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1 Introduction
With the dizzying pace of semiconductor technology development, CPU designers are squeezing previously unimaginable

amounts of hardware onto a single chip. Over the next 15 years we can expect the number of transistors on a chip to increase

by two orders of magnitude, to a billion transistors. The obvious question, then, is how to use these transistors. One possibility

is to add more memory (either cache or “primary memory”) to the chip; however, there is a limit to the performance that can

be gained by the addition of memory alone. Another approach is to increase the level of “systems integration,” bringing onto

the chip all of the support functions that we now find off chip (for example, graphics accelerators, I/O controllers and

interfacing), thereby decreasing communication costs. This decreases system cost, but also has only limited impact on

performance.

Monumental performance improvements can only be achieved by increasing the computational capabilities of the processor. In

general, this means increasingparallelism, in perhaps several (orall) of its available forms. Current superscalar processors, for

example, can execute four or more instructions per cycle; in practice, however, they sustain much less than that -- perhaps closer

to one or two instructions per cycle -- because applications have insufficient parallelism (due to inter-instruction dependences

and long-latency instructions) to fill the CPU’s resources. Placing multiple superscalar processors on a chip, another design

alternative, will suffer a similar fate, and as we will show, suffers from other problems as well. Ultimately, then, we must

produce both hardware able to exploit high degrees of parallelism, and an execution workload capable of feeding it.

In this article we describesimultaneous multithreading (SMT), a processor design that can consume parallelism of any type --

thread-level parallelism (from either multi-threaded parallel programs or individual programs in a multiprogrammed workload)

and instruction-level parallelism (from a single program or thread) -- to maintain high processor utilization and increase
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workload performance. Equally important, simultaneous multithreading adds minimal hardware complexity to, and is a

straightforward extension of, today’s advanced dynamically-scheduled microprocessors. Our experiments show that with the

addition of SMT, an eight-wide superscalar executing a multiprogrammed workload can double its throughput; similarly, a

parallelized program can execute in half the time. And yet the performance of a single application running in single-threaded

mode is degraded by less than 2%. In the near future, an SMT processor on a chip will be achievable, and looking further ahead,

multiple SMT processors per chip could be envisioned.

Simultaneous multithreading combines hardware features seen in two other types of processors: wide-issue superscalars and

multithreaded processors. From superscalars it inherits the ability to issue multiple instructions each cycle; and like

multithreaded processors it can execute several programs (or threads) at once. The result is a processor that can issue multiple

instructions from multiple threads each cycle.

The difference between superscalar, multithreading, and simultaneous multithreading is pictured in Figure 1, which shows

example execution sequences for the three types of architectures. In these figures, each row represents a single cycle of

execution; the four boxes show four potential instructions that the processor could issue each cycle. A filled box indicates that

the processor was able to find an instruction to execute in that issue slot on that cycle, while an empty box shows an unused or

wasted instruction issue slot. We characterize the wasted issue slots as being of two types.Horizontal waste occurs when some,

but not all, of the issue slots in a cycle can be used. This is typically due to a lack of instruction-level parallelism in the program.

Vertical waste occurs when a cycle goes completely unused. This can be caused by a long latency instruction (such as a memory

read) that is holding back further instruction issue.

A standard superscalar, such as the DEC Alpha 21164 or 21264, HP PA-8000, Intel Pentium Pro, MIPS R10000, PowerPC 604

or UltraSPARC 1 [1] appears in Figure 1a. As in all superscalars, it is executing asingle program, or thread, from which it

attempts to find multiple instructions per cycle to issue. When it cannot, the issue slots go unused, and it incurs both horizontal

and vertical waste. Multithreaded architectures, for example, the Tera [2], contain hardware state -- a program counter and

registers -- for several threads. On any given cycle the processor executes instructions from one of the threads. On the next cycle,

it switches to a different thread context, so that it can execute instructions from the new thread. Context switching between these

threads can be done in a single cycle, because the multiple hardware contexts obviate the need for saving and restoring processor
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state. Thread context switching and the resulting execution pattern are shown in Figure 1b. The different stipple patterns

represent different threads, which issue instructions in different cycles. The figure illustrates the primary advantage of

multithreading, namely, its better tolerance of long-latency operations, because it can schedule another thread to run while one

is stalled. Note, however, that while the multithreaded architecture has effectively eliminated vertical waste, it has increased

horizontal waste, by converting some of the vertical waste into horizontal waste. Consequently, as instruction issue width

continues to increase, multithreaded architectures will ultimately suffer the same fate as superscalars, i.e., they will be unable

to find enough instruction-level parallelism in a single thread to effectively utilize the processor.

Simultaneous multithreading, shown in Figure 1c, combines the best features of multithreading and superscalar architectures.

Like a superscalar, SMT can exploit instruction-level parallelism in one thread by issuing multiple instructions each cycle; like

a multithreaded processor, it can hide long latency operations by executing instructions from different threads. The difference

is that it can do both at the same time, that is, in the same cycle. Each cycle an SMT processor selects instructions for execution

from all threads. The processor dynamically schedules all machine resources among the threads, providing the greatest chance

for the highest hardware utilization. If one thread has a high level of instruction-level parallelism, that parallelism can be

satisfied; if multiple threads each have low levels of instruction-level parallelism, they can be executed together to compensate

for the low ILP in each. Consequently, simultaneous multithreading has the potential to recover issue slots lost toboth horizontal

and vertical waste.

The result is better performance for a variety of workloads. For a mix of independent programs (multiprogramming), the overall

throughput of the machine is improved. When one program has no instructions that are ready to issue, instructions can be found

from one of the others. Similarly, programs that are parallelizable, either by a compiler or a programmer, reap the same

throughput benefits; but here the outcome is adecrease in execution time for the application. Finally, programs that must

execute as a single thread, i.e., that cannot be parallelized, have all machine resources available to them and maintain roughly

the same level of performance as when executing on a single-threaded processor.

The following sections describe simultaneous multithreading and present an implementation model for a simultaneous

multithreaded processor. We show that implementing simultaneous multithreading is surprisingly straightforward, given

today’s advanced superscalar processors -- hardware designers can focus on building a fast single-thread superscalar, and add

SMT’s multi-thread capability on top. We also present simulation-based performance results that demonstrate the benefits of

simultaneous multithreading when compared with superscalar, multithreaded, and on-chip multiprocessor architectures.

Given the enormous transistor budget in the next computer era, we believe that SMT provides a base technology that can be

used in many ways to extract improved performance. For example, for wider superscalars, SMT provides a multithreaded

workload to guarantee high utilization of functional units. For multiple CPUs on a chip, a small number of SMTs can be used

side-by-side to achieve identical performance to a larger number of conventional superscalars. For increased on-chip cache,

SMT can take great advantage of that memory due to its high execution rate. Overall, SMT benefits from all types of parallelism,

both instruction-level parallelism and thread-level parallelism. We believe that simultaneous multithreading will provide a

significant boost in processor performance for next-generation processors, solving many of the performance challenges that

current design technologies present.

2 An Implementation Model for Simultaneous Multithreading
At first glance, simultaneous multithreading may sound complex: the processor must support multiple hardware contexts

(threads) and be capable of fetching and issuing instructions from multiple contexts in a single cycle. In fact, we will show that

necessary modifications should be straightforward. In this section we present a high-level design for an SMT implementation,

effectively showing how a superscalar can be converted into an SMT engine.
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2.1 A Straightforward Extension of Conventional Superscalars

Our primary design goal for a simultaneous multithreaded processor was to achieve good instruction throughput, but at the

same time have minimal impact on the microarchitecture of a conventional, wide-issue superscalar. Our current SMT model is

derived from a high-performance, out-of-order, superscalar architecture, whose dynamic scheduling core is similar to the

MIPS R10000 [1]. (The organization of the superscalar core is illustrated in Figure 2; a glossary of terms appears in Table 1.)

On each cycle, the superscalar fetches eight instructions from the instruction cache. After the instructions are decoded, the reg-

ister renaming logic maps the architectural registers to the hardware renaming registers to remove false dependences. Instruc-

tions are then fed to either the integer or floating point instruction queues. When their operands become available, they are

issued from these queues to their corresponding functional units. To support out-of-order execution, the processor must track

instruction and operand dependences, in order to determine which instructions can issue (those without dependences), and

which must wait for previously-issued instructions to finish (those with dependences). After completing execution, the instruc-

tions are retired in-order, and hardware registers that are no longer needed are freed.

Our SMT architecture, which can simultaneously execute threads from up to eight hardware contexts, is a straightforward

extension of this conventional superscalar processor. Some resources were replicated to support SMT, namely, state for the

hardware contexts (registers, program counters, subroutine stacks) and per-thread mechanisms for pipeline flushing, instruc-

tion retirement, and trapping. All are resources that currently exist on today’s processors; in an SMT they are simply replicated

for each thread. We also widened the instruction issue width of SMT beyond the current superscalar capability of 4-6 instruc-

tions per cycle. The additional width enables SMT to issue more instructions from the different threads and gives a single

thread with large amounts of instruction-level parallelism an opportunity to exploit that parallelism. Finally, per thread identi-

fiers were added to the branch target buffer and TLB. Only one component, instruction fetching, was redesigned to be compat-

ible with SMT’s multi-thread instruction issue.

Significantly, no special hardware is needed for scheduling instructions from the different threads onto the functional units.

Conventional dynamic scheduling hardware in today’s out-of-order superscalars can perform simultaneous multithreaded

scheduling. The register renaming hardware removes inter-thread register name conflicts, by mapping the thread-specific

architectural registers onto the hardware registers. Instructions from all threads are placed together in the instruction queues.
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Figure 2: Organization of the dynamically-scheduled superscalar processor on which SMT is based.
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When their operands become available, they are issued to functional units, without regard to which thread they came from.

This minimal redesign has two important consequences. First, since most hardware resources are still available to a single

thread executing alone, SMT provides good single-thread performance, in addition to its benefits for multiple threads. Second,

because the changes to enable SMT are minimal, the commercial transition from today’s superscalars to SMT should be fairly

smooth.

However, should SMT’s implementation negatively impact either the targeted processor cycle time or the time to design com-

pletion, several different approaches could be taken to simplify it. Since most of SMT’s implementation complexity stems

Term Definition

software threads Independent instruction streams.

hardware threads Processor hardware that contains the state of executing threads, namely the PC and the register
file; sometimes called hardware contexts.

in-order execution Instructions are issued to functional units and executed in the order the compiler has generated
them and the fetch hardware fetches them. This is also known as the program order.

out-of-order execu-
tion (also called
dynamic scheduling)

Instructions are issued to functional units and executed as soon as their operands have been calcu-
lated or loaded from memory (assuming the appropriate functional unit is available), even if pre-
viously fetched instructions have not executed. Out-of-order execution provides better
performance than executing instructions in their program order.

register renaming A hardware technique that maps the registers defined by a machine’s architecture to the actual
(physical) hardware registers. It is used to increase the number of registers available to a program
and therefore the number of program instructions that can be executed in parallel. In the SMT
processor we describe, each hardware context has 32 physical registers, plus some fraction of the
100 renaming registers, which are dynamically allocated to threads as needed.

false dependences Because a program’s execution contains many more values than available architectural registers,
the compiler (specifically, the register allocator) reuses registers for the different values. This may
impose artificial dependences between operands that are not computationally dependent. For
example, two calculations that have the same (architectural) destination register have a false out-
put dependence. This dependence can be removed by mapping the two destinations to different
(physical) hardware registers. On an out-of-order processor, register renaming can therefore
expose more parallelism.

instruction retirement Instruction retirement consists of committing the changes to processor state that are caused by
executing the instructions. For a dynamically-scheduled processor, such as the one used in this
study, this can include deallocating a hardware register, removing instructions from the processor
pipeline, and updating branch prediction information.

A dynamically-scheduled processor executes instructions out-of-order, but to properly support
activities such as debugging, interrupts, and exceptions, the processor most provide the illusion of
behaving as an in-order processor. This can be guaranteed by retiring instructions in program
order.

branch prediction Modern processors include hardware that tries to predict whether a branch will be taken. If the
prediction is wrong, the processor must discard the instructions that have been wrongly fetched,
and fetch the correct ones. The resultant delay in execution is called the misprediction penalty.

speculative instruc-
tions

Instructions that enter the pipeline before it is known that they should be executed. An example is
the instructions that follow a branch that is predicted taken. Until the branch is actually executed,
it is not known whether its subsequent instructions will be needed. We call instructions that are
not speculative, useful instructions.

Table 1: An explanation of terminology used in this article.
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from its wide-issue superscalar underpinnings rather than from the hardware needed to realize simultaneous multithreading

per se, many of the alternatives involve altering the superscalar implementation. For example, the functional units could be

partitioned across a duplicated register file, as is done in the Alpha 21264 [1]. The technique halves the number of read ports

(for each copy of the register file), at no cost in intra-partition register accesses and only a slight cost when passing values

between partitions. For caches, the age-old technique of interleaving, augmented with multiple independently-addressed banks

[7], can increase the number of simultaneous accesses without also increasing the number of cache ports. Wilson,et al. suggest

placing recently accessed data in a small associative buffer, which is accessed when the main cache ports are busy [12]. Addi-

tional cache ports can also be provided by using wave-pipelining techniques, as in the 21264, which provides dual ports by

starting a new access on each half-clock cycle. At last resort a less aggressive superscalar issue width (e.g., 8 functional units

rather than 10) could be used to reduce the number of register and cache ports. This last alternative would have the most

impact on performance.

2.2 Instruction Fetching on an SMT Processor

In a conventional processor, the instruction unit is responsible for fetching blocks of instructions from a single thread into the

execution unit. The main performance issues revolve around maximizing the number ofuseful instructions that can be fetched

(e.g., minimizing branch mispredictions) and fetching independent instructions quickly enough to keep functional units busy.

An SMT processor places additional stress on the fetch unit. First, it is responsible for fetching instructions from up to eight

different threads. And second, it has a harder time keeping up with its more efficient1 dynamic scheduler, which can issue more

instructions each cycle, because it takes them from multiple threads. Consequently, the fetch unit is SMT’s performance bottle-

neck.

Surprisingly, the inter-thread competition for instruction bandwidth is also a vehicle for obtainingbetter performance. First, an

SMT fetch unit can partition the instruction fetch bandwidth among the competing threads. Because of branch instructions and

cache line boundaries, the fetcher has difficulty filling the issue slots each cycle from only a single thread. We fetch from two

threads, in order to increase the probability of fetching only useful (nonspeculative) instructions. Second, the instruction

fetcher can be smart about which threads it fetches, fetching those that will provide the most immediate performance benefit.

To take advantage of both opportunities, we propose a fetch unit customized to take advantage of SMT’s unique ability to fetch

and issue instructions from multiple threads in the same cycle.

The instruction fetching hardware has at its disposal eight program counters, one for each thread context. On each cycle, the

fetch mechanism selects two threads (among threads not already incurring I-cache misses) and fetches eight instructions from

each thread. To match the lower instruction width of the issue hardware, a subset of these instructions is then chosen for

decoding: instructions are taken from the first thread until a branch instruction or the end of a cache line is encountered; the

remainder come from the second thread. (We call this scheme2.8; it is described in more detail in [10].) Because the instruc-

tions come from two different threads, there is a greater likelihood of fetching useful instructions -- 2.8’s performance was

10% better than fetching from only one thread at a time. The hardware cost is an additional port on the instruction cache and

logic to locate the branch instruction, none out of the question for future processors. Fetching from multiple threads while lim-

iting the fetch bandwidth to eight instructions is a less hardware-intensive alternative, but it has lower performance. For exam-

ple, 2.8 saw a 5% improvement over fetching 4 instructions from each of 2 threads.

Because it can fetch instructions from more than one thread, an SMT processor can be selective about which threads it fetches.

1. relative to an out-of-order superscalar
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Not all threads provide equally useful instructions in a particular cycle; and an SMT processor can obtain better performance

by predicting which threads will produce the fewest delays. Our thread selection hardware, called theIcount feedback tech-

nique (also described in [10]), gives the highest priority to the threads that have theleast number of instructions in the decode,

renaming, and queue pipeline stages (pictured in Figure 3). The technique benefits performance in several ways. First, it

replenishes the instruction queues with instructions from the fast-moving threads, avoiding those that will fill the queues with

instructions that are dependent upon and consequently blocked behind a long latency instruction. Second and most impor-

tantly, it maintains in the queues a fairly even distribution of instructions among these fast-moving threads, thereby increasing

inter-thread parallelism (and the ability to hide each others’ latencies). And last, it avoids thread starvation, because threads

whose instructions are not executing will eventually have few instructions in the pipeline and will be chosen for fetching. The

net result is that, although up to 8 threads are sharing and competing for slots in the instruction queues, the percentage of

cycles that the instruction queue is full is actuallyless than on the single-thread superscalar (8% versus 21%). All that is

required to support Icount is a small amount of additional logic that increments/decrements per-thread counters when instruc-

tions enter the decode stage/exit the instruction queues and picks the two minimum. Our experiments found that Icount outper-

formed alternative schemes that addressed a particular cause of instruction queue inefficiency, such as minimizing branch

mispredictions by giving priority to threads with the fewest outstanding branches or minimizing load delays by giving priority

to threads with the fewest outstanding on-chip cache misses. Icount works because it addressesall causes of instruction queue

inefficiency.

2.3 The Effect of Large Register Files in an SMT Processor

Following instruction fetch and decode, register renaming is performed, as in the superscalar processor. Each thread can

address 32 architectural integer (and FP) registers. The register renaming mechanism maps these architectural registers onto a

hardware register file whose size is determined by the number of architectural registers in all thread contexts, plus a set of

additional renaming registers. The larger SMT register file requires a longer access time; to avoid an increase in the processor

cycle time, the SMT processor pipeline was extended by two cycles to allow two-cycle register reads and two-cycle writes.

Figure 3 compares SMT’s pipeline to that of the single-thread superscalar. On the first SMT register read cycle, data is read

from the register file into a buffer. (In that same cycle, the instruction is also sent to a similar buffer.) Then in the next cycle

data is sent to a functional unit for execution. Writes to the register file behave in a similar manner, also using an extra pipeline

stage.

The two-stage register access has several ramifications on the architecture. First, it lengthens the pipeline distance between

fetch andexec, increasing the branch misprediction penalty by 1 cycle. Mispredicted instructions consume instruction queue

slots, renaming registers and possibly issue slots, all of which could be used by other threads on an SMT processor. Second,

the two extra stages betweenrename andcommit increase the minimum time that a hardware register is held by an executing

Fetch Decode Renaming Queue Reg Read Exec Commit

Fetch Decode Renaming Queue Reg Read Reg Read Exec Reg Write Commit

Figure 3: Comparison of the pipelines for a conventional superscalar processor (top) and SMT (bottom). The
SMT pipeline is longer, because an additional cycle is needed to access the register file. For both pipelines the
execute stage is a variable number of cycles, depending on the operation.
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instruction, increasing the pressure on the renaming registers. Third, the extra cycle needed to write back results to the register

file requires an extra level of bypass logic.

The SMT pipeline does not increase the inter-instruction latency between most instructions. Dependent, single-cycle latency

instructions can still be issued on consecutive cycles as long as inter-instruction latencies are predetermined. That is the case

for all instructions but loads. Since SMT schedules instructions a cycle earlier (relative to theexec cycle), load-hit latency

increases by one cycle (to two cycles). Rather than suffer this penalty, we schedule load-dependent instructions optimistically

assuming a 1-cycle data latency, but squash those instructions in the case of an L1 cache miss or a bank conflict. There are two

potential performance costs to this solution: issued instructions that get squashed waste issue slots, and optimistically sched-

uled instructions must still be held in the instruction queue an extra cycle after they are issued, until it is known that they won't

be squashed.

2.4 The Simulation Configuration

SMT’s implementation parameters will, of course, change as technologies shrink. Our current parameters target an

implementation realizable roughly two to three years in the future. The exact parameter values are shown in the following list.

• an 8 instruction fetch/decode width.
• 6 integer units, 4 of which can load/store from/to memory.
• 4 floating point units.
• 32 entry integer and floating point instruction queues.
• hardware contexts for 8 threads.
• 100 additional integer renaming registers and 100 additional floating point renaming registers.
• retirement of up to 12 instructions per cycle.
• 128KB, 2-way associative, level 1 instruction and data caches; the D-cache has 4 dual-ported banks, while the I-cache

has 8 single-ported banks. The access time per bank is 2 cycles.
• a 16MB, direct-mapped, unified level 2 cache; the single bank has a transfer time of 12 cycles on a 256-bit bus.
• latency to memory is 80 cycles on a 128-bit bus.
• all caches have 64 byte blocks.
• 16 outstanding cache misses are allowed.
• the data and instruction TLBs contain 128 entries each.
• McFarling-style branch prediction hardware [1]: a 256-entry, 4-way set-associative branch target buffer with an

additional thread identifier field, and a hybrid branch predictor that selects between global and local predictors. (The
global predictor has 13 history bits; the local predictor has a 2048-entry local history table that indexes into a 4096-entry
prediction table.)

3 Experimental Methodology
We compared simultaneous multithreading with its two ancestral processor architectures, wide-issue superscalars (SS) and

fine-grain multithreaded superscalars (FGMT). Both are single-processor architectures whose purpose is to improve instruc-

tion throughput. Superscalars do so by issuing and executing multiple instructions from a single thread, exploiting instruction-

level parallelism. Multithreaded superscalars, in addition to heightening ILP, hide latencies of one thread by switching to and

executing instructions from another, thereby exploiting thread-level parallelism.

To gauge SMT’s potential for executing parallel workloads, we also compared it to a third alternative for improving instruction

throughput: small-scale, single-chip shared memory multiprocessors (MP). We examined both two- and four-processor MPs,

partitioning the scheduling unit resources of their CPUs (the functional units (and therefore the issue width), instruction

queues, and renaming registers) differently for each case. In the two-processor MP (MP2), each processor received half of

SMT’s execution resources, so that the total resources of the two were comparable). For a four-processor MP (MP4), each pro-

cessor contains approximately one-fourth of SMT’s chip resources (we rounded up when necessary, giving the MP a slight
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advantage). Within the MP design space, these two alternatives (MP2 and MP4) represent an interesting trade-off between

thread-level and instruction-level parallelism. The two-processor machine can exploit more ILP, because each processor has

more functional units than its MP4 counterpart, while MP4 has additional processors to take advantage of more TLP.

The simulators for the three alternative processors reflect the architecture described in the previous section, but without the SMT

extensions. In particular, they use single-threaded fetching (per processor) and the shorter pipeline2, without simultaneous-

multithreaded issue. However, they have the SMT memory system described in Section 2.4. The fine-grain multithreaded

processor simulator context switches between threads each cycle in a round robin fashion for instruction fetch, issue and

retirement. (Refer to Table 2 for a summarized comparison of all architectures studied.) All processor simulators were

execution-driven, cycle-level simulators; they modeled the processor pipelines and memory subsystems (including inter-thread

contention for all structures in the memory hierarchy and the busses between them) in great detail.

We evaluated simultaneous multithreading on two types of workloads, one a multiprogramming workload consisting of several

single-threaded programs, and the other a group of parallel (multi-threaded) applications. We used both types, because each

exercises different parts of an SMT processor. For example, the larger (workload-wide) working set of the multiprogrammed

workload should stress the shared structures in an SMT processor (for example, the caches, TLB and branch prediction

hardware) more than the largely identical threads of the parallel programs, which share both instructions and data. The programs

in the multiprogramming workload were chosen from the SPEC95 benchmark suite (the integer programs compress, go, ijpeg,

li and perl), plus several floating point SPLASH2 programs (fft, lu, radix), all run in single-thread mode. When benchmarking

SMT, each of the programs executed as a separate thread. To eliminate the effects of benchmark differences when simulating

fewer than 8 threads, each data point in the results figures and tables in section 4 was composed of at least 4 simulation runs,

where each of the runs used a different combination of the benchmarks.

The parallel workload was used for two reasons. First, it consists of coarse-grain (parallel threads) and medium-grain (parallel

loop iterations) parallel programs that were written for shared memory machines, and therefore serves as a fair basis for eval-

2. The fine-grain multithreaded processor uses the longer pipeline. Although it could be implemented with separate (and therefore
smaller) register files for each context, it still requires the same number of register ports and similar wire lengths to the func-
tional units as SMT.

Features
Super-
scalar

MP2 MP4
Fine-grain

Multithreading
SMT

CPUs 1 2 4 1 1

Functional units/CPU 10 5 3 10 10

Architectural registers/CPU
(integer or floating point)

32 32 32 256
(8 contexts)

256
(8 contexts)

Renaming registers/CPU
(integer or floating point)

100 50 25 100 100

Pipe stages 7 7 7 9 9

Threads fetched/cycle 1 1 1 1 2

Multi-thread fetch algorithm n.a. n.a. n.a. round-robin ICOUNT

Table 2: A comparison of the architectures.
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uating the MPs. Second, it presents a different, but equally challenging, test of SMT. Unlike the multiprogramming workload,

all threads in a parallel application execute the same code, and therefore, have similar execution resource requirements, for

example, a need for the same functional units at the same time. Consequently, there is potentially more contention for these

resources than in a multiprogramming workload. The applications were selected from the SPLASH2 (fft, lu, radix, water-

nsquared, water-spatial) and SPEC95 (applu, hydro2d, mgrid, su2cor, swim, tomcatv, turb3d) suites. Where feasible, we exe-

cuted the entire parallel portions of the programs; for the long-running SPEC95 programs, we simulated several iterations of

the main loops, using their larger data sets. The SPEC programs were parallelized with the SUIF compiler [13], using parallel-

ization policies that were developed for shared memory machines.

The multiprogramming workload was compiled with cc; the parallel benchmarks were compiled with the Multiflow compiler

[5], which has been modified to produce Alpha executables.3 For all programs most compiler optimizations were set to

maximize each program’s performance on the superscalar, for example, by taking advantage of deep loop unrolling, and, for

the Multiflow compiles, instruction scheduling for an eight-wide machine. However, trace scheduling was disabled, so that

speculation could be guided by the branch prediction and out-of-order execution hardware.

4 The Performance Results
Simultaneous multithreading outperformed the other processor architectures that were also designed to increase instruction

throughput: single-threaded superscalars, fine-grain multithreaded superscalars and single-chip, shared-memory multiproces-

sors, whose processors were also superscalars. In addition to the better speedups and instruction throughput, two potential per-

formance pitfalls didnot occur. First, SMT’s extended pipeline had only a minor impact on single-thread execution, slowing

down our single-threaded programs executing alone by less than 2% when compared to the eight-wide superscalar with the

shorter pipeline. Second, inter-thread conflicts for several shared resources, such as the caches, TLBs and branch prediction

hardware, were offset by SMT’s ability to hide the additional delays. This section discusses those performance results.

4.1 Simultaneous Multithreading

4.1.1 Multi-thread and single-thread performance

Simultaneous multithreading’s instruction throughput was much higher than the one to two instructions per cycle normally

reported for current wide-issue superscalars (see Tables 3 and 4). Instruction throughput consistently rose as the number of

threads increased, reaching a maximum of 6.2 for the multiprogramming workload and 6.1 for the parallel applications at 8

threads. SMT’s speedups for parallel applications at 8 threads averaged 1.8 over a one-thread SMT, demonstrating its ability as

a parallel processor.

Recall that, in order to absorb the longer access of its large register file, SMT’s pipeline is two cycles longer than that of the

superscalar and the processors of the single-chip multiprocessor (see Section 3.2). Therefore, a single thread executing on an

SMT will see additional latencies from a longer mispredicted branch penalty and less renaming register availability. Despite

this potential for lower performance, SMT’s single-thread performance was only 1% (parallel workload) and 1.5%

(multiprogrammed workload) worse than the single-threaded superscalar. Accurate branch prediction hardware and the shared

pool of renaming registers prevented the additional penalties from occurring frequently.

4.1.2 Contention for shared resources

Many of SMT’s hardware data structures, such as the caches, TLBs and branch prediction tables, are shared by all threads. The

3. We thought it important that all programs in each workload be compiled with the same compiler; cc was needed for the integer
programs in the multiprogrammed workload, because our version of the Multiflow compiler does not handle varargs.
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unified organization allows a more flexible, and therefore higher, utilization of these structures, as executing threads place

different usage demands on them. It also makes the entire structures available when fewer than eight threads, most importantly,

a single thread, are executing. On the down side, inter-thread usage leads to competition for the shared resources, driving up

cache and TLB misses and branch mispredictions. In this section we quantify the additional conflicts and assess their effect on

performance.

We examined the impact of inter-thread interference on the shared hardware data structures.4 The impact was significant only

for the L1 data cache and the branch prediction tables; the data sets of our workload fit comfortably into the off-chip L2 cache

and conflicts in the TLBs and the L1 instruction cache were minimal. L1 data cache misses rose by 68% (parallel workload)

4. Recall that the simulations modeled all inter-thread contention for each level of the memory hierarchy and the busses between
the levels.

Threads
Super-
scalar

MP2 MP4
Multi-
thread

SMT

1 3.44 2.49 1.49 3.40 3.40

2 4.38 2.61 4.18 4.73

4 4.29 4.28 5.67

6 4.03 5.95

8 3.29 6.10

Figure 5: Speedups (normalized to SS) for the parallel
 applications.

Threads
Super-
scalar

Multi-
thread

SMT

1 3.17 3.12 3.12

Table 3: Instruction throughput (instructions/cycle) for
the multiprogramming workload.

2 3.52 4.24

4 3.66 5.76

6 3.17 5.88

8 2.83 6.17

Table 4: Instruction throughput (instructions/cycle) for the
parallel workload.
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Figure 4: Speedups (normalized to SS) for the
 multiprogramming applications.
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and 66% (multiprogramming workload) and branch mispredictions by 50% (parallel workload) and 27% (multiprogramming

workload), as the number of threads increased from 1 to 8. We also measured execution time when treating the inter-thread

misses as though they were hits, i.e., eliminating their negative effect on performance. Both sets of results, with and without an

inter-thread conflict penalty, were within 1%. The additional conflicts of the larger working sets were absorbed by SMT in

several ways: first, many of the L1 misses were covered by the fully pipelined 16MB L2 cache whose latency was only six times

that of the L1 cache; second, TLB and branch prediction conflicts did not occur frequently enough to severely impact overall

performance; and finally, the additional sources of latency were hidden by executing instructions from other threads. This last

factor is the most important: although SMT introduces additional conflicts for the shared hardware structures, it also has an

increased ability to hide them

4.2 A Comparison to Superscalars and Fine-grain Multithreaded Superscalars

The single-thread superscalar fell far short of SMT’s performance. For the multiprogrammed workload its instruction

throughput averaged 3.2 instructions per cycle, out of a potential of eight; the parallel workload had only slightly higher average

throughput, 3.4. Consequently, SMT executed both types of workloads almost twice as fast (at 8 threads). The superscalar’s

inability to exploit more instruction level parallelism and any task-level parallelism (and consequently hide horizontal and

vertical waste) are responsible for its lower performance.

By eliminating vertical waste, the fine-grain multithreaded architecture provided speedups over the superscalar as high as 1.2

on both workloads. However, this maximum speedup occurred at only 4 threads, and with additional threads performance fell.

Two factors were responsible. First, fine-grain multithreading can only eliminate vertical waste, and, given the latency-hiding

capability of its out-of-order processor and lockup-free caches, four threads were sufficient to do that. Second, as in SMT, fine-

grain multithreading suffers from inter-thread competition for the shared processor resources. However, unlike SMT, it is less

able to hide the additional conflicts, because it can only issue instructions from one thread each cycle. Neither limitation applies

to simultaneous multithreading, which can simultaneously exploit instruction-level and task-level parallelism to reduce both

horizontal and vertical waste, and can hide latencies from inter-thread conflicts by simultaneously issuing instructions from

different threads. Consequently, SMT obtained higher instruction throughputs and greater program speedups than fine-grain

multithreading when executing multiple threads, at all numbers of threads.

4.3 A Comparison to Single-chip Shared Memory Multiprocessors

Simultaneous multithreading obtained better speedups than the multiprocessors, not only when simulating the machines at

their maximum-thread capability (8 threads for SMT, 4 for MP4, 2 for MP2), but also for a given number of threads (see Fig-

ure 5). At maximum-thread capability SMT’s throughput reached 6.1 instructions per cycle, compared to 4.4 for MP2 and 4.3

for MP4. These results have an impact for the implementation of these machines, as well as their performance. Because of

their narrower issue width, the MPs could very well be built with a shorter cycle time. The speedups indicate that the MP’s

cycle time must be less than 69% that of an SMT before it obtains comparable performance.

Better speedups on the MPs were hindered by the fixed partitioning of their hardware resources across processors. Static parti-

tioning prevents the MPs from responding well to changes in levels of ILP and TLP in the executing programs. For example,

when TLP was less than the number of processors, several processors lay idle; the MPs also had difficulty taking advantage of

large amounts of ILP in the unrolled loops of individual threads, because of their narrower issue width. An SMT processor, on

the other hand, dynamically partitions its resources, and therefore can respond well to variations in both ILP and TLP, allow-

ing them to be exploited interchangeably. When only one thread is executing, (almost) all machine resources can be dedicated

to it; and additional threads (more TLP) can compensate for a lack of ILP in any single thread.

To understand how the static partitioning hurt MP performance, we measured the number of cycles in which a processor could
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have used an additional hardware resource, and, in the same cycle, that resource lay idle in another processor. (In an SMT the

idle resource would have been used by another thread.) The results appear in Figure 6, where each stipple pattern represents a

different resource. Static partitioning of the integer units, for both arithmetic and memory operations, were responsible for

most of the MP’s inefficient use of resources. The floating point units were also a bottleneck for MP4 on this largely floating

point-intensive workload. Selectively increasing the MP hardware resources to match that on the SMT eliminated a particular

bottleneck, but did not improve the speedups, because the bottleneck simply shifted to a different resource. Only wheneach

MP processor was givenall the hardware resources of an SMT did the MPs obtain greater speedups; and this occurred only

when the processors executed the same number of threads. At maximum thread capability the SMT still did better.

5 Related work
Improved performance for the next-generation of processors will depend heavily on the ability to exploit any and all types of

parallelism. We will limit our discussion of related work to the more recent SMT studies and several architectures that represent

alternative approaches to exploiting parallelism.

In Tullsen,et al., [11] we evaluated the potential of SMT, comparing performance of SMT with superscalars, multithreaded

processors, and multiprocessors, using a more abstract processor model and an older (SPEC92) workload. We then presented a

realizable architecture for SMT and investigated the fetch bottlenecks in such a system [10]. In addition to our previous work

on SMT, Gulati and Bagherzadeh [4] also proposed extensions to superscalar processors to implement simultaneous

multithreading. In contrast to our processor model, their base processor was a 4-issue machine with fewer functional units,

which limited the speedups they obtained when using additional threads. Yamamoto and Nemirovsky [14] evaluated an SMT

architecture with separate instruction queues for up to 4 threads.

Thread or task-level parallelism is also essential to other next-generation architectures. As discussed in this paper, single-chip

multiprocessing exploits this type of parallelism with additional processors. Olukotun,et al., [6] investigated design tradeoffs

for a single-chip multiprocessor and compared the performance and estimated area of this architecture with superscalars. Rather

than building wider superscalar processors, they advocate the use of multiple, simpler superscalars on the same chip.

Multithreaded architectures have also been widely investigated; the Tera [2] is a fine-grain multithreaded processor, which

issues up to three operations each cycle. The M-Machine [3] utilizes multithreading in a different manner, relying on two levels

of parallelism, called H-threads and V-threads. H-threads are composed of a sequence of LIW operations that exploit ILP, and

MP2 MP4

integer unit

load/store unit

floating point unit

integer IQ

FP IQ

integer registers

FP registers0.0

10.0

20.0

30.0

40.0

50.0

Figure 6: Frequencies of partitioning inefficiencies
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are run on one of the machine’s three clusters of functional units. A larger granularity of parallelism can be exploited by

grouping multiple H-threads together into a V-thread and running the V-thread across all clusters. One could think of the M-

Machine as a coarser-grain, compiler-driven SMT.

Threads can also be used in a speculative manner to exploit both task-level and instruction-level parallelism, as in the

Multiscalar [8] and superthreaded [9] architectures. In the Multiscalar, tasks (which can be as big as a collection of basic blocks)

can be speculatively executed by hardware using dynamic branch prediction techniques. A circular queue of processing units

execute different tasks. Hardware support is provided to squash tasks if control (branches) or data (memory) speculation is

incorrect. The superthreaded architecture also executes multiple threads concurrently, but does not speculate on data

dependences. Run-time data dependence checking is performed, and hardware support is provided for control speculation.

Although all of these architectures exploit multiple forms of parallelism, only simultaneous multithreading has the ability to

dynamically share execution resources between all threads. In contrast, the others partition resources either in space or in time,

therefore limiting their flexibility to adapt to available parallelism.

6 Conclusions
Simultaneous multithreading is a processor design that permits the CPU to issue multiple instructions from multiple threads

each cycle. SMT attacks multiple sources of lost resource utilization in wide-issue processors. Using both instruction-level and

thread-level parallelism, it increases throughput for multiprogrammed workloads and improves speedup for parallel programs.

Our measurements show how an SMT processor achieves superior performance to competing designs, such as superscalar,

multithreaded, and shared-memory multiprocessor architectures. Hence SMT appears to be a highly-effective approach to

benefit from the huge increase in chip densities we will see in the coming years.

We have described how an SMT processor can be achieved via straightforward modifications to modern state-of-the-art

dynamic superscalars. In the future, we believe that SMT processors, and later multiple SMT processors per chip, will permit

full and effective utilization of the resources we can deliver with future technologies.
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