
Visual Programming without Procedures

Technical Report UW-CSE-97-05-02

Amir Michail

Department of Computer Science and Engineering
University of Washington, Box 352350

Seattle, Washington, 98195

amir@cs.washington.edu

Abstract

In this paper, we motivate the idea of visual programming
without procedures or functions. If a visual program con-
tains several similar cases, then the user need only imple-
ment one case and use built-in domain sensitive algorithms
that “imitate” the implemented case to automatically pro-
duce visual code for the similar cases. This work contrib-
utes to visual programming research in two ways. First,
it eliminates the need for the user to structure visual code.
Second, it reduces the complexity of the visualizations thus
making the visual code more apparent. We demonstrate our
method using Opsis, a system we built to teach binary tree
algorithms.

1 Introduction

Advances in programming language design have often
come about by increasing the amount of abstraction, para-
meterization, and qualification (i.e., local definitions).[5]
In particular, abstraction allows programmers to name and
define meaningful syntactic classes such as expressions and
commands by using functions and procedures, respectively.
These syntactic classes may also have parameters and can
admit local definitions. Abstraction and parameterization
facilitate code reuse while local definitions allow encapsula-
tion. (In this paper, we restrict our discussion to procedures
although they apply to other meaningful syntactic classes as
well.)

Procedures are not necessarily desired in a visual pro-
gramming language. This is because the visual language
must provide visualizations not only for the domain ele-
ments but also for the procedure name, parameters, and local
definitions. By eliminating (or reducing) the use of proced-

ures we obtain simpler visual notations that are more readily
learned.

A programmer who uses procedures also gives structure
to his code. Although this is desirable in a large system, it
may not be necessary for smaller visual programs. In par-
ticular, one might want the user to concentrate on the task at
hand rather than on how to structure the visual code for that
task. For example, in a system we developed for teaching
binary tree algorithms[4], we want students to concentrate
on the algorithms themselves rather than worry about what
procedures to define.

Yet, eliminating procedures reintroduces the problems of
code reuse and encapsulation. For small to medium-sized
visual programs, encapsulation is not essential but code re-
use usually is. We certainly do not want the user to re-
peatedly implement similar cases of an algorithm.

In this paper, we show how visual programming can be
done without procedures. To alleviate the code reuse prob-
lem, we show how domain sensitive methods can be used
to automatically “imitate” a section of visual code in a new
context. As an added benefit, the same methods can be used
to make changes to existing visual code in non-trivial ways.
We demonstrate our method using Opsis, a system we built
to teach binary tree algorithms.[4]

In typical visual programming languages, the user first
determines which procedures to define and how general
each one should be. A more general procedure will have
greater logical and visual complexity. In contrast, using our
methods, the user first codes a specific case of the algorithm
and then can decide later if such code is necessary in another
similar case.

Finally, we stress that we do not advocate eliminating
procedures entirely in all visual languages. Rather, we
provide an alternative mechanism that may be suited for
some small to medium-sized visual programs where one

1



wants the user to concentrate on the task to be done without
the distraction and mental burden of structuring code and
understanding the more complex visualizations. Moreover,
our approach can be used in a hybrid manner where code
reuse is accomplished through a combination of procedures
and automated generation of code for similar cases.

The remainder of the paper is organized as follows: Sec-
tion 2 surveys previous work done on related subjects; Sec-
tion 3 presents the visual programming model; Section 4 de-
scribes our techniques for automatically “imitating” a piece
of visual code in a new context; and Section 5 provides a
summary and future research directions.

2 Past Work

Software engineering researchers have long recognized
the importance of code reuse. But code reuse through pro-
cedures, functions, classes, and modules, induces structure
in the code, which can make it harder to change and adapt
the code to new (but similar) applications. This can happen
if the associated structure is not suitable for the new applic-
ation although many of the concepts coded in the old sys-
tem still apply in the new system. This problem can be more
acute with object-oriented programming as the inheritance
hierarchy for one application may need substantial changes
for a slightly different application.[3, 6]

Consequently, researchers have started to look into ways
in which code can be written with less structure. Many of
these techniques involve having the programmer write the
code in less structured fragments which are then combined
to produce a particular application. Although such programs
still have structure, it is imposed at a higher level — a form
of meta-abstraction. The phase in which the relatively un-
structured fragments are combined into a structured whole
may be automated to some extent. (For our purposes, un-
structured code is important not so much because it makes
change easier but because it requires simpler visualizations
and is easier to code.)

As an example, Liberherr has developed a system for
adaptive object-oriented programming using graph-based
customization.[3] Adaptive object-oriented programming
facilitates expressing elements that are essential to an ap-
plication while not making commitments on the particu-
lar class structure of the application. A (compatible) class
structure for a particular application can be automatically in-
tegrated with this code to produce the resultant system.

As another example, VanHilst and Notkin have de-
veloped a method to program in a relatively unstructured
manner using class templates.[6] Each class template spe-
cifies some behavior or aspect of an object. To produce the
resultant object, one combines the behaviors (i.e., class tem-
plates) through inheritance. In this way, structure is isolated
to a small piece of code while the remaining code contains

relatively unstructured pieces.
In our approach, we make use of unstructured code but

skip the structure inducing step at the end. In other words,
we do not even use meta-abstraction. Instead of adding
structure at the end, we have algorithms that automatically
imitate sections of visual code in a new context.

The idea of making automated changes to software is
not new. Johnson and Feather have developed a library
of meaning-changing transformations that can be applied
to formal specifications.[2] For example, one might make
a specification more abstract or add new constructs. In
their work, they address the problem of determining how a
change in a specifications affects other parts of the specific-
ation. In this paper, we also address this problem in the con-
text of visual code.

Recently, Griswold and Notkin have developed a system
for making changes in code so that the remainder of the pro-
gram is modified accordingly to preserve the semantics of
the computation.[1] For example, one can inline a function
in the source and variables in the function will be renamed
according to context. Conversely, one can extract a piece of
code and form a function automatically.

Our approach will be a combination of using unstructured
code throughout and also using domain sensitive “imitate”
functions which allow the user to make automatic changes
to the visual code (though not necessarily ones that preserve
semantics). As far as we know, these ideas have not been
discussed in the visual programming literature although they
have been considered recently in software engineering as
noted above.

3 Visual Programming Model

For our computation model, we use an abstract state,
which is an abstract visual diagram that represents a set of
concrete states (e.g., a set of binary trees). Two abstract
states are identical only if their respective abstract visual
diagrams match exactly. However, we do allow two states
with exactly the same abstract visual diagrams to not be
identical if the user so desires. This is allowed because we
do not assume that the abstract state completely defines the
state of the program at that point. Finally, it is possible for
two abstract states to have different diagrams but still rep-
resent the same set of concrete states. In the remainder of
the paper, we shall use the word “state” whenever we mean
“abstract state”.

3.1 State Graph

We model a program as a state graph, which is a direc-
ted graph whose nodes represent states and whose directed
edges represent operations to transform one state to some
other(s). Computation starts at the initial state and ends at

2



one of the final states. (In Figure 1, the initial state is (1)
and the final states are (2a), (4c), (6), and (8). Also, observe
that the operation shown (textually) below each tree diagram
is invoked on the selected fragments, which are denoted by
dashed lines.)

3.2 Visual Language

We demonstrate our techniques using a binary tree visual
language that we designed for teaching.

Before we proceed, we need to introduce the notion of
a fragment: fragment is a (possibly empty) connected sub-
graph of a binary tree. It is similar to a subtree in that it con-
sists of a root node and descendents of that node. Unlike a
subtree, a fragment need not include all descendents of its
root. (As an example, in state (4c), we have a fragment with
a node as a child, which in turn has two subtrees as children.)

A node or fragment is shaded lightly (heavily) to indic-
ate keys less than (resp. greater than) a particular key K. A
fragment may also be shaded lightly on the left and heav-
ily on the right. This indicates that the fragment may have
some nodes with keys less thanK and some nodes with keys
greater than K but that it doesn’t have a node with key K.
The vertical boundary between the light and dark halves in-
dicates a path of nodes, (x

1

; x

2

; : : : ; x

j

), such that:

1. the key at each x

i

is not K; and

2. x

i

is the left (resp. right) child of its parent x
i�1

if and
only if K is less (greater) than the key at x

i�1

.

Intuitively, this path is the path followed if we search the bin-
ary tree looking for keyK. Consequently, we call it a search
path. (Again, see state (4c) for an example.)

3.3 A Running Example

As a running example throughout this paper, we consider
the splay algorithm used to maintain splay trees. No know-
ledge is required of the reader about splay trees nor their
analyses; the splay algorithm visual code just happens to be
ideal for demonstrating our techniques.

Roughly speaking, a splay operation consists of a search
for a key K in a binary search tree followed by “bubbling
up” (via rotations) of either the node with key K if it exists
or its inorder successor or predecessor if it doesn’t.

We demonstrate the binary tree visual language by ex-
plaining the visual code for the initial search in the splay op-
eration. It is not essential for the reader to completely under-
stand the visual code to see how we will manipulate it later
on.

The code proceeds as follows. In state (1), we “expand”
the tree. If the tree is not empty, this leads to state (2b) in

which the root node is revealed. Otherwise, the expansion
leads to state (2a) which depicts an empty tree.

In state (2b), we prepare to search for key K in the tree
by adding an initially empty fragment above the currently
selected subtree. As the new fragment is initially empty, we
can require that the node shown be on the search path. Upon
adding the empty fragment, we now obtain the loop invari-
ant for the search as shown in state (3).

We now compare the visible node’s key with K. The com-
parison yields one of three states (4a), (4b), (4c) depending
on whether the node’s key was less than, greater than, or
equal to K, respectively.

If the node’s key is equal to K, then we have found the
node and we are done. Otherwise, we are in state (4a) or
(4b). At this point, there is still a subtree which might con-
tain a node with key K. So, we expand this subtree. If it is
empty, then K is not in the tree and we have found its in-
order predecessor (as denoted in state (5a) with key K

�) or
its inorder successor (as denoted in state (7a) with key K

+).
If the subtree is not empty (as in state (5b) and (7b)), we col-
lapse the shaded node and fragments as they do not contain
K; doing so yields the loop invariant in state (3). In this way,
we have formed a loop by matching the loop invariant.

Looking ahead, we also add empty subtrees to states (5a)
and (7a) to form a loop invariant which we will use to con-
struct a loop for “bubbling up” a node. The final states of the
search are (2a), (4c), (6), and (8).

4 Programming without Procedures

We have implemented the binary tree visual language de-
scribed in a system named Opsis. We have used Opsis to
experiment with various ways to support convenient pro-
gramming without procedures. These methods are mostly
domain independent except for the heuristics described in
Section 4.5.

4.1 User Interface

A screenshot of the Opsis system is shown in Figure 2.
Editing occurs on the current state which dominates much of
the display. On the right, a sequence of states show a history
of the computation that leads to the current state. Observe
the arrow in the state history list: this arrow indicates that the
operation on the state at its tail of the arrow yields the state
at its head (thus indicating a loop). At the bottom, the final
states of the computations are shown (i.e., these are states at
which the computation terminates).

The user interface has been designed to give the user a
useful view of the state graph. As the state graph is not hier-
archical, it would be easy to become lost in the myriad of
states. But in restricting the view in the manner described,

3



(2b)

insert empty fragment

(2a)

empty tree

(4a)

expand

(7b)

(6)

(8)

expand

(1)

(3)

compare

(7a)

(5a)

insert empty subtree

insert empty subtree

K

(4c)

collapse

(5b)

(4b)

expand

collapse

K-

K+

K-

K+

Figure 1. Visual code for initial splay search.

Figure 2. The splay algorithm being developed in the
Opsis system.

with the history and final state lists, we have reduced the
complexity of the state graph as observed by the user.

.

4.2 User Interaction

A user implements an algorithm by starting out with the
initial state and repeatedly invoking operations on one of the
final states at each point. This process continues until the
only remaining final states in the program represent valid
results of the algorithm being defined.

In particular, a user creates a state graph by concentrat-
ing on one state at a time. The user selects by mouse some
tree node(s) and/or fragment(s) in the current state and in-
vokes an operation on that selection. Invoking an operation
causes the creation of transitions from the current state to
one or more other resultant states. One of these resultant
states (chosen arbitrarily if there is more than one) replaces
the current state on the screen.

4.3 Imitate Mirror Image

In this section, we show how the user can implement al-
gorithms with symmetrical code. The user need only imple-
ment code for one case and then tell the system to gener-
ate code for the mirror image case. (Of course, the notion
of symmetry is domain dependent; some domains may have
many possible symmetries. Our technique can also be ap-
plied with other symmetries.)

4



da
Vi
nc
iV

2.0
.3

Figure 3. State graph for initial splay search.

In Figure 1, we have shown the initial search in the splay
operation. The same state graph is also shown in Figure 3,
though this time we omit the visual contents of the states to
save space. We show final states in black. One of these final
states is distinguished (by being larger) and corresponds to
state (4c) in Figure 1; this state depicts the case where we
have found the key K we were looking for. In Figures 2
and 4, we have some of the code that bubbles up the node
with key K. The code is incomplete because we have only
handled the case with the node with key K being the left
child of its parent; the mirror image case where it is the right
child of its parent is not coded yet (as evident from the third
final state in Figure 2 and the distinguished final state in Fig-
ure 4).

The user could code the other case manually but this
would be wasted effort as the two cases are mirror images
of each other. Instead, Opsis allows the user to select the
state for the uncoded case and simply invoke the “imitate
mirror image” command. Opsis then looks for the mirror
image state and performs a traversal of the state graph so as
to generate the new mirror states for the mirror image case.
The result is shown in Figure 6.

The procedure imitateMirrorImage is shown in Figure
5 and works as follows.1 Parameter s is the source state
and parameter a is the add state (i.e., where successors will
be produced). States s and a are assumed to be mirror im-
ages of each other. We add a command to state a when: a
doesn’t already have a command; a and s are distinct states
(i.e., not symmetrical); and s is not a final state. In that case,
we use the command in the source s, modified appropriately

1The code in Opsis is more complicated because several different states
may have exactly the same visual representation. For clarity, we assume
here that any new state with the same visual representation as an existing
one must match that state.

da
V
in
ci

V2
.0.

3

Figure 4. State graph with partially complete bubbling
code for node with keyK.

;; s: source state

;; a: add state

;; s is always mirror image of a

proc imitateMirrorImage(s, a)

s.visited=true

if a.noSucc>0 or s==a

return

endif

if s.command==null

a.command=null

return

endif

a.command=mirrorCommand(s.command)

a.command.execute()

for i=1 to s.noSucc

if not s.succ[i].visited

j=mirrorSucc(s.succ[i])

imitateMirrorImage(s.succ[i],

a.succ[j])

endif

endfor i

endproc imitateMirrorImage

Figure 5. Code for imitateMirrorImage procedure.

5



da
V
in
ci

V2
.0

.3

Figure 6. State graph with complete bubbling code for
node with keyK.

for the mirror image, in state a. For each successor s0 of s
not already visited, we determine the newly generated mir-
ror image a

0 of s0 (which is a successor of a) and we then
invoke the procedure recursively on a

0 and s

0.

4.4 Imitate Selected State

In this section, we show how the user can generate code
for similar cases in an algorithm. The user need only imple-
ment code for one case, and then select a source state which
the system can then “imitate” in a different setting.

After invoking the “imitate mirror image” in the previous
section, we have completed the algorithm to bubble up the
node with key K to the root of the tree. This addition to the
state graph in Figure 4 leads to the state graph in Figure 6.

However, we still have to code the cases in which we find
the inorder successor and inorder predecessor nodes shown
in states (6) and (8), respectively, in Figure 1. These two
states are distinguished in the state graph in Figure 6. Fortu-
nately, the operations to handle these two cases are identical
to those for bubbling up the node with keyK. Consequently,
we simply select state (4c) in Figure 1 (which is the distin-
guished state in Figure 3), and then we invoke “imitate se-
lected state” on each of the two distinguished states in Figure
6. The result is shown in Figure 7.

In general, the states being imitated need not match struc-
turally (modulo node and fragment properties) as in the case
just described. If the tree structures are slightly different, we
use heuristics to select the probable intended fragments in
the tree before invoking the operation. We consider this in
more detail in Section 4.5.

d
a
V
in
c
i

V
2
.0

.3

Figure 7. State graph for complete splay algorithm.

As explained, the user first selects a source state to im-
itate. This selection actually makes a copy of the part of
the state graph that contains states reachable from the source
state (including the source state). Unlike, the “imitate mirror
image” traversal which operates on one state graph, the “im-
itate selected state” traversal operates on two state graphs:
the original and the one copied from the selection. (This
copying allows us to use “imitate selected state” for editing
and not just generation of new states; we explore this issue
in Section 4.6.)

The procedure imitateSelectedState is shown in Figure
8 and works as follows. Parameter s is the source state and
parameter a is the add state (i.e., where successors will be
produced). We add a command to state a when: a doesn’t
already have a command; a and s are distinct states; and
s is not a final state. In that case, we use the command
in the source s in state a. However, as the trees in states
s and a need not be identical structurally, we call a heur-
istic procedure determineSelectedFragments(a; s) to de-
termine which fragments to select in the tree of the add state
before invoking the command from s. Finally, for each suc-
cessor s0 of s not already visited, we determine the matching
newly generated state a0 (which is a successor of a) and we
then invoke the procedure recursively on a

0 and s

0.

4.5 Domain Dependent Heuristics

The “imitate selected state” traversal makes use of the de-
termineSelectedFragments procedure shown in Figure 9.
Given a source state and an add state, the procedure determ-
ineSelectedFragments selects fragments and nodes in the
add state based on the tree in the source state. This selec-
tion is done prior to invoking the command obtained from
the source state.

6



As the two trees need not be the same structurally, the
procedure determineSelectedFragments is a domain de-
pendent heuristic. Our implementation of this procedure is
motivated by the idea that “imitate selected state” can be
useful not only for generating new states but also for modi-
fying state graphs in non-trivial ways. For example, say we
forgot to insert an empty fragment to form a loop invariant in
Figure 1, (2b), (3). Suppose we realized this after perform-
ing the comparison in state (3) and the expand operations in
state (4a) and (4b). We would like to insert the “insert empty
fragment” operation just before the comparison and have the
following compare and expand commands replayed in the
new context. The implementation of determineSelected-
Fragments is flexible enough to handle such a situation. (It
is possible that this heuristic does not give the desired result;
one could alleviate this by also providing semi-automated
“imitate” procedures that ask questions of the user.)

In particular, determineSelectedFragments works by
first trying to unify the two trees as is. If the unification suc-
ceeds, then selection is performed by calling the selectFrag-
ments procedure. (We will explain how procedures unify
and selectFragments work in a moment.)

If unification fails, we attempt to add exactly one new
fragment above an existing node or fragment in the source
tree. (This allows us to handle the editing example just de-
scribed.) If unification succeeds, we call selectFragments
and we are done. If no addition of a fragment to the source
leads to successful unification, then we attempt to add ex-
actly one new fragment above an existing node or fragment
in the add tree. Again, if unification succeeds, we call se-
lectFragments and we are done. Otherwise, no unification
has been successful but we still call selectFragments as a
last resort.

Now, let’s look at the unify procedure. Let T
s

and T
a

de-
note the trees in the source and add state, respectively. Let
T

0 be the maximal tree such that the following properties
hold:

� T

0 is a connected subgraph of both T

s

and T

a

and in-
cludes the root of each tree; and

� all nodes and fragments in T

0 are of the same “struc-
ture” as their counterparts in T

s

and T

a

(modulo the
particular properties indicated by shading); that is,
nodes must match nodes and fragments must match
fragments.

The two trees T
s

and T

a

unify if

� if a leaf fragment (that is not a node) f 0 in T

0 corres-
ponds to f

s

in T
s

and f
a

in T
a

, then f
s

and f
a

both have
a child or they both do not have a child; and

� if a leaf node n0 in T

0 corresponds to n

s

in T

s

and n

a

in T

a

, then at least one of n
s

and n

a

has no left child
and at least one of n

s

and n

a

has no right child.

;; s: source state in

;; copied state graph

;; a: add state in

;; original state graph

proc imitateSelectedState(s,a)

s.visited=true

if a.noSucc>0 or s==a

return

endif

if s.command==null then

a.command=null

return

endif

a.command=s.command

determineSelectedFragments(a,s)

a.command.execute();

for i=1 to s.noSucc do

if not s.succ[i].visited

imitateSelectedState(

s.succ[i],a.succ[i])

endif

endfor i

endproc imitateSelectedState

Figure 8. Code for imitateSelectedState procedure.

Intuitively speaking, T
s

and T

a

match in that part that is T 0

with the remainder of T
s

and T

a

satisfying the restrictions
above. Although the definition of whether two trees unify
appears rather arbitrary, we found it leads to a good heur-
istic for selecting nodes and fragments before invoking the
command from the source state. In particular, these rules
work well for correcting loop invariant errors and in gener-
ating similar code for well known balanced binary tree al-
gorithms.

Finally, we look at the selectFragments procedure. Ba-
sically, this procedure looks at the parts of T

s

and T

a

that
match as T 0 (where these parts are identical structurally) and
selects the nodes and fragments in T

a

that are selected in T

s

.

4.6 Editing in State Graphs

As hinted at earlier, the “imitate selected state” operation
not only allows us to automatically code similar cases, but
it also allows us to make changes in the visual code. Essen-
tially, this is done by modifying the code at some point and
replaying the sequence of commands that followed before
the modification was made.

For example, to insert command(s), one performs the fol-
lowing steps: go to the state in which the command is to
be inserted (before the command on that state); select that
state; remove the current command on that state (so the state

7



proc determineSelectedFragments(s,a)

if unify(s,a)

selectFragments(s,a)

return

else

for each fragment f in s.tree

s.tree=insertFragment(f)

if unify(s, a)

selectFragments(s,a)

s.tree=removeFragment(f)

return

endif

s.tree=removeFragment(f)

endfor

for each fragment f in a.tree

a.tree=insertFragment(f)

if unify(s, a)

selectFragments(s,a)

a.tree=removeFragment(f)

return

endif

a.tree=removeFragment(f)

endfor

endif

selectFragments(a, s)

endproc determineSelectedFragments

Figure 9. Code for determineSelectedFragments pro-
cedure.

is now final); perform the new command(s); and imitate the
selected state.

Recall that selecting a state copies the portion of the state
graph reachable from that state. To see why this is done,
consider again the example where we forgot to insert an
empty fragment before the comparison to form a loop invari-
ant in Figure 1, (2b), (3). To fix the problem, we select the
state with the comparison, remove the compare operation,
add the insert empty fragment operation, and imitate the se-
lected state. However, had we not made a copy of the rel-
evant states, we would be imitating the selected state with
the insert empty operation and not the compare operation.
In essence, our “imitate selected state” works like a “copy
and paste” combination.

It is also possible to remove command(s) in the middle
of a command sequence. One performs the following steps:
go to the state following the last one whose command will
be removed; select that state; go to the first state whose com-
mand will be removed; remove the command (so the state
becomes final); and imitate the selected state.

5 Conclusion

In this paper, we have shown how visual programming
can be done without procedures. Essential to our approach
is the idea of using automated “imitate” algorithms for code
reuse. This approach helps end-users in two ways: it elim-
inates the need for the user to structure visual code; and it
reduces the complexity of the visualizations thus making
the visual code more apparent. We have demonstrated our
method using Opsis, a system we built to teach binary tree
algorithms.

For future research, it would be interesting to come up
with a more elegant unify procedure. Perhaps the unify pro-
cedure can mutate on-the-fly with the aid of AI learning
techniques. In this way, the “imitate selected state” opera-
tion can be used to correct common errors that a particular
user makes. In addition, the operation can also adapt to the
algorithm being designed thus making generation of states
more reliable. Finally, we believe that similar techniques
might be useful for viewing unstructured visual code. In par-
ticular, one can impose structure on the code for the purpose
of understanding the visual program though this structure is
not inherent in the code.

6 Acknowledgments

I would like to thank Steve Tanimoto for careful read-
ing of this paper, helpful suggestions, and encouragement
throughout this research. I would also like to thank David
Notkin for interesting discussions about programming using
relatively unstructured code. Finally, I would like to thank
Ashraf Michail for helpful comments on this paper.

Funding for this research was provided by the Natural
Sciences and Engineering Research Council of Canada.

References

[1] W. G. Griswold and D. Notkin. Architectural tradeoffs for a
meaning-preserving program restructuring tool. IEEE Trans-
actions on Software Engineering, 21(4):275–287, April 1995.

[2] W. L. Johnson and M. Feather. Building an evolution trans-
formation library. In International Conference on Software
Engineering, pages 238–248, 1996.

[3] K. J. Lieberherr, I. Silva-Lepe, and C. Xiao. Adaptive
object-oriented programming using graph-based customiza-
tion. Communications of the ACM, 37(5):94–101, May 1994.

[4] A. Michail. Teaching binary tree algorithms through visual
programming. In Symposium on Visual Languages, pages 38–
45. IEEE, September 1996.

[5] D. A. Schmidt. The Structure of Typed Programming Lan-
guages. The MIT Press, 1994.

[6] M. VanHilst. Using C++ templates to implement role-based
designs. In International Symposium on Object Technologies
for Advanced Software, 1996.

8


