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Abstract

Many papers describe compiler optimizations for

communication, but most appear before any per-

formance numbers are available, so it is not gen-

erally known how well these optimizations perform

in practice. Further, since a compiler cannot apply

all known communication optimizations to a given

program because of incompatibilities between the

optimizations, it is necessary to know how the op-

timizations compare to each other.

Using a specially constructed machine indepen-

dent communication optimizer that allows control

over optimization selection, we quantify the per-

formance of three well known communication op-

timizations: redundant communication removal,

communication combination, and communication

pipelining. The numbers are shown relative to the

base performance of benchmark programs using the

standard communication optimization of message

vectorization. The e�ects on static and dynamic

communication call counts are tabulated. Though

we consider a variety of communication primitives

including those found in Intel's NX library, PVM

and the T3D's SHMEM library, the majority of the

experiments are run on the T3D using PVM and

SHMEM. The results show substantial improve-

ment, with two combinations of optimizations being

most e�ective.

1 Introduction

There exists a rich body of work in optimizing com-

munication for array languages and in parallelizing

compilers [1, 2, 10, 15, 13, 21]. There are fewer

studies empirically evaluating communication opti-

mizations in the context of a speci�c compiler and

target machine [4, 14, 19]. Moreover, detailed per-

formance evaluations of communication optimiza-

tions for non-kernel applications are virtually non-
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existent, particularly with respect to optimizations

that are performed in a machine independent man-

ner. This may be primarily due to implementation

di�culties in achieving portability and performance

on previous generation parallel computers.

In this paper, we quantify the e�ectiveness of

three well-known communication optimizations: re-

dundant communication removal, communication

combination, and communication pipelining. In

particular, each optimization is described in terms

of how it improves performance. Though their

descriptions are machine independent, the e�ec-

tiveness of the optimizations can be inuenced by

machine speci�c characteristics. Consequently, we

empirically evaluate these optimizations using four

benchmark programs for two modern parallel ma-

chines, the Intel Paragon and the Cray T3D and

two communication mechanisms, message passing

and one-way communication (i.e., T3D's SHMEM

libraries). These benchmark programs are written

in ZPL [17, 18], a portable data parallel array lan-

guage similar to the array subset of Fortran 90. The

compiler supports a instrumented compiler where

optimizations are performed in a machine indepen-

dent manner (ZPL source programs are compiled

to SPMD ANSI C and linked with machine depen-

dent libraries), allowing the same compiler output

to be used for each set of experiments. Note that we

are not assessing the e�ectiveness of the ZPL lan-

guage or evaluating the compiler itself; the language

semantics allow static detection of communication

and thus no optimization opportunities are missed.

Rather, we merely are looking to evaluate the best

case behavior for a set of commonly used data paral-

lel benchmark programs in the presence of standard

communication optimizations. Thus the results of

this study apply to parallel compilers of all forms

{ parallelizing compilers for sequential languages as

well as compilers for parallel languages.

The paper is organized as follows. In Section 2,

we review the goals of the three optimizations and

comment on their e�ectiveness. In Section 3, we

present an empirical evaluation of the optimiza-



tions. Finally, in Section 4, we give directions for

future work and conclusions.

2 Review of Optimizations

In this Section, we review three standard communi-

cation optimizations: redundant communication re-

moval, communication combination, and communi-

cation pipelining. Our language context eliminates

the need for message vectorization, the most com-

mon communication optimization where in commu-

nication of individual array elements is hoisted out-

side of a loop nest and combined into a single com-

munication of a slice of the array. Parallelizing

compilers for scalar languages such as Fortran 77

must perform message vectorization since the unit

of representation, and thus the unit of communica-

tion, is a single scalar value. All respectable par-

allelizing compilers perform message vectorization.

Compilers for array languages, on the other hand,

can directly use arrays and array slices as the unit

of representation [6], eliminating the need for mes-

sage vectorization. Thus the baseline of comparison

in our experiments will be optimization using only

message vectorization.

Before describing the optimizations, we will

briey discuss the notation and assumptions. The

examples in this section represent single-program-

multiple-data (SPMD) code, though these optimiza-

tions can be applied to non-SPMD code. The no-

tation is a simpli�ed pseudo-code. For example,

A

�;�

 B

�;�

says that the array B is assigned to the array A for

all index positions owned by a processor, i.e., for all

(i; j), A

i;j

 B

i;j

. Similarly,

A

�;�

 B

�;�+1

says that the array B, shifted by one element in

the second dimension, is assigned to the array A,

i.e., for all (i; j), A

i;j

 B

i;j+1

. We assume that

arrays are aligned and block distributed, therefore

the statement above requires communication be-

tween neighboring processors. For convenience, we

will assume the compiler generates message pass-

ing code by emitting message sends and receives,

though this is a simpli�cation of what the ZPL com-

piler does (we describe the actual implementation

in Section 3.1). We omit the bounds information

for the send and receive operations for clarity of

presentation. We will also omit the source and des-

tination of the send and receive operations. Recall

that in SPMD code, for a given send/receive pair, a

single processor is sending to processor p, while re-

ceiving from processor q where p and q are di�erent

processors, thus avoiding deadlock.

Figure 1(a) shows an example of naively gen-

erated communication. Notice that each non-local

reference requires communication and the commu-

nication occurs immediately before the data is ac-

cessed. We now review the de�nition of the opti-

mizations being considered and briey describe the

steps involved in their implementation.

Redundant communication removal. Communi-

cation is frequently not necessary because the non-

local data has already been transmitted to the pro-

cessor. Such redundant communication can be elim-

inated. Removing redundant communication re-

duces the number of messages sent and the volume

of data sent. In Figure 1(a), the second communi-

cation of B is redundant and can be removed as in

Figure 1(b). Speci�cally, if a processor has cached

non-local data, a subsequent transfer of that same

data is not necessary if the data has not been mod-

i�ed.

Communication combination. Several messages

that are bound for the same processor may be com-

bined into a single, larger message. Combining com-

munication reduces the number of messages sent,

but the volume of data sent remains the same. For

example, in Figure 1(c), the communication for B

and E will have the same source and destination

processors and can therefore be combined.

Communication pipelining. Communication of

messages may be pipelined such that the send is ini-

tiated earlier than the receive. This generally means

that the receive is initiated immediately before the

data is used while the send is initiated just after

the last modi�cation of the data. This optimization

hides the communication latency by enabling com-

putation to be performed during the data transfer.

Pipelining does not a�ect the number of messages

sent or the volume of data sent. Figure 1(d) illus-

trates an example of pipelined communication.

Notice that the goals of combining and pipelin-

ing are sometimes at odds. Speci�cally, combining

may reduce the \distance" between sends and re-

ceives, where distance is a measure of how much

of the exposed communication latency can be hid-

den by computation. Realize that this is no guar-

antee that the the latency will be hidden, as the

communication mechanism on each target machine

provide di�erent opportunities. Figure 2 illustrates

an example of two heuristics for combining com-

munication in the presence of pipelining. When

combining communication, a compiler may choose

to maximize combining or maximize latency hiding

potential or even a a hybrid solution based on ma-

chine and application characteristics. To maximize

combining, messages are combined without regard

for the distance between the send and receive (see

Figure 2(b)). To maximize latency hiding, only

messages that are completely nested are combined

(see Figure 2(c)). In this way, messages are only
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Figure 1: Example of communication optimizations: (a) naive communication generation, (b) redundant

communication removal, (c) communication combination, (d) communication pipelining.

combined until the distance between the combined

send and receives is no smaller than any of the dis-

tances of the uncombined communication. We will

not discuss using a hybrid solution here, but tai-

loring communication combination for a particular

machine and application is certainly worth investi-

gating in the future.

3 Experimental Results

In this section, we present an evaluation of op-

timizations for communication generation. First,

we discuss our methodology and the framework for

evaluation. We then investigate the inuence of ma-

chine characteristics on the optimizations using a

synthetic benchmark program. Finally, we empiri-

cally evaluate the optimizations for four benchmark

programs.

3.1 Methodology and Framework

Experiments were run on two platforms: the Intel

Paragon [9] and the Cray T3D [3] (see Figure 3).

On the Paragon, we use the native NX commu-

nication library routines. On the T3D we use a

vendor optimized version of PVM [12] and the na-

tive SHMEM [3] library routines. The synthetic

benchmark was run on two node dedicated parti-

tions on the Paragon and the T3D. All benchmark

programs were run on 64 node dedicated partitions

on the T3D. Measured deviations were under 1%

and therefore will not be reported with each exper-

iment. All timings were taken using each machine's

native timer.

The benchmark programs are written in ZPL, a

portable data parallel array language developed at

the University of Washington. ZPL can be used to

solve a class of regular problems similar to those

suitable for Fortran 90 and has been successfully

used for real scienti�c and engineering applications

communication timer

machine library granularity

Intel Paragon NX (message passing) �100 ns

50 MHz

Cray T3D PVM (message passing) �150 ns

150 MHz SHMEM (shared memory)

Figure 3: Machine parameters and communication

libraries for the Paragon and the T3D.

[7, 11, 16, 20]. ZPL provides reductions, parallel

pre�x operators and other parallel operations, but

for the purposes of this paper, we will concentrate

on nearest-neighbor communication introduced by

the shift operator, @. The language's semantics

guarantee static detection of communication and al-

low us to concentrate on optimizations.

In ZPL, arrays are �rst class citizens. Operations

are performed on whole arrays and indexing is not

allowed.

A := 1.0; { { assign the array A with 1.0

B := C; { { assign the array B with

{ { corresponding elements of C

The @ operator allows shifted accesses to arrays. @

is a binary operator that take two arguments: an

array operand (left operand) and a static o�set vec-

tor (right operand). If A and B are two dimensional

array, and east is the o�set vector (0,1), then the

following use of @ simply assigns all array elements

of A with the corresponding elements of B, shifted

by 1 in the second dimension.

A := B@east; { { for all (i,j)

{ { A(i,j)  B(i,j+1)

At runtime, all arrays are trivially aligned (i.e., ele-

ment (i,j) for all arrays resides on the same proces-

sor) and block distributed across a two dimensional
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(c) Maintain

latency hiding.

Figure 2: Examples of combining communication: (a) communication of C, B, and D is pipelined; (b) all

three communications are combined but the latency hiding ability is reduced; (c) only the communication

of B and C are combined because doing so does not decrease the latency hiding ability.

virtual processor mesh. Consequently, the use of an

@ implies the need for nearest neighbor communica-

tion. Figure 4 shows a code segment from the inner

loop of the Tomcatv SPEC benchmark written in

ZPL.

Our communication generation algorithm limits

the scope of optimizations to a single source-level

basic block, i.e., a collection of whole array opera-

tions. For example, all the statements shown in Fig-

ure 4 are in the same basic block, bounded on one

side by the start of the repeat loop, and therefore are

considered at once for optimization. The analysis is

much simpler than that for scalar languages where

operations on arrays require loop nests and index-

ing. In our framework, the array statements are

not expanded to loops nests until after communica-

tion generation, and as a result, they do not intro-

duce control ow. This representation increases the

granularity of analysis, thereby increasing the e�ec-

tiveness of the algorithms. We now briey explain

the communication optimizations in the context of

the ZPL compiler.

Redundant communication removal. Com-

munication for @ expressions with the same

array variable and same o�set vector as a

previous @ expression may be removed if the

communication is redundant, i.e., the required

non-local values have not been modi�ed since

the communication. In the above example, the

communication for X@east in line 9 is redun-

dant because the non-local values have been

cached earlier by the communication required

for X@east in line 2.

Communication combination. Communica-

tion for @ expressions with the same o�set vec-

tor but di�erent array variable as a previous @

expression may be combined with that of the

earlier expression if the neither array variable

is modi�ed after the communication is com-

pleted and before the data is used. All such

communications have the same source and des-

tination processors. For example, the commu-

nication for Y@east in line 3 may be combined

with that of X@east in line 2.

Communication pipelining. Communication

for @ expressions may be pipelined within a

basic block by pushing the send operation of

a communication up as far as the most recent

modi�cation of the required array values or the

top of the basic block, whichever occurs later.

For example, the send operation for X@se in

line 9 can be initiated at the top of the repeat

loop.

Though the compiler considers all optimizations si-

multaneously, the optimizations can be turned on

and o� individually. To isolate the e�ects of com-

bining communication combining is maximized, un-

less otherwise noted.

The ZPL compiler generates machine indepen-

dent SPMD ANSI C code. The C code is compiled

using the target machine's native C compiler and

linked with the ZPL runtime libraries to produce an

executable. Programs written in ZPL may use any

communication mechanism on any target machine

with a single source compilation. This is achieved

by compiling communication to the Ironman com-

munication interface [5]. To make the paper self-

contained, we will briey discuss the interface here

and refer the reader to the paper [5] for more de-

tails. A single data transfer is achieved by four li-



1 repeat

2 XX := X@east - X@west;

3 YX := Y@east - Y@west;

4 XY := X@south - X@north;

5 YY := Y@south - Y@north;

6 A := 0.250 * (XY * XY + YY * YY);

7 B := 0.250 * (XX * XX + YX * YX);

8 C := 0.125 * (XX * XY + YX * YY);

9 Rx := A*(X@east-2.0*X+X@west) + B*(X@south-2.0*X+X@north) - C*(X@se-X@ne-X@sw+X@nw);

10 Ry := A*(Y@east-2.0*Y+Y@west) + B*(Y@south-2.0*Y+Y@north) - C*(Y@se-Y@ne-Y@sw+Y@nw);

. . .

Figure 4: Code segment from Tomcatv SPEC benchmark written in ZPL.

brary calls: DR, SR, DN and SV. The calls them-

selves demarcate regions in the code where data

transfer can occur. They are named for the state

of the program on the source and destination pro-

cessors: DR, destination ready to receive transmis-

sion; SR, source ready for transmission; DN, trans-

mitted data needed at destination; and SV, trans-

mission must be completed at the source since the

data may become volatile. At link time, these calls

are mapped to communication routines or no-ops

on each platform. For example, when using the

Paragon's csend/crecv, SR is mapped to csend, DN

to crecv and DR and SV become no-ops.

DR(B,east); { { this becomes a no-op

SR(B,east); { { this call is mapped to csend

DN(B,east); { { this call is mapped to crecv

SV(B,east); { { this becomes a no-op

A := B@east; { { this statement requires non-local values

Figure 5 describes the Ironman bindings for the

Paragon and the T3D.

In the following sections, we use a synthetic

benchmark to determine the machine characteris-

tics that a�ect the optimizations and then perform

whole program experiments on four benchmark pro-

grams.

3.2 Inuence of Machine Characteristics

Our �rst experiment is simply to determine the

machine dependent characteristics that a�ect the

optimizations on the Paragon and the T3D. We

measure the software overhead, i.e., the ex-

posed communication cost, for di�erent commu-

nication primitives in our framework. On the

Paragon, we use csend/crecv, basic message passing,

isend/irecv, asynchronous message passing using the

co-processor, and hsend/hrecv, message passing us-

ing callbacks. On the T3D, we use PVM for ba-

sic message passing and SHMEM for asynchronous

shared memory operations.

Figure 6 shows the observed software overhead

of communication in our framework. The synthetic

benchmark program sends a message from one node

to another 10000 times. Between any of the four

parts that require communication, a busy loop is

executed. The loop performs enough computation

to hide the transmission time. The execution time

of that loop is then subtracted from the total time.

The knee in the curves represent the message

size for which combining messages begins to notice-

ably increase overhead. For both the Paragon and

the T3D, the knee occurs at about 512 doubles (4K

bytes). In other words, combining messages of 512

doubles or more does not improve performance. On

these machines, combining messages smaller than

512 doubles is always better than sending several

smaller messages.

On the T3D, the SHMEM overhead is about

10% less than that of PVM. Though the di�erence

is not as large as we hoped, this may be due to

a limitation in our prototype implementation. In

particular, the synchronizations are unnecessarily

heavy-weight. We expect to see larger improve-

ments with an optimized version currently under

development. On the Paragon, we see that using

the asynchronous primitives either does not reduce

the exposed overhead, as in the case of isend/irecv,

or increases it, as in case of hsend/hrecv. We also

found that when we performed our full battery of

test using the benchmark suite on the Paragon, the

asynchronous primitives saw little performance im-

provement or, in most cases, performance degrada-

tion. Consequently, we will not present the Paragon

results of experiments to follow.

3.3 Whole Program Experiments

For our experiments, we chose four benchmark pro-

grams (see Figure 7). Each benchmark is substan-

tial and requires a signi�cant amount of communi-

cation. The plotted numbers are scaled to our base-

line: naive communication generation with message

vectorization. Actual numbers are reported in Ap-

pendix A.



Ironman interface Intel Paragon Cray T3D

program state call message passing asynchronous callback PVM SHMEM

destination ready DR no-op irecv hprobe no-op synch

source ready SR csend isend hsend pvm send shmem put

destination needed DN crecv msgwait hrecv pvm recv synch

source volatile SV no-op msgwait msgwait no-op no-op

Figure 5: Ironman bindings on the Paragon and T3D.
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Figure 6: Exposed communication costs for various communication primitives on the Cray T3D and the

Intel Paragon.

benchmark line

program description count

tomcatv Thompson solver and 598

grid generation (SPEC)

swm Weather prediction 1570

(shallow water model)

simple Hydrodynamics simulation 2293

(Livermore Labs)

sp CFD computation 7866

(NAS Application Benchmarks)

Figure 7: Experimental benchmark programs. Line

counts are given in terms of �nal output C code,

excluding communication.

3.3.1 E�ectiveness of Eliminating Communica-

tion

Figure 8 shows the reduction in the number of com-

munications (where a communication refers to a set

of calls to perform a single data transfer) due to

eliminating communications. The static counts are

simply the number of communications in the text of

the SPMD program. The dynamic counts are the

actual number of communications performed during

the execution of the program on a single processor.

The dynamic counts achieve nearly the same re-

duction as the static counts. Statically, the number

of communications is between 55% and 20% that of

the baseline; dynamically, the number of communi-

cations is between 70% and 33% that of the base-

line. This implies that most of the communication

occurs within themain loop of the program. Redun-

dant communication removal accounts for the ma-

jority of the static improvement, while dynamically,

communication combination accounts for more of

the reduction. This suggests that a signi�cant por-

tion of the redundant communication occurs in set

up code while the combined communication primar-

ily occurs within the main loop of the program.

3.3.2 Performance of Benchmark Programs

In this section, we present the performance results

of running each benchmark program on a 64 node

partition of the Cray T3D. Figure 9 provides a key

for the experiments we performed. Each experi-

ment adds an optimization. For example, \cc" is

message vectorization with redundant communica-

tion removal and communication combination.

Performance using PVM. Figure 10(a) illustrates

the reduction in execution times due to each opti-

mization relative to the baseline. Execution times

of fully optimized programs (pl) are as low as 72%
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experiment description

baseline message vectorization

rr baseline with removing redundant

cc rr with combing

pl cc with pipelining

pl with shmem pl using shmem put

pl with max latency pl with shmem, combining

for maximum latency hiding

Figure 9: Key for experiments performed.

of that of the baseline. Eliminating communica-

tion alone, by redundant communication removal

and communication combination (cc), reduced run-

ning times to as low as 76% that of the baseline.

In the case of tomcatv, pipelining a�ects perfor-

mance very little. Examination of the code reveals

that a large amount of time is spent in two small

loops that implement a tri-diagonal solver. The

opportunities for pipelining are limited by cross-

loop dependences and the short code sequence itself.

Compare this with the improvement for simple in

which all communication occurs in the main body of

the program. In general, each optimization impacts

performance signi�cantly.

Performance using SHMEM. Figure 10(b) illus-

trates the reduction in execution times of the fully

optimized benchmark programs relative to the base-

line using SHMEM's asynchronous shared memory

primitives. The \pl with shmem" bar represents the

performance of the same, fully optimized programs

(pl) using shmem put; for comparison, the \pl" bar

is replicated from the Figure 10(a). For swm and

simple, performance is noticeably improved. The

running time of simple is reduced to almost 50%

that of the baseline. Recall that for swm, the bene-

�ts of pipelining when using PVM are insigni�cant

due to the limited space for exposing the commu-

nication latency. The reduced software overhead of

shmem put enables more of the latency to be hid-

den, resulting in a running time that is 80% that of

the baseline.

Unfortunately, tomcatv and sp experienced a

degradation in performance. We have identi�ed this

as a limitation of our implementation, as mentioned

above. The heavy-weight synchronization is partic-

ularly detrimental when parts of the computation

are inherently sequential, as in tomcatv and sp.

The PVM version is highly optimized and the penal-

ties for sequential computation are less severe. We

expect to see the \pl with shmem" numbers drop

below that of pl upon completion of the optimized

version of the Ironman interface.

Comparing Combining Heuristics. In the previ-

ous section, we determined that the upper limit of

message size for combining messages was 512 dou-

bles. None of the above experiments combined mes-

sages as large as 512 doubles, so combining always

improved performance. For those experiments, we

use a heuristic that maximized combining. We now

repeat the experiments for \pl with shmem" using

the combining heuristic that maximizes latency hid-

ing potential. Figure 11 shows the static and dy-

namic communication counts for the benchmarks

when compiled using each of the combining heuris-

tics. As expected, combining to maximize latency

hiding potential does in some cases signi�cantly in-

crease the number of communications both stati-

cally and dynamically. For tomcatv, the dynamic

communication count is 97% that of the baseline,

the same as for simply removing redundant com-

munication (Figure 8). The only di�erence be-

tween the two versions is that the communication

is pipelined. Figure 12 shows the scaled running

times for this experiment. At runtime, the bench-

mark versions compiled for maximized combining
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Figure 10: Performance of optimized benchmark programs: (a) using PVM, (b) using SHMEM.
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Figure 12: Comparison of combining heuristics. We

were unable to run the \pl with max latency" ver-

sion of sp due to a bug in the library code which

will be �xed by the �nal paper.

always performed better than those compiled max-

imized latency hiding. Notice that the performance

of tomcatv when maximizing for latency hiding,

e�ectively removing redundant communication and

pipelining, is much better than that of simply re-

moving redundant communication (Figure 10(a)),

again showing that each optimization improves per-

formance signi�cantly.

4 Conclusions and Future Work

We have quanti�ed the e�ectiveness of three com-

munication optimizations: redundant communi-

cation removal, communication combination, and

communication pipelining. We measured the soft-

ware overheads on the Intel Paragon and the Cray

T3D and found that combining message up to the

size of 512 doubles (4K bytes) does not a�ect the

overhead signi�cantly. More importantly, the asyn-

chronous communication primitives provided by In-

tel's NX libraries are extremely heavy-weight and

showed no improvement over using the more tradi-

tional alternative, csend/crecv. T3D's asynchronous

SHMEM operations show promise for performance

improvement over the traditional message passing

communication provided by PVM. The impact of

each optimization is demonstrated using a suite of

benchmark programs run on the T3D. We evaluated

the e�ectiveness of each of the optimization and

found that all three optimizations contribute signif-

icantly to decreasing running times versus the same

benchmarks optimized using only message vector-

ization.

The instrumented ZPL compiler provides an ex-

cellent framework for evaluating sophisticated com-

munication optimization. It is only natural to ex-

tend our study to include other communication op-

timizations, especially as performance bottlenecks

shift. For example, we may want to employ a stan-

dard data ow analysis algorithm to apply opti-

mizations across basic block boundaries. Also, we

may want to peel o� the iterations of a loop that ac-

cess non-local data, hence exposing additional com-

putation that may be overlapped with communi-

cation. Another simple method that may increase

the opportunities for optimization is to use proce-

dure inlining. Cooper et al. studied inlining in the

context of scienti�c applications[8]. Though they

found that it was almost always detrimental to per-

formance, the presence of communication was not

considered. In addition, we are currently investigat-

ing the interaction of communication optimizations

with other array language optimizations, such as

array contraction, and more traditional optimiza-

tions such as loop fusion. Finally, we plan to in-

vestigate the new issues that arise when machine

speci�c characteristics can be incorporated into the

compiler's optimization engine.
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A Experimental Results

experiment static count dynamic count execution time

baseline 46 40400 2.491051

rr 22 39200 2.327301

cc 10 13200 1.901393

pl 10 13200 1.875820

pl with shmem 10 13200 2.029861

pl with max latency 22 39200 2.148066

Table 1: Results for 128x128 tomcatv on 64 processors.

experiment static count dynamic count execution time

baseline 29 8602 6.809007

rr 22 7202 6.323369

cc 16 6002 6.191816

pl 16 6002 5.922135

pl with shmem 16 6002 5.454957

pl with max latency 16 6002 5.477305

Table 2: Results for 512x512 swm on 64 processors.

experiment static count dynamic count execution time

baseline 266 28188 66.749756

rr 103 21433 61.193568

cc 79 10993 53.962579

pl 79 10993 48.077192

pl with shmem 79 10993 33.720775

pl with max latency 84 16143 43.637907

Table 3: Results for 256x256 simple on 64 processors.

experiment static count dynamic count execution time

baseline 212 85982 22.572110

rr 114 70094 20.381131

cc 84 44286 19.274767

pl 84 44286 18.149760

pl with shmem 84 44286 19.079338

pl with max latency 92 53487

Table 4: Results for 16x16x16 sp on 64 processors.


