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Abstract

This paper presents methods to reduce memory latency in the main memory subsystem
below the board-level cache. We consider conventional page-mode DRAMs and cached DRAMs.
Evaluation is performed via trace-driven simulation of a suite of nine benchmarks.

In the case of page-mode DRAMs we show that it can be detrimental to use page-mode
naively. We propose two enhancements that reduce overall memory latency in this case: one is
the remapping of address bits and the other is selective usage of page-mode under the control
of the memory controller.

In the case of cached DRAM we quantify the improvements that can be attained by intro-
ducing some SRAM cache on the DRAM chip. We evaluate various design alternatives for the
line size and associativity of the SRAM cache.



1 Introduction

As the gap between processor and memory widens, tolerating memory latency has become the
biggest challenge to achieving high performance in current microprocessor systems. The great
majority of the latency hiding techniques, either based on hardware enhancements or software
optimizations, that have been proposed or implemented to date have been directed towards the
top of the memory hierarchy, namely, caches at various levels. Generally, main memory has been
viewed as having uniform access latency. This is however an over simplification which does not
take advantage of developments in memory technology.

Main memory is usually composed of dynamic random-access memory (DRAM) devices [6]. Current
DRAMSs have an optimized feature called page-mode. In page-mode, the device has an on-chip
buffer, that provides access which is a factor of two or more faster than a normal DRAM access[1].
However, as we explain later, page-mode operation lacks flexibility and can result in performance
degradation rather than improvement. This is because page-mode is meant to be a high-bandwidth
mechanism and its buffer is not designed to be used as a conventional cache.

Among the emerging DRAMs (synchronous DRAMs, EDODRAMS, etc.), two that are particularly
attractive for caching are cached DRAMs ( e.g., CDRAM and EDRAM [2, 12]). Both devices replace
the page-mode buffer with static RAM (SRAM). In addition to providing higher bandwidth, the
SRAM can be used as a conventional cache to reduce memory latency [5].

The thrust of this paper is two-fold. First, we investigate methods of reducing memory latency using
page-mode DRAMS in a selective manner. Second, we explore the various organization parameters
of SRAM cache design for a cached DRAM.

The remainder of the paper is organized as follows. In Section 2, we review the operations of page-
mode DRAM (including the reason why following page-mode blindly can be counter-productive)
and of cached DRAMs. The methodology that we use to evaluate the effectiveness of the enhance-
ments that we propose is described in Section 3. Section 4 presents the results of two techniques
that can be applied to page-mode DRAMs to improve their performance: one is related to the
mapping of addresses in the page buffer; the other considers memory controller schemes that select
which banks operate in page-mode and which do not. Section 5 investigates the impact of the
SRAM cache in DRAM devices and evaluates several design alternatives. Finally, in Section 6 we
conclude and place this study in the perspective of integrated processor/memory systems [3, 14].

2 Page-mode DRAM and Cached DRAM Operation

In this section, we review very briefly the operation of page-mode DRAMs and cached DRAMs.

2.1 Page-mode DRAM

An access in DRAM devices usually consists of a row access followed by a column access (see Figure
1). A read request consists first of a row access, reading a row of bits (a DRAM page), containing
the desired data bit, from the DRAM array into a page buffer. Second, a column access selects the
desired data bit from the page buffer. Assuming that the device has been precharged, the latency
is the sum of the row access and column access latencies. For typical DRAMs, this can range from
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Figure 1: DRAM operation. This figure shows how a data bit is read from the DRAM device.
First, the row address selects a DRAM page that is read into the page buffer. Second, the column
address selects the desired data bit from the page.

30 to 40 nanoseconds for each of the row access and column access latency. Before data can be
read from the DRAM array, it has to be precharged. The precharge latency dictates the minimum
time between array accesses and can be hidden if there is sufficient time between accesses. Typical
DRAM precharge time is 30 to 50 nanoseconds.

In page-mode [6], row accesses can be eliminated on successive requests if the desired bits are in
the page buffer. The access time is then reduced to the column access time. Thus, the page buffer
can be used as a cache with a single long line. However, if the request misses in the page buffer,
a whole cycle of precharge, row access, and column access takes place. The precharge is necessary
because the DRAM cannot be both precharged and in page mode.

Using page-mode can provide lower latency and higher bandwidth from the memory system. How-
ever, as explained in the previous paragraph, using page-mode can also be detrimental to perfor-
mance. If we assume that precharge, row access, and column access take the same time, say ¢, then
for a series of n accesses, where n is the page buffer size divided by the data size, we have:

e The best case for page-mode operation is n — 1 hits in the page buffer after the initial miss.
The page-mode time would then be: 3 x ¢+ (n — 1) x t. The worst case for page-mode
operations is a miss on each request. The time for n requests would be 3 x n X ¢.

e Without using page-mode, the time would be between 2 x n x t (assuming there is enough
time between requests to hide the precharge time) and 3 x n x ¢t when there is no time between
requests.

From the above analysis, it is clear that page-mode operation will be beneficial if the hit rate of the
page buffer is above 50%. Of course, the 50% threshold is only an approximation that depends on
the relative timings for precharge, row access, and column access as well as on the demands, reads
or writes from the processor. In particular, if the write latency can be hidden, e.g., with the help of



| benchmark | description |

cholesky The Cholesky factorization component of the Nasa7 floating point

benchmark.
compress Compress a 1 MB file using adaptive Lempel-Ziv coding.
fft The FFT component of the Nasa7 floating point benchmark.
gee GNU C compiler which produces Sun3 assembly code
geometry Sets up arrays for a vortex method solution and performs Gaussian

elimination on the resulting arrays.

hydro2d Solves hydrodynamic Navier Stokes equations

su2cor Computes masses of elementary particles
tomcatv Vectorized mesh generation program.
vpenta Inverts 3 matrix pentadiagonals.

Table 1: Benchmark descriptions

write buffers and a write-back policy in the processor cache, then the read requests to the DRAM
must have a page hit rate above 50% for page-mode to be effective. What this simplified analysis
shows though is that page-mode operation will be effective for access to large data sets, overflowing
or bypassing caches, with low stride between consecutive accesses to individual DRAM banks. This
addressing pattern is typical of vector applications [11, 7]. However, page-mode operation can be
detrimental for applications accessing memory “randomly”. We will return to this problem and
present some solutions in Section 4.

2.2 Cached DRAMs

In newer DRAM technologies such as CDRAM and EDRAM |2, 12, 5], the page buffer is replaced
with a small SRAM cache. The design of these DRAMs encourage on-chip DRAM caching and
eliminate the drawbacks of page-mode DRAMs. The first advantage of these devices over page-
mode DRAMs is that the use of the SRAM enables the simultaneous precharging of the DRAM
array and access of the SRAM cache. Thus, according to our model of the previous section, access
to the cache will take time ¢, while a cache miss will take between 2 x ¢ and 3 X ¢. Second, instead of
having a single long cache line, the cache can be organized with parameters more like a traditional
cache. For example, the cache in the CDRAM has 256 entries [13]. Moreover, with separate address
lines (for the DRAM array and the SRAM cache) and external tag logic, the CDRAM’s cache can
be made set-associative. In Section b, we explore the design space of the SRAM cache.

3 Methodology

To evaluate the effectiveness of DRAM on-chip caching, we use trace-driven simulation. The
traces were generated from an Alpha 21064 using the ATOM [16] software instrumentation tool.
ATOM inserts instrumentation code in the object code. The generated references are those of an
uninstrumented binary. In our study we concentrate only on data references. For our benchmarks,
the instruction reference working set fits well in a small instruction cache and would generate few
memory references beyond the compulsory misses [10].



Figure 2: Workload misses per instruction. This figure shows the memory system load presented
by the benchmarks. For each benchmark, the number of misses per 100 instructions are shown for
two direct-mapped cache (8 KB and 256 KB). The height of the bar is the MPI on an 8 KB cache.
The lower component of each bar is the MPI on a 256 KB cache.

Our workload counsists of benchmarks from SPEC92 [4] that exhibited significant data reference
misses per instruction (MPI). The benchmarks are described in Table 1. The MPI for the bench-
marks are shown in Figure 2 for two caches of respective sizes SKB and 256 KB, both direct-mapped
and with a line size of 32 bytes.

3.1 Simulated system

Our interest in this paper is on the main memory subsystem. Therefore, we model the cache
hierarchy as a single-level cache'. This cache uses a write-back policy which minimizes memory
traffic [6] and which is the one most often used in caches closest to main memory. The processor
is modelled with an ideal pipeline, i.e., each instruction executes in a single cycle, except when
there is a cache miss. In this case, the memory latencies depend on the memory subsystem being
modelled as explained below.

We have performed our experiments with two “extreme” cache sizes: 8§ KB and 256 KB. The small
8KB capacity corresponds to low-end machines, e.g. the MicroSparc as indicated in [14]. The
small capacity cache can also be seen as a way to model the behavior of systems with larger caches
running applications whose working set sizes are larger than those we are using. The larger capacity
256 KB cache corresponds to higher end systems. Although larger caches, in the megabyte range,
are available, we limited ourselves to 256 KB in order to have meaningful data for the applications
we simulated. Both caches are direct-mapped with a 32 byte line size.

The memory subsystem, shown in Figure 3, has four banks each with an 8 KB page buffer(or cache)
for an aggregate of 32 KB of page buffer (or cache). The amount of page buffer is derived from a

'We will call this cache the board-level cache when there is a risk of confusion between it and the DRAM cache.
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Figure 3: Simulated memory system. This figure shows the experimental memory system. The
memory subsystem has four banks. There is an aggregate of 32 KB page buffer (8 KB per bank).
The memory controller determines the mapping and the operating mode of each bank.

32 MB system composed from 64 4 x 1 Mb DRAMs. We assume that a board-level cache miss can
be satisfied with one memory access. Banks are interleaved on a modulo(8 KB) basis.

As explained in Section 2, there are three possible access latencies for a main memory access,
namely: page-mode, precharged, and random. When the DRAM is in page-mode, page is the
latency of a page-buffer hit. We chose a simulated processor clock speed of 166 MHz (6 ns. cycle).
For a 30 ns. page-buffer hit, this is 5 cycles. Random is the latency of a miss where the full penalty
of precharge, in addition to the row and column access latencies, is seen and is 15 cycles. Precharged
is the latency of a non-page-mode DRAM access where some of the precharge latency is hidden. It
includes the row and column access latencies and is 10 to 15 cycles, depending upon how much of
the precharge time (5 cycles) is hidden.

3.2 Memory performance metrics

We use two metrics to evaluate the effectiveness of the DRAM caching schemes. The first one is the
page-buffer miss rate. The miss rate indicates the effectiveness of using the relatively small amount
of DRAM cache. For the cached DRAMs, an increase in hit rate will be directly correlated to a
reduction in memory latency. For page-mode DRAM, however, a decrease in page misses is only
one of the factors that lead to a reduction in memory latency. The metric of interest is the number
of cycles that the processor waits for a memory request to complete. Since our goal is to evaluate
the effectiveness of the memory subsystem below the board-level cache, we will account only for
the cycles needed to transfer data between the board-level cache and the DRAM. We therefore use
as the metric, memory cycles per instruction in the memory subsystem (M CPI;), defined as:

Cycles waiting for memory requests

MCPI; =
s total number of instructions

4 Enhancing the Performance of Page-mode DRAMs

As explained in Section 2, page-mode DRAMs have the ability to cache data. However, the cache
is severely constrained. It consists of a single long line (one per memory bank) and the data stored
in the line corresponds to consecutive byte addresses. If accesses to the DRAM memory exhibit
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Figure 4: Memory mapping. This figure shows how the memory request address is remapped.

good spatial locality, e.g., accessing all the elements of a vector sequentially, then the hit rate in
the DRAM cache will be high and operating in page-mode will be beneficial. When the hit rate is
low, a common occurrence because of the filtering effect of the board-level cache, then not using
page-mode and attempting to hide the precharge time is preferred.

In this section, we investigate two ways to enhance the performance of page-mode DRAMSs: first,
we examine the impact of address mapping so that the contents of the page buffer can be divided
in several subsets, and, second, we look at schemes to selectively control the page-mode operation
on a per bank basis.

4.1 Memory mapping

As shown in Figure 1, the conventional page-mode DRAM has a set of row address lines and column
address lines. An address generated by the CPU and resulting in a cache miss will be seen by the
DRAM as having 4 components:

e The (board-level) cache block offset. For example, in our modeled system with 32 byte cache
lines, this would be the low 5 bits, bits 4-0.

e The remaining bits are split in three fields: bank selection, row address, and column address.
In a conventional DRAM (see Figure 4), the low order bits correspond to the column address,
the next bits are used for bank selection, and the remaining upper bits constitute the row
address.

In the conventional mapping of addresses, the choice of row and column addresses can be far from
optimal for a memory system with a board-level cache. The column address bits are bits that
correspond to low order bits of the index field for the board-level cache. Consequently, any conflict
miss in the board-level cache, which is most always larger than the DRAM cache, will certainly
result in a page miss in the DRAM page buffer. One way to circumvent this problem is to use other
bits of the address for the DRAM row and column addresses. In the Alphastation 600 [17], the
low order column bits are exchanged with the row bits and the high-order bits are used for bank
selection. Now both the (board-level) cache line and the one it has just replaced can be cached
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Figure 5: Page buffer interleaving with an 8 KB board-level cache. These graphs show the page
buffer miss rate for various page buffer interleavings with an 8 KB board-Ilevel cache. The overall
miss ratio is the number of misses to the number of references. The read miss ratio is the number
of read misses to the number reads. The write miss ratio is similar to the read miss ratio.

by the same DRAM row. However, this mapping destroys the spatial locality that existed in the
DRAM buffer and will be detrimental to page-mode operation for sequential accesses. For the
Alphastation 600, the remapping begins at bit 8, mapping only 256 bytes contiguously.

We use a similar method but first we want to determine which bits should be swapped in order to
find a good compromise between eliminating a majority of page buffer misses due to conflict misses
in the board-level cache while preserving some spatial locality. To that effect, we varied the number
of bytes mapped contiguously, that we call chunks, from the minimum of a board-level cache line
(32 bytes) to a complete DRAM page (8 Kbytes). Addresses of consecutive chunks in the DRAM
cache were taken modulo the board-level cache size (cf. Figure 4).

The ensuing DRAM page buffer miss rates are plotted in Figures 5 and 6 for the various applications?
and for the two different board-level caches. For each application, we plot miss rates vs. the chunk
size. The three miss rates of interest are:

*We removed the plot for gcc in the 256 KB case, since the board-level misses were insignificant.



fft

1.0 T — 10 T T 10 T
reads —— reads —— P reads —
overal -+-- overall —+-- T overall —+—-
writes -8~ writes -8--- writes -g---
\\ Q
& o0sf\ . & 05 . & o5
8 8 8
= * E £
(0] ~ b (9] !
o D ;
g T g ; g
0.0 W W, W I 0.0 e 1 0.0 N N N |
32 64 128 256 512 1K 2K 4K 8K 32 64 128 256 512 1K 2K 4K 8K 32 64 128 256 512 1K 2K 4K 8K
chunk size chunk size chunk size
geometry hydro2d su2cor
10 Y A v - 10 T T T 10 T T T
reads —<— reads —<— reads —<—
overall —+-— overall -+-- o overall -+--
writes -&--- writes -&--- i writes -g--
[ N //v// ; \\ / - ;
8 osp @ . 8 05 . i 8 osf
E E R € 7
% (o) ! [0 2
a & g ; g
00 & & & A:""\ Il | 0 & & & & & rh Il 00 mmm | | |
32 64 128 256 512 1K 2K 4K 8K 32 64 128 256 512 1K 2K 4K 8K 32 64 128 256 512 1K 2K 4K 8K
chunk size chunk size chunk size
tomcatv vpenta
1.0 T T T 7 1.0
reads —~— reads ——
overal -+-- BN overal -+--
writes -&--- writes -&---
Q Q
g8 05 B 05
32 32
IS / IS
B : B
a e =1 ;
00 & & & 4 Il Il Il 0 el & & & rh Il Il
32 64 128 256 512 1K 2K 4K 8K 32 64 128 256 512 1K 2K 4K 8K
chunk size chunk size

Figure 6: Page buffer interleaving with a 256 KB board-level cache. These graphs show the page
buffer miss rate for various page buffer interleavings with a 256 KB board-level cache. The overall
miss ratio is the number of misses to the number of references. The read miss ratio is the number
of read misses to the number reads. The write miss ratio is similar to the read miss ratio.

. : number of page misses
e The overall page miss rate, i.e., ——= of DRAM accesses

: : number of read page misses
 The read miss rate, 1.e., number of DRAM read accesses

: . : number of write page misses
 The write miss rate, 1.e., number of DRAM write accesses

In the case of the small board-level cache, the amount of page buffer (32 KB total) is larger than the
cache’s capacity and acts as a second-level cache. Having long buffer lines will help in the case of
capacity misses while having short lines will be more efficient to reduce the latency due to conflict
misses. As can be seen from Figure 5, overall miss rates and read miss rates are generally lowest for
chunks of size 8 KB, the maximum chunk size. (vpenta is a glaring exception.) Write miss rates are
less important for overall performance for two reasons: (i) writes are due to replacement of dirty
lines and are less frequent than reads, and (ii) write-backs are in the background and do not stall
the processor if subsequent read requests are sufficiently far away. Looking at Figure 5 and choosing
8 KB chunks, we would expect cholesky and fft to benefit handsomely from page-mode operation



while the performance degradation in wpenta, compress should be severe and the degradation of
hydro2 could be moticeable.

In the case of the 256 KB cache, the choice for the best chunk size is significantly different. Not
doing any remapping, i.e., leaving an 8 KB chunk, could lead to severe losses in page-mode operation
since for that chunk size the miss rates are often close to 100% and always larger than 50%. We
would not expect any application to benefit from page-mode without remapping. Looking at Figure
6, the minimum overall and read miss rates are obtained for a chunk size between 512 bytes and
2 KB for all applications. These sizes are a compromise between removing more conflict misses
(small size) and keeping spatial locality. Also, we note that the write miss rates drop to almost 0 for
all applications except suZcor and tomcatv when the chunk size is less than 2 KB. This is because
some of the victim and requested lines map to the same DRAM row. By choosing a chunk size
of 1 KB, the latencies of board-level cache misses in cholesky and fft should be greatly reduced in
page-mode operation. On the other hand, those from compress should still be worse. For the other
applications, the end result might depend on whether the write miss latencies can be completely
hidden or not.

In the remainder of the paper, we choose a chunk size of 1 KB for remapping with the 256 KB
cache and not to remap with the 8 KB cache.

4.2 Evaluation of remapping

Figure 7 shows the relative performance of page-mode operation versus precharge for the three
cases of: 8 KB board-level cache and 8 KB chunk, 256 KB board-level cache and 8 KB chunk, and
256 KB board-level cache and 1 KB chunk. For the time being, we only look at the leftmost bar
(for each application) that gives the ratio:

MCPI; for page mode operation

MCPI; for precharge operation

In page-mode operation, a DRAM cache hit returns data in page-mode, i.e., 5 cycles. A miss takes
random, i.e. 15 cycles. In the precharge scheme the DRAM is always precharged after the access.
All accesses take precharged, i.e., between 10 and 15 cycles. The precharge scheme does not use
page-mode and is our baseline. In contrast, the page-mode scheme always leaves the DRAM in
page-mode after each request, expecting that the next request will be in the page buffer.

In general, the results correlate well with our predictions from the last section. In the case of
the 8 KB board-level cache, cholesky and fft benefit significantly from page-mode operation while
compress, hydro2d and vpenta suffer from it. gce, geometry and su2cor, with overall hit ratios close
to 50%, perform slightly better in page-mode and there is no difference for tomcatv with a miss
ratio close to 60%.

In the case of the 256 KB board-level cache and no remapping, page-mode operation is always
worse, to a varying degree, than precharge. This is consistent with the data of Figure 6.

Finally, in the remapping case, 256 KB board-level cache with 1 KB chunk, page-mode operation
works very well for cholesky and fft and badly for compress, as expected. For the other applications,
page-mode operation is slightly more beneficial than the crude 50% threshold would have led us to
believe.
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Figure 7: Page-mode MCPIs. This figure shows the normalized performance of the various page-
mode schemes and the effect of remapping. The MCPIs are normalized to the performance of the
precharge page-mode scheme.
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4.3 Selectively using page-mode

While remapping clearly leads to better page-mode operation, there are applications that would
benefit if page-mode operation could be turned on or off depending on the memory reference
patterns. We therefore investigate memory controller schemes that use page-mode selectively.
Whether to operate in page-mode or not is based on the history of past accesses to the DRAM.
The schemes are summarized in Table 2.

H scheme ‘ description ‘ hit ‘ miss H
precharge The DRAMs are always precharged precharged | precharged
after satisfying the current request
page — mode Page-mode is always used. page random
mru The two most recently used banks are kept in page or random or
page-mode. The other banks are precharged. | precharged | precharged
af finityl The bank is put in page mode after two page or random or
consecutive read accesses to the same page. | precharged | precharged
af finity2 Strong two-bit counter scheme page or random or
based on read accesses precharged | precharged

Table 2: Page-mode control schemes. This table describes each of the page-mode schemes. Hit is
the latency of a request that would hit in the page buffer. Miss is the latency otherwise.

We have already described the operations of the precharge and page-mode schemes. Similar to
page-mode is mru. However, mru leaves only the two most recently used memory banks in page-
mode. If there is a correlation between inactive banks and page buffer misses in inactive banks,
then mru will do better than page-mode by precharging inactive banks. The two other schemes,
affinityl and affinity2, attempt to predict whether to leave the DRAM bank in page-mode or to
precharge. Similar to simple branch prediction logic [9] affinity! and affinity2 use a 1-bit and 2-bit,
respectively, prediction scheme as to whether to use page-mode or precharge. Incrementing or
decrementing the prediction counter is done on read accesses only.

Figure 7 shows the performance of the above page-mode schemes in the same 3 configurations as
in the remapping evaluation. For each application, we have shown the performance of the selective
schemes relative to the precharge scheme. As in the page-mode vs. precharge comparison, if the
relative M CPI; is above 1, then the application would be better off simply precharging after each
request.

The mru (second bar from the left) scheme presents no advantage over page-mode for the 8 KB
case. Sometimes, the performance is better (compress, geometry), sometimes it is markedly worse
(cholesky, su2cor). For the larger cache, the mru scheme corrects some errors of the page-mode
scheme, i.e., some banks are precharged rather than exhibiting page buffer misses. mru performs
better than page-mode whether there is remapping or not.

Of the two affinity schemes (the two bars on the right), affinity2 performs best. In the 8 KB case,
it is the scheme of choice since all applications with this scheme behave as well or better than
precharge. Under this scheme, when there is no locality, the banks will remain in the precharged
mode. When there is sufficient locality, they will be in page-mode. The only time where there
might be a slight loss, with respect to mru or page-mode, is for the “learning curve” of the 2-bit
counter that keeps a bank in precharge mode for 1 or 2 references too many. In the 256 KB case
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with no remapping, affinity2 yields the best results, always performing better than both precharge
and page-mode. When remapping is implemented, affintiy2 will always be better than precharge.
In two applications, geometry and vpenta, operating in page-mode would be better. Although, it is
not difficult to find pathological cases where this behavior can be exhibited, further analysis of the
reference patterns is needed before we can explain this “anomalous” behavior. This might be due
to short bursts of “read,write” sequences to the same page picked up by page-mode but initially
discarded by affinity?2.

4.4 Summary

In this section we have shown that using page-mode operation in DRAMs in a straightforward fash-
ion could degrade performance over simply precharging banks after each access. This degradation
would get relatively worse as the board-level cache gets bigger. Two factors that can enhance the
operation in page-mode are: (i) the mapping of addresses to row and address lines in the DRAM
so that the hit rates in the page buffer are higher, and (ii) selective use, monitored by the memory
controller, of the page-mode operation itself. With these enhancements, page-mode operation will
always be benificial with up to 100% improvement.

5 Cached DRAMs

In the previous section, we evaluated the efficacy of the caching effects that are possible with page-
mode DRAMs. In this section, we investigate the effectiveness of an SRAM cache on the DRAM
chip. Recall that in these cached DRAMs, the page buffers of page-mode DRAMs are replaced
with SRAM and that, consequently, one definite advantage of the cached DRAM is the possibility
of simultaneous precharging of the DRAM array and access to the SRAM cache. We first quantify
this advantage by comparing cached DRAM latencies with those of page-mode DRAM from Section
4. We then investigate various design organizations for the SRAM cache.

5.1 SRAM advantage

One of the disadvantages for caching with page-mode DRAMs is the guessing involved in deciding
whether to precharge the DRAM or leave it in page-mode. While the schemes from Section 4.2 can
be used to improve the decision heuristic, they do not work well in all cases and they add to the
complexity of the memory controller. The replacement of the page buffer with SRAM eliminates
this guessing: accessing the SRAM cache does not preclude the simultaneous precharging of the
DRAM array.

The advantage of the SRAM cache over page-mode DRAM is shown in Figure 8. We compare the
MCPI; of the cached DRAM against two page-mode DRAM schemes from section 4.2, page-mode
and affinity2. For the cached DRAM, we use the same latencies as the page-mode DRAM, i.e., 5
cycles for a hit and 10-15 cycles for a miss depending on whether precharging was finished or in
progress. For the 256 KB cache, we use remapping with chunk 1 KB. The M CPI; are normalized
to the M CPI; of the precharge DRAM scheme as in Figure 7.

From the graphs, we directly see the benefit of being able to simultaneous precharge and access
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Figure 8: Comparison of cached and page-mode DRAM. For each benchmark, the MCPIs (normal-
ized to the precharge scheme with page-mode DRAM) are shown for cached DRAM against two
schemes with page-mode DRAM.

the DRAM cache. The cached DRAM (the rightmost bar) has lower latencies than all the other
schemes with page-mode DRAMs. When page-mode was efficient, e.g,. with cholesky and fft, the
gains are minimal. When page-mode and/or affinity2 worked badly, the relative gains are more
impressive (geometry, sucor).

5.2 Line size and associativity

We now investigate the design parameters for the SRAM cache with the global constraint of fixed
capacity, i.e., 8 KB per bank. Many studies have been performed to characterize the best choice
of line size and associativity for a given cache capacity (see, e.g., [15]). The parameters for the
design of the SRAM cache on the DRAM chip could be completely different since this cache does
not receive requests comparable to those of a (processor) cache.

The SRAM cache on the DRAM chip will receive 3 types of requests.

e Capacity misses if the board-level cache is small. The SRAM cache will play the role of a
(small) second-level cache.
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e Conlflict misses in the board-level cache. The SRAM cache could play the role of a victim
cache [8].

e Sequential accesses to large data structures. The SRAM cache could play the role of a stream
buffer [§].

In our simulations, we varied the line size from 8 KB (the original one) to 128 bytes and we varied
the associativity from direct-mapped (the original one) to 4-way (of course, only when the capacity
allowed us to do it). Figure 9 shows the results for the 8 KB cache and Figure 10 for the remapped
256 KB cache. In both figures the M CPI; are normalized to the performance with a single line of
8 KB (direct-mapped).

For the 8 KB cache, we did not know what to expect since the three types of requests above do exist.
The first observation is that for all applications, increasing the associativity for a given line size will
result in better performance. For example, when we fix the line size at 1 KB, we see improvements
of about 30% in hydro2, sulcor, tomcatv and vpenta when mvoing from direct-mapped to 4-way set
associativity. While this line size is not the best choice for fft the end result is still a performance
improvement of 15% over the best choice of line size and a direct-mapped SRAM cache. The only
exception is for geometry where sequential accesses dominate: the longer the line the better the
performance.

For the 256 KB cache, there should be almost no capacity misses, except for compress, and the
remapping already provides a limited form of associativity. Thus, the advantages of more explicit
associativity should not be as important. When we have a 1 KB line and a 4-way set-associative
SRAM cache, three applications (hydro2d, su2cor and tomcatv) benefit from associativity but less
than in the 8 KB case and other applications such as fft and, to a lesser extent, vpenta perform
worse.

Although there is no firm conclusion of best associativity or best line size, the common trend is that
a limited number of large lines will perform well. This is an encouraging result since it implies that
the number of tags to be stored will be small and therefore the SRAM overhead will be limited.

6 Conclusions

Memory latency has become the major bottleneck in the performance of high-end systems. In order
to reduce or tolerate this latency, a number of techniques must be used at various points in the
memory hierarchy. In this paper, we have focused at the DRAM level. We have presented methods
to enhance page-mode DRAMs and explored the design space of cached DRAMs. The schemes
that we have proposed have been evaluated on a set of nine benchmarks.

Our first effort has been to provide two methods to enhance the performance of page-mode DRAMs.
The first one is to remap the addresses of DRAM requests so that conflict misses in the board-
level cache do not result in conflict misses in the page buffer. In that case, the page buffer acts
partially as a victim cache. The second is to use adaptive methods to control when banks should
be precharged and when they should be left in page-mode. A simple 2-bit predictive method yields
definite improvements.

The combination of these two methods always insure that the page-mode DRAM will be more
efficient than not using page-mode in standard DRAMs. Improvements vary from insignificance,
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when the requests are almost all due to lack of capacity in the board-level cache, to a reduction
of about half of the memory latency. This is in contrast with a naive use of page mode operation,
without remapping and without adaptive control, that results in a degradation of performance
for half of the applications when the board-level cache is small and for all applications when the
board-level cache is large.

When the page-mode DRAM is replaced by a cached DRAM, the latencies are necessarily always
reduced. The reduction in latency is improved by making the SRAM cache more associative either
explicitly or implicitly via remapping. However, the prefetching effect of long lines in the SRAM is
always important and an implementation with smaller lines can be detrimental. This last result is
notable since longer lines reduce the hardware overhead brought upon by the tags.

We can place this study in two contexts. The first one, corresponding to the large board-level
cache, indicates that the correct application of page-mode DRAMs and a rather straightforward
implementation of a cached DRAM can provide important benefits to all applications. The second
relates to the recent proposals on integrating processor and memory on the same chip [3, 14]. If
indeed this integration becomes technologically feasible and cost-effective, then the processor, small
board-level cache, and the SRAM cache and the DRAMs can all be integrated. What our study
shows is that the SRAM can be effective even with a very simple organization.
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