique

substring w of a

1

a

2

� � �a

i�1

such that jwj � o, there will be a unique state s

in the su�x tree with conditioning context string context(s) = w. Either the

su�x-tree has no global order bound (default, given as `-1') or an order bound

is speci�ed simply as a scalar (e.g., `3').

Order-Zero Initial Model, M : Required to exactly emulate DMC and GDMC.

Early predictions are negligibly better with an order -1 initial model, the default.

Transition Redirection: Two distinct operations are used to build models: transi-

tion splitting builds string-transition models, while transition redirection builds

symbol-transition models. Thus the model structure is additionally determined

by how and when symbol-labelled transitions are redirected.

Redirection Criteria: These determine the eligibility of the transitions taken

into the currently excited states for redirection.

never, R

0

(or equivalently, �): Only add nodes by splitting string tran-

sitions. (Implements linear-space PPM and PPM*.)

popularity, R

1

: Redirect transition if and only if its count exceeds thresh-

old y=1024 and the contribution to its destination's count by other in-

edges exceeds threshold z=1024. (Implements DMC and GDMC.)

MDL, R

2

: Redirect transition if and only if the best-performing frontier

below its destination's parent has an expected minimal codelength that

is z=1024 base e bits per character less than that of its parent.

order, R

3

: Redirect transition if and only if the order of its destination is

less than the Minimum Order. (Used for full-space impl. of PPM.)

Owner Protection, P : this option limits the redirection criterion to \non-

owner edges," that is, edges leaving states with Markov order not less than

the order of the destination. Prevents transition re-redirection.

Redirection Tree Structure: These options are logically part of the edge

redirection criteria, and can redirect the transitions that were taken into

the currently excited states as a group. They are easier to understand if

they are left whole, rather than decomposed into single-edge redirection cri-

teria. Models built solely by string-transition splitting are not a�ected by

this option.

one-to-one, T

0

: If the edge entering the current maximum-order excited

state is eligible, redirect it to one new state. (DMC and GDMC.)

many-to-one, T

1

: If the edge entering the current maximum-order excited

state is eligible, redirect it and all eligible edges above it to the same

new state. (A novel, experimental option.)

2

Su�x-tree models notably include the FSMX class, and all PPM and DMC variants.

4

many-to-children, T

2

: If the edge entering the current maximum-order

excited state is eligible, redirect it and all eligible su�x-linked edges

above it to distinct new states that are children of the original destina-

tion state, and siblings of each other. (A novel, experimental option.)

many-to-descendants, T

3

: If the edge entering the current maximum or-

der excited state is eligible, redirect it and all eligible su�x-linked edges

above it to distinct new states that are su�x-linked descendants of the

original destination state. (Emulates PPM and WLZ.)

Redirection Thresholds, y and z: for tuning redirection criteria R

1

and R

2

.

3.2 Probability Estimation with Mixtures

The companion paper [Bun97a] explains how all probability estimators in the baseline

algorithms can be described as recursive mixtures of the frequency distributions at

di�erent excited states. The principal features that distinguish any mixture are when,

relative to the state's lifetime, each state's inherited distribution is computed and

what weight the inheritance is assigned.

Inheritance Evaluation Time: The inheritance at a given state s is a frequency

distribution constructed from the frequency data present at its ancestors at a

given point in time, relative to s's lifetime.

inherit at model creation, M

0

: This is the degenerate mixture that corre-

sponds to every state having a uniform frequency distribution initially.

inherit at state creation, M

1

: Required by DMC, but too costly for 256-ary

alphabets.

inherit at novel event prediction, M

2

: This is blending, the default mixture

for PPM variants. Note that this type of \inheritance" di�ers from the

others in that it is forgotten (i.e., set to zero) after its �rst use.

inherit before novel event updates, M

3

: As a short hand, we call this op-

tion M when it will not cause confusion.

inherit at every event visit, M

5

: Every time a state becomes excited, re-

compute the frequency distributions conditioned by its ancestors|they may

have changed since last visit.

Initial Mass of Inheritance, i: Let hypothetical variable z be the initial mass of

the inheritance, or initial escape count. Then, to correctly emulate PPM vari-

ants, z must equal 1.0 for escape method A, and 0.0 otherwise. However, to

emulate DMC, each state's initial escape count z must be set to the count on

the redirected in-transition.

Mixture Weighting Formula, A;B;C; or D: These options de�ne mixture

weights by determining what gets added to the inheritance mass z (which is

initialized as described above) at a given excited state after it \misses," and the

initial count k of the added event.

A: z remains unchanged, k = 0:0;

B: z is incremented by 1:0; k = �1:0;

C: z is incremented by 1:0; k = 1:0;

D: z is incremented by 0:5; k = 0:5.

Zero-Sum Inheritance, K: If this option is enabled, the inheritance given to a

state is subtracted from its parent's distribution. Emulates the original DMC.

5

::::::::::::::::::: Options Included to Emulate GDMC Exactly :::::::::::::::::::

Dont_Copy_Event_To_Clones:

-G (Default = FALSE, copy to clones if ok by Max_Event_Copy_Depth)

Dont_Update_Freqs_At_Clones:

-D (Default = False, update all excited nodes, including new ones)

Order_0_Initial_Model:

-M (Default = FALSE = use order -1 initial model. No -m0 uniform_prior)

(when combined with -m1, all nodes will have |alphabet| out_events).

Max_Event_Copy_Depth:

-c 0 copy predicted event all the way to new leaf (Default)

-c {1,2,..,255} copy event to c min-order extns of predicting_node

::

Figure 2: The special command-line options added to accommodate GDMC.

3.3 Frequency Updates

Chapter 5 of [Bun96] fully describes three update options, how each of them a�ects

the semantics of the model, and how to emulate them simultaneously in a single

model that combines non-trivial mixtures and state selection.

Update Exclusion, X: The default for PPM and PPM* variants is no update ex-

clusion for any states. When we need to be more speci�c we use a longer notation:

full updates, X

0

: All excited states get a frequency update.

update exclusion, X

1

: Only the excited states that failed to recognize the

currently scanned input, and the maximum-order state that recognized it,

receive frequency updates.

max-order updates, X

2

: Only max-order excited state gets updated.

Special GDMC features: These options, shown in Figure 2, have no abstract ra-

tionalization that we know of, but they are necessary for exactly emulating

GDMC, and they can be used with any other algorithm in the cross product.

restriction G: Do not copy predicted out-transition to the out-transition lists

of newly added states.

restriction D: Do not update the frequencies at newly added states.

copy depth, C: If any excited states \missed", only the C highest-order ex-

cited descendants of the maximum order excited state that \hit" receives a

copy of the out-transition corresponding to the currently scanned symbol.

To emulate GDMC, let C = 1.

3.4 The Selection of the Coding Model

The set of state selectors is presented and empirically evaluated in [Bun97b], using a

range of state selection thresholds. The percolating state selector below is presented

in [Bun97b]. All of our implementations are MDL-based for e�ciency, but they could

have been implemented using actual entropies of the frequency distributions. We

have implicitly assumed throughout our work that MDL-based implementations are

equivalent in e�ect to entropy-based implementations.

6

:::::::::::::::::::::::::::::::::: Examples:::::::::::::::::::::::::::::::::::::

DMC: -b1 -s0 -r1 -y2048 -z2048 -t0 -o0 -x2 -wA -i0 -m1 -K -M -c0

GDMC: -b8 -s0 -r1 -y0 -z256 -t0 -o0 -x2 -wA -i0 -m3 -G -D -M -c1

PPM: -b8 -s0 -r3 -t3 -o? -x1 -wC -i0 -m2 -c0

PPM: -b8 -s0 -r0 -o? -x1 -wC -i0 -m2 -c0

PPM*: -b8 -s2 -r0 -o-1 -x0 -wC -i0 -m2 -c0

WLZ: -b8 -s3 -v? -r3 -o? -x0 -wA -i1 -m0 -c0

Context: -b1 -s5 -v? -r0 -o-1 -x0 -wA -i1 -m0 -c0

Context2: -b8 -s5 -v? -r0 -o-1 -x0 -wA -i1 -m0 -c0

BestFSMX: -b8 -s3 -v0 -r0 -o-1 -x1 -wD -i0 -m3 -c0

BestDMC: -b8 -s0 -v0 -r1 -y1024 -z2048 -t0 -o0 -x1 -wD -i0 -m3 -M -c0

::

Figure 3: Command lines that execute the Markovian baselines, plus others.

State Selectors: These options determine how the coding model is dynamically

selected for each input symbol.

none, S

0

: The default action is to select no state.

heuristic, S

2

: Select the min-order excited state with only one out-transition

([CTW95]).

percolating, S

3

: See companion paper [Bun97b].

top-down, S

5

: AnMDL-based implementation of the hill-climbingmethod used

in Rissanen's Context algorithm.

bottom-up, S

6

: A bottom-up complement to S

5

:

State-Selection Threshold, v: The actual threshold is v=1024, and is used to test

the di�erence in expected bits (log base e bits, that is) per character between

two models represented by su�x-adjacent states. Higher thresholds cause the

algorithm to wait until a state is fairly mature before it is ever used for a pre-

diction.

4 The Command-Line and Baseline Experiments

The command-line \usage" message of our program is listed in Figures 1 and 2 to

illustrate how precisely the nomenclature mirrors the actual command-line features.

The actual command lines that must be typed to make the cross product emulate

the baseline algorithms, ignoring the existance of preprogrammed defaults, are shown

in Figure 3. These examples demonstrate the expressive power of our taxonomy|

the �rst six lines plus the �nal two lines of text completely describe seven di�erent

state-of-the-art algorithms

3

and explicitly point out all of the abstract di�erences

among them.

4

For each algorithm, the options that are left unspeci�ed do not have

any e�ect on the particular combination of other options.

3

The seven algorithms are DMC [CH87], GDMC [TR93], PPM [Mof90], PPM* [CTW95],

WLZ [WLZ92], plus BestFSMX [Bun97c] and BestDMC, which are the best-performing FSMX

and DMC variants tested with this taxonomy so far (see [Bun97a]). PPM is listed twice because

there are two very di�erent ways to implement it as a su�x tree, both of which produce identical

predictions.

4

Now, that's data compression!

7

Table 1: The State of the Art in On-Line Statistical Compressors.

File Size LZ78 LZ77 DMC GMDC PPMC PPM*

(bytes) (compress) (gzip)

bib 111,261 3.35 2.52 2.28 2.05 2.11 1.91

book1 768,771 3.46 3.26 2.51 2.32 2.48 2.40

book2 610,856 3.28 2.71 2.25 2.02 2.26 2.02

geo 102,400 6.08 5.35 4.77 5.16 4.78 4.83

news 377,109 3.86 3.07 2.89 2.60 2.65 2.42

obj1 21,504 5.23 3.84 4.56 4.40 3.76 4.00

obj2 246,814 4.17 2.65 3.06 2.82 2.69 2.43

paper1 53,161 3.77 2.80 2.90 2.58 2.48 2.37

paper2 82,199 3.51 2.90 2.68 2.45 2.45 2.36

pic 513,216 0.97 0.88 0.94 0.80 1.09 0.85

progc 39,611 3.87 2.68 2.98 2.67 2.49 2.40

progl 71,646 3.03 1.82 2.17 1.83 1.90 1.67

progp 49,379 3.11 1.82 2.22 1.90 1.84 1.62

trans 93,695 3.27 1.62 2.11 1.73 1.77 1.45

Average 224,402 3.64 2.71 2.74 2.52 2.48 2.34

The remaining two command lines approximate the original binary-alphabet

Context algorithm [Ris83] and a 256-ary variant [Ris86]. The emulations are only

approximate because the true Context model is a non-Markovian FSMX �nite state

machine, which cannot be represented state-for-state with an FSM that has explicit

transitions. However, the true Context model is embedded upon the unbounded-

order FSMX model constructed by PPM*, since that model contains a state for every

substring of the already-processed portion of the input. And since Context used top-

down hill-climbing state selection, most of the extra states in the Markov FSM will

be ignored. If anything, our Markov approximation of Context should achieve better

performance than the original

5

, since the only extra states that will ever be used will

be states that tend to improve the performance of the model.

The published performance of on-line stochastic algorithms from the data com-

pression literature that have been implemented are shown in Table 1, along with the

performance of two popular Unix compression utilities. The utilities are `compress,'

which is based upon Welch's popular implementation [Wel84] of the Ziv and Lempel's

second major string-matching algorithm [ZL78], and `gzip,' which is based upon Ziv

and Lempel's �rst major string-matching construction [ZL77].

Mo�at's 1990 implementation, PPMC [Mof90], of Cleary and Witten's 1984

PPM algorithm [CW84], remained unchallenged until Cleary, et al. did away with

PPM's order bound to produce PPM* in 1995 [CTW95]. The authors claimed that

PPM* outperformed PPMC in their paper. However, PPMC was known to achieve

superior compression performance as the order bound increased up to 5 [Mof90], after

which its performance starts to decline. In 1993, Howard published a simple change

to PPMC's escape mechanism, called PPMD [How93]: add .5 instead of 1.0 to the

escape count and scanned event count, whenever a novel event is seen. PPMD gets

even better performance than PPMC. Thus, the original PPM* algorithm cannot be

called the state of the art until it is shown to perform favorably compared to these

5

comparable performance baselines for Context are unavailable

8

Table 2: Cross-Product Baselines of Existing Stochastic Techniques.

File Size DMC GMDC PPMC PPM* PPMC PPMD

(bytes) (order 3) (order 5) (order 5)

bib 111,261 2.219 2.045 2.114 1.910 1.915 1.875

book1 768,771 2.246 2.319 2.478 2.397 2.338 2.297

book2 610,856 2.255 2.021 2.271 2.020 2.004 1.968

geo 102,400 4.671 5.157 4.663 4.828 4.722 4.712

news 377,109 2.894 2.605 2.648 2.419 2.396 2.364

obj1 21,504 4.560 4.403 3.766 4.004 3.736 3.737

obj2 246,814 3.064 2.817 2.726 2.434 2.446 2.421

paper1 53,161 2.889 2.582 2.482 2.373 2.373 2.336

paper2 82,199 2.927 2.451 2.457 2.361 2.358 2.314

pic 513,216 0.925 0.803 0.823 0.854 0.816 0.808

progc 39,611 2.977 2.666 2.499 2.401 2.411 2.377

progl 71,646 2.168 1.826 1.904 1.671 1.729 1.693

progp 49,379 2.222 1.905 1.843 1.624 1.753 1.719

trans 93,695 2.114 1.734 1.772 1.447 1.539 1.495

Average 224,402 2.721 2.524 2.460 2.339 2.324 2.294

higher order PPMC and PPMD parameterizations.

Table 2 shows how our emulations of the above statistical techniques perform.

The performance is very close to that of the original implementations in Table 1.

There are slight di�erences, however, due to our use of oating point frequencies

rather than integers in PPM and PPM* and the frequency scaling that is used in

PPM, PPM*, DMC, and GDMC, whenever a frequency at a state exceeds some

constant maximum value. Our oating-point arithmetic coder enabled us to dispense

with frequency scaling. While we were establishing these baselines, we experimented

with our implementation of the existing PPMC and PPMD technologies. And, in

spite of its (unbounded) longer conditioning contexts, PPM* clearly does not out-

perform PPM.

5 Conclusion

Our taxonomical approach to describing and de�ning novel on-line modeling algo-

rithms constitutes a break with tradition in practical data compression research. Re-

searchers in the past have emphasized (sometimes arti�cial) di�erences among their

algorithms with memorable acronyms and typically treated existing techniques as

\black boxes" (thus often ignoring meaningful parameters) when comparing them to

their own constructions. However, quite often the abstract di�erences among appar-

ently distinct approaches can be expressed in a single technique as di�erent values of

parameters that have simple connotations.

References

[Bun96] S. Bunton. On-Line Stochastic Processes in Data Compression. PhD thesis, University

of Washington, December 1996.

9

[Bun97a] S. Bunton. A generalization and improvement to PPM's blending. UW-CSE Technical

Report UW-CSE-97-01-10, The University of Washington, January 1997.

[Bun97b] S. Bunton. A percolating state selector for su�x-tree context models. In Proceedings Data

Compression Conference. IEEE Computer Society Press, March 1997.

[Bun97c] S. Bunton. Semantically motivated improvements for PPM variants. The British Com-

puter Journal, Special Data Compression Issue, 1997. (invited paper, to appear June

1997).

[CH87] G. V. Cormack and R. N. S. Horspool. Data compression using dynamic Markov mod-

elling. The Computer Journal, 30(6):541{550, 1987.

[CTW95] J. G. Cleary, W. J. Teahan, and I. H. Witten. Unbounded length contexts for PPM. In

Proceedings Data Compression Conference, March 1995.

[CW84] J. G. Cleary and I. H. Witten. Data compression using adaptive coding and partial string

matching. IEEE Transactions on Communications, 32(4):396{402, 1984.

[How93] P. G. Howard. The Design and Analysis of E�cient Lossless Data Compression Systems.

PhD thesis, Brown University, 1993.

[Mof90] A. Mo�at. Implementing the PPM data compression scheme. IEEE Transactions on

Communications, 38(11):1917{1921, 1990.

[Ris83] J. J. Rissanen. A universal data compression system. IEEE Transactions on Information

Theory, 29(5):656{664, 1983.

[Ris86] J. J. Rissanen. An image compression system. In Proceedings HILCOM 86, 1986.

[TR93] J. Teuhola and T. Raita. Application of a �nite-state model to text compression. The

Computer Journal, 36(7):607{614, 1993.

[Wel84] T. Welch. A technique for high-performance data compression. IEEE Computer, 17(6):8{

19, June 1984.

[WLZ92] M. J. Weinberger, A. Lempel, and J. Ziv. A sequential algorithm for the universal coding

of �nite memory sources. IEEE Transactions on Information Theory, 38(3):1002{1014,

1992.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, 23(3):337{343, 1977.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory, 24(5):530{536, September 1978.

10

