
An Empirical Analysis of C Preprocessor Use

Michael Ernst Greg J. Badros

�

David Notkin

Technical Report UW-CSE-97-04-06

Department of Computer Science and Engineering

University of Washington

Box 352350, Seattle, WA 98195-2350 USA

fmernst,gjb,notking@cs.washington.edu

22 April 1997

Abstract

The C programming language is intimately connected to its macro preprocessor. This re-

lationship a�ects, indeed generally hinders, both the tools (compilers, debuggers, call graph

extractors, etc.) built to engineer C programs and also the ease of translating to other lan-

guages such as C++. This paper analyzes 27 packages comprising 1.2 million lines of publicly

available C code, determining how the preprocessor is used in practice. We developed a frame-

work for analyzing preprocessor usage and used it to extract information about the incidence of

preprocessor directives, the frequency of macro use and rede�nition, the purposes of macros (in

terms of both de�nitions and uses), and expressibility of macros in terms of other C or C++

language features. We particularly note data that are material to the development of tools for

C or C++, including translating from C to C++ to reduce preprocessor usage. The results are

of interest to language designers, tool writers, programmers, and software engineers.

1 Introduction

The C programming language [KR88] is intimately connected to its macro preprocessor, Cpp [HS95,

Ch. 3]. C is incomplete without the preprocessor, which supplies essential facilities such as �le

inclusion, de�nition of constants and macros, and conditional compilation. While disciplined use of

the preprocessor can reduce programmer e�ort and improve portability, performance, or readability,

Cpp also lends itself to arbitrary source code manipulations that complicate understanding of the

program by both software engineers and tools. The designer of C++, which shares C's preprocessor,

also noted these problems: \Occasionally, even the most extreme uses of Cpp are useful, but its

facilities are so unstructured and intrusive that they are a constant problem to programmers,

maintainers, people porting code, and tool builders." [Str94, p. 424]

�

Supported by a National Science Foundation Graduate Fellowship. Any opinions, �ndings, conclusions, or re-

commendations expressed in this publication are those of the author, and do not necessarily reect the views of the

National Science Foundation.

1

Package Version Physical lines NCNB lines Description

bash 1.14.7 68119 46598 Command shell

bc 1.03 7438 5177 Desktop calculator

bison 1.25 11542 7765 Parser generator

cvs 1.9 79440 53618 Revision control system

dejagnu 1.3 65885 40270 Testing framework

ex 1.3 18943 13284 Scanner generator

fvwm 19.34 55811 42745 Window manager

g77 2.5.3 134046 99690 Fortran compiler

gawk 2.0.43 27501 18674 GAWK interpreter

genscript 0.5.18 12049 8166 Text-to-PostScript converter

ghostview 2.15.6 11348 8711 PostScript previewer

glibc 2.7.2.1 128337 71453 C library

gnuchess 1.3.2a 17774 14574 Chess player

gnuplot 1.5 38209 29582 Graph Plotter

gro� 1.09.1 69334 60502 Text formatter

gs 2.6.2 77787 56378 PostScript interpreter

gzip 4.0.pl77 9076 5787 File compressor

m4 3.50.1.17 16767 10402 Macro expander

perl 5.003 65210 57152 Perl interpreter

plan 1.10 23838 18885 Schedule planner

python 1.4 82397 62340 Python interpreter

rcs 5.7 18045 11909 Revision control system

remind 1.2.4 18222 13130 Schedule reminder

workman 1.4 13419 9653 Audio CD player

x�g 1.5.3 53244 42020 Drawing program

zephyr 5.7 42315 29218 Noti�cation system

zsh 03.00.15 46223 35403 Command shell

Total 1212319 873086

Figure 1: Analyzed packages and their sizes

1.1 The analyses

To build a better understanding of how the preprocessor is used, we wrote tools to analyze prepro-

cessor usage and ran them on 27 C packages comprising 1.2 million lines of code. Figure 1 describes

the packages and lists their sizes in terms of physical lines (or newline characters) and non-comment,

non-blank (NCNB) lines, which disregards lines consisting of only comments or whitespace. The

remainder of the analysis uses only the NCNB length, which more accurately reects the amount

of source code.

Overall, our analysis con�rms that the C preprocessor is used in exceptionally broad and diverse

ways, complicating the development of C programming support tools. On the other hand, the ana-

lysis also convinces us that, by extending our analysis framework with some class type inferencing

techniques (similar to those used by Si� and Reps for C to C++ translation [SR96], O'Callahan

2

and Jackson for program understanding [OJ97], and others), we can take signi�cant steps towards

a tool that usefully converts a high percentage of Cpp code into C++ language features.

1

We are

interested not in translations that merely allow a C program to be compiled by a C++ compiler

(which is usually easy, by intentional design of C++) but those that take advantage of the added

richness and bene�ts of C++ constructs.

In terms of the complexity of preprocessor usage, the results reported here contain both good

news and bad. By far the largest number of macro de�nitions and uses are relatively simple, of

the variety that a programmer could understand without undue e�ort (although perhaps requiring

tedious work) or that a relatively unsophisticated tool could understand (although in practice very

few even try). Despite the preponderance of innocuous macros, the preprocessor is so heavily used

that the remaining ones are numerically signi�cant. It is precisely these macros that are mostly

likely to cause di�culties, and there are enough of them to be problematic in practice and to make

the e�ort of understanding, annotating, or eliminating them worthwhile.

1.2 Coping with Cpp

Tools|and, to a lesser degree, software engineers|have three options for coping with Cpp.

They may ignore preprocessor directives (including macro de�nitions) altogether, accept only post-

processed code (usually by running Cpp on their input), or attempt to emulate the preprocessor.

Ignoring preprocessor directives is an option for approximate tools (such as those based on

lexical or approximate parsing techniques), but accurate information about function extents, scope

nesting, declared variables and functions, and other aspects of a program requires addressing the

preprocessor.

Operating on post-processed code, the most common strategy, is simple to implement, but then

the tool's input di�ers from what the programmer sees. Even when line number mappings are main-

tained, other information is lost in the mapping back to the original source code. For instance,

source-level debuggers have no symbolic names or types for constants and functions introduced

via #define, nor can tools trace or set breakpoints in function macros, as they can for ordinary

functions (even those that have been inlined [Zel83]). As another example, Si� and Reps describe

a technique that uses type inferencing to produce C++ function templates from C; however, the

input is \a C program component that : : : has been preprocessed so that all include �les are in-

corporated and all macros expanded [SR96, p. 145]." Such preprocessing may limit the readability

and reusability of the resulting C++ templates. As yet another related example, call graph ex-

tractors generally work in terms of the post-processed code, even when a human is the intended

consumer of the call graph [MNL96]. Some tools even leave the software engineer responsible for

inferring the mapping between the original and the post-processed source, which is an undesirable

and error-prone situation.

A tool that �rst preprocesses code, or takes already-preprocessed code as input, cannot be run

on a non-syntactic program or one that will not preprocess on the platform on which the tool is

being run. These constraints complicate porting and maintenance, two of the situations in which

program understanding and transformation tools are most likely to be needed. Additionally, a tool

supplied with only one post-processed instantiation of the source code cannot reason about the

1

Preliminary results indicate that many C++ packages rely heavily on Cpp, even when C++ supports a nearly

identical language construct, probably due to a combination of trivial translations from C to C++ and of C pro-

grammers becoming C++ programmers without changing their habits.

3

program as a whole, only about that version that results from one particular set of preprocessor

variables. For instance, a bug in one con�guration may not be discovered despite exhaustive testing

of other con�gurations that do not incorporate particular code or do not admit particular execution

paths.

The third option, emulating the preprocessor, is fraught with di�culty. Macro de�nitions con-

sist of complete tokens but need not be complete expressions or statements. Conditional compila-

tion and alternative macro de�nitions lead to very di�erent results from a single original program

text. Preprocessing adds complexity to an implementation, which must trade o� performing pre-

processing against maintaining the code in close to its original form. Extracting structure from

macro-obfuscated source is not a task for the faint-hearted. Despite these problems, in many

situations only some sort of preprocessing or Cpp analysis can produce useful answers.

All three approaches would be unnecessary if programs did not use preprocessor directives. This

is exactly what Stroustrup suggests:

I'd like to see Cpp abolished. However, the only realistic and responsible way of doing

that is �rst to make it redundant, then encourage people to use the better alternatives,

and then|years later|banish Cpp into the program development environment with

the other extra-linguistic tools where it belongs [Str94, p. 426].

C++ contains features|such as constant variables, inline functions, templates, and reference para-

meters| that obviate many uses of Cpp. Thus, translation to C++ is a path for partial elimination

of Cpp. This study indicates the feasibility|and our framework for analyzing preprocessor usage

provides a basis for the development|of an automatic translator with two attractive properties. It

would take as input C programs complete with preprocessor directives, and it would map many|

preferably most|uses of directives into C++ language features. (It is not practical to eliminate

all uses of Cpp. For example, C++ currently provides no replacement for the #include directive,

or for stringization or pasting. Macros that cannot be eliminated might be annotated with their

types or e�ects on parser or program state, so that even tools that do no Cpp analysis can operate

correctly on such programs.)

Another niche already �lled by our tool is that of a \macro lint" program which warns of

potentially dangerous (or non-standard) uses of Cpp.

1.3 Cpp: not all bad

Despite its evident shortcomings, Cpp is a useful and often necessary adjunct to C, for it provides

capabilities unavailable in the language or its implementations. Cpp permits de�nition of portable

language extensions that can de�ne new syntax, abbreviate repetitive or complicated constructs, or

eliminate reliance on a compiler implementation to open-code (inline) functions, propagate symbolic

constants, eliminate dead code, and short-circuit constant tests. The latter guarantees are especially

valuable for compilers that do a poor job optimizing or when the programmer wishes to override

the compiler's heuristics. Cpp also permits system dependences to be made explicit and tested,

resulting in a clearer separation of concerns. Finally, Cpp permits a single source to contain multiple

di�erent dialects of C; a frequent use is to support both K&R-style and ANSI-style declarations.

A limited number of tools do exist to assist software engineers to understand code with contain-

ing Cpp directives, such as debuggers that can call #defined functions and editors that support

viewing one particular con�guration of the code.

4

Our long-term goal is not to take these useful features away from programmers, but to reduce

Cpp use, making programs easier for humans to understand and tools to analyze.

1.4 Outline

The remainder of this paper is organized as follows.

Section 2 reports the percentage of original C source code lines that are preprocessor directives,

including a breakdown of the frequency of speci�c directives such as #define. C programs com-

monly have preprocessor directives as over 10% of their total lines, and over 20% of the lines were

directives in 3 of the 27 packages.

Section 3 reports how often each macro is de�ned and expanded. In general identi�ers are

#defined relatively few times (96% of macro identi�ers had three or fewer de�nitions). Many

packages also have a signi�cant number of macros that are never expanded, even disregarding

system and library header �les.

Section 4 categorizes macro de�nitions according to their expansions; for example, macros

may simply de�ne a preprocessor symbol, de�ne a literal, expand to a statement, etc. We were

particularly interested in determining the frequency of use of macros that are di�cult to convert to

other language features, such as those that string together characters as opposed to manipulating

lexemes or syntactic units (less than one third of one percent of all macro de�nitions), those that

expand to partial syntactic units such as unbalanced braces or partial declarations (half of one

percent), and others not directly expressible in the programming language (about four percent).

Section 5 discusses the relevance of the research, suggests more techniques for mitigating the

negative impact of Cpp on program understanding, and discusses avenues for future work, while

section 6 discusses related work.

2 Occurrence of preprocessor directives

Figure 2 shows how often preprocessor directives appear in the programs we analyzed. Each group

of bars in the �gure represents the percentage of NCNB lines attributed to the speci�ed category

of directives, with each individual bar showing the percentage for a speci�c package. Conditional

compilation directives are grouped together, as are \other" directives (such as #error and #pragma).

These numbers do not include Cpp directives discovered in system header �les, only in �les included

in the package.

Overall, more than 10% of NCNB program lines are preprocessor directives; the percentage

varies by a factor of �ve across packages. Half of the packages have directives for over 9% of their

lines, and one in nine exceed 21%, indicating quite heavy use of the preprocessor.

Conditional compilation directives account for just under half (46%) of the total directives in all

packages, macro de�nitions comprise another 31%, �le inclusion is 19%, macro unde�nition makes

up 2%, and the other directives are in the noise. The directive breakdown varies by quite a bit

across packages: the percentage of #define varies from 14% to 51%, the percentage of #includes

varies from 4% to 60%, and the percentage of conditional directives varies from 16% to 74%.

5

0% 5% 10% 15% 20% 25%

ot
he

r
lin

e
co

nd
iti

on
al

in
cl

ud
e

un
de

f
de

fin
e

to
ta

l

Percent of non-comment, non-blank lines

gzip
glibc
remind
bash
perl
zephyr
gawk
gnuchess
gnuplot
g77
dejagnu
m4
flex
cvs
gs
python
fvwm
plan
rcs
bc
zsh
bison
ghostview
xfig
workman
genscript
groff
Average

Figure 2: Preprocessor directives as a fraction of non-comment, non-blank (NCNB) lines.

6

2.1 #line, #undef, and \other" directives

The de�nedness of a macro is often used as a boolean value. However, our study shows that #undef

is rarely used to set such macros to \false". Most uses of #undef immediately precede a de�nition of

the just-unde�ned macro, to avoid preprocessor warnings about incompatible macro rede�nitions.

(About 90% of glibc's #undefs are used this way, and 216 of the 614 #undefs appear in a single �le

which consists of a long series of #undefs followed by a single #include.)

Every use of #line (in bash, cvs, ex, fvwm, gawk, gro�, and perl) appears in lex or yacc output

that enables packages build on systems lacking lex, yacc, or their equivalents. For instance, ex

uses itself to parse its input, but also includes an already-processed version of its input speci�cation

(that is, C code corresponding to a .l �le) for bootstrapping.

The only signi�cant user of \other" directives is the g77 package, which contains 154 uses

of #error (representing 1.5% of all preprocessor directives and 0.16% of all lines) to check for

incompatible preprocessor ags.

2.2 Packages with heavy preprocessor use

Four packages| gzip, glibc, remind, and bash|deserve special attention for their heavy prepro-

cessor usage. The �rst three have preprocessor directives as 21{23% of their lines.

gzip #defines disproportionately many macros as literals used as arguments to system calls,

enumerated values, directory components, and more. These macros act like const variables and are

evidence of good programming style. gzip also contains many conditional compilation directives,

since low-level �le operations (such as setting creation time and access control bits, accessing

directories, and so forth) are done di�erently on di�erent systems; gzip is a highly portable program.

glibc's heavy preprocessor use is largely accounted for by #include directives. Its �les' average

length is just 42 NCNB lines, and most contain several #include directives. Of the 1684 �les, 182

are header �les consisting of a single #include line, relieving glibc users of the need to know in

which directory a header �le actually really resides.

remind supports speakers of many di�erent languages by using #defined constants for basic-

ally all user output. It also contains disproportionately many conditional compilation directives;

over half of these test the de�nedness of HAVE_PROTO, in order to provide both K&R and ANSI

prototypes.

Like gzip, bash is portable across a large variety of systems, but bash uses even more operating

system services. Ninety-seven percent of bash's conditional compilation directives test the de�ned-

ness of a macro whose presence or absence is a boolean ag indicating whether the current system

supports a speci�c feature. The presence or absence of a feature requires di�erent (or sometimes

additional) system calls or other code.

3 Frequency of macro de�nition and usage

Figure 3 graphs the number of times each identi�er is defined in each of the packages. No distinc-

tion is made between sequential rede�nitions of a macro and multiple de�nitions that cannot take

e�ect in a single con�guration (say, because they appear in di�erent branches of a Cpp conditional).

This graph shows a great deal of variation. For example, all macros de�ned by bc have only

one or two di�erent expansions, but more than 10% of macros de�ned by remind expand to more

7

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12
Number of definitions

C
u

m
u

la
ti

ve
 p

er
ce

n
t

o
f

m
ac

ro
s

bash
bc
bison
cvs
dejagnu
flex
fvwm
g77
gawk
genscript
ghostview
glibc
gnuchess
gnuplot
groff
gs
gzip
m4
perl
plan
python
rcs
remind
workman
xfig
zephyr
zsh
Total

Figure 3: Number of de�nitions per Cpp identi�er, graphed as the percentage of identi�ers that are

de�ned a given number of times or fewer. Overall, 96% of macros were de�ned three or fewer times;

the other 4% of macros had four or more distinct de�nitions (#define directives). The outlier, for

which 10% of macros are de�ned more than eight times, is the remind package, which uses macros

for all user output.

8

than eight di�erent texts.

In all but four packages, at least 93% of all macros are de�ned three or fewer times. For

bash, glibc, and dejagnu, such macros account for 90%, largely because these packages are highly

portable and also quite dependent on system libraries. The remind program uses macro de�nitions

to provide localization support for ten di�erent natural languages (and multiple character sets for

some of them), accounting for its surprisingly large number of macros with many de�nitions. All of

remind's macros are de�ned 14 or fewer times, but 16 macros in the 27 packages are de�ned more

than 16 times, including three with more than 30 distinct de�nitions.

These data demonstrate that multiple de�nitions of symbols is not numerically frequent; even

more importantly, the de�nitions of a symbol tend to be compatible, as shown in section 4.

Figure 4 is structured as the previous �gure, but it represents the number of times that a de�ned

name is expanded in either the package (not in system headers). About 82% of all macros were

expanded eight or fewer times.

It is notable that most packages contain a signi�cant number of de�ned macros that are never

expanded|on average, over 13%. (Figure 4 reports only on macros de�ned in a package, not those

de�ned in system or library header �les, inclusion of which would push the unused percentage well

above 50%.) Most packages are in the 4-12% range, while gnuplot exceeds 40%. Although it's

di�cult to fully account for the larger numbers, contributing factors include a lot of cut-and-paste

and a lack of attention to implementations for speci�c platforms in some packages. Macros with

10 or fewer uses cover approximately 85% of the cases.

The tail of this distribution is quite long, indicating that some macros are used very heavily.

Ninety-nine percent of macros are expanded 147 or fewer times, 99.5% of macros are expanded 273

or fewer times, 99.9% are expanded 882 or fewer times, and python uses NULL (which python itself

de�nes) 4233 times. Figure 4 weights each macro equally rather than weighting each macro use

equally, which would weight python's NULL 4233 times more heavily than a macro used only once

(and in�nitely more than a macro never used at all). Only macros de�ned in a package, and uses

in that package, are counted; system macros and uses are excluded.

Figure 5 breaks down macro usage according to whether the macro invocation occurs in Cpp

directives (which is further broken down into conditional tests and de�nition bodies), in other C

code, in both, or in neither (i.e., no uses).

No package expanded all of its de�ned macros; two expanded fewer than 70% of the de�ned

macros. The dominant usage was in C code only; these uses do not, therefore, have any a�ect on

conditional compilation (for example).

In general, packages use macros either to direct conditional compilation or to produce code,

but not for both purposes; this separation of concerns makes the source code easier to understand.

Only 3.1% of macros expand in both code and conditional contexts (the fourth and �fth categories

in the �gure; the sixth, macro and code, accounts for only another 0.2% of macros). Conditional

usage is rare in general; conditional compilation accounts for half of Cpp directives but only 5.4%

of macros (plus the categories just listed above).

4 Categorization

This section examines the purposes of macros and how they are intended to be used, which re-

quires heuristic categorization of macro de�nition bodies. A straightforward re�nement that we

are pursuing examines macro uses to aid this categorization. (For example, a macro used where a

9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 8 10 20 40 80

Number of uses (non-linear scale)

C
u

m
u

la
ti

ve
 p

er
ce

n
t

o
f

m
ac

ro
s

bash
bc
bison
cvs
dejagnu
flex
fvwm
g77
gawk
genscript
ghostview
glibc
gnuchess
gnuplot
groff
gs
gzip
m4
perl
plan
python
rcs
remind
workman
xfig
zephyr
zsh
Total

Figure 4: Number of expansions per Cpp macro. The numbers in the table represent the percentage

of identi�ers which are expanded a given number of times or fewer. For example, g77 expands 65%

of its macros two or fewer times.

10

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

zsh

zephyr

xfig

workman

remind

rcs

python

plan

perl

m4

gzip

gs

groff

gnuplot

gnuchess

glibc

ghostview

genscript

gawk

g77

fvwm

flex

dejagnu

cvs

bison

bc

bash

Total

Percent of all macro uses

code

code, macro

macro

code, cond

code, macro,
cond
macro, cond

cond

no uses

z

Figure 5: Where macros are used: in C code, in macro de�nition bodies, in conditional tests, or in

some combination thereof. The �gure reects only package macros and uses, not system �les.

type should appear can be inferred to expand to a type; a macro used before a function body is

probably expanding to a declarator.)

In addition to classifying each macro as taking arguments or not, our tool identi�es the following

speci�c categories (and a number of more rarely-used ones omitted for brevity; �gure 7 contains a

more complete list). The examples are chosen for clarity and brevity from the packages studied.

Null de�ne The #define gives only an identi�er name but no macro body, as in #define

HAVE_PROTO. Such macros appear most frequently in Cpp directives (such as #ifdef), where

they are used as boolean variables by the preprocessor, but may also appear in code. For

11

instance, macro private may expand either to static or to nothing, depending on whether

a debugging mode is set. The de�nition which causes it to expand to nothing is categorized

as a null de�ne (the other is categorized as \other syntactic macro"; see below).

Constant The macro is de�ned to be either a literal or an operator applied to constant val-

ues. For instance, #define NULL 0, #define ARG_MAX 131072, and #define ETCHOSTS

"/etc/hosts" de�ne literals, while #define RE_DUP_MAX ((1<<15)-1) and #define

RED_COLS (1 << RED_BITS) (where RED_BITS is a constant, possibly a literal) de�ne con-

stants. Such macros act like const variables.

Expression The macro body is an expression, as in #define sigmask(x) (1 << ((x)-1)). This

expression might have a single constant value everywhere (the usual case for expression macros

without arguments, most of which are classi�ed as constants, above) or might have a di�erent

value on each use (the usual case for expression macros with arguments).

One tenth of expression macros in our study use assignment operators, which have potentially

unexpected results. A macro argument that is assigned to is similar to a pass-by-reference

function argument and need only be noted in the macro's documentation. A macro that

assigns a global variable also presents no di�culties in understanding or translation into a

C++ inline function. Assignment to a local variable that is free in the macro body, however,

demands that such a variable exist wherever the macro is invoked, and assigns to di�erent

variables at di�erent invocations.

2

Such a macro implements a restricted form of dynamic

scoping by capturing the instance of a variable visible at the point of macro invocation.

Statement The macro body is a complete statement such as \x = 3;", \if (s) free(s);" or

\{ int x = y*y; printf("%d", x); }". Such a macro is like a function returning void,

except that uses should not be followed by a semicolon.

3

Stringization and pasting The macro body contains # or ##, which treat the macro ar-

gument not as a token but as a string. Examples include #define spam1(OP,DOC)

{#OP, OP, 1, DOC},, #define REG(xx) register long int xx asm (#xx), and #define

__CONCAT(x,y) x ## y. No C or C++ language mechanism can replace such macros.

Other syntactic macros Like stringization and pasting, these macros make essential use of the

unique features of the preprocessor. Our framework separately categorizes a number of such

macros, including those that expand to a reserved word (such as #define private static,

mentioned above), those that expand to a delimiter (such as #define AND ;), and those with

mismatched parentheses, brackets, or braces. The latter are often used to create a block and

perform actions that must occur at its beginning and end, as for BEGIN_GC_PROTECT and

END_GC_PROTECT.

2

By contrast, LCLint considers assignment to a macro argument dangerous but does not appear to check for

assignments to local variables. [Eva96a]

3

Since the body is already a complete statement, the extra semicolon can cause problems such as mis-parsing of

nested if statements. Such macros can be confusing to use, because programmers are inclined to add a semicolon

after invocations that look like functions; wrapping the body in do f...g while (0), a partial statement which

requires a trailing semicolon, solves this problem. To our surprise, we found few uses of that construct, but many

error-prone instances of a macro that expanded to a statement like f. . . g in which a call to the macro was immediately

followed by a semicolon.

12

Type-related macros These macros either take a type as an argument, pass a type to an-

other macro, expand to a type or partial type, or use such a macro. Examples in-

clude #define __ptr_t void *, #define __INLINE extern inline, #define ALIGN_SIZE

sizeof(double), and #define PTRBITS __BITS(char*). Since types are not �rst-class in

C, they may not be passed to functions or returned as results; additionally, these macros may

produce or use only part of a type (such as a storage class). As a result, these macros may

be tricky to understand, and cannot be eliminated via straightforward translation (though

C++ templates may provide some hope).

Recursive The ISO C standard permits macros to be recursively de�ned (the preprocessor per-

forms only one level of expansion), as in #define LBIT vcat(LBIT). This mechanism permits

already-de�ned or to-be-de�ned macros to be extended or modi�ed.

Classi�cation failure Multiple adjacent identi�ers|as in #define EXFUN(name, proto) name

proto and #define DO_OP(OP,a,b) (a OP b)|caused many failures of our classi�cation

heuristics. Of the 1025 classi�cation failures in the 27 packages, 496 were caused by a

single de�nition in gnuplot, #define CUR cur_term->type. (period is part of expansion),

and uses of that macro, as in #define acs_plus CUR Strings[408]. Four packages| bison,

gnuchess, remind, and workman|had no macro classi�cation failures. These packages contain

93, 297, 932, and 58 macro de�nitions, respectively.

Figure 6 shows the percentage of macros that �t into these categories for each package. Overall,

83% of macros are expressions|mostly constants; further analysis of the conditional compilation

structure (in the style of Krone and Snelting [KS94]) and of the macros with free variables (essen-

tially achieving dynamic scoping) is needed to see which of the roughly 33% of expression macros

should be easy to convert to C++ language features such as constants or enumerated values. The

7% that are null de�nes, should also be easy to understand and/or translate. Another 5% are

statements, most of which are straightforward (complications include scoping and semicolon swal-

lowing). That only 0.2% of macros exploit stringization or pasting, the only truly extra-linguistic

capabilities in the C preprocessor, is encouraging.

Our tool failed to categorize less than 2% of the 26701 de�nitions; performing even a single

level of macro expansion in bodies would make most of those failures categorizable. Other straight-

forward improvements include making a second pass after an initial categorization and using de-

pendence information to determine which de�nitions can be active at an invocation site. We have

not pursued these enhancements, primarily because our tool is already accurate enough for our

purposes.

Figure 7 indicates that multiple de�nitions of a particular macro tend to be compatible. It

classi�es macros rather than macro de�nitions, and uses a �ner breakdown of categories. Each

macro is given a set of categorizations (corresponding to the categorizations of its de�nitions) and

the incidence of each such is displayed. For over 97% of macros, all of the macro's de�nitions

are given the same categorization|even when categories such as literal, constant, expression, and

expression with assignment are considered unrelated. The most common \conict", statement and

null de�ne, is also harmless in most contexts. We expect that closer examination of most of the

other conicts will demonstrate that they present no real obstacles to understanding (even if they

do complicate some details).

13

0% 20% 40% 60% 80% 100%

zsh

zephyr

xfig

workman

remind

rcs

python

plan

perl

m4

gzip

gs

groff

gnuplot

gnuchess

glibc

ghostview

genscript

gawk

g77

fvwm

flex

dejagnu

cvs

bison

bc

bash

Total

Percent of all macro definitions

Null Define

Constant

Expression

Statement

Stringization and
pasting
Other syntatic
macros
Type Related

Recursive

Failed classification

Figure 6: Categorization of macro de�nition bodies.

5 Conclusions

5.1 Relevance of the results

The results of this research are of interest to language designers, tool writers, programmers, and

software engineers.

Language designers can examine uses of the macro system's extra-linguistic capabilities to

determine what programmers consider missing from the language. Future language speci�cations

can support (or prevent!) such practices in a more disciplined, structured way.

Programming tool writers, too, need to understand how Cpp is used, for that sheds insight on

14

#

O

c

c

u

r

r

e

n

c

e

s

f

a

i

l

e

d

c

a

t

e

g

o

r

i

z

a

t

i

o

n

n

u

l

l

d

e

�

n

e

e

x

p

r

e

s

s

i

o

n

e

x

p

r

e

s

s

i

o

n

w

i

t

h

a

s

s

i

g

n

m

e

n

t

e

x

p

r

e

s

s

i

o

n

w

i

t

h

f

r

e

e

v

a

r

i

a

b

l

e

s

l

i

t

e

r

a

l

c

o

n

s

t

a

n

t

h

a

s

t

y

p

e

a

r

g

u

m

e

n

t

u

s

e

s

m

a

c

r

o

a

s

f

u

n

c

t

i

o

n

u

s

e

s

m

a

c

r

o

a

s

t

y

p

e

u

s

e

s

t

y

p

e

a

r

g

u

m

e

n

t

e

x

p

a

n

d

s

t

o

t

y

p

e

e

x

p

a

n

d

s

t

o

r

e

s

e

r

v

e

d

w

o

r

d

s

t

a

t

e

m

e

n

t

r

e

c

u

r

s

i

v

e

a

s

s

e

m

b

l

y

c

o

d

e

e

x

p

a

n

d

s

t

o

s

y

n

t

a

x

t

o

k

e

n

s

m

i

s

m

a

t

c

h

e

d

e

n

t

i

t

i

e

s

t

o

k

e

n

p

a

s

t

i

n

g

s

t

r

i

n

g

i

z

a

t

i

o

n

40%

33%

6.1%

5.5%

4.1%

3.7%

2.9%

0.47%

0.46%

0.42%

0.39%

0.36%

0.34%

0.26%

0.22%

0.19%

0.17%

0.16%

0.14%

0.12%

0.12%

0.11%

0.10%

0.077%

0.077%

0.077%

0.061%

0.061%

0.056%

0.056%

0.056%

0.051%

Figure 7: Subset categorization of macros (not macro de�nitions). Items less than one twentieth

of a percent are omitted; such items appear fewer than ten times in the codebase.

15

the sorts of inputs that will be provided to the tool. By coping with the most common constructs,

the tool can provide relatively good coverage for low e�ort. By identifying problematic uses, much

better feedback can be given to the programmer, who can be more e�ective as a result. The analysis

results also indicate the di�culty of processing preprocessor directives; before these analyses, we

did not know whether the task was so trivial as to be uninteresting, so di�cult as to be not worth

attempting, or somewhere in between.

The analyses are of interest to programmers who wish to make their code cleaner and more

portable, and can help them to avoid constructs that cause tools (such as test frameworks and

program understanding tools) to give incomplete or incorrect results.

Finally, our results are of interest to software engineers for all of the above reasons and more.

Since this is the �rst Cpp usage study of which we are aware, it is worth performing simply

to determine whether the results were predictable a priori; we did in fact discover a number of

interesting features of our suite of programs.

5.2 Making C programs easier to understand

The combination of C and Cpp makes a source text unnecessarily di�cult to understand. A good

�rst step is to eliminate Cpp uses where an equivalent C or C++ construct exists, and to apply

tools to explicate the remaining uses. Here we discuss a few approaches to solving this problem

by eliminating the source of confusion rather than applying tools. We do not seriously consider

simply eliminating the preprocessor, for it provides conveniences and functionality not present in

the language.

Since many of the most problematic uses of Cpp provide portability across di�erent language

dialects or di�erent operating environments, standardization can obviate many such uses. Canonic-

alizing library function names and calling conventions makes conditional compilation less necessary

and incidentally makes all programs more portable, even those which have not gone to special e�ort

to achieve portability. This proposal moves the responsibility for portability (really, conformance to

a speci�cation) from the application program into the library or operating system, which is a reas-

onable design choice since many application programs rely on a much smaller number of libraries

and run on relatively few operating systems.

Likewise, the most common single cause for Cpp directives would be eliminated if the C lan-

guage and its dialects had only a single declaration syntax. Because most C compilers, and all

C++ compilers, accept ANSI-style declarations, much support for multiple declaration style may

have outlived its usefulness. We are investigating the e�ect on our statistics (and program under-

standability) of \partially evaluating" a program source by specifying the de�nedness and values

of some Cpp identi�ers.

Some Cpp directives, such as #include, can be moved into the language proper; this would

also eliminate the need for Cpp constructs that prevent multiple inclusion of header �les. Likewise,

compilers that do a good job of constant-folding and dead code elimination can encourage pro-

grammers to use language constructs rather than relying on the guarantees of an extra-linguistic

tool like Cpp.

4

4

Interestingly, the issue seems to not be whether compilers do the appropriate optimizations, but whether pro-

grammers have con�dence that the optimizations will be performed; if unsure, programmers will continue to resort

to Cpp, since certainly a compiler cannot generate code for source that it does not ever even see (because Cpp has

already stripped it away).

16

Cpp constructs meant for speci�c purposes could be replaced by a special-purpose syntax for

those frequently-occurring cases. For instance, declarations or partial declarations could be made

explicit (perhaps �rst-class) objects. Manipulations of these objects would then be performed

through a clearly-speci�ed interface rather than via string concatenation, easing the understanding

burden on the programmer. Such uses would also be visible to the compiler and could be checked

and reasonable error messages provided. The downside of this approach is the introduction of a

new syntax or new library functions which may not simplify the program text and which cannot

cover all cases, only a few speci�ed ones.

An alternative approach which avoids the clumsiness of a separate language of limited express-

ibility is to make the macro language more powerful|perhaps even using the language itself via

constructs evaluated at compile time rather than run time. (The macro systems of Common Lisp

and Scheme, and their descendants [WC93] take this approach.) An extreme example would be to

provide a full-edged reection capability. Such an approach is highly general, powerful, and and

theoretically clean; it circumvents many of the limitations of Cpp. However, this approach does

not lead to more understandable programs and may result in just the opposite. As di�cult as it

may be to determine what output a macroless program produces, it can be just as di�cult simply

to determine the text of a program which uses such macros. (In practice, such systems are used in

fairly restricted ways.) A dialog among users, compiler writers, tool writers, and language theorists

is necessary when introducing a feature in order to prevent unforeseen consequences from turning

it into a burden.

6 Related work

We could �nd no other empirical study of the use of the C preprocessor nor any other macro

processor. However, we did �nd guidance on using C macros e�ectively and tools for checking

macro usage.

Carroll and Ellis state that \almost all uses of macros can be eliminated from C++ librar-

ies" [CE95, p. 146]. They list eight categories of macro usage and explain how to convert them

into C++ mechanisms. They do not discuss automatic conversion, but focus on instructing the

software engineer on better ways to do Cpp-like things.

Similarly, a number of organizations provide hints about e�ective ways to the use the C pre-

processor. The GNU documentation, for example, discusses a set of techniques including simple

macros, argument macros, prede�ned macros, stringization macros, concatenation macros, unde-

�ning and rede�ning macros. It also identi�es a set of \pitfalls and subtleties of macros"; these

are much like some of the problems our analysis tool identi�es. We discovered that these categor-

izations sometimes focussed on constructs that don't happen very often or missed ones that are

actually frequent. Our e�ort not only categorizes problems, but it also determines the frequency

of appearance of those problems and discovers other idiosyncratic uses.

A number of tools check whether speci�c C programs satisfy particular constraints. The lint

program checker, distributed with most Unix systems, checks for potentially problematic uses of C.

The implementation of lint is complicated by the fact that it tries to replicate signi�cant functions

of both the C compiler and the preprocessor.

LCLint performs many of lint's checks and also allows the programmer to add annotations which

enable additional checks [Eva96b, EGHT94]. LCLint optionally checks function-like macros|that

is, those which take arguments| for macro arguments on the left hand side of assignments, for

17

statements playing the role of expressions, and for consistent return types. LCLint's approach is

prescriptive: programmers are encouraged not to use constructs that might be dangerous, or to

change code that contains such constructs. We are more interested in analyzing, describing, and

automatically removing such uses so that tools can better process existing code without requiring

human interaction or producing misleading results.

Krone and Snelting use mathematical concept analysis to determine the conditional compilation

structure of code [KS94]. They determine, for each line, which preprocessor macros it depends upon,

and display that information in a lattice. They do not determine how macros depend upon one

another directly, only by their nesting in #if, and the information conveyed is about the program

as a whole.

References

[CE95] Martin D. Carroll and Margaret A. Ellis. Designing and Coding Reusable C++. Addison-Wesley,

Reading, Massachusetts, 1995.

[EGHT94] David Evans, John Guttag, Jim Horning, and Yang Meng Tan. LCLint: A tool for using spe-

ci�cations to check code. In Proceedings of SIGSOFT '94 Second ACM SIGSOFT Symposium

on the Foundations of Software Engineering, pages 87{96, December 1994.

[Eva96a] David Evans. LCLint User's Guide, version 2.2 edition, August 1996. http://larch-

www.lcs.mit.edu:8001/larch/lclint/guide/guide.html.

[Eva96b] David Evans. Static detection of dynamic memory errors. In ACM SIGPLAN '96: Programming

Language Design and Implementation, pages 44{53, May 1996.

[HS95] Samuel P. Harbison and Guy L. Steele Jr. C: A Reference Manual. Prentice-Hall, Englewood

Cli�s, New Jersey, fourth edition, 1995.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-Hall,

Englewood Cli�s, New Jersey, second edition, 1988.

[KS94] Maren Krone and Gregor Snelting. On the inference of con�guration structures from source code.

In Proceedings of the 16th International Conference on Software Engineering, pages 49{57. IEEE

Computer Society Press, May 1994.

[MNL96] Gail C. Murphy, David Notkin, and E. Lan. An empirical study of static call graph extractors. In

Proceedings of the 18th International Conference on Software Engineering, pages 90{99, March

1996.

[OJ97] Robert O'Callahan and Daniel Jackson. Lackwit: A program understanding tool based on type

inference. In Proceedings of the 1997 International Conference on Software Engineering, May

1997.

[SR96] Michael Si� and Thomas Reps. Program generalization for software reuse: From C to C++. In

Proceedings of SIGSOFT '96 Fourth ACM SIGSOFT Symposium on the Foundations of Software

Engineering, pages 135{146, October 1996.

[Str94] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, Reading, Massachusetts,

1994.

[WC93] Daniel Weise and Roger Crew. Programmable syntax macros. In ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 156{165, Albuquerque, NM, June

1993.

18

[Zel83] Polle T. Zellweger. An interactive high-level debugger for control-ow optimized programs. Tech-

nical Report CSL-83-1, Xerox Palo Alto Research Center, Palo Alto, California, January 1983.

19

