
A Compiler Abstraction for

Machine Independent Parallel

Communication Generation

?

Bradford L. Chamberlain Sung-Eun Choi Lawrence Snyder

Department of Computer Science and Engineering

University of Washington

Box 352350

Seattle, WA 98195-2350

Abstract. In this paper, we consider the problem of generating e�-

cient, portable communication in compilers for parallel languages. We

introduce the Ironman abstraction, which separates data transfer from

its implementing communication paradigm. This is done by annotating

the compiler-generated code with legal ranges for data transfer in the

form of calls to the Ironman library. On each target platform, these li-

brary calls are instantiated to perform the transfer using the machine's

optimal communication paradigm. We con�rm arguments against gen-

erating message passing calls in the compiler based on our experiences

using PVM and MPI | speci�cally, the observation that these inter-

faces do not perform well on machines that are not built with a message

passing communication paradigm. The overhead for using Ironman, as

opposed to a machine-speci�c back end, is demonstrated to be negligi-

ble. We give performance results for a number of benchmarks running

with PVM, MPI, and machine-speci�c implementations of the Ironman

abstraction, yielding performance improvements of up to 42% of com-

munication time and 1{14% of total computation time.

?

This research was supported by DARPA Grant N00014-92-J-1824, AFOSR Grant

E30602-97-1-0152, and a grant of HPC time from the Arctic Region Supercomputing

Center.

1 Introduction and Motivation

A common compilation technique for higher level languages is to translate into

a general purpose intermediate source language such as C or Fortran 77 (see

Figure 1). This technique both simpli�es the compiler writer's task and makes

the compiler machine independent. Researchers take this approach to reduce

development e�ort, ISV's use it to achieve portability, and hardware vendors,

who nominally only have a single platform to target, use it to avoid the ex-

pense of repeatedly implementing sophisticated low-level code optimizations for

each language. Unlike a byte code that is customized to the role of intermediate

form, the general purpose language distances the compiler writer from machine

speci�c optimizations. For parallel language compilers this problem is perhaps

most troubling in the context of communication. To be machine independent,

most parallel language compilers have adopted a message passing communica-

tion abstraction implemented by general purpose libraries such as PVM [13] or

MPI [20]. Though widely supported and often vendor-optimized, the message

passing abstraction is a blunt instrument for producing high performance object

code. Message passing has demonstrated suboptimal performance on shared ad-

dress space computers like the Cray T3D [23]. Furthermore, as explained below,

the marshalling, synchronization, and bu�ering required by the message passing

abstraction are frequently unnecessary in the context of a speci�c machine or

instance of data transfer. Compiling to a message passing library unnecessarily

binds a speci�c communication paradigm to the compiler, whose primary con-

cern should be what data is transferred and when it can occur, without worrying

about how.

Compiler writers for parallel languages are therefore confronted with a

dilemma: adopt the general purpose intermediate language for simplicity and

machine independence, possibly sacri�cing performance due to the message pass-

ing abstraction; or accept the increased implementation and maintenance e�orts

of writing a di�erent back-end for each target machine in order to reap the

performance bene�ts of platform-speci�c communication.

In this paper, we propose a solution to this dilemma: the Ironman machine

independent communication abstraction. The Ironman abstraction solves the

problem by separating the speci�c interprocessor communication mechanisms

language compiler organization intermediate language

HPF Applied Parallel Research Fortran 77

HPF Portland Group, Inc. Fortran 77

ZPL University of Washington C

pC++ University of Indiana C++

CC++ Caltech C++

Fig. 1. Examples of compilers that translate a parallel source language to an interme-

diate source language.

provided by the hardware from the semantics of data transfer that are the con-

cern of the compiler. Thus:

Data transfer in the Ironman abstraction is expressed (in its most

basic form) as four Ironman calls whose semantics are based on

the Modify/Use characteristics of the data values being transferred

between the source and destination processor.

In this form, data transfer between processors resembles traditional assign-

ment, thereby meeting the compiler's fundamental data transfer needs. Ironman

calls are no more di�cult to generate than message passing calls, but they al-

low the compiler to abstract away the speci�c communication paradigm used to

implement data transfer, allowing it to focus on machine independent commu-

nication optimizations. Ironman calls are implemented using the optimal com-

munication mechanism of the target machine, be it message passing (SP2 [3]),

put- and get-based shared memory operations (T3D [15]), or cache-coherent as-

signment (SGI PowerChallenge [1]), and, like message passing libraries, the calls

are made available as a custom library on each platform. Compilation with this

library achieves data transfer specialized to the machine rather than forcing it

into the one-size-�ts-all paradigm of message passing.

We have used the Ironman abstraction in the implementation of our ZPL

compiler and runtime system [8], although the principle is general and applicable

to any compiler for a parallel machine. In addition to describing the Ironman

concepts, this paper reports on our experience using Ironman and presents

performance measurements based on ZPL programs with various instantiations

of the Ironman primitives. This paper makes the following contributions:

{ Con�rms claims from Stricker et al. [23] regarding the weaknesses of mes-

sage passing, including the problems of marshalling, synchronization and

bu�ering.

{ Identi�es practical problems with compilers using the MPI message passing

library.

{ Introduces the Ironman concept as a compiler-oriented abstraction that

reduces data transfer to its most basic constituents and separates transfer

from the implementing communication paradigm.

{ Illustrates instantiations of the Ironman calls using a number of com-

mon communication paradigms, including put- and get-based operations and

asynchronous message passing.

{ Assesses the performance overhead of the Ironman calls.

{ Presents experimental results demonstrating improved performance of pro-

grams using platform-speci�c implementations of the Ironman abstraction

over that of message passing with PVM and MPI. Experiments treat �ve

benchmarks on the Cray T3D and Intel Paragon.

This paper is organized as follows. In Section 2, we detail the Ironman ab-

straction and argue that it is an appropriate and e�ective alternative to abstrac-

tions based on a particular communication paradigm. In Section 3, we quantify

<use of data>
DR(<data>)

<mod of data>
SR(<data>)

DN(<data>)
<use of data>

SV(<data>)
<mod of data>

<use of data>
DR(<data>)

<mod of data>
SR(<data>)

DN(<data>)
<use of data>

SV(<data>)
<mod of data>

source processor destination processor

data valid for
transmission

location
valid for
receipt

Fig. 2. Ironman calls as viewed from source and destination processor. The four calls

collectively de�ne the region in which data transfer must occur. Notice that we have

illustrated an SPMD program, where a source and destination processor have the same

code but execute di�erent code segments. Therefore each processor only executes its

darkened code.

the overhead of Ironman and show that it improves performance over PVM

and MPI for �ve benchmark programs. In Section 4, we discuss related research

in the area of communication abstraction. Finally, we conclude in Section 5.

2 The Ironman Interface

While application programmers may want to use standardized message passing

libraries for portability, compiler writers have the resources to be much more

exible with the goal of generating portable and highly tuned code across a wide

range of machines and applications. Ironman is a communication abstraction

designed to allow compilers to be independent of the communication facilities

of parallel machines, while avoiding the one-size-�ts-all approach of popular

communication paradigms such as message passing. Speci�cally, Ironman is an

abstraction of data state, rather than a communication paradigm. In this section,

we present a detailed description of the Ironman abstraction and an analysis of

its advantages over an interface based on a particular communication paradigm.

2.1 The Ironman Abstraction

Unlike traditional interfaces, the Ironman abstraction formulates data transfer

based on data state rather than a particular communication paradigm. Collec-

tively, a set of Ironman calls demarcate a region within a program where data

transfer between a source and destination processor may be required. The calls

indicate the statement range in which the data is valid for transmission and re-

ceipt, as well as the source or destination location of the data on each processor.

Beyond this, the calls have no speci�c semantics and can be instantiated on a

given machine to perform the communication as optimally as possible.

The compiler annotates the generated code with this state information in the

form of calls to the Ironman library. The basic point-to-point calls are as follows.

At the destination processor, the following two calls are relevant:

DR (Destination Ready). The locations at the data destination will not be

used again until the transfer has completed. The destination processor

is now ready to accept data from the source processor.

DN (Destination Needed). The values at the data destination are about

to be read. Execution cannot continue until the data from the source

processor has been received.

At the source processor, the following two calls are relevant:

SR (Source Ready). The values at the source processor will not be written

again prior to transfer. The source processor is now ready to begin the

data transfer.

SV (Source Volatile). The data at the source processor is about to be over-

written. Execution cannot continue until the transfer is completed.

As Figure 2 illustrates, the compiler uses the Modify/Use characteristics of

the data being transferred to interleave the four Ironman calls as follows: DR,

SR, DN, SV. (Note that although this �gure illustrates Ironman in an SPMD

context, the abstraction is generally applicable to any programming model).

Since many data parallel programs use communication patterns in which a pro-

cessor is transferring data to one processor while receiving data from another, a

single processor often serves as both a source and a destination. For clarity, we

will keep the two roles distinct in our discussion.

It is also important to note that some parallel machines provide more than

one communication mechanism. For example, the NX libraries on the Intel

Paragon [10] provide a blocking send and receive, csend and crecv, as well as the

asynchronous analog, isend and irecv. Ironman is able to bind to either of these,

allowing an implementor to provide more than one set of libraries per machine,

or to switch between the mechanisms dynamically based on the characteristics

of the communication. In the next section, we present example mappings for

particular platforms.

2.2 Example Ironman Implementations

The following are example instantiations of the Ironman interface for the com-

munication mechanisms available on the Intel Paragon and the Cray T3D.

Paragon: csend/crecv. Perhaps the most straightforward Ironman binding is

to a message passing library that supports copy sends and receives such as the

NX library's csend and crecv. In this instance, we bind SR to csend, since it is

the earliest location where the source data is ready; we bind DN to crecv since

it is the point at which data must be received at the destination. DR and SV

are not needed to specify communication in this binding and therefore are no-

ops. Note that although DR is a legal point for receiving data and SV a legal

point for sending, moving the NX calls to these locations could sequentialize the

communication or cause deadlock in cases where processors act as both source

and destination.

Ironman interface Intel Paragon Cray T3D Standard Message Passing

program state call NX SHMEM MPI PVM

destination ready DR { irecv synch MPI Irecv {

source ready SR csend isend shmem put MPI Isend pvm send

destination needed DN crecv msgwait synch MPI Wait pvm recv

source volatile SV { msgwait { MPI Wait {

Fig. 3. Ironman bindings for the NX library routines on the Paragon, the SHMEM

library routines on the T3D, and the standard message passing libraries.

Paragon: isend/irecv. A slightly more interesting instantiation of Ironman is

demonstrated with non-blocking sends and receives such as the NX isend and

irecv routines. In this case, DR can be used to post the non-blocking receive

(irecv), while SR posts the non-blocking send (isend). DN is then implemented

as a wait for the receive to complete (msgwait), and SV as a wait for the send to

complete (msgwait).

T3D: shmem put. The last example describes the Ironman binding for

a deposit-based interface using a non-blocking put operation such as the

T3D's shmem put. In DR the destination puts a
ag on the source, indi-

cating that it is ready to receive data. In SR the source checks that the

ag is set and then puts the data to the destination processor, followed by

a
ag indicating that the transfer is done. In DN the destination waits for

this
ag to be set and then continues execution. SV is not needed in this binding.

These examples are summarized in Figure 3, along with mappings for PVM

(equivalent to NX's csend/crecv) and MPI (equivalent to NX's isend/irecv).

Note that although we've only de�ned Ironman in the context of point-to-

point data transfers, the same principles are applicable to other communication

patterns such as broadcasts, reductions, and parallel pre�x operations.

2.3 Problems with Compiling to Message Passing

Message passing is a communication paradigm that requires data marshalling,

synchronization, and bu�ering. Depending on the application and target ma-

chine, these overheads may potentially be eliminated to improve performance.

{ Marshalling the data is required to bring disparate items together to form

a message. In cases where data is adjacent in memory, marshalling is not

necessary. When it is disjoint, marshalling is required to form a message even

though some machines (T3D) are capable of directly transmitting scattered

data without linearizing it.

{ Synchronization is needed to preserve message passing semantics, and to en-

sure that the transfer has occurred, either in principle or in fact. Stricker

et al. demonstrate that message passing's synchronization causes a perfor-

mance degradation on the T3D [23].

{ Bu�ering is often used by message passing libraries on the source and/or

destination processors. This prevents programs from blocking during calls to

the message passing library and allows data to arrive before its corresponding

receive is posted. Bu�ering plays an important role in performance since it

involves copying the message in order to relax the tight synchronization

between processors that would otherwise be required.

Depending on the speci�c interface, message passing on a parallel machine

can involve all of these issues. By binding these characteristics to the interface,

message passing disables the compiler's opportunities to optimize away opera-

tions that are unnecessary for a particular data transfer or machine. Message

passing forces the user to accept these facilities en masse, whereas the Ironman

abstraction imposes minimal requirements by simply specifying where the data

is located and where the bounding states of the transfer are located.

Applications programmers choose to use standardized message passing li-

braries because they aid in the e�ort of quickly writing portable parallel pro-

grams in Fortran or C. Compiler writers have made the same choice for the

same reasons, even though message passing doesn't suit their needs as e�ec-

tively. Whereas users need a tool that is intuitive and easy to use, compiler

writers need optimal abstractions for the customized code that they produce

to implement a language's high level semantics. Based on our experience with

MPI, we make the following observations which demonstrate that performance

and portability are often at odds in message passing libraries.

Standard interfaces such as MPI provide a wide variety of message pass-

ing models without regard for an e�cient implementation of the solutions. For

example, MPI 1.1 provides eight di�erent send operations, including bu�ered,

synchronous, asynchronous, and ready mode (in which the corresponding receive

must be posted before the send); MPI 2.0 provides additional point-to-point

communication models such as one-way communication. This variety is o�ered

in the hope that at least one of them will closely match the machine's native

communication mechanism, yielding good performance. Note however that the

optimal model will vary from machine to machine, and furthermore that each

machine will have a number of models that perform sub-optimally. Therefore,

portable data transfer performance is undermined since the optimal communi-

cation routines now depend on the target machine in addition to the particular

application.

Although MPI's interface is strictly de�ned, the functionality provided by

each routine is often underspeci�ed, forcing users to make overly conservative

assumptions to ensure portability. Again, to enable the MPI implementor to

do the best job possible for a given platform, the exact details of the MPI

routines are not speci�ed. For example, MPI's basic send and receive operations,

MPI Send and MPI Recv, do not specify whether or not the transferred data is

bu�ered internally. An immediate consequence of this is that MPI Send may not

return before its corresponding receive operation has completed. As this example

illustrates, it is di�cult to generate communication that is portable and e�cient

without explicit knowledge of the MPI routines' characteristics.

node characteristics

machine communication operating timer

library processor system granularity

Intel Paragon NX (native) Intel i860 XP OSF/1 �100 ns

MPICH MPI (message passing) 50 MHz 1.0.4

Cray T3D SHMEM (native) DECAlpha 21064 MAX �150 ns

CRI/EPCC MPI (message passing) 150 MHz 1.3.0.2

Cray PVM (message passing)

Fig. 4.Machine parameters and communication libraries for the Paragon and the T3D.

Though we have been targeting MPI in our examples, we believe that any in-

terface based on a speci�c communication paradigm will lead to the performance

and portability tensions described above. The fundamental problem with provid-

ing an abstraction based on a speci�c paradigm is that it is too far removed from

the problem being solved, data consistency. In particular, communication is just

one mechanism for maintaining data consistency. The mechanisms vary from ma-

chine to machine. For example, on cache-coherent multiprocessors, the hardware

is responsible for maintaining consistency. As a general principle, consistency

models should be implemented at the level of the data, not the mechanism. The

Ironman abstraction adheres to this principle by specifying data state, rather

than a communication mechanism, to implement consistency.

3 Experimental Results

In this section, we compare Ironman instantiations for a machine's native com-

munication routines with those written using MPI and PVM. First, we describe

our implementation and the characteristics of the target machines. Then, we

measure the overhead of using Ironman. Next, we measure the impact of using

various instantiations of the Ironman libraries for a purely communication-

oriented micro benchmark. Finally, we evaluate �ve benchmark programs that

use the Ironman interface with the goal of evaluating the bene�ts of Ironman

in applications.

3.1 Methodology

Experiments were run on two platforms: the Intel Paragon [10] and the Cray

T3D [15] (see Figure 4). On the Paragon, we use the MPICH [14] implementation

of MPI and the native NX communication library routines. On the T3D we use

a vendor-optimized version of PVM [16], CRI/EPCC MPI [6], and the native

SHMEM [4] library routines. All benchmark programs were run on dedicated

partitions. Measured deviations were always below 1% and therefore will not be

reported. All timings were taken using the machines' native timers.

In order to compare our platform-speci�c Ironman implementations with

message passing libraries, we implemented versions of the Ironman libraries

using MPI and PVM to avoid the task of writing separate back ends for the

compiler. In the next section, we demonstrate that this approach introduces

negligible overhead. A summary of our Ironman bindings is given in Figure 3.

Our benchmarks are written in ZPL, a portable data parallel array language

developed at the University of Washington. ZPL is useful for solving regular

problems similar to those suitable for Fortran 90 and has been used for scien-

ti�c and engineering applications [12, 19, 22, 21] as well as to implement many

standard parallel benchmarks. Our ZPL compiler generates ANSI C code anno-

tated with Ironman calls to indicate the required data transfers. Point-to-point

communications are optimized by the compiler using message vectorization, the

removal of redundant communications, and the overlapping of computation and

communication [9]. Note that Ironman calls are no harder to insert and opti-

mize than asynchronous message passing calls, since both rely on similar analysis

of Modify/Use information. The resulting C code is compiled on each platform

using its native C compiler and linked to each of the Ironman bindings to create

the executables.

3.2 Ironman Overhead

In this section we measure the cost of calling message passing libraries via the

Ironman interface to determine the overhead compared with a compiler that

directly generates MPI or PVM calls

1

. It is shown that the overhead incurred

by Ironman is negligible.

The parameters to the Ironman routines are minimal. They describe the

layout of source and destination data in memory using pointers and stride infor-

mation, as well as a communication ID that is used to tag a cooperating set of

Ironman calls. Within each Ironman routine, the computations performed are

the same as those that would be required for direct calls to MPI in an SPMD

program | the processor is classi�ed as a sender or receiver and it marshals

and unmarshals data as necessary. Thus, we expect Ironman to incur minimal

overhead as compared to the direct calls.

To verify our hypothesis experimentally, we wrote two programs to perform

one million point-to-point communications. The �rst contains Ironman calls

implemented using MPI, while the second calls the MPI routines directly. In both

programs, the MPI routines themselves are stubbed out, allowing us to measure

the overhead of calling down to the MPI interface without actually performing

any communication. Thus, the di�erence between the execution times gives an

indication of Ironman's overhead. We consider MPI to be a conservative upper

bound for PVM since it uses all four Ironman calls rather than PVM's two.

Figure 5 summarizes our results. Four di�erent timings are given to indicate

the measured overhead for a processor acting as a sender, a receiver, both, or

neither.

1

Although Ironman is intended as a replacement for direct compilation to MPI and

PVM, either library can be used to implement the Ironman calls. This allows for a

quick port to a platform supporting MPI or PVM until a machine-tailored Ironman

library is implemented.

overhead of Ironman overhead of direct Ironman

machine calls to MPI calls to MPI overhead

Intel Paragon send 18.93 �sec 15.60 �sec 3.33 �sec

recv 19.28 �sec 15.59 �sec 3.69 �sec

both 30.58 �sec 25.52 �sec 5.06 �sec

neither 7.62 �sec 6.00 �sec 1.62 �sec

Cray T3D send 19.85 �sec 16.99 �sec 2.86 �sec

recv 21.52 �sec 18.57 �sec 2.95 �sec

both 33.04 �sec 30.20 �sec 2.84 �sec

neither 3.89 �sec 2.94 �sec 0.95 �sec

Fig. 5. Observed worst case overhead of using MPI in the Ironman framework. The

�rst column indicates the time required to call down to the MPI interface using Iron-

man routines. The second column shows the time required to make the same MPI calls

directly, without using Ironman. The last column reports the di�erence between these

timings, indicating the worst-case overhead of Ironman. For each machine, times are

given to indicate the overhead for a processor acting as a sender, a receiver, both, or

neither.

Dynamic communications were counted and categorized for each benchmark

in the following sections, to determine the expected overhead for using MPI

and PVM versions of Ironman rather than calling into the message passing

libraries directly. In all cases, the estimated overhead was less than 1% of the

total running time, allowing us to conclude that Ironman does not signi�cantly

penalize message passing. We therefore use MPI and PVM implementations of

Ironman for the remainder of our experiments.

3.3 Micro Benchmark

To measure the potential performance bene�ts of instantiating Ironman using

a machine's native communication routines, we created a micro benchmark that

performs eight-way nearest-neighbor communications within a tight loop. The

micro benchmark is written in ZPL and linked with each Ironman implemen-

tation on both machines. The resulting executables were run on 16 processors,

using a variety of processor con�gurations (see Figure 6). On the Paragon, the

Ironman instantiations improve overall running times by 1{12%. The absolute

di�erences are fairly small, which is expected since MPI maps well to the native

message passing routines without a paradigm shift.

On the T3D, implementing Ironman using shmem put improves overall run-

ning times by 50{65%. Ironman signi�cantly outperforms MPI and PVM due

to its ability to directly exploit the machine's preferred communication inter-

face. The MPI and PVM versions, though highly optimized, incur the costs of

marshalling, synchronization, and bu�ering that any implementation of message

passing would require on the T3D.

Note that as the processor con�gurations are skewed away from a square,

faster execution times result. This is partially due to the fact that in these

con�gurations, fewer processors have all eight neighbors, resulting in less overall

communication. Additionally, for con�gurations with more processor rows than

1x16 2x8 4x4 8x2 16x1
processor configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tim
e

(s
ec

on
ds

)

Micro benchmark Execution Time
on the Intel Paragon

MPI

NX (csend/crecv)

NX (isend/irecv)

1x16 2x8 4x4 8x2 16x1
processor configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

tim
e

(s
ec

on
ds

)

Micro benchmark Execution Time
on the Cray T3D

MPI

PVM

SHMEM

Fig. 6. Performance of a micro benchmark written in ZPL. The Ironman libraries

are implemented using MPI, PVM, and the native communication libraries (NX or

SHMEM). Each program performs eight-way nearest-neighbor communication in a

tight loop that iterates one thousand times. The transmitted data volume is held

constant for each pair of neighboring processors.

columns, the majority of communicated data is laid out sequentially in memory

resulting in better spatial locality and no need for marshalling.

3.4 Benchmark Suite

Though the micro benchmark demonstrates the potential advantage of using a

native Ironman implementation over MPI or PVM, it does not provide insight

into how the abstraction a�ects overall application performance. To do this,

we performed experiments using a set of benchmark programs that use kernel

computations and communication patterns that are commonly found in large-

scale scienti�c programs (see Figure 7).

Cannon's Algorithm for Matrix Multiplication (Cannon). Cannon's

algorithm [7] is a systolic approach to matrix multiplication. As an initial-

ization step, it uses cyclic shifts to skew the operand matrices. The result

matrix is then computed by repeatedly multiplying elements in a pointwise

manner and performing cyclic shifts, causing corresponding elements to
ow

past one another.

Jacobi Iterations (Jacobi). The Jacobi iteration method is a stencil compu-

tation used to model the steady state of physical systems. Every iteration,

each array element is replaced by the average of its four nearest neighbors.

Convergence is detected when the maximum di�erence between the new val-

ues and the old values is less than some constant.

Simple Hydrodynamics (Simple). The Simple code [11] is a basic hydro-

dynamics simulation. Our implementation uses 8-way nearest neighbor com-

munication, global reductions, and a solver.

Shallow Water Model (SWM). The shallow water mathematical model is a

�nite-di�erencing method used in many atmospheric and
uid computations.

Our version (based on the SPEC benchmark) requires communication to

perform six cyclic shifts of the matrix.

benchmark description characteristics base problem

program size

Cannon Cannon's Algorithm 1-way cyclic shift 128x128

for matrix multiplication

Jacobi Jacobi iterations 4-way nearest neighbor, 256x256

reduction

Simple Hydrodynamics simulation 8-way nearest neighbor, 32x32

from Livermore Labs reduction

SWM Weather prediction 3-way cyclic shift 64x64

from the SPEC benchmark suite

Tomcatv Thompson solver and grid generation 8-way nearest neighbor, 16x16

from the SPEC benchmark suite

Fig. 7. Ironman evaluation benchmark suite. These benchmark programs demonstrate

kernel computations generally found in scienti�c applications. All benchmark programs

are written in ZPL. The global problem size is scaled so that every processor computes

on the base problem size.

Thompson solver (Tomcatv). Tomcatv is a SPEC benchmark program that

performs eight-way nearest neighbor communication to solve a system of

linear equations.

For each of the benchmarks, the problem size is scaled proportionally to the

number of processors in order to maintain a constant volume of data per pro-

cessor for all runs. This prevents starving a processor of work and keeps data

transfers at a �xed size for each processor across all runs of a benchmark. In

addition, we ensure that the number of iterations remains constant (sometimes

terminating prior to convergence), thereby keeping the amount of work done

per processor �xed when possible. The computations in Cannon, Simple and

Tomcatv are dependent on the problem size and therefore the number of iter-

ations increases with the problem size. Figures 8 and 9 show the performance

of our benchmark programs on the Paragon and the T3D. On the Paragon, the

Ironman implementations using the NX libraries reduce time spent in commu-

nication by up to 13%, yielding overall improvements of 0{4%. On the T3D, the

Ironman implementation using the SHMEM libraries reduces the time spent in

communication by up to 42%, yielding overall improvements of 1{14%.

3.5 Interpretation of Results

The results con�rm that the Ironman abstraction is a
exible mechanism for

implementing data transfer to achieve maximum performance.

In the case of the Paragon where message passing is the available hardware

mechanism, Ironman should be expected to o�er performance comparable to the

message passing libraries. However, as the micro benchmark indicates, Ironman

o�ers an advantage over MPI even for message passing machines. As seen in Fig-

ure 6, where Ironman is instantiated with di�erent message passing paradigms,

not all message passing protocols are equal. There is a slight advantage for isend

and irecv. In compilers that use the Ironman abstraction, users can bene�t from

1 4 16 64
0.0

10.0

20.0

30.0

40.0

50.0

60.0
tim

e
(s

ec
on

ds
)

Cannon

1 4 16 64
0.0

2.0

4.0

6.0

8.0

10.0

12.0

Jacobi

1 4 16 64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

Simple

1 4 16 64
processors

0.0

5.0

10.0

15.0

20.0

25.0

tim
e

(s
ec

on
ds

)

SWM

1 4 16 64
processors

0.0

1.0

2.0

3.0

4.0

5.0

Tomcatv

MPI

NX (csend/crecv)

NX (isend/irecv)

communication time

Fig. 8. Performance of benchmark programs on the Intel Paragon. The Ironman li-

braries are instantiated using MPI or NX. The base problem size is scaled with the

number of processors to maintain a constant volume of data per processor for all runs

of that benchmark. Note that our 64-node Paragon was retired before we were able to

measure the time spent in communication; as a result, these numbers only show the

total execution time.

a late, application speci�c binding of their message passing implementation. The

benchmarks indicate that this advantage extends to larger applications, though

the e�ect is diminished somewhat as communication becomes a smaller part of

the overall time.

For the Cray T3D the advantages are more signi�cant, since the hardware

does not impose message passing on the user. The micro benchmark shows a sub-

stantial advantage to using Ironman instantiated with shmem put, rather than

MPI or PVM. As before, SHMEM's advantage extends to the larger applications

in proportion to the amount of communication in the overall computation. The

1{14% advantage over the two messaging passing libraries is substantial consid-

ering that no communication is removed, just expressed in a form that can be

more e�ciently mapped to the hardware.

In summary, the Ironman abstraction allows users the option of late bind-

ing of the communication paradigms. The results show that the late binding

has advantages over message passing libraries that can be substantial for mod-

ern machines like the T3D. Even message passing machines can bene�t from

alternative Ironman instantiations.

4 Related Work

The desire for portable high-performance data transfer has motivated a variety

of communication interfaces and paradigms. Message-passing interfaces such as

PVM [13] and MPI [20] were designed to provide an intuitive and portable means

1 4 16 64
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0
tim

e
(s

ec
on

ds
)

Cannon

1 4 16 64
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Jacobi

1 4 16 64
0.0

0.5

1.0

1.5

2.0

2.5

Simple

1 4 16 64
processors

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

tim
e

(s
ec

on
ds

)

SWM

1 4 16 64
processors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tomcatv

MPI

PVM

SHMEM

communication time

Fig. 9. Performance of benchmark programs on the Cray T3D. The Ironman libraries

are instantiated using MPI, PVM or SHMEM. The base problem size is scaled with

the number of processors to maintain a constant volume of data per processor for all

runs of that benchmark.

of specifying data transfer. However, by �xing a paradigm of communication in

their de�nitions, these libraries do the compiler-writer a disservice. When im-

plemented on platforms whose built-in data transfer paradigm is fundamentally

di�erent | such as the T3D's SHMEM interface | these libraries necessarily

add overhead to the communication time in order to make the required paradigm

shift. Furthermore, the interfaces themselves can cause data to be marshalled

unnecessarily on machines whose built-in communication primitives require no

marshalling [23].

Some e�ort has been made to implement highly-tuned versions of the MPI

and PVM libraries for platforms that do not inherently support send/receive-

based message-passing, such as the Cray T3D [16, 6]. However, such tuning does

not remove the existence of the paradigm skew and results in performance that

falls short of optimal for that platform, as we demonstrate in our experiments.

Another attempt to reduce the cost of message passing on the T3D has been

undertaken by the Illinois Fast Messages project [17]. Their approach has been

to implement a message passing library by bypassing the T3D's SHMEM library

and using speci�c hardware characteristics. Although this hardware dependency

causes their technique not to be general across platforms, it is this type of highly-

tuned library that a machine-independent compiler writer wants to be able to

utilize e�ortlessly. Ironman's paradigm-neutral approach would enable this.

Stricker et al. measured the costs involved in performing data transfer on the

T3D using a variety of communication paradigms [23]. Their results quantify the

e�ects of using a standard message-passing library like PVM, and indicate that

the deposit-based paradigm outperforms others due to its reduced synchroniza-

tion and bu�ering requirements. However, it is unlikely that a platform without

built-in deposit-style communication mechanisms (such as the Intel Paragon)

would be able to e�ciently implement the paradigm. This is further evidence

that a single data transfer paradigm will be unlikely to provide portable perfor-

mance across all platforms.

Another important data transfer paradigm is the Active Messages interface

designed by von Eicken et al. [24]. Consider this to be a highly optimized com-

munication interface that is becoming increasingly widespread. As such, it rep-

resents technology that compiler writers would like to use when available, but

might hesitate to rely upon since portability is constrained by availability. To

this end, Ironman's paradigm-neutral approach allows the compiler writer to

use Active Messages when it is available without relying on its presence on every

platform.

Consistency models have been used to express how a shared memory changes

state [2, 5, 18]. The consistency model is the mechanism by which the program-

mer and the compiler agree on when memory updates take place, and as such is

a source language rather than a compiler concept like Ironman. A compiler sup-

porting a memory consistency model could manage its own memory coherency

using Ironman calls, with the advantage that the programs would port directly

to noncoherent global address space machines such as the Cray T3D.

5 Conclusions

We have argued that implementors of parallel languages should avoid binding

their compiler to a particular communication paradigm in order to achieve max-

imum portability without sacri�cing performance. As a solution, we have pre-

sented the Ironman abstraction which circumvents the problem by providing

the minimal set of information required to perform a data transfer | where the

data is located in memory, and when the transfer can occur during the program's

execution. This abstraction is then realized by implementing the Ironman calls

on each machine so that they perform the transfer in accordance with the ma-

chine's underlying communication model. This e�ectively nulli�es the paradigm

skew that can occur when using a speci�c communication paradigm on a machine

for which it is not well suited.

We have used the Ironman abstraction in our ZPL compiler and runtime

libraries. The experiments show that Ironman's late communication binding

yields improved performance, which can be substantial for machines like the

T3D where the hardware provides data transfer paradigms that are less con-

strained than message passing. The opportunities to bene�t from late binding

are expected to improve as architectures continue to move away from message

passing designs.

Acknowledgments. We'd like to thank the ZPL compiler group for their support

of the ZPL compiler and runtime system, and the San Diego Supercomputer

Center and the Arctic Region Supercomputing Center for providing us access to

their parallel hardware, on which these ideas were developed and tested.

References

1. The Power Challenge. Technical report, Silicon Graphics, Inc., 1995.

2. Sarita V. Adve and Kouroush Gharachorloo. Shared memory consistency models:

A tutorial. Technical Report 95/7, Digital Western Research Laboratory, 1995.

3. T. Agerwala, J. L. Martin, J.H. Mirza, D.C. Sadler, D.M Dias, and M. Snir. SP2

system architecture. IBM System Journal, 34(2):152{184, 1995.

4. Ray Barriuso and Allan Knies. SHMEM user's guide for C. Technical report, Cray

Research Inc., June 1994.

5. Brian N. Bershad, Matt J. Zekausaka, and Wayne A. Sawdon. The Midway dis-

tributed shared memory system. In CompCon Conference, February 1993.

6. Kenneth Cameron, Lyndon J. Clarke, and A. Gordon Smith. CRI/EPCC MPI for

CRAY T3D. In 1st European Cray T3D Workshop, September 1995.

7. L. F. Cannon. A Cellular Computer to Implement the Kalman Filter Algorithm.

PhD thesis, Montana State University, 1969.

8. Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Lewis, Calvin Lin,

Lawrence Snyder, and W. Derrick Weathersby. Factor-Join: A unique approach to

compiling array languages for parallel machines. In Workshop on Languages and

Compilers for Parallel Computing, August 1996.

9. Sung-Eun Choi and Lawrence Snyder. Quantifying the e�ect of communication op-

timizations. to appear in International Conference on Parallel Processing, August

1997.

10. Intel Corporation. Paragon User's Guide. 1993.

11. W. Crowley, C. P. Hendrickson, and T. I. Luby. The Simple code. Technical Report

UCID-17715, Lawrence Livermore Laboratory, 1978.

12. Marios D. Dikaiakos, Calvin Lin, Daphne Manoussaki, and Diana E. Woodward.

The portable parallel implementation of two novel mathematical biology algo-

rithms in ZPL. In 9

th

International Conference on Supercomputing, 1995.

13. A. Belguelin et al. A user's guide to PVM. Technical report, Oak Ridge National

Laboratories, 1991.

14. William Gropp and Ewing Lusk. User's guide for mpich, a portable implementation

of MPI. Technical report, Argonne National Laboratory, 1996.

15. Cray Research Inc. Cray T3D System Architecture Overview Manual. Mendota

Heights, MN, 1993.

16. Cray Research Inc. PVM and HeNCE Programmer's Manual. Mendota Heights,

MN, 1994. SR-2501 5.0.

17. Vijay Karamcheti and Andrew A. Chien. Optimizing memory system performance

for communication in parallel computers. In Proceedings of the International Sym-

posium on Computer Architecture, June 1995.

18. Peter Keleher, Alan L. Cox, and Willie Zwaenepoel. Lazy release consistency for

software distributed shared memory. In Proceedings of the International Sympo-

sium on Computer Architecture, May 1992.

19. E Christopher Lewis, Calvin Lin, Lawrence Snyder, and George Turkiyyah. A

portable parallel n-body solver. In D. Bailey, P. Bjorstad, J. Gilbert, M. Mascagni,

R. Schreiber, H. Simon, V. Torczon, and L. Watson, editors, Proceedings of the

Seventh SIAM Conference on Parallel Processing for Scienti�c Computing, pages

331{336. SIAM, 1995.

20. Message Passing Interface Forum. MPI: A Message Passing Interface Standard.

June 1995.

21. Wilkey Richardson, Mary Bailey, and William H. Sanders. Using ZPL to develop a

parallel Chaos router simulator. In 1996 Winter Simulation Conference, December

1996.

22. Prasenjit Saha, Joachim Stadel, and Scott Tremaine. A parallel integration method

for solar system dynamics. to appear in Astronomical Journal, June 1997.

23. T. Stricker, J. Subhlok, D. O'Hallaron, S. Hinrichsand, and T. Gross. Decoupling

synchronization and data transfer in message passsing systems of parallel comput-

ers. In 9

th

International Conference on Supercomputing, July 1995.

24. Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik

Schauser. Active messages: a mechanism for integrated communication and com-

putation. In Proceedings of the 19th International Symposium on Computer Ar-

chitecture, pages 256{266, May 1992.

