
A Percolating State Selector

for Su�x-Tree Context Models

1

Suzanne Bunton

Technical Report UW-CSE-97-02-06

Department of Computer Science and Engineering

University of Washington

Abstract

This paper introduces into practice and empirically evaluates a set of tech-

niques for performing information-theoretic state selection that have been devel-

oping in asymptotic results for over a decade. State selection, which actually

implements the selection of an entire model from among a set of competing

models, is performed at least trivially by all of the su�x-tree FSMs used for

on-line probability estimation. The set of state-selection techniques presented

here combines orthogonally with the other sets of design options covered in the

companion papers, \A Generalization and Improvement to PPM's Blending,"

and, \An Executable Taxonomy of On-Line Modeling Algorithms," written by

this author. The main results of this paper are:

� a novel dynamic programming solution that does not resort to the subopti-

mal hill-climbing or global order bounds that are used in other techniques,

� the successful combination of information-theoretic state selection and em

mixtures, which include PPM's blending, and

� the �rst published survey and empirical comparison of state selection tech-

niques.

Keywords: data compression, universal coding, on-line stochastic model-

ing, statistical inference, �nite-state automata

1

A version of this paper appears in Proceedings of the DCC, March 1997. This report contains

minor corrections to the DCC97 version.

A Percolating State Selector for Su�x-Tree

Context Models

Suzanne Bunton

The University of Washington

This paper introduces into practice and empirically evaluates a set of techniques

for information-theoretic state selection that have been developing in asymptotic re-

sults (e.g., [Ris83, Ris86, WLZ92]) for over a decade. State selection, which actually

implements the selection of an entire model from among a set of competing mod-

els, is performed at least trivially by all of the su�x-tree FSMs used for on-line

probability estimation. The set of state-selection techniques presented here combines

orthogonally with the other sets of design options catalogued in the companion paper

[Bun97a].

1 Stochastic Complexity and On-Line Modeling

The stochastic complexity of a string is the length of its optimal o�-line encoding, that

is, its Minimum Description Length, or MDL [Ris89]. A string's MDL is the sum of

the lengths of an encoding of a model plus the encoding of the string with respect to

that model such that the total encoding length is minimal over all possible models

within an assumed model class. Here we consider the problem of computing the input

sequence's MDL on-line, by assuming for each input symbol that the set of possible

FSM models is represented by the set of nested subtrees of the su�x-tree FSM. Our

goal is to code each input symbol with the model that assigns the lowest stochastic

complexity to the already processed portion of the input. At any point in the input

sequence, each nested FSM is in a particular state. The set of current states of the

nested FSMs is the set of excited su�x-tree states. By selecting one of the excited

states, we are in fact selecting an entire FSM with that state as its current state.

Note that stochastic complexity assigns a coding penalty to each model state.

The penalty is a lower bound on the number of bits required to encode that state.

Most other treatments of the state-selection approach to on-line modeling (e.g., [Ris83,

WLZ92]) require that a re�nement (e.g., the children or deeper descendants) of a state

be selected in preference to that state if the performance of that re�nement improves

the performance of the model frontier containing the original state by an amount

exceeding the cost of encoding the states comprising the re�nement. However, for

the following reasons, we believe that there should be no coding penalty for selecting

a re�nement to a given state during on-line modeling:

� In on-line modeling, the model is not explicitly coded: the deterministic algo-

rithm of the encoder is emulated by the decoder to deduce the state that was

selected for coding without any side-information about the actual model.

� In on-line modeling, the coding penalty is incorporated into the inaccurate prob-

ability estimates from early in the sequence [CW84]. Thus, re�nement coding

penalties are incorporated into the records of past performance based on those

estimates.

� Automated experiments with various parameterizations of our executable tax-

onomy, which evaluate the e�ect of loose constant lower bounds on the o�-line

1

coding cost of model re�nements, indicate that positive coding penalties always

degrade on-line performance.

Therefore, for each input symbol a

i

, we shall simply select the excited state that

represents the model that has performed the best on the input sequence a

1

a

2

� � �a

i�1

.

2 A Performance Metric for States

Thus we need to associate a performance metric with each state to use for minimizing

the codelength of the entire sequence a

1

a

2

� � �a

n

. The optimal codelength equals

X

i

� logP (a

i

ja

1

a

2

� � �a

i�1

);

and we model all past occurrences of all su�xes of a

1

a

2

� � �a

i�1

using the currently

excited states fs : a

1

a

2

� � �a

i�1

2 L(s)g. We therefore wish to minimize

� logP

estimated

(a

i

jfs : a

1

a

2

� � �a

i�1

2 L(s)g);

for all a

i

, where L(s) is the set of strings that cause the nested FSM represented by

the su�x-tree to enter state s or any state in the subtree rooted by s.

A performance metric that will help accomplish this goal is maintained as

follows: For each state s we maintain a counter called D[s] that accumulates the

codelengths that state s would have assigned to the symbols that were currently

scanned whenever it has been excited. That is, for each input a

i

, at all s such that

a

1

a

2

� � �a

i�1

2 A

�

L(s), we increment D[s] by � logP

e

(a

i

js). We also keep track of

]s, the number of times that s has been excited since it was added to the state set.

Then, we measure the performance of each state s by its expected codelength, D[s]=]s.

From here on we shall loosely refer to each state's expected codelength D[s] as its

\MDL." Now we are prepared for selecting the best-performing model represented by

the excited states.

3 Basic Approaches to State Selection

There are three basic approaches to information-theoretic state selection. Each ap-

proach can be viewed as selecting a complete frontier of the subtree rooted at s

0

;

where a frontier of state s's subtree T consists of the leaves of some subtree of T

rooted at s, and a frontier is complete if it consists of s or of complete frontiers of all

of s's children.

1. Top-down from s

0

, select the �rst state s whose children's combined expected

codelengths fail to improve s's expected codelength.

2. Bottom-up from the maximum order excited state, select the excited child of

the �rst state s whose children's combined expected codelengths improve s's

expected codelength.

3. Top-down, select the minimum order excited state for which no complete frontier

of its subtree improves its expected codelength.

2

The �rst approach was introduced in [Ris83], using entropies instead of MDLs, and

then in [Ris86] using MDLs. As pointed out in [WLZ92], this technique systemati-

cally under-estimates the local order of the model; it is a hill-climbing technique that

can get stuck in local minima. The second approach is introduced here as an obvious

complement to the top-down hill-climbing approach, to complete the taxonomy. It

systematically over-estimates local order. Both methods are most e�ciently imple-

mented using a single MDL counter D

0

[s] at each state s, which records the di�erence

between the per-symbol codelength assigned by the state s and the codelength as-

signed by the currently excited child of s. That is, given that D

0

[s] = 0 8s 2 S

initially, for every state s such that s has an excited child t at time i, let

D

0

[s] D

0

[s]� log(P

e

(a

i

js)) + log(P

e

(a

i

jt)):

Both hill-climbing methods approximate the third approach. The reason that

the hill-climbing approaches are suboptimal is that there may be a complete fron-

tier below any given state's children that reduces the state's expected codelength,

even though the children themselves do not. The authors of [WLZ92] present a for-

mal, asymptotically convergent solution to the third approach that requires an order

bound. In the next subsection, we describe our own solution, which requires no order

bound and which allows e�cient implementation. But �rst we will explain certain

semantic considerations involving context partitions and frequency updates.

4 Model Semantics:

Competing Context Partitions

State selection in a su�x-tree FSM implements the selection of an entire partition on

the set of possible conditioning contexts, where the partition element associated with

each state is the set of strings that will cause the FSM to enter that state or any state

in its subtree. We restrict ourselves to the selection of complete frontiers because only

complete frontiers impose a complete partition on the set of conditioning contexts.

For every possible input history a

1

a

2

� � �a

i�1

, there must exist a state in the coding

model selected at time i whose conditioning context contains a

1

a

2

� � �a

i�1

.

It is fortunate that a state-selection procedure need only consider the metrics

located at the excited states. However, the designer must remember that he or she

is actually implementing the selection of an entire conditioning context partition

from among a set of competing partitions. This means that a node must always be

considered for selection along with its siblings. To select, for example, the excited

state with the lowest expected codelength, or the minimum-order excited state whose

expected codelength is better than that of its excited child (e.g., [Fur91]), is incorrect,

not merely suboptimal. This is because the children of a state s (i.e., those nodes

whose contexts correspond to minimal extensions of the state's context) may have

better performance than the state s, even while the currently excited child of s has

worse performance than s does.

Frequency updates a�ect the conditioning context partition imposed by the

state set. Therefore, the choice of update mechanism must be carefully considered in

combination with state selection. At �rst glance, only full updates, which increment

the frequency distribution at every excited state (and therefore at every simulated

FSM model), seem appropriate for models with state-selection. However, there are

3

procedure Select(s 2 S)

selected 2 S [fnullg;

if s 6= s

0

then

selected Select(su�x(s));

if selected then return selected endif

endif

if D[s] � F [s] then return s else return null endif

end procedure

procedure Percolate MDLs(s 2 S, a 2 A)

old D, old F 2 <;

old F F [s];

F [s] F [s]� log(P

e

(ajs; update exclusion = true));

while s do

old D D[s];

D[s] D[s]� log(P

e

(ajs; update exclusion = false));

if su�x(s) then

di� 2 <;

di� minfD[s]; F [s]g �minfold F,old Dg;

old F F [su�x(s)];

F [su�x(s)] F [su�x(s)]� di�

endif

s su�x(s)

end while

end procedure

Figure 1: A State Selection Mechanism with Percolating Updates

two reasons to combine state-selection with update exclusion, which increments fre-

quencies at only the highest-order excited states. Update exclusion improves per-

formance of mixtures (which we propose to combine with state selection), and, as

we argue in Section 5.1, update exclusion correctly handles the incomplete frontiers

that result from lazily evaluating re�nements to su�x-tree states. With mixtures,

the probability estimate is de�ned recursively in terms of ancestor nodes. State se-

lection does not cause us to assume that the children of these lower-order nodes

do not exist, therefore update-excluded frequencies should be used to compute the

lower-order terms of the probability estimate, even when state selection is employed.

Regardless of whether the model uses mixtures or constructs incomplete frontiers,

update-excluded frequencies must not be used to compute the probability estimate

at the selected state, since the act of selecting a state assumes that the descendants

of the selected state do not exist. Thus, disabling update exclusion at the currently

selected state is required when it is enabled globally for the modeling algorithm. The

dual update mechanism introduced in [Bun96], Chapter 5, provides this ability by

maintaining both update-excluded and full-update frequencies at every state.

5 A Percolating State-Selection Mechanism

4

Here we present a dynamic-programming solution to the problem of �nding the best-

performing model frontier without resorting to hill-climbing or an order-bound. In

simple terms, our solution recursively \percolates" the performance of each subtree's

best frontier up to its root's ancestor. Figure 1 gives the two procedures, Perco-

late MDLs: S�A! fg and Select: S ! S[fnullg that implement the two principal

steps. These procedures require two MDL accumulators at each actual state s, D[s]

and F [s], which respectively contain the state's locally accumulated MDL, and the

accumulated MDL of the best complete frontier in the subtree rooted by the state.

Select(s

0

) follows su�x pointers from the current maximum-order excited state

s

0

to the root s

0

, and then searches top-down for the �rst excited state s such that

D[s] is no greater than F [s]. For each excited state s, Percolate(s; a

i

) recomputes,

bottom-up, the local description length, D[s], and F [s], the description length of the

best-performing frontier in the s's subtree. The procedures in Figure 1 implement

the following bottom-up recomputation of F [s] for each state s, starting from the

maximum-order excited state s

0

, by resetting F [su�x(s)] to

F [su�x(s)]�minfD[s]; F [s]g+minfD[s]� logP

e

(a

i

js); F [s]� logP

e

(a

i

js

j

)g;

where s

j

is the excited state located on the best performing frontier of the subtree

rooted by s.

For on-line su�x-tree modeling algorithms in general, calls to Select and Per-

colate MDLs �t into the sequence of calls to the other routines as follows. At the

beginning of processing the sequence a

1

a

2

� � �a

n

, the model consists of the (excited)

state s

0

, and its parent, s

�1

, where F [s

0

] = D[s

0

] = F [s

�1

] = D[s

�1

] = 0. Before

each subsequent symbol a

i

is processed by the probability estimation routines, Se-

lect is called to select the best excited state ŝ. Then, P (a

i

ja

1

a

2

� � �a

i�1

) is estimated

as P

e

(a

i

jŝ). After a

i

has been processed by the probability estimation routines, the

maximum-order excited state s

0

is tested for eligibility to be extended by new states.

If any new states s are added to the model, they are added top-down as su�x-linked

descendants of s

0

, before Percolate MDLs() is called. The MDL counters at new

states are initially zero, that is, F [s] = D[s] = 0, and the pointer to s

0

is set to

the maximum-order novel state. Then, the MDL counters are updated by execut-

ing Percolate MDLs(s

0

; a

i

). Finally, the event frequencies are updated at all excited

states before advancing to the next scanned sequence symbol a

i+1

and setting s

0

to

the maximum-order state that is excited by a

1

a

2

� � �a

i

.

5.1 Model Semantics: Incomplete Frontiers

Most implementations of data compression algorithms, including the methods studied

in this work, add children states on demand instead of all at once. Thus, few states in

the su�x-tree will posess all possible children. Here, we explain how to use update-

excluded frequencies during MDL updates to ensure that the MDLs keep track of the

performance of models corresponding to complete context partitions.

In an on-line su�x-tree FSM in which a state s does not posess all possible

children, the re�nement to s's context partition element L(s) that is represented by

s's children is incomplete because

L(s)�

[

t:su�x(t)=s

L(t) 6= fg:

5

To complete s's context partition element, we maintain a \shadow child" of s that

maintains a next-symbol frequency distribution that is conditioned by

L(s)�

[

t:su�x(t)=s

L(t):

As explained in [Bun96], Chapter 5, this is the same frequency distribution that is

formed by the update-excluded frequency counts count[�; s; 1] if maximum-order

updates are globally enabled for the modeling algorithm. Alternatively, it is approxi-

mated very closely by the update-excluded frequency counts count[�; s; 1] if regular

update exclusion is globally enabled instead. Therefore, update-excluded frequencies,

in addition to full-update frequencies, are required to correctly implement state se-

lection in context models that lazily re�ne their context partitions, independently of

whether update-excluded frequencies are used when estimating the coding distribution.

Whenever no state is selected from among the currently excited states, the

\shadow child" of the maximum order excited state s

0

, is the selected state, and

the local order estimate equals the order of s

0

plus one. To implement the selec-

tion of a complete frontier, the probability estimator should use the update-excluded

frequencies conditioned by s

0

when computing the coding distribution, and when

updating the MDL F [s

0

] of the best-performing frontier below that state. That

is, during MDL updates, increment F [s

0

] by � logP

e

(a

i

js

0

; update exclusion = true);

which equals the shadow child's codelength, and update D[s

0

] by the maximum or-

der excited state's codelength, � logP

e

(a

i

js

0

; update exclusion = false): The quantity

P

e

(a

i

js

0

; update exclusion = u) equals a weighted sum of the inheritance I[a

i

js

0

], and

the maximum likelihood of a

i

given the frequencies count[b; s

0

; u], 8b 2 A, as com-

puted in [Bun96], Chapter 6.

6 State Selection with Mixtures

In general, an on-line modeling algorithm that uses convergent state selection will

ignore the high-order descendants of a given node until the combined estimated prob-

ability distributions of those descendants have better performance, or lower entropy,

than the frequency distribution at the given node. A simple explanation of why

blending and other mixtures work so well in on-line modeling algorithms is that these

techniques enable a given state's probability estimate to converge to the characteris-

tics of the input data sooner. Accelerating this convergence is essential to a state's

usefulness if it has high Markov order. Even for large input sequences, high-order

states are invariably starved for data. In practice, mixtures accelerate the conver-

gence at particular states. That is, mixtures lower the expected entropy of their

estimated probability distributions.

Thus, the combination of mixtures with state selection will accelerate the con-

vergence of models. That is, higher-order states will be selected sooner than with

state selection alone. The algorithm resulting from this combination should produce

a model that performs well for both short and long sequences.

7 Comparative Performance

In this section we seek to answer the following questions:

6

1. Does state selection improve performance in practice?

2. How do the di�erent state selection mechanisms perform relative to each other?

3. What are good threshold values for the information-theoretic techniques?

4. Do the techniques perform predictably for models of di�erent orders?

5. Which improves performance more: state selection, mixtures, or both?

The suite of experiments that we ran to answer these questions covered the

cross product of the following sets of parameters:

State Selection Techniques in fS

0

; S

2

; S

3

; S

5

; S

6

g, where

S

0

denotes no state selection.

S

2

is the heuristic used by the original PPM* implementation: select the lowest-

order excited state that recognizes only one source symbol.

S

3

is our percolating state selector.

S

5

is top-down hill-climbing state selection.

S

6

is bottom-up hill-climbing state selection.

Probability Estimators in fAM

0

; DM

3

Xg, where

AM

0

denotes the degenerate mixture that produces an identical uniform prior

for each state. In the language of [Bun97a], it combines a constant uniform

weighting function on the excited states (mixture-weighting formula A),

and evaluates their inherited probabilities at model creation, denoted by the

inheritance evaluation time M

0

.

DM

3

X describes one of the better-performing mixtures from [Bun97b], com-

bined with update exclusion (X). The mixture-weighting formula (or escape

mechanism) is D, while the inheritance evaluation time M

3

equals inherit

before novel event updates.

FSMX Model Topologies in f9

�

; 64

�

g: The model is built using our su�x-tree

construction algorithm [Bun96, Bun97c] (thus the

�

), to save space and time

and to therefore make it possible to evaluate higher order models (i.e., orders 9

and 64) at a wide range of state selection thresholds in a reasonable time frame.

State Selection Threshold Numerator v, where v is a member of the set

f�1024;�512;�256; : : : ; 512; 1024g. Note that the actual threshold equals

v=1024. Thus state selection tests for di�erences between the expected code-

lengths of a given excited state and a complete frontier below it that are bounded

above by one bit per source symbol. In hill-climbing techniques, the frontier is

formed by the children of the state, while the percolating technique uses the

complete frontier with the minimal codelength.

All other features of the models were held constant throughout the experiment.

The results of the experiment are summarized in Tables 1 and 2. Table 1 compares

performance of state selection techniques on a vanilla FSM model with Markov order

64 on the �les of the Calgary Corpus. Table 2 compares performance of state selection

techniques on an otherwise identical model that also performs one of the better-

performing mixtures. At the bottom of each table we summarize the performance

on the Corpus for the order 64 models, denoted by the column headers, and for

otherwise identical models with Markov order 9. Next to the bits per character �gure

for each �le and model, we give the average selected order of that model. Note that

7

Table 1: E�ect of di�erent state selection techniques on the compression performance

and average selected order of a order-64 FSMX model without blending or Mixtures.

File A*64M

0

S

0

A*64M

0

S

2

A*64M

0

S

6

v

0

A*64M

0

S

5

v

�16

A*64M

0

S

3

v

0

Select Select Select Select Select

(bpc) Order (bpc) Order (bpc) Order (bpc) Order (bpc) Order

bib 2.749 12.63 2.558 5.35 2.435 3.99 2.312 3.41 2.286 3.32

book1 3.452 8.32 3.374 6.49 2.873 4.28 2.444 3.13 2.432 2.85

book2 2.857 10.46 2.715 6.45 2.461 4.63 2.198 3.59 2.189 3.44

geo 6.059 4.54 6.040 3.42 5.548 2.12 5.280 2.20 5.216 2.01

news 3.302 13.12 3.170 5.88 2.999 4.22 2.822 3.50 2.794 3.30

obj1 4.584 12.98 4.526 7.87 4.579 3.18 4.507 7.55 4.531 3.37

obj2 2.989 14.33 2.851 5.19 2.885 3.89 2.845 3.79 2.829 3.87

paper1 3.208 8.98 3.097 4.80 2.944 3.54 2.756 2.77 2.748 2.77

paper2 3.300 8.00 3.204 5.23 2.911 3.62 2.588 2.67 2.590 2.59

pic 1.148 47.13 1.052 38.34 0.898 19.67 0.993 35.37 0.852 5.19

progc 3.143 9.12 3.013 4.56 3.002 3.40 2.888 3.02 2.883 2.98

progl 2.314 19.26 2.098 6.86 2.094 4.38 2.066 4.73 2.044 3.85

progp 2.224 20.92 1.975 5.63 2.002 4.61 1.989 3.54 1.976 4.19

trans 2.025 25.66 1.775 5.71 1.776 4.29 1.756 3.90 1.727 3.95

Average 3.097 2.961 2.815 2.675 2.650

Average for order-9 models:

3.020 2.946 2.804 2.674 2.654

Table 2: E�ect of di�erent state selection techniques, on the compression performance

and average selected order of an order-64 FSMX model with Update Exclusion (X)

and Mixtures (M

3

; D).

File D*64M

0

S

0

D*64M

3

S

2

D*64M

3

S

6

v

0

D*64M

3

S

5

v

�8

D*64M

3

S

3

v

0

Select Select Select Select Select

(bpc) Order (bpc) Order (bpc) Order (bpc) Order Order

bib 2.019 12.63 1.828 5.35 1.816 5.10 1.801 4.19 1.788 4.54

book1 2.428 8.32 2.407 6.49 2.332 5.74 2.205 4.38 2.205 4.44

book2 2.099 10.46 1.970 6.45 1.937 5.95 1.878 4.72 1.876 5.09

geo 4.727 4.54 4.756 3.42 4.705 2.97 4.550 2.79 4.508 2.28

news 2.452 13.12 2.347 5.88 2.329 5.37 2.301 4.57 2.292 4.62

obj1 3.793 12.98 3.766 7.87 3.757 7.39 3.720 7.53 3.699 3.29

obj2 2.422 14.33 2.280 5.19 2.288 4.99 2.287 4.59 2.272 4.74

paper1 2.411 8.98 2.302 4.80 2.288 4.46 2.256 3.67 2.249 3.96

paper2 2.394 8.00 2.326 5.23 2.288 4.75 2.218 3.65 2.221 3.92

pic 0.969 47.13 0.849 38.34 0.785 35.62 0.819 35.74 0.795 21.13

progc 2.440 9.14 2.304 4.56 2.310 4.28 2.307 3.88 2.296 4.08

progl 1.766 19.26 1.530 6.86 1.539 5.67 1.554 5.92 1.528 5.30

progp 1.767 20.92 1.504 5.63 1.516 5.46 1.550 4.85 1.505 5.39

trans 1.611 25.66 1.306 5.71 1.306 5.50 1.315 4.68 1.291 4.88

Average 2.378 2.248 2.228 2.197 2.180

Average for order-9 models:

2.281 2.250 2.235 2.202 2.191

8

the average order of any model using state selection is the average selected order of

the corresponding models that use no state selection, minus one.

Now we are prepared to answer the 5 questions posed earlier:

1. All forms of state selection tested improve performance. The higher the Markov

order, the greater the improvement. The improvement due to state selection is

greater if the model does not use one of the better-performing mixtures, which

hedge against order over-estimation by mixing in data from lower-order states.

2. The performance increases of each state selector, relative to the vanilla order-64

model, were: 4.4% for S

2

; 9.1% for S

6

, 13.6% for S

5

, and 14.4% for S

3

. The

performance increases of each state selector, relative to the order-64 model with

mixtures but no state selection, were: 5.5% for S

2

, 6.3% for S

6

, 7.6% for S

5

,

and 8.3% for S

3

: Since 9 closely estimates the global order of the corpus, the

selectors obtained 2-4% less of a performance increase in similar order-9 models.

3. The percolating and bottom-up selectors always perform best with their state

selection threshold set to zero. Top-down hill-climbing performs best when its

threshold is set to a small negative value that compensates for its tendency to

underestimate local order. The ideal value is a function of the true order of the

input sequence. For most �les of the Calgary Corpus the top-down selector did

best with a values between �8=1024 and �32=1024. However, with this selector

a threshold that does best for the low-order �les would get worse performance

on the higher-order �les, and vice versa. Since higher-order text �les dominate

the corpus, slightly negative values gave the best results.

4. The performance ranking of the selectors is consistent for all Markov orders

that we have tested, regardless of whether the models use mixtures or not. The

percolating state selector S

3

consistently outperforms the other selectors on all

�les and at all Markov orders that we have tested. However, the top-down

hill-climbing selector S

5

can be parameterized to perform nearly as well.

5. Despite the consistent behaviors of the state selectors, mixtures, including blend-

ing, provide about one and a half times the performance increase of the best state

selector. The mixture used in this test improved the performance of the order-64

vanilla model by 23.2% and the order-9 vanilla model by 24.5%.

In summary, a good mixture works better than the best state selector, but

the combination is better still. The best-performing state selector is our percolating

technique, followed closely by top-down hill climbing|but only if it is correctly pa-

rameterized. An unbounded-order model combined with the percolating state-election

technique satis�es a primary goal of universal on-line modeling: eliminating model

parameters that cannot be automatically deduced from the input sequence.

8 Conclusion

Before we began the basis of this work in [Bun96], there had been no published empir-

ical studies of the performance of any information-theoretic state-selection technique,

nor was the idea used in any published algorithm that had been implemented. In this

paper, we gave an overview of concepts and the existing state-selection techniques

from the information-theoretic literature, and then presented a novel mechanism that

overcomes the drawbacks of the existing techniques, which resort to order bounds or

9

suboptimal hill climbing. This paper also describes a major component of the or-

thogonal sets of an executable cross-product taxonomy for on-line su�x-tree models

of sequences, that we present in the companion paper [Bun97a]. We used our imple-

mentation of that cross product to present controlled experiments that conclusively

demonstrate the principle hypothesis of [Bun96]: that the combination of information-

theoretic state selection and mixtures is superior to either technique alone.

Acknowledgements

John Cleary suggested the percolating solution to the general problem of informing

a tree's root node of the performance (as described by some arbitrary metric) of the

leaves of the best subtree rooted by it.

References

[Bun96] S. Bunton. On-Line Stochastic Processes in Data Compression. PhD thesis, University of

Washington, December 1996.

[Bun97a] S. Bunton. An executable taxonomy of on-line modeling algorithms. In Proceedings Data

Compression Conference. IEEE Computer Society Press, March 1997.

[Bun97b] S. Bunton. A generalization and improvement to PPM's blending. UW-CSE Technical

Report UW-CSE-97-01-10, The University of Washington, January 1997.

[Bun97c] S. Bunton. Semantically motivated improvements for PPM variants. The British Com-

puter Journal, Special Data Compression Issue, 1997. (invited paper, to appear June

1997).

[CW84] J. G. Cleary and I. H. Witten. A comparison of enumerative and adaptive codes. IEEE

Transactions on Information Theory, 30(2):306{315, 1984.

[Fur91] G. Furlan. An enhancement to universal modeling algorithm `context' for real-time ap-

plications to image compression. In IEEE Transactions on Acoustics Speech and Signal

Processing, pages 2777{2780, 1991.

[Ris83] J. J. Rissanen. A universal data compression system. IEEE Transactions on Information

Theory, 29(5):656{664, 1983.

[Ris86] J. J. Rissanen. Complexity of strings in the class of Markov sources. IEEE Transactions

on Information Theory, 32(4):526{532, 1986.

[Ris89] J. J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scienti�c Publishing,

Singapore, 1989.

[WLZ92] M. J. Weinberger, A. Lempel, and J. Ziv. A sequential algorithm for the universal coding

of �nite memory sources. IEEE Transactions on Information Theory, 38(3):1002{1014,

1992.

10

