
c

 Copyright 1996

Suzanne Bunton

On-Line Stochastic Processes in Data Compression

by

Suzanne Bunton

A dissertation submitted in partial ful�llment of

the requirements for the degree of

Doctor of Philosophy

University of Washington

1996

Approved by

(Chairperson of Supervisory Committee)

Program Authorized

to O�er Degree

Date

In presenting this dissertation in partial ful�llment of the requirements for the Doc-

toral degree at the University of Washington, I agree that the Library shall make

its copies freely available for inspection. I further agree that extensive copying of

this dissertation is allowable only for scholarly purposes, consistent with \fair use"

as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of

this dissertation may be referred to University Micro�lms, 1490 Eisenhower Place,

P.O. Box 975, Ann Arbor, MI 48106, to whom the author has granted \the right

to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed

copies of the manuscript made from microform."

Signature

Date

University of Washington

Abstract

On-Line Stochastic Processes in Data Compression

by Suzanne Bunton

Chairpersons of Supervisory Committee:

Professors Gaetano Borriello and Richard Ladner

Department of Computer Science and Engineering

The ability to predict the future based upon the past in �nite-alphabet sequences

has many applications, including communications, data security, pattern recognition,

and natural language processing. By Shannon's theory and the breakthrough devel-

opment of arithmetic coding, any sequence, a

1

a

2

� � �a

n

, can be encoded in a num-

ber of bits that is essentially equal to the minimal information-lossless codelength,

P

i

� log

2

p(a

i

ja

1

� � �a

i�1

). The goal of universal on-line modeling, and therefore of

universal data compression, is to deduce the model of the input sequence a

1

a

2

� � �a

n

that can estimate each p(a

i

ja

1

� � �a

i�1

) knowing only a

1

a

2

� � �a

i�1

so that the expected

value of � log p(a

i

ja

1

� � �a

i�1

) is minimized. Thus, data compression has become both

a routine application of on-line modeling techniques and a means for accurately mea-

suring their empirical performance.

The on-line modeling algorithm, Prediction By Partial Matching (PPM), has set

the performance standard in data compression research since its introduction in 1984.

PPM's success stems from its ad hoc probability estimator, which dynamically blends

distinct frequency distributions contained in a single model into a probability estimate

for each input symbol. Meanwhile, the most conclusive asymptotic results use an

information-theoretic metric to dynamically select a model from a set of competing

models, and then use that selected model to estimate the currently scanned symbol's

probability. Our hypothesis is that these apparently unrelated approaches can be

combined to produce a semantically coherent technique that is arguably universal

and which consistently outperforms existing techniques on actual data.

To prove our hypothesis, we �rst give a semantics that uni�es both forms of on-

line modeling. Then we show how related but linguistically distinct model families �t

the semantics, and give a new frequency update mechanism that is consistent with

the semantics for all families. Next, we generalize PPM's probability estimator to a

family of estimators, which we combine with a novel model-selection mechanism that

eliminates the need for the order bounds and suboptimal hill-climbing employed by

previous techniques. We organize into a cross-product the set of estimators, the set of

known model selectors (including our mechanism), and the set of linguistic structures

used by three model families. The result is an executable taxonomy, which we use for

evaluating these techniques in experiments that control all model features, as well as

test data.

The combination of our update mechanism, generalization of blending, and novel

model selector outperforms the best known published approaches by 5% to 12% (mea-

sured as compression performance on the Calgary corpus), the largest published in-

crease since 1990. In addition to delivering superior performance, we reduce memory

requirements and increase the fundamental understanding of the problem of univer-

sal sequence prediction and of the relationships among the previously known on-line

solutions.

Table of Contents

List of Figures v

List of Tables vi

Chapter 1: Introduction 1

1.1 Why On-Line Stochastic Data Compression? : : : : : : : : : : : : : : 2

1.1.1 Lossless vs. Lossy Data Compression : : : : : : : : : : : : : : 2

1.1.2 On-Line vs. Multiple-Pass Data Compression : : : : : : : : : 3

1.1.3 Stochastic vs. Ziv-Lempel Compression : : : : : : : : : : : : : 4

1.1.4 The Importance of Stochastic Techniques : : : : : : : : : : : : 5

1.2 Thesis Overview : 6

1.2.1 A Brief Tour of Coding and Modeling Concepts : : : : : : : : 7

1.2.2 Thesis Statement : 8

1.2.3 Thesis Contributions : 9

Chapter 2: Coding and Modeling Concepts 11

2.1 The Modern Data Compression Paradigm : : : : : : : : : : : : : : : 11

2.2 Entropy and Stochastic Processes : 12

2.3 Optimal Source Coding : 16

2.3.1 On-line Coding and Decoding: Step by Step : : : : : : : : : : 17

2.3.2 Inside Arithmetic Coding (Optional) : : : : : : : : : : : : : : 19

2.3.3 The Least a Model Designer Should Know : : : : : : : : : : : 22

2.4 A General Strategy for Optimal Source Modeling : : : : : : : : : : : 23

2.5 A Hierarchy of Important Model Classes : : : : : : : : : : : : : : : : 25

2.6 Source Modeling with Su�x Trees : 29

2.6.1 Notation and Terminology : 29

2.6.2 Su�x-Tree Model Families : 30

2.6.3 Model Semantics I: Conditioning Context Partitions : : : : : : 32

2.6.4 On-line Probability Estimation with Su�x Trees : : : : : : : : 33

2.7 A History of Inuential Su�x-Tree Models : : : : : : : : : : : : : : : 33

2.8 Su�x-Tree Models in this Thesis : 37

Chapter 3: AMinimal Su�x-Tree Implementation of PPM and PPM* 39

3.1 The Structure of PPM and PPM* : : : : : : : : : : : : : : : : : : : 39

3.2 Transition Events that are Strings : 41

3.3 Virtual States : 42

3.4 Transition Splitting : 44

3.5 Model Invariants : 45

3.6 Space Requirements : 47

3.7 Summary : 47

Chapter 4: A (Su�x-Tree) Semantics for DMC 49

4.1 Introduction : 49

4.2 The DMC Automaton : 51

4.3 Observable Structure in DMC : 53

4.3.1 De�nitions : 53

4.3.2 Contexts of DMC States : 54

4.3.3 Reexive Edges in DMC : 56

4.4 A Finite-Order Characterization of DMC States : : : : : : : : : : : : 59

4.4.1 Correctness Proof of the DMC Characterization : : : : : : : : 62

4.5 DMC vs. Other Stochastic Data Models : : : : : : : : : : : : : : : : 65

4.5.1 Linguistic Power : 65

4.5.2 DMC Models Have Finite Order : : : : : : : : : : : : : : : : : 66

4.5.3 DMC Models Are Not FSMX : : : : : : : : : : : : : : : : : : 68

4.5.4 Structural Comparison : 72

4.6 Curbing Counterproductive Model Growth : : : : : : : : : : : : : : : 74

4.7 Summary : 75

Chapter 5: Frequency Updates 76

5.1 Model Semantics II: Update Exclusion vs. Full Updates : : : : : : : : 76

5.2 Update-Exclusion Techniques for use with State Selection : : : : : : : 78

ii

5.2.1 Dual Frequency Updates : 78

5.2.2 Maximum-Order Updates : 79

5.3 Summary : 79

Chapter 6: Estimating the Coding Distribution 81

6.1 Recursive Mixtures : 81

6.2 Mixture Weights : 83

6.2.1 Mixture Weights with Variable Initial Frequencies : : : : : : : 84

6.2.2 Inherited Frequencies : 85

6.3 Inheritance Evaluation Times : 85

6.3.1 Inheritance Evaluation Times in Practice : : : : : : : : : : : : 86

6.3.2 The Signi�cance of Inheritance Evaluation Time : : : : : : : : 87

6.4 Computing the Probability Estimate : : : : : : : : : : : : : : : : : : 89

6.4.1 Exclusion : 90

6.4.2 Blending's Missing Term : 91

6.4.3 State Variables for Mixture Computation : : : : : : : : : : : : 91

6.5 Probability Estimation in DMC : 94

6.5.1 Frequency Distributions and Cloning in DMC : : : : : : : : : 95

6.5.2 Lazy Cloning and other DMC variants : : : : : : : : : : : : : 96

6.5.3 Cloning and PPM : 99

6.6 Summary : 99

Chapter 7: Selecting the Coding Model 100

7.1 Stochastic Complexity : 100

7.2 A Performance Metric for States : 101

7.3 Basic Approaches to State Selection : : : : : : : : : : : : : : : : : : : 102

7.4 Model Semantics III: Competing Context Partitions : : : : : : : : : : 103

7.5 A Percolating State-Selection Mechanism : : : : : : : : : : : : : : : : 104

7.6 Model Semantics IV: Incomplete Frontiers : : : : : : : : : : : : : : : 106

7.6.1 Implementation Issues : 107

7.7 State Selection with Mixtures : 109

7.8 Summary : 109

iii

Chapter 8: An Executable Taxonomy of On-Line Modeling Algo-

rithms 110

8.1 Design Philosophy : 110

8.2 The Common Control Structure : 111

8.3 The Cross Product of Distinguishing Features : : : : : : : : : : : : : 112

8.3.1 Model Structure and Growth : : : : : : : : : : : : : : : : : : 112

8.3.2 Probability Estimation with Mixtures : : : : : : : : : : : : : : 115

8.3.3 Frequency Updates : 117

8.3.4 The Selection of the Coding Model : : : : : : : : : : : : : : : 117

8.4 The Command-Line : 119

8.5 Summary : 120

Chapter 9: Performance Measurements 122

9.1 Baselines : 122

9.2 State Selection Experiments : 124

9.3 Mixture Experiments : 130

9.4 Improvements to PPM Variants : 132

9.5 Improvements to DMC Variants : 137

9.5.1 GDMC and LazyDMC : 137

9.5.2 Owner-Protected DMCs : 139

9.5.3 Owner-Protected DMCs with State Selection : : : : : : : : : : 139

9.6 Universality : 141

Chapter 10: Conclusion 143

10.1 Itemized Contributions : 143

10.1.1 DMC Analysis : 143

10.1.2 Uni�cation of Prior-Art Techniques : : : : : : : : : : : : : : : 144

10.1.3 A Bridge Between Sequential Coding Theory and Data Com-

pression Practice : 145

10.2 Yet Another On-line Linear-Space Su�x-Tree Construction Algorithm 147

10.3 Future Directions : 148

Bibliography 150

iv

List of Figures

2.1 Examples of Markovian and Non-Markovian FSM Sources. : : : : : : 14

2.2 The Coder/Model Interface : 18

2.3 The Linguistic Power of Useful Classes of Stochastic Sources and some

Inuential Algorithms : 27

3.1 PPM

�

's Su�x-Tree FSM for abracadabra : : : : : : : : : : : : : : : : 41

3.2 PPM

�

's Su�x-Tree FSM for abracadabra, with Virtual States : : : : : 44

3.3 Transition-Splitting in PPM

�

's Su�x-Tree FSM : : : : : : : : : : : : 45

3.4 PPM

�

's Su�x-Tree FSM for abracadabrad : : : : : : : : : : : : : : : 46

4.1 DMC's Finite-State Data Model : 52

4.2 Observable Structure in DMC Models : : : : : : : : : : : : : : : : : : 55

4.3 Recursive Finite-Context Characterization of DMC Model Structure : 70

4.4 DMC is not FSMX : 71

6.1 On-line (de)coding of event a = a

i

using recursive mixture with inher-

itance. : 93

6.2 Cloning and Frequency Distributions in DMC : : : : : : : : : : : : : 97

6.3 Lazy Cloning in DMC : 98

7.1 A State Selection Mechanism with Percolating Updates : : : : : : : : 105

8.1 The command-line options of the executable taxonomy. : : : : : : : : 113

8.2 The special command-line options added to accommodate GDMC. : : 118

8.3 Command lines that execute the Markovian baselines, plus others. : : 119

v

List of Tables

9.1 The State of the Art in On-Line Statistical Compressors. : : : : : : : 123

9.2 Cross-Product Baselines of Existing Stochastic Techniques. : : : : : : 123

9.3 E�ect of di�erent state selection techniques on the compression perfor-

mance and average selected order of a vanilla order-64 FSMX model

without blending or Mixtures. : 127

9.4 E�ect of di�erent state selection techniques, on the compression per-

formance and average selected order of an order-64 FSMX model with

Update Exclusion (X) and Mixtures (M

3

; D). : : : : : : : : : : : : : 128

9.5 How average compression performance on the Calgary Corpus as a

whole is a�ected by varying mixture inheritance times and mixture

weight functions, in models with and without (percolating) state se-

lection. : 131

9.6 The percent improvement of models using update exclusion over the

same model variants without update exclusion. : : : : : : : : : : : : : 131

9.7 Compression performance for the best inheritance times given each

weighting mechanism : 131

9.8 Compression performance for PPM variants given as bits per character

(bpc). : 133

9.9 Compression performance for PPM* variants given as bits per charac-

ter (bpc). : 133

9.10 Model Size and Topology for PPM* variants. : : : : : : : : : : : : : : 134

9.11 Model Size, Topology, and Performance of Order-Bounded PPM

�

vs.

PPM : 135

9.12 Dueling 256-ary DMC baselines: GDMC and LazyDMC. : : : : : : : 138

9.13 The e�ect of owner protection (P) on GDMC and LazyDMC : : : : : 139

9.14 LazyDMC with owner protection and state selection. : : : : : : : : : 141

9.15 GDMC with owner protection, update exclusion X

1

and state selection. 142

vi

ACKNOWLEDGMENTS

I wish to express my sincerest appreciation of the �ve people who directly

inuenced the quality of this work and made its completion possible. Gae-

tano Borriello provided years of steady support and freedom to pursue my

own interests|even though they eventually diverged from his own. Richard

Ladner provided his keen error-detection abilities, and listened critically and

tirelessly to my ideas during the last year and a half of this work. Dick Karp's

thoughtful editing clari�ed my baroque prose and poorly de�ned mathematical

constructions. Preston Briggs edited many drafts, provided countless hours of

technical assistance with L

a

T

E

X and Unix, and served as audience for repeated

practice talks. Lastly, I am deeply indebted to Tim Hunkapiller, my current

employer, for allocating funds to the completion of this work.

The following friends and colleagues provided technical assistance over the

years: Ross Williams acted as a critical sounding board for my early ideas; and

Bruno Carpentieri, Ian Witten, Tim Bell, and Alistair Mo�at carefully listened

to an ad hoc presentation of an early version of this thesis at DCC93. Victor

Miller and Ian Witten `sanity-checked' my opinionated �rst chapters. Glen

Langdon provided encouragement and some very useful references to variants

of the algorithm Context. John Cleary enthusiastically accepted my ideas

when we �rst met at DCC95. When I presented the existing state-selectors

and their drawbacks to him, he suggested the basic dynamic programming

approach that I used in this thesis to eliminate those drawbacks. Jim Storer

and Marty Cohn funded my attendance at DCC93, and then at DCC95 with

the Renato Capocelli Prize for that year's submission. Thank heavens for my

closest buddies: Victor Miller, Preston Briggs, Wendy Thrash, Angela Thalls,

Neil McKenzie, Jim Wiggs, and Melanie Lewis Fulgam. As the only student

or faculty in our department who worked in my research area, I had to rely

vii

upon my own evaluation of the signi�cance of my ideas while they were in

development. Because of the resulting isolation, and the extensive nature of

my project, completing this work required, above all else, years of sustained

faith. These loyal, deeply introspective, and candid friends helped me regain

my perspective during repeated periods of self-doubt.

And while the topic is emotional support, I want to add that the warmth,

competence, and sense of humor of our department's graduate student coordi-

nator, Frankye Jones, has punctuated my stay here with fond memories. Bless

you, Frankye!

viii

Chapter 1

INTRODUCTION

All data must be encoded before they can be manipulated, stored, or transmit-

ted by a computer. Encoding schemes can serve various purposes: cryptographic

schemes provide a measure of security; error-detecting or error-correcting schemes

enable recovery from transmission errors; and data compression schemes minimize

code lengths so that storage and communication resources can be better utilized.

Usually, however, computer data are encoded simply, for convenient access.

Textual computer data provide a classic example of coding for convenient ac-

cess. Textual data are encoded in 8-bit bytes, which are viewed as characters from

a 256-symbol alphabet. Similarly, almost all other computer data are represented

as �xed-size symbols from much larger alphabets, where each symbol consists of a

�xed number of bytes. It is the �xed size of these symbol codes, combined with their

statistically non-uniform appearances in actual data sequences, that provide the op-

portunity for compression. Minimum code lengths are possible only when frequent

symbols are mapped to short codes and infrequent symbols are mapped to necessarily

longer codes. All data compression techniques therefore perform, at least implicitly,

probability estimation.

The performance of a data compressor is measured by average code length|

the length of the compressed sequence divided by the size of the original sequence.

Current research that seeks to improve upon the compression performance of the

best-performing techniques known relies upon explicit, sophisticated data models for

probability estimation. Furthermore, the problem of �nding a means for minimally

describing a sequence is extremely well-motivated [Ris89], and has application to

other �elds such as pattern recognition, language processing, and cryptography.

However, there is a limit to the compressibility of any sequence, and new tech-

niques necessarily work harder than their predecessors to e�ect ever-decreasing im-

provements in compression. From a computer systems perspective, data compres-

2

sion is merely an optimization. System designers certainly desire increased e�ective

storage and communication bandwidth, but compression and decompression must

consume fewer or less valuable resources than the resources saved. Thus, data com-

pression is a �eld divided. Theoreticians strive for provably minimal expected code

length, while practitioners gladly sacri�ce some code-length minimality for substantial

savings in computational resources.

1.1 Why On-Line Stochastic Data Compression?

The last decade saw the gap separating CPU speed and memory capacity from sec-

ondary storage capacity and access latency widen considerably. As a consequence,

on-line statistical data compression techniques, which are relatively computationally

intensive, have risen from \laboratory curiosities" into practice [WMB94, Chapter 2].

Members of this family of techniques have out-performed almost every other type of

compressor for the past thirteen years.

1

Moreover, the information-theoretical un-

derpinnings of statistical techniques enable rigorous analysis. One goal of this work

is to improve upon the known theoretical and practical data compression techniques

that use general, explicit probability estimation. Below, I justify the con�nement of

my discussion to stochastic techniques for on-line, lossless data compression.

1.1.1 Lossless vs. Lossy Data Compression

Lossless data compression is the reversible re-encoding of a data sequence so that the

length of the re-encoded sequence is smaller than the length of the original. Lossless

compression is appropriate for computing applications that require the decompressed

data to be identical to the original data. In contrast, lossy data compression tech-

niques are applicable in situations where the decoded data can still be useful if they

are noisy. Speech, image, and video data are three popular applications of lossy

coding techniques, and these are all examples of signal data.

Signal data consist of �nitely represented samples of analog signals. To treat these

�nitely represented quantities as members of an alphabet, as we do with computer

data, such as text or object code, is to grossly overgeneralize the problem, and thereby

1

One notable exception is the o�-line lossless transform method published by Burroughs and

Wheeler [BW94], which is competitive with the best on-line stochastic techniques.

3

throw away useful a priori knowledge. Adjacent samples in a signal data sequence are

usually highly correlated, whereas adjacent symbols in alphabet-oriented computer

data are not. In cases where the signal data are very expensive to gather, it may be

worthwhile to apply lossless coding techniques, but the algorithms should be tailored

to exploit the characteristics of signal data, rather than alphabet-oriented computer

data.

Lossy compression techniques oriented towards signal data are one to two orders

of magnitude more e�ective at reducing the average code length of signal-data se-

quences than are lossless techniques oriented towards alphabet-data sequences. The

correlations within the signal sequences explain only part of the di�erence. Lossy

methods have the additional freedom to throw away part of the original information

to e�ect the reduction. Even so, the distorted data that result must still be encoded,

preferably with short codes assigned to probable events and long codes assigned to

improbable events. Furthermore, the best lossy techniques restrict the amount of in-

formation lost with probable samples more than with improbable samples.

2

In other

words, lossy techniques strive to minimize the expected per-sample distortion (with

respect to an appropriate distortion measure), as well as the expected per-sample

code length. Because computing the probability of each (decorrelated

3

) sample and

of each sample's distorted value is required to implement both optimizations, the

data modeling techniques for probability estimation explored in this thesis are dou-

bly applicable to the lossy compression of signal data.

1.1.2 On-Line vs. Multiple-Pass Data Compression

On-line data compression techniques are adaptive

4

and universal ; that is, they only

require a single pass over the data sequence and employ no prior knowledge about

the sequence, other than the source alphabet. All data compressors use some sort

2

This is a topic of rate distortion theory, which is rigorously presented in [CT91], and applied to

tree-structured pattern classi�cation in [Cho88]. An application to image compression, pruned

tree-structured vector quantization [Cho88, Chapter 5], is further developed in [Ris90].

3

Discrete signal data sequences can easily be decorrelated, and thereafter treated as alphabet se-

quences suitable for modeling with alphabet-oriented techniques, by �rst recoding each successive

sample as the di�erence between it and the preceding sample.

4

The information-theoretic literature employs the term sequential.

4

of data model, either explicitly or implicitly, and on-line compressors incrementally

build a model as they encode the data sequence. The model used for coding later in

a given source sequence will (hopefully) be more representative than the model used

earlier in the sequence.

In most modeling applications, o�-line modeling is an alternative to on-line mod-

eling. With o�-line modeling, the model is built in a preprocessing pass, and the

model is said to be trained o�-line. A description of an o�-line model must be trans-

mitted in addition to the encoded source message: the shortest such description is

known as the Minimal Description Length (MDL) [Ris89] of the sequence.

On-line models, which are incrementally reconstructed by the decoder from the

decoded data sequence, require no speci�c transmission. However, the prediction

inaccuracies endured early in the source stream by on-line techniques increase the

overall length of the encoded sequence, just as a static-model preamble would. It

has been shown [BCW90, CW84a, Ris89] that we can approach the MDL with on-

line models, and that there exist circumstances where an o�-line model will perform

arbitrarily worse than any on-line model. In practice, on-line models do work better

than o�-line models. Furthermore, with on-line models we need not conceive of a

coding scheme for e�ciently transmitting the model itself, and we only require one

pass over the message sequence.

1.1.3 Stochastic vs. Ziv-Lempel Compression

The best approaches to on-line adaptive data compression, in terms of compression

performance, combine an on-line adaptive stochastic process with an arithmetic coder.

At each time step i, the stochastic process takes as input the event a

i

from a sequence

a

1

a

2

� � �a

n

of instances of symbols from a �nite alphabet, and outputs a probability

estimate P

e

(a

i

). The arithmetic coder takes as input the P

e

(a

i

) and codes the symbol

instance a

i

in � log

2

P

e

(a

i

) bits. If the stochastic process used to model the input

sequence is identical to the machine which emitted the sequence, the number of bits

output by the combined model and arithmetic coder will approach the entropy of the

source message, which is the theoretical optimum [Sha48].

The relative generality and power of stochastic techniques justify the exclusion of

data compression methods that do not separate the problem into modeling for prob-

ability estimation and coding. Though only a few practical data compression meth-

5

ods use explicit stochastic models, researchers have systematically proved that the

other known practical methods can be exactly and e�ciently emulated with adaptive

stochastic models [Ris83, Lan83, Bel86]. Furthermore, the most e�ective practical

data compression method for the past thirteen years, namely PPM, is a stochastic

technique [Bel86, BWC89, BCW90, CTW95, CW84b, Mof90, WMB94].

Other techniques, namely any variant of the elegant Ziv-Lempel techniques [ZL77,

ZL78, MW85, Wel84, FG89, BB92], trade compression performance for speed and

memory conservation more appropriately for today's technology. These techniques

are examples of the more general textual substitution techniques [Sto85]. Textual

substitution techniques are much easier than stochastic techniques to understand

and implement, and therefore save another costly resource|design time.

5

1.1.4 The Importance of Stochastic Techniques

It is undeniable that some of the stochastic methods we discuss, in their current state

of development, are only minimally practical. Their generality and optimality are

costly. Today's stochastic models greedily consume resources in terms of design time,

integration cost (such as timing and bu�ering overhead in hardware implementations),

and of course, execution speed and memory requirements. However, there are several

ways that the in-depth study of these techniques can prove valuable.

First there is the epistemological goal of better understanding the abstract prob-

lem of modeling sequences on line. Perhaps the solution to the problem may turn

out to be easy to approximate in an implementation that is very practical and only

imperceptibly less e�ective than the full computation.

6

Also, since CPU cycles are

becoming cheaper and shorter at a faster rate than storage technology is improving,

the additional compression gain of these computationally intensive methods could

become inexpensive enough to be worthwhile.

On the other hand, the overwhelming result of this collective research e�ort may

5

Su�ce it to say that if this author needed to design|within the next few months|an implemen-

tation that �t on a single chip, had good compression performance, required trivial timing and

bu�ering overhead, and was an order of magnitude faster than the state of the art, she would

abandon the techniques presented here, just as she did seven years ago [BB92, Bun92].

6

Indeed, this has already happened in the case of arithmetic coding [RM89, CKW91, HV92, FGC93,

MSWB93].

6

be that it is simply not worthwhile to improve the compression performance further.

Even so, there remains one other very important motivation for this research. These

same stochastic modeling techniques are applicable to other computing disciplines in

a straightforward manner. Any absolute improvement in the accuracy of probability

estimates only a�ects codelength by an amount equal to its base 2 logarithm. For

example, in this thesis, we introduce an algorithm that gets an average codelenth of

2.177 bits per character (bpc) on the �les of the Calgary Corpus. The benchmark

PPM implementation [Mof90], gets 2.48 bpc on the same data. These codelengths

correspond to expected probability estimates of 0.1792 and 0.2211 per character,

respectively. Therefore, our algorithm improves upon PPM's compression perfor-

mance by 12.2%, while improving the probability estimates by 23.4%. Because of the

lesser e�ect that improved probability estimates have on codelengths, the additional

predictive ability of our models will make more di�erence in applications that use

probability estimates directly to aid in decision making.

Thus, on-line stochastic modeling techniques arguably provide the most powerful

and general lossless data compression techniques known, and it is likely that their

additional power will be worth the additional resource costs in the future. In the

following chapters, we explore the best stochastic techniques known within the data

compression, communications, and information-theoretic literature.

1.2 Thesis Overview

This document addresses the problem of deducing a �nite-state source model, belong-

ing to a tractable FSM subclass, from a discrete-time, �nite-alphabet source message,

on-line. The default application of solutions to this problem is lossless source coding

for communication channels, that is, data compression, where the goal is to increase

e�ective channel bandwidth. However, there are many applications of the model-

ing process itself, including natural language understanding and speech recognition.

All of these applications share a common goal: to construct a model from a train-

ing sequence that will assign the highest possible probabilities to members of the

set of sequences represented by the training data. Thus the application of modeling

techniques developed in this thesis to other domains is straightforward.

7

1.2.1 A Brief Tour of Coding and Modeling Concepts

Although the data streams encountered in practice are rarely emitted by probabilistic

automata, the assumption that they are makes the modeling problem tractable, and

lends insight to the problem of modeling data streams. Thus the modeling goal is to

deduce a close approximation of the probabilistic automaton that presumably emitted

the source message, from the source message itself. To further simplify the problem,

we assume that source messages were generated by restricted �nite state machines

(FSMs), such as �nite-order FSMs.

The general approach to modeling with �nite-order FSMs is to gather a posteriori

observations from the source message and to record these observations as frequency

counts. Frequency data are organized into counters for symbols at individual FSM

states. Each state corresponds to particular sets of subsequences over the input al-

phabet. The sets are called conditioning contexts and they form a partition over A

�

,

where A is the �nite input alphabet. Generally speaking, a state's counter for a given

symbol a is incremented whenever an a is seen in the input sequence immediately

following a subsequence that is a member of the state's conditioning context. For

example, consider the conditioning context consisting of strings ending in abc: When-

ever abcb appears in the input stream, the frequency of b given the context A

�

abc is

incremented. The states of the probabilistic FSMs correspond one-to-one to members

of the conditioning context partition, and the FSM model structure determines the

context partition to a large degree. (In Chapter 5 we show that the details of how

frequency updates are performed can be another de�ning factor of a model's context

partition.)

The two key subproblems of deducing a �nite-order FSM information source from

a given input sequence (or source message) are

1. computing the best partition of conditioning contexts for a given source mes-

sage, and

2. estimating probabilities of source message symbols from the observations as

they are organized within a given context partition.

The context partition may be computed o�-line in a separate pass over the source mes-

sage, or on-line, in which case the symbol probabilities are estimated from the symbol

frequencies organized in the partition formed from the already-processed portion of

the message. In the on-line case, probability estimation from a posteriori observations

8

is complicated by the so-called zero-frequency problem, that is, the problem of assign-

ing a non-zero probability to a novel event. Also, the on-line problem of incrementally

computing the model structure requires dynamic local order estimation, where order

is the minimal length of the substrings that distinguish the conditioning context of

a particular state. Local order estimation is used to detect where the model needs

re�ning, or alternatively, to detect where the model needs pruning. Dynamic model

pruning is equivalent to selecting, from among a set of competing models, a model

suitable for estimating the probability of the currently scanned symbol.

Classes of models are de�ned by the general structure of their conditioning-context

partitions. One well-known, tractable class of information sources, which is properly

contained in the family of �nite-order FSMs, is the FSMX class. The FSMX class

contains many of the well-known practical on-line models in the literature, including

PPM (Prediction by Partial Matching), which has been the best-performing technique

for 13 years. The class also contains some well-known theoretical constructions used

for proving asymptotic results, including Rissanen's `Context' algorithm, and a recent

algorithm (which we shall denote WLZ) proved by Weinberger, Lempel, and Ziv to

be asymptotically optimal for the FSMX class.

1.2.2 Thesis Statement

My thesis, or principal claim, is that the local-order estimation techniques that dom-

inate information-theoretic approaches can be combined with the solutions to the

zero-frequency problem that dominate practical approaches, for enhanced perfor-

mance. Theoretical on-line algorithms perform local order estimation by simulat-

ing several competing partitions of conditioning contexts simultaneously. For each

source symbol, the model corresponding to the best-performing partition is selected,

and then used to estimate the symbol's probability. The goal in theoretical analy-

sis is to construct a model that converges on the assumed source asymptotically, so

these techniques typically neglect the subtleties of estimating probabilities from �nite

source messages. In contrast, practical on-line algorithms simulate a single partition

of conditioning contexts, which is periodically re�ned using heuristics such as global

order bounds that impose arbitrary assumptions that severely restrict the class of

assumed source models. However, the best practical models, exempli�ed by PPM,

solve the zero-frequency problem so e�ectively that symbol probabilities are accu-

9

rately estimated in the face of scarce message statistics. The result is that purely

information-theoretic techniques are designed to perform well on long sequences while

practical techniques are designed to perform well on short sequences. A meaningful

combination of these approaches should yield superior performance for sequences of

any length.

1.2.3 Thesis Contributions

My approach to proving the above claim is to break down known theoretical and

practical algorithms into solutions to the same general set of component subproblems:

� the type of model structure (Chapters 3 and 4),

� the organization and updating of frequency data (Chapter 5),

� how the coding model is selected from the simulated models (Chapter 7), and

� how the coding distribution is estimated using the coding model (Chapter 6).

The decomposition of the algorithms is based upon a unifying semantics, which

is developed in primers throughout the thesis (Sections 2.6.3, 5.1, 7.4, and 7.6). The

primers make explicit the many assumptions about the input sequence inherent to

each component solution. In order to decompose the Dynamic Markov Compression

(DMC) algorithm, I formally identi�ed and proved its (previously unknown) struc-

tural semantics in Chapter 4. The corollary that DMC's Markov model is not FSMX

disproves the widely held belief that the FSMX class contains the class of Markov

models. Additionally, the component decomposition and unifying semantics make

obvious better solutions to most component subproblems.

The component subproblems and their solutions are described in Chapters 5{7.

The cross product of the sets of solutions to each of these components de�nes a

taxonomy of on-line su�x-tree modeling algorithms for sequences, which I describe

in Chapter 8. The taxonomy succinctly identi�es the mathematical relationships

among several independently developed techniques, and is fully implementable. The

resulting executable taxonomy re-implements several known algorithms, implements

improved versions of those algorithms, and implements novel combinations of their

components.

In Chapter 9, I use the executable taxonomy for conducting controlled experi-

ments. Experiments with the Calgary Corpus conclusively support my hypothesis

10

that the combination of information-theoretic model selection and PPM's probability

estimator is superior to either group of techniques alone. I perform controlled com-

parative studies of all solutions to the problems of coding model selection and coding

distribution estimation. The studies demonstrate conclusively that my improvements

to PPM's model construction, DMC's model construction, PPM's coding distribution

estimator, and a new technique for coding model selection, are each superior to their

predecessors.

Chapter 2

CODING AND MODELING CONCEPTS

This chapter explains the precise relationship of stochastic processes to data com-

pression, and prepares the reader for critical understanding of on-line modeling algo-

rithms. In data compressors that use an explicit statistical model, the model is only

loosely coupled with the remainder of the data compression machinery|the coder.

So, one goal in explaining this relationship is to communicate why the model designer

can forget about the data compression machinery itself, once he understands how it

uses models. Enough basic information theory is presented to illuminate the nat-

ural, minimally dependent subproblems of data compression, namely source coding

and source modeling. Then, the goals of optimal source modeling and coding are

outlined and justi�ed based upon those basic information-theoretic principles. Since

source coding has already been solved optimally with arithmetic coding techniques,

I divide the presentation of arithmetic coding into what any source model designer

must know about arithmetic coding, and an optional section containing the internal

details. After this chapter, the discussion focuses solely on statistical modeling issues.

2.1 The Modern Data Compression Paradigm

The goal of data compression is to assign a minimal decodable code to a sequence in a

practicable way, given the (estimated) symbol probabilities of the sequence symbols.

The goal of on-line data compression is to do so in a single pass over the sequence,

with no prior knowledge about the sequence or its symbol probabilities. Thus, the

problem of on-line data compression can be broken into two completely independent

subproblems: estimate the symbol probabilities, and code the symbols in as many

bits as the negative logarithm of the symbol probabilities. The latter problem, on-line

coding, has been solved optimally with arithmetic coding (see Section 2.3).

The remaining problem in on-line data compression is data modeling for prob-

ability estimation. A model may be considered in two logical parts: its structure,

which organizes the set of events (alphabet symbols) modeled such that each event is

12

associated with a context (surrounding alphabet symbols) in which it has occurred;

and its parameters, which are the conditional probabilities of the events given the

contexts in which they occur. Universal models deduce, from the source message,

a model which is a close approximation to the source that presumably emitted the

message. Therefore, universal on-line models are doubly adaptive; both the structure

and the parameters change to reect the properties of the data.

The separation of modeling from coding, and the use of doubly adaptive stochastic

models is the modern data compression paradigm,

1

pioneered by Glen Langdon and

Jorma Rissanen [RL81, LR83, Ris83], and further developed in [Ris86a, MGZ89].

By \paradigm," I mean an ideal and general blueprint for other solutions to follow,

and Rissanen's and Langdon's certainly �ts this strict interpretation. As mentioned

earlier, this paradigm is fully general: it is widely applicable, and it includes most if

not all other types of solutions as special cases. It is ideal for a number of reasons:

it divides the problems into subproblems which are minimally dependent, and it is

rigorously based upon principles from information theory.

2.2 Entropy and Stochastic Processes

The goal of this section is to explain why optimally compressing a sequence a

1

a

2

� � �a

n

requires �rst deducing (or knowing) the stochastic FSM S that presumably emitted

the sequence and then encoding the individual symbols a

i

of the sequence using codes

of length � logP (a

i

jS). This fundamental result of information theory is the basis for

the separation of coding and modeling in statistical data compressors. Much of the

terminology introduced in this section will be used repeatedly throughout the thesis.

The entropy, H of a single random variable X, with probability distribution p

over an alphabet A is de�ned as

H(X) = �

X

a2A

p(a) log(p(a)): (2:1)

A stochastic process is a sequence of random variables, with arbitrary depen-

dence among them. If the dependence between successive random variables is limited

to the preceding random variable, the sequence is Markovian.

1

This is Ross Williams' terminology [Wil91].

13

A Markovian FSM information source is a �nite-state machine (FSM) rep-

resentation of a Markovian stochastic process such that each state corresponds to

a random variable and for any state there is at most one transition for each output

symbol, or source symbol in the FSM alphabet, and each transition is assigned a prob-

ability (e.g., see Figure 2.1.a). The probabilities of the transitions exiting any given

state i sum to unity and therefore form a probability measure. That distribution is

said to be conditioned by the state i.

In contrast, a non-Markovian FSM information source is a similarly de�ned

FSM whose states may have more than one outgoing transition for a given output

symbol, such that the probability of the ith transition depends on more than the ith

state and the ith source symbol. An example of this can occur with models such that

the probability of the ith source symbol is a function of only the current state, but in

which the destination of the transition taken on the ith source symbol is a function

of what states were visited prior to the current state (see Figure 2.1.b). Thus, the

next state may depend upon an arbitrarily long sequence of previous states. Here the

probabilities of the transitions conditioned by any particular sequence of preceding

states will sum to unity.

When in a given state, an FSM source will randomly select an out-transition

according to the state's output-edge distribution. When any transition is taken, that

transition's associated alphabet symbol is output, and the source is said to have

predicted a source symbol. The inputs to a source can be viewed as random numbers

in (0::1], and the outputs are source message symbols from a �nite alphabet A. In

contrast, the inputs to an FSM model are symbols from A, and the outputs are

numbers in (0::1], that is, symbol probability estimates. When an FSM model is in a

given state s, it will produce a probability estimate of the currently scanned source

message symbol using the current state s's output-edge distribution.

The entropy of a source S is given by

H(S) =

X

j

P

j

H

j

; (2:2)

where H

j

, the entropy of the distribution of the j

th

state, is computed using equation

2.1, and P

j

is the probability of being in state j at any time. For ergodic sources

the P

j

's correspond to an eigenvector P with eigenvalue 1 of the transpose T

0

of the

asymptotic transition matrix T (i.e., P = T

0

P). For stationary sources, the P

j

's do

14

bc

cbc

a b c

cc

abc bbc

a b a b ca b c

a b c

a b ca b c

a b ca b ca b c

Model b)

Model a)

c

ac

b ba

b

a

a b
b

c c

b

a

.2

.5

.1
.4

.3

.3

.1
.4

.5

.7
.5

a b c

ac bc cc

c

.3 c.3

.1

.2

.3 .8

a
b

c.2

.2

.6

a b c frequency distribution

suffix pointer

transition

cbc state labelled by
context string

Figure 2.1: Examples of Markovian and Non-Markovian FSM Sources. Each

state is labeled with a regular-set description of the strings that may bring the machine

into that state. The regular-set descriptions are implicitly concatenated on the left

with A

�

. Model 2.1.a is Markovian. The transition function of Model 2.1.b is not

shown|it has a closed form that forces the model into the state corresponding to

the maximal matching su�x of the already-processed portion of the source message.

Model 2.1.b is not Markovian, since state `b' may go to state `bc' or state `abc' on

symbol c, depending on which source symbols preceded state `b'. Note that both

models shown are FSMX (discussed in Section 2.5), since their next-state functions

always go to the state corresponding to the maximal matching su�x of the already-

processed portion of the source message.

15

not depend on the initial state.

An ergodic source is the most general dependent source

2

for which the strong law

of large numbers holds [CT91, Chapter 15.7]. That is, if an ergodic source is allowed

to emit symbols inde�nitely, the relative frequency of the symbols, given the state the

source is in when it emits the symbols, will converge to the transition probabilities

of the source. A formal de�nition of ergodic is beyond the present scope, as is most

formal probability theory. However, the ergodicity of an FSM source has been proved

to be a decidable graph-theoretic property [Paz71, Sha48]. An FSM is ergodic if the

graph consisting of its states and transitions that have non-zero probability meets

both of the following conditions:

1. The graph is strongly connected, i.e., every state is reachable from every other.

2. The greatest common divisor of the set of integers consisting of lengths of all

distinct circuits in the graph equals one. (Note that this set is closed under

addition.)

A stationary source is one in which the probability distribution that selects the

initial state is time-invariant. This implies that the output of the source does not

exhibit di�erent statistical properties due to phase shifts. That is, for all i and k, the

in�nitely long sequence a

i

a

i+1

� � � has the same statistical properties as the sequence

a

i+k

a

i+k+1

� � �, if they are both emitted by the same stationary source.

In his \noiseless source coding theorem" [Sha48], Shannon proves that assuming

a �nite, stationary, and ergodic source, members of the set of messages that can be

emitted by that source cannot be uniquely encoded with fewer output symbols per

source character than is given by the source's entropy.

Therefore, the minimal codelength of a string, a

1

� � �a

n

, with respect to an

(ergodic, stationary, and �nite) information source S is given by

H(a

1

� � �a

n

jS) = �

1

n

n

X

t=1

log(P (a

t

js

t

)); (2:3)

where a

t

is the t

th

symbol of the string, and s

t

is the state of S at time t. Thus

the minimal codelength of a string with respect to a source equals the expected per-

symbol minimal code length that can be assigned by that source.

2

Dependent sources include stochastic sources and models, as presented here.

16

We would like to be able construct uniquely decodable codes for a given source,

whose lengths are close to the source's entropy. Any uniquely decodable code satis�es

the Kraft-McMillan inequality:

N

X

i=1

2

�l

i

� 1;

where the l

i

are the code lengths in the given code's alphabet, and N is the size of the

code alphabet. Conversely, given a set of code lengths that satisfy this inequality, it is

possible to construct a uniquely decodable code with their lengths [CT91, chapter 5].

Shannon's coding theorem and the Kraft-McMillan inequality reduce the problem

of optimal source coding to that of computing a uniquely decodable code with code

lengths equal to the (�nitely represented) negative logarithm of the source probabil-

ities.

2.3 Optimal Source Coding

There are many e�cient and provably optimal solutions to the source coding problem,

that is, the problem of encoding symbols in a number of bits equal to (or arbitrarily

close to) their minimal codelengths. All can be viewed as variations of arithmetic

coding. With no loss of generality, arithmetic coding is performed one source symbol

at a time; it only requires an estimated probability of the currently scanned symbol.

The symbol-wise probabilities required for on-line coding are obtained in the modeling

process, which in one pass constructs an adaptive �nite-state model.

Arithmetic coding [Pas76, Ris76, RL79, Rub79, Gua80] codes each symbol with

a number of bits that can be made arbitrarily close to the negative logarithm of the

symbol's probability, by increasing the size of the registers used to do the arithmetic.

Note that this implies that some symbols must be encoded with a fractional number

of bits. Generally speaking, this is achieved simply by combining adjacent symbols

until their combined probability estimate is a power of two, or very nearly so, and

then emitting the code.

Arithmetic coding, and how it interfaces with models, is notoriously di�cult to

grasp. The following presentation and its illustration in particular are a departure

from the usual descriptions, exempli�ed by [RL79] and [WNC87]. We �rst give an

operational description that steps through how a stochastic model and an arithmetic

17

coder/decoder work together to encode and then decode each symbol of a source

message. Then we explain the elegant internal operation of an arithmetic coder in an

optional section that can be skipped without loss of continuity. Lastly, we reiterate

the minimum that every potential model designer must remember in order to correctly

design stochastic model suitable for on-line lossless data compression.

2.3.1 On-line Coding and Decoding: Step by Step

The interface between arithmetic coding and stochastic models is pictured in Fig-

ure 2.2, where coding is pictured as executing the following �ve labeled steps for each

message symbol:

1. Estimate the current coding distribution, that is, the cumulative probability

distribution in [0 : : : 1) over the input alphabet A, conditioned by the current

state of model M(a

1

a

2

� � �a

i�1

). Note that the coding distribution maps each

symbol in A to a unique, non-overlapping subinterval of [0 : : : 1).

2. Read in the currently scanned source symbol a

i

(e.g., a

12

= `a') and compute

its probability estimate using the coding distribution.

3. The probability estimate is represented as the endpoints of the scanned symbol's

subinterval in the current coding distribution. The coder uses these endpoints,

shown as dashed lines entering the arithmetic coder, to construct the codepoint,

illustrated as a heavy line exiting the arithmetic coder and then entering and

exiting the arithmetic decoder. The codepoint is the number in [0 : : : 1) that

is represented by the bits that are transmitted to the decoder, high-order bits

�rst.

4. The current source message symbol a

i

is then sent as input to a mechanism

that adapts model structure and parameters.

5. Lastly, the current source message symbol and model state are used to determine

the next current state.

Decoding proceeds in 5 similar steps, also pictured in Figure 2.2:

1. Same as Coding Step 1.

2. The codepoint of the �nal message falls in a particular interval of the current

state's cumulative distribution within [0 : : : 1). The already-received high-order

bits of the codepoint provide an approximation of the �nal codepoint and fall

18

3.

2.

ARITHMETIC DECODER

ARITHMETIC CODER

3.
 output
 current
 symbol

2.
input
current
symbol

d ab c

0.0 1.0

transmitted bits

5.
go to
next
state

MODEL

1.4.

adapt
parameters
& structure

5.
go to
next
state

MODEL

1.4.

adapt
parameters
& structure

0.0 1.0
d ab c

SOURCE MESSAGE: a d d a c d b c a b c a d a

 RECONSTRUCTED
SOURCE MESSAGE: a d d a c d b c a b c a

estimate
coding
distribution

estimate
coding
distribution

Figure 2.2: The Coder/Model Interface. Coding and decoding execute the �ve

labeled steps for each message symbol. The concatenation of the transmitted bits for

the entire source message, in reverse transmission order, represents a binary fraction

in [0 : : : 1) called the codepoint. Note that only steps 2 and 3 di�er between coding

and decoding.

19

into the same interval of the current state's cumulative distribution as the �nal

codepoint would. The subinterval of the current coding distribution that con-

tains the codepoint is determined, and its endpoints, shown as dashed lines into

arithmetic decoder, are sent to the arithmetic decoder so it can update (and

renormalize) its coding interval.

3. The source message symbol corresponding to the subinterval of the current

coding distribution that contains the codepoint (e.g., a

12

= `a') is output.

4. Same as Coding Step 4.

5. Same as Coding Step 5.

2.3.2 Inside Arithmetic Coding (Optional)

The internal operation of an arithmetic coder revolves around computing and trans-

mitting the codepoint. Arithmetic coding was derived from Elias coding, which com-

putes an in�nite-precision codepoint.

Elias Coding

The codepoint can be any number in the coding interval [L : : : L + W) in [0 : : : 1),

where

� W =

Q

i

j=1

p

j

is the width of the coding interval after a

i

has been coded.

� p

j

= P

e

(a

j

jM(a

1

a

2

� � �a

j�1

)) is the width of a

j

's subinterval in the coding dis-

tribution estimated by M(a

1

a

2

� � �a

j�1

).

� L =

P

i

j=1

(Q

j

Q

j�1

k=1

p

k

) is the low endpoint of the coding interval after a

i

has

been coded, and

� Q

j

is the low endpoint of the a

j

's subinterval in the coding distribution esti-

mated by M(a

1

a

2

� � �a

j�1

).

� Computing L and W iteratively for each source symbol a

j

is simple:

Initially, L = 0 and W = :999999 : : :

for j � 1 do begin

L L +Q

j

�W ;

W W � p

j

;

end

20

Elias Coding is Optimal

Without loss of generality we can assume that the codepoint equals L. Thus, L is

transmitted to the decoder. Conceptually, the codepoint is not completely de�ned

until the entire message has been coded. The number of bits required to represent

the �nal codepoint L equals the number of bits from the decimal point to the least-

signi�cant non-zero bit of W . After a

n

has been processed, W equals

n

Y

i=1

P

e

(a

i

jM(a

1

a

2

� � �a

i�1

)):

So, the number of bits transmitted to send the codepoint L equals

n

X

i=1

� logP

e

(a

i

jM(a

1

a

2

� � �a

i�1

)):

Incremental Transmission

As described above, computing the endpoints of the coding interval requires in�nite

precision. However, data compression practice requires the qualities of incremental

message transmission and �nite representation of state variables. These implemen-

tation goals are are achieved simultaneously by transmitting the codepoint L incre-

mentally.

Consider the binary representations of L and W , where X denotes a \don't care"

bit value:

W = :

z }| {

0 0 0 � � � 0

z }| {

000 � � �0

signi�cant

z }| {

1XX � � � 1

zeros

z }| {

00 � � �0

L = : XXX � � �X

| {z }

transmittable

011 � � �1

| {z }

unstable

XXX � � �X

| {z }

00 � � �0

| {z }

As the coding interval narrows with each source symbol, a smaller proportion of

the bits ofW remain signi�cant. If we multiply L andW by the same constant during

coding, the output code is unchanged. Thus, we can shift out some of the high-order

bits of L as long as they are stable, they correspond to insigni�cant bits of W , and

we shift W by as many bits. Stable bits are those that will not change; unstable bits

can be a�ected by a carry from the lower order bits of L. The highest order unstable

bit is 0, the rest are 1s. The process of shifting out the high-order bits of W and L is

called renormalization. It scales up the coding interval and incrementally transmits

21

the high-order bits of the codepoint L. Internally, renormalization is equivalent to

moving the decimal point of W and L to the right:

W /

z }| {

0 0 0 � � � 0 :

z }| {

000 � � �0

signi�cant

z }| {

1XX � � � 1

L / XXX � � �X

| {z }

transmitted

: 011 � � �1

| {z }

unstable

XXX � � �X

| {z }

Fixed Precision

Note that incremental transmission as described above does not achieve �xed pre-

cision, for there may be an arbitrary number of unstable bits. Fixed precision may

be accomplished by �xing the number of signi�cant bits that represent W (and thus

limiting the minimum allowed width of a symbol subinterval in a probability distri-

bution) and renormalizingW and L so that the decimal point always falls just before

the signi�cant bits of W . The stable bits are transmitted, but the unstable bits are

merely counted, until they too become stable:

W /

z }| {

0 0 0 � � � 0

z }| {

000 � � �0

W

renormalized

z }| {

: 1XX � � �X

L / XXX � � �X

| {z }

transmitted

011 � � �1

| {z }

counted

:XXX � � �X

| {z }

L

renormalized

Note that

1

2

� W

renormalized

< 1:

Unstable bits cannot be transmitted, but they can be counted instead of kept in

a register. We keep track of the number of unstable bits of L as follows:

� If the computation of the next coding interval carries into the unstable bits,

they will all be complemented and all but the last bit, now a 0, will become

stable. Transmit the stable bits of L represented by the unstable bits counter

and reset the counter to 1.

� If the renormalization of the coding interval shifts out a 0 bit, transmit the

unstable bits of L represented by the unstable bits counter, and reset the counter

to 1.

� If the renormalization of the coding interval shifts out a 1 bit, increment the

unstable bits counter. If the unstable bits counter reaches its maximum value,

force stability upon the unstable bits of L that it represents by transmitting

22

them all, and then resetting the unstable bits counter to 1. Here, resetting the

unstable bits counter inserts an extra 0 into (the untransmitted and unstable

portion of) the bit stream, and is called \bit stu�ng" [RL79]. An alternative

to bit stu�ng can be found in [WNC87].

In summary, a �xed-precision arithmetic coder incrementally transmits an approx-

imate codepoint that is larger than the exact codepoint. There are two determinants

of coder accuracy. It is most a�ected by the number of bits p used to represent the

width of the renormalized coding interval, W

renormalized

. Accuracy is also a�ected by

the maximum value of the unstable bits counter, but to a lesser extent.

2.3.3 The Least a Model Designer Should Know

Model designers need not concern themselves with the mechanics of arithmetic coding.

Instead, they need only know the coder's properties and the required interface between

the coder and the data model.

For each given input symbol, the model estimates a probability distribution over

an m-ary alphabet, where the alphabet symbols are in a given but arbitrary order.

The model sends relevant points in that probability distribution to the arithmetic

coder, and afterwards, the input symbol is used by the model to perform updates.

During an update, both model structure and model parameters may change. The

list below completely describes what the model designer must know about arithmetic

coding. We assume that the current coding distribution for each source symbol is

given as a cumulative frequency distribution.

changeable coding distributions: The coding process incurs no extra cost if the

ordering of the alphabet symbols or the current coding distribution completely

change for each symbol coded. As long as the changes are deterministic and

based on the past and current input symbols, the decoder's model can track

those changes after it decodes the current symbol.

cumulative frequencies: Assuming the entire mass of the coding frequency dis-

tribution is known, the encoder need only know the cumulative frequencies of

the symbols preceding the current symbol according to the arbitrary symbol

ordering, and the frequency of the current symbol.

approximate symbol intervals: When a symbol's interval in the coding distribu-

23

tion is approximated, ensure decodability by using a higher or equal value of

the low end of its interval, and a lower or equal value of the width of its interval.

precision: Coder implementations are of limited precision, which is determined by

the number of signi�cant bits p in the representation of the coding interval.

The minimum allowed estimated probability of a symbol is 2

1�p

. The simplest

solutions scale by half all counts in a frequency distribution if the total frequency

count on the transitions leaving a node reaches a maximum frequency limit of

2

p�1

. Scaling also helps models accommodate non-stationary behavior of data.

special `stop' symbol: Arithmetic decoders must be told when to stop, lest they

use the codepoint to 1) output the symbol according to the codepoint's location

in the current coding distribution, and 2) take a transition to a new state, and

so on, inde�nitely.

binary is simplest: Arithmetic coding can be greatly simpli�ed if the alphabet size,

m, is always two. Sometimes that can be conveniently arranged for a model

that uses a larger alphabet, via alphabet decomposition.

The key bene�ts of arithmetic coding are that it imposes no restrictions on the

model and it encodes symbols using (fractional) code lengths that can be made ar-

bitrarily close to the symbol's theoretically minimal codelength. Implementations of

arithmetic coding have been honed to near perfection over the years. There are now

several fast and extremely accurate approximations which eliminate the divisions

and multiplications that are required by straightforward implementations [RM89,

CKW91, FGC93].

2.4 A General Strategy for Optimal Source Modeling

Assume the string was generated by a stochastic FSM.

Given a string to compress, we �rst assume that it was generated by a �nite stochastic

source belonging to a tractable but useful class of models. The goal in universal coding

is to deduce a �nite stochastic source for the input string that maximizes the string's

likelihood, and thereby to minimize the expected code length with respect to that

source. This process is more tractable when it is assumed that the original message

source is stationary and ergodic. These two properties allow us to assume that any

24

long-enough substring of the source string fully represents the source's probabilities.

Use local context to condition each symbol's probability estimate.

The models constructed when performing on-line source modeling are �nite-state

machines whose states are associated with a frequency distribution over the output

edges, which are labeled by the possible next symbols. In many models, each state is

also associated with a string of symbols from the input alphabet, called a conditioning

context. For each sequence symbol, the state with the longest context that is a su�x

of the already scanned portion of the input sequence becomes the current state of

the model. Each state's frequency distribution is conditioned by its context. It is

from these distributions and the current FSM state that the (conditioned) probability

estimate of each sequence symbol is computed and then sent to the coding unit.

Construct the model incrementally from a single state.

On-line models are constructed adaptively, usually from a trivial initial model, with

no a priori knowledge of the input string. Adaptations increment context-conditioned

frequency counts (i.e., state parameters) and periodically alter the structure of the

model by adding new states, after each symbol is processed. Decodability is ensured

by forcing model structure, and the probability estimations it produces, to rely only

upon previously coded input. Thus, the decoder's model tracks the encoder's model

as it recreates the original input string. More precisely, for any given source message,

after the i

th

input symbol is processed by the coder, and similarly after the i

th

output

symbol is decoded by the decoder, the model is adapted deterministically using the

i

th

symbol. Thus the coder model and decoder model are step-wise identical. The

logical synchronization of the coder and decoder models is pictured in Figure 2.2.

Adapt the model aggressively...

To deduce a source model on-line, we build a model so that the entropy of the model

with respect to the string-seen-so-far decreases as more and more of the string has

been processed. This is best described as \�tting the model to the string." By doing

so, we strive to minimize the code length of the unprocessed portion of the string. And

if the model �ts a long-enough source substring string well enough, we can assume

25

we have deduced the source. If the source is ergodic, and the long-enough string is a

proper pre�x of the string to be compressed, it can achieve the optimal compression

for the remainder.

...but be prepared to detect and roll back over-adaptation.

This may seem insidiously cyclic. One problem is that we never know what \long

enough" is, because that is a function of the unknown source. If a growing model is

tailored to �t a string that is not long enough to represent its source, the model is said

to be over parameterized and may perform poorly on the rest of the string. Waiting

too long to �t the model discards opportunities to code with shorter code lengths. In

most implementations, that means that useful source statistics are discarded as well.

Later in this thesis, it will become clear that a good solution is to adapt the model

aggressively, but in such a way that over-parameterization is dynamically rolled back

as needed. That is, the model should be tailored early and often, so that at any time,

if it were rerun on the portion of the source string from which it has been built, it

would assign a high probability to that portion of the string.

2.5 A Hierarchy of Important Model Classes

When trying to deduce an assumed source model from a source message, we usu-

ally exclude stochastic sources of the fullest generality. This section presents the

subclasses of stochastic sources that appear often in the literature. A clear under-

standing of the class containment relationships is important for comparing the relative

power of di�erent modeling techniques, especially in the face of statements that claim

an algorithm's asymptotic optimality, which is necessarily with respect to an assumed

class of information sources. The more restricted the assumed class, the weaker the

result.

Three interesting subfamilies of stochastic FSM sources from the literature are

Markov sources (Section 2.2), FSMX sources [Ris86a], and �nite-order FSM

sources [Ash65], which are also called �nite-context automata [BM89]. The con-

tainment relationships between these model classes are shown within the Chomsky

Hierarchy [HU79] in Figure 2.3.

� In Markov sources, the next state is completely determined by the previous

26

state and the current source symbol. That is, a model with state set S and

input alphabet A is Markovian if, for any given state s 2 S and input event

y 2 A

+

(note that Markov models can have string transitions), the next state

is only dependent upon s and y.

� In �nite-order FSM sources, the next state is completely determined by

testing a �nite portion of the end of the already-processed portion of the source

message for membership in a �nite set of strings (i.e., conditioning contexts),

that are associated with each node. More formally, a model with state set S is

�nite order if, for any state s 2 S and any input sequence a

1

a

2

� � �a

i

, s is the

unique current state at time i if and only if a

1

a

2

� � �a

i

2 A

�

F (s) [G(s), where

F (s) and G(s) are �nite sets in A

�

.

� FSMX sources are �nite-order FSM sources such that only singleton sets of

conditioning contexts are associated with each state, which we denote with the

mapping context : S ! A

�

. Furthermore, for each state s there exists a state

p such that context(s) = b � context(p), for some b 2 A. That is, in FSMX

models, the context strings of the states have single-symbol minimal extensions.

� There exist Markov sources that are not FSMX but which are, nonetheless,

interesting in practice, namely DMC and several DMC variants that are intro-

duced in Chapter 6. In Chapter 4, I prove that DMC states cannot be uniquely

characterized by single conditioning contexts, and are therefore not FSMX.

Another common assumption made for Markovian and non-Markovian sources

is that they are uni�lar. A uni�lar Markovian FSM has exactly one transition

for each source symbol of non-zero probability leaving each state [Ash65]. More

generally, an FSM source with \next-state" function f : S �A�A

�

! S* is uni�lar

if for all input sequences a

1

a

2

� � �a

n

2 A

+

, all i; 1 � i � n; and all states s 2

S, jf(s; a

i

; a

1

a

2

� � �a

i�1

)j = 1. Thus, the next state and source symbol are always

completely determined by the already scanned portion of the input sequence and the

current state's frequency distribution over the input alphabet. FSMX models are

examples of uni�lar sources.

The model hierarchy described in this section contradicts several statements from

inuential sources in the literature: many prominent researchers seem to labor under

the impression that the class of FSMX sources properly contains the class of Markov

sources, and that the class of uni�lar, ergodic, �nite-order sources equals the class of

27

DMC
GDMC

FSMX Sources

SAKDC

Context

Improved
 Context

PPM PPM*

W.L.Z.

CRAM

DAFC

LazyDMC

 Markov Sources
(Regular Languages)

 Finite−Order FSM Sources
 (Finite−Order Languages)

 Push−Down Automata
(Context−Free Languages)

Figure 2.3: The relationships between the classes of languages generated by useful

classes of information sources, plus the models built by some of the popular algorithms

that inuenced this work. All models shown are additionally uni�lar and ergodic. The

proper containment of languages generated by FSMX Sources in the class of languages

generated by Markov Sources is proved in Chapter 4. The modeling algorithms

plotted here are explained in Section 2.7.

28

FSMX sources. For example, the authority responsible for de�ning the FSMX class

introduces the distinction in [Ris86a] as \a useful subclass of FSM sources which

includes the Markov sources," and later claims that \This class, which we denote

FSMX, generalizes the class of Markov sources." Recently, the following description

appeared in [WST95]: \These [FSMX] sources form a subclass of the set of sources

de�ned by �nite state machines (`FSMs') and an extension (`X') of the class of �nite-

order Markov sources." The authors of [WLZ92], give a de�nition of a class of sources

that corresponds to the above de�nition of �nite-order FSM sources and claims that,

with the additional restrictions of uni�larity and ergodicity, the resulting class equals

the class of FSMX models. All of these statements are incorrect: The class of models

that can be generated by transition redirection, exempli�ed by the DMC algorithm

and analyzed in Chapter 4, are uni�lar, ergodic, and �nite order, but they are not

FSMX. Furthermore, DMC models can emulate FSMX models (although extra states

will be required) and can thus generate the languages of FSMX models. However, as

we prove in Chapter 4, there are languages generated by DMC models that cannot be

generated by any FSMX source. Lastly, note that that the existence of �nite-order

models that are not Markovian does not contradict the containment of languages

generated by FSMX models in the class of languages generated by �nite-order Markov

models. With additional states, a Markov model can emulate an FSMX model.

Hopefully this discussion, summarized in Figure 2.3, clears up any reigning confusion

about the class relationships.

On a �nal note, there is considerable interest in moving up the Chomsky Hierarchy

by applying more powerful computational models to sequence prediction problems

such as data compression. The implicit assumption that a sequence of English text

was generated by a Markov or FSMX source, or even a push-down automaton, is

poorly justi�ed. Yet current on-line modeling algorithms construct source models

with less generative power than the class of regular languages. Chapter 4 expands

the known frontier of occupied territory within the class of regular languages by

proving that there exist e�ective universal on-line models (i.e., DMC and LazyDMC)

that are outside the FSMX class. However, as illustrated in Figure 2.3, the question of

how to use the full generative power of (ergodic) �nite state machines in an adaptive,

universal, on-line model is still open.

29

2.6 Source Modeling with Su�x Trees

The concept most essential to e�ective model design and implementation is the rela-

tionship between the model structure and the conditioning context partition on A

�

that is induced by the model's transition function and frequency update mechanism.

Many of the model classes described in Section 2.5, and all models explored in the

rest of this thesis, can be implemented as su�x trees. Su�x trees allow

1. distinct, competing models to be represented economically by embedding them

in a single tree; and

2. a straightforward mapping between each model's states and the elements of its

conditioning context partition.

This section introduces on-line modeling with su�x trees and the terminology

that will be used throughout this thesis in four essays that cover: basic notation

and terminology, the restrictions that model class place upon transition function

implementation, the �rst in a series of primers on su�x-tree model semantics, and

lastly, how to perform probability estimation on-line with a su�x-tree FSM.

2.6.1 Notation and Terminology

Broadly speaking, the su�x-trees used in on-line string modeling are �nite-state ma-

chines, where the current state has an associated conditioning context string that is

a su�x of the already-processed portion of the input sequence, and the edges leading

out of the current state state correspond to the possible values of the next scanned

source symbol. Moreover, each state's set of out-edges corresponds to a frequency

distribution over the set of single input symbols that label them. The current state's

frequency distribution is used to assign a probability to the next scanned input sym-

bol.

For our purposes, a su�x-tree FSM is set of states such that each state s has

access to the following information:

� A conditioning context string context(s) 2 A

�

, where A denotes the input

alphabet.

� A parent state su�x(s), such that context(s) = y�context(su�x(s)); y 2 A

�

,

where the string y is known as the minimal extension to context(su�x(s)),

and s is said to be a child of su�x(s).

30

� A list of out-events ajs, for a 2 A, where each out-event ajs is associated with

a record, count[a; s], of the frequency of ajs in the previously processed input.

� Its Markov order, which equals jcontext(s)j.

All on-line models are grown incrementally from an initial su�x-tree model. The

initial su�x-tree has two states s

0

and s

�1

, where s

0

has no out-transitions and

context(s

0

) = �. State s

�1

equals su�x(s

0

), has no su�x (i.e., su�x(s

�1

) = null),

and has out-events for every a 2 A that enter s

0

, plus an additional event that is

used to signal the end of the input sequence.

For general su�x-tree FSMs, call the language of the subtree rooted at state s

L(s). L(s) equals the set of strings that take modelM to state s or to any state in the

subtree rooted by s. In general su�x-tree FSMs, for a given input history sequence

a

1

a

2

� � �a

i�1

, the set of states fs : a

1

a

2

� � �a

i�1

2 L(s)g is referred to as the excited

states. If we view the su�x-tree as a single FSM, the current state is always the

maximum-order excited state. For example, refer to Figure 2.1: after input sequence

`:::abcbbc' the current state of Model b) will be the state labelled `bbc' and the set of

excited states will be labelled with context strings `bbc,' `bc,' `c,' and `�.'

Since the models we construct are stochastic, we must associate various quantities

with model states and out-events. We shall employ the following convention. When

the range of a mapping, say, f , can be described using a closed form, we shall use

the function notation f(). However, when the range of the mapping involves a set of

persistent variables that change state over time, such as the frequency counters that

are associated with each transition, we shall use the notation f [].

2.6.2 Su�x-Tree Model Families

For models such as PPM and PPM*, the FSM transition function is de�ned in terms

of the function context() (e.g., see Figure 2.1.b). More generally, the transition

function may not have a simple closed form, and may only be describable as explicit

state-to-state pointers that are labeled by single symbols (e.g., see Figure 2.1.a). The

abstract family membership of a modeling technique directly a�ects how its transition

function may be represented in a computer, and therefore how the computation of

the next state may be implemented.

The su�x trees underlying all PPM variants, including PPM*, are Markovian

FSMX models. They are Markovian because they satisfy the Markov Property: for

31

any given state s and input event

3

y 2 A

+

, the next state is only dependent upon s

and y. They are FSMX because the following hold for all states s:

� L(s) = A

�

context(s), and

� the context string of s extends the context string of su�x(s) by exactly one

symbol, that is,

context(s) = b � context(su�x(s)); for some b 2 A:

The substring b above is called a minimal extension of context(s). Both models

shown in Figure 2.1 are FSMX, since their next-state functions always go to the state

corresponding to the maximal matching su�x of the already-processed portion of the

source message.

The fact that the improvements developed and tested later in this work apply

to FSMX models is important because FSMX models are ubiquitous in the infor-

mation theoretic literature. FSMX models [Ris86a], are su�x-tree context models

with single-symbol minimal extensions such that the next state given by the transi-

tion function on a given state and input symbol can have Markov order that di�ers

arbitrarily from the order of the given state. By contrast, in a Markov model, the

order of the next state given the current state s and input event y 2 A

+

is always

bounded by jcontext(s)j+jyj. FSMX models are not always Markovian because for a

given state s and input event y, the next state's order may exceed jcontext(s)j+ jyj.

Thus, information about the prior input sequence which is not recorded in state s is

required to determine that next state. For example, the model in Figure 2.1.b not

Markovian, since state `b' may got to state `bc' or state `abc' on symbol c, depending

on which source symbols preceded state 'b'.

The transition function of Markovian FSMX models may be implemented in one of

two ways: The Markov property allows representation via explicit next-state pointers,

while FSMX transition functions may be represented using a closed-form description.

The closed-form description requires that the next state be computed using con-

ditioning context extensions and children pointers, which must be stored at each

state, plus an input history bu�er. (The children pointers are best represented as a

3

Models are commonly thought of as having only symbol transitions, but some may include string

transitions.

32

pointer to a list of children linked by sibling pointers.) The state whose conditioning

context is the longest su�x of the already processed input sequence a

1

a

2

� � �a

i�1

is

located by searching root-to-leaf for a child of each successively visited state of order

k with extension b = a

i�k

: An explicit pointer representation of PPM

�

's transition

function is possible only because PPM

�

's model satis�es the Markov property. This

exibility is not a feature of all Markov models with underlying su�x-tree struc-

ture. We have proved that there exist useful �nite-context Markov models that are

not FSMX [Bun96, Chapter 4]. Those models allow arbitrarily long extensions to

state contexts and include Dynamic Markov Compression (DMC) [CH87] models as

a special case. They require explicit destination pointers because their conditioning

contexts cannot be described by a single string.

2.6.3 Model Semantics I: Conditioning Context Partitions

The su�x-tree structure of the models discussed in this work may have a number

of mathematical interpretations. So far, we have described su�x-tree models as

representing a single FSM model, with a single current state. However, in the most

general interpretation, the su�x tree represents a set of distinct, nested, su�x-tree

FSM models, that share the same transition function mapping A� S to S, where S

equals the set of states (or nodes) in the su�x tree.

Each distinct FSM corresponds to a complete frontier of the tree rooted by the

order zero state s

0

, and vice versa. A frontier of s

j

's subtree T consists of the leaves

of a subtree of T , rooted at s

j

: A tree T has as many distinct frontiers as it does

distinct subtrees that share its root. A frontier of a subtree T rooted at s

j

is complete

if it consists of s

j

, or if it consists of complete frontiers of the subtrees rooted by each

of the children of s

j

.

The states of each complete frontier of a su�x-tree FSM rooted at s

0

impose a

distinct partition on the set of possible conditioning contexts in A

�

. Each state s on a

given complete frontier contributes an element of that frontier's conditioning context

partition. The partition element of state s equals L(s), the set of strings that cause

any of the nested FSMs emulated by the su�x tree to make a transition into any state

that is in the subtree rooted by state s. Although state s may simultaneously belong

to several complete frontiers of a given su�x tree, s contributes the same partition

element to each frontier's associated context partition. The partition elements of all

33

possible children of s form a re�nement of s's partition element. For the FSMX class

of models, every state's partition element equals the set of strings A

�

context(s).

The single FSM interpretation corresponds to the maximum complete frontier of

the su�x tree. We shall adopt the multiple-model interpretation from here on, but

will continue to use the term \current state" as shorthand for maximum order excited

state.

Note that regardless of the intended mapping between model states and condi-

tioning context partition that is denoted by the context strings of the states, the true

mapping is de�ned by which state's frequencies are updated given particular input

histories (note that updating the frequencies of all excited states is only one of several

ways to perform frequency updates). When the true mapping and intended mapping

disagree, the (intended) context partition has been violated, and the predictive ability

of the model is compromised.

2.6.4 On-line Probability Estimation with Su�x Trees

Consider the excited states in a su�x-tree model, for some arbitrary input sequence

a

1

a

2

� � �a

i�1

2 A

�

. We wish to estimate a probability distribution over all possible

values of a

i

. The estimated probability distribution over all symbols in A will be con-

ditioned by the excited states, and therefore by the already-processed portion of the

input sequence, which is the sole source of the frequency data organized at all model

states, except s

�1

. We will use the estimated distribution to assign a probability to

the actual input symbol a

i

. Thus, from the symbol frequencies conditioned by these

states, we must estimate a single distribution that assigns non-zero probability to all

symbols in the input alphabet A.

After each symbol instance a

i

has been processed, new states may be added to

the model as descendants of the maximum-order excited state. Lastly, the excited

states, which now include any new states s such that L(s) contains a

1

a

2

� � �a

i�1

, will

each receive frequency updates for the symbol a 2 A such that a = a

i

.

2.7 A History of Inuential Su�x-Tree Models

Figure 2.3 places in the Chomsky hierarchy several algorithms from the literature,

which we explain here in a mini-history of statistical data compression. First, a

34

glance at the bibliographies of most data compression papers reveals that there are

two separate research communities. The �rst community, represented in information

and coding theory literature, has produced the following constructions:

� The granddaddy of the su�x-tree stochastic modeling algorithms is the Doubly

Adaptive File Compression algorithm, or DAFC [LR83]. DAFC introduced the

now sacred notions of adapting model structure and frequency data simulta-

neously, and of separating coding from modeling in on-line data compression

algorithms. Developed in the days of expensive memory, DAFC starts with a

complete order-1 m-ary su�x tree, then dynamically adds and prunes a �xed

number of order-2 states as needed. DAFC handles run-length subsequences

separately.

� Rissanen's algorithm, Context [Ris83], aggressively grows an arbitrarily large

binary-alphabet FSMX model. It adds all possible (there are only 2) re�ning

children to a state as soon as the state's conditioning context occurs in the

input sequence a second time, and then uses a top-down neighborhood-entropy-

based heuristic for dynamically pruning the model. Context's dynamic pruning

technique, or \state-selection", was companion to some fundamental asymptotic

results in sequential coding theory.

� The CRAM algorithm (Cohn and Ramabadran's Acronym Mystery?) [RC89]

grows a binary FSMX model more cautiously. It employs a suboptimal state-

entropy-based heuristic that adds minimal extensions to any state whose en-

tropy is greater than some threshold value. The information-theoretic assump-

tions on which this model growth heuristic is based are awed; even when

the parameters of a given maximum order state in the source FSM have been

completely deduced, the CRAM model will continue to add higher-order re�ne-

ments to its version of the source state if the state's entropy lies above a given

threshold. Moreover, slow and careful model growth is now known to have

uncompetitive performance in practice|it is more e�ective to grow the model

aggressively and then prune it back. However, the idea of generalizing DAFC

models so that the model structure used for computing probability estimates

was based upon model entropies was on the right track.

35

� There are later variants of Context that handle arbitrarily-sizedm-ary alphabets

using lazy evaluation of state re�nements (e.g., [Ris86b]) and/or awed

4

but

e�cient MDL-based

5

implementations of Rissanen's top-down pruning [Fur91].

In lazy evaluation of state re�nements (i.e., children), only the re�nement that

is presently represented by the input sequence is added to the model, rather

than adding all m possible re�nements.

� A recent asymptotic result by Weinberger, Lempel, and Ziv (WLZ) [WLZ92]

provides the �rst published construction with provably optimal performance,

assuming an in�nite input sequence and assuming that the FSM that presum-

ably emitted the input sequence conformed to a known order bound. The

authors make the key observation that Context systematically underestimates

the local order. WLZ constructs a su�x tree with an order bound o and the

property that for every substring w of a

1

a

2

� � �a

i

such that jwj � o, there exists

a state s 2 S such that context(s) = w:WLZ is basically an order-bounded m-

ary Context algorithm with maximally aggressive, lazily evaluated tree growth,

combined with asymptotically optimal dynamic pruning.

In contrast to the coding theory literature, empirical data compression literature

is dominated by a set of contributions that focus on ad hoc computation of proba-

bility estimates. Roughly speaking, these estimators \blend" statistics from di�erent

order models in a weighted average. \Blending" techniques have been tuned empir-

ically over the years, primarily using the Calgary Corpus [BCW90]. Apparently, no

empirical studies of the Context algorithm, its variants, or the WLZ algorithm, have

been published, and it is not known how these algorithms perform on actual data.

We interpret this as indication that their performance is generally not competitive;

our own experiments (see Chapter 9) support this interpretation.

The Calgary Corpus has played a fundamental role in the development and ac-

ceptance of the algorithms below by allowing meaningful performance comparisons.

However, its acceptance as the standard benchmark has led to the questionable prac-

tice of tuning allegedly \universal" algorithms a priori to the test data. The upside

4

See Section 7.3 for an explanation of the aw.

5

Rissanen's work in coding theory led to his development of Stochastic Complexity [Ris89], which

presents the Minimum Description Length or MDL principle, and which has since revolutionized

the �eld of statistical inference. See Chapter 7.

36

is this: apparently the Calgary Corpus is a \good" benchmark, and only algorithms

that implement sound heuristics and constructs can match, much less beat, the cur-

rent competition. There is considerable variety among the 14 �les of the Corpus and

an algorithm that is tuned in advance to a subset of the �les will do relatively poorly

on the others, while an algorithm based upon sound reasoning that has competitive

performance on some of the �les will perform as well on the other �les, compared to

other algorithms. Lastly, performance on the Corpus tends to parallel performance

on other data.

The algorithms below all grow very large su�x-trees and are not used in practice

yet, because of their high memory and computation requirements. Today's data

compression practice is dominated instead by fast string-matching techniques based

upon Ziv-Lempel algorithms [ZL77, ZL78]. However, the trend in computer system

tradeo�s continues toward increasingly cheaper computation and memory relative to

secondary storage and communication bandwidth. The algorithms below represent

the state of the art with respect to compression performance. Although performance

depends greatly on the source message, on a typical mix of computer �les, the best

statistical techniques deliver better than 3:1 compression on average. This compares

favorably with the the expected 2:1 compression of Unix compress, or the expected

2.5:1 compression of gzip, which are based upon [ZL78] and [ZL77], respectively.

� PPM [CW84b], or Prediction by Partial Matching, grows an m-ary alphabet

FSMX model aggressively and on-demand, using lazy evaluation of state re�ne-

ments and a �xed global order bound. PPM's reign as the best-compressing

modeling algorithm has stood unchallenged for the 12 years preceding this the-

sis. PPM's success is due to its ad hoc \blending" technique for computing

probability estimates, and the careful engineering behind Mo�at's 1990 imple-

mentation, PPMC [Mof90].

� DMC [CH87], or Dynamic Markov Modeling, grows an unstructured binary-

alphabet �nite-state machine by redirecting any su�ciently popular transition

to a new state in a process called \cloning." Miraculously, the maiden imple-

mentation of this simple idea delivered performance competitive with carefully

engineered and tuned implementations of PPM. For years, practical data com-

pression researchers have asked: Can DMC, given proper care and feeding, out-

perform PPMC? What does the context partition of DMC look like, anyway?

37

Are there hidden, abstract feature of DMC that could be useful in improving

PPMC?

� SAKDC, or Swiss Army Knife Data Compression [Wil91], is a reimplementation

of PPM with a su�x-tree and a vast number of justi�able but ad hoc features,

none of which signi�cantly improved PPM's performance. The well-organized

empirical studies proved, above all else, that it will take more than bright ideas

and thoroughness to outperform PPMC.

� GDMC [TR93], or Generalized DMC, is the �rst published

6

generalization of

DMC to an m-ary alphabet that does not sacri�ce compression performance or

create an astronomically large model. GDMC does not, however, outperform

PPM.

� PPM* [CTW95] does away with PPM's global order-bound in a linear-space

implementation. However, despite its unbounded order, PPM* does not out-

perform higher-order implementations of PPMC.

Because of the relative lack of communication between the information-theoretic

and empirical data compression researchers, and in spite of the steadfast hold that

Mo�at's 1990 implementation of PPM has had on the state of the art, the branches

of the above history are laden with ripe, low-hanging fruit. The following chapters

harvest that fruit, by formally answering the riddle of DMC, slashing PPM's memory

requirements, improving blending, taking the order bounds and suboptimality out of

state selection, and meaningfully combining blending and information-theoretic state

selection for the �rst time.

2.8 Su�x-Tree Models in this Thesis

The rest of this thesis explores in detail the three most e�ective practical stochastic

modeling techniques from the data compression literature: PPM, PPM*, and DMC.

We develop techniques that generalize and improve the algorithms as a group. These

algorithms were not originally introduced as having a common structure, and none

were originally implemented or described with su�x trees. Yet, since several promis-

ing asymptotic techniques from the information-theoretic literature are based upon

6

In [Bun94], I independently proposed a very similar solution, which I called \lazy cloning" and

\LazyDMC," that leads to slightly better performance. It is the topic of Sections 6.5 and 9.5.

38

su�x trees, the next two chapters transform each of the algorithms to a su�x-tree rep-

resentation and identify their semantics (i.e., the mapping between su�x-tree states

and the conditioning-context partition). The correctness of the semantics of PPM

and PPM* models is straightforward because they are trivially FSMX. However, the

correctness of the semantics of DMC models requires formal proof, because, as we

show, they are not FSMX. Once we have transformed these popular techniques to a

uni�ed (su�x-tree) structure, we systematically improve their performance.

Chapter 3

A MINIMAL SUFFIX-TREE IMPLEMENTATION

OF PPM AND PPM*

Prediction By Partial Matching (PPM) has set the standard in lossless data com-

pression research since its introduction in 1984 [CW84b]. PPM constructs a bounded-

order Markov model such that the maximum order of the excited states is allowed

to vary within the order bound. Recently, a new variant, PPM*, was developed

that eliminated the (arbitrary) order bound in PPM's model structure [CTW95].

Both PPM and PPM* were developed without explicit description of their under-

lying su�x-tree structure, although several authors have since transformed PPM to

su�x-tree-based implementations.

In this chapter, we transform PPM

�

so it will �t into an executable taxonomical

framework that we introduce in Chapter 8 to decompose several other on-line mod-

eling algorithms with underlying su�x-tree structure. This transformation enables

controlled experiments and straightforward analysis of the semantics of the compo-

nent features of PPM and PPM* and of their interactions. The resulting su�x-tree

model contains the minimal number of nodes and edges required to represent the

same information as the original PPM

�

implementation, as well as PPM.

3.1 The Structure of PPM and PPM*

PPM's key contribution is its probability estimation technique, which is known as

\blending." Blending and its generalization are the subject of Chapter 6. This

chapter describes how PPM and PPM* de�ne their model structure in general, and

then gives a detailed explanation of how to implement them both with a minimal

number of states and transitions.

The PPM FSM has an arbitrary global order bound m and is constructed from

the input sequence as it is scanned so that it always satis�es the following invariants:

� Every state s in PPM's state set S is associated with a unique �nite context by

the function context : S ! A

�

, where A is the �nite input alphabet.

40

� PPM's state set S is grown incrementally so that for every string w such that

jwj � m and w has occurred at least once in the input sequence, there exists a

unique state s 2 S such that context(s) = w.

� PPM's transition function � : S � A ! S is de�ned incrementally so that

�(p; a) = s such that

jcontext(s)j =

maxfl : l = jcontext(t)j; t 2 S; context(t) 2 su�xes(context(p) � a)g:

The (non-linear space) PPM* FSM is identical except m =1.

PPM models can be represented as su�x trees whose transition functions are

either computed from the conditioning context strings associated with each state or

explicitly represented as pointers. The structure of the PPM su�x tree is de�ned

using a su�x relationship su�x : S ! S such that su�x(s) = p i� b � context(p) =

context(s), for some b 2 A. The su�x relationship su�x : S ! S is well-de�ned

because for every su�x y of every sequence w such that there exists a (unique) p 2 S

with context(p) = w, there exists a state s 2 S with context(s) = y. Note that

it is not necessary to represent the su�x relationship explicitly by storing a su�x

pointer at each state [Mof90, CTW95]. The conditioning context partition of any

PPM variant is induced by the function context : S ! A

�

. That is, in a PPM or

PPM* su�x tree, the language of each state s equals

C(s) = A

�

context(s)�

[

t:su�x(t)=s

A

�

context(t):

The on-line construction of a PPM or PPM* su�x tree from an input sequence

a

1

a

2

� � �a

n

is straightforward. Initially, let the initial model consist of the single state

s

0

with context string context(s

0

) = �. At any time i, the set of excited states

of the su�x tree equals the set fs : a

1

a

2

� � �a

i�1

2 A

�

context(s)g. After the i

th

input symbol a

i

has been processed, but before the next set of excited states have

been determined using a

1

a

2

� � �a

i

, we know that context(s

0

) = a

i�jcontext(s

0

)j

� � �a

i�1

,

where s

0

equals the maximum order excited state. We can add new states to the

su�x tree as follows:

while jcontext(s

0

)j < m do

41

y

a
a

c

c

b

rb d

d
actual FSM node

transition

a b r a c a d a b r a . . .

Figure 3.1: PPM

�

's Su�x-Tree FSM for abracadabra.

t new state;

su�x(t) s

0

;

context(t) a

i�jcontext(s

0

)j�1

� context(s

0

);

count[a

i

; t] = 1;

s

0

= t

end while

After adding new states, the maximum-order excited state, denoted by s

0

, equals the

maximum-order newly added state.

Unfortunately, the straightforward procedure described above will construct a

su�x tree requiring super-linear space for PPM* models. The authors of PPM*

[CTW95] gave a linear-space solution based upon \patricia trees" but it was not

clear how this solution related to su�x trees, and it did not use the minimal number

of nodes. In the following sections we give our algorithm for the on-line construction

of minimal su�x trees for PPM and PPM*.

3.2 Transition Events that are Strings

We can implement PPM* and PPM with a su�x-tree FSM such that: all transitions

(edges) correspond to strings, rather than single symbols; all states have at least two

outgoing transitions; and the already-processed sequence a

1

a

2

� � �a

i

is stored in an

input bu�er (shown at the bottoms of Figures 3.1{3.4). By allowing transitions to

be labelled as strings, most of the storage normally required to represent states with

one in-edge and one out-edge is saved.

The �rst symbol a of any transition event leaving a given state s is unique for s.

42

Therefore, we denote transition events as ajs. Each transition requires access to the

following information:

� its frequency, count[a; s],

� the input bu�er position corresponding to the start of the transition event,

� the length of the transition event, and

� the destination of the transition.

The initial model is constructed as follows. The �rst jAj positions of the input

bu�er are initialized to the input alphabet. The string events labeling the transitions

exiting state s

�1

have length one, and for 1 � j � jAj, the jth event's input bu�er

pointer is set to the jth position of the input bu�er, which contains the jth symbol

of the input alphabet A. The counts of the transitions leaving s

0

are set to de�ne an

assumed frequency distribution. We use a uniform distribution, and initialize all the

counts to one.

The descriptions and �gures below focus on implementing PPM

�

since all possible

PPM models are included in the set of FSMs represented by a single PPM

�

model.

We explain how to place an order bound on the model structure where appropriate.

The su�x-tree FSM (without state s

�1

) for PPM

�

and the input sequence abra-

cadabra is shown in Figure 3.1. Transitions on �nite strings are shown as curved lines

terminating with arrows that point to their respective destination states. The �ne,

straight vertical lines denote the su�x relationship among states. Transitions on un-

terminated strings, or unterminated transitions, are shown pointing to the beginning

of their strings in the input bu�er. The portion of the input bu�er containing the

symbols of the input alphabet is not shown.

3.3 Virtual States

Since predictions proceed on a per-symbol basis, we need to compute a probability

estimate for each symbol on a given string transition. To do this, we assume that there

exists a virtual state between every two adjacent symbols on every string transition.

The virtual states that correspond to the so-called deterministic states in the original

PPM

�

implementation [CTW95] are shown in Figure 3.2. Since virtual states do not

exist in storage, we must deduce the frequency distribution that is conditioned by the

conditioning contexts at excited virtual states, in order to use them for probability

43

estimation.

For each symbol processed, all (actual and virtual) states in the su�x tree whose

associated conditioning context partition element contains the current input history

sequence become excited. The model's excited states for the sequence abracadabra

are denoted by numbered arrows, to illustrate their one-to-one correspondence with

the states pointed to by the \context list" pictured in the original PPM* illustration

[CTW95]. The number on each arrow indicates the Markov order of the indicated

state. Note that only the excited virtual states actually exist in memory at any given

time. Only virtual states within the global order bound (if there is one) ever become

excited, and no virtual states that have been visited after their initial creation exceed

the order bound.

The excited virtual states are deduced dynamically for each symbol modeled.

The actual transitions on which the virtual states are (virtually) located provides

the frequency data that is required for the deduction. A virtual node is dynamically

allocated whenever the �rst symbol of a string transition is crossed, and deallocated

when the last symbol of that string transition is processed, or when the input sequence

diverges from the transition's string event. Each virtual node records the actual

transition on which it resides, the source state of the actual transition, and an o�set

which records the number of symbols visited since the virtual node was �rst allocated.

The virtual node is also logically associated with a frequency count for its single out

event, which equals the frequency of the string transition it resides upon, before that

transition's frequency was incremented. The transition's frequency is incremented

after the �rst symbol of the string transition is processed, so that the virtual node

can be associated with the correct frequency.

Lastly, the currently excited virtual states are logically chained together by the

su�x() relationship. When a virtual node v that corresponds to a string transition

ajs is allocated, if event ajsu�x(s) is a string transition, then that transition has a

corresponding excited virtual node v

0

, so su�x(v) = v

0

. Otherwise, event ajsu�x(s)

is a single symbol transition, and su�x(v) equals the (actual state) destination of

transition ajsu�x(s).

44

y

a

c

a

a

a

a

r

r

c

c

c

c

b

rb d

d

a

a

a

a

a a

a

actual FSM node

transition

virutal FSM node
on string transition

a b r a c a d a b r a . . .

0

1

2

3

4

Figure 3.2: PPM

�

's Su�x-Tree FSM for abracadabra, with Virtual States.

3.4 Transition Splitting

The PPM

�

su�x-tree FSM adapts its structure whenever any of the excited states

fail to recognize the current symbol. When an excited actual state does not recognize

the current symbol, a new, unterminated transition is added. The new transition's

string is indicated by a pointer from the transition to the current position in the

input bu�er. When an excited virtual state fails to recognize the current symbol, the

transition on which the virtual state lies is \split" at that virtual state by replacing

the virtual state with an actual state. The new actual node receives two outgoing

transitions: the �rst corresponds to the branch point in the split transition, and the

second corresponds exactly to the above case where an excited actual state fails to

recognize the current symbol. When all excited states recognize the current symbol,

the model structure does not change.

Transition splitting is illustrated in Figure 3.3 which shows how the model evolves

when abracadabra is followed by a d. If the next symbol had been a c instead, the

FSM would have remained unchanged and the �ve virtual nodes entered by c would

have been the next to become excited. Note that virtual nodes for unterminated

transitions have no de�ned out event until the actual transition is being traversed a

second time. Thus, the set of excited virtual states will never include virtual states

on novel transitions.

45

a

y

a

c

a

a

a

r

r

c

c

c

c

b

rb
d

d

a

a

a

a

a a

a

actual FSM node

transition

virutal FSM node
on string transition

ra

bra

abra

a b r a c a d a b r a d . . .

d

d

d

0

1

2

Figure 3.3: Novel Events and Transition-Splitting in Su�x-Tree PPM

�

During transition splitting, if there exists a virtual state whose order exceeds the

order bound, the transition that enters that virtual state will be redirected to

1. the maximum-order excited actual state, if its order equals the order bound, or

2. the actual state that replaces the virtual state whose order equals the order

bound.

With or without an order bound, splitting must be performed from the bottom

up, towards the root, lest subtle errors in transition redirection occur.

3.5 Model Invariants

A single split operation increases the actual su�x-tree FSM by v nodes and v edges,

where v is the number of excited virtual nodes within the order-bounded frontier

at the time the split was performed. The actual FSM for abracadabrad is shown

in Figure 3.4. Note how the unterminated transitions leaving the order-zero root

state on b and r, and leaving the order-one state labeled with context a on symbol

b, all become truncated to �nite-length transitions by the splitting operation. Any

transition that has been fully traversed twice will have �nite length, and will therefore

terminate at an actual state.

Incidentally, the lack of branching in the su�x trees shown in Figures 3.1{3.4 is

merely an artifact of the example string|each node in an FSMX su�x-tree model is

capable of having up to jAj children, one for each possible single-symbol extension aw

46

a

y

a

c

a

a

a

r

r

c

c

c

c

b

rb
d

d

actual FSM node

transition

ra

bra

abra

a b r a c a d a b r a d . . .

d

d

d

Figure 3.4: PPM

�

's Su�x-Tree FSM for abracadabrad.

of its context w. In general, the su�x-tree FSM presented here satis�es the following

invariants, given order bound M (for PPM

�

, M =1):

� Every actual node has at least two outgoing transitions.

� For every string w such that jwj � M that has been seen at least twice in the

past, and always followed by the same symbol, the model will have a virtual

node with context string w.

� For every string w such that jwj � M that has been seen at least twice in the

past, but which has been followed by more than one distinct symbol, the model

will have an actual node with context string w.

� Every string such that jwj � M that has been seen only once in the past is

represented by a virtual node on an unterminated transition.

� No actual nodes, or virtual nodes that have been visited twice will have Markov

order exceeding the order bound.

Both PPM

�

model structures, ours and the original in [CTW95], represent every

subsequence of the already-scanned portion of the input. The original PPM and

this section's space-saving implementation of it represent every subsequence of the

processed input that is no longer than the order boundM . The new model is minimal

because the deletion of any actual state or of any transition would cause it to represent

less information about the input sequence.

47

3.6 Space Requirements

Excluding virtual nodes, our su�x-tree FSM has size linear in n, the length of the

input sequence. To see why this is true, consider the \forward tree" that is induced

by the (actual) su�x-tree FSM, and which corresponds to the original PPM* imple-

mentation [CTW95]:

� the forward-child relationship is equal to the next-state relationship,

� the set of nodes include the actual nodes in the FSM plus an added node for

each (string-labeled) pointer into the history bu�er,

� the leaf nodes of the forward tree are the added nodes, and

� the internal nodes correspond to the actual nodes of the su�x tree.

Each leaf has a unique context: the concatenation of the context of the source of

the leaf's history bu�er pointer plus the string labeling that pointer. Every leaf

node in the forward tree therefore corresponds to two positions in the input history

bu�er. The end position is given by the pointer into the history bu�er, while the

beginning position is given by subtracting the length of the node's context from the

end position. The beginning position of the sub-bu�er pointed to by each forward-

tree leaf is unique [CTW95]. Therefore, there are no more forward-tree leaves than

there are input symbols. Since all internal nodes have at least two forward-children

(actual nodes have at least two string-labeled outgoing transitions), there are no more

internal nodes (or equivalently, actual nodes), than there are input symbols. Also,

since the arity of the forward tree is at least two, and our su�x-tree implementation

does away with all forward-tree leaf nodes, it requires fewer than half of the nodes

that are used by the original forward-tree implementation.

Assuming the su�x pointers are replaced with the \context-list" mechanism of

the original PPM* implementation, our su�x-tree implementation reduces the space

requirements of the original implementation by more than half. How the model

parameters are represented is independent of structure.

3.7 Summary

This chapter transformed PPM* to a su�x-tree implementation that requires half the

space of PPM*'s original linear-space implementation. An order bound option enables

48

our implementation to be used to implement PPM with even greater space savings,

especially for higher order PPM models. With our implementation, PPM models of

arbitrary order can be used on most personal computers, whereas a practical order

bound of about 8 existed for standard PPM implementations on modern workstations.

The next chapter transforms another popular modeling algorithm, DMC, to a su�x-

tree representation. A formal treatment is required to identify the conditioning-

context partition of DMC.

Chapter 4

A (SUFFIX-TREE) SEMANTICS FOR DMC

Dynamic Markov Compression (DMC) is one of the simplest and best-performing

on-line stochastic data models from the literature that may be combined with arith-

metic coding to perform lossless data compression. However, DMC has not been used

in practice because of its rapid, unbounded model growth; a problem that has stub-

bornly resisted solution by means known to work well on related techniques. Here, a

rigorous analysis of DMC's FSM identi�es the hidden, abstract features that separate

DMC from the other techniques, and provides insight required for improving DMC's

resource tradeo�s.

We prove a formal semantics for the states of any DMCmodel, regardless of growth

heuristic, in terms of a partition on the set of possible conditioning contexts, described

as a subclass of regular languages. Our characterization proves that DMC's ergodic,

uni�lar, �nite-order Markov models do not belong to the class of FSMX sources,

which are frequently described in the literature as properly containing the class of

(�nite-order) Markov models. In fact, DMC models are more powerful than FSMX

models, for DMC models can recognize languages that any FSMX model can, but

the converse is not true.

The characterization enables the �rst meaningful comparison of DMC models with

the many popular FSMX models in the literature, in terms of model structure and a

priori statistical assumptions. Thus, this work is preliminary to a taxonomical and

empirical study that shows how DMC's unique abstract features can be combined with

the best features from other inuential algorithms to produce truly novel modeling

techniques with superior performance.

4.1 Introduction

The popular Dynamic Markov Compression Algorithm (DMC) [CH87] is a member

of the family of data compression algorithms that combine an on-line stochastic data

model with an arithmetic coder. DMC's distinguishing feature is an elegant but ad

50

hoc modeling technique that provides state-of-the-art compression performance and

matchless conceptual simplicity. In practice, however, the cost of DMC's simplicity

and performance is often outrageous memory consumption. Several known attempts

at reducing DMC's unwieldy model growth (e.g., [Ton93, Yu93]) have rendered DMC's

compression performance uncompetitive.

One reason why DMC's model growth problem has resisted solution is that the

algorithm is poorly understood. DMC is the only published stochastic data model

for which a characterization of its states, in terms of conditioning contexts, is un-

known. Up until now, all that was certain about DMC was that a �nite-context

characterization exists, which was proved in [BM89] using a �niteness argument.

Here, we present and prove the �rst �nite-context characterization of the states

of DMC's data model. The impact of our characterization is threefold.

1. It proves that although DMC constructs a uni�lar �nite-order Markov FSM,

DMC states cannot be uniquely characterized by single conditioning contexts,

and therefore DMC models do not belong to the class of FSMX automata

[Ris86a], which purportedly contain all �nite order Markovian FSMs.

2. It illuminates principled solutions for curbing counterproductive model growth.

3. It provides a su�ciently general on-line Markov model that can be parameter-

ized to exactly emulate many other inuential algorithms from the literature,

including many popular FSMX models [CTW95, CW84b, Fur91, RC89, Ris83,

Ris86a, WLZ92]. This allows

(a) precise identi�cation and comparison of the features that distinguish the

structure and a priori statistical assumptions of di�erent algorithms (such

as \state selection," \blending," \update exclusion," etc.), and

(b) experiments that evaluate the general e�ectiveness of speci�c model fea-

tures by controlling the confounding factors induced by the myriad imple-

mentation decisions underlying any empirical evaluation.

Indeed, this work is preliminary to such a taxonomy and controlled empirical

study.

Our analysis reveals that the DMC model, with or without its counterproductive

portions, o�ers abstract structural features not found in other models. Ironically, the

space-hungry DMC algorithm actually has a greater potential for economical model

representation than its FSMX counterparts have. Once identi�ed, DMC's distin-

guishing features combine easily with the best features from other techniques. These

51

combinations have the potential for achieving very competitive compression/memory

tradeo�s.

4.2 The DMC Automaton

DMC constructs a series of �nite-state machines (FSMs) M = fM

0

;M

1

; : : : ;M

m

g,

where for 0 � k � m, M

k

= (S

k

; A; �

k

; s

0

) such that

s

0

is the initial state;

S

k

is the �nite set of states, de�ned recursively as

S

k

= fs

0

g if k = 0,

= S

k�1

[fs

k

g, otherwise;

A is the �nite (input) alphabet; and

�

k

: S

k

� A! S

k

is the transition function, which extends to

�

k

: S

k

� A

�

! S

k

in the traditional fashion.

1

As each symbol in a given input sequence is scanned, DMC applies a re�nement

eligibility criterion, E : M � A

�

! fT; Fg, to the current FSM, M

k

, to decide if it

should be extended into M

k+1

.

The FSMsM

k

; 8k � 0 are de�ned recursively. At the start, �

0

(s

0

; a) = s

0

; 8a 2 A:

That is, the initial model consists of the single state, s

0

and a reexive transition

for each symbol in the input alphabet.

2

During processing of an input sequence,

whenever E(M

k

; wa) = T , a new machine M

k+1

is constructed from M

k

as follows.

Let s

p

= �

k

(s

0

; w) and s

t

= �

k

(s

p

; a). Then, we de�ne

�

k+1

(s

p

; a) = s

k+1

(4.1)

�

k+1

(s

p

; b) = �

k

(s

p

; b); 8b 2 A� fag (4.2)

�

k+1

(s

i

; b) = �

k

(s

i

; b); 8b 2 A; 8i � k; i 6= p (4.3)

�

k+1

(s

k+1

; b) = �

k+1

(s

t

; b); 8b 2 A: (4.4)

The process of extending the current FSM M

k

to M

k+1

, called \cloning," is de-

picted in Figure 4.1. Cloning [CH87] simply redirects the current transition, �

k

(s

p

; a),

to a newly added state s

k+1

. Cloning is performed whenever E(M

k

; wa) = T , where

1

Throughout, we shall denote the concatenation of strings w and y as wy or as w � y.

2

Other possible initial models are given in [CH87].

52

s0

a

b

c

a

b
s1

s0

b

c

a

c

a

b
s1

s0

b

c

a

c
s2a

b c

b

a

b
s1

s0

ca

c
s2a

b
c

s3
b

c

a

a

b
s1

s0

ca

c s2a

b
c

s3
b

c

a

b

s4
c ba

M
0
:

M :1

M :
2

A Sequence of DMC Models Generated by Cloning

M :
3

M :4

a

b
s1

s0

ca

c s2a

b
c

s3
b

c

a

b

s4
c
b

a

b c

a

s5

M :
5

a

b
s1

s0

ca

c
s2a

b
c

s3
b

c

a

b

s4
c
b

a

b c

a

s5

a

b

cs6

M :6

Figure 4.1: DMC's Finite-State Data Model. DMC's �nite-state data model

is created incrementally by cloning the destination of the current transition, if it is

determined to be eligible. The bold (presumably eligible) transition in each model

M

k

is redirected to a newly added state s

k+1

to form model M

k+1

. The transitions

leaving s

k+1

are copied from the bold transition's former destination, after the bold

transition is redirected.

53

w is the already scanned portion of the input sequence. The newly added state is a

copy of the transition's destination such that the transitions leaving the new state

are copied from the transitions leaving the original state. The number of models

in M , and the number of states in the �nal FSM, M

m

, equal m + 1. The number

of proper pre�xes wa of the given input sequence for which the criterion E(M

k

; wa)

holds determines the value of m.

The eligibility criterion given in [CH87] is based upon the popularity of the current

transition relative to the popularity of its destination. That is, E() is equivalent to

the well-formed formula

t

1

� jfy : y 2 pre�xes(w); �

k

(s

0

; y) = �

k

(s

0

; w); �

k

(s

0

; ya) = �

k

(s

0

; wa)gj and

t

2

� jfy : y 2 pre�xes(w); �

k

(s

0

; y) 6= �

k

(s

0

; w); �

k

(s

0

; ya) = �

k

(s

0

; wa)gj;

where thresholds t

1

and t

2

are algorithm input parameters. This particular de�nition

of E() causes DMC to construct a stochastic model that cannot converge to any �nite

stochastic source that could be assumed to have emitted the sequence. The following

analysis of DMC's model structure does not depend upon any particular de�nition

of E().

4.3 Observable Structure in DMC

4.3.1 De�nitions

The following de�nitions formulate the intuition and axioms of our analysis. They

are illustrated in Figure 4.2.

pre�x(s

i

) = s

0

; i = 0

= s

p

: �

i�1

(s

p

; a) 6= �

i

(s

p

; a) = s

i

; p < i; a 2 A; i > 0

symbol(s

i

) = �; i = 0; where � denotes the empty string

= a : �

i

(pre�x(s

i

); a) = s

i

; a 2 A; i > 0

context(s

i

) = �; i = 0

= context(pre�x(s

i

))symbol(s

i

); i > 0

su�x(s

i

) = s

0

; i = 0

= �

i�1

(pre�x(s

i

); symbol(s

i

)); i > 0

extns

k

(s

i

) = fs

d

: su�x(s

d

) = s

i

; d � kg

extns

�

k

(s

i

) = extns

k

(s

i

) [

S

s

d

2extns

k

(s

i

)

extns

�

k

(s

d

)

54

The function pre�x : S ! S is used with the function symbol : S ! A to

recursively map states to �nite strings, or contexts. The state pre�x(s

i

) is the

source of the transition that was redirected to s

i

when s

i

was added to the model.

The character symbol(s

i

) labels the transition that was originally redirected to state

s

i

, and any subsequently added transitions into s

i

. We shall prove that any string

that brings M

k

into state s

i

ends in the �nite string context(s

i

), for k � i.

The function su�x : S ! S organizes the states of M

k

into a tree, acting as a

parent pointer. The state su�x(s

i

) is the former destination of the transition that

was redirected to state s

i

when s

i

was created. In the tree induced by M

k

, the state

s

i

is the parent of the states in extns

k

(s

i

). Equivalently, the set of states extns

k

(s

i

)

equals the children of state s

i

. The name \extns" is used instead of \children"

because the relationships among the conditioning contexts associated with each state,

rather than their positions in the tree, are the primary points of interest. The closure

of the set of children of state s

i

equals the set of descendants of s

i

, and is denoted

extns

�

k

(s

i

).

Additionally, two observations from [BM89] are used repeatedly in the proofs

of the lemmas and theorems to follow, and they can be restated using the su�x

function above. The observations basically point out that the only states whose

input transitions are a�ected when s

k+1

is added are su�x(s

k+1

) and s

k+1

.

Observation 4.3.1

8i � k; w 2 A

�

;

�

k+1

(s

i

; w) 6= s

k+1

) �

k+1

(s

i

; w) = �

k

(s

i

; w):

Observation 4.3.2

8i � k + 1; w 2 A

�

;

�

k

(s

i

; w) 6= �

k+1

(s

i

; w)) �

k

(s

i

; w) = su�x(s

k+1

) and

�

k+1

(s

i

; w) = s

k+1

:

4.3.2 Contexts of DMC States

Although no semantics have been assigned to DMC states in the related literature,

the evocative names of the above functions do imply accurate semantics. That is, the

following properties hold for all s

i

:

55

The Abstract Structure of DMC

s
0

s
1

a
s
2

ac
s
3

c
s
5

acab

b

c

suffix(s):

prefix(s):i

i

M :
6

s
4

aca
s
6

a

a

Figure 4.2: Observable Structure in DMC Models. For any state s

i

, su�x(s

i

)

is the original destination of the transition that was redirected to s

i

when s

i

was

created; pre�x(s

i

) is the source of the transition which was redirected to s

i

, when

s

i

was added to the model; and symbol(s

i

) labels the transition that was originally

redirected to s

i

, and any subsequently added transitions into s

i

. The context of s

i

,

context(s

i

), labels each state.

The non-reexive transitions of model M

6

, pictured in Figure 4.1, are omitted. How-

ever, the reexive transitions of M

6

are included here to illustrate the consistent

substructures they de�ne in the DMC model. There are always jAj reexive transi-

tions in the model. (Here A = fa; b; cg). When a reexive transition is redirected by

cloning, the newly added state will have a reexive transition with the same symbol.

For any state s

i

with a reexive transition (it can only have one, if i 6= 0), context(s

i

)

will be a sequence consisting of a �nite number of occurrences of the symbol on the

reexive edge, which equals the state's symbol. For example, if the reexive edge

labeled c is redirected to a new state s

7

, pre�x(s

7

) will equal s

3

and context(s

7

)

will equal cc.

The state s

6

is an example of a state that has been created by redirecting a pre-

�x transition. That is, the original edge which was redirected to point to s

1

was

redirected again when s

6

was added to the model. Both s

6

and s

1

therefore have

identical contexts.

56

� [Pre�xes] context(pre�x(s

i

)) is a pre�x of context(s

i

),

� [Su�xes] context(su�x(s

i

)) is a su�x of context(s

i

),

� [Extensions] s

d

2 extns

�

k

(s

i

) implies that context(s

d

) extends context(s

i

) on

the left by zero or more symbols.

Thus, the context() of a state in a DMC model is analogous to the context of

a state in an FSMX model [Ris86a]. However, there are di�erences. For one thing,

context(pre�x(s

i

)) is exactly one symbol shorter than context(s

i

), while

context(s

i

) may be arbitrarily longer than context(su�x(s

i

)). That is, DMC builds

a context model with variable-length minimal extensions

3

of a context. Furthermore,

if the eligibility criterion E() allows transitions to be redirected more than once, as

DMC's does, it is possible that context(su�x(s

i

)) = context(s

i

).

4.3.3 Reexive Edges in DMC

Reexive edges appear only under certain circumstances in DMC models, and any

M

k

will have reexive edges if and only if the initial state s

0

does. Intuitively, Lemma

4.3.1 states that any other reexive edges can only be created by redirecting reexive

edges. When a reexive edge is redirected, the pre�x of the new destination state

equals that state's su�x. Over time, a reexive edge will either stay the same or will

point down into its source state's extensions (subtree). Conversely, any state with

a self-loop, or an edge that points down into its subtree, was initially added to the

model as as the new destination of a redirected reexive edge.

Only the base case of the following lemma, that is, a description of reexive edges

leaving any novel state s

k

in model M

k

, is required for the proof of Theorem 4.4.1,

the complete characterization of DMC's structure. However, by proving the lemma

for all states i in any modelM

k

, we can describe the behavior of all reexive edges in

DMC models over time. Incidentally, when i = 0, the left hand side of the equivalence

holds trivially. That is, all edges leaving the root state s

0

enter either s

0

or a node

in its subtree.

Lemma 4.3.1 (Reexive Edge Characterization)

8k � 1; 8i; 1 � i � k; 8a 2 A;

3

A minimal extension is the y 2 A

�

s:t: context(s

i

) = y � context(su�x(s

i

)).

57

�

k

(s

i

; a) 2 fs

i

g [extns

�

k

(s

i

) , su�x(s

i

) = pre�x(s

i

) and

�

i�1

(su�x(s

i

); a) = su�x(s

i

)

The proof proceeds by induction on k � i. To prove the induction base, where

k = i and

�

k

(s

k

; a) 2 fs

k

g [extns

�

k

(s

k

) , su�x(s

k

) = pre�x(s

k

) and

�

k�1

(su�x(s

k

); a) = su�x(s

k

);

we �rst recall from the de�nition of M

k

that

�

k�1

(pre�x(s

k

); a) = su�x(s

k

); (4.5)

�

k

(pre�x(s

k

); a) = s

k

; (4.6)

and

8b 2 A; �

k

(s

k

; b) = �

k

(su�x(s

k

); b): (4.7)

The proof is straightforward:

�

k�1

(su�x(s

k

); a) = su�x(s

k

) and pre�x(s

k

) = su�x(s

k

)

) �

k�1

(su�x(s

k

); a) 6= �

k

(su�x(s

k

); a) and

�

k�1

(pre�x(s

k

); a) 6= �

k

(pre�x(s

k

); a) by (4.5), (4.6), subst.

) �

k

(su�x(s

k

); a) = s

k

by Observation 4.3.2

) �

k

(s

k

; a) = s

k

by (4.7), subst.

) �

k

(s

k

; a) 2 fs

k

g [extns

�

k

(s

k

) extns

�

k

(s

k

) = fg:

�

k

(s

k

; a) 2 fs

k

g [extns

�

k

(s

k

)

) �

k

(s

k

; a) = s

k

extns

�

k

(s

k

) = fg:

) �

k

(su�x(s

k

); a) = s

k

by (4.7), subst.

) �

k�1

(su�x(s

k

; a) 6= �

k

(su�x(s

k

; a) sinces

k

62 S

k�1

) �

k�1

(su�x(s

k

; a) = su�x(s

k

) by Observation 4.3.2

) �

k�1

(su�x(s

k

); a) = �

k�1

(pre�x(s

k

); a); and

�

k

(su�x(s

k

); a) = �

k

(pre�x(s

k

); a) by (4.5) and (4.6), subst.

) �

k�1

(pre�x(s

k

; a) 6= �

k

(pre�x(s

k

; a) subst

) pre�x(s

k

) = su�x(s

k

) since only one transition in

M

k�1

changed to form M

k

:

) �

k�1

(su�x(s

k

); a) = su�x(s

k

) and

pre�x(s

k

) = su�x(s

k

):

58

For the induction step, assume the statement holds for a given state s

i

; i > 0; in

modelM

k

and consider the same state s

i

in modelM

k+1

. Note that s

i

6= s

k+1

because

s

k+1

62 S

k

.

Assume �

k+1

(s

i

; a) 2 extns

�

k+1

(s

i

) [fs

i

g: Then, there are two mutually exclusive

cases to consider: �

k+1

(s

i

; a)=neqs

k+1

and �

k+1

(s

i

; a) = s

k+1

:

�

k+1

(s

i

; a) 6= s

k+1

) �

k+1

(s

i

; a) = �

k

(s

i

; a) by Observation 4.3.1

) su�x(s

i

) = pre�x(s

i

) and

�

i�1

(su�x(s

i

); a) = su�x(s

i

) by ind. hyp., subst.

�

k+1

(s

i

; a) = s

k+1

) �

k+1

(s

i

; a) 6= �

k

(s

i

; a) s

k+1

62 S

k

) �

k

(s

i

; a) = su�x(s

k+1

) by Obs. 4.3.2

) �

k

(s

i

; a) 2 extns

�

k+1

(s

i

)� fs

k+1

g �

k

(s

i

; a) 2 extns

�

k+1

(s

i

) and

�

k

(s

i

; a) 6= s

k+1

) �

k

(s

i

; a) 2 extns

�

k

(s

i

) extns

�

k

(s

i

) = extns

�

k+1

(s

i

)� fs

k+1

g

) su�x(s

i

) = pre�x(s

i

) and

�

i�1

(su�x(s

i

); a) = su�x(s

i

) by ind. hyp.

Conversely, assume su�x(s

i

) = pre�x(s

i

) and �

i�1

(su�x(s

i

); a) = su�x(s

i

):

We know by the induction hypothesis that �

k

(s

i

; a) 2 extns

�

k

(s

i

) [fs

i

g. Either

�

k+1

(s

i

; a) = �

k

(s

i

; a), and so �

k+1

(s

i

; a) 2 extns

�

k+1

(s

i

) [fs

i

g because extns

�

k

(s

i

) �

extns

�

k+1

(s

i

); or �

k+1

(s

i

; a) 6= �

k

(s

i

; a). In the latter case,

�

k+1

(s

i

; a) 6= �

k

(s

i

; a)

) �

k

(s

i

; a) = su�x(s

k+1

) by Observation 4.3.2

) su�x(s

k+1

) 2 extns

�

k

(s

i

) [fs

i

g by ind. hyp., subst.

) s

k+1

2 extns

�

k+1

(s

i

) by def. extns

�

()2

Lemma 4.3.1 implies the following regularities for DMC models, assuming the

initial model given earlier:

� For each b 2 A there exists exactly one reexive edge labeled b.

� No state other than s

0

may have more than one reexive edge.

59

� And, if a state s

i

has a reexive edge labeled a, then context(s

i

) = a

h

, where

h is the length of the path of pre�x() pointers from s

i

to s

0

.

Lastly, the following technical corollary to Lemma 4.3.1 will be required to prove

the upcoming DMC characterization. If a string brings a model M

k+1

into the new

state s

k+1

and it also brought the preceding model M

k

to the pre�x state of the

new state, then the new state must have a reexive out-edge, labeled with the state's

symbol.

Corollary 4.3.1 (to Reexive Edge Characterization)

8k; 8j � k; 8w 2 A

�

;

�

k

(s

j

; w) = pre�x(s

k+1

)and�

k+1

(s

j

; w) = s

k+1

) �

k+1

(s

k+1

; symbol(s

k+1

)) = s

k+1

:

Proof:

�

k

(s

j

; w) = pre�x(s

k+1

) and �

k+1

(s

j

; w) = s

k+1

) �

k

(s

j

; w) 6= �

k+1

(s

j

; w) pre�x(s

k+1

) 6= s

k+1

) �

k

(s

j

; w) = su�x(s

k+1

) by Observation 4.3.2

) pre�x(s

k+1

) = su�x(s

k+1

) subst.

) �

k

(pre�x(s

k+1

); symbol(s

k+1

)) = su�x(s

k+1

) by def. su�x(s

k+1

)

) �

k+1

(pre�x(s

k+1

); symbol(s

k+1

)) = s

k+1

by def. �

k+1

()

) �

k

(su�x(s

k+1

); symbol(s

k+1

)) = su�x(s

k+1

) subst.

) �

k+1

(s

k+1

; symbol(s

k+1

)) = fs

k+1

g [extns

�

k+1

(s

k+1

) Lemma 4.3.1, contrap.

) �

k+1

(s

k+1

; symbol(s

k+1

)) = s

k+1

extns

�

k+1

(s

k+1

) = fg2

4.4 A Finite-Order Characterization of DMC States

A �nite-state stochastic model, such as DMC's, is traditionally de�ned in terms of

its structure and parameters. The language of an individual FSM state is the set of

strings which put the FSM into the given state, by following the successive transitions

labelled with each symbol of the string left-to-right, starting at the FSM's initial

state. The set consisting of each language of each state in a stochastic model forms

a partition on the set of possible input sequences to the model, that is, a context

partition. The structure of a stochastic model is de�ned by its context partition.

60

Thus each state in the model is associated with a single class of strings, and the

model is used to successively classify each progressively longer pre�x of an entire input

sequence. To use such a model to estimate probabilities of a sequence, or to predict

or generate such a sequence, each state in the model must also be associated with a

(usually empirical) probability measure on the symbols that may immediately follow

any string belonging to the state's class. DMC's solution to this parameterization

problem is described in Section 6.5.

DMC is unique in the data compression literature, in that its model was not

originally de�ned to represent a given context partition. The goal of this analysis

is to identify the hitherto unknown context partition of any DMC model, so that

aspects of the DMC technique may be meaningfully compared with features of other

techniques in the literature. DMC's context partition is given below by the function

C

k

: S ! 2

A

�

, which, as we prove, describes the language of any state in a DMC

model M

k

.

Theorem 4.4.1 (Characterization of DMC Structure)

Let C

k

(s

i

) = L(s

i

)�

[

s

d

2extns

k

(s

i

)

L(s

d

); (4.8)

where L(s

i

) = A

�

; if i = 0

= C

i�1

(pre�x(s

i

)) � symbol(s

i

); otherwise.

Then, 8k; 8i � k; and 8w 2 A

�

;

w 2 C

k

(s

i

) , �

k

(s

0

; w) = s

i

: (4.9)

Before we prove that the characterization C

k

() is correct, a discussion of some

properties of the functions introduced above will provide some insight.

The function C

k

: S

k

! 2

A

�

maps each state to a set of conditioning contexts.

Equation (4.9) implies that the sets of distinct states are disjoint; that is, C

k

() relies

on the function L(), which is one-to-one regardless of the de�nition of E(). The

regular set L(s

i

) precisely describes the set of strings that bring M

k

to state s

i

or to

any descendant of s

i

. Note that although the language C

k

(s

i

) of a state s

i

changes

with k (which is monotone increasing), the language of the subtree rooted by a state

s

i

, that is, L(s

i

), does not (even though the subtree itself may change in structure).

61

The set L(s

i

) � A

�

context(s

i

), and recursive expansions of the regular expression

L(s

i

) quit branching at all states s

p

such that L(s

p

) = A

�

context(s

p

). Figure 4.3

shows the DMC model substructures relevant to any arbitrary state s

i

, and illustrates

the recursive expansion of expressions C

k

(s

i

) and L(s

i

).

The function L() is well-de�ned, and would still be well-de�ned even if we did not

require the recursive expansion to continue down to the initial state s

0

. This can be

accomplished by optimizing the terminating expansion given above:

L(s

i

) = A

�

� context(s

i

); if i = 0 or 8j � i;

pre�x(s

j

) 6= pre�x(su�x(s

j

)) and extns

j�1

(pre�x(s

j

)) = fg(4.10)

= C

i�1

(pre�x(s

i

)) � symbol(s

i

); otherwise.

The resulting regular expressions for the languages of each state are the same with

either de�nition, but the terminating criterion used in Equation (4.10) above cre-

ates the shallowest recursive expansion. Furthermore, the model condition required

by Equation (4.10), the base of the inductive de�nition, describes the exact require-

ments for the states of a DMC model to be characterizable by single �nite strings.

Note that in FSMX models, for all states s

j

, pre�x(s

j

) 6= pre�x(su�x(s

j

)) and

extns

j�1

(pre�x(s

j

)) = fg. Thus for all states s

i

in an FSMX model, L(s

i

) =

A

�

context(s

i

); that is, all states in FSMX models are characterizable by single �nite

strings.

62

4.4.1 Correctness Proof of the DMC Characterization

Here we prove Theorem 4.4.1, which states that Equation (4.8) characterizes the

partition of conditioning contexts that is induced by the states of any model M

k

, by

proving that C

k

: S ! 2

A

�

describes the language of each state in M

k

, for all k. The

proof proceeds by induction on k, the number of states that have been added to M

0

to create the k progressive re�nements to M

0

which result in model M

k

.

The induction base is trivial: �

0

(s

0

; w) = s

0

and w 2 C

0

(s

0

) = A

�

�. C

0

(s

0

) = A

�

�

because extns

0

(s

0

) = fg and L(s

0

) = A

�

�:

For the induction step we assume that

8h � k; 8i � h; and 8w 2 A

�

;

w 2 C

h

(s

i

) , �

h

(s

0

; w) = s

i

;

and prove that

8i � k + 1; and 8w 2 A

�

;

w 2 C

k+1

(s

i

) , �

k+1

(s

0

; w) = s

i

:

Case 1:

When w = �, we know that w 2 C

k+1

(s

i

) , s

i

= s

0

, �

k+1

(s

0

; w) = s

i

. This

equivalence follows from the fact that s

d

2 extns(s

i

)) symbol(s

d

) = symbol(s

i

)

and the de�nition of C

k

(), which expands to form

C

k

(s

0

) = A

�

�

[

s

d

2extns

k

(s

i

)

C

d�1

(pre�x(s

d

)) � symbol(s

d

); and

C

k

(s

i 6=0

) =

0

@

C

i�1

(pre�x(s

i

))�

[

s

d

2extns

k

(s

i

)

C

d�1

(pre�x(s

d

))

1

A

� symbol(s

i

):

Thus, C

k

(s

0

) contains � and C

k

(s

i 6=0

) only contains strings ending in symbol(s

i

).

Case 2:

When w 6= �, we let w = va and consider two cases: s

i

= s

k+1

and s

i

6= s

k+1

. The

complete proofs for each case are given below.

63

Proof that va 2 C

k+1

(s

k+1

), �

k+1

(s

0

; va) = s

k+1

:

va 2 C

k+1

(s

k+1

)

, va 2 L(s

k+1

)�

S

s

d

2extns

k+1

(s

k+1

)

L(s

d

) by def. C

k+1

()

, va 2 L(s

k+1

) extns

k+1

(s

k+1

) = fg

, va 2 C

k

(pre�x(s

k+1

)) � symbol(s

k+1

) by def. L()

, v 2 C

k

(pre�x(s

k+1

)) and a = symbol(s

k+1

) substitution; s

k+1

6= s

0

v 2 C

k

(pre�x(s

k+1

)); a = symbol(s

k+1

)

) �

k

(s

0

; v) = pre�x(s

k+1

); by ind. hyp., Case 1

) Case: �

k+1

(s

0

; v) 6= s

k+1

) �

k+1

(s

0

; v) = �

k

(s

0

; v) = pre�x(s

k+1

) Obs. 4.3.1

Case: �

k+1

(s

0

; v) = s

k+1

) �

k+1

(s

k+1

; symbol(s

k+1

)) = s

k+1

Corollary 4.3.1

) �

k+1

(�

k+1

(s

0

; v); symbol(s

k+1

)) = s

k+1

) �

k+1

(s

0

; va) = s

k+1

substitution

�

k+1

(s

0

; va) = s

k+1

) �

k+1

(�

k+1

(s

0

; v); symbol(s

k+1

)) = s

k+1

) Case: �

k+1

(s

0

; v) 6= s

k+1

) �

k+1

(s

0

; v) = �

k

(s

0

; v) = pre�x(s

k+1

); Obs. 4.3.1

Case: �

k+1

(s

0

; v) = s

k+1

) �

k+1

(s

0

; v) 6= �

k

(s

0

; v) s

k+1

62 S

k

) �

k

(s

0

; v) = su�x(s

k+1

) Obs. 4.3.2

) �

k+1

(�

k+1

(s

0

; v); a) = �

k+1

(s

k+1

; symbol(s

k+1

)) = s

k+1

substitution

) �

k

(su�x(s

k+1

); symbol(s

k+1

)) = su�x(s

k+1

)

and su�x(s

k+1

) = pre�x(s

k+1

) Lemma 4.3.1

) �

k

(s

0

; v) = pre�x(s

k+1

) substitution.

) v 2 C

k

(pre�x(s

k+1

)) and a = symbol(s

k+1

) by ind. hyp., Case 12

64

Proof that for i 6= k + 1, va 2 C

k+1

(s

i

), �

k+1

(s

0

; va) = s

i

:

Here, the contrapositive of the result proved in Section 4.4.1, above, shall be useful:

va 62 C

k+1

(s

k+1

) , �

k+1

(s

0

; va) = s

i

for some i 6= k + 1: (4.11)

Furthermore, the fact that the languages of disjoint subtrees are disjoint is re-

quired. That is,

Claim 4.4.1

va 2 C

k+1

(s

i

); i 6= k + 1; and s

i

6= su�x(s

k+1

)) va 62 L(s

k+1

)

Proof: We proceed by a proof by contradiction.

s

i

6= su�x(s

k+1

) and va 2 C

k+1

(s

i

)

) C

k+1

(s

i

) = C

k

(s

i

) and va 2 C

k

(s

i

) extns

k+1

(s

i

) = extns

k

(s

i

)

) �

k

(s

0

; va) = s

i

by ind. hyp.

va 2 L(s

k+1

)

) va 2 C

k

(pre�x(s

k+1

)) � symbol(s

k+1

) by def. L()

) �

k

(s

0

; v) = pre�x(s

k+1

) by ind. hyp, Case 1.

) �

k

(s

0

; va) = su�x(s

k+1

) by def. su�x()(!)

The remainder of the proof of Theorem 4.4.1 follows easily:

va 2 C

k+1

(s

i

); i 6= k + 1

, va 2

0

@

L(s

i

)�

[

s

d

2extns

k+1

(s

i

)

L(s

d

)

1

A

by def. C

k+1

()

, va 2

0

@

L(s

i

)�

[

s

d

2extns

k

(s

i

)

L(s

d

)

1

A

� L(s

k+1

)

s

i

6= su�x(s

k+1

) and Claim 4:4:1

or s

i

= su�x(s

k+1

); therefore

s

k+1

2 extns

k

(s

i

)

, va 2

0

@

L(s

i

)�

[

s

d

2extns

k

(s

i

)

L(s

d

)

1

A

�

0

@

L(s

k+1

)�

[

s

d

2extns

k+1

(s

k+1

)

L(s

d

)

1

A

extns

k+1

(s

k+1

) = fg

, va 2 C

k

(s

i

)� C

k+1

(s

k+1

) by def. C

k

()

, va 2 C

k

(s

i

) and va 62 C

k+1

(s

k+1

)

, �

k

(s

0

; va) = s

i

and �

k+1

(s

0

; va) 6= s

k+1

by ind. hyp. and (4:11)

, �

k+1

(s

0

; va) = s

i

i 6= k + 1;Obs. 4.3.12

65

4.5 DMC vs. Other Stochastic Data Models

There are three important aspects of a stochastic data modeling technique that may

distinguish it abstractly from others: the language family of the models constructed,

which ultimately determines the limitations of the technique; model structure, which

determines how the model organizes the data it gathers; and the statistical assump-

tions, which determine how the frequency data is updated and combined to compute

probability estimates.

These are not orthogonal issues. Usually the frequency data are organized with

respect to conditioning contexts, which correspond to partitions on the set of possible

strings. Since a model's structure certainly determines the languages its states recog-

nize, a structural point of view is, for the most part, a di�erent (and more intuitive)

way of looking at the generative power of the model. But only for the most part:

two models that recognize the same languages can have very di�erent structure, and

therefore may organize frequency data di�erently.

4.5.1 Linguistic Power

Given that the partition element that corresponds to an arbitrary DMC model state

cannot be described using a single �nite su�x, what, generally speaking, does it take

to describe it? There is a known family of languages that contains the family of lan-

guages recognizable by DMC FSMs more tightly than the class of regular languages:

For any DMC model state s, C

k

(s) is a locally testable star-free regular set. Star-free

regular languages are regular sets that can be described using a �nite number of set

concatenations, unions, and complements, [vL90, Chapter 1].

To see that C

k

(s

i

) is star-free for any s

i

, simply replace set subtraction with

intersection of the absolute complement of the subtrahend, and A

�

with fg. C

k

(s

i

) is

also locally testable, which means expressible as �nite Boolean combinations of sets

of the type FA

�

, A

�

G, or A

�

HA

�

, where F;G;H are �nite sets. However, this is

a loose characterization, for it was shown in [BM89] the languages recognizable by

DMC models are contained, possibly properly, in the class of languages expressible

as A

�

F [G (where F and G are �nite sets), that is, �nite-order languages. Below,

we give a new proof of that containment, which also shows that the characterization

of Theorem 4.4.1, C

k

() is �nite-order, as it should be.

66

Intuitively, DMCmodels belong to the class of �nite-order Markov sources [Ash65],

also known as Finite-Context Automata [BM89], because only a �nite su�x of a given

source string is required to determine the state to which the string will carry a given

model. This means, for one thing, that DMC FSMs cannot recognize in�nitely re-

peating patterns, a common capability of more general FSMs. Neither, however, can

any of the popular FSMX models [CW84b, CTW95, Fur91, RC89, Ris83, Ris86a,

WLZ92, Wil91], all of which can determine the current model state by locating the

state whose single associated �nite context is a maximal su�x of the given input

string. On the other hand, while a given state in an FSMX model can be uniquely

speci�ed with a single �nite string, an arbitrary DMC state cannot. Therefore, even

when stripped of its implementation details and Bayesian assumptions for probabil-

ity estimation, DMC proves to be distinct from the other stochastic models in the

literature.

4.5.2 DMC Models Have Finite Order

The regular expression C

k

(s

i

) may be described as a �nite-order characterization of

the strings which bringM

k

to s

i

from the initial state s

0

, because deciding membership

of any string wa in the language of any state s

i

requires a �nite number of comparisons

with a �nite number of symbols at the end of the string wa. The concept, �nite-order,

is easily formalized for regular expressions (and therefore for �nite-state machines),

and leads to a simple proof that DMC constructs �nite-order FSMs.

A language L over a �nite alphabet A is �nite order if and only if there exist

�nite sets of strings F and G such that L = A

�

F [G.

Finite-Order Expressions over A and the languages they denote are de�ned recur-

sively:

1. A

�

is a �nite-order expression and L(A

�

) = A

�

.

2. If � and � are �nite-order expressions over A and a 2 A then � [�, � \ �, �,

and � � a are �nite-order expressions, where

L(� \ �) = L(�) \ L(�)

L(� [�) = L(�) [L(�)

L(�) = A

�

� L(�)

L(� � a) = L(�) � a:

67

Theorem 4.5.1 A language L is �nite-order i� L = L(�), for some �nite-order

expression �.

Proof: To show that any �nite order language can be expressed as a �nite-order ex-

pression, we consider a �nite-order language L = A

�

F [G, where F = fx

1

; : : : ; x

n

g,

and G = fy

1

; : : : ; y

m

g, and then express the sets A

�

F , and G, as �nite-order expres-

sions:

A

�

F = A

�

x

1

[A

�

x

2

[� � � [A

�

x

n

; and

G = f�gy

1

[f�gy

2

[� � � [f�gy

m

= A

�

Ay

1

[A

�

Ay

2

[� � � [A

�

Ay

m

:

To prove the contrapositive, we show, by induction on expression length, that the

language of any �nite-order expression can be expressed as a �nite order language,

A

�

F [G, where F and G are �nite. The basis is trivial: A

�

= A

�

f�g [fg. For

the inductive step, consider a �nite-order expression that is composed of two shorter

�nite-order expressions � and �, which by induction hypothesis have corresponding

�nite sets F

�

= fx

1

; : : : ; x

n

g, F

�

= fy

1

; : : : ; y

m

g, G

�

= fv

1

; : : : ; v

r

g, and G

�

=

fw

1

; : : : ; w

s

g. There are four cases:

L(� � a) = A

�

(F

�

� fag) [G

�

� fag:

L(� [�) = A

�

(F

�

[F

�

) [(G

�

[G

�

):

L(� \ �) = A

�

F [G;

where G =

S

1 � i � n

1 � k � r

(A

�

x

i

\ v

k

)[

S

1 � j � m

1 � l � s

(A

�

y

j

\ w

l

)[

S

1 � k � r

1 � l � s

(v

k

\ w

l

) ;

and F = fx

i

2 F

�

: 9y

j

2 F

�

s.t. y

j

is a su�x of x

i

g [

fy

j

2 F

�

: 9x

i

2 F

�

s.t. x

i

is a su�x of y

j

g:

The de�nition of F follows from the fact that

A

�

F =

S

1 � i � n

1 � j � m

(A

�

x

i

\ A

�

y

j

) :

L(�) = A

�

x

1

[A

�

x

2

[� � � [A

�

x

n

[v

1

[v

2

[� � � [v

p

= A

�

x

1

\ A

�

x

w

\ � � � \ A

�

x

n

\ v

1

\ v

2

\ � � � \ v

p

;

68

where v

i

= A

�

Av

i

[A

�

v

i

;

A

�

x = fg; if x = �;

A

�

x = A

�

a

1

a

2

� � �a

z

; if x = a

1

a

2

� � �a

z

= f�g [A

�

a

z

[A

�

a

z�1

a

z

[� � � [A

�

a

1

a

2

� � �a

z

;

a = fb 2 A : b 6= ag:

The �nal expression for L(�) shows that the �nite order expression � can be

transformed into a �nite-order expression constructed from single symbols and A

�

using only concatenation, intersection, and union; that is, an expression for which

the induction is already proved.2

The fact that DMC models are �nite-order may now be expressed clearly:

Corollary 4.5.1 The language of a state s

i

in a DMC model M

k

, C

k

(s

i

), is �nite-

order for all i and k.

Proof: The recursive de�nition of C

k

(s

i

) reduces to a �nite-order expression, that is,

C

k

(s

i

) = L(s

i

) \

\

s

d

2extns

k

(s

i

)

L(s

d

):

4.5.3 DMC Models Are Not FSMX

It is instructive to consider restricted DMC embodiments in which E() allows tran-

sitions to be redirected only once and disallows the redirection of transitions from

states that already have extensions. In such models, Equation (4.10) holds for every

state. In that case,

C

k

(s

i

) = A

�

context(s

i

)�

[

s

d

2extns

k

(s

i

)

A

�

context(s

d

);

which is logically equivalent to the closed-form transition function of FSMX models.

FSMX models, de�ned by Rissanen [Ris83], are characterized by their state-set

and transition function:

� The states satisfy a su�x property, where states mapped to unique �nite strings,

or conditioning contexts, and for every state with context x, there exist states

for each proper su�x of x. The set of maximal conditioning contexts that

have states in the model is determined by a growth heuristic, and varies among

di�erent techniques.

69

� The transition function has a closed form based on state conditioning contexts.

The next state is always the state whose associated �nite context is the maximal

su�x, relative to the context partition de�ned by the model, of the already-

processed portion of the input sequence.

DMC transition functions cannot, in general, be expressed in such a simple closed

form.

When E() allows transitions to be redirected more than once, distinct states s

i

and s

j

may be mapped by the function context() to the same string:

context(s

i

) = context(s

j

)) 9 l < jcontext(s

i

)j s.t.

pre�x

l

(s

i

) = pre�x

l

(s

j

);

where pre�x

l

() is the function obtained by composing the function pre�x() with

itself l � 1 times.

Furthermore, a completely independent complication arises when transitions from

a state that already has extensions may be redirected. In this case, the state cor-

responding to M

k

(wa) will not always be the state in M

k

whose context() is the

longest match to the end of wa. An example of this situation occurs with respect to

an arbitrary state s

i

in an arbitrary model M

k

, where:

context(s

i

) = `abc';

context(pre�x(s

i

)) = `ab';

context(s

d

) = `wabc' for some s

d

2 extns

k

(s

i

);

context(pre�x(s

d

)) = `wab', and

context(s

r

) = `vwab' for some s

r

2 extns

d�1

(pre�x(s

d

)):

Figures 4.3 and 4.4 are included to illustrate this type of situation in two di�erent

ways. Figure 4.3 illustrates the general structure of any DMC model, and shows why

the alternating recursion of the characterization is necessary. It can also be used here

as a template for visualizing concrete examples, the example above in particular, by

going through the exercise of actually writing the given contexts on the states with

the above labels. Figure 4.4 shows how such a situation can arise (using a necessarily

simpler example) by growing a small DMC model that cannot be emulated by an

FSMX model, from scratch. In Figure 4.4, the transition from the state with context

`aab' goes to a state with context `bc,' although a state with context `abc' is available.

In an FSMX model, the `abc' state would have been entered instead.

70

suffix(s)

prefix(s)

s rprefix(s)r

extns k

extnsr−1

extns i−1

si

i

i

extns k
sd

extnsd−1

extnsi−1

sppprefix(s)

extnsp−1

extns k

extns k

k+1suffix(s)

dprefix(s)

s k+1

Redirected transition, inverse of prefix relationship

Suffix relationship

Non−overlapping subtrees given by extns relationship

Subtree transitions that bypass states i and k+1

Subtree transitions that lead to states i and k+1

Figure 4.3: Example-independent illustration of the (necessary) alternating re-

cursion of function L(). The states in the upper subtrees correspond to contexts in

the �rst term of C

k

(), which describes strings that bring M

k

to the subtree headed

by s

i

. The states in the lower subtrees correspond to contexts in the second term of

C

k

(), which describes strings that have been directed away from s

i

into s

i

's subtree.

Note, the �gure does not illustrate multiply-redirected transitions.

71

a
b

b
a

c

b

ca

a

c

ac

cb

b
a

y

b c

bcab

a

c

b

b
a

c

b

ca

a

c

a

b

c
y

b ca
b

M
0
:

a c
b

y M :1

b
a

c
a

b

c

y

c

2M :

M :4

b

b
a

c

b

ca

a

c

ac

c

b b
a

y

a b c

bc

M :5

M :6

a
aa

a
b

b
a

c

b

ca

a

c

ac

cb

b
a

y

b c

bcab

a

c

bc

b

M :7M :8

aa
aa

a
b

b
a

c

b

ca

a

c

ac

cb

b
a

y

b c

bcab

a

c

bc

b
aab

b c

3M :

b
a

c
a b

c

a

c

y

cbb

a
aa

a
b

b
a

c

b

ca

a

c

ac

cb

b
a

y

b c

bcab

a

c

bc

b
aab

b
c

b

c
a

a abc

A DMC Model that cannot be emulated by an FSMX Model

Figure 4.4: DMC models cannot be emulated by FSMX models. The tem-

poral order in which contexts corresponding to states in the model are extended by

adding children a�ects the context partition in DMC models. In contrast, only the

occurrences of the contexts themselves, and not the order in which they occur, af-

fects FSMX structure. For example, on input `c,' model M

8

will go from the state

with context `aab' to the state with context `bc', although the state labeled `abc' is

present. An FSMX model would enter the state labeled `abc'.

72

Here, context(s

d

) is the best-matching context for any input substring in ending

in `vwabc'; however, substrings ending in `vwabc' take M

k

to s

i

, not s

d

. This ex-

ample proves that DMC states cannot be uniquely characterized with single strings.

Thus a stronger characterization is required for DMC models than for FSMX models,

because DMC models can recognize languages for which no FSMX model exists. Fur-

thermore, for any FSMX model there exists a linguistically equivalent DMC model.

Another interesting consequence of the fact that DMC is not FSMX is that this

proves conclusively that the family of languages generated by FSMX models does not

properly contain the languages generated by (�nite order) Markov Models. This con-

tradicts the conventional wisdom that FSMX models \generalize the class of Markov

Models" [Ris86a].

4.5.4 Structural Comparison

The context() of a DMC state is analogous to the �nite contexts of the states in

FSMX models [CW84b, CTW95, Fur91, RC89, Ris83, Ris86a, WLZ92, Wil91] vis �a

vis the terms of the de�nition of C

k

(), and the fact that every string that takes a DMC

model to a given state s

i

ends in context(s

i

). Both DMC and FSMX models are tree-

structured, where children states correspond to minimal extensions of their parent's

context. Thus DMC and FSMX models are similar enough to allow meaningful

comparison of their abstract structural di�erences, in terms of conditioning contexts.

Since FSMX models are characterized by a uniformly restricted version of DMC's

characterizing function C

k

(), we know that any FSMX model can be simulated by

a DMC model. However, such a simulation will require extra states in the DMC

model, for the class of DMC models does not contain the class of FSMX models (or

vice versa). DMC models are strictly Markovian, that is, the next state is always

a function of the current state and the currently scanned symbol; whereas the next

state in an FSMX model may also depend upon which states were visited before the

current state. Note that it is equivalent to say that DMC models satisfy a pre�x

property: for every state s there exist states p for each proper pre�x of context(s)

such that �

k

(p; w) = s, where context(s) = context(p) � w. A DMC model that

simulates an FSMX model, a Markovian FSMX model, would satisfy both the pre�x

property above, and the su�x property satis�ed by FSMX models. The comparison

between such a model and an arbitrary DMC model explores structural di�erences

73

besides the Markov (or pre�x) property.

The �rst di�erence is that a DMC model can have distinct states whose associated

conditioning context partition elements have the same maximum common su�x. The

function context() describes these maximum common su�xes. FSMX models also

associate conditioning context partition elements with each state, but each is fully

characterized by its maximum common su�x, and therefore there is no duplication

of the maximum common su�x of any state. The duplication in DMC is partially

caused by redirecting the original transition for which a given state was created (that

state's pre�x transition). Any bene�t of redirecting a pre�x transition is realized only

if the other transitions entering the given state, or earlier crossings of the pre�x tran-

sition itself, have caused the frequency distribution on the state's outgoing transitions

(described in Section 6.5) to become non-representative. The cost of redirecting pre-

�x transitions in the absence of such contamination is pervasive model redundancy.

Not only can this hinder structural convergence, but the convergence of statistical

parameters may be slowed because message statistics are distributed unnecessarily.

A more important distinction is DMC's capacity for variable-length minimal ex-

tensions of a context. This capacity alone sets DMC's (Markovian) data model apart

from all FSMX models. Techniques that build FSMX models [CW84b, CTW95,

Fur91, RC89, Ris83, Ris86a, WLZ92, Wil91] all grow models with single-character

minimal extensions. Thus DMC has the capacity for modeling the most probable

substrings in a given sequence using fewer states than any of its counterparts.

4

The remaining structural di�erence is due to the fact that the (temporal) order

in which �nite substrings in a given sequence become recognizably frequent strongly

a�ects the structure of the regular sets of conditioning contexts associated with each

state. Thus the structure of DMC models reects higher-order statistics of the con-

ditioning contexts themselves. In contrast, the structure of FSMX models only re-

ects the zero-order statistics of the conditioning contexts (i.e., how many times each

context appears in the source message). Therefore, DMC's Markov models record

information about the input sequence that FSMX models do not.

The following are immediate corollaries of our main result:

4

That is, assuming the sequence was generated by a Markov FSMX source. Using a Markov model

such as DMC's to simulate any non-Markovian FSMX source requires systematic addition of extra

states.

74

1. DMC states have a de�ned, locally-variable minimum order.

2. Every state has the same or higher minimum order than its parent.

3. The act of invoking the criterion E() to decide when to add a state s

k+1

as an

extension to a given s

t

is indeed local order estimation.

4.6 Curbing Counterproductive Model Growth

An obvious way to reduce the number of states in DMC models is to use a larger

input alphabet. However, as originally presented, DMC is only feasible with a binary

alphabet, since jAj outgoing transitions are created for every new state. Other authors

[TR93, Ton93, Whi94, Yu93] have independently generalized DMC to larger alphabets

using variations of what we call lazy cloning , which copies outgoing transitions only

as needed. However, only the lazy-evaluation solutions introduced in [Bun94] and in

[TR93] successfully reduce DMC's memory requirements without eliminating DMC's

advantages. (Sections 6.5 and 9.5 explain and re�ne the ideas from [Bun94] and

Section 9.5 compares their performance with the technique of [TR93].) The others

all had a similar approach: when the required outgoing transition was absent from

the current state, the needed transition was copied from a state that was essentially

a zeroth or �rst-order state.

Our analysis implies that the best state from which to copy outgoing transitions

one at a time is the same state they would have been copied from if the copying were

done all at once: the su�x() state. This way, the transitions go to a next state with

the longest possible matching conditioning context. Copying outgoing transitions

from a low-order state has the opposite e�ect. Thus our analysis of DMC explains

the successes and failures of the various practical approaches.

Several natural solutions for curbing DMC's counterproductive model growth fol-

low from our characterization of DMC. They apply individually and in combination:

1. E() should better approximate entropy-based local order estimation. The fre-

quency of a particular edge does say something about the probability of the

state it leads to. Thus the original E() crudely approximates the contribution

of that destination state to the entropy of the model. The other approximation

extreme is exempli�ed by Rissanen [Ris86a] and Furlan [Fur91]. These authors

closely approximate the relative entropies between states and their minimal

75

extension states using counters which keep track of the code-length di�erences.

2. The re�nement eligibility criterion E() should prevent transitions from being

redirected more than once, under most circumstances.

5

3. The transitions exiting any given state should be copied from its su�x() one at

a time, as they are needed. When a state does not have the required outgoing

transition, the probability estimate can be made from its su�x(). This way,

larger input alphabets can be economically accommodated, since only condi-

tioning contexts that have been seen before will be represented by the model.

Probability estimation can proceed using the recursive blending technique of

PPM [CW84b], or by lazy evaluation of DMC's initial frequency distribution

assumption. For example, if blending method PPMC [Mof90] were used, the

frequency on the su�x() edge should always equal the number of distinct sym-

bols which have been seen when in a given state, and the application of such

optimizations as exclusion and update exclusion [BCW90] is straightforward.

DMC's probability estimation technique, and some e�cient variations, are de-

scribed in Chapter 6.

4.7 Summary

This chapter's analytical study of DMC completes our study of model structure.

Chapter 3 showed how to construct su�x tree models using only the \splitting" of

string-labeled transitions. This chapter showed how to construct su�x tree models

using only the redirection of symbol-labeled transitions, and proved that the classes

of models built by these two operations are distinct, albeit overlapping. The remain-

ing technical chapters of this thesis cover the computations required for estimating

probabilities using any su�x-tree-structured model.

5

The tradeo� between prediction quality and space e�ciency depends upon the nature of the

re�nement criterion E(). J. Teuhola and T. Raita report [personal correspondence] that prediction

quality degrades when this restriction is combined with lazy cloning. In [TR93] they based E()

only upon the di�erence between a candidate transition's frequency and the frequency of the

transition's destination state.

Chapter 5

FREQUENCY UPDATES

How should we organize frequency data at the su�x-tree states? An obvious way

to have the value of count[a; s] reect the characteristics of the input sequence is to

have it equal the number of times the symbol a has occurred when state s was excited

in the past. We shall refer to this technique as full updates. A di�erent approach,

called update exclusion [Mof90], so e�ectively and consistently improves the proba-

bility estimates produced by PPM that its application and combination with state

selection in all su�x-tree models, including PPM

�

, warrants careful consideration

and, as we explain, some modi�cation for combination with state selection.

5.1 Model Semantics II: Update Exclusion vs. Full Updates

Generally speaking, full updates correctly update the frequencies at every FSM model

that is simulated by the su�x-tree, while update exclusion correctly updates the

frequencies at the single FSM model that corresponds to the maximum su�x-tree

frontier. As de�ned in [Mof90], update exclusion is a frequency-update technique

that increments the counts of event ajs when s is excited and either symbol a is novel

at state s, s is the parent of a state where a is novel, or s is the maximum-order

excited state. Thus all ancestors of the maximum-order excited state that recognizes

the current symbol are excluded from the update process. In addition to improving

compression performance, update exclusion can reduce execution time.

Update exclusion improves the performance of blending in context models, but

it renders the models incompatible with state selection by changing their semantics.

In all su�x-tree models, update exclusion a�ects the context partition element that

conditions the estimated probability, P

e

(ajs

j

), of an event a given the frequency data

at state s

j

. Without update exclusion, P

e

(ajs

j

) is conditioned by the strings in L(s

j

),

which equals the conditioning context partition element of the entire subtree rooted

77

by state s

j

. That is,

L(s

j

) =

8

>

>

>

<

>

>

>

:

A

�

context(s

j

) if the model is FSMX,

C

j�1

(pre�x(s

j

) � symbol(s

j

)) if the model is created by transition-

redirection, as are DMC models,

where C

j�1

(), pre�x(), symbol(), and context() are de�ned as in Chapter 4. On

the other hand, with update exclusion, the estimate is conditioned by a conditioning

context partition element that approximates

L(s

j

)�

[

fk:su�x(s

k

)=s

j

g

L(s

k

):

(It would equal the above set of strings if not for the fact that the value of

count[a; s

j

; 1] is updated every time a child of state s

j

sees symbol a for the �rst

time.)

Although update exclusion improves PPM's performance, the original PPM

�

im-

plementation did not employ update exclusion. Update exclusion would interfere

with PPM

�

's original state-selection mechanism if the updates were implemented in

PPM

�

as they are in PPM. This is because PPM* does not always compute the

coding distribution from the frequency data at the maximum-order excited state.

Instead, PPM* selects the lowest order virtual (or deterministic) excited state when

any virtual states are excited. This is a good policy because it always selects the

excited virtual state that will produce the lowest-entropy probability distribution: all

simultaneously excited virtual states v have seen the same single event, ajv, at least

once; the lowest order excited virtual state will have seen a at least as many times

as any of its descendants; and the excited virtual states are always the highest order

excited states.

As we explain in Section 7.4, selecting a state is semantically equivalent to selecting

an entire model, which requires pretending that all descendants of the selected state

never existed. Without update exclusions, the value of count[a; s] is the same as if

s had no descendants in the su�x tree. However, with update exclusions, the counts

for all symbols recognized at the selected state s will be too small, if s has children.

78

5.2 Update-Exclusion Techniques for use with State Selection

To apply update exclusion to su�x-tree FSMs (e.g., PPM

�

) in a way that is compat-

ible with state-selection (including PPM

�

's original state-selection mechanism), we

emulate the e�ect that update exclusion has on the coding distributions computed,

dynamically, on a per-node basis, instead of globally.

5.2.1 Dual Frequency Updates

Let X be a global binary parameter such that X = 1 if the update exclusion option is

enabled for the model, otherwise, X = 0. Let s

0

be a variable that denotes which, if

any, of the currently excited states has been speci�cally selected as the source of the

coding distribution, which will be computed from some combination of the excited

states of Markov order equal to or less than the order of s

0

; when no excited state

has been speci�cally selected, s

0

equals null. We will use u : S ! f0; 1g to denote

whether we use update-excluded frequencies at a given state s, where

u(s) =

8

<

:

0 if s = s

0

X otherwise.

We shall keep two frequency counts for each event: PPM

�

's update-excluded fre-

quency counter, count[a; s; 1], always equals the number of times that a is novel

at state s or any child of s, and count[a; s; 0] always equals the number of times

a has been seen when any state of the subtree rooted by s has been excited. Note

that in internal nodes of PPM, or any node of PPM

�

, count[a; s; 1] � jAj + 1,

where A is the input alphabet. So, PPM

�

's unbounded order constrains the value of

count[a; s; u(s)] to be a function of the su�x-tree structure itself. In PPM

�

models,

count[a; s; 1] equals the number of children of s with out-events labeled a, plus 1, if a

was seen at state s before it was seen at s's children. Similarly, count[a; s; 0] equals

the number of (descendants) of s with out-events labeled a, plus 1, if a was seen at

state s before it was seen at s's descendants. Furthermore, since the counter values

are a function of the model structure, explicit counters are not strictly necessary in

a PPM* implementation.

In general however, on-line su�x-tree models that combine blending or mix-

tures with state-selection will require the dual frequency counts count[a; s; 1] and

count[a; s; 0]. Henceforth, we shall use the dual notation.

79

5.2.2 Maximum-Order Updates

The combination of state-selection and update exclusion opens the possibility for a

third update technique for use with state selection, max-order updates. When max-

order updates are enabled, count[a; s; 1] is incremented only if s is the maximum

order excited state. Max-order updates are interesting because they will cause the

conditioning context partition element to actually equal the context class that is

approximated by update exclusion:

L(s

j

)�

[

fk:su�x(s

k

)=s

j

g

L(s

k

):

We hypothesized that max-order updates are the best update technique for com-

puting mixtures with state selection, just as update exclusions have been the best for

computing mixtures without state selection. State selection dynamically prunes the

su�x tree at the selected state s

0

, with the e�ect that all frequencies in the entire

subtree rooted by s

0

are viewed as belonging to s

0

: Thus, with state selection, max-

order frequency updates are completely visible to ancestor states. However, without

state-selection, max-order frequency updates would not be visible to all ancestors,

and regular update exclusions compensate for this. The use of max-order updates

causes states to have zero frequencies for events that have occurred before, but whose

frequency increment was given to a proper descendant.

Preliminary experiments with max-order updates supported our conclusion that

update exclusion approximates the max-order update context partition, however,

there was no performance advantage. Max-order updates are not considered further

in this thesis, except as an option required in our taxonomy to exactly emulate the

DMC variant GDMC [TR93].

5.3 Summary

The principal update schemes given here, full updates, update exclusion, and max-

order updates, form a single set of interchangeable options for the executable taxon-

omy and are empirically evaluated in Chapter 9. Update exclusion has been very

successful in improving the coding distribution computations of PPM variants, which

historically do not employ information-theoretic state selection. Regardless of which

of the update options is selected for organizing the frequency data that are used to

80

estimate the coding distribution (the topic of next chapter), only frequency distribu-

tions obtained using full updates are appropriate for performing information-theoretic

state selection (Chapter 7). Thus, the best frequency update schemes for computing

the coding distribution are distinct from the ideal update scheme for state selection.

This problem is resolved by using dual frequency counts for each event at each state,

whenever state selection is combined with a coding distribution computation that

requires an update scheme other than full updates.

Chapter 6

ESTIMATING THE CODING DISTRIBUTION

The preceding chapters have presented frequency update options for any su�x

tree, and have shown the structural similarities between PPM, PPM*, and DMC

models by transforming them each to a su�x-tree representation with an explicit

mapping between states and conditioning contexts. The next two chapters address

the following questions concerning the excited states of any su�x-tree model:

� Which excited state's frequency data will provide the best probability estimate?

� How can we combine the frequency data at the excited states to provide the

best probability estimate?

This chapter answers the second question, with a general technique that we call

\mixtures," which we decompose into two components: a mixture weighting function

and an inheritance evaluation time.

The best-performing method in the data compression literature for computing

probability estimates of sequences on-line using a su�x-tree model is the blending

technique used by PPM [CW84b, Mof90]. Blending can be viewed as a bottom-

up recursive procedure for computing a mixture, barring one missing term for each

level of the recursion, where a mixture is basically a weighted average of several

probability estimates. We shall show by decomposition that mixtures generalize the

techniques used in DMC variants [CH87, TR93], as well as PPM variants, and thus

these techniques, along with other variants of mixtures, are interchangeable.

6.1 Recursive Mixtures

We are concerned with estimating a probability P

e

(a

i

ja

1

a

2

� � �a

i�1

) using the frequen-

cies stored at the excited states of a su�x-tree FSM (see Chapter 2 of [Bun96]), where

the excited states are those states of the FSM whose associated conditioning context

partitions contain the sequence a

1

a

2

� � �a

i�1

2 A

�

. At any time, the excited states

of a su�x-tree FSM are linked, at least abstractly, by an unbroken chain of su�x

82

pointers, which, for a given state s, point to the state with the smallest conditioning

context that properly contains the conditioning context of s.

Let s

0

and s

�1

be the order 0 and order �1 states of a su�x tree, respectively,

and de�ne �(s) to be the number of times a novel event has occurred at a given state

s. That is,

�(s) = jfa : count[a; s; u(s)] > 0gj;

where a 2 A, the �nite input alphabet, and u : S ! f0; 1g selects between full-

update frequencies given by count[-,s,0] and update-excluded frequencies given by

count[-,s,1] at state s. Thus,

u(s) =

8

<

:

0 if s = s

0

, the selected state;

X otherwise,

where X is a global binary variable denoting whether update exclusions are enabled

for the model. Note that count[a; s; 1] = 0, count[a; s; 0] = 0, so the value of u(s)

does not a�ect the value of �(s): Let count(a; s) = count[a; s; u(s)] + k; where k is

the initial frequency value (ideally, k = 0), and k is a global constant that remains

�xed for the lifetime of the model. Lastly, let the node-count function count : S ! R

be de�ned as follows:

count(s) =

X

a:count[a;s;u(s)]>0

count(a; s):

Given the above de�nitions, a simple bottom-up procedure for recursively com-

puting a mixture that estimates the probability of a given event, a

i

= a, starting

from an excited state s, is

P

e

(ajs; i) =

8

<

:

W (s) �

count(a;s)

count(s)

+ (1�W (s)) � P

e

(ajsu�x(s); h(s; a; i)) if s 6= s

�1

1

jAj+1��(s

0

)

otherwise

where 0 � W (s) < 1, and h(s; a; i) � i.

Assuming the mixture computation is initiated at the maximum-order excited

state, this procedure computes a mixture of maximum-likelihood probability esti-

mators for all excited states, except for the order �1 state, which contributes an

explicitly assumed initial distribution that must be non-zero for all possible symbols

in A.

83

The inheritance evaluation time h(s; a; i) de�nes when, relative to the input se-

quence, the ancestor's contribution to the mixture, P

e

(ajsu�x(s); h(s; a; i)), is com-

puted. The recursive mixture weighting function W () determines the degree of inu-

ence the ancestor's contribution will have relative to the contribution of the frequen-

cies local to state s.

There are two essential questions that must be addressed when de�ning an e�ective

mixture:

� How do we de�ne the mixture weighting function W ()?

� How do we de�ne the inheritance evaluation time h(s; a; i)?

6.2 Mixture Weights

Our goal is to de�ne an easily computable weighting functionW : S ! [0::1) that will

cause P

e

(ajs) to assign the greatest likelihood to the currently scanned symbol, on

average. This implies, for one thing, that our weighting function should assign a low

value to W (s) whenever it is likely that the currently scanned symbol corresponds to

an event that has never occurred when s was excited, so that the weight 1 �W (s)

of the ancestors' contribution to the mixture is relatively high. Thus the choice of

weighting function reduces to a solution to an ancient problem|the \zero-frequency

problem," or how to assign a likelihood to an event that has never occurred before|for

which it is widely agreed that no principled solution exists, in the absence of a priori

knowledge [WB91]. Therefore, the merit of any weighting function for a universal

model is determined analytically by how the assumptions it imposes interact with

other assumptions made in the model, and empirically by its performance on actual

data.

Several approaches to solving the zero frequency problem, known as \escape"

mechanisms, have been used successfully with PPM implementations. Four of the

simplest and best-performing escape mechanisms are known in the literature as `A,'

`B,' `C,' and `D' [WB91]. In this section, we shall show how these simple escape

mechanisms correspond to di�erent weighting functions W (s). We introduce a gen-

eral formula for W (s) that relies upon global changes to the initial values of event

frequencies to express each of these escape mechanisms exactly, and which allows

e�cient implementation of the mixture computation.

84

6.2.1 Mixture Weights with Variable Initial Frequencies

Each of the escape mechanisms `A'{`D' can be described exactly as a general weighting

function W (s), where

W (s) =

count(s)

count(s) +

�(s)

d(s)

;

if we let the escape mechanism determine the global constant k (which is ideally

zero) such that count(a; s) = count[a; s; u(s)] + k if count[a; s; u(s)] > 0, and

count(a; s) = 0 if count[a; s; u(s)] = 0. This way, the four escape mechanisms are

given by the following assignments to d(s) and initial frequency value k:

A: d(s) = �(s) k = 0

B: d(s) = 1, k = �1

C: d(s) = 1, k = 0

D: d(s) = 2, k = �

1

2

.

What assumptions about the input data do these choices of weighting formulas

impose? Each of these weighting functions base the weights on the number of times in

the past that a node s has \missed," that is, failed to assign a non-zero likelihood to

the scanned symbol when excited. The key di�erence among the escape mechanisms

is how much emphasis is placed on the predictions conditioned by excited low order

states relative to the predictions conditioned by excited high order states.

In the general weighting formula for W (s) above, more emphasis is placed on

higher order states as d(s) increases in numerical value. Thus, if we sort the escape

mechanisms by increasing values of d(s), we get `B' � `C' � `A' � `D', when �(s) < 2

and `B' � `C' � `D' � `A', otherwise. With larger values of k, more emphasis is placed

upon higher order states. Thus if we sort the escape mechanisms by increasing values

of k, we get `B' � `D' � `C' � `A'. Clearly `B' places the lowest relative emphasis

on high order states, while `A' tends to place the greatest emphasis on high order

states. Mechanisms `D' and `C', which consistently and signi�cantly outperform `A'

and `B' in practice, are somewhere in the middle. Method `D' systematically favors

deterministic states (i.e., states that recognize only one input symbol|they are always

among the highest order excited states), and tends to slightly outperform `C'.

One clear bene�t of these particular escape mechanisms is that they simplify the

85

algebra required to compute the mixture. With escape formulas `A'{`D', the general

mixture formula becomes:

P

e

(ajs; i) =

8

>

<

>

:

count(a;s)+

(

�(s)

d(s)

�P

e

(ajsu�x(s);h(s;a;i))

)

count(s)+

�(s)

d(s)

if s 6= s

�1

1

jAj+1��(s

0

)

otherwise

where 0 � W (s) < 1.

6.2.2 Inherited Frequencies

In general, given any of the weighting formulae above, we can express the mixture as

P

e

(ajs; i) =

8

>

<

>

:

numerator(W (s))

count(s)

�count(a;s)+I(a;s;i)

denominator(W (s))

if s 6= s

�1

1

jAj+1��(s

0

)

otherwise,

where I(a; s; i) = (�(s)=d(s)) � P

e

(ajsu�x(s); h(s; a; i)): I(a; s; i) is the inherited fre-

quency for event ajs at time i. The next section covers the computation of I(a; s; i)

and how di�erent computation times a�ect the model.

6.3 Inheritance Evaluation Times

There is a spectrum of evaluation times for inherited frequencies, which denote when

�(s)=d(s) � P

e

(ajsu�x(s); h(s; a; i)) is computed, relative to the lifetimes of state s

and event ajs. We use inheritance evaluation time h(s; a; i) to explicitly specify

P

e

(ajsu�x(s)) as a function of the frequency data that are available at one of the

following times:

� inherit at model creation: P

e

(ajsu�x(s); h(s; a; i)) is computed when the initial

model consisting of state s

�1

is created; h(s; a; i) = 0.

� inherit at state creation: P

e

(ajsu�x(s); h(s; a; i)) is computed when state s is

added to the model; h(s; a; i) equals the length of the input sequence that had

been processed so far when s was added to the model.

� inherit before novel event update: P

e

(ajsu�x(s); h(s; a; i)) is computed when

novel event ajs �rst occurs, before its frequency is incremented; h(s; a; i) equals

the length of the input sequence that had been processed so far when a occurred

for the �rst time when s was excited.

86

� inherit at every event visit: P

e

(ajsu�x(s)) is (re)computed each time event ajs

occurs; h(s; a; i) = i.

Inheritance evaluation time is a global option that remains �xed for the lifetime

of the model. In the remainder of this work we will usually simplify the notation by

making evaluation times i and h(s; a; i) implicit, thus replacing P

e

(ajs; i), I(a; s; i),

and P

e

(ajsu�x(s); h(s; a; i)) with P

e

(ajs), I(a; s), and P

e

(ajsu�x(s)) respectively.

There are two important features that must be considered in the choice of an

inheritance evaluation time. The computational and memory cost of its implemen-

tation, and what the inheritance evaluation time assumes about the data, relative

to the other times. Once the relative di�erences in inheritance evaluation times are

understood, the model designer can intelligently trade o� the appropriateness of the

assumption about the target data versus the space and time requirements of an im-

plementation.

6.3.1 Inheritance Evaluation Times in Practice

Probably the most natural time for computing inherited frequencies I(a; s) is every

single time the state s becomes excited: in this case, the mixture is simply a weighted

average of the probabilities estimated from the current frequency data at each excited

state. In [BCW90] this approach is called \full blending." However, computing such

weighted averages is expensive, and computations cannot be reused between visits to a

given set of excited states. Furthermore, there was no published evidence prior to this

work that it produces better probability estimates|no published on-line algorithms

use it. The remaining alternatives generally allow faster implementations.

At the other extreme, inherit at model creation corresponds to adding a constant

assumed initial frequency distribution to the observed frequencies at any given node.

This approach leads to simple analyses and does not a�ect asymptotic convergence.

Thus it is employed by most theoretical constructions that use information-theoretic

state-selection. However, our experiments show that the probability estimates pro-

duced by using this inheritance evaluation time are not competitive with the other

inheritance times considered here, even when they are combined with state selection.

The DMC algorithm, which originally used a binary alphabet, adds each new state

to its model by \cloning" an eligible parent state. Each clone receives a scaled copy of

the parent state's frequency distribution the moment it is added. Since, as we proved

87

in Chapter 4 of [Bun96], the conditioning context relationship among clones and

parent states is equivalent to that among su�xes in other su�x-tree models, inherit

at state creation corresponds to the numerical aspects of cloning. For non-binary input

alphabets and aggressive model growth heuristics, evaluating every symbol's inherited

frequency at every new state is prohibitive, in terms of memory and computation

costs, as was historically demonstrated with larger-alphabet parameterizations of the

DMC algorithm. We include this inheritance time only for completeness, and do not

evaluate its performance.

Overall, the best approach practically, and performance-wise, is the evaluation of

inherited frequencies whenever a novel event a is seen at state s. This is similar to

blending in PPM variants, and can also be used in lazy implementations of large-

alphabet DMC variants.

6.3.2 The Signi�cance of Inheritance Evaluation Time

Basically, inheritance evaluation times select the degree to which recent vs. relatively

historical event frequencies that are conditioned by a given set of contexts predict

the behavior of the events conditioned by proper subclasses of those contexts. In

contrast, mixture weighting functions determine the degree to which inherited vs.

observed event frequencies predict the behavior of events conditioned by a given set

of contexts.

There are more direct and quanti�able ways of establishing how much more recent

events should matter than events that happened long ago. For example, a sliding

window of input history can be kept, and as sequence symbols that have passed

through the bu�er pass out of the bu�er, the event frequencies originally incremented

by these symbols can be decremented [Wil91]. Alternatively, at regular intervals,

all the frequencies in the model can be scaled by a small constant, which would

implement an exponential decay function [How93]. Or, the same process could be

carried on locally, on a per-state basis, when the state's total frequency exceeded a

threshold [Mof90].

However, regardless of whatever merit direct techniques for recency-weighting

stored frequencies may have (none has been shown to consistently improve predictions

of blended techniques), these approaches each add an additional feature to the model.

Even without such an added feature, every on-line model must by default implement

88

an inheritance evaluation time; and, the selection of an inheritance evaluation time

should be made with some consideration of its appropriateness for the input data.

In fact, we can compare the relative e�ect that di�erent inheritance evaluation times

have on model inferences by means of an analogy to family traditions for passing

parental knowledge and experience down to children.

Some Intuition

Suppose instead of stochastic models, our su�x-trees represent family trees, where the

nodes correspond to people (for simplicity, consider family members of only one sex),

the events correspond to situations that the people may �nd themselves in (such as

handling a bully, training a puppy, initiating courtship, buying a used car), and the

su�x relationship corresponds to the parent relationship. Here, the \inheritance"

received by children is parental knowledge, which is based upon the parent's past

experiences plus the parent's own inheritance from the grandparent. Each inheritance

evaluation time corresponds to a family tradition for passing knowledge down to

children that is strictly maintained by the descendants in each family tree. Note that

in this analogy, as in su�x-tree stochastic models, the weight that a child assigns to

the advice received (inherited) from his parent, relative to his own experience, is a

matter completely independent from when he receives advice.

The most conservative family tradition allows each parent to pass down only

what was passed to him from his parent. This results in each child receiving only the

ancient laws that trace back to the family's progenitor. In this tradition, children

cannot bene�t from their parent's (or grandparent's, : : :) experience, and therefore

must learn mostly from their own experience. Clearly younger children born to such

traditions would have trouble competing with same-age children from more commu-

nicative families, although this competitive di�erence diminishes among older, more

experienced children. This corresponds to inherit at model creation.

In contrast, the most liberal family tradition requires that every child, before

handling any event in his lifetime, regardless of his own experience, listen to advice

from his parent, based upon the parent's and other ancestor's current knowledge.

The drawback of this approach is frustratingly high communication overhead. How-

ever, the bene�t is that a parent is able to completely revise the poor advice on a

given subject he may have given when he himself was relatively inexperienced. This

89

corresponds to inherit at every event visit.

In the middle lies the approach that is taken naturally by most actual families:

children consult parents when they face a completely novel situation, and rely increas-

ingly on their own experience with each recurrence of the situation. This corresponds

to inherit at novel event occurrence. Blending is a simpli�cation of this approach:

children consult parents for novel events but rely thereafter upon their own experience

with each recurrence.

Last is the rather anxious approach in which the parent coaches each child on how

to handle every imaginable situation as soon as the child is able to record the informa-

tion, rather than as the situations occur. Assuming a �nite number of situations and

that the child has perfect memory, there remain two problems with this approach.

First, the parent is constantly learning and revising his own knowledge about each

of these situations. The later he passes down his knowledge, the higher-quality the

advice. In this tradition, children born to inexperienced parents su�er, compared to

children born as the parents grow more mature, and they su�er far more than they

would if the parents were allowed to revise their early advice. Second, when there

are a lot of possible situations, the cost of communicating and remembering them is

high, and most of the information will never be of use to the child. This corresponds

to inherit at state creation and the number of \life's situations" correspond to the

size of the input alphabet.

6.4 Computing the Probability Estimate

Once a mixture weighting function W (s) and an inheritance evaluation time have

been decided upon, how do we express these decisions in an on-line estimation of the

probability of a sequence? In on-line probability estimation, we must compute the

sum of the likelihoods P

e

(a

i

jŝ

i

) for each a

i

in a

1

a

2

� � �a

n

, where ŝ

i

is a state that is

specially selected as the starting node for the recursive mixture computation using the

states excited by a

1

a

2

� � �a

i�1

. (State selection is the topic of the companion paper

[Bun97a].) For the present discussion, assume that ŝ

i

is the maximum-order excited

state at time i). If we are performing (arithmetic) coding or decoding, we must also

compute the sum of the conditional probabilities, P

e

(bjŝ

i

), of each b preceding a

i

in

the (arbitrarily) ordered list of events bjŝ

i

.

Recall that computing P

e

(bjŝ

i

) requires access to the ancestor likelihood

90

P

e

(bjsu�x(ŝ

i

)). Now, for inheritance evaluation times other than at every visit,

by de�nition, for each event bjŝ

i

, we will not recompute the ancestor likelihood

P

e

(bjsu�x(ŝ

i

)) for every b that precedes a

i

in ŝ

i

's (the selected state's) event list.

Nonetheless, for all states s it is necessary that

P

a2A

P

e

(ajsu�x(s)) � 1, regardless

of when the individual P

e

(ajsu�x(s)) are computed. Ideally we want that sum to

be as close to 1 as possible, otherwise, codespace is wasted. The problem is that

we cannot count on the current ancestor likelihoods of already-seen events to equal

or exceed the ancestor likelihoods we computed for them earlier, since those events

may have been seen arbitrarily many times since their likelihoods were computed.

Solutions to this problem generally

� under-estimate ancestor likelihoods of veteran events so that their ancestor

likelihoods are guaranteed to be less than what they would be if they were

recomputed, and

� over-estimate ancestor likelihoods of novel events as they occur to reclaim the

ancestor codespace that is wasted by underestimating ancestor likelihoods of

veteran events.

6.4.1 Exclusion

We can reclaim the codespace wasted by over-estimated novel-event likelihoods by

subtracting the proportion of the ancestor codespace that corresponds to veteran

events, before computing a novel event's proportion of the ancestor codespace. This

is best accomplished with a technique known as exclusion (not to be confused with up-

date exclusion), which was developed for PPM [Mof90]. The basic idea is this: when

exclusion is enabled for the model, only consider the frequencies of event ajsu�x(s)

if the higher-order descendant s is currently excited and event ajs has not occurred

before. More precisely, rede�ne count : S ! R to be the sum of the event counts for

all unexcluded events that have occurred previously following a given state, where a

symbol a is de�ned to be excluded at state s if s has an excited child s

0

such that

count[a; s

0

; u(s)] > 0. That is,

count(s) =

X

a : a is not excluded

count[a; s; u(s)] > 0

count(a; s):

91

Unless stated otherwise, we shall assume that exclusions are enabled in all computa-

tions described from here on.

6.4.2 Blending's Missing Term

Blending [CW84b] evaluates the ancestor likelihood P

e

(ajsu�x(s)) before novel event

updates, but at all subsequent occurrences of any string in the set L(s) � a. Blending

assumes that P

e

(ajsu�x(s)) = 0, and thereby drops a term of our mixture formula,

for events that are not novel. This certainly ensures that the reused ancestor likeli-

hoods for veteran events are less than they would be if they were recomputed from

the current frequencies at s's ancestors. The result is that subsequently computed

probability estimates of the veteran event ajs are slightly deated, while exclusions

ensure that future estimates of all symbols that have yet to be seen following the a

member of the context L(s) will be slightly inated.

6.4.3 State Variables for Mixture Computation

In general, the inheritance evaluation time before novel event updatesmakes it di�cult

to ensure that

X

a:count[a;s;u(s)]>0

P

e

(ajsu�x(s)) +

X

a:count[a;s;u(s)]=0

P

e

(ajsu�x(s)) � 1:

However, an alternative is to satisfy the requirement that

(1�W (s))�

0

@

X

a:count[a;s;u(s)]>0

P

e

(ajsu�x(s)) +

X

a:count[a;s;u(s)]=0

P

e

(ajsu�x(s))

1

A

� (1�W (s));

which can be accomplished less drastically than blending's solution of setting the

ancestor likelihood P

e

(ajsu�x(s)) to zero for any veteran event ajs. Instead, we

subtract (1�W (s)) � P

e

(ajsu�x(s)) from the ancestor code space (1�W (s)) after

the ancestor likelihood is �rst computed. This is accomplished by implementing the

mixture formula using the additional state-variables �[s], which replace �(s)=d(s);

and I[a; s], which is required for computing I(a; s) when inheritance evaluation time

equals before novel event updates (although we use use it for all evaluation times

in our cross-product implementation). The other required state variables are the

event frequencies, count[a; s; 0] and count[a; s; 1], which are required for correctly

92

combining state selection with either type of update exclusion (i.e., regular update

exclusion or maximum-order updates); plus an exclusion vector, Excluded[a], which

records which symbols were excluded by higher order excited nodes, and which must

be reset for each input sequence symbol a

i

.

Initially, count[a; s; 1] = count[a; s; 0] = 0, and �[s] = z(s), where z(s) = 1 if

weighting function `A' is used, and z(s) = 0 for the mixture variants discussed so

far.

1

Then, for each input symbol a

i

, after a

i

's probability has been computed and

its codepoint transmitted, the frequencies corresponding to a

i

must be updated at all

states excited by a

1

a

2

� � �a

i�1

as follows:

8s : s 2 S; a

1

a

2

� � �a

i�1

2 L

i

(s);

�[s] =

8

<

:

�[s] + 1 if ajs is novel and WeightFunction 6= `A',

�[s] otherwise.

count[a; s; 1] =

8

>

>

>

>

<

>

>

>

>

:

count[a; s; 1] + 1 if s has no excited children;

count[a; s; 1] + 1

if MaxOrderUpdates = FALSE and

ajs or ajs

0

is novel, where s = su�x(s

0

);

count[a; s; 1] otherwise.

count[a; s; 0] = count[a; s; 0] + 1:

The value of I[a; s] is determined during probability estimation, for each excited

state s that equals the selected state ŝ

i

or one of its ancestors. In a compressor

or decompressor, probability estimation is intertwined with arithmetic coding. The

relationship between arithmetic (de)coding and probability estimation that computes

mixtures of su�x-tree frequency distributions is described in the recursive procedure

code: S � A� f0; 1g ! [0 : : : 1) given in Figure 6.1.

The procedure in Figure 6.1 shows how the set of inheritance times a�ect the

recursive mixture computation when applied to on-line coding. However, the pseu-

docode is designed for generality without obfuscating the conceptual simplicity: any

actual implementation (including ours) must di�er to be more computationally e�-

cient and to avoid the instabilities of oating-point arithmetic. One optimization in

1

For DMC variants, z(s) will be initialized to the frequency of the edge redirected when s was

added to the model.

93

procedure code(s 2 S, a 2 A [f�g, Coding 2 f0; 1g)

r; x; sum; I

s

2 <; b 2 A;

sum 0:0; r numerator(W (s))=count(s); I

s

P

c:Excluded[c]

I [c; s];

repeat b symbol of next unexcluded event in s's event list;

if Exclusion then Excluded[b] True endif

if Inherit Time = At Every Event Visit then

8p 2 ancestors(s) [fsg; I [b; p] P

e

(bjsu�x(p)) � �[p]

endif

I

s

 I

s

+ I [b; s]; x r � count(b; s) + I [b; s];

if Coding then

if b 6= a then sum sum+ x

else arith renorm transmit(sum; x; denominator(W (s)))

endif

else

if sum+ x < Codepoint � denominator(W (s)) then sum sum+ x

else a b; output a;

arith renorm receive(sum; x; denominator(W (s));Codepoint)

endif

endif

until b = a or s's event list is exhausted;

if b 6= a then

if Coding then arith renorm transmit(sum; �[s]� I

s

; denominator(W (s)));

else arith renorm receive(sum; �[s]� I

s

; denominator(W (s));Codepoint);

endif

Insert novel event ajs into s's event list;

I [a; s] (�[s] � I

s

) � code(a; su�x(s)); x I [a; s]

else if Exclusion then 8bjs 2 s's event list, Excluded[b] False endif

return(x=denominator(W (s)))

end procedure

Figure 6.1: On-line (de)coding of event a = a

i

using recursive mixture with inheri-

tance.

94

particular bears mention: with any of the escape mechanisms `A', `B', `C', or `D', and

inherit before novel event update, I[a; s] can be permanently subtracted from �[s] if

count() is rede�ned to be count(a; s) = count[a; s; u(s)] + k + I[a; s]:

During compression, code(ŝ

i

; a

i

,1) computes and returns the probability of the cur-

rently scanned sequence symbol a

i

and incrementally transmits the high-order bits

of the decoder's global variable Codepoint, which identi�es the unique subinterval

of [0 : : : 1) that corresponds to a

i

, using an arithmetic coder. During decompression,

code(ŝ

i

; �; 0) incrementally receives the high-order bits of the Codepoint, and computes

and returns the probability of the symbol, a

i

, that corresponds to the unique subin-

terval of [0 : : : 1) that contains the value of Codepoint. (The probability of a

i

equals

the width of a

i

's subinterval in [0 : : : 1).) The procedures arith renorm transmit() and

arith renorm receive() manage the arithmetic coder's and decoder's internal states,

respectively, including the decoder's Codepoint. The Codepoint is incrementally trans-

mitted (high-order bits �rst) using the subinterval endpoints that are speci�ed at the

low end by

sum=denominator(W (s));

and at the high end by

(sum+ numerator(W (s)) � count(a

i

; s) + I(a

i

; s))=denominator(W (s))

if event a

i

js is not novel, or

(sum+ �[s])=denominator(W (s))

if a

i

js is novel.

6.5 Probability Estimation in DMC

The remaining undescribed aspect of DMC and the remaining undescribed features

of our mixture technique both involve how DMC computes its probability estimate.

DMC can be viewed as computing a mixture of the form we have described; however,

DMC weights the mixture di�erently from any PPM variant and it permanently

alters the ancestor-state sources of inherited frequencies as well. Recall that DMC

adds each new state to the model as the new destination of a redirected transition.

95

When a new state is �rst added to a DMC model, the observed frequencies of all

symbols given that state are zero, and therefore cannot be the basis of a probability

estimate. So, DMC computes a complete initial frequency distribution for each newly

added state when it is created, using the frequency data at the original destination of

the redirected transition. We showed in Chapter 4 that the original destination state

is the su�x of the new state. Thus, DMC's approach is very similar to computing

a mixture with inheritance evaluation time set to at state creation. The principal

di�erence is that DMC subtracts the frequency distribution assigned to the newly

added child state from its parent's distribution, and initializes its mixture weights to

permit this subtraction. That is, DMC permanently subtracts the inheritance at a

new state s from the frequency distribution at its parent, su�x(s).

6.5.1 Frequency Distributions and Cloning in DMC

In DMC's initial model, M

0

, a uniform frequency distribution is assumed over the

(reexive) out-transitions of s

0

. Frequency updates can be viewed either as max-

order updates or as update exclusions (Chapter 5), which have equivalent results when

combined with inherit at state creation. The weighting function `A' allows emulation

of DMC with our mixture formula, because `A' initializes event frequencies to zero and

`A' prevents I[a; s] from requiring re-evaluation by freezing �[s] at its initial value

z(s) = count[symbol(s);pre�x(s); 1]. Other weighting functions, which increase

�[s] as novel events occur, can be combined with mixtures that set z(s) as DMC does

and freeze P

e

(ajsu�x(s)) at the value determined at the time state s was added, but

I[a; s] will have to be re-evaluated each visit.

As each s

k+1

is added, it becomes the new destination of a transition corresponding

to the event cjs

p

, and each out-transition from the original destination, s

t

, is copied

and assigned an inherited frequency. That is,

8b 2 A; I[b; s

k+1

] ratio � count[b; s

t

; 1];

where s

t

= �

k

(s

p

; c) and

ratio count[c; s

p

; 1]=�

b2A

count[b; s

t

; 1]:

Then, the update-excluded frequencies of the copied out-transitions are reduced by the

frequencies assigned to the copies,

96

8b 2 A; count[b; s

t

; 1] count[b; s

t

; 1]� I[b; s

k+1

]:

For all other transitions in the model, event counts and inherited frequencies remain

unchanged.

This process is pictured in Figure 6.2, using the the de�nitions of Section 4.3.1,

that is, s

t

= su�x(s

k+1

) and s

p

= pre�x(s

k+1

). The process of redirecting an edge

to a new state can be viewed as a reclassi�cation of the strings that take FSM M

k

across that edge. Note the resulting `homogeneity assumption' regarding the inherited

distribution of next-symbol frequencies that are conditioned by the redirected edge,

relative to the original frequency distribution at its original destination su�x(s

k+1

)

that is implicit here. A more exact (and expensive) way to compute the new state's

inheritance would require having each edge remember the exact distribution of next-

symbol frequencies that are conditioned by strings which have crossed the edge in the

past.

6.5.2 Lazy Cloning and other DMC variants

Since cloning corresponds to computing an inheritance at state creation, we can post-

pone computing the inheritance and redirecting the associated transition correspond-

ing to an event until that event occurs for the �rst time. The result, lazy cloning, is

pictured in Figure 6.3. The principal di�erence between lazy cloning and mixtures

that inherit before novel event updates is whether or not the inheritance is subtracted

from the su�x state's frequency distribution. The second di�erence is that emulating

DMC requires adding another implementation parameter to the weighting functions:

z(s) is the initial value for the counter �[s

k+1

], and is set to the frequency of the

redirected transition, that is, z(s) = count[symbol(s

k+1

);pre�x(s

k+1

); 1].

Actually, if we de�ne a cloning mixture as any mixture that initializes �[s] to the

value of count[symbol(s

k+1

);pre�x(s

k+1

); 1], we can generalize cloning in several

ways. For example, any inheritance time can be combined in a cloning mixture that

uses weighting function `A.' Alternatively, any weighting function can be combined

in a cloning mixture that inherits after state creation. The choice between whether

or not the inheritance is subtracted from the clone's parent distribution constitutes a

third option for cloning mixtures, and can be combined with inherit at state creation

or inherit before novel event update.

97

a b c

c

before a

b
c

a b c

a b c

a b c

c

after
cloning

a

b
c

a

b
c

...
...

s

k+1

k+1

k+1

prefix(s)

suffix(s)

inheritance:

Figure 6.2: Cloning, Frequency Distributions, and Retractions in DMC.

When an eligible edge redirected, its new destination is a clone of its former desti-

nation, and the frequency distribution at the original destination is divided between

the two destinations. The frequencies in the clone's copy of the distribution (the

inheritance) sum to the number of times the redirected edge has been traversed, and

the original destination state keeps the remaining frequencies. Note that the number

of distribution subinterval calculations and the number of newly added edge pointers

corresponds to the size of the input alphabet jAj, so in practice, DMC has always

taken a binary input alphabet.

98

a b c

c

a

b
c...

a

c

a

b
c

a

... k+1

c

a

b
c...

after
lazy
cloning

a b c

before

during
next
visit to
s

a b c

s
k+1

k+1

k+1

s
k+1

k+1

k+1

prefix(s)

suffix(s)

prefix(s)

suffix(s)

lazy inheritance:

lazy inheritance:

Figure 6.3: Lazy Cloning in DMC. When a new state is created, the frequency

of the event that a novel symbol is seen (�) is set to the frequency of the redirected

edge, and thus the probability of traversing the su�x() pointer when in that state

is 1:0. Whenever a novel symbol is seen in a given state, its portion of the state's

inheritance is recursively evaluated, before the symbol's probability is estimated and

before any frequency updates occur at the given state. Note that a novel symbol's

portion of the inheritance is subtracted from �'s frequency and added to the symbol's

frequency.

99

6.5.3 Cloning and PPM

Incidentally, PPM and PPM* can be emulated using cloning. Simply set the edge-

redirection criterion so that it will redirect a transition upon creation if its destination

has order less than the order bound. For computing mixture weights, any of the

functions used with PPM will do. Simply set the parameter z(s) to the frequency of

the redirected edge, which is always zero with this cloning criterion.

6.6 Summary

We must always compute some sort of mixture when computing on-line probability es-

timates with su�x-tree FSMs, and a recursive mixture is completely de�ned in terms

of its recursive weighting function W (s), and its inheritance evaluation time. For

example, PPM's blending is a forgetful type of mixture that lazily evaluates its inher-

itances as novel events occur, while DMC's \cloning" [CH87] produces a mixture that

evaluates its inheritances when new states are added, but which also subtracts the

inherited frequency from the parent distribution. The weighting functions and inher-

itance evaluation times are independent of each other and of whether inheritances are

subtracted from parent distributions; thus mixtures generalize both PPM's blending

and the quantitative aspects of DMC's cloning.

In earlier chapters we presented two model structuring mechanisms (that is, string-

transition splitting for PPM variants, and symbol-transition redirection for the struc-

tural aspects of DMC's cloning). These mechanisms determine the model's linguistic

family and are orthogonal to the three mixture descriptors above. In the previous

chapter we presented another independent design option: three ways to organize the

frequency data into the frequency distributions that are combined when computing

mixtures. This chapter introduced a generalization and orthogonal decomposition of

blending into mixture weighting formula, inheritance evaluation time, initial inher-

itance mass, and whether inheritances are subtracted from parent frequency distri-

butions. In the next chapter, we complete our basic list of orthogonal sets of design

options for describing su�x-tree models by adding a set of techniques that perform

information-theoretic model selection. Afterwards, we give controlled empirical stud-

ies of various elements of the cross product of these orthogonal sets, which were

executed using an implementation of that cross product.

Chapter 7

SELECTING THE CODING MODEL

This chapter introduces into practice a set of techniques for information-theoretic

state selection that have been developing in asymptotic results for over a decade.

State selection, which actually implements the selection of a model from among a set

of competing models, is performed at least trivially by all su�x-tree FSMs used for

on-line probability estimation. The set of state-selection techniques presented in this

chapter combine orthogonally with the other sets of design options covered so far.

7.1 Stochastic Complexity

The stochastic complexity of a string is the length of its optimal o�-line encoding,

that is, its Minimum Description Length, or MDL [Ris89]. A string's MDL is the

sum of the lengths of an encoding of a model plus the encoding of the string with

respect to that model such that the total encoding length is minimal over all possible

models within an assumed model class. Here we consider the problem of computing

the input sequence's MDL on-line, by assuming for each input symbol that the set

of possible FSM models is represented by the set of nested subtrees of the su�x-tree

FSM. Our goal is to code each input symbol with the model that assigns the lowest

stochastic complexity to the already processed portion of the input. At any point

in the input sequence, each nested FSM is in a particular state. The set of current

states of the nested FSMs is the set of excited su�x-tree states. By selecting one of

the excited states, we are in fact selecting an entire FSM with that state as its current

state.

Note that stochastic complexity assigns a coding penalty to each model state. The

penalty is a lower bound on the number of bits required to encode that state. Most

other treatments of the state-selection approach to on-line modeling (e.g., [Ris83,

WLZ92]) require that a re�nement (e.g., the children or deeper descendants) of a state

be selected in preference to that state if the performance of that re�nement improves

the performance of the model frontier containing the original state by an amount

101

exceeding the cost of encoding the states comprising the re�nement. However, for

the following reasons, we believe that there should be no coding penalty for selecting

a re�nement to a given state during on-line modeling:

� In on-line modeling, the model is not explicitly coded: the deterministic algo-

rithm of the encoder is emulated by the decoder to deduce the state that was

selected for coding without any side-information about the actual model.

� In on-line modeling, the coding penalty is incorporated into the inaccurate

probability estimates from early in the sequence [CW84a]. Thus, re�nement

coding penalties are incorporated into the records of past performance based

on those estimates.

� Automated experiments with various parameterizations of our executable tax-

onomy, which evaluate the e�ect of loose constant lower bounds on the o�-line

coding cost of model re�nements, indicate that positive coding penalties de-

grade on-line performance.

Therefore, for each input symbol a

i

, we shall simply select the excited state that

represents the model that has performed the best on the input sequence a

1

a

2

� � �a

i�1

.

7.2 A Performance Metric for States

Thus we need to associate a performance metric with each state to use for minimizing

the codelength of the entire sequence a

1

a

2

� � �a

n

. The optimal codelength equals

X

i

� logP (a

i

ja

1

a

2

� � �a

i�1

);

and we model all past occurrences of all su�xes of a

1

a

2

� � �a

i�1

using the currently

excited states fs : a

1

a

2

� � �a

i�1

2 L(s)g. We therefore wish to minimize the minimal

codelength that will be assigned by the probability estimator to symbol a

i

given the

currently excited states,

� logP

estimated

(a

i

jfs : a

1

a

2

� � �a

i�1

2 L(s)g);

for all a

i

, where L(s) is the set of strings that cause the nested FSM represented by

the su�x-tree to enter state s or any state in the subtree rooted by s.

A performance metric that will help accomplish this goal is maintained as follows:

For each state s we maintain a counter called D[s] that accumulates the codelengths

102

that state s would have assigned to the symbols that were currently scanned whenever

it has been excited. That is, for each input a

i

, at all s such that a

1

a

2

� � �a

i�1

2 A

�

L(s),

we increment D[s] by � logP

e

(a

i

js). We also keep track of]s, the number of times

that s has been excited since it was added to the state set. Then, we measure the

performance of each state s by its expected codelength, D[s]=]s. From here on we

shall loosely refer to each state's expected codelength D[s] as its \MDL." Now we are

prepared for selecting, for the purpose of assigning a probability to each successive

source symbol, the best-performing model represented by the excited states.

7.3 Basic Approaches to State Selection

There are three basic approaches to information-theoretic state selection. Each ap-

proach can be viewed as selecting a complete frontier of the subtree rooted at s

0

;

where a frontier of state s's subtree T consists of the leaves of some subtree of T

rooted at s, and a frontier is complete if it consists of s or of complete frontiers of all

of s's children.

1. Top-down from s

0

, select the �rst state s whose children's combined expected

codelengths fail to improve s's expected codelength.

2. Bottom-up from the maximum order excited state, select the excited child of

the �rst state s whose children's combined expected codelengths improve s's

expected codelength.

3. Top-down, select the minimum order excited state for which no complete fron-

tier of its subtree improves its expected codelength.

The �rst approach was introduced, using entropies instead of MDLs [Ris83], and then

later using MDLs [Ris86a]. This technique systematically under-estimates the local

order of the model [WLZ92]; it is a hill-climbing technique that can get stuck in

local minima. The second approach is introduced here as an obvious complement to

the top-down hill-climbing approach, to complete the taxonomy. It systematically

over-estimates local order. Both methods are most e�ciently implemented using a

single MDL counter D

0

[s] at each state s, which records the di�erence between the

per-symbol codelength assigned by the state s and the codelength assigned by the

currently excited child of s. That is, given that D

0

[s] = 0 8s 2 S initially, for every

103

state s such that s has an excited child t at time i, let

D

0

[s] D

0

[s]� log(P

e

(a

i

js)) + log(P

e

(a

i

jt)):

Both hill-climbing methods approximate the third approach. The reason that the

hill-climbing approaches are suboptimal is that there may be a complete frontier below

any given state's children that reduces the state's expected codelength, even though

the children themselves do not. Weinberger, et al present a formal, asymptotically

convergent solution to the third approach that requires an order bound [WLZ92].

Below, we describe our own solution, which requires no order bound and which allows

e�cient implementation. But �rst we will explain certain semantic considerations

involving context partitions and frequency updates.

7.4 Model Semantics III: Competing Context Partitions

State selection in a su�x-tree FSM implements the selection of an entire partition on

the set of possible conditioning contexts, where the partition element associated with

each state is the set of strings that will cause the FSM to enter that state or any state

in its subtree. We restrict ourselves to the selection of complete frontiers because only

complete frontiers impose a complete partition on the set of conditioning contexts.

For every possible input history a

1

a

2

� � �a

i�1

, there must exist a state in the coding

model selected at time i whose conditioning context contains a

1

a

2

� � �a

i�1

.

It is fortunate that a state-selection procedure need only consider the metrics

located at the excited states. However, the designer must remember that he or she

is actually implementing the selection of an entire conditioning context partition

from among a set of competing partitions. This means that a node must always be

considered for selection along with its siblings. To select, for example, the excited

state with the lowest expected codelength, or the minimum-order excited state whose

expected codelength is better than that of its excited child [Fur91], is incorrect, not

merely suboptimal. This is because the children of a state s (i.e., those nodes whose

contexts correspond to minimal extensions of the state's context) may have better

performance than the state s, even while the currently excited child of s has worse

performance than s does.

Frequency updates a�ect the conditioning context partition imposed by the state

set. Therefore, the choice of update mechanism must be carefully considered in com-

104

bination with state selection. At �rst glance, only full updates, which increment

the frequency distribution at every excited state (and therefore at every simulated

FSM model), seem appropriate for models with state-selection. However, there are

two reasons to combine state-selection with update exclusion, which increments fre-

quencies at only the highest-order excited states. First, update exclusion improves

performance of mixtures (which we propose to combine with state selection). Sec-

ond, update exclusion correctly handles the incomplete frontiers that result from

lazily evaluating re�nements to su�x-tree states [Bun96, see Section 7.6]. With mix-

tures, the probability estimate is de�ned recursively in terms of ancestor nodes. State

selection does not cause us to assume that the children of these lower-order nodes

do not exist, therefore update-excluded frequencies should be used to compute the

lower-order terms of the probability estimate, even when state selection is employed.

Regardless of whether the model uses mixtures or constructs incomplete frontiers,

update-excluded frequencies must not be used to compute the probability estimate

at the selected state, since the act of selecting a state assumes that the descendants

of the selected state do not exist. Thus, disabling update exclusion at the currently

selected state is required when it is enabled globally for the modeling algorithm.

To allow update-exclusion to be selected on a per-state basis when it is globally

enabled for the modeling algorithm, we have introduced a dual update mechanism

(see Chapter 5) that maintains both update-excluded and full-update frequencies at

every state.

7.5 A Percolating State-Selection Mechanism

Here we present a dynamic-programming solution to the problem of �nding the best-

performing model frontier without resorting to hill-climbing or an order-bound. In

simple terms, our solution recursively \percolates" the performance of each subtree's

best frontier up to its root's ancestor. Figure 7.1 gives the two procedures, Perco-

late MDLs: S�A! fg and Select: S ! S[fnullg that implement the two principal

steps. These procedures require two MDL accumulators at each actual state s, D[s]

and F [s], which respectively contain the state's locally accumulated MDL, and the

accumulated MDL of the best complete frontier in the subtree rooted by the state.

Select(s

0

) follows su�x pointers from the current maximum-order excited state

s

0

to the root s

0

, and then searches top-down for the �rst excited state s such that

105

procedure Select (s 2 S)

selected 2 S [fnullg;

if s 6= s

0

then

selected Select(su�x(s));

if selected then return selected endif

endif

if D[s] � F [s] then return s else return null endif

end procedure

procedure Percolate MDLs(s 2 S, a 2 A)

old D, old F 2 <;

old F F [s];

F [s] F [s]� log(P

e

(ajs; update exclusion = true));

while s do

old D D[s];

D[s] D[s]� log(P

e

(ajs; update exclusion = false));

if su�x(s) then

di� 2 <;

di� minfD[s]; F [s]g �minfold F,old Dg;

old F F [su�x(s)];

F [su�x(s)] F [su�x(s)]� di�

endif

s su�x(s)

end while

end procedure

Figure 7.1: A State Selection Mechanism with Percolating Updates

D[s] is no greater than F [s]. For each excited state s, Percolate(s; a

i

) recomputes,

bottom-up, the local description length, D[s], and F [s], the description length of

the best-performing frontier in s's subtree. The procedures in Figure 7.1 implement

the following bottom-up recomputation of F [s] for each state s, starting from the

maximum-order excited state s

0

, by resetting F [su�x(s)]:

F [su�x(s)]

F [su�x(s)]�minfD[s]; F [s]g+minfD[s]� logP

e

(a

i

js); F [s]� logP

e

(a

i

js

j

)g;

where s

j

is the excited state located on the best-performing frontier of the subtree

106

rooted by s.

For on-line su�x-tree modeling algorithms in general, calls to Select and Per-

colate MDLs �t into the sequence of calls to the other routines as follows. At the

beginning of processing the sequence a

1

a

2

� � �a

n

, the model consists of the (excited)

state s

0

, and its parent, s

�1

, where F [s

0

] = D[s

0

] = F [s

�1

] = D[s

�1

] = 0. Before

each subsequent symbol a

i

is processed by the probability estimation routines, Se-

lect is called to select the best excited state ŝ. Then, P (a

i

ja

1

a

2

� � �a

i�1

) is estimated

as P

e

(a

i

jŝ). After a

i

has been processed by the probability estimation routines, the

maximum-order excited state s

0

is tested for eligibility to be extended by new states.

If any new states s are added to the model, they are added top-down as su�x-linked

descendants of s

0

, before Percolate MDLs() is called. The MDL counters at new

states are initially zero, that is, F [s] = D[s] = 0, and the pointer to s

0

is set to

the maximum-order novel state. Then, the MDL counters are updated by execut-

ing Percolate MDLs(s

0

; a

i

). Finally, the event frequencies are updated at all excited

states before advancing to the next scanned sequence symbol a

i+1

and setting s

0

to

the maximum-order state that is excited by a

1

a

2

� � �a

i

.

7.6 Model Semantics IV: Incomplete Frontiers

Most implementations of data compression algorithms, including the methods studied

in this work, add children states on demand instead of all at once. Thus, few states in

the su�x-tree will posess all possible children. Here, we explain how to use update-

excluded frequencies during MDL updates to ensure that the MDLs keep track of

the performance of models corresponding to complete context partitions, even in

incomplete su�x trees.

In an on-line su�x-tree FSM in which a state s does not posess all possible

children, the re�nement to s's context partition element L(s) that is represented by

s's children is incomplete because

L(s)�

[

t:su�x(t)=s

L(t) 6= fg:

To complete s's context partition element, we maintain a \shadow child" of s that

107

maintains a next-symbol frequency distribution that is conditioned by

L(s)�

[

t:su�x(t)=s

L(t):

As explained in [Bun96], Chapter 5, this is the same frequency distribution that is

formed by the update-excluded frequency counts count[�; s; 1] if maximum-order

updates are globally enabled for the modeling algorithm. Alternatively, it is approxi-

mated very closely by the update-excluded frequency counts count[�; s; 1] if regular

update exclusion is globally enabled instead. Therefore, update-excluded frequencies,

in addition to full-update frequencies, are required to correctly implement state se-

lection in context models that lazily re�ne their context partitions, independently of

whether update-excluded frequencies are used when estimating the coding distribution.

Whenever no state is selected from among the currently excited states, the \shadow

child" of the maximum order excited state s

0

, is the selected state, and the local order

estimate equals the order of s

0

plus one. To implement the selection of a complete fron-

tier, the probability estimator should use the update-excluded frequencies conditioned

by s

0

when computing the coding distribution, and when updating the MDL F [s

0

] of

the best-performing frontier below that state. That is, during MDL updates, incre-

ment F [s

0

] by � logP

e

(a

i

js

0

; update exclusion = true); which equals the shadow child's

codelength, and update D[s

0

] by the maximum order excited state's codelength,

� logP

e

(a

i

js

0

; update exclusion = false): The quantity P

e

(a

i

js

0

; update exclusion = u)

equals a weighted sum of the inheritance I[a

i

js

0

], and the maximum likelihood of a

i

given the frequencies count[b; s

0

; u], 8b 2 A, as computed in Chapter 6.

7.6.1 Implementation Issues

When PPM

�

or PPM are implemented with string-transitions, initial values of F []

and D[] are intimately bound to the presence of virtual states that lie between the

symbols of a string that labels a transition. All states except s

0

and s

�1

exist as

virtual states before they become actual states. Virtual states require no MDLs: if

no actual node is selected, then the minimum order (i.e., lowest entropy) excited

virtual node v is selected. In that case, P

e

(a

i

ja

1

a

2

� � �a

i�1

) is computed as P

e

(a

i

jv)

using no update exclusion at v. If no actual node is selected and there are no excited

virtual states, P

e

(a

i

ja

1

a

2

� � �a

i�1

) is computed as P

e

(a

i

js

0

) using no update exclusion.

108

Any time the excited virtual states are not split, the minimum-order virtual state's

codelength is added to F [s

0

] at the maximum excited actual state s

0

. Then, assuming

the mixture weighting function is not `B', when an excited virtual state v is split into

a new actual node s, the D[s] and F [s] are both initialized to

� log

0

@

P

e

(a

v

js

0

) �

Y

1�i<]v

i

i + �

1

A

;

where

� a

v

is the symbol that followed v in the past,

� P

e

(a

v

js

0

) is the probability estimate of a

v

at the existing maximum order excited

actual state s

0

(computed with update exclusions enabled for s

0

),

�]v is the number of times that state v has been excited in the past, and

� � equals .5 with mixture weighting scheme `D', and � = 1 if scheme `A' or `C'

is used.

If the mixture weighting function is `B', D[s] and F [s] are both initialized to

]v � � logP

e

(a

v

js

0

);

if]v < 2, and

2 � � log

0

@

P

e

(a

v

js

0

) �

Y

2�i<]v

i� 1

i

1

A

;

otherwise.

Deducing the frequencies is straightforward; however, deducing the true accumu-

lated codelengths would require child and sibling pointers at the source of the string

transition, plus signi�cant searching overhead. Thus the procedure given above ap-

proximates the MDLs of virtual nodes when they are split, by imposing the following

simplifying assumptions:

� A virtual state can have no (virtual) children other than its excited child.

� The excited virtual states were added to the model simultaneously; thus s

0

provided each virtual state's initial probability estimate.

� The initial estimate P

e

(a

v

js

0

) has not changed since the virtual states' context

strings �rst occurred.

109

The e�ects of these approximations are measured against an exact implementation

in Section 9.

7.7 State Selection with Mixtures

In general, an on-line modeling algorithm that uses convergent state selection will

ignore the high-order descendants of a given node until the combined estimated prob-

ability distributions of those descendants have better performance, or lower entropy,

than the frequency distribution at the given node. A simple explanation of why

blending and other mixtures work so well in on-line modeling algorithms is that these

techniques enable a given state's probability estimate to converge to the characteris-

tics of the input data sooner. Accelerating this convergence is essential to a state's

usefulness if it has high Markov order. Even for large input sequences, high-order

states are invariably starved for data. In practice, mixtures accelerate the convergence

at particular states. That is, mixtures lower the expected entropy of their estimated

probability distributions.

Thus, the combination of mixtures with state selection will accelerate the con-

vergence of models. That is, higher-order states will be selected sooner than with

state selection alone. The algorithm resulting from this combination should produce

a model that performs well for both short and long sequences.

7.8 Summary

Before this thesis was conceived, there had been no published empirical studies of

the performance of any state-selection technique, nor was the idea used in any pub-

lished implementation. In this chapter we explained the concepts and existing state-

selection techniques from the information-theoretic literature, and then presented a

novel technique that overcomes the drawbacks of the existing techniques, which resort

to order-bounds or suboptimal hill-climbing. With this chapter we have completed the

description of the principal orthogonal elements of a cross-product taxonomy for on-

line su�x-tree models of sequences. In the next chapters, we use our implementation

of that cross product to present controlled experiments that conclusively demonstrate

our main hypothesis: that the combination of information-theoretic state selection

and mixtures delivers performance superior to that of either technique alone.

Chapter 8

AN EXECUTABLE TAXONOMY OF ON-LINE

MODELING ALGORITHMS

This chapter gives an overview of our decomposition of a group of existing and

novel on-line sequence modeling algorithms into component parts. Our decomposi-

tion, and its implementation, show that these algorithms can be implemented as a

cross product of predominantly independent sets of algorithmic features. The result

is all of the following: a test bed for executing controlled experiments with algorithm

components, a framework that uni�es existing techniques and de�nes novel tech-

niques, and a taxonomy for describing on-line sequence modeling algorithms precisely

and completely in a way that enables meaningful comparison.

8.1 Design Philosophy

The executable cross product and nomenclature described here are used to produce

and describe all of our experimental results, which are given in Chapter 9. The design

of our software involved the following steps:

1. Identify a set of basic, independent features that most sequential models share.

2. Transform inuential techniques from the literature to a unifying control and

data structure that decomposes into the basic features.

3. For each basic feature, de�ne the set of interchangeable options corresponding

to existing, abstractly distinct implementations of that feature.

4. For each basic feature, try to improve upon the existing solutions, and add

those improvements to the set of options.

5. Implement the cross product of the sets of interchangeable options for each

feature. Each element in the cross product should be a viable, working on-

line modeling algorithm. The cross product will properly include the original

algorithms from the literature, and should reproduce their predictions exactly.

111

Because we combine major components (e.g., state selection and mixtures) and sev-

eral minor components (e.g., update exclusions and inheritance times) for the �rst

time, and because we added novel options to the component sets (e.g., percolating

and bottom-up state selection, and new edge-redirection tree structures), the cross

product implements many genuinely novel on-line modeling algorithms. Furthermore,

it provides complete experimental control for the evaluation of individual model fea-

tures.

8.2 The Common Control Structure

The main control loop of the cross-product implementation performs the following

computations in sequence for each input symbol, using an adaptive FSM model of

the input sequence:

1. Excite the model states whose conditioning context partitions contain the pro-

cessed input sequence, and make the transition into the next maximum order

excited state, initially the root node, and subsequently determined in step 6.

2. Select the coding model, which is represented by one of the excited states.

3. Estimate the probability of the currently scanned symbol using the frequencies

at the selected state and possibly its ancestors.

4. Add new descendants to the maximum-order excited state via splitting or redi-

rection of the incoming transition taken, if it is eligible. The maximum-order

novel descendant becomes the new maximum order excited state.

5. Add a novel event (i.e., out-transition) corresponding to the currently scanned

symbol to each novel excited state or any excited state that \missed." (They

will be the highest-order excited states.)

6. Compute the next maximum-order excited state and prepare the next-state

transitions into all simulated models. This step also manages the su�x-linked

virtual nodes in the string-transition su�x-tree implementation.

7. Update the MDLs at all currently excited states.

8. Compute before-update inheritances at excited actual states, if applicable.

9. Update frequencies at excited states.

112

10. Compute after-update inheritances at excited states, if applicable.

8.3 The Cross Product of Distinguishing Features

The algorithmic variants that we test in the Chapter 9 are speci�ed in the column

headings of the tables using the conventions described below for describing the major

features of modeling algorithms: model structure, probability estimation, frequency

updates, and state selection. The description below accomplishes four goals:

� It assigns English names to each feature option, to form a language for precisely

describing on-line statistical algorithms.

� The symbols accompanying the English names give a terse labeling system that

completely describes on-line algorithms.

� It explains our software's command-line options (see Figure 8.1).

� Lastly, it gives a synopsis of the modeling concepts presented in this work.

8.3.1 Model Structure and Growth

Su�x-tree model structure is determined by the size of the input alphabet, the initial

model, any order bounds, and whether the model is implemented with symbol-labelled

transitions or string-labelled transitions (which are described in Chapter 3 and de-

noted by the shorthand `*'). Thus, the following features specify model structure:

Alphabet Bits, b: DMC uses a binary input alphabet, with b = 1; the other tech-

niques we test use a 256-ary alphabet, with b = 8.

Minimum Order: This global bound o guarantees that at time i, for every unique

substring w of a

1

a

2

� � �a

i�1

such that jwj � o, there will be a unique state s

in the su�x tree with conditioning context string context(s) = w. Either

the su�x-tree has no global order bound (default, given as `-1') or an order

bound is speci�ed simply as a scalar (e.g., `3'). The bound is a minimum order

bound because when a non-zero order bound is combined with one of the edge-

redirection criteria other than R

0

, portions of the su�x-tree that have already

reached the order bound may grow past it.

Order-Zero Initial Model, M : Required to exactly emulate DMC and GDMC.

Early predictions are negligibly better with an order -1 initial model, the default.

113

Usage: runDMC [-B(atch)-U(decode)-b-e-s-v-o-r-P-y-z-s-w-i-m-K-x-G-D-M-c] file

::

Alphabet_Bits: (the log of the input alphabet size)

-b {1, ..., 16} (Default = 8)

neg_log_EPSILON: (EPSILON = minimum frequency. Resolution R of floating point

arithmetic coder (R >= 32) and Max File Size determine Minimum EPSILON.

-e {1, ..., R} (DEFAULT = 10 allows a Max File Size of 4.19 M symbols).

(Max Frequency = Max File Size = 2^{R-(-log_2(EPSILON))}.

State_Selection:

-s 0 (Default) select no state

-s 2 select min-order deterministic excited state; else select no state

-s 3 select excited state on Min-Entropy frontier; else select no state

-s 5 same as 3, but approx Min-Entropy frontier top-down;

-s 6 same as 3, but approx Min-Entropy frontier bottom-up;

State_Selection_Threshold: (small means nodes mature at young age)

-v <integer> (Default = 0, actual threshold == n/1024)

Minimum_Order: (max order of nodes added by string event splitting)

-o -1 Infinite Order (PPM_Star)

-o 0 Zero Order + nodes added by edge reclassification (Default, DMC)

-o {1, ..., 32767} (PPM, PPM-DMC hybrid where higher-than-min-order

nodes are added by eligible event reclassification)

Reclassification_Eligibility; (for last_taken guest in_event)

-r 0 Never (Default, PPM, nodes are added ONLY by string-event splitting)

-r 1 FREQUENCY: if freq(curr_node)+ 1.0 - freq(in_edge) > Thresh'd,

-r 2 MDL: if guest dest'n->parent->MDL- dest'n->parent->extnsMDL > Thresh_other

-r 3 Destination Order < Min_Order;

Owner_Edge_Protection: (don't redirect edges more than once);

-P (DEFAULT= off)

Reclassification Thresholds: (small value speeds growth)

-y <integer> (edge threshold = v/1024.0, Default = 0.0)

-z <integer> (other threshold = w/1024.0, Default = 0.25)

Reclassification_Tree_Structure: (redirect guest events/edges to new classes/states)

-t 0 one edge to one new state (DMC)

-t 1 chain of linked guest_edges to one new state

-t 2 chain of linked guest_edges to sibling set of new states

-t 3 chain of linked guest_edges to suffix chain of new states

Mixture_Weights: P_est(a|n) = #n/(#n+q) * #a/#n + q/(#n+q) * P_est(a|n->parent)

where #n = Sum_{b:count(b|n) >= 1}{#b}, and

-w A #a = count(a|n); q = Initial_Mass_Of_Parent_Mixture;

-w B #a = count(a|n) - 1; q = |{b: count(b|n) >= 1 }|

-w C #a = count(a|n); q = |{b: count(b|n) >= 1 }|

-w D #a = count(a|n) - 0.5; q = 0.5* |{b: count(b|n) >= 1 }|

Initial_Mass_Of_Inheritance: (new nodes'initial escape counts before updates)

-i <integer> Default: = 0.0(do not use 0.0 with -p A)

Mixture_Inheritance_Time: (when is P_est(a|n->parent) computed relative to n?)

-m 0 at model creation Uniform Prior

-m 1 at node creation DMC

-m 2 at novel event prediction, Blending:

count(a|n) >=1 => P_est(a|n->parent)=0.0

-m 3 before novel event updates

-m 4 after novel event updates (like 3, slightly more aggressive)

-m 5 at every event visit

Satisfy_Kirchoff: Subtract inheritance from parent's distribution.

-K (DEFAULT = off). In edge's counts will equal out_edge's counts.

Update_Exclusion: (which nodes use in_situ freqs, or subtree freqs too)

-x 0 Off (Default): every state uses counts gathered from its entire subtree

-x 1 PPM Update Exclusion: Only selected state uses counts from its subtree.

-x 2 Maximum-Order Update Exclusion

::

Figure 8.1: The command-line options of the executable taxonomy.

114

Transition Redirection: Two distinct operations are used to build models: transi-

tion splitting builds string-transition models, while transition redirection builds

symbol-transition models. Thus the model structure is additionally determined

by how and when symbol-labelled transitions are redirected.

Redirection Criteria: These determine the eligibility of the transitions taken

into the currently excited states for redirection.

never, R

0

(or equivalently, �): Only add nodes by splitting string tran-

sitions. (Implements linear-space PPM and PPM*.)

popularity, R

1

: Redirect transition if and only if its count exceeds thresh-

old y=1024 and the contribution to its destination's count by other

in-edges exceeds threshold z=1024. (Implements DMC and GDMC.)

MDL, R

2

: Redirect transition if and only if the best-performing frontier

below its destination's parent has an expected minimal codelength

that is z=1024 base e bits per character less than that of its parent.

(A novel experimental option.)

order, R

3

: Redirect transition if and only if the order of its destination is

less than the Minimum Order. (Used for full-space implementations

of PPM, which, incidentally, are implemented as a variant of DMC.)

Owner Protection, P : this option limits the redirection criterion to \non-

owner edges," that is, edges leaving states with Markov order not less

than the order of the destination. Prevents transition re-redirection.

Redirection Tree Structure: These options are logically part of the edge

redirection criteria, and can redirect the transitions that were taken into

the currently excited states as a group. They are easier to understand if

they are left whole, rather than decomposed into single-edge redirection

criteria. Models built solely by string-transition splitting are not a�ected

by this option.

one-to-one, T

0

: If the edge entering the current maximum-order excited

state is eligible, redirect it to one new state. (DMC and GDMC.)

many-to-one, T

1

: If the edge entering the current maximum-order ex-

cited state is eligible, redirect it and all eligible su�x-lined edges above

it to the same new state. (A novel, experimental option.)

115

many-to-children, T

2

: If the edge entering the current maximum-order

excited state is eligible, redirect it and all eligible su�x-linked edges

above it to distinct new states that are children of the original destina-

tion state, and siblings of each other. (A novel, experimental option.)

many-to-descendants, T

3

: If the edge entering the current maximum

order excited state is eligible, redirect it and all eligible su�x-linked

edges above it to distinct new states that are su�x-linked descendants

of the original destination state. (Emulates PPM and WLZ.)

Redirection Thresholds, y and z: for tuning redirection criteriaR

1

and R

2

.

8.3.2 Probability Estimation with Mixtures

Chapter 6 explains how all probability estimators in the baseline algorithms can be

described as recursive mixtures of the frequency distributions at di�erent excited

states. The principal features that distinguish any mixture are when, relative to the

state's lifetime, each state's inherited distribution is computed and what weight the

inheritance is assigned.

Inheritance Evaluation Time: The inheritance at a given state s is a frequency

distribution constructed from the frequency data present at its ancestors at a

given point in time, relative to s's lifetime.

inherit at model creation, M

0

: This is the degenerate mixture that corre-

sponds to every state having a uniform frequency distribution initially.

inherit at state creation, M

1

: Required by DMC, but too costly for 256-

ary alphabets, since every state will automatically has 256 out-transitions.

In contrast, adding the out-transitions as needed results in models where

states typically have only 3-5 out-edges.

inherit at novel event prediction, M

2

: This is blending, the default mix-

ture for PPM variants. Note that this type of \inheritance" di�ers from

the others in that it is forgotten (i.e., set to zero) after its �rst use.

inherit before novel event updates, M

3

: As a short hand, we call this op-

tion M when it will not cause confusion.

inherit at every event visit, M

5

: Every time a state becomes excited, re-

compute the frequency distributions conditioned by its ancestors|they

116

may have changed since last visit.

Initial Mass of Inheritance, i: Let hypothetical variable z be the initial mass of

the inheritance, or initial escape count. Then, to correctly emulate PPM vari-

ants, z must equal 1.0 for escape method A, and 0.0 otherwise. However, to

emulate DMC, each state's initial escape count z must be set to the count on

the redirected in-transition. Now, since DMC with lazy cloning can be param-

eterized to exactly emulate PPM by redirecting out-transitions when they are

�rst created, and therefore have zero counts, the value of z at the destination

state can be set to the count on the redirected transition for PPM variants as

well, with no loss of correctness. Therefore, to provide lazy DMC variants with

the same range of mixture options as PPM variants, we de�ne z to equal the

initial mass of the redirected transition, plus i. Note that i must be set to 1:0

to exactly emulate weighting formula A, and 0:0 to exactly emulate B;C;D.

But i can be set to other non-negative values as well. We will only specify i

when it is not set to the default value that corresponds to the given Mixture

Weighting Formula.

Mixture Weighting Formula, A;B;C; or D: These options de�ne mixture

weights by determining what gets added to the inheritance mass z (which is

initialized as described above) at a given excited state after it \misses," and the

initial count k of the added event.

A: z remains unchanged, k = 0:0;

B: z is incremented by 1:0; k = �1:0;

C: z is incremented by 1:0; k = 1:0;

D: z is incremented by 0:5; k = 0:5.

Zero-Sum Inheritance, K: If this option is enabled, the inheritance given to a

state is subtracted from its parent's distribution. Emulates original DMC. The

original binary DMC algorithm did this, which enabled the model transition

counts to satisfy Kircho�'s law: the incoming tra�c equals the outgoing tra�c.

But all techniques with mixtures can have this capability.

117

8.3.3 Frequency Updates

Chapter 5 fully describes three update options, how each of them a�ects the semantics

of the model, and how to emulate them simultaneously in a single model that combines

non-trivial mixtures and state selection.

Update Exclusion, X: The default for PPM and PPM* variants is no update ex-

clusion for any states. Otherwise, the short-hand `X' is included in the column

header of PPM variants to denote the selective application of update exclusion

to eligible states. When we need to be more speci�c we use a longer notation:

full updates, X

0

: All excited states get a frequency update.

update exclusion, X

1

: Only the excited states that failed to recognize the

currently scanned input, and the maximum-order state that recognized it,

receive frequency updates.

max-order updates, X

2

: Only max-order excited state gets a frequency up-

date. Required for exactly emulating DMC and GDMC.

Special GDMC features: These options, shown in Figure 8.2, have no abstract

rationalization that we know of, but they are necessary for exactly emulating

GDMC, and they can be used with any other algorithm in the cross product.

restriction G: Do not copy predicted out-transition to the out-transition lists

of newly added states.

restriction D: Do not update the frequencies at newly added states.

copy depth, C: If any excited states \missed", only the C highest-order ex-

cited descendants of the maximum order excited state that \hit" receives a

copy of the out-transition corresponding to the currently scanned symbol.

To emulate GDMC, let C = 1.

8.3.4 The Selection of the Coding Model

The set of state selectors is empirically evaluated in Chapter 9, using a range of state

selection thresholds. The percolating state selector mentioned below is presented in

Chapter 7. All of our implementations are MDL-based for e�ciency, but they could

have been implemented using actual entropies of the frequency distributions. We

118

::::::::::::::::::: Options Included to Emulate GDMC Exactly :::::::::::::::::::

Dont_Copy_Event_To_Clones:

-G (Default = FALSE, copy to clones if ok by Max_Event_Copy_Depth)

Dont_Update_Freqs_At_Clones:

-D (Default = False, update all excited nodes, including new ones)

Order_0_Initial_Model:

-M (Default = FALSE = use order -1 initial model. No -m0 uniform_prior)

(when combined with -m1, all nodes will have |alphabet| out_events).

Max_Event_Copy_Depth:

-c 0 copy predicted event all the way to new leaf (Default)

-c {1,2,..,255} copy event to c min-order extns of predicting_node

::

Figure 8.2: The special command-line options added to accommodate GDMC.

have implicitly assumed throughout our work that MDL-based implementations are

equivalent in e�ect to entropy-based implementations.

State Selectors: These options determine how the coding model is dynamically

selected for each input symbol.

none, S

0

: The default action is to select no state. In this case, the selected

order, which we tally for our experiments, is counted as the order of the

maximum-order excited state plus one.

heuristic, S

2

: Select the min-order excited state with one out-edge [CTW95].

percolating, S

3

: See companion paper [Bun97a]. The construction of [WLZ92]

(WLZ) uses an order-bounded state selector that produces the same re-

sults as our percolating state selector does in a model that has the same

structural order bound, assuming that both models use the same selection

threshold. As a shorthand, the percolating state selection mechanism is

denoted by S when it is the only information-theoretic state selector used

in a set of experiments.

top-down, S

5

: An MDL-based implementation of the hill-climbing method

used in Rissanen's Context algorithm.

bottom-up, S

6

: A bottom-up complement to S

5

:

119

:::::::::::::::::::::::::::::::::: Examples:::::::::::::::::::::::::::::::::::::

DMC: -b1 -s0 -r1 -y2048 -z2048 -t0 -o0 -x2 -wA -i0 -m1 -K -M -c0

GDMC: -b8 -s0 -r1 -y0 -z256 -t0 -o0 -x2 -wA -i0 -m3 -G -D -M -c1

PPM: -b8 -s0 -r3 -t3 -o? -x1 -wC -i0 -m2 -c0

PPM: -b8 -s0 -r0 -o? -x1 -wC -i0 -m2 -c0

PPM*: -b8 -s2 -r0 -o-1 -x0 -wC -i0 -m2 -c0

WLZ: -b8 -s3 -v? -r3 -o? -x0 -wA -i1 -m0 -c0

Context: -b1 -s5 -v? -r0 -o-1 -x0 -wA -i1 -m0 -c0

Context2: -b8 -s5 -v? -r0 -o-1 -x0 -wA -i1 -m0 -c0

BestFSMX: -b8 -s3 -v0 -r0 -o-1 -x1 -wD -i0 -m3 -c0

BestDMC: -b8 -s0 -v0 -r1 -y1024 -z2048 -t0 -o0 -x1 -wD -i0 -m3 -M -c0

::

Figure 8.3: Command lines that execute the Markovian baselines, plus others.

State-Selection Threshold, v: The actual threshold is v=1024, and is used to test

the di�erence in expected bits (log base e bits, that is) per character between

two models represented by su�x-adjacent states. Higher thresholds cause the

algorithm to wait until a state is fairly mature before it is ever used for a

prediction.

The correctness of our implementation vis �a vis state-selection thresholds war-

rants comment. The algorithms Context and WLZ both call for formulaic state-

selection thresholds that are generally a function of the alphabet size (and model

order for WLZ), and act as lower bounds to the `coding penalties' that are theo-

retically incurred by adding descendants to a state. However, in our preliminary

experiments, we found that in order to give these techniques a sporting chance

against other techniques, a threshold that never exceeded zero was required. So

we replaced the tighter formulaic lower bounds with scalar thresholds, which

provide much looser lower bounds, but better results and faster run times.

8.4 The Command-Line

The command-line \usage" message of our program is listed in Figures 8.1 and 8.2 to

illustrate how precisely the nomenclature mirrors the actual command-line features.

The actual command lines that must be typed to make the cross product emulate

the baseline algorithms, ignoring the existence of preprogrammed defaults, are shown

120

in Figure 8.3. These examples demonstrate the expressive power of our taxonomy|

the �rst six lines plus the �nal two lines of text completely describe seven di�erent

state-of-the-art algorithms

1

and explicitly point out all of the abstract di�erences

among them.

2

For each algorithm, the options that are left unspeci�ed do not have

any e�ect on the particular combination of other options.

The remaining two command lines approximate the original binary-alphabet Con-

text algorithm [Ris83] and a 256-ary variant [Ris86b]. The emulations are only ap-

proximate because the true Context model is a non-Markovian FSMX �nite state

machine, which cannot be represented state-for-state with an FSM that has explicit

transitions. However, the true Contextmodel is embedded upon the unbounded-order

FSMX model constructed by PPM*, since that model contains a state for every sub-

string of the already-processed portion of the input. And since Context used top-

down hill-climbing state selection, most of the extra states in the Markov FSM will

be ignored. If anything, our Markov approximation of Context should achieve better

performance than the original

3

, since the only extra states that will ever be used will

be states that tend to improve the performance of the model.

8.5 Summary

Our taxonomical approach to describing and de�ning novel on-line modeling algo-

rithms constitutes a break with tradition in practical data compression research. Re-

searchers in the past have emphasized (sometimes arti�cial) di�erences among their

algorithms with memorable acronyms and typically treated existing techniques as

\black boxes" (thus often ignoring meaningful parameters) when comparing them to

their own constructions. However, quite often the abstract di�erences among appar-

ently distinct approaches can be expressed in a single technique as di�erent values of

parameters that have simple connotations.

1

The seven algorithms are DMC [CH87], GDMC [TR93], PPM [Mof90], PPM* [CTW95],

WLZ [WLZ92], plus BestFSMX [Bun97b] and BestDMC, which are the best-performing FSMX

and DMC variants tested with this taxonomy so far ([Bun96, Chapter 9]). PPM is listed twice

because there are two very di�erent ways to implement it as a su�x tree, both of which produce

identical predictions.

2

Now, that's data compression!

3

comparable performance baselines for Context are unavailable

121

The early chapters of this thesis transformed the dominant algorithms from the

practical literature to the control and data structure that is shared by the dominant

algorithms from the information-theoretical literature. Then, the subsequent chap-

ters described in detail the principal groups of components that every online model

must have: a means for selecting the coding model, a way to compute probability

estimates from the frequency data organized in the model, a scheme for updating that

frequency data, and a mechanism and criterion for growing the model structurally.

This chapter outlined the subcomponents of each of these parts and combined those

components into a single executable cross product. The next chapter uses that cross

product implementation to evaluate di�erent solutions to the component subprob-

lems, including the new solutions we introduced earlier.

Chapter 9

PERFORMANCE MEASUREMENTS

In this chapter, we measure the predictive ability of our models by running them

on the �les of the Calgary Corpus [BCW90]. All probability estimates are coded using

a oating-point m-ary arithmetic coder that we based upon the popular integer coder

implemented in [WNC87, MSWB93]. Arithmetically coded probability estimates are

an excellent measure of model performance because they compute a tight, in�nite-

precision upper bound on the � log likelihood of the model, given the input sequence.

Furthermore, coding the probability estimates permits verifying that the models are

not getting high likelihoods through error or the loss of information by decoding the

output and checking that the decoded output is the same as the original input.

All results presented here were produced by the cross-product implementation,

and all of the results described here decode correctly. Performance is measured for

each �le as average output bits per input character (\bpc"). For the Calgary Corpus,

input characters are bytes, so the input alphabet size is 256. Performance is summa-

rized for each experiment as average bpc per �le, labelled with Average or Avg. First,

we give the known performance of inuential algorithms from the literature, and

show how our taxonomical reimplementation of those algorithms compares on these

baselines. Then in the next two sections, we evaluate the state selection techniques

presented in Chapter 7, and the mixtures techniques presented in Chapter 6. Next, we

apply the techniques covered in this thesis to improve the compression performance

and memory consumption of PPM variants, followed by the performance and memory

consumption of DMC variants. Lastly, we discuss issues of universality|whether our

conclusions hold in general or just for the test data.

9.1 Baselines

The published performance of on-line stochastic algorithms from the data com-

pression literature that have been implemented are shown in Table 9.1, along with the

performance of two popular Unix compression utilities. The utilities are `compress,'

123

Table 9.1: The State of the Art in On-Line Statistical Compressors.

File Size LZ78 LZ77 DMC GMDC PPMC PPM*

(bytes) (compress) (gzip)

bib 111,261 3.35 2.52 2.28 2.05 2.11 1.91

book1 768,771 3.46 3.26 2.51 2.32 2.48 2.40

book2 610,856 3.28 2.71 2.25 2.02 2.26 2.02

geo 102,400 6.08 5.35 4.77 5.16 4.78 4.83

news 377,109 3.86 3.07 2.89 2.60 2.65 2.42

obj1 21,504 5.23 3.84 4.56 4.40 3.76 4.00

obj2 246,814 4.17 2.65 3.06 2.82 2.69 2.43

paper1 53,161 3.77 2.80 2.90 2.58 2.48 2.37

paper2 82,199 3.51 2.90 2.68 2.45 2.45 2.36

pic 513,216 0.97 0.88 0.94 0.80 1.09 0.85

progc 39,611 3.87 2.68 2.98 2.67 2.49 2.40

progl 71,646 3.03 1.82 2.17 1.83 1.90 1.67

progp 49,379 3.11 1.82 2.22 1.90 1.84 1.62

trans 93,695 3.27 1.62 2.11 1.73 1.77 1.45

Average 224,402 3.64 2.71 2.74 2.52 2.48 2.34

Table 9.2: Cross-Product Baselines of Existing Stochastic Techniques.

File Size DMC GMDC PPMC PPM* PPMC PPMD

(bytes) (order 3) (order 5) (order 5)

bib 111,261 2.219 2.045 2.114 1.910 1.915 1.875

book1 768,771 2.246 2.319 2.478 2.397 2.338 2.297

book2 610,856 2.255 2.021 2.271 2.020 2.004 1.968

geo 102,400 4.671 5.157 4.663 4.828 4.722 4.712

news 377,109 2.894 2.605 2.648 2.419 2.396 2.364

obj1 21,504 4.560 4.403 3.766 4.004 3.736 3.737

obj2 246,814 3.064 2.817 2.726 2.434 2.446 2.421

paper1 53,161 2.889 2.582 2.482 2.373 2.373 2.336

paper2 82,199 2.927 2.451 2.457 2.361 2.358 2.314

pic 513,216 0.925 0.803 0.823 0.854 0.816 0.808

progc 39,611 2.977 2.666 2.499 2.401 2.411 2.377

progl 71,646 2.168 1.826 1.904 1.671 1.729 1.693

progp 49,379 2.222 1.905 1.843 1.624 1.753 1.719

trans 93,695 2.114 1.734 1.772 1.447 1.539 1.495

Average 224,402 2.721 2.524 2.460 2.339 2.324 2.294

124

which is based upon Welch's popular implementation [Wel84] of the Ziv and Lempel's

second major string-matching algorithm [ZL78], and `gzip,' which is based upon Ziv

and Lempel's �rst major string-matching construction [ZL77].

Mo�at's 1990 implementation, PPMC [Mof90], of Cleary and Witten's 1984 PPM

algorithm [CW84b], remained unchallenged until Cleary, et al. did away with PPM's

order bound to produce PPM* in 1995 [CTW95]. The authors claimed that PPM*

outperformed PPMC in their paper. However, PPMC was known to achieve superior

compression performance as the order bound increased up to 5 [Mof90], after which its

performance starts to decline. In 1993, Howard published a simple change to PPMC's

escape mechanism, called PPMD [How93]: add .5 instead of 1.0 to the escape count

and scanned event count, whenever a novel event is seen. PPMD gets even better

performance than PPMC. Thus, the original PPM* algorithm cannot be called the

state of the art until it is shown to perform favorably compared to these higher order

PPMC and PPMD parameterizations.

Table 9.2 shows how our emulations of the above statistical techniques perform.

The performance is very close to that of the original implementations in Table 9.1.

There are slight di�erences, however, due to our use of oating point frequencies

rather than integers in PPM and PPM* and the frequency scaling that is used in

PPM, PPM*, DMC, and GDMC, whenever a frequency at a state exceeds some

constant maximum value. Our oating-point arithmetic coder enabled us to dispense

with frequency scaling. While we were establishing these baselines, we experimented

with our implementation of the existing PPMC and PPMD technologies. And, in

spite of its longer (unbounded) conditioning contexts, PPM* clearly does not out-

perform PPM.

9.2 State Selection Experiments

In this section we seek to answer the following questions:

1. Does state selection improve performance in practice?

2. How do the di�erent state selection mechanisms perform relative to each other?

3. What are good threshold values for the information-theoretic techniques?

4. Do the techniques perform predictably for models of di�erent orders?

125

5. Which improves performance more: state selection, mixtures, or their combi-

nation?

The suite of experiments that we ran to answer these questions covered the cross

product of the following sets of parameters:

State Selection Techniques in fS

0

; S

2

; S

3

; S

5

; S

6

g, where

S

0

is no state selection. The order of the selected state is always the order of

the max-order excited state plus one.

S

2

is the approximate state selection used in the original PPM* implementa-

tion, where either no state is selected unless the high-order states are de-

terministic, in which case the lowest-order deterministic state is selected.

(Deterministic states only recognize one source symbol.)

S

3

is our percolating state selector.

S

5

is top-down hill-climbing state selection.

S

6

is bottom-up hill-climbing state selection.

Probability Estimators in fAM

0

; DM

3

Xg, where

AM

0

denotes the degenerate mixture that produces an identical uniform prior

for each state. In the language of our taxonomy, it combines a constant uni-

form weighting function on the excited states (mixture-weighting formula

A), and evaluates their inherited probabilities at model creation, denoted

by the inheritance evaluation time M

0

.

DM

3

X describes one of the better-performing mixtures, combined with update

exclusion (X). The mixture-weighting formula (or escape mechanism) is

D, while the inheritance evaluation time M

3

equals inherit before novel

event updates.

FSMX Model Topologies in f9

�

; 64

�

g: The model is built using our string- tran-

sition su�x-tree construction algorithm (thus the

�

) to save space and time and

to therefore make it possible to evaluate higher-order models

1

at a wide range

of state selection thresholds in a reasonable time frame.

1

Orders 9 and 64 were selected because orders greater than 6 have not been evaluated before and the

order 9 experiments of this section can be compared with the results in Section 9.4. Order 9 was

selected for those experiments, which among other things, compare model sizes between string-

transition and full-space implementations, because it was the largest order that we could evaluate

126

State Selection Threshold Numerator v, where v is a member of the set

f�1024;�512;�256; : : : ; 512; 1024g. Note that the actual threshold equals

v=1024, thus the actual thresholds tested performances di�erences bounded

by one bit

2

per character. Recall that the value compared to the threshold

during state selection is the di�erence between a given excited state's expected

codelength per source symbol, and the expected codelength per symbol at a

complete frontier below the state. In hill-climbing techniques, the frontier is

formed by the children of the state, while the percolating technique uses the

complete frontier with the minimal codelength.

All other features of the models were held constant throughout the experiment.

The results of the experiment are summarized in Tables 9.3 and 9.4. Table 9.3

compares performance of state selection techniques on a vanilla FSM model with

Markov order 64 on the �les of the Calgary Corpus. Table 9.4 compares performance

of state selection techniques on an otherwise identical model that also performs one

of the better-performing mixtures. At the bottom of each table we summarize the

performance on the Corpus for the order 64 models, denoted by the column headers,

and for otherwise identical models with Markov order 9. Next to the bits per character

�gure for each �le and model, we give the average selected order of that model. The

average order of the maximum order excited state in all models can be computed from

the average selected order of the corresponding model that uses no state selection (S

0

),

by subtracting one from that value.

Now we are prepared to answer the questions posed at the beginning of this

section:

1. All forms of state selection tested improve performance. The higher the Markov

order, the greater the improvement. The improvement due to state selection

is greater if the model does not use one of the better-performing mixtures.

using the full-space PPM implementation. Order 64 was selected because it is large enough to

allow extrapolation to unbounded order models (some of which are evaluated in Section 9.4), but

does not bog down on the extremely high order models constructed for the �le \pic" when there

is not an order bound.

2

Recall that a state's performance is recorded as sums of the � log of the probability estimates.

Because the the existing oating point library provides only provide a base e logarithm function,

and converting base e logarithms to base 2 is an unnecessary multiplication, we do not do so for

the MDLs stored at states.

127

Table 9.3: E�ect of di�erent state selection techniques on the compression perfor-

mance and average selected order of a vanilla order-64 FSMX model without blending

or Mixtures.

File A*64M

0

S

0

A*64M

0

S

2

A*64M

0

S

6

v

0

A*64M

0

S

5

v

�16

A*64M

0

S

3

v

0

Select Select Select Select Select

(bpc) Order (bpc) Order (bpc) Order (bpc) Order (bpc) Order

bib 2.749 12.63 2.558 5.35 2.435 3.99 2.312 3.41 2.286 3.32

book1 3.452 8.32 3.374 6.49 2.873 4.28 2.444 3.13 2.432 2.85

book2 2.857 10.46 2.715 6.45 2.461 4.63 2.198 3.59 2.189 3.44

geo 6.059 4.54 6.040 3.42 5.548 2.12 5.280 2.20 5.216 2.01

news 3.302 13.12 3.170 5.88 2.999 4.22 2.822 3.50 2.794 3.30

obj1 4.584 12.98 4.526 7.87 4.579 3.18 4.507 7.55 4.531 3.37

obj2 2.989 14.33 2.851 5.19 2.885 3.89 2.845 3.79 2.829 3.87

paper1 3.208 8.98 3.097 4.80 2.944 3.54 2.756 2.77 2.748 2.77

paper2 3.300 8.00 3.204 5.23 2.911 3.62 2.588 2.67 2.590 2.59

pic 1.148 47.13 1.052 38.34 0.898 19.67 0.993 35.37 0.852 5.19

progc 3.143 9.12 3.013 4.56 3.002 3.40 2.888 3.02 2.883 2.98

progl 2.314 19.26 2.098 6.86 2.094 4.38 2.066 4.73 2.044 3.85

progp 2.224 20.92 1.975 5.63 2.002 4.61 1.989 3.54 1.976 4.19

trans 2.025 25.66 1.775 5.71 1.776 4.29 1.756 3.90 1.727 3.95

Average 3.097 2.961 2.815 2.675 2.650

Average for order-9 models:

3.020 2.946 2.804 2.674 2.654

128

Table 9.4: E�ect of di�erent state selection techniques, on the compression perfor-

mance and average selected order of an order-64 FSMX model with Update Exclusion

(X) and Mixtures (M

3

; D).

File D*64M

3

S

0

D*64M

3

S

2

D*64M

3

S

6

v

0

D*64M

3

S

5

v

�8

D*64M

3

S

3

v

0

Select Select Select Select Select

(bpc) Order (bpc) Order (bpc) Order (bpc) Order Order

bib 2.019 12.63 1.828 5.35 1.816 5.10 1.801 4.19 1.788 4.54

book1 2.428 8.32 2.407 6.49 2.332 5.74 2.205 4.38 2.205 4.44

book2 2.099 10.46 1.970 6.45 1.937 5.95 1.878 4.72 1.876 5.09

geo 4.727 4.54 4.756 3.42 4.705 2.97 4.550 2.79 4.508 2.28

news 2.452 13.12 2.347 5.88 2.329 5.37 2.301 4.57 2.292 4.62

obj1 3.793 12.98 3.766 7.87 3.757 7.39 3.720 7.53 3.699 3.29

obj2 2.422 14.33 2.280 5.19 2.288 4.99 2.287 4.59 2.272 4.74

paper1 2.411 8.98 2.302 4.80 2.288 4.46 2.256 3.67 2.249 3.96

paper2 2.394 8.00 2.326 5.23 2.288 4.75 2.218 3.65 2.221 3.92

pic 0.969 47.13 0.849 38.34 0.785 35.62 0.819 35.74 0.795 21.13

progc 2.440 9.14 2.304 4.56 2.310 4.28 2.307 3.88 2.296 4.08

progl 1.766 19.26 1.530 6.86 1.539 5.67 1.554 5.92 1.528 5.30

progp 1.767 20.92 1.504 5.63 1.516 5.46 1.550 4.85 1.505 5.39

trans 1.611 25.66 1.306 5.71 1.306 5.50 1.315 4.68 1.291 4.88

Average 2.378 2.248 2.228 2.197 2.180

Average for order-9 models:

2.281 2.250 2.235 2.202 2.191

129

(Mixtures hedge against local order over-estimation by including data from

lower order states in the estimate.)

2. The performance increases of each state selector, relative to the vanilla order-64

model, were: 4.4% for S

2

; 9.1% for S

6

, 13.6% for S

5

, and 14.4% for S

3

. The

selectors obtained about 2% less of a performance increase in similar order-9

models.

The performance increases of each state selector, relative to the order-64 model

with mixtures but no state selection, were: 5.5% for S

2

, 6.3% for S

6

, 7.6% for

S

5

, and 8.3% for S

3

: The selectors obtained about 4% less of a performance

increase in similar order-9 models.

3. The percolating and bottom-up selectors always perform best with their respec-

tive state selection thresholds set to zero. The top-down hill-climbing selector

performs best when its threshold is set to a small negative value. This compen-

sates for its tendency to underestimate local order. The ideal value is a function

of the true order of the input sequence. For most �les of the Calgary Corpus

the top-down selector did best with a values between �8=1024 and �32=1024.

However, with this selector a threshold that does best for the low-order �les

would get worse performance on the higher-order �les, and vice versa. Since

the corpus is dominated by higher-order text �les, these negative values were

shown to be the best by our experiment.

4. The performance ranking of the selectors is consistent for all Markov orders

that we have tested, regardless of whether the models use mixtures or not. The

percolating state selector S

3

consistently outperforms the other selectors on all

�les and at all Markov orders that we have tested. However, the top-down

hill-climbing selector S

5

can be parameterized to perform nearly as well.

5. In spite of the consistent behaviors of the state selectors, mixtures (including

blending), provide about one and a half times the performance increase to a

vanilla model than does the best state selector. The mixture used in this test

improved the performance of the order-64 vanilla model by 23.2% and the order-

9 vanilla model by 24.5%.

In summary, a good mixture works better than the best state selector, but the

combination is better still. The best-performing state selector is our percolating tech-

130

nique, followed closely by top-down hill climbing|but only if it is correctly param-

eterized. An unbounded-order model combined with the percolating state-election

technique satis�es a primary goal of universal on-line modeling: doing away with

model parameters that the modeling algorithm cannot automatically deduce from

the input sequence.

9.3 Mixture Experiments

In this section we address the following questions:

1. Which mixtures perform best?

2. How do the various mixture weighting formulae and inheritance times interact?

3. Is the e�ectiveness of update exclusion a�ected by the mixture with which it is

combined?

Table 9.5 shows the relative e�ectiveness of most combinations of mixture weight-

ing functions and inheritance evaluation times. Inheritance time M

1

(inherit at state

creation) was omitted because it exhibits impractical space consumption for models

with 256-character input alphabets. As expected from past experience with PPM,

weight functions C and D produce the best results.

Table 9.6 is a study on the value of using update exclusion, especially in models

using state selection. This study is important because the largest cost of correctly

implementing state selection with lazily evaluated model re�nements, or of combining

approximate state selection with mixtures, is keeping two counts for every transition:

an update-excluded count and a full-update count. For example, since the percolat-

ing state selector S

3

improves an order-9 model with mixtures DM

3

i

0

and update

exclusion X

1

by about 8:3%, and update exclusion improves an order-9 model with

mixtures DM

3

i

0

and percolating state selector S

3

by about 6.5%, it probably would

not be worth the trouble to implement state selection if doing so would require dis-

posing of update exclusion. Basically, the later the inheritance evaluation time, the

more update exclusions improve performance.

Table 9.7 shows how the better performing mixtures, highlighted in bold in Figure

9.5, perform on individual �les.

Our controlled component-wise experiments with the Calgary Corpus show that

the best-performing mixtures outperform models that assume a uniform prior fre-

131

Table 9.5: How average compression performance on the Calgary Corpus as a whole

is a�ected by varying mixture inheritance times and mixture weight functions, in

models with and without (percolating) state selection.

Inherit Time A*9X B*9X C*9X D*9X A*9XS B*9XS C*9XS D*9XS

M

0

2.965 4.695 2.825 2.767 2.602 2.925 2.522 2.508

M

2

2.631 2.505 2.365 2.306 2.386 2.674 2.227 2.206

M

3

2.767 2.688 2.329 2.281 2.475 2.559 2.197 2.191

M

5

2.851 2.520 2.300 2.302 2.482 2.419 2.203 2.238

Table 9.6: The percent improvement of models using update exclusion over the same

model variants without update exclusion.

Inherit Time A*9X B*9X C*9X D*9X A*9XS B*9XS C*9XS D*9XS

M

0

1.8 -6.5 1.1 2.9 2.0 0.2 6.9 2.1

M

2

5.5 3.2 2.2 5.9 5.7 3.7 3.2 5.4

M

3

5.9 -0.8 2.9 7.5 5.5 2.7 3.8 6.5

M

5

5.8 5.3 4.3 10.2 1.4 6.2 4.3 6.4

Table 9.7: Compression performance for the best inheritance times given each weight-

ing mechanism

size A*9X B*9X C*9X D*9X A*9XS B*9XS C*9XS D*9XS

File (bytes) M

2

M

2

M

5

M

3

M

2

M

5

M

3

M

3

bib 111,261 2.089 2.129 1.895 1.884 1.910 2.025 1.809 1.794

book1 768,771 2.576 2.438 2.391 2.393 2.223 2.238 2.194 2.198

book2 610,856 2.175 2.152 1.987 1.996 1.938 1.990 1.876 1.871

geo 102,400 6.081 4.460 4.842 4.724 4.939 4.432 4.455 4.511

news 377,109 2.666 2.623 2.385 2.363 2.465 2.546 2.300 2.298

obj1 21,504 4.555 3.973 3.785 3.737 4.343 3.956 3.654 3.704

obj2 246,814 2.755 2.699 2.368 2.340 2.657 2.657 2.317 2.302

paper1 53,161 2.579 2.652 2.347 2.340 2.397 2.579 2.268 2.250

paper2 82,199 2.552 2.527 2.354 2.347 2.299 2.412 2.232 2.219

pic 513,216 0.889 0.804 0.817 0.807 0.820 0.781 0.790 0.797

progc 39,611 2.669 2.728 2.373 2.365 2.514 2.650 2.305 2.301

progl 71,646 1.777 1.962 1.600 1.590 1.677 1.878 1.576 1.548

progp 49,379 1.878 2.055 1.652 1.659 1.737 1.940 1.603 1.566

trans 93,695 1.598 1.864 1.396 1.389 1.483 1.786 1.377 1.320

Avg. 2.631 2.505 2.300 2.281 2.386 2.419 2.197 2.191

132

quency distribution at every state by about 23% in models without state selection,

and by about 16% in models that use state selection, on the Calgary Corpus. We

also demonstrated how mixtures interact with update exclusion, which improves per-

formance as much as 6� 10%. Broadly speaking, the later the inheritance evaluation

time, the greater the impact of update exclusion.

Not surprisingly, the overall best-performing weighting formulas (escape mech-

anisms) were C and D. Regardless of the other parameters, mixtures that inherit

before novel event updates consistently outperform blending by about 1%, when used

with the competitively performing mixture weights C and D or with state selection.

9.4 Improvements to PPM Variants

In this section, we demonstrate that our transition-splitting su�x-tree implementa-

tion reduces space requirements for PPM models, and our enhancements consistently

and cumulatively improve the probability estimates of PPM and PPM

�

models, well

beyond the current state of the art.

Given a shorthand version of our nomenclature, the standard reference version

of PPM [Mof90] becomes PPMC3X if it is implemented with symbol transitions,

and PPMC*3X if implemented with string transitions. The prior state-of-the-art

PPM variant, which has order 5, update exclusion, and uses escape mechanism D,

is PPMD5X or PPMD*5X, depending on the su�x-tree implementation. Lastly,

the original PPM* algorithm is distinguished from other variants by describing it as

PPMC*.

Table 9.8 shows the e�ects of progressively applying the optimizations covered

in this thesis (update exclusion X, percolating state selection S, and mixtures that

inherit before updates M) to PPMC and PPMD with order 9. Table 9.9 shows the

e�ect of progressively applying the same optimizations to PPM

�

. Order 9 (the maxi-

mum order symbol-transition structure that our machines could handle) was selected

for these experiments to demonstrate the fact that with our optimizations, increased

model order corresponds to increased performance, even past order 5. Observe that

the improvements by the three optimizations are consistent, signi�cant, and cumula-

tive, for all variants and all �les.

Tables 9.8 and 9.9 are divided into right and left halves, with the left halves show-

ing the results of using mixture weighting function C, and the right halves showing

133

Table 9.8: Compression performance for PPM variants given as bits per character

(bpc).

File C9 C9X C9XM C9XS C9XSM D9 D9X D9XM D9XS D9XSM

bib 2.024 1.984 1.951 1.836 1.809 2.045 1.940 1.915 1.811 1.792

book1 2.444 2.504 2.421 2.234 2.193 2.444 2.455 2.388 2.210 2.180

book2 2.099 2.106 2.047 1.918 1.878 2.107 2.058 2.011 1.894 1.864

geo 4.845 4.719 4.709 4.493 4.456 4.868 4.709 4.724 4.474 4.461

news 2.491 2.453 2.412 2.337 2.302 2.533 2.417 2.389 2.314 2.292

obj1 4.035 3.757 3.726 3.689 3.657 4.146 3.757 3.745 3.695 3.681

obj2 2.534 2.424 2.402 2.344 2.324 2.589 2.392 2.380 2.325 2.314

paper1 2.453 2.432 2.391 2.311 2.275 2.487 2.395 2.364 2.287 2.261

paper2 2.434 2.448 2.391 2.276 2.236 2.452 2.404 2.359 2.249 2.217

pic 0.813 0.828 0.818 0.797 0.789 0.819 0.814 0.808 0.791 0.786

progc 2.502 2.452 2.418 2.346 2.314 2.551 2.420 2.395 2.325 2.304

progl 1.787 1.710 1.673 1.609 1.578 1.822 1.667 1.637 1.584 1.559

progp 1.810 1.773 1.747 1.640 1.617 1.830 1.731 1.710 1.616 1.599

trans 1.573 1.520 1.500 1.399 1.382 1.582 1.468 1.454 1.365 1.353

Avg. 2.417 2.365 2.329 2.231 2.201 2.448 2.330 2.306 2.210 2.190

Table 9.9: Compression performance for PPM* variants given as bits per character

(bpc).

File C* C*X C*XM C*XS C*XSM D* D*X D*XM D*XS D*XSM

bib 1.910 1.864 1.830 1.825 1.798 1.945 1.836 1.812 1.803 1.786

book1 2.397 2.453 2.369 2.237 2.195 2.406 2.415 2.346 2.214 2.184

book2 2.020 2.023 1.963 1.915 1.875 2.040 1.989 1.940 1.894 1.862

geo 4.828 4.702 4.692 4.489 4.453 4.850 4.689 4.705 4.469 4.458

news 2.419 2.383 2.342 2.328 2.293 2.465 2.355 2.327 2.308 2.285

obj1 4.004 3.837 3.807 3.683 3.651 4.115 3.812 3.799 3.692 3.678

obj2 2.434 2.323 2.303 2.313 2.293 2.494 2.299 2.288 2.294 2.283

paper1 2.373 2.344 2.302 2.302 2.266 2.409 2.314 2.283 2.279 2.250

paper2 2.361 2.369 2.312 2.272 2.231 2.383 2.333 2.289 2.244 2.213

pic 0.854 1.066 1.049 0.795 0.786 0.842 0.983 0.971 0.789 0.781

progc 2.401 2.341 2.308 2.333 2.301 2.454 2.318 2.294 2.314 2.291

progl 1.671 1.600 1.564 1.594 1.561 1.714 1.572 1.542 1.572 1.545

progp 1.624 1.572 1.548 1.575 1.552 1.657 1.543 1.524 1.550 1.531

trans 1.447 1.391 1.372 1.369 1.352 1.464 1.353 1.337 1.337 1.325

Avg. 2.339 2.305 2.269 2.216 2.186 2.374 2.272 2.247 2.197 2.177

134

Table 9.10: Model Size and Topology for PPM* variants.

Avg. Average

File Size Nodes Edges Order Select Order

(Bytes) PPM* PPM* PPM* C*,D* C*XS C*XSM D*XS D*XSM

bib 111,261 59,845 171,361 11.85 5.35 4.32 4.34 4.36 4.37

book1 768,771 385,283 1,154,307 7.32 6.49 3.93 4.14 4.07 4.26

book2 610,856 324,528 935,639 9.60 6.46 4.64 4.77 4.77 4.89

geo 102,400 27,712 130,364 3.54 3.42 1.92 1.92 1.97 1.95

news 377,109 196,337 573,701 18.15 5.91 4.25 4.32 4.36 4.40

obj1 21,504 7,025 27,797 54.22 29.21 3.02 3.01 3.05 3.05

obj2 246,814 133,360 380,421 18.03 5.22 4.50 4.50 4.53 4.55

paper1 53,161 29,040 82,456 8.04 4.80 3.71 3.75 3.77 3.79

paper2 82,199 43,213 125,667 7.03 5.24 3.50 3.69 3.58 3.74

pic 513,216 274,879 752,034 2353.38 1848.72 9.59 11.35 19.73 21.25

progc 39,611 21,174 61,040 8.27 4.56 3.79 3.80 3.82 3.84

progl 71,646 46,507 118,408 24.65 6.92 4.95 5.04 5.08 5.15

progp 49,379 33,068 82,702 58.75 5.65 5.17 5.19 5.22 5.23

trans 93,695 66,605 160,339 57.34 6.01 4.60 4.63 4.71 4.75

Avg. 224,402 117,755 339,731 188.08 138.85 4.42 4.60 5.21 5.37

results for D. Note that while escape mechanism D was known to improve PPM's

performance, it was believed to not improve PPM*. Indeed, column D* shows that

D hurts the performance of PPM* (shown in column C*). However, the respective

di�erences between the columns labeled C9, C*, D9, D* and C9X, C*X, D9X, D*X

clearly show that the factor that actually determines the applicability of D over C is

the use of update exclusion, not the presence of an order bound. On the other hand,

the combination of optimizations tested here signi�cantly reduce the performance dif-

ference that D and C impose in PPM and PPM* variants. That is, the greater than

1% performance improvement of D over C in simpler variants is more than halved

in XSM variants. Since D, C, and other known solutions to the \zero frequency

problem" are known to have no principled basis [WB91], our optimizations increase

the universality of PPM variants by reducing the relative e�ects of the necessarily ad

hoc solutions to the zero frequency (i.e., mixture weighting) problem.

Table 9.10 summarizes the structure of the unbounded-order models constructed

by PPM*, and their average selected local orders, as determined by both the state

selection mechanism presented in this paper and the original mechanism used with

135

Table 9.11: Model Size, Topology, and Performance of Order-Bounded PPM

�

vs.

PPM

Avg Avg Avg

File Nodes Edges Order Select Order bpc

PPMD PPMDXSM PPMDXSM

PPM9 PPM*9 PPM9 PPM*9 9,*9 9 *9 9 *9

bib 256,060 28,780 322,124 94,844 6.70 5.03 4.16 1.792 1.794

book1 1,751,574 273,100 2,364,611 886,137 6.72 4.39 4.30 2.180 2.198

book2 1,201,344 174,208 1,596,191 569,055 7.03 5.13 4.74 1.864 1.871

geo 606,519 27,360 706,155 126,996 3.08 2.14 2.23 4.461 4.451

news 1,034,701 112,111 1,296,732 374,142 6.26 5.07 4.35 2.292 2.298

obj1 98,879 4,899 115,263 21,283 4.40 3.96 3.29 3.681 3.704

obj2 688,520 61,979 840,780 214,239 6.21 5.43 4.30 2.314 2.302

paper1 171,916 19,250 213,383 60,717 5.77 4.51 3.79 2.261 2.250

paper2 250,416 30,920 317,083 97,587 5.95 4.23 3.79 2.217 2.219

pic 372,069 28,325 449,835 106,091 8.28 6.95 6.66 0.786 0.797

progc 131,007 13,448 160,837 43,278 5.69 4.69 3.87 2.304 2.300

progl 139,043 17,003 174,279 52,239 7.06 5.81 4.65 1.559 1.548

progp 101,018 11,378 125,325 35,685 6.95 5.60 4.61 1.599 1.566

trans 147,943 16,322 183,008 51,387 7.42 5.76 4.17 1.353 1.320

Avg. 496,500 58,506 633,258 195,263 6.25 4.91 4.24 2.190 2.191

136

PPM*. The Nodes column refers to the number of actual states, while the Edges

column refers to the number of transitions. The Avg Order column gives the average

order of the maximum-order excited state for each input symbol; similarly for Avg

Selected Order. Note that the compression improvement to PPM* variants by our

state-selection mechanism is less than for PPM variants (roughly 3.5% vs 5.5%), but

then observe in columns C* and D* that PPM*'s default state-selection mechanism

does reduce PPM*'s average order signi�cantly. Recall from Section 5.1 that the

higher-order virtual nodes do not reduce the model's expected codelength. Thus for

PPM* with its original heuristic state selector, less potential improvement is available

to optimization S:

Finally, Table 9.11 shows the tradeo�s of using a string-transition implementa-

tion over a symbol-transition implementation. First, there is no cost, other than

increased design complexity, of using string transitions if information-theoretic state

selection is not used. In that case, the probability estimates, visited orders, and se-

lected orders are identical to those of a symbol-transition implementation. However,

with information-theoretic state-selection, a very small di�erence in the performance

(0.1%) of the two implementations occurs. This di�erence is due solely to local order-

underestimation that is brought about by the approximate deduction of codelengths

at newly split virtual nodes described in Section 7.6.1. A more careful approximation

than ours is possible and can tighten the order estimates. For example, it is easy

to deduce whether an excited virtual node was added after its virtual ancestors and

whether an excited virtual node has more than one virtual child.

The bene�t of the string-transition implementation is a signi�cant space savings,

which depends upon the input �le, order bound, and the implementation, but which

generally amounts to at least half the cost of a symbol-transition implementation.

The true space savings (in bytes) provided by the string-transition implementation,

relative to an equivalent symbol-transition implementation, equals

(V � V

�

) � size(node) + E � size(edge)� (E

�

� size(edge

�

) + F);

where V (V

�

) is the number of states in the symbol-transition (string-transition)

model, E (E

�

) is the number of edges (edge

�

s), and F equals the input �le size plus

a small amount of bu�ering overhead. The sizes of model states (nodes), and symbol

transitions (edges) or string transitions (edge

�

s), are implementation-dependent.

137

9.5 Improvements to DMC Variants

9.5.1 GDMC and LazyDMC

We began our attempts to create a better-performing variant of DMC [CH87] with

two starting points: the GDMC algorithm [TR93] and our own lazy-cloning DMC

variant, LazyDMC, proposed in [Bun94].

GDMC uses a mixture with weight function A (thus nothing gets added to a

state's escape count after it is initially set to the redirected pre�x edge's count) and

inheritance evaluation time M

3

. In addition, GDMC uses the three restrictions on

the frequency updates and number of event copies made, G, D, and C

1

, which are de-

scribed in Section 8.3.3. A surprisingly important di�erence between GDMC, DMC,

and LazyDMC is that GDMC essentially eliminates one of the cloning thresholds:

a transition is eligible for redirection if and only if the counts contributed to its

destination by other entering edges exceed z=1024. In preliminary experiments, we

found that in GDMC with the single transition redirection threshold but with each

combination of options G,D, and c

1

removed, performance dropped drastically, to

an unacceptable 3.5 bpc. Furthermore, the Markov order of the model dropped very

close to 1, on average.

The taxonomical shorthand for GDMC's structure is b

8

S

0

R

0

T

0

y

0

z

256

GDMC

1

; and

for its mixtures and updates AM

3

X

2

i

0

. We will use the term \GDMC" to denote

any algorithm that is based upon the above options. In a GDMC variant, additional

symbols will be added to the above string to specify the addition or replacement

of command line options. For example, \GDMC PS

2

z

1024

" is GDMC with Owner

Protection, heuristic state selection, and a redirection threshold of 1024=1024.

GDMC calls for maximum-order updates, X

2

, but our experiments found that

the di�erence in performance between X

2

and X

1

is negligible. GDMC uses slightly

fewer nodes and edges with X

1

.

The key di�erences between GDMC and LazyDMC are given respectively by

y

0

AGDC

1

and y

1024

D. LazyDMC uses a mixture with weight function D

3

and inher-

itance evaluation timeM

3

. The only di�erence between binary DMC and LazyDMC,

3

Recall that DMC variants set the escape counts at a novel state to the count of the redirected

pre�x edge, initially, and that option D will cause .5 to be added to the escape count every time

a novel event is seen.

138

Table 9.12: Dueling 256-ary DMC baselines: GDMC and LazyDMC.

GDMC LazyDMC

select select

File nodes edges bpc order nodes edges bpc order

bib 81,021 79,539 2.045 6.67 26,346 58,392 2.113 5.89

book1 591,590 581,455 2.319 6.82 163,770 445,133 2.397 5.30

book2 452,474 442,377 2.021 7.25 133,512 328,945 2.118 5.98

geo 69,882 77,511 5.157 3.72 17,616 81,220 4.602 3.30

news 284,713 281,292 2.605 6.84 84,992 231,301 2.610 5.93

obj1 15,708 14,957 4.403 39.35 4,035 16,294 3.868 12.15

obj2 167,523 179,104 2.817 6.00 56,606 146,354 2.654 5.66

paper1 40,087 39,341 2.582 5.37 12,955 31,207 2.568 4.61

paper2 62,235 60,996 2.451 5.72 19,049 48,482 2.492 4.66

pic 393,753 364,703 0.803 1825.45 66,391 152,121 0.831 185.05

progc 29,428 29,155 2.666 5.25 9,554 23,376 2.616 4.55

progl 53,299 52,550 1.826 7.94 18,066 36,433 1.892 7.18

progp 35,077 34,969 1.905 6.73 11,956 24,019 1.891 6.01

trans 67,167 67,278 1.734 7.75 24,145 43,938 1.801 6.95

Avg. 162,216 164,659 2.524 46,357 119,087 2.461

other than the alphabet-size, is that LazyDMC lazily evaluates the out-transitions

that are copied to a newly cloned state from its parent. LazyDMC does not add

any restrictions, in contrast to GDMC, which merges the cloning thresholds into one

threshold and then restricts the edge-copying and frequency update mechanism. The

cloning thresholds that we found to work well with LazyDMC were y=1024 = 1 and

z=1024 = 2.

The taxonomical shorthand for LazyDMC is b

8

MS

0

R

0

T

0

y

1024

z

2048

DM

3

X

1

i

0

. We

shall use \LazyDMC" to denote the above, appended with the appropriate symbols

to denote any variations as we did for \GDMC."

The relative performance, model size, and average model order of GDMC and

LazyDMC are shown in Table 9.12. LazyDMC performs about 2.6% better than

GDMC, and constructs a model that is about 50% smaller. Recall that the average

selected order of both baselines is equal to the average order of the maximum-order

excited state plus one.

139

Table 9.13: The e�ect of owner protection (P) on GDMC and LazyDMC

GDMC P LazyDMC P

select select

File nodes edges bpc order nodes edges bpc order

bib 53,023 56,057 2.022 6.80 21,509 43,276 2.069 6.34

book1 404,359 420,588 2.352 6.96 134,026 306,794 2.336 5.97

book2 286,264 302,578 2.019 7.43 104,622 220,773 2.063 6.62

geo 57,890 59,435 5.383 3.70 15,349 60,880 4.594 3.40

news 191,306 199,725 2.584 6.98 67,780 155,706 2.560 6.35

obj1 11,638 11,872 4.401 39.35 3,357 12,707 3.862 12.7

obj2 112,897 121,202 2.733 6.35 43,998 98,042 2.592 6.09

paper1 28,687 30,142 2.570 5.45 10,802 23,849 2.548 4.78

paper2 43,912 46,233 2.443 5.82 15,914 35,778 2.452 5.02

pic 106,517 109,608 0.932 1825.83 30,628 73,225 0.778 188.18

progc 21,104 22,116 2.644 5.40 8,092 18,172 2.594 4.76

progl 33,274 35,444 1.808 8.16 14,148 26,043 1.863 7.76

progp 22,689 24,273 1.875 6.96 9,700 18,081 1.880 6.42

trans 43,650 46,844 1.680 8.02 19,479 32,874 1.767 7.40

Avg. 101,229 106,151 2.532 35,672 80,443 2.426

9.5.2 Owner-Protected DMCs

The �rst optimization we tried was to prevent edges from being redirected more than

once with the owner protection option, P . The results are shown in Table 9.13. Owner

protection very slightly lowered GDMC's performance, but it improved LazyDMC's

performance by 1.4%. Most signi�cantly, the option reduced model sizes by roughly

35% and 25% for each technique respectively.

9.5.3 Owner-Protected DMCs with State Selection

We applied the second optimization, state selection, to the owner-protected variants

of the originals. Tables 9.14 and 9.15 show the results of applying state-selection to

owner-protected GDMC and LazyDMC. Percolating state selection improved owner-

protected LazyDMC's performance by 1.7%, while the other state selectors gave about

1.3% improvement. Percolating state selection improved owner-protected GDMC's

performance by 1.0%.

We tested the addition of all state-selectors to owner-protected GDMC using

140

both types of update exclusion: maximum-order updates X

2

and an regular update

exclusion X

1

. For all state selectors, we used the selection threshold v = 0. We

give results for X

1

so that comparison with LazyDMC is focused upon how in the

two technique's particular combinations of mixtures and edge-redirection criteria are

a�ected by state selection. The average bits per character for owner-protected GDMC

with X

2

were 2.540, 2.498, 2.549, and 2.505 for the state selectors s

2

; s

3

; s

5

; and s

6

respectively. These �gures indicate that for lazily evaluated DMC variants, the choice

between regular update exclusion and max-order updates makes little di�erence upon

compression performance.

The experiments presented here constitute a good start at improving DMC's per-

formance. LazyDMC has compression performance superior to GDMC's, and our

experiments indicate that eliminating the minimum transition-count cloning thresh-

old and restricting the production of edge copies as a counter-measure is a awed

approach. LazyDMC, with owner protection and percolating state selection, builds a

model that is half the size of GDMC's model and which gets 5.6% better performance

than GDMC and 12% better than DMC. However, the small gains from adding state

selection to DMC models are probably not worth the cost. Furthermore, these re-

sulting models are still not competitive with our improved PPM and PPM* variants.

There are several promising suites of experiments left to try on LazyDMC:

1. MDL-based edge redirection instead of popularity-based edge redirection, with

and without percolating state selection;

2. the many-to-one and many-to-siblings transition redirection tree structures,

with and without percolating state selection; and

3. the above alternative tree structures, with and without percolating state selec-

tion, with MDL-based edge redirection.

The above list is actually a fairly large body of experiments, since edge-redirection

and state-selection thresholds will have to be varied within each suite.

Lastly, one problem that de�nitely warrants solution is the excessive run time

of state-selection techniques and mixtures on the �le `pic,' which induces a GDMC

model with very high Markov order. A simple solution is to add another parameter

to the taxonomy, Maximum Order, and set it to a large number like, say 64, which

will not have a signi�cant a�ect on compression performance, but will greatly reduce

run time.

141

Table 9.14: LazyDMC with owner protection and state selection.

PS

2

PS

3

PS

5

PS

6

select select select select

File bpc order bpc order bpc order bpc order

bib 2.020 4.88 2.018 4.14 2.031 3.95 2.019 4.34

book1 2.332 5.59 2.298 4.35 2.300 4.14 2.319 4.83

book2 2.037 5.74 2.030 4.80 2.035 4.57 2.035 5.08

geo 4.599 3.12 4.484 2.27 4.488 1.97 4.600 2.76

news 2.533 5.31 2.534 4.25 2.540 4.07 2.533 4.53

obj1 3.848 10.05 3.830 2.82 3.851 2.58 3.849 10.80

obj2 2.548 4.87 2.560 4.31 2.567 4.17 2.551 4.41

paper1 2.520 4.20 2.525 3.57 2.532 3.37 2.525 3.71

paper2 2.435 4.53 2.429 3.60 2.435 3.42 2.436 3.96

pic 0.761 126.25 0.758 41.57 0.779 7.75 0.752 181.25

progc 2.557 4.01 2.575 3.63 2.581 3.50 2.565 3.63

progl 1.805 6.32 1.822 4.57 1.833 4.35 1.807 4.80

progp 1.821 5.13 1.840 4.60 1.853 4.38 1.828 4.63

trans 1.690 5.24 1.708 4.40 1.720 4.13 1.692 4.73

Avg. 2.393 2.386 2.396 2.394

9.6 Universality

There is currently a great deal of emphasis in empirical lossless data compression

research upon how well given techniques perform on the Calgary Corpus. However,

the more important and ultimately useful aspect of the techniques we present here

is their principled, semantically coherent design. The modeling algorithms developed

in this paper perform better on the benchmarks than existing algorithms do because

our algorithms impose fewer and less restrictive assumptions on the input data.

For the following reasons, we believe that the improvements presented here are

universal|that is, they will induce similar relative performance increases for most

su�x-tree techniques on most data:

� The improvements we made are not ad hoc or empirically tuned to �t the

Calgary Corpus.

� We showed the improvements to be independent of a key input parameter, the

order bound, that can be empirically tuned to �t the Corpus.

142

Table 9.15: GDMC with owner protection, update exclusion X

1

and state selection.

PS

2

PS

3

PS

5

PS

6

select select select select

File bpc order bpc order bpc order bpc order

bib 2.043 5.21 2.038 4.40 2.170 3.56 2.029 5.48

book1 2.363 6.30 2.272 3.80 2.292 3.47 2.319 5.37

book2 2.044 6.22 2.016 4.57 2.052 4.03 2.023 6.02

geo 5.303 3.40 5.007 2.06 5.016 1.88 5.033 2.23

news 2.622 5.48 2.606 4.34 2.633 3.90 2.597 5.48

obj1 4.402 16.36 4.378 15.64 4.455 13.91 4.394 35.37

obj2 2.767 5.32 2.776 4.85 2.896 3.97 2.764 5.30

paper1 2.578 4.67 2.574 3.69 2.593 3.43 2.565 4.32

paper2 2.449 5.07 2.415 3.53 2.437 3.23 2.423 4.52

pic 0.907 727.27 0.813 15.00 0.828 12.00 0.794 1619.95

progc 2.643 4.45 2.657 4.07 2.689 3.64 2.638 4.32

progl 1.837 6.06 1.847 5.13 1.921 4.19 1.830 6.46

progp 1.884 5.55 1.897 4.98 1.933 4.24 1.880 5.81

trans 1.719 5.68 1.722 5.30 1.784 4.45 1.709 6.65

Avg. 2.540 2.501 2.550 2.500

� The changes improved the compression for each �le individually, and there is

considerable variety among the �les of the Calgary Corpus.

Thus the improvements we have presented combine with PPM

�

|the �rst on-line

stochastic model to impose no order assumptions and no arbitrary model growth

heuristics on the data|to form what may be the most universal on-line modeling

technique that has been evaluated empirically to date.

Chapter 10

CONCLUSION

In this dissertation I addressed the question of whether �nite-order FSM models

used in universal on-line max-likelihood modeling can be pushed much farther than

they have already been pushed by other information theorists and data compression

experimentalists. I explored the opportunity for improvement presented by a gap that

remained between the theorists' goal of asymptotic convergence, and the experimen-

talists' goal of good predictions based upon typically small sample sizes. I identi�ed

and delineated this gap by introducing an orthogonal on-line model design framework

and formally reducing several known techniques into the framework. I then �lled the

gap with the successful combination of convergent state selection and the construc-

tion of dynamically inherited frequency distributions that have the greatest weight

when local frequency distributions are most uncertain. This chapter summarizes the

contributions of this dissertation and then outlines a number of future projects.

10.1 Itemized Contributions

10.1.1 DMC Analysis

The DMC algorithm was introduced in 1986. Even in its original un-tuned form,

its performance compared with carefully tuned state-of-the-art implementations of

PPM, which has since been improved. However, since its introduction, the DMC

algorithm has accumulated open questions rather than improvements or increased

application. It is no coincidence that DMC is also the only FSM technique in the

practical or theoretical literature that was not designed with an explicit context-

based semantics. Chapter 4 proved a minimal, �nite-context semantics for DMC,

and Chapter 9 improved its performance.

DMC's Open Questions Answered

� How does DMC's model structure partition the set of conditioning contexts?

144

{ DMC's context partition can only be partially described by mapping any

single �nite conditioning context (string) to each state (Section4.3.1), but

it does have a closed form (Theorem 4.4.1).

{ DMC is provably not FSMX. Therefore there is a fundamental di�er-

ence in the families of languages that are accepted by PPM models and

DMC models (Section 4.5.3). Incidentally, this also clears up the pervasive

misconception that the FSMX class properly contains �nite-order Markov

models (Section 2.5).

� How can we generalize DMC to larger alphabets without worsening compression

performance or memory consumption?

{ Lazy cloning with inherit before novel event updates.

1

(See section 6.5.)

� How can we correct the exhaustive memory consumption that has kept the oth-

erwise competitive DMC modeling algorithm from being used in practice?

{ Lazy cloning as above, plus owner protection, which prevents transitions

from being redirected, reduced DMC's memory requirements to those of

PPM variants with similar performance (Section 9.5).

10.1.2 Uni�cation of Prior-Art Techniques

A study of the practical data compression and related information theoretic literature

may lead some scientists to this remarkable discovery: the science of reducing the re-

dundancy of data could itself use some redundancy reduction. Chapter 8's canonical

form for on-line modeling algorithms remedies this situation by exposing the abstract

di�erences among existing and future techniques, once they are transformed. Fur-

thermore, it also exposes the opportunities for genuine innovation that are explored

in Chapter 9.

� The unifying framework enables meaningful, component-wise comparison among

theoretical and practical techniques.

1

I only claim \independent invention" of lazy cloning, and do so with the explicit agreement of

the other inventors, Jukka Teuhola and Timo Raita, who published \GDMC" (which implements

both concepts) �rst in [TR93]. In August 92, I reported the same ideas by mail to one of DMC's

authors, Nigel Horspool, who invited me to present it in person at the University of Victoria in

March 1993. We both were unaware of the independent invention.

145

� Orthogonality of components implies that the entire framework is implementable

as the cross-product of unique features of known algorithms.

� Several novel, abstractly distinct algorithms therefore result from the imple-

mentation of the framework.

� The implemented framework provides a test bed for precisely controlled exper-

iments with individual components and with component combinations.

� We were able to give performance results for previously existing techniques that

had never been empirically evaluated.

10.1.3 A Bridge Between Sequential Coding Theory and Data Compression Practice

Information-theoretic on-line modeling algorithms stress asymptotic convergence and

rely on local order estimation. Meanwhile, practical on-line modeling algorithms

rely upon careful probability estimation to better utilize the scarce message statistics

gathered from the relatively small �les encountered in practice. These two approaches

have been developed independently, are completely distinct, and have not been com-

pared, either apart or in combination, until now.

Original Observations

� Information-theoretic algorithms simulate multiple context partitions, while

practical algorithms progressively re�ne a single context partition.

2

� All competitive, practical algorithms aggressively re�ne a single context parti-

tion.

� Information-theoretic algorithms hedge against over-re�nement by using state

selection to ignore re�nements until their frequency distributions converge.

� Practical algorithms hedge against over-re�nement with dynamically inherited

frequency distributions that accelerate the convergence of a re�nement's fre-

quency distribution.

� All existing information-theoretic state selection methods rely upon suboptimal

hill-climbing or order-bounds.

2

This explains long-established empirical evidence that the use of multi-model frequency update

(full update) techniques degrades the performance of PPM, which has single-model semantics.

146

Hypotheses

� State-selection should be combined with dynamically inherited frequency dis-

tributions so that more re�ned context-partitions will be selected earlier.

� State-selection can be combined with dynamically inherited frequency distribu-

tions if the computation of inheritances does not violate the multi-model se-

mantics required for properly executing state selection, or if separate frequency

distributions (one for each model semantics) are maintained.

Controlled Empirical Evaluations

One goal of our experiments was to provide conclusive data for model designers that

shows the e�ects on compression performance and model size that each optimization

has. We showed the following:

� The best-performing state selector is the percolating technique introduced in

this thesis (Tables 9.3 and 9.4).

� The best-performing inheritance time is inherit before novel updates, which was

introduced in this thesis (Table 9.5).

� The best-performing combination overall is a high-performance mixture, update

exclusion, and percolating state selection (Tables 9.7 and 9.9).

� The best mixtures improve performance more that the best state selection (Ta-

ble 9.5).

� Update exclusions improve performance nearly as much as the best state selector

(Table 9.6).

In addition, we undertook improving the performance and memory consumption of

three baseline data compression algorithms:

� We improved PPM*'s performance by 7% (Table 9.9).

� Our string-transition su�x-tree implementation reduced PPM*'s model size by

half (Section 3.5).

� We improved PPM's performance by 12% over the standard reference [Mof90],

and by 5% over the best PPM variant consisting of technologies available prior

to this thesis (Tables 9.2 and 9.8).

147

� Our order-bounded string-transition su�x-tree implementation reduced PPM's

model size extensively for higher order models, which were previously impossible

to execute (Table 9.11).

� Our lazy cloning implementation, LazyDMC, plus \owner protection" and the

optimizations we applied to PPM, improved DMC's performance by 12% over

the original implementation, and by 5.6% over another independently derived

lazy implementation, GDMC (Table 9.14).

� Our lazy cloning implementation, LazyDMC, uses roughly half of the memory

that GDMC requires (Table 9.12).

10.2 Yet Another On-line Linear-Space Su�x-Tree Construction Algo-

rithm

Chapter 3's original transformation of PPM* and PPM to a su�x-tree implementa-

tion with a minimal number of nodes was necessary to add PPM* to our taxonomy.

The transformation describes an on-line linear-space su�x-tree construction algo-

rithm. We started the work late in 1994, upon receiving a preprint of [CTW95].

However, Ukkonen published an on-line su�x-tree construction algorithm [Ukk95]

�rst, in 1995, while we were combining ours with state selection and mixtures in the

implementation of our taxonomy. The independently derived algorithms are quite

similar|even down to the use of the term \splitting." Both algorithms are function-

ally related to McCreight's su�x-tree construction algorithm [McC76].

Additionally, Larsson [Lar96] applied Ukkonen's construction to PPM* and de-

scribed how to make the su�x-tree represent a sliding window of input history. Thus,

our on-line su�x-tree construction algorithm is not the �rst, nor is our application

of on-line su�x-tree construction algorithms to implementing PPM*. However, our

application of a linear-space on-line su�x-tree model constructor to order-bounded

(PPM) models and to su�x-tree models with mixtures or state selection, are the �rst,

and required non-trivial solutions. Furthermore, ours is the �rst actual implementa-

tion of PPM and PPM* using the construction that we know of.

148

10.3 Future Directions

This thesis explored the question of what level of prediction performance is possible

with certain classes on-line FSM models, regardless of cost. There are a number of

ways that we can use these results to further understand the problem of modeling

sequences, as well as to build better practical modeling algorithms. Three straightfor-

ward directions involve completing the study of DMC and the class of models that can

be constructed via edge-redirection, applying the results from our analyses and em-

pirical studies, and extending the taxonomy to include a recent theoretical technique

that seems to be quite distinct from the approaches already covered.

Complete our study of DMC and �nite-order FSM model classes:

� Completely describe the relationship of models grown via edge-redirection (DMC

models) to the class of Finite-Order Languages. Is DMC \complete" for the

class?

� We proved that DMC models are more powerful than (i.e., properly include)

FSMX models, but failed to discover a (non-FSMX) DMC model that outper-

formed the best FSMX model. Future results should either explain why this

cannot be done, or demonstrably harness DMC's extra power. Doing so will

require growing models more slowly than PPM and PPM* do, which degrades

performance on small �les. If there is a way to harness DMC's extra power, it

will probably be demonstrable only with larger �les.

� In this thesis we fairly conclusively answered the questions, What is the best

state selector, What is the best update mechanism, and What is the best existing

mixture? However, we did not explore the question, What is the best combi-

nation of edge-redirection structure and criterion? Performing the experiments

that will answer this question could require exploring a more extensive list of

edge-redirection criteria than we included in the taxonomy. This is also the

path we would �rst investigate to demonstrably harness DMC's extra power.

Apply the best-performing approaches identi�ed in this thesis:

� This work can be used to take some of the \ready, �re, aim!" out of empir-

ical data compression research. The empirical studies in this thesis, and the

149

hundreds of other empirical studies that are made possible by the executable

taxonomy and future extensions of it, can be used to help model designers de-

cide which computations to eliminate, approximate, or perform exactly, based

upon known performance/design-time/resource tradeo�s.

� The modeling techniques presented and evaluated in this thesis can be ap-

plied to other on-line and o�-line modeling problems such as speech recogni-

tion and genomics. For example, the lattice-structured Hidden Markov Mod-

els (HMMs) [Rab89] that are commonly used in speech and genomics model

position-related data dependencies explicitly, but not context-related dependen-

cies. Thus, speech and genomic sequences are currently modeled with zero-order

statistics. We propose that a hierarchically designed model that will utilize both

types of dependencies can be constructed by replacing the states of HMMs with

the context models studied in our work (complete with state selection), without

greatly a�ecting the computational complexity of the dynamic-programming

algorithms that are used to parameterize the HMM. The resulting FSM is a

variable-order HMM.

Extend the taxonomy:

� Recently, a new theoretical on-line modeling technique called \The Context-

Tree Weighting Method" was published in [WST95]. It explicitly constructs

binary FSMX models, but it very explicitly does not perform state selection.

How does the Context-Tree Weighting Method �t into our framework, or more

precisely, how must we alter the framework to incorporate it? How can we

e�ciently generalize the Context-Tree Weighting Method to anm-ary alphabet?

How does it perform? Can we improve it? How do the new subproblem solutions

that it contributes to the framework (at the very least, it adds an entropy-based

mixture weighting function), perform relative to the others?

The executable taxonomy is scheduled to be made publicly available in mid to late

1997, at the on-line host http://www.cs.washington.edu, for use and extension by

other researchers.

Bibliography

[Ash65] R. Ash. Information Theory. John Wiley and Sons, New York, New

York, 1965.

[BB92] S. Bunton and G. Borriello. Practical dictionary management for hard-

ware data compression. Communications of the ACM, 35(1):95{104,

1992.

[BCW90] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Advanced

Reference Series. Prentice-Hall, Englewood Cli�s, New Jersey, 1990.

[Bel86] T. C. Bell. A Unifying Theory and Improvements for Existing Approaches

to Text Compression. PhD thesis, University of Canterbury, 1986.

[BM89] T. C. Bell and A. Mo�at. A note on the DMC data compression scheme.

The British Computer Journal, 32(1):16{20, 1989.

[Bun92] S. Bunton. Data structure management tagging system. U.S. Patent

5,151,697, September 1992.

[Bun94] S. Bunton. A characterization of the `Dynamic Markov Compression'

FSM with �nite conditioning contexts. UW-CSE Technical Report UW-

CSE-94-11-03, The University of Washington, November 1994.

[Bun96] S. Bunton. On-Line Stochastic Processes in Data Compression. PhD

thesis, University of Washington, December 1996.

[Bun97a] S. Bunton. A percolating state selector for su�x-tree context models.

In Proceedings Data Compression Conference. IEEE Computer Society

Press, March 1997.

[Bun97b] S. Bunton. Semantically motivated improvements for PPM variants. The

British Computer Journal, Special Data Compression Issue, 1997. (in-

vited paper, to appear June 1997).

[BW94] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression

algorithm. Research Report 124, DEC SRC, May 1994.

151

[BWC89] T. C. Bell, I. H. Witten, and J. G. Cleary. Modeling for text compression.

ACM Computer Surveys, 24(4):555{591, 1989.

[CH87] G. V. Cormack and R. N. S. Horspool. Data compression using dynamic

Markov modelling. The Computer Journal, 30(6):541{550, 1987.

[Cho88] P. A. Chou. Applications of Information Theory to Pattern Recognition

and the Design of Decision Trees and Trellises. PhD thesis, Stanford

University, 1988.

[CKW91] D. Chevion, E. D. Karnin, and E. Wallach. High e�ciency, multiplication-

free approximation of arithmetic coding. In Proceedings Data Compres-

sion Conference, pages 43{52. IEEE Computer Society Press, March

1991.

[CT91] T. M. Cover and J. A. Thomas. Elements of Information Theory. John

Wiley and Sons, New York, New York, 1991.

[CTW95] J. G. Cleary, W. J. Teahan, and I. H. Witten. Unbounded length contexts

for PPM. In Proceedings Data Compression Conference, March 1995.

[CW84a] J. G. Cleary and I. H. Witten. A comparison of enumerative and adaptive

codes. IEEE Transactions on Information Theory, 30(2):306{315, 1984.

[CW84b] J. G. Cleary and I. H. Witten. Data compression using adaptive coding

and partial string matching. IEEE Transactions on Communications,

32(4):396{402, 1984.

[FG89] E. Fiala and D. Greene. Data compression with �nite windows. Commu-

nications of the ACM, 32(4):490{505, April 1989.

[FGC93] G. Feygin, P. G. Gulak, and P. Chow. Minimizing error and VLSI com-

plexity in the multiplication-free approximation of arithmetic coding. In

Proceedings Data Compression Conference, pages 118{124. IEEE Com-

puter Society Press, March 1993.

[Fur91] G. Furlan. An enhancement to universal modeling algorithm `context'

for real-time applications to image compression. In IEEE Transactions

on Acoustics Speech and Signal Processing, pages 2777{2780, 1991.

152

[Gua80] M. Guazzo. A general minimum-redundancy source-coding algorithm.

IEEE Transactions on Information Theory, 26(1):15{25, January 1980.

[How93] P. G. Howard. The Design and Analysis of E�cient Lossless Data Com-

pression Systems. PhD thesis, Brown University, 1993.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, Reading, Massachusetts,

1979.

[HV92] P. G. Howard and J. S. Vitter. Practical implementations of arithmetic

coding. In J. A. Storer, editor, Image and Text Compression, pages 85{

112. Kluwer Academic Publishers, Norwell Massachusetts, 1992.

[Lan83] G. G. Langdon. A note on the Ziv-Lempel model for compressing individ-

ual sequences. IEEE Transactions on Information Theory, 29(2):284{287,

1983.

[Lar96] N. J. Larsson. Extended application of su�x trees to data compression. In

Proceedings Data Compression Conference, pages 190{199, March 1996.

[LR83] G. G. Langdon and J. J. Rissanen. A double-adaptive �le compression

algorithm. IEEE Transactions on Communications, 31(11):1253{1255,

1983.

[McC76] E. McCreight. A space-economical su�x tree construction algorithm.

Journal of the ACM, 23(2):262{272, April 1976.

[MGZ89] N. Merhav, M. Gutman, and J. Ziv. On the estimation of the order of

a Markov chain and universal data compression. IEEE Transactions on

Information Theory, 35(5):1014{1019, 1989.

[Mof90] A. Mo�at. Implementing the PPM data compression scheme. IEEE

Transactions on Communications, 38(11):1917{1921, 1990.

[MSWB93] A. Mo�at, N. Sharman, I. H. Witten, and T. C. Bell. An empirical

evaluation of coding methods for multi-symbol alphabets. In Proceedings

Data Compression Conference, pages 108{117, March 1993.

[MW85] V. S. Miller and M. N. Wegman. Variations on a theme by Ziv and

Lempel. In A. Apostolico and Z. Galil, editors, Combinatorial Algorithms

153

on Words, pages 131{140. Springer-Verlag, New York, New, York, 1985.

[Pas76] R. Pasco. Source Coding Algorithms for Fast Data Compression. PhD

thesis, Stanford University, 1976.

[Paz71] A. Paz. Introduction to Probabilistic Automata. Academic Press, 111

Fifth Avenue, New York, New York 10003, 1971.

[Rab89] L. R. Rabiner. A tutorial on hidden markov models and selected appli-

cations in speech recognition. Proc. IEEE, 77(2):257{286, 1989.

[RC89] T. V. Ramabadran and D. L. Cohn. An adaptive algorithm for the

compression of computer data. IEEE Transactions on Communications,

37(4):317{324, 1989.

[Ris76] J. J. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM

Journal of Research and Development, 20:198{203, May 1976.

[Ris83] J. J. Rissanen. A universal data compression system. IEEE Transactions

on Information Theory, 29(5):656{664, 1983.

[Ris86a] J. J. Rissanen. Complexity of strings in the class of Markov sources.

IEEE Transactions on Information Theory, 32(4):526{532, 1986.

[Ris86b] J. J. Rissanen. An image compression system. In Proceedings HILCOM

86, 1986.

[Ris89] J. J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Sci-

enti�c Publishing, Singapore, 1989.

[Ris90] E. A. Riskin. Variable-Rate Vector Quantization of Images. PhD thesis,

Stanford University, 1990.

[RL79] J. J. Rissanen and G. G. Langdon. Arithmetic coding. IBM Journal of

Research and Development, 23:146{162, March 1979.

[RL81] J. J. Rissanen and G. G. Langdon. Universal modeling and coding. IEEE

Transactions on Information Theory, 27(1):12{23, 1981.

[RM89] J. J. Rissanen and K. M. Mohiuddin. A multiplication-free multialphabet

arithmetic code. IEEE Transactions on Communications, 37:93{98, 1989.

[Rub79] F. Rubin. Arithmetic stream coding using �xed precision registers. IEEE

Transactions on Information Theory, 25:672{675, November 1979.

154

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System

Technical Journal, 27(3):379{423, March 1948.

[Sto85] J. Storer. Textual substitution techniques for data compression. In

A. Apostolico and Z. Galil, editors, Combinatorial Algorithms on Words,

pages 111{129. Springer-Verlag, 1985.

[Ton93] T. Y. Tong. Data Compression with Arithmetic Coding and Source Mod-

eling. PhD thesis, University of Waterloo, 1993.

[TR93] J. Teuhola and T. Raita. Application of a �nite-state model to text

compression. The Computer Journal, 36(7):607{614, 1993.

[Ukk95] E. Ukkonen. On-line construction of su�x trees. Algorithmica, 14(3):249{

260, 1995.

[vL90] J. van Leeuwen. Handbook of Theoretical Computer Science, Volume B,

Formal Models and Semantics. Advanced Reference Series. The MIT

Press, 55 Hayward Street, Cambridge MA 02142, 1990.

[WB91] I. H. Witten and T. C. Bell. The zero-frequency problem: Estimating

the probabilities of novel events in adaptive text compression. IEEE

Transactions on Information Theory, 37(4):1085{1094, 1991.

[Wel84] T. Welch. A technique for high-performance data compression. IEEE

Computer, 17(6):8{19, June 1984.

[Whi94] R. F. Whitehead. An exploration of dynamic Markov compression. Mas-

ter's thesis, University of Canterbury, 1994.

[Wil91] R. N. Williams. Adaptive Data Compression. Kluwer Academic Publish-

ers, Norwell, Massachusetts, 1991.

[WLZ92] M. J. Weinberger, A. Lempel, and J. Ziv. A sequential algorithm for

the universal coding of �nite memory sources. IEEE Transactions on

Information Theory, 38(3):1002{1014, 1992.

[WMB94] I. H. Witten, A. Mo�at, and T. C. Bell. Managing Gigabytes: Compress-

ing and Indexing Documents and Images. Van Nostrand Reinhold, New

York, New York, 1994.

155

[WNC87] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data

compression. Communications of the ACM, 30(6):520{540, June 1987.

[WST95] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens. The context tree

weighting method: Basic properties. IEEE Transactions on Information

Theory, 41(3):653{664, 1995.

[Yu93] T. L. Yu. Hybrid dynamic Markov modeling. In Proceedings Data Com-

pression Conference. IEEE Computer Society Press, March 1993.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data compres-

sion. IEEE Transactions on Information Theory, 23(3):337{343, 1977.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable-

rate coding. IEEE Transactions on Information Theory, 24(5):530{536,

September 1978.

Suzanne Bunton was born in Lubbock, Texas during the 1960s. She completed

her Bachelor of Science degree in Mathematics, magna cum laude, at the University of

Texas at Dallas in 1987. She received a Master's degree in Computer Science from the

University of Washington in 1990. Portions of her master's thesis, \Practical Dictio-

nary Management for Hardware Data Compression," were published in the 1990 MIT

VLSI Conference Proceedings, the January 1992 issue of The Communications of the

ACM, and in U.S. Patent 5,151,697. She �nished her Ph.D. dissertation, \Stochastic

Processes in Data Compression," in the Department of Computer Science and Engi-

neering at the University of Washington in 1996. Parts of the thesis were published

in the 1995 and 1997 Data Compression Conference Proceedings, and in an invited

submission for the 1997 Special Data Compression Issue of The British Computer

Journal. After receiving her Ph.D., she accepted a postdoctoral fellowship in the

Department of Molecular Biotechnology at the University of Washington, where she

will apply stochastic modeling techniques to problems involving genomic sequences.

156

