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Abstra
t

This paper presents methods to redu
e memory laten
y in the main memory subsystem

below the board-level 
a
he. We 
onsider 
onventional page-mode DRAMs and 
a
hed DRAMs.

Evaluation is performed via tra
e-driven simulation of a suite of nine ben
hmarks.

In the 
ase of page-mode DRAMs we show that it 
an be detrimental to use page-mode

naively. We propose two enhan
ements that redu
e overall memory laten
y in this 
ase: one is

the remapping of address bits and the other is sele
tive usage of page-mode under the 
ontrol

of the memory 
ontroller.

In the 
ase of 
a
hed DRAM we quantify the improvements that 
an be attained by intro-

du
ing some SRAM 
a
he on the DRAM 
hip. We evaluate various design alternatives for the

line size and asso
iativity of the SRAM 
a
he.
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1 Introdu
tion

As the gap between pro
essor and memory widens, tolerating memory laten
y has be
ome the

biggest 
hallenge to a
hieving high performan
e in 
urrent mi
ropro
essor systems. The great

majority of the laten
y hiding te
hniques, either based on hardware enhan
ements or software

optimizations, that have been proposed or implemented to date have been dire
ted towards the

top of the memory hierar
hy, namely, 
a
hes at various levels. Generally, main memory has been

viewed as having uniform a

ess laten
y. This is however an over simpli�
ation whi
h does not

take advantage of developments in memory te
hnology.

Main memory is usually 
omposed of dynami
 random-a

ess memory (DRAM) devi
es [6℄. Current

DRAMs have an optimized feature 
alled page-mode. In page-mode, the devi
e has an on-
hip

bu�er, that provides a

ess whi
h is a fa
tor of two or more faster than a normal DRAM a

ess[1℄.

However, as we explain later, page-mode operation la
ks 
exibility and 
an result in performan
e

degradation rather than improvement. This is be
ause page-mode is meant to be a high-bandwidth

me
hanism and its bu�er is not designed to be used as a 
onventional 
a
he.

Among the emerging DRAMs (syn
hronous DRAMs, EDODRAMs, et
.), two that are parti
ularly

attra
tive for 
a
hing are 
a
hed DRAMs ( e.g., CDRAM and EDRAM [2, 12℄). Both devi
es repla
e

the page-mode bu�er with stati
 RAM (SRAM). In addition to providing higher bandwidth, the

SRAM 
an be used as a 
onventional 
a
he to redu
e memory laten
y [5℄.

The thrust of this paper is two-fold. First, we investigate methods of redu
ing memory laten
y using

page-mode DRAMS in a sele
tive manner. Se
ond, we explore the various organization parameters

of SRAM 
a
he design for a 
a
hed DRAM.

The remainder of the paper is organized as follows. In Se
tion 2, we review the operations of page-

mode DRAM (in
luding the reason why following page-mode blindly 
an be 
ounter-produ
tive)

and of 
a
hed DRAMs. The methodology that we use to evaluate the e�e
tiveness of the enhan
e-

ments that we propose is des
ribed in Se
tion 3. Se
tion 4 presents the results of two te
hniques

that 
an be applied to page-mode DRAMs to improve their performan
e: one is related to the

mapping of addresses in the page bu�er; the other 
onsiders memory 
ontroller s
hemes that sele
t

whi
h banks operate in page-mode and whi
h do not. Se
tion 5 investigates the impa
t of the

SRAM 
a
he in DRAM devi
es and evaluates several design alternatives. Finally, in Se
tion 6 we


on
lude and pla
e this study in the perspe
tive of integrated pro
essor/memory systems [3, 14℄.

2 Page-mode DRAM and Ca
hed DRAM Operation

In this se
tion, we review very brie
y the operation of page-mode DRAMs and 
a
hed DRAMs.

2.1 Page-mode DRAM

An a

ess in DRAM devi
es usually 
onsists of a row a

ess followed by a 
olumn a

ess (see Figure

1). A read request 
onsists �rst of a row a

ess, reading a row of bits (a DRAM page), 
ontaining

the desired data bit, from the DRAM array into a page bu�er. Se
ond, a 
olumn a

ess sele
ts the

desired data bit from the page bu�er. Assuming that the devi
e has been pre
harged, the laten
y

is the sum of the row a

ess and 
olumn a

ess laten
ies. For typi
al DRAMs, this 
an range from
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Figure 1: DRAM operation. This �gure shows how a data bit is read from the DRAM devi
e.

First, the row address sele
ts a DRAM page that is read into the page bu�er. Se
ond, the 
olumn

address sele
ts the desired data bit from the page.

30 to 40 nanose
onds for ea
h of the row a

ess and 
olumn a

ess laten
y. Before data 
an be

read from the DRAM array, it has to be pre
harged. The pre
harge laten
y di
tates the minimum

time between array a

esses and 
an be hidden if there is suÆ
ient time between a

esses. Typi
al

DRAM pre
harge time is 30 to 50 nanose
onds.

In page-mode [6℄, row a

esses 
an be eliminated on su

essive requests if the desired bits are in

the page bu�er. The a

ess time is then redu
ed to the 
olumn a

ess time. Thus, the page bu�er


an be used as a 
a
he with a single long line. However, if the request misses in the page bu�er,

a whole 
y
le of pre
harge, row a

ess, and 
olumn a

ess takes pla
e. The pre
harge is ne
essary

be
ause the DRAM 
annot be both pre
harged and in page mode.

Using page-mode 
an provide lower laten
y and higher bandwidth from the memory system. How-

ever, as explained in the previous paragraph, using page-mode 
an also be detrimental to perfor-

man
e. If we assume that pre
harge, row a

ess, and 
olumn a

ess take the same time, say t, then

for a series of n a

esses, where n is the page bu�er size divided by the data size, we have:

� The best 
ase for page-mode operation is n� 1 hits in the page bu�er after the initial miss.

The page-mode time would then be: 3 � t + (n � 1) � t. The worst 
ase for page-mode

operations is a miss on ea
h request. The time for n requests would be 3� n� t.

� Without using page-mode, the time would be between 2 � n � t (assuming there is enough

time between requests to hide the pre
harge time) and 3�n�t when there is no time between

requests.

From the above analysis, it is 
lear that page-mode operation will be bene�
ial if the hit rate of the

page bu�er is above 50%. Of 
ourse, the 50% threshold is only an approximation that depends on

the relative timings for pre
harge, row a

ess, and 
olumn a

ess as well as on the demands, reads

or writes from the pro
essor. In parti
ular, if the write laten
y 
an be hidden, e.g., with the help of
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ben
hmark des
ription


holesky The Cholesky fa
torization 
omponent of the Nasa7 
oating point

ben
hmark.


ompress Compress a 1 MB �le using adaptive Lempel-Ziv 
oding.

�t The FFT 
omponent of the Nasa7 
oating point ben
hmark.

g

 GNU C 
ompiler whi
h produ
es Sun3 assembly 
ode

geometry Sets up arrays for a vortex method solution and performs Gaussian

elimination on the resulting arrays.

hydro2d Solves hydrodynami
 Navier Stokes equations

su2
or Computes masses of elementary parti
les

tom
atv Ve
torized mesh generation program.

vpenta Inverts 3 matrix pentadiagonals.

Table 1: Ben
hmark des
riptions

write bu�ers and a write-ba
k poli
y in the pro
essor 
a
he, then the read requests to the DRAM

must have a page hit rate above 50% for page-mode to be e�e
tive. What this simpli�ed analysis

shows though is that page-mode operation will be e�e
tive for a

ess to large data sets, over
owing

or bypassing 
a
hes, with low stride between 
onse
utive a

esses to individual DRAM banks. This

addressing pattern is typi
al of ve
tor appli
ations [11, 7℄. However, page-mode operation 
an be

detrimental for appli
ations a

essing memory \randomly". We will return to this problem and

present some solutions in Se
tion 4.

2.2 Ca
hed DRAMs

In newer DRAM te
hnologies su
h as CDRAM and EDRAM [2, 12, 5℄, the page bu�er is repla
ed

with a small SRAM 
a
he. The design of these DRAMs en
ourage on-
hip DRAM 
a
hing and

eliminate the drawba
ks of page-mode DRAMs. The �rst advantage of these devi
es over page-

mode DRAMs is that the use of the SRAM enables the simultaneous pre
harging of the DRAM

array and a

ess of the SRAM 
a
he. Thus, a

ording to our model of the previous se
tion, a

ess

to the 
a
he will take time t, while a 
a
he miss will take between 2� t and 3� t. Se
ond, instead of

having a single long 
a
he line, the 
a
he 
an be organized with parameters more like a traditional


a
he. For example, the 
a
he in the CDRAM has 256 entries [13℄. Moreover, with separate address

lines (for the DRAM array and the SRAM 
a
he) and external tag logi
, the CDRAM's 
a
he 
an

be made set-asso
iative. In Se
tion 5, we explore the design spa
e of the SRAM 
a
he.

3 Methodology

To evaluate the e�e
tiveness of DRAM on-
hip 
a
hing, we use tra
e-driven simulation. The

tra
es were generated from an Alpha 21064 using the ATOM [16℄ software instrumentation tool.

ATOM inserts instrumentation 
ode in the obje
t 
ode. The generated referen
es are those of an

uninstrumented binary. In our study we 
on
entrate only on data referen
es. For our ben
hmarks,

the instru
tion referen
e working set �ts well in a small instru
tion 
a
he and would generate few

memory referen
es beyond the 
ompulsory misses [10℄.
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Figure 2: Workload misses per instru
tion. This �gure shows the memory system load presented

by the ben
hmarks. For ea
h ben
hmark, the number of misses per 100 instru
tions are shown for

two dire
t-mapped 
a
he (8 KB and 256 KB). The height of the bar is the MPI on an 8 KB 
a
he.

The lower 
omponent of ea
h bar is the MPI on a 256 KB 
a
he.

Our workload 
onsists of ben
hmarks from SPEC92 [4℄ that exhibited signi�
ant data referen
e

misses per instru
tion (MPI). The ben
hmarks are des
ribed in Table 1. The MPI for the ben
h-

marks are shown in Figure 2 for two 
a
hes of respe
tive sizes 8KB and 256 KB, both dire
t-mapped

and with a line size of 32 bytes.

3.1 Simulated system

Our interest in this paper is on the main memory subsystem. Therefore, we model the 
a
he

hierar
hy as a single-level 
a
he

1

. This 
a
he uses a write-ba
k poli
y whi
h minimizes memory

traÆ
 [6℄ and whi
h is the one most often used in 
a
hes 
losest to main memory. The pro
essor

is modelled with an ideal pipeline, i.e., ea
h instru
tion exe
utes in a single 
y
le, ex
ept when

there is a 
a
he miss. In this 
ase, the memory laten
ies depend on the memory subsystem being

modelled as explained below.

We have performed our experiments with two \extreme" 
a
he sizes: 8 KB and 256 KB. The small

8KB 
apa
ity 
orresponds to low-end ma
hines, e.g. the Mi
roSpar
 as indi
ated in [14℄. The

small 
apa
ity 
a
he 
an also be seen as a way to model the behavior of systems with larger 
a
hes

running appli
ations whose working set sizes are larger than those we are using. The larger 
apa
ity

256 KB 
a
he 
orresponds to higher end systems. Although larger 
a
hes, in the megabyte range,

are available, we limited ourselves to 256 KB in order to have meaningful data for the appli
ations

we simulated. Both 
a
hes are dire
t-mapped with a 32 byte line size.

The memory subsystem, shown in Figure 3, has four banks ea
h with an 8 KB page bu�er(or 
a
he)

for an aggregate of 32 KB of page bu�er (or 
a
he). The amount of page bu�er is derived from a

1

We will 
all this 
a
he the board-level 
a
he when there is a risk of 
onfusion between it and the DRAM 
a
he.
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Figure 3: Simulated memory system. This �gure shows the experimental memory system. The

memory subsystem has four banks. There is an aggregate of 32 KB page bu�er (8 KB per bank).

The memory 
ontroller determines the mapping and the operating mode of ea
h bank.

32 MB system 
omposed from 64 4� 1 Mb DRAMs. We assume that a board-level 
a
he miss 
an

be satis�ed with one memory a

ess. Banks are interleaved on a modulo(8 KB) basis.

As explained in Se
tion 2, there are three possible a

ess laten
ies for a main memory a

ess,

namely: page-mode, pre
harged, and random. When the DRAM is in page-mode, page is the

laten
y of a page-bu�er hit. We 
hose a simulated pro
essor 
lo
k speed of 166 MHz (6 ns. 
y
le).

For a 30 ns. page-bu�er hit, this is 5 
y
les. Random is the laten
y of a miss where the full penalty

of pre
harge, in addition to the row and 
olumn a

ess laten
ies, is seen and is 15 
y
les. Pre
harged

is the laten
y of a non-page-mode DRAM a

ess where some of the pre
harge laten
y is hidden. It

in
ludes the row and 
olumn a

ess laten
ies and is 10 to 15 
y
les, depending upon how mu
h of

the pre
harge time (5 
y
les) is hidden.

3.2 Memory performan
e metri
s

We use two metri
s to evaluate the e�e
tiveness of the DRAM 
a
hing s
hemes. The �rst one is the

page-bu�er miss rate. The miss rate indi
ates the e�e
tiveness of using the relatively small amount

of DRAM 
a
he. For the 
a
hed DRAMs, an in
rease in hit rate will be dire
tly 
orrelated to a

redu
tion in memory laten
y. For page-mode DRAM, however, a de
rease in page misses is only

one of the fa
tors that lead to a redu
tion in memory laten
y. The metri
 of interest is the number

of 
y
les that the pro
essor waits for a memory request to 
omplete. Sin
e our goal is to evaluate

the e�e
tiveness of the memory subsystem below the board-level 
a
he, we will a

ount only for

the 
y
les needed to transfer data between the board-level 
a
he and the DRAM. We therefore use

as the metri
, memory 
y
les per instru
tion in the memory subsystem (MCPI

s

), de�ned as:

MCPI

s

=

Cy
les waiting for memory requests

total number of instru
tions

4 Enhan
ing the Performan
e of Page-mode DRAMs

As explained in Se
tion 2, page-mode DRAMs have the ability to 
a
he data. However, the 
a
he

is severely 
onstrained. It 
onsists of a single long line (one per memory bank) and the data stored

in the line 
orresponds to 
onse
utive byte addresses. If a

esses to the DRAM memory exhibit
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Figure 4: Memory mapping. This �gure shows how the memory request address is remapped.

good spatial lo
ality, e.g., a

essing all the elements of a ve
tor sequentially, then the hit rate in

the DRAM 
a
he will be high and operating in page-mode will be bene�
ial. When the hit rate is

low, a 
ommon o

urren
e be
ause of the �ltering e�e
t of the board-level 
a
he, then not using

page-mode and attempting to hide the pre
harge time is preferred.

In this se
tion, we investigate two ways to enhan
e the performan
e of page-mode DRAMs: �rst,

we examine the impa
t of address mapping so that the 
ontents of the page bu�er 
an be divided

in several subsets, and, se
ond, we look at s
hemes to sele
tively 
ontrol the page-mode operation

on a per bank basis.

4.1 Memory mapping

As shown in Figure 1, the 
onventional page-mode DRAM has a set of row address lines and 
olumn

address lines. An address generated by the CPU and resulting in a 
a
he miss will be seen by the

DRAM as having 4 
omponents:

� The (board-level) 
a
he blo
k o�set. For example, in our modeled system with 32 byte 
a
he

lines, this would be the low 5 bits, bits 4-0.

� The remaining bits are split in three �elds: bank sele
tion, row address, and 
olumn address.

In a 
onventional DRAM (see Figure 4), the low order bits 
orrespond to the 
olumn address,

the next bits are used for bank sele
tion, and the remaining upper bits 
onstitute the row

address.

In the 
onventional mapping of addresses, the 
hoi
e of row and 
olumn addresses 
an be far from

optimal for a memory system with a board-level 
a
he. The 
olumn address bits are bits that


orrespond to low order bits of the index �eld for the board-level 
a
he. Consequently, any 
on
i
t

miss in the board-level 
a
he, whi
h is most always larger than the DRAM 
a
he, will 
ertainly

result in a page miss in the DRAM page bu�er. One way to 
ir
umvent this problem is to use other

bits of the address for the DRAM row and 
olumn addresses. In the Alphastation 600 [17℄, the

low order 
olumn bits are ex
hanged with the row bits and the high-order bits are used for bank

sele
tion. Now both the (board-level) 
a
he line and the one it has just repla
ed 
an be 
a
hed
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Figure 5: Page bu�er interleaving with an 8 KB board-level 
a
he. These graphs show the page

bu�er miss rate for various page bu�er interleavings with an 8 KB board-level 
a
he. The overall

miss ratio is the number of misses to the number of referen
es. The read miss ratio is the number

of read misses to the number reads. The write miss ratio is similar to the read miss ratio.

by the same DRAM row. However, this mapping destroys the spatial lo
ality that existed in the

DRAM bu�er and will be detrimental to page-mode operation for sequential a

esses. For the

Alphastation 600, the remapping begins at bit 8, mapping only 256 bytes 
ontiguously.

We use a similar method but �rst we want to determine whi
h bits should be swapped in order to

�nd a good 
ompromise between eliminating a majority of page bu�er misses due to 
on
i
t misses

in the board-level 
a
he while preserving some spatial lo
ality. To that e�e
t, we varied the number

of bytes mapped 
ontiguously, that we 
all 
hunks, from the minimum of a board-level 
a
he line

(32 bytes) to a 
omplete DRAM page (8 Kbytes). Addresses of 
onse
utive 
hunks in the DRAM


a
he were taken modulo the board-level 
a
he size (
f. Figure 4).

The ensuing DRAM page bu�er miss rates are plotted in Figures 5 and 6 for the various appli
ations

2

and for the two di�erent board-level 
a
hes. For ea
h appli
ation, we plot miss rates vs. the 
hunk

size. The three miss rates of interest are:

2

We removed the plot for g

 in the 256 KB 
ase, sin
e the board-level misses were insigni�
ant.
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Figure 6: Page bu�er interleaving with a 256 KB board-level 
a
he. These graphs show the page

bu�er miss rate for various page bu�er interleavings with a 256 KB board-level 
a
he. The overall

miss ratio is the number of misses to the number of referen
es. The read miss ratio is the number

of read misses to the number reads. The write miss ratio is similar to the read miss ratio.

� The overall page miss rate, i.e.,

number of page misses

number of DRAM a

esses

� The read miss rate, i.e.,

number of read page misses

number of DRAM read a

esses

� The write miss rate, i.e.,

number of write page misses

number of DRAM write a

esses

In the 
ase of the small board-level 
a
he, the amount of page bu�er (32 KB total) is larger than the


a
he's 
apa
ity and a
ts as a se
ond-level 
a
he. Having long bu�er lines will help in the 
ase of


apa
ity misses while having short lines will be more eÆ
ient to redu
e the laten
y due to 
on
i
t

misses. As 
an be seen from Figure 5, overall miss rates and read miss rates are generally lowest for


hunks of size 8 KB, the maximum 
hunk size. (vpenta is a glaring ex
eption.) Write miss rates are

less important for overall performan
e for two reasons: (i) writes are due to repla
ement of dirty

lines and are less frequent than reads, and (ii) write-ba
ks are in the ba
kground and do not stall

the pro
essor if subsequent read requests are suÆ
iently far away. Looking at Figure 5 and 
hoosing

8 KB 
hunks, we would expe
t 
holesky and �t to bene�t handsomely from page-mode operation

9



while the performan
e degradation in vpenta, 
ompress should be severe and the degradation of

hydro2 
ould be moti
eable.

In the 
ase of the 256 KB 
a
he, the 
hoi
e for the best 
hunk size is signi�
antly di�erent. Not

doing any remapping, i.e., leaving an 8 KB 
hunk, 
ould lead to severe losses in page-mode operation

sin
e for that 
hunk size the miss rates are often 
lose to 100% and always larger than 50%. We

would not expe
t any appli
ation to bene�t from page-mode without remapping. Looking at Figure

6, the minimum overall and read miss rates are obtained for a 
hunk size between 512 bytes and

2 KB for all appli
ations. These sizes are a 
ompromise between removing more 
on
i
t misses

(small size) and keeping spatial lo
ality. Also, we note that the write miss rates drop to almost 0 for

all appli
ations ex
ept su2
or and tom
atv when the 
hunk size is less than 2 KB. This is be
ause

some of the vi
tim and requested lines map to the same DRAM row. By 
hoosing a 
hunk size

of 1 KB, the laten
ies of board-level 
a
he misses in 
holesky and �t should be greatly redu
ed in

page-mode operation. On the other hand, those from 
ompress should still be worse. For the other

appli
ations, the end result might depend on whether the write miss laten
ies 
an be 
ompletely

hidden or not.

In the remainder of the paper, we 
hoose a 
hunk size of 1 KB for remapping with the 256 KB


a
he and not to remap with the 8 KB 
a
he.

4.2 Evaluation of remapping

Figure 7 shows the relative performan
e of page-mode operation versus pre
harge for the three


ases of: 8 KB board-level 
a
he and 8 KB 
hunk, 256 KB board-level 
a
he and 8 KB 
hunk, and

256 KB board-level 
a
he and 1 KB 
hunk. For the time being, we only look at the leftmost bar

(for ea
h appli
ation) that gives the ratio:

MCPI

s

for page mode operation

MCPI

s

for pre
harge operation

In page-mode operation, a DRAM 
a
he hit returns data in page-mode, i.e., 5 
y
les. A miss takes

random, i.e. 15 
y
les. In the pre
harge s
heme the DRAM is always pre
harged after the a

ess.

All a

esses take pre
harged, i.e., between 10 and 15 
y
les. The pre
harge s
heme does not use

page-mode and is our baseline. In 
ontrast, the page-mode s
heme always leaves the DRAM in

page-mode after ea
h request, expe
ting that the next request will be in the page bu�er.

In general, the results 
orrelate well with our predi
tions from the last se
tion. In the 
ase of

the 8 KB board-level 
a
he, 
holesky and �t bene�t signi�
antly from page-mode operation while


ompress, hydro2d and vpenta su�er from it. g

, geometry and su2
or, with overall hit ratios 
lose

to 50%, perform slightly better in page-mode and there is no di�eren
e for tom
atv with a miss

ratio 
lose to 60%.

In the 
ase of the 256 KB board-level 
a
he and no remapping, page-mode operation is always

worse, to a varying degree, than pre
harge. This is 
onsistent with the data of Figure 6.

Finally, in the remapping 
ase, 256 KB board-level 
a
he with 1 KB 
hunk, page-mode operation

works very well for 
holesky and �t and badly for 
ompress, as expe
ted. For the other appli
ations,

page-mode operation is slightly more bene�
ial than the 
rude 50% threshold would have led us to

believe.
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4.3 Sele
tively using page-mode

While remapping 
learly leads to better page-mode operation, there are appli
ations that would

bene�t if page-mode operation 
ould be turned on or o� depending on the memory referen
e

patterns. We therefore investigate memory 
ontroller s
hemes that use page-mode sele
tively.

Whether to operate in page-mode or not is based on the history of past a

esses to the DRAM.

The s
hemes are summarized in Table 2.

s
heme des
ription hit miss

pre
harge The DRAMs are always pre
harged pre
harged pre
harged

after satisfying the 
urrent request

page�mode Page-mode is always used. page random

mru The two most re
ently used banks are kept in page or random or

page-mode. The other banks are pre
harged. pre
harged pre
harged

affinity1 The bank is put in page mode after two page or random or


onse
utive read a

esses to the same page. pre
harged pre
harged

affinity2 Strong two-bit 
ounter s
heme page or random or

based on read a

esses pre
harged pre
harged

Table 2: Page-mode 
ontrol s
hemes. This table des
ribes ea
h of the page-mode s
hemes. Hit is

the laten
y of a request that would hit in the page bu�er. Miss is the laten
y otherwise.

We have already des
ribed the operations of the pre
harge and page-mode s
hemes. Similar to

page-mode is mru. However, mru leaves only the two most re
ently used memory banks in page-

mode. If there is a 
orrelation between ina
tive banks and page bu�er misses in ina
tive banks,

then mru will do better than page-mode by pre
harging ina
tive banks. The two other s
hemes,

aÆnity1 and aÆnity2, attempt to predi
t whether to leave the DRAM bank in page-mode or to

pre
harge. Similar to simple bran
h predi
tion logi
 [9℄ aÆnity1 and aÆnity2 use a 1-bit and 2-bit,

respe
tively, predi
tion s
heme as to whether to use page-mode or pre
harge. In
rementing or

de
rementing the predi
tion 
ounter is done on read a

esses only.

Figure 7 shows the performan
e of the above page-mode s
hemes in the same 3 
on�gurations as

in the remapping evaluation. For ea
h appli
ation, we have shown the performan
e of the sele
tive

s
hemes relative to the pre
harge s
heme. As in the page-mode vs. pre
harge 
omparison, if the

relative MCPI

s

is above 1, then the appli
ation would be better o� simply pre
harging after ea
h

request.

The mru (se
ond bar from the left) s
heme presents no advantage over page-mode for the 8 KB


ase. Sometimes, the performan
e is better (
ompress, geometry), sometimes it is markedly worse

(
holesky, su2
or). For the larger 
a
he, the mru s
heme 
orre
ts some errors of the page-mode

s
heme, i.e., some banks are pre
harged rather than exhibiting page bu�er misses. mru performs

better than page-mode whether there is remapping or not.

Of the two aÆnity s
hemes (the two bars on the right), aÆnity2 performs best. In the 8 KB 
ase,

it is the s
heme of 
hoi
e sin
e all appli
ations with this s
heme behave as well or better than

pre
harge. Under this s
heme, when there is no lo
ality, the banks will remain in the pre
harged

mode. When there is suÆ
ient lo
ality, they will be in page-mode. The only time where there

might be a slight loss, with respe
t to mru or page-mode, is for the \learning 
urve" of the 2-bit


ounter that keeps a bank in pre
harge mode for 1 or 2 referen
es too many. In the 256 KB 
ase

12



with no remapping, aÆnity2 yields the best results, always performing better than both pre
harge

and page-mode. When remapping is implemented, aÆntiy2 will always be better than pre
harge.

In two appli
ations, geometry and vpenta, operating in page-mode would be better. Although, it is

not diÆ
ult to �nd pathologi
al 
ases where this behavior 
an be exhibited, further analysis of the

referen
e patterns is needed before we 
an explain this \anomalous" behavior. This might be due

to short bursts of \read,write" sequen
es to the same page pi
ked up by page-mode but initially

dis
arded by aÆnity2.

4.4 Summary

In this se
tion we have shown that using page-mode operation in DRAMs in a straightforward fash-

ion 
ould degrade performan
e over simply pre
harging banks after ea
h a

ess. This degradation

would get relatively worse as the board-level 
a
he gets bigger. Two fa
tors that 
an enhan
e the

operation in page-mode are: (i) the mapping of addresses to row and address lines in the DRAM

so that the hit rates in the page bu�er are higher, and (ii) sele
tive use, monitored by the memory


ontroller, of the page-mode operation itself. With these enhan
ements, page-mode operation will

always be beni�
ial with up to 100% improvement.

5 Ca
hed DRAMs

In the previous se
tion, we evaluated the eÆ
a
y of the 
a
hing e�e
ts that are possible with page-

mode DRAMs. In this se
tion, we investigate the e�e
tiveness of an SRAM 
a
he on the DRAM


hip. Re
all that in these 
a
hed DRAMs, the page bu�ers of page-mode DRAMs are repla
ed

with SRAM and that, 
onsequently, one de�nite advantage of the 
a
hed DRAM is the possibility

of simultaneous pre
harging of the DRAM array and a

ess to the SRAM 
a
he. We �rst quantify

this advantage by 
omparing 
a
hed DRAM laten
ies with those of page-mode DRAM from Se
tion

4. We then investigate various design organizations for the SRAM 
a
he.

5.1 SRAM advantage

One of the disadvantages for 
a
hing with page-mode DRAMs is the guessing involved in de
iding

whether to pre
harge the DRAM or leave it in page-mode. While the s
hemes from Se
tion 4.2 
an

be used to improve the de
ision heuristi
, they do not work well in all 
ases and they add to the


omplexity of the memory 
ontroller. The repla
ement of the page bu�er with SRAM eliminates

this guessing: a

essing the SRAM 
a
he does not pre
lude the simultaneous pre
harging of the

DRAM array.

The advantage of the SRAM 
a
he over page-mode DRAM is shown in Figure 8. We 
ompare the

MCPI

s

of the 
a
hed DRAM against two page-mode DRAM s
hemes from se
tion 4.2, page-mode

and aÆnity2. For the 
a
hed DRAM, we use the same laten
ies as the page-mode DRAM, i.e., 5


y
les for a hit and 10-15 
y
les for a miss depending on whether pre
harging was �nished or in

progress. For the 256 KB 
a
he, we use remapping with 
hunk 1 KB. The MCPI

s

are normalized

to the MCPI

s

of the pre
harge DRAM s
heme as in Figure 7.

From the graphs, we dire
tly see the bene�t of being able to simultaneous pre
harge and a

ess

13
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Figure 8: Comparison of 
a
hed and page-mode DRAM. For ea
h ben
hmark, the MCPIs (normal-

ized to the pre
harge s
heme with page-mode DRAM) are shown for 
a
hed DRAM against two

s
hemes with page-mode DRAM.

the DRAM 
a
he. The 
a
hed DRAM (the rightmost bar) has lower laten
ies than all the other

s
hemes with page-mode DRAMs. When page-mode was eÆ
ient, e.g,. with 
holesky and �t, the

gains are minimal. When page-mode and/or aÆnity2 worked badly, the relative gains are more

impressive (geometry, su2
or).

5.2 Line size and asso
iativity

We now investigate the design parameters for the SRAM 
a
he with the global 
onstraint of �xed


apa
ity, i.e., 8 KB per bank. Many studies have been performed to 
hara
terize the best 
hoi
e

of line size and asso
iativity for a given 
a
he 
apa
ity (see, e.g., [15℄). The parameters for the

design of the SRAM 
a
he on the DRAM 
hip 
ould be 
ompletely di�erent sin
e this 
a
he does

not re
eive requests 
omparable to those of a (pro
essor) 
a
he.

The SRAM 
a
he on the DRAM 
hip will re
eive 3 types of requests.

� Capa
ity misses if the board-level 
a
he is small. The SRAM 
a
he will play the role of a

(small) se
ond-level 
a
he.

14



� Con
i
t misses in the board-level 
a
he. The SRAM 
a
he 
ould play the role of a vi
tim


a
he [8℄.

� Sequential a

esses to large data stru
tures. The SRAM 
a
he 
ould play the role of a stream

bu�er [8℄.

In our simulations, we varied the line size from 8 KB (the original one) to 128 bytes and we varied

the asso
iativity from dire
t-mapped (the original one) to 4-way (of 
ourse, only when the 
apa
ity

allowed us to do it). Figure 9 shows the results for the 8 KB 
a
he and Figure 10 for the remapped

256 KB 
a
he. In both �gures the MCPI

s

are normalized to the performan
e with a single line of

8 KB (dire
t-mapped).

For the 8 KB 
a
he, we did not know what to expe
t sin
e the three types of requests above do exist.

The �rst observation is that for all appli
ations, in
reasing the asso
iativity for a given line size will

result in better performan
e. For example, when we �x the line size at 1 KB, we see improvements

of about 30% in hydro2, su2
or, tom
atv and vpenta when mvoing from dire
t-mapped to 4-way set

asso
iativity. While this line size is not the best 
hoi
e for �t the end result is still a performan
e

improvement of 15% over the best 
hoi
e of line size and a dire
t-mapped SRAM 
a
he. The only

ex
eption is for geometry where sequential a

esses dominate: the longer the line the better the

performan
e.

For the 256 KB 
a
he, there should be almost no 
apa
ity misses, ex
ept for 
ompress, and the

remapping already provides a limited form of asso
iativity. Thus, the advantages of more expli
it

asso
iativity should not be as important. When we have a 1 KB line and a 4-way set-asso
iative

SRAM 
a
he, three appli
ations (hydro2d, su2
or and tom
atv) bene�t from asso
iativity but less

than in the 8 KB 
ase and other appli
ations su
h as �t and, to a lesser extent, vpenta perform

worse.

Although there is no �rm 
on
lusion of best asso
iativity or best line size, the 
ommon trend is that

a limited number of large lines will perform well. This is an en
ouraging result sin
e it implies that

the number of tags to be stored will be small and therefore the SRAM overhead will be limited.

6 Con
lusions

Memory laten
y has be
ome the major bottlene
k in the performan
e of high-end systems. In order

to redu
e or tolerate this laten
y, a number of te
hniques must be used at various points in the

memory hierar
hy. In this paper, we have fo
used at the DRAM level. We have presented methods

to enhan
e page-mode DRAMs and explored the design spa
e of 
a
hed DRAMs. The s
hemes

that we have proposed have been evaluated on a set of nine ben
hmarks.

Our �rst e�ort has been to provide two methods to enhan
e the performan
e of page-mode DRAMs.

The �rst one is to remap the addresses of DRAM requests so that 
on
i
t misses in the board-

level 
a
he do not result in 
on
i
t misses in the page bu�er. In that 
ase, the page bu�er a
ts

partially as a vi
tim 
a
he. The se
ond is to use adaptive methods to 
ontrol when banks should

be pre
harged and when they should be left in page-mode. A simple 2-bit predi
tive method yields

de�nite improvements.

The 
ombination of these two methods always insure that the page-mode DRAM will be more

eÆ
ient than not using page-mode in standard DRAMs. Improvements vary from insigni�
an
e,
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Figure 9: Ca
hed DRAM organizations with an 8 KB board 
a
he. This �gure shows the normalized

MCPIs for various DRAM 
a
he line sizes and asso
iativity. The MCPI is normalized to the dire
t-

mapped 
a
hed DRAM with 8 KB lines. The board 
a
he is 8 KB and the per bank DRAM 
a
he

is 8 KB.
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Figure 10: Ca
hed DRAM organizations with a 256 KB board 
a
he. This �gure shows the

normalized MCPIs for various DRAM 
a
he line sizes and asso
iativity. The MCPI is normalized

to the dire
t-mapped 
a
hed DRAM with 8 KB lines. The board 
a
he is 256 KB and the per bank

DRAM 
a
he is 8 KB.
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when the requests are almost all due to la
k of 
apa
ity in the board-level 
a
he, to a redu
tion

of about half of the memory laten
y. This is in 
ontrast with a naive use of page mode operation,

without remapping and without adaptive 
ontrol, that results in a degradation of performan
e

for half of the appli
ations when the board-level 
a
he is small and for all appli
ations when the

board-level 
a
he is large.

When the page-mode DRAM is repla
ed by a 
a
hed DRAM, the laten
ies are ne
essarily always

redu
ed. The redu
tion in laten
y is improved by making the SRAM 
a
he more asso
iative either

expli
itly or impli
itly via remapping. However, the prefet
hing e�e
t of long lines in the SRAM is

always important and an implementation with smaller lines 
an be detrimental. This last result is

notable sin
e longer lines redu
e the hardware overhead brought upon by the tags.

We 
an pla
e this study in two 
ontexts. The �rst one, 
orresponding to the large board-level


a
he, indi
ates that the 
orre
t appli
ation of page-mode DRAMs and a rather straightforward

implementation of a 
a
hed DRAM 
an provide important bene�ts to all appli
ations. The se
ond

relates to the re
ent proposals on integrating pro
essor and memory on the same 
hip [3, 14℄. If

indeed this integration be
omes te
hnologi
ally feasible and 
ost-e�e
tive, then the pro
essor, small

board-level 
a
he, and the SRAM 
a
he and the DRAMs 
an all be integrated. What our study

shows is that the SRAM 
an be e�e
tive even with a very simple organization.
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