
Solving Linear Arithmetic Constraints

for User Interface Applications:

Algorithm Details

Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao

Technical Report 97-06-01

Department of Computer Science & Engineering

University of Washington

September 1997

Abstract. Linear equality and inequality constraints arise naturally in specifying many aspects

of user interfaces, such as requiring that one window be to the left of another, requiring that a

pane occupy the leftmost 1/3 of a window, or preferring that an object be contained within a rect-

angle if possible. Current constraint solvers designed for UI applications cannot e�ciently handle

simultaneous linear equations and inequalities. This is a major limitation. We describe incremen-

tal algorithms based on the dual simplex and active set methods that can solve such systems of

constraints e�ciently. Both algorithms have been implemented and tested.

This informal technical report is adapted from the paper \Solving Linear Arithmetic Constraints

for User Interface Applications," which will appear in the Proceedings of UIST'97 (The ACM User

Interface and Software Technology Symposium). It contains additional details, in particular of the

Cassowary and QOCA algorithms.

Authors' addresses:

Alan Borning Kim Marriott

Dept. of Computer Science & Engr. Dept. of Computer Science

University of Washington Monash University

PO Box 352350 Wellington Road

Seattle, Washington 98195, USA Clayton, Victoria 3168, Australia

borning@cs.washington.edu marriott@cs.monash.edu.au

Peter Stuckey Yi Xiao

Dept. of Computer Science Dept. of Mathematics & Statistics

University of Melbourne University of Melbourne

Parkville, Victoria 3052, Australia Parkville, Victoria 3052, Australia

pjs@cs.mu.oz.au yxiao@maths.mu.oz.au

1 Introduction

Linear equality and inequality constraints arise naturally in specifying many aspects of user inter-

faces, in particular layout and other geometric relations. Inequality constraints, in particular, are

needed to express relationships such as \inside," \above," \below," \left-of," \right-of," and \over-

laps." For example, if we are designing a Web document we can express the requirement that �gure1

be to the left of �gure2 as the constraint �gure1.rightSide � �gure2.leftSide.

It is important to be able to express preferences as well as requirements in a constraint system. One

use is to express a desire for stability when moving parts of an image: things should stay where they

were unless there is some reason for them to move. A second use is to process potentially invalid

user inputs in a graceful way. For example, if the user tries to move a �gure outside of its bounding

window, it is reasonable for the �gure just to bump up against the side of the window and stop,

rather than given an error. A third use is to balance conicting desires, for example in laying out a

graph.

E�cient techniques are available for solving such constraints if the constraint network is acyclic.

However, in trying to apply constraint solvers to real-world problems, we found that the collection

of constraints was in fact often cyclic. This sometimes arose when the programmer added redundant

constraints | the cycles could have been avoided by careful analysis. However, this is an added

burden on the programmer. Further, it is clearly contrary to the spirit of the whole enterprise to

require programmers to be constantly on guard to avoid cycles and redundant constraints; after all,

one of the goals in providing constraints is to allow programmers to state what relations they want

to hold in a declarative fashion, leaving it to the underlying system to enforce these relations. For

other applications, such as complex layout problems with conicting goals, cycles seem unavoidable.

1.1 Constraint Hierarchies and Comparators

Since we want to be able to express preferences as well as requirements in the constraint system,

we need a speci�cation for how conicting preferences are to be traded o�. Constraint hierarchies

[4] provide a general theory for this. In a constraint hierarchy each constraint has a strength. The

required strength is special, in that required constraints must be satis�ed. The other strengths all

label non-required constraints. A constraint of a given strength completely dominates any constraint

with a weaker strength. In the theory, a comparator is used to compare di�erent possible solutions

to the constraints and select among them.

Within this framework a number of variations are possible. One choice is whether we only compare

solutions on a constraint-by-constraint basis (a local comparator), or whether we take some aggregate

measure of the unsatis�ed constraints of a given strength (a global comparator). A second choice is

whether we are concerned only whether a constraint is satis�ed or not (a predicate comparator), or

whether we also want to know how nearly satis�ed it is (a metric comparator. (Constraints whose

domain is a metric space, for example the reals, can have an associated error function. The error

in satisfying a constraint cn is 0 i� the constraint is satis�ed, and becomes larger the less nearly

satis�ed is the constraint.)

As described in [2], for inequality constraints it is important to use a metric rather than a predicate

comparator. Thus, plausible comparators for use with linear equality and inequality constraints

are locally-error-better, weighted-sum-better, and least-squares-better. For a given collection of con-

straints, Cassowary �nds a locally-error-better or a weighted-sum-better solution; QOCA �nds a

least-squares-better solution. The least-squares-better comparator strongly penalizes outlying val-

ues when trading o� constraints of the same strength. It is particularly suited to tasks such as

1

laying out a tree, a graph, or a collection of windows, where there are inherently conicting pref-

erences (for example, that all the nodes in the depiction of a graph have some minimum spacing

and that edge lengths be minimized). Locally-error-better, on the other hand, is a more permissive

comparator, in that it admits more solutions to the constraints. (In fact any least-squares-better or

weighted-sum-better solution is also a locally-error-better solution [4].) It is thus easier to implement

algorithms to �nd a locally-error-better solution, and in particular to design hybrid algorithms that

include subsolvers for simultaneous equations and inequalities and also subsolvers for nonnumeric

constraints [3]. Since each of these di�erent comparators is preferable in certain situations we give

algorithms for each.

1.2 Adapting the Simplex Algorithm

Linear programming is concerned with solving the following problem. Consider a collection of n real-

valued variables x

1

; : : : ; x

n

, each of which is constrained to be non-negative: x

i

� 0 for 1 � i � n.

There are m linear equality or inequality constraints over the x

i

, each of the form

a

1

x

1

+ : : :+ a

n

x

n

= b,

a

1

x

1

+ : : :+ a

n

x

n

� b, or

a

1

x

1

+ : : :+ a

n

x

n

� b.

Given these constraints, we wish to �nd values for the x

i

that minimizes (or maximizes) the value

of the objective function

c+ d

1

x

1

+ : : :+ d

n

x

n

.

This problem has been heavily studied for the past 50 years. The most commonly used algorithm for

solving it is the simplex algorithm, developed by Dantzig in the 1940s, and there are now numerous

variations of it. Unfortunately, however, existing implementations of the simplex are not really

suitable for UI applications.

The principal issue is incrementality. For interactive graphical applications, we need to solve similar

problems repeatedly, rather than solving a single problem once, and to achieve interactive response

times, very fast incremental algorithms are needed. There are two cases. First, when moving an

object with a mouse or other input device, we typically represent this interaction as a one-way

constraint relating the mouse position to the desired x and y coordinates of a part of the �gure. For

this case we must re-satisfy the same collection of constraints, di�ering only in the mouse location,

each time the screen is refreshed. Second, when editing an object we may add or remove constraints

and other parts, and we would like to make these operations fast, by reusing as much of the previous

solution as possible. The performance requirements are considerably more stringent for the �rst case

than for the second.

Another issue is de�ning a suitable objective function. The objective function in the standard

simplex algorithm must be a linear expression; but the objective functions for the locally-error-

better, weighted-sum-better, and least-squares-better comparators are all non-linear. Fortunately

techniques have been developed in the operations research community for handling these cases, which

we adopt here. For the �rst two comparators, the objective functions are \almost linear," while the

third comparator gives rise to a quadratic optimization problem.

Finally, a third issue is accommodating variables that may take on both positive and negative values,

which in general is the case in UI applications. (The standard simplex algorithm requires all variables

to be non-negative.) Here we adopt e�cient techniques developed for implementing constraint logic

programming languages.

2

1.3 Overview

We present algorithms for incrementally solving linear equality and inequality constraints for the

three di�erent comparators described above. In Section 2.1 we give algorithms for incrementally

adding and deleting required constraints with restricted and unrestricted variables from a system

of constraints kept in augmented simplex form, a type of solved form. In Section 3.1 we give an

algorithm, Cassowary, based on the dual simplex, for incrementally solving hierarchies of constraints

using the locally-error-better or weighted-sum-better comparators when a constraint is added or an

object is moved, while in Section 5 we give an algorithm, QOCA, based on the active set method,

for incrementally solving hierarchies of constraints using the least-squares-better comparator.

Both of our algorithms have been implemented, Cassowary initially in Smalltalk and QOCA in

C++. They perform surprisingly well, and a summary of our results is given in Section 6. The

QOCA implementation is considerably more sophisticated and has much better performance than

the current version of Cassowary. However, QOCA is inherently a more complex algorithm, and

re-implementing it with a comparable level of performance would be a daunting task. In contrast,

Cassowary is straightforward, and a reimplementation based on this paper is more reasonable, given

a knowledge of the simplex algorithm. In fact we have recently re-implemented Cassowary in Java.

1.4 Related Work

There is a long history of using constraints in user interfaces and interactive systems, beginning

with Ivan Sutherland's pioneering Sketchpad system [19]. Most of the current systems use one-way

constraints (e.g. [12, 16]), or local propagation algorithms for acyclic collections of multi-way con-

straints (e.g. [18, 20]). Indigo [2] handles acyclic collections of inequality constraints, but not cycles

(simultaneous equations and inequalities). UI systems that handle simultaneous linear equations

include DETAIL [11] and Ultraviolet [3]. A number of researchers (including the �rst author) have

experimented with a straightforward use of a simplex package in a UI constraint solver, but the speed

was not satisfactory for interactive use. An earlier version of QOCA is described in references [9]

and [10]. These earlier descriptions, however, do not give any details of the algorithm, although the

incremental deletion algorithm is described in [13]. The current implementation is much improved,

in particular through the use of the active set method described in Section 5.2.

Bara� [1] describes a quadratic optimization algorithm for solving linear constraints that arise in

modelling physical systems. Finally, much of the work on constraint solvers has been in the logic

programming and constraint logic programming communities. Current constraint logic programming

languages such as CLP(R) [14] include e�cient solvers for linear equalities and inequalities. (See

[15] for a survey.) However, these solvers use a re�nement model of computation, in which the

values determined for variables are successively re�ned as the computation progresses, but there is

no notion as such of state and change. As a result, these systems are not so well suited for building

interactive graphical applications.

2 Incremental Simplex

As you see, the subject of linear programming is surrounded by notational and ter-

minological thickets. Both of these thorny defenses are lovingly cultivated by a coterie

of stern acolytes who have devoted themselves to the �eld. Actually, the basic ideas of

linear programming are quite simple. { Numerical Recipes, [17, page 424]

3

We now describe an incremental version of the simplex algorithm, adapted to the task at hand. The

material presented in this section is common to both Cassowary and QOCA. The two algorithms

use di�erent optimization techniques, however, which are described in Sections 3 and 5 respectively.

In the description we use a running example, illustrated by the diagram in Figure 1.

x

m

x

r

x

l

500 100

Figure 1: Simple constrained picture

The constraints on the variables in Figure 1 are as follows: x

m

is constrained to be the midpoint of

the line from x

l

to x

r

, and x

l

is constrained to be at least 10 to the left of x

r

. All variables must lie

in the range 0 to 100. (To keep the presentation manageable, we deal only with the x coordinates.

Adding analogous constraints on the y coordinates would be simple but would double the number

of the constraints in our example.) Since x

l

< x

m

< x

r

in any solution, we simplify the problem by

removing the redundant bounds constraints. However, even with these simpli�cations the resulting

constraints have a cyclic constraint graph, and cannot be handled by methods such as Indigo.

We can represent this using the constraints

2x

m

= x

l

+ x

r

x

l

+ 10 � x

r

x

r

� 100

0 � x

l

Now suppose we wish to minimize the distance between x

m

and x

l

or in other words, minimize

x

m

� x

l

.

2.1 Augmented Simplex Form

An optimization problem is in augmented simplex form if constraint C has the form C

U

^ C

S

^ C

I

where C

U

and C

S

are conjunctions of linear arithmetic equations and C

I

is

V

fx � 0 j x 2 vars(C

S

)g

and the objective function f is a linear expression over variables in C

S

. The simplex algorithm

does not itself handle variables that may take negative values (so-called unrestricted variables), and

imposes a constraint x � 0 on all variables occurring in its equations. Augmented simplex form

allows us to handle unrestricted variables e�ciently and simply; it was developed for implementing

constraint logic programming languages [15], and we have adopted it here. Essentially it uses two

tableaux rather than one. All of the unrestricted variables will be placed in C

U

, the unrestricted

variable tableau. C

S

, the simplex tableau, contains only variables constrained to be non-negative.

The simplex algorithm is used to determine an optimal solution for the equations in the simplex

tableau, ignoring the unrestricted variable tableau for purposes of optimization. The equations in

the unrestricted variable tableau are then used to determine values for its variables.

Implementation Note. In the paper we describe C

U

and C

S

as two separate tableaux. In the

implementation, however, it turns out to be simpler to have just one tableau, since most operations

are applied to both C

U

and C

S

. Unrestricted and restricted variables are instances of di�erent

classes, and in the code we di�erentiate when necessary by sending the is restricted message to the

variable for each row. See Section 4.

4

It is not di�cult to write an arbitrary optimization problem over linear real equations and inequalities

into augmented simplex form. The �rst step is to convert inequalities to equations. Each inequality

of the form e � r, where e is a linear real expression and r is a number, can be replaced with

e+ s = r ^ s � 0 where s is a new non-negative slack variable.

For example, the constraints for Figure 1 can be written as

minimize x

m

� x

l

subject to

2x

m

= x

l

+ x

r

x

l

+ 10 + s

1

= x

r

x

r

+ s

2

= 100

0 � x

l

; s

1

; s

2

We now separate the equalities into C

U

and C

S

. Initially all equations are in C

S

. We separate out

the unrestricted variables into C

U

using Gauss-Jordan elimination. To do this, we select an equation

in C

S

containing an unrestricted variable u and remove the equation from C

S

. We then solve the

equation for u, yielding a new equation u = e for some expression e. We then substitute e for all

remaining occurrences of u in C

S

, C

U

, and f , and place the equation u = e in C

U

. The process is

repeated until there are no more unrestricted variables in C

S

. In our example the third equation

can be used to substitute 100� s

2

for x

r

obtaining

minimize x

m

� x

l

x

r

= 100� s

2

2x

m

= x

l

+ 100� s

2

x

l

+ 10 + s

1

= 100� s

2

0 � x

l

; s

1

; s

2

Next, and the �rst equation can be used to substitute 50 +

1

2

x

l

�

1

2

s

2

for x

m

, giving

minimize 50�

1

2

x

l

�

1

2

s

2

subject to

x

m

= 50 +

1

2

x

l

�

1

2

s

2

x

r

= 100� s

2

x

l

+ 10 + s

1

= 100� s

2

0 � x

l

; s

1

; s

2

The tableau shows C

U

above the horizontal line, and C

S

and C

I

below the horizontal line. From now

on C

I

will be omitted | any variable occurring below the horizontal line is implicitly constrained to

be non-negative. The simplex method works by taking a an optimization problem in \basic feasible

solved form" (a type of normal form) and repeatedly applying matrix operations to obtain new

basic feasible solved forms. Once we have split the equations into C

U

and C

S

we can ignore C

U

for

purposes of optimization.

A Detail. The example includes the constraint x

l

� 0. To simplify the example, we just make x

l

be a restricted variable to capture this constraint. In the Cassowary implementation, however, all

variables that may be accessed from outside the solver as well as within it are unrestricted. Only

error or slack variables are represented as restricted variables, and these variables occur only within

the solver. See Section 4. The primary bene�t of this is that the programmer using the solver always

uses just the one kind of variable. A minor bene�t is that only the external, unrestricted variables

actually store their values as a �eld in the variable object; the values of restricted variables are just

given by the tableau. A minor drawback is that the constraint v � 0 must be represented explicitly.

(For any other constant c 6= 0, v � c must be represented explicitly in any event.)

5

Another Detail. The operations are shown as modifying C

U

as well as C

S

. It would be possible

to modify just C

S

and leave C

U

unchanged, using C

U

only to de�ne values for the variables on the

left hand side of its equations. This would speed up pivoting, but at least for Cassowary it would

make the incremental updates of the constants in edit constraints slower; and since this is a much

more frequent operation, in the Cassowary implementation we do actually modify both C

U

and C

S

.

A augmented simplex form optimization problem is in basic feasible solved form if the equations are

of the form

x

0

= c+ a

1

x

1

+ : : :+ a

n

x

n

where the variable x

0

does not occur in any other equation or in the objective function. If the

equation is in C

S

, c must be non-negative. However, there is no such restriction on the constants for

the equations in C

U

. In either case the variable x

0

is said to be basic and the other variables in the

equation are parameters. A problem in basic feasible solved form de�nes a basic feasible solution,

which is obtained by setting each parametric variable to 0 and each basic variable to the value of

the constant in the right-hand side.

For instance, the following constraint is in basic feasible solved form and is equivalent to the problem

above.

minimize 50�

1

2

x

l

+

1

2

s

2

subject to

x

m

= 50 +

1

2

x

l

�

1

2

s

2

x

r

= 100 �s

2

s

1

= 90 �x

l

�s

2

The basic feasible solution corresponding to this basic feasible solved form is

fx

m

7! 50; x

r

7! 100; s

1

7! 90; x

l

7! 0; s

2

7! 0g:

The value of the objective function with this solution is 50.

2.2 Simplex Optimization

We now describe how to �nd an optimum solution to a constraint in basic feasible solved form.

Except for the operations on the additional unrestricted variable tableau C

U

, the material presented

in this subsection is simply Phase II of the standard two-phase simplex algorithm.

The simplex algorithm �nds the optimum by repeatedly looking for an \adjacent" basic feasible

solved form whose basic feasible solution decreases the value of the objective function. When no

such adjacent basic feasible solved form can be found, the optimum has been found. The underlying

operation is called pivoting, and involves exchanging a basic and a parametric variable using matrix

operations. Thus by \adjacent" we mean the new basic feasible solved form can be reached by

performing a single pivot.

In our example, increasing x

l

from 0 will decrease the value of the objective function. We must

be careful as we cannot increase the value of x

l

inde�nitely as this may cause the value of some

other basic non-negative variable to become negative. We must examine the equations in C

S

. The

equation s

1

= 90� x

l

� s

2

allows x

l

to take at most a value of 90, as if x

l

becomes larger than this,

then s

1

would become negative. The equations above the horizontal line do not restrict x

l

, since

whatever value x

l

takes the unrestricted variables x

m

and x

r

can take a value to satisfy the equation.

In general, we choose the most restrictive equation in C

S

, and use it to eliminate x

l

. In the case of

ties we arbitrarily break the tie. In this example the most restrictive equation is s

1

= 90� x

l

� s

2

.

6

Writing x

l

as the subject we obtain x

l

= 90� s

1

� s

2

. We replace x

l

everywhere by 90� s

1

� s

2

and

obtain

minimize 5 +

1

2

s

1

+ s

2

subject to

x

m

= 95 �

1

2

s

1

�s

2

x

r

= 100 �s

2

x

l

= 90 �s

1

�s

2

We have just performed a pivot, having moved s

1

out of the set of basic variables and replaced it

by x

l

.

We continue this process. Increasing the value of s

1

will increase the value of the objective. Note

that decreasing s

1

will also decrease the objective function value, but as s

1

is constrained to be non-

negative, it already takes its minimum value of 0 in the associated basic feasible solution. Hence we

are at an optimal solution.

(If we were to have an unrestricted variable in the objective function, the optimization would be

unbounded. This is not an issue for Cassowary or QOCA, since the objective function in those cases

always only contains restricted variables, i.e. variables implicitly constrained to be non-negative.)

In general, the simplex algorithm applied to C

S

is described as follows. We are given a problem in

basic feasible solved form in which the variables x

1

; : : : ; x

n

are basic and the variables y

1

; : : : ; y

m

are

parameters.

minimize e+

P

m

j=1

d

j

y

j

subject to

V

n

i=1

x

i

= c

i

+

P

m

j=1

a

ij

y

j

^

V

n

i=1

x

i

� 0 ^

V

m

j=1

y

j

� 0:

Select an entry variable y

J

such that d

J

< 0. (An entry variable is one that will enter the basis, i.e. it

is currently parametric and we want to make it basic.) Pivoting on such a variable can only decrease

the value of the objective function. If no such variable exists, the optimum has been reached. Now

determine the exit variable x

I

. We must choose this variable so that it maintains basic feasible

solved form by ensuring that the new c

i

's are still positive after pivoting. That is, we must choose

an x

I

so that �c

I

=a

IJ

is a minimum element of the set

f�c

i

=a

iJ

j a

iJ

< 0 and 1 � i � ng:

If there were no i for which a

iJ

< 0 then we could stop since the optimization problem would be

unbounded, and so would not have a minimum. This is because we could choose y

J

to take an

arbitrarily large value, and so make the objective function arbitrarily small. However, this is not an

issue in our context since our optimization problems will always have a lower bound of 0.

We proceed to choose x

I

, and pivot x

I

out and replace it with y

J

to obtain the new basic feasible

solution. We continue this process until an optimum is reached. The algorithm is illustrated in

Figure 2, and takes as inputs the simplex tableau C

S

and the objective function f .

2.3 Incrementality: Adding a Constraint

We now describe how to add the equation for a new constraint incrementally. This technique is

also used in our implementations to �nd an initial basic feasible solved form for the original simplex

problem, by starting from an empty constraint set and adding the constraints one at a time.

7

simplex opt(C

S

,f)

repeat

% Choose variable y

J

to become basic

if for each j 2 f1; : : : ;mg d

j

� 0 then

return % an optimal solution has been found

endif

choose J 2 f1; : : : ;mg such that d

J

< 0

% Choose variable x

I

to become non-basic

choose I 2 f1; : : : ; ng such that

�c

I

=a

IJ

= min

i2f1;:::;ng

f�c

i

=a

iJ

j a

iJ

< 0g

e := (x

I

� c

I

�

P

m

j=1;j 6=J

a

Ij

y

j

)=a

IJ

C

S

[I] := (Y

J

= e)

replace Y

J

by e in f

for each i 2 f1; : : : ; ng

if i 6= I then replace Y

J

by e in C

S

[I] endif

endfor

endrepeat

Figure 2: Simplex optimization

As an example, suppose we wish to ensure that the midpoint sits in the centre of the screen. This

is represented by the constraint x

m

= 50. If we substitute for each of the basic variables (only

x

m

) in this constraint we obtain the equation 45 �

1

2

s

1

� s

2

= 0. In order to add this constraint

straightforwardly to the tableau we create a new non-negative variable a called an arti�cial variable.

(This is simply an incremental version of the operation used in Phase I of the two-phase simplex

algorithm.) We let a = 45�

1

2

s

1

� s

2

be added to the tableau (clearly this gives a tableau in basic

feasible solved form) and then minimize the value of a. If a takes the value 0 then we have obtained

a solution to the problem with the added constraint, and we can then eliminate the arti�cial variable

altogether since it is a parameter (and hence takes the value 0). This is the case for our example;

the resulting tableau is

x

m

= 50

x

r

= 100 �s

2

x

l

= 0 +s

2

s

1

= 90 �2s

2

In general, to add a new required constraint to the tableau we �rst convert it to an augmented

simplex form equation by adding slack variables if it is an inequality. Next, we use the current

tableau to substitute out all the basic variables. This gives an equation e = c where e is a linear

expression. If c is negative, we multiply both sides by �1 so that the constant becomes non-negative.

If e contains an unrestricted variable we use it to substitute for that variable and add the equation to

the tableau above the line (i.e. to C

U

). Otherwise we create a restricted arti�cial variable a and add

the equation a = c� e to the tableau below the line (i.e. to C

S

), and minimize c� e. If the resulting

minimum is not zero then the constraints are unsatis�able. Otherwise a is either parametric or

basic. If a is parametric, the column for it can be simply removed from the tableau. If it is basic,

the row must have constant 0 (since we were able to achieve a value of 0 for our objective function,

which is equal to a). If the row is just a = 0, it can be removed. Otherwise, a = 0 + bx+ e where

b 6= 0. We can then pivot x into the basis using this row and remove the column for a.

8

Implementation Note. In some cases we can add an equation to the tableau without using an

arti�cial variable, and for e�ciency should do so when it is easy to detect that this can be done. See

Section 4.3.2.

2.4 Incrementality: Removing a Constraint

We also want a method for incrementally removing a constraint from the tableaux. After a series of

pivots have been performed, the information represented by the constraint may not be contained in a

single row, so we need a way to identify the constraint's inuence in the tableaux. To do this, we use

a \marker" variable that is originally present only in the equation representing the constraint. We

can then identify the constraint's inuence in the tableaux by looking for occurrences of that marker

variable. For inequality constraints, the slack variable s added to make it an equality serves as the

marker, since s will originally occur only in that equation. The equation representing a nonrequired

equality constraint will have an error variable that can serve as a marker | see Section 2.5. For

required equality constraints, we add a \dummy" restricted variable to the original equation to serve

as a marker, which we never allow to enter the basis (so that it always has value 0). In our running

example, then, to allow the constraint 2x

m

= x

l

+ x

r

to be deleted incrementally we would add a

dummy variable s

3

, resulting in 2x

m

= x

l

+ x

r

+ s

3

. The simplex optimization routine checks for

these dummy variables in choosing an entry variable, and does not allow one to be selected. (We

didn't include this variable in the tableaux presented earlier to keep things simpler.)

(Note: these dummy variables must be restricted, not unrestricted, since we might need to have

some of them in the equations for restricted basic variables.)

Consider removing the constraint that x

l

is 10 to the left of x

r

. The slack variable s

1

, which we

added to the inequality to make it an equation, records exactly how this equation has been used to

modify the tableau. We can remove the inequality by pivoting the tableau until s

1

is basic and then

simply drop the row in which it is basic.

In the tableau above s

1

is already basic, and so removing it simply means dropping the row in which

it is basic, obtaining

x

m

= 50

x

r

= 100 �s

2

x

l

= 0 +s

2

If we wanted to remove this constraint from the tableau before adding x

m

= 50 (i.e. the �nal tableau

given in Section 2.2), s

1

is a parameter. We make s

1

basic by treating it as an entry variable and

(as usual) determining the most restrictive equation and using that to pivot s

1

into the basis, and

then remove the row.

There is such a restrictive equation in this example. However, if no equation restricts the size of the

marker variable, that is, its coe�cients are all non-negative, then either the marker variable has a

positive coe�cient in all equations, or it only occurs in equations for unrestricted variables. If it does

occur in an equation for a restricted variable, pick the equation that gives the smallest ratio. (The

row with the marker variable will become infeasible, but all the other rows will still be feasible, and

we will be dropping the row with the marker variable. In e�ect we are removing the non-negativity

restriction on the marker variable.) Finally, if it only occurs in equations for unrestricted variables,

we can choose any equation in which it occurs.

In the case above, the row x

l

= 90 � s

1

� s

2

is the most constraining equation. Pivoting to let s

1

enter the basis, and then removing the row in which it is basic, we obtain

9

x

m

= 50 +

1

2

x

l

�

1

2

s

2

x

r

= 100 �s

2

In the preceding example the marker variable had a negative coe�cient. Here is an example in

which it just has positive coe�cients. (This is an example just for the tech report.) The original

constraints are:

x � 10

x � 20

x � 30

In basic feasible solved form this is:

x = 30 +s

3

s

l

= 20 +s

3

s

2

= 10 +s

3

where s

1

, s

2

, and s

3

are the marker variables for x � 10, x � 20, and x � 30 respectively.

Suppose we want to remove the x � 30 constraint. We need to pivot to make s

3

basic. The equation

that gives the smallest ratio is s

2

= 10 + s

3

, so the entry variable is s

3

and the exit variable is s

2

,

giving:

x = 20 +s

2

s

l

= 10 +s

2

s

3

= �10 +s

2

This is now infeasible, but we drop the row with s

3

giving

x = 20 +s

2

s

l

= 10 +s

2

which is of course feasible.

As another �ne point, note that there is no problem with redundant constraints. Consider:

x � 10

x � 10

When converted to basic feasible solved form, each x � 10 constraint gets a separate slack variable,

which is used as the marker variable for that constraint.

x = 10 +s

1

s

2

= 0 +s

1

10

To delete the second x � 10 constraint we would simply drop the s

2

= 0 + s

1

row. To delete the

�rst x � 10 constraint we would pivot, making s

1

basic and s

2

parametric:

x = 10 +s

2

s

1

= 0 +s

2

and then drop the s

1

= 0 + s

2

row.

A consequence of this is that if there are two redundant constraints, both of them must be removed

to eliminate their e�ect. (This seems to be a more desirable behaviour for the solver than removing

redundant constraints automatically, although if the latter were desired the solver could be modi�ed

to do this.) Another consequence is that when adding a new constraint, we would never decide that

it was redundant and not add it to the tableau. (If there weren't dummy marker variables, we would

do this for redundant required equality constraints.)

2.5 Handling Non-Required Constraints

Suppose the user wishes to edit x

m

in the diagram and have x

l

and x

r

weakly stay where they are.

This adds the non-required constraints x

m

edit, x

l

stay, and x

r

stay. Suppose further that we are

trying to move x

m

to position 50, and that x

l

and x

r

are currently at 30 and 60 respectively. We

are thus imposing the constraints strong x

m

= 50, weak x

l

= 30, and weak x

r

= 60. There are two

possible translations of these non-required constraints to an objective function, depending on the

comparator used.

For locally-error-better or weighted-sum-better, we can simply add the errors of the each constraint

to form an objective function. Consider the constraint x

m

= 50. We de�ne the error as jx

m

� 50j.

We need to combine the errors for each non-required constraint with a weight so we obtain the

objective function

sjx

m

� 50j+ wjx

l

� 30j+ wjx

r

� 60j

where s and w are weights so that the strong constraint is always strictly more important than solving

any combination of weak constraints, so that we �nd a locally-error-better or weighted-sum-better

solution. For the least-squares-better comparator the objective function is

s(x

m

� 50)

2

+ w(x

l

� 30)

2

+ w(x

r

� 60)

2

:

In the presentation, we will use s = 1000 and w = 1.

Cassowary actually uses symbolic weights and a lexicographic ordering, which ensures that strong

constraints are always satis�ed in preference to weak ones (see Section 4). However, QOCA does

not employ symbolic weights.

Unfortunately neither of these objective functions is linear and hence the simplex method is not

applicable directly. We now show how we can solve the problem using optimization algorithms based

on the two alternate objective functions: quasi-linear optimization and quadratic optimization.

3 Cassowary: Quasi-linear Optimization

Cassowary �nds either locally-error-better or weighted-sum-better solutions. Since every weighted-

sum-better solution is also a locally-error-better solution [4], the weighted-sum part of the optimiza-

tion comes automatically from the manner in which the objective function is constructed.

11

For Cassowary both the edit and the stay constraints will be represented as equations of the form

v = �+ �

+

v

� �

�

v

where �

+

v

and �

�

v

are non-negative variables representing the deviation of v from the desired value

�. If the constraint is satis�ed both �

+

v

and �

�

v

will be 0. Otherwise �

+

v

will be positive and �

�

v

will

be 0 if v is too big, or vice versa if v is too small. Since we want �

+

v

and �

�

v

to be 0 if possible, we

make them part of the objective function, with larger coe�cients for the error variables for stronger

constraints. (We need to use the pair of variables to satisfy simplex's non-negativity restriction,

since these variables �

+

v

and �

�

v

will be part of the objective function.)

Translating the constraints strong x

m

= 50, weak x

l

= 30, and weak x

r

= 60 which arise from the

edit and stay constraints we obtain:

x

m

= 50 + �

+

x

m

� �

�

x

m

x

l

= 30 + �

+

x

l

� �

�

x

l

x

r

= 60 + �

+

x

r

� �

�

x

r

0 � �

+

x

m

; �

�

x

m

; �

+

x

l

; �

�

x

l

; �

+

x

r

; �

�

x

r

The objective function to satisfy the non-required constraints can now be restated as

minimize 1000�

+

x

m

+ 1000�

�

x

m

+ �

+

x

l

+ �

�

x

l

+ �

+

x

r

+ �

�

x

r

.

An optimal solution of this problem can be found using the simplex algorithm, and results in a

tableau

minimize 10 + 1002�

+

x

m

+ 998�

�

x

m

+ 2�

�

x

l

+ 2�

�

x

r

subject to

x

m

= 50 +�

+

x

m

��

�

x

m

x

r

= 70 +2�

+

x

m

�2�

�

x

m

��

+

x

l

+�

�

x

l

x

l

= 30 +�

+

x

l

��

�

x

l

s

1

= 30 +2�

+

x

m

�2�

�

x

m

�2�

+

x

l

+2�

�

x

l

s

2

= 30 �2�

+

x

m

+2�

�

x

m

+�

+

x

l

��

�

x

l

�

+

x

r

= 10 +2�

+

x

m

�2�

�

x

m

��

+

x

l

+�

�

x

l

+�

�

x

r

This corresponds to the solution fx

m

7! 50; x

l

7! 30; x

r

7! 70g illustrated in Figure 1. Notice that

the weak stay constraint on x

r

is not satis�ed.

3.1 Incrementality: Resolving the Optimization Problem

Now suppose the user moves the mouse (which is editing x

m

) to x = 60. We wish to solve a new

problem, with constraints strong x

m

= 60, and weak x

l

= 30 and weak x

r

= 70 (so that x

l

and x

r

should stay where they are if possible).

There are two steps. First, we modify the tableau to reect the new constraints we wish to solve.

Second, we resolve the optimization problem for this modi�ed tableau.

Let us �rst examine how to modify the tableau to reect the new values of the stay constraints. This

will not require reoptimizing the tableau, since we know that the new stay constraints are satis�ed

exactly. Suppose the previous stay value for variable v was �, and in the current solution v takes

value �. The current tableau contains the information that

v = �+ �

+

v

� �

�

v

12

and we need to modify this so that instead

v = � + �

+

v

� �

�

v

There are two cases to consider: (a) both �

+

v

and �

�

v

are parameters, or (b) one of them is basic.

In case (a) v must take the value � in the current solution since both �

+

v

and �

�

v

take the value 0

and

v = �+ �

+

v

� �

�

v

Hence � = � and no changes need to be made.

In case (b) assume without loss of generality that �

+

v

is basic. In the original equation representing

the stay constraint, the coe�cient for �

+

v

is the negative of the coe�cient for �

�

v

. Since these

variables occur in no other constraints, this relation between the coe�cients will continue to hold as

we perform pivots. In other words, �

+

v

and �

�

v

come in pairs: any equation that contains �

+

v

will also

contain �

�

v

and vice versa. Since �

+

v

is assumed to be basic, it occurs exactly once in an equation

with constant c, and further this equation also contains the only occurrence of �

�

v

. In the current

solution

fv 7! �; �

+

v

7! c; �

�

v

7! 0g

and since the equation

v = �+ �

+

v

� �

�

v

holds, � = �+ c. To replace the equation

v = �+ �

+

v

� �

�

v

by

v = � + �

+

v

� �

�

v

we simply need to replace the constant c in the row for �

+

v

by 0. Since there are no other occurrences

of �

+

v

and �

�

v

we have replaced the old equation with the new.

For our example, to update the tableau for the new values for the stay constraints on x

l

and x

r

we

simply set the constant of last equation (the equation for �

+

x

r

) to 0.

Now let us consider the edit constraints. Suppose the previous edit value for v was �, and the new

edit value for v is �. The current tableau contains the information that

v = �+ �

+

v

� �

�

v

and again we need to modify this so that instead

v = � + �

+

v

� �

�

v

To do so we must replace every occurrence of

�

+

v

� �

�

v

by

� � �+ �

+

v

� �

�

v

taking proper account of the coe�cients of �

+

v

and �

�

v

. (Again, remember that �

+

v

and �

�

v

come in

pairs.)

If either of �

+

v

and �

�

v

is basic, this simply involves appropriately modifying the equation in which

they are basic. Otherwise, if both are non-basic, then we need to change every equation of the form

x

i

= c

i

+ a

0

v

�

+

v

� a

0

v

�

�

v

+ e

13

to

x

i

= c

i

+ a

0

v

(� � �) + a

0

v

�

+

v

� a

0

v

�

�

v

+ e

Hence modifying the tableau to reect the new values of edit and stay constraints involves only

changing the constant values in some equations. The modi�cations for stay constraints always

result in a tableau in basic feasible solved form, since it never makes a constant become negative.

In contrast the modi�cations for edit constraints may not.

To return to our example, suppose we pick up x

m

with the mouse and move it to 60. Then we have

that � = 50 and � = 60, so we need to add 10 times the coe�cient of �

+

x

m

to the constant part of

every row. The modi�ed tableau, after the updates for both the stays and edits, is

minimize 20 + 1002�

+

x

m

+ 998�

�

x

m

+ 2�

�

x

l

+ 2�

�

x

r

subject to

x

m

= 60 +�

+

x

m

��

�

x

m

x

r

= 90 +2�

+

x

m

�2�

�

x

m

��

+

x

l

+�

�

x

l

x

l

= 30 +�

+

x

l

��

�

x

l

s

1

= 50 +2�

+

x

m

�2�

�

x

m

�2�

+

x

l

+2�

�

x

l

s

2

= 10 �2�

+

x

m

+2�

�

x

m

+�

+

x

l

��

�

x

l

�

+

x

r

= 20 +2�

+

x

m

�2�

�

x

m

��

+

x

l

+�

�

x

l

+�

�

x

r

Clearly it is feasible and already in optimal form, and so we have incrementally resolved the problem

by simply modifying constants in the tableaux. The new tableaux give the solution fx

m

7! 60; x

l

7!

30; x

r

7! 90g. So sliding the midpoint rightwards has caused the right point to slide rightwards as

well, but twice as far. The resulting diagram is shown at the top of Figure 3.

x

m

0 10050

0 10050

x

l

x

r

x

m

x

r

x

l

Figure 3: Resolving the constraints

Suppose we now move x

m

from 60 to 90. The modi�ed tableau is

minimize 60 + 1002�

+

x

m

+ 998�

�

x

m

+ 2�

�

x

l

+ 2�

�

x

r

subject to

x

m

= 90 +�

+

x

m

��

�

x

m

x

r

= 150 +2�

+

x

m

�2�

�

x

m

��

+

x

l

+�

�

x

l

x

l

= 30 +�

+

x

l

��

�

x

l

s

1

= 110 +2�

+

x

m

�2�

�

x

m

�2�

+

x

l

+2�

�

x

l

s

2

= �50 �2�

+

x

m

+2�

�

x

m

+�

+

x

l

��

�

x

l

�

+

x

r

= 60 +2�

+

x

m

�2�

�

x

m

��

+

x

l

+�

�

x

l

+�

�

x

r

The tableau is no longer in basic feasible solved form, since the constant of the row for s

2

is negative,

even though s

2

is supposed to be non-negative.

14

Thus, in general, after updating the constants for the edit constraints, the simplex tableau C

S

may

no longer be in basic feasible solved form, since some of the constants may be negative. However,

the tableau is still in basic form, so we can still read a solution directly from it as before. And since

no coe�cient has changed, in particular in the optimization function, the resulting tableau reects

an optimal but not feasible solution.

We need to �nd a feasible and optimal solution. We could do so by adding arti�cial variables (as

we did when adding a constraint), optimizing the sum of the arti�cial variables to �nd an initial

feasible solution, and then reoptimizing the original problem.

But we can do much better. The process of moving from an optimal and infeasible solution to an

optimal and feasible solution is exactly the dual of normal simplex algorithm, where we progress

from a feasible and non-optimal solution to feasible and optimal solution. Hence we can use the dual

simplex algorithm to �nd a feasible solution while staying optimal.

Solving the dual optimization problem starts from an infeasible optimal tableau of the form

minimize e+�

m

j=1

d

j

y

j

subject to

V

n

i=1

x

i

= c

i

+�

m

j=i

a

ij

y

j

where some c

i

may be negative for rows with non-negative basic variables (infeasibility) and each

d

j

is non-negative (optimality).

The dual simplex algorithm selects an exit variable by �nding a row I with non-negative basic

variable x

I

and negative constant c

I

. The entry variable is the variable y

J

such that the ratio

d

J

=a

IJ

is the minimum of all d

j

=a

Ij

where a

Ij

is positive. This ensures that when pivoting we stay

at an optimal solution. The pivot replaces y

j

by

�1=a

Ij

(�x

I

+ c

I

+�

m

j=1;j 6=J

a

Ij

y

j

)

and is performed as in the (primal) simplex algorithm. The algorithm is shown in Figure 4.

Continuing the example above we select the exit variable s

2

, the only non-negative basic variable

for a row with negative constant. We �nd that �

+

x

l

has the minimum ratio since its coe�cient

in the optimization function is 0, so it will be the entry variable. Replacing �

+

x

l

everywhere by

50 + s

2

+ 2�

+

x

m

� 2�

�

x

m

+ �

+

x

l

we obtain the tableau

minimize 30060+ 1002�

+

x

m

+ 998�

�

x

m

+ 2�

�

x

l

+ 2�

�

x

r

subject to

x

m

= 90 +�

+

x

m

��

�

x

m

x

r

= 100 �s

2

x

l

= 80 +s

2

+2�

+

x

m

�2�

�

x

m

s

1

= 110 �2s

2

+2�

+

x

m

�2�

�

x

m

�

+

x

l

= 50 +s

2

+2�

+

x

m

�2�

�

x

m

+�

�

x

l

�

+

x

r

= 40 �s

2

+�

�

x

r

The tableau is feasible (and of course still optimal) and represents the solution fx

m

7! 90; x

r

7!

100; x

l

7! 80g. So by sliding the midpoint further right, the rightmost point hits the wall and the

left point slides right to satisfy the constraints. The resulting diagram is shown at the bottom of

Figure 3.

To summarize, incrementally �nding a new solution for new input variables involves updating the

constants in the tableaux to reect the updated stay constraints, then updating the constants to

15

re opt(C

S

,f)

foreach stay : v 2 C

if �

+

v

or �

�

v

is basic in row i then c

i

:= 0 endif

endfor

foreach edit : v 2 C

let � and � be the previous and current edit values for v

let �

+

v

be y

j

foreach i 2 f1; : : : ; ng

c

i

:= c

i

+ a

ij

(� � �)

endfor

endfor

repeat

% Choose variable x

I

to become non-basic

choose I where c

I

< 0

if there is no such I

return true

endif

% Choose variable y

J

to become basic

if for each j 2 f1; : : : ;mg a

Ij

� 0 then

return false

endif

choose J 2 f1; : : : ;mg such that

d

J

=a

IJ

= min

j2f1;:::;mg

fd

j

=a

Ij

j a

Ij

> 0g

e := (x

I

� c

I

�

P

m

j=1;j 6=J

a

Ij

y

j

)=a

IJ

replace y

J

by e in f

for each i 2 f1; : : : ; ng

if i 6= I then replace y

J

by e in row i endif

endfor

replace the I

th

row by y

J

= e

until false

Figure 4: Dual Simplex Re-optimization

reect the updated edit constraints, and �nally reoptimizing if needed. In an interactive graphical

application, when using the dual optimization method typically a pivot is only required when one

part �rst hits a barrier, or �rst moves away from a barrier. The intuition behind this is that when

a constraint �rst becomes unsatis�ed, the value of one of its error variables will become non-zero,

and hence the variable will have to enter the basis; when a constraint �rst becomes satis�ed, we can

move one of its error variables out of the basis.

In the example, pivoting occurred when the right point x

r

came up against a barrier. Thus, if we

picked up the midpoint x

m

with the mouse and smoothly slid it rightwards, 1 pixel every screen

refresh, only one pivot would be required in moving from 50 to 95. This illustrates why the dual

optimization is well suited to this problem and leads to e�cient resolving of the hierarchical con-

straints.

16

4 Cassowary Details

This section is only in the tech report (not the UIST paper) and includes details on the Cassowary

implementation. The current implementation is in Smalltalk. However, it should be straightforward

to translate into another object-oriented language. There is also a subsection on some �ne points

regarding the comparator.

4.1 Solver Protocol

The solver itself is represented as an instance of ClSimplexSolver. The public message protocol is as

follows.

addConstraint: cn

Incrementally add the linear constraint cn to the tableau.

removeConstraint: cn

Remove the constraint cn from the tableau. Also remove any error variables associated with

cn from the objective function.

resolve: newEditConstants

newEditConstants is an array of oating point numbers, which are new values for the constants

in the edit constraints. The size of this arraymust be the same as the number of edit constraints

currently in the tableau. The order of the array elements should be the same as the order in

which the edit constraints were added.

addPointStays: points

This is kind of a kludge, and addresses the desire to satisfy the stays on both the x and y

components of a given point rather than on the x component of one point and the y component

of another. points is an array of points, whose x and y components are constrainable variables.

Add a weak stay constraint to the x and y variables of each point. The weights for the x and y

components of a given point are the same. However, the weights for successive points are each

smaller than those for the previous point (1/2 of the previous weight). The e�ect of this is to

encourage the solver to satisfy the stays on both the x and y of a given point rather than the

x stay on one point and the y stay on another. See Subsection 4.5 for more on this issue.

reset

Re-initialize the solver from the original constraints, thus getting rid of any accumulated

numerical problems. (It's not clear how often such problems arise, but here is the method

anyway.)

4.1.1 Possible Revisions to Solver Protocol

One thing that might be worth changing is the way that edit and stay constraints are added.

Currently edit and stay constraints are added using the addConstraint: message, just as with any

other kind of constraint. Edit and stay constraints can be added or deleted at any time.

The order in which the edit constraints are added is critical, however, since it corresponds to the

order in which the oats are given for the resolve: message. In addition, there is nothing that requires

the programmer to remove the old edit constraints before adding new ones.

17

Also, if variables have a value (before doing any constraint solving), one should add stay constraints

on these variables before adding other constraints, since otherwise the variable's value is likely to be

changed inappropriately to satisfy the other constraints.

Given this, an alternative would be to have a separate editConstraints: message, which added all the

edit constraints at once (and at the same time removed any old ones). Stay constraints would not

be represented explicitly, but instead would be implicit for each variable. Thus the stay constraints

would in e�ect be added before any other constraints. See Subsection 4.2.4.

4.2 Principal Classes

Here is a listing of the principal classes. (In the current implementation all the classes start with

\Cl".) All of the classes are of course direct or indirect sublclasses of Object.

Object

ClAbstractVariable

ClDummyVariable

ClObjectiveVariable

ClSlackVariable

ClVariable

ClConstraint

ClEditOrStayConstraint

ClEditConstraint

ClStayConstraint

ClLinearConstraint

ClLinearEqualityConstraint

ClLinearInequalityConstraint

ClLinearExpression

ClSimplexSolver

ClStrength

ClSymbolicWeight

Following is a description of the classes. Some of these classes make use of a class Dictionary, which

is part of the Smalltalk system. Dictionaries have keys and values. There is a hash table that lets

one e�ciently �nd the value for a given key, and add or delete key/value pairs. One can also iterate

through all keys, all values, or all key/value pairs. (Actually the implementation in OTI Smalltalk

uses LookupTable, but this has the same functionality.)

The solver itself is represented as an instance of ClSimplexSolver, with public message protocol as

described above. There is more on the implementation of this class in Subsection 4.3.

4.2.1 Variables

ClAbstractVariable and its subclasses represent various kinds of constrained variables. ClAbstract-

Variable is an abstract class, that is, it is just used as a superclass of other classes; one does't make

instances of ClAbstractVariable itself. ClAbstractVariable de�nes the message protocol for constrain-

able variables. Its only instance variable is name, which is a string name for the variable. (This was

used for debugging | a �nal version might not need this.)

18

Instances of ClVariable are what the user of the solver sees (hence it was given a nicer class name).

This class has an instance variable value that holds the value of this variable. Users of the solver

can send one of these variables the message value to get its value.

The other subclasses of ClAbstractVariable are used only within the solver. They don't hold their own

values | rather, the value is just given by the current tableau. None of them have any additional

instance variables.

Instances of ClSlackVariable are restricted to be non-negative. They are used as the slack variable

when converting an inequality constraint to an equation, and for the error variables to represent

non-required constraints.

Instances of ClDummyVariable is used as a marker variable to allow required equality constraints to

be deleted. (For inequalities or non-required constraints, the slack or error variable is used as the

marker.) These dummy variables are never pivoted into the basis.

An instance of ClObjectiveVariable is used to index the objective row in the tableau. (Conventionally

this variable is named 'z'.) This kind of variable is just for convenience | the tableau is represented

as a dictionary (with some additional cross-references). Each each row is represented as an entry

in the dictionary. The key is a basic variable and the value is an expression. So an instance of

ClObjectiveVariable is the key for the objective row.

All variables understand the following messages: isDummy, isExternal, isPivotable, and isRestricted.

They also understand messages to get and set the variable's name.

For isDummy, instances of ClDummyVariable return true and everone else returns false. The solver

uses this message to test for dummy variables. It won't choose a dummy variable as the subject for

a new equation, unless all the variables in the equation are dummy variables. (The solver also won't

pivot on dummy variables, but this is handled by the isPivotable message.)

For isExternal, instances of ClVariable return true and everyone else returns false. If a variable

responds true to this message, it means that it is known outside the solver, and so the solver needs

to give it a value after solving is complete.

For isPivotable, instances of ClSlackVariable returns true and everyone else returns false. The solver

uses this message to decide whether it can pivot on a variable.

For isRestricted, instances of ClSlackVariable and of ClDummyVariable return true, and instances of

ClVariable and ClObjectiveVariable return false. Returning true means that this variable is restricted

to being non-negative.

So variables don't hold state, except for a name for debugging, and a value for instances of ClVariable

| mostly their signi�cance is just their identity. The only other messages that variables understand

are some messages to ClVariable for creating constraints | see Subsection 4.2.5.

4.2.2 Linear Expressions

Instances of the class ClLinearExpression hold a linear expression, and are used in building and

representing constraints, and in representing the tableau. A linear expression holds a dictionary of

variables and coe�cients (the keys are variables and the values are the corresponding coe�cients).

Only variables with non-zero coe�cients are included in the dictionary; if a variable isn't in this

dictionary its coe�cient is assumed to be zero. The other instance variable is a constant. So to

represent the linear expression a

1

x

1

+ � � � + a

n

x

n

+ c, the dictionary would hold the key x

1

with

value a

1

, etc., and the constant c. This representation was convenient in Smalltalk given the built-in

19

class dictionary, and allows one to �nd the coe�cient for a given variable without searching. It has

some space overhead for the dictionary. An alternative representation would be to use a linked list

for the coe�cients and variables | with this representation one would need to search the list for a

given variable, but the representation would be more compact. If expressions typically had only a

small number of non-zero coe�cients this representation may be preferable.

Linear expressions understand a large number of messages. Some of these are for constraint creation

(see Section 4.2.5). The others are to substitute an expression for a variable in the constraint, to

add an expression, to �nd the coe�cient for a variable, and so forth.

4.2.3 Constraints

There is an abstract class Constraint that serves as the superclass for other concrete classes. It

de�nes two instance variables: strength and weight. The variable strength is the strength of this

constraint in the constraint hierarchy (and should be an instance of ClStrength), while weight is a

oat indicating the weight of the constraint, or nil if it doesn't have a weight. (Weights are only

relevant for the weighted-sum-better comparator, not for locally-error-better.)

Constraints understand various message that return true or false regarding some aspect of the

constraint, such as isRequired, isEditConstraint, isStayConstraint, and isInequality.

ClLinearConstraint is an abstract subclass of ClConstraint. It has an instance variable expression,

which will hold an instance of ClLinearExpression. It has two concrete subclasses. An instance of

ClLinearEquation represents the linear equality constraint

expression = 0.

An instance of ClLinearInequality represents the constraint

expression � 0.

The other part of the hierarchy is for edit and stay constraints (both of which are represented

explicitly in the current implementation). ClEditOrStayConstraint has an instance variable variable,

which is the variable with the edit or stay. Otherwise all they do is respond appropriately to the

messages isEditConstraint and isStayConstraint.

4.2.4 Possible Revisions to Constraint Representation

In contrast to the current Cassowary implementation described above, the QOCA implementation

doesn't represent edits or stays explicitly. Rather, each variable has a preferred value and a weight,

in addition to a current value. Given the special treatment of edit constraints in Cassowary (and

since there are typically only one or two of them) it is probably worth continuing to represent

them explicitly. However, since many variables have a stay it may be worth representing stay

constraints implicitly. Then every constrainable variable would automatically be given an implicit

stay constraint of a given strength, which could be a special null strength if no stay were desired.

This strength would be stored as an instance variable of ClVariable. This would only allow at most

one stay per variable, which is the typical situation | if multiple stays were needed for some reason

this could be simulated using additional variables and equality constraints.

This hierarchy is also intended to allow extension to include local propagation constraints (which

would be another subclass of ClConstraint) { otherwise we could have made everything be a linear

constraint.

20

4.2.5 Constraint Creation

This subsection describes a mechanism to allow constraints to be de�ned easily by programmers.

Unlike the material described in other sections, this may not be easily implementable in languages

other than Smalltalk.

The messages +, -, *, and / are de�ned for ClVariable and ClLinearExpression to allow convenient

creation of constraints by programmers. Also, ClVariable and ClLinearExpression, as well as Number,

de�ne cnEqual:, cnGEQ:, and cnLEQ: to return linear equality or inequality constraints. Thus, the

Smalltalk expression

3*x+5 cnLEQ: y

returns an instance of ClLinearEquality representing the constraint 3x+5 � y. This works as follows.

The number 3 gets the message * x. Since x isn't a number, 3 sends the message * 3 to x. x

is an instance of ClVariable, which understands * to return a new linear expression with a single

term, namely itself times the argument. (If the argument isn't a number it raises an exception that

the expression is non-linear.) The linear expression representing 3x gets the message + with the

argument 5, and returns a new linear expression representing 3x+5. This linear expression gets the

message cnLEQ: with the argument y. It computes a new linear expression representing 3x+ 5� y,

and then returns an instance of ClLinearInequality with this expression.

(It is tempting to make this nicer by using the =, <=, and >= messages, so that one could write

3*x+5 <= y

instead but since the rest of Smalltalk expects =, <=, and >= to perform a test and return a

boolean, rather than to return a constraint, this would not be a good idea.)

4.2.6 Symbolic Weights and Strengths

The constraint hierarchy theory allows an arbitrary (although �nite) number of strengths of con-

straint. In practice, however, programmers use a small number of strengths in a stylized way. The

current implementation therefore includes a small number of pre-de�ned strengths, and the maxi-

mum number of strengths is de�ned as a constant. (This constant can be changed | see below |

but we wouldn't expect to do so frequently.)

The strengths are currently de�ned as follows.

required Required constraints must be satis�ed. This strength is used for most programmer-de�ned

constraints.

strong This strength is used for edit constraints.

medium Currently unused.

weak This strength is used for stay constraints.

These are represented as 4 instances of ClStrength.

The other relevant class is ClSymbolicWeight. As mentioned in Section 2.5, the objective function is

formed as the weighted sum of the positive and negative errors for the non-required constraints. The

weights should be such that the stronger constraints totally dominate the weaker ones. In general

to pick a real number for the weight we need to know how big the values of the variables can be.

To avoid this problem altogether, rather than real numbers as weights we use symbolic weights and

21

a lexicographic ordering, which ensures that strong constraints are always satis�ed in preference to

weak ones.

Instances of ClSymbolicWeight are used to represent these symbolic weights. These instances have

an array of oating point numbers, whose length is the number of non-required strengths (so 3 at

the moment). Each element of the array represents the value at that strength, so (1:0; 0:0; 10:0)

represents a weight of 1.0 strong, 0.0 medium, and 10.0 weak. (In Smalltalk ClSymbolicWeight is a

variable length subclass; we could have had an instance variable with an array of length 3 instead.)

Symbolic weights understand various arithmetic messages, as follows:

+ w

w is also a symbolic weight. Return the result of adding self to w.

- w

w is also a symbolic weight. Return the result of subtracting w from self

* n

n is a number. Return the result of multiplying self by n.

/ n

n is a number. Return the result of dividing self by n.

<= n

w is a symbolic weight. Return true if self is less than or equal to n.

>= n

Similarly.

< n

Similarly.

> n

Similarly.

= n

Similarly.

negative

Return true if this symbolic weight is negative (i.e. it does not consist of all zeros and the �rst

non-zero number is negative).

These messages let the user of symbolic weights (i.e. the solver) use them just like numbers in

expressions.

Finally, instances of ClStrength represent a strength in the constraint hierarchy. The instance vari-

ables are name (for printing purposes) and symbolicWeight, which is the unit symbolic weight for

this strength. Thus, with the 3 strengths as above, strong is (1:0; 0:0; 0:0), medium is (0:0; 1:0; 0:0),

and weak is (0:0; 0:0; 1:0).

4.3 ClSimplexSolver Implementation

Here are the instance variables of ClSimplexSolver.

22

rows

A dictionary with keys ClAbstractVariable and values ClLinearExpression. This holds the tableau.

Note that the keys can be either restricted or unrestricted variables, i.e. both C

U

and C

S

are

actually merged into one tableau. This simpli�ed the code considerably, since many operations

are applied to both restricted and unrestricted rows.

columns

A dictionary with keys ClAbstractVariable and values Set of ClAbstractVariable. These are the

column cross-indices. Each parametric variable p should be a key in this dictionary. The

corresponding set should include exactly those basic variables whose linear expression includes

p (p will of course have a non-zero coe�cient). The keys can be either unrestricted or restricted

variables.

objective

Return an instance of ClObjectiveVariable (named z) that is the key for the objective row in

the tableau.

infeasibleRows

Return a set of basic variables that have infeasible rows. (This is used when re-optimizing

with the dual simplex method.)

prevEditConstants

An array of constants (oats) for the edit constraints on the previous iteration. The elements

in this array must be in the same order as editPlusErrorVars and editMinusErrorVars, and the

argument to the public resolve: message.

stayPlusErrorVars

An array of plus error variables (instances of ClSlackVariable) for the stay constraints. The

corresponding negative error variable must have the same index in stayMinusErrorVars.

stayMinusErrorVars

See stayPlusErrorVars.

editPlusErrorVars

An array of plus error variables (instances of ClSlackVariable) for the edit constraints. The

corresponding negative error variable must have the same index in editMinusErrorVars.

editMinusErrorVars

See editPlusErrorVars.

markerVars

A dictionary whose keys are constraints and whose values are instances of a subclass of ClAb-

stractVariable. This dictionary is used to �nd the marker variable for a constraint when deleting

that constraint. A secondary use is that iterating through the keys will give all of the original

constraints (useful for reset).

errorVars

A dictionary whose keys are constraints and whose values are arrays of ClSlackVariable. This

dictionary gives the error variable (or variables) for a given non-required constraint. We need

this if the constraint is deleted, since the corresponding error variables must be deleted from

the objective function.

slackCounter

Used for debugging. An integer used to generate names for slack variables, which are useful

when printing out expressions. (Thus we get slack variables named s1, s2, etc.)

23

arti�cialCounter

Similar to slackCounter but for arti�cial variables.

dummyCounter

Similar to slackCounter but for dummy variables (ie. marker variables for required equality

constraints).

4.3.1 Sparse Matrix Operations

The basic requirements for the tableau representation are that one should be able to perform the

following operations e�ciently:

� determine whether a variable is basic

� determine whether a variable is parametric

� �nd the corresponding expression for a basic variable

� iterate through all the parametric variables with non-zero coe�cients in a given row

� �nd all the rows that contain a given parametric variable with a non-zero coe�cient

� add a row

� remove a row

� remove a parametric variable

� substitute out a variable (i.e. replace all occurrences of a variable with an expression, updating

the tableau as appropriate).

The representation of the tableau as a dictionary of rows, with column cross-indices, supports these

operations. Keeping the cross indices up-to-date is a bit tricky, and so the solver actually accesses

the rows and columns only via the following interface, to avoid getting the two representations out

of sync. (This isn't really clean | what would in retrospect be better is to have a separate class

ClTableau that holds the rows and columns and that supports this interface.)

addRow: var expr: expr

var is a ClAbstractVariable and expr is a ClLinearExpression. Add the constraint var=expr to the

tableau. var will become a basic variable. Update the column cross indices.

noteAddedVariable: var subject: subject

var and subject are both ClAbstractVariables. Variable var has been added to the linear expres-

sion for subject. Update the column cross indices.

noteRemovedVariable: var subject: subject

var and subject are both ClAbstractVariables. Variable var has been removed from the linear

expression for subject. Update the column cross indices.

removeColumn: var

Remove the parametric variable var from the tableau. This involves removing the column cross

index for var and removing var from every expression in rows in which it occurs.

24

removeRow: var

Remove the basic variable var from the tableau. Since var is basic, there should be a row

var=expr. Remove this row, and also update the column cross indices.

substituteOut: var expr: expr

var is a ClAbstractVariable and expr is a ClLinearExpression. Replace all occurences of var with

expr and update the column cross indices.

4.3.2 Adding a Constraint

Section 2.3 discussed how to add constraints incrementally. For e�ciency we should avoid using an

arti�cial variable if possible. We can avoid using an arti�cial variable if we can choose a subject for

the equation from among its current variables. Here are the rules for choosing a subject. (These are

to be used after replacing any basic variables with their de�ning expressions.)

We start with an expression expr (which is an instance of ClLinearExpression). If necessary, normalize

expr by multiplying by �1 so that its constant part is non-negative. We are adding the constraint

expr=0 to the tableau. To do this we want to pick a variable in expr to be the subject of an equation,

so that we can add the row var=expr2, where expr2 is the result of solving expr=0 for var.

� If expr contains any unrestricted variables, we must choose an unrestricted variable as the

subject.

� If the subject is new to the solver, we won't have to do any substitutions, so we prefer new

variables to ones that are currently noted as parametric.

� If expr contains only restricted variables, if there is a (restricted) variable in expr that has a

negative coe�cient and that is new to the solver, we can pick that variable as the subject.

� Otherwise use an arti�cial variable.

A consequence of these rules is that we can always add a non-required constraint to the tableau

without using an arti�cial variable, since the equation will contain a positive and a negative error or

slack variable, both of which are new to the solver, and which occur with opposite signs. (Constraints

that are originally equations will have a positive and a negative error variable, while constraints that

are originally inequalities will have one error variable and one slack variable, with opposite signs.)

This is good because a common operation is adding a non-required edit.

4.3.3 Removing a Constraint

Here are a few additional remarks in addition to the material presented in Section 2.4.

First, before we remove the constraint, there may be some stay constraints that were unsatis�ed

previously | if we just removed the constraint these could come into play. Instead, reset all of the

stays so that all variables are constrained to stay at their current values.

Also, if the constraint being removed is not required we need to remove the error variables for it

from the objective function. To do this we add the following to the expression for the objective

function:

�1� e� s� w

25

where e is the error variable if it is parametric, or else e is its de�ning expression if it is basic, s

is the unit symbolic weight for the constraint's strength, and w is its weight. (s is an instance of

ClSymbolicWeight and w is a oat.)

If we allow non-required constraints other than stays and edits, we also need to re-optimize after

deleting a constraint, since a non-required constraint might have become satis�able (or more nearly

satis�able).

4.4 Omissions

The solver should implement Bland's anti-cycling rule, but it doesn't at the moment. Adding this

should be straightforward.

4.5 Comparator Details

Our implementation of Cassowary favors solutions that satis�es some of the constraints completely,

rather than ones that partially satisfy e.g. each of two conicting equalities. These are still legitimate

locally-error-better solutions. Cassowary's behaviour is analogous to that of the simplex algorithm,

which always �nds solutions at a vertex of the polytope even if all the solutions on an edge or face

are equally good. (And of course Cassowary behaves this way because simplex does.)

Such solutions are also produced by greedy constraint satisfaction algorithms, such as local prop-

agation algorithms like DeltaBlue and Indigo, since these algorithms try to satisfy constraints one

at a time, and in e�ect the constraints considered �rst are given a stronger strength than those

considered later.

However, there is an issue regarding comparators and Cassowary, which has not yet been resolved

in an entirely clean way. One of the public methods for Cassowary is addPointStays: points, as

discussed in Subsection 4.1. This method addresses the desire to satisfy the stays on both the x and

y components of a given point rather than on the x component of one point and the y component of

another.

As an example of why this is useful, consider a line with endpoints p1 and p2 and a midpoint m.

There are constraints (p1.x+p2.x)/2 = m.x and (p1.y+p2.y)/2 = m.y. Suppose we are editing m. It

would look strange to satisfy the stay constraints on p1.x and p2.y, rather than both stays on p1 or

both stays on p2. (In the earlier implementations of Cassowary this happened, and indeed it looked

strange | so this claim has been veri�ed empirically.)

The current implementation of addPointStays: points uses di�erent weights for the stay constraints

for successive elements of points, which is a kludge but which seems to work well in practice.

I had some trouble coming up with an example where it would give a bad answer | here is a kind

of contrived one. Suppose we have a line with endpoints p1 and p2 and a midpoint m. Suppose

also we have constraints p2.x = 2*p3.x and p2.y = 2*p3.y. (This is a bit strange since here we are

using p3 as a distance from the origin rather than as a location | otherwise multiplying it by 2 is

problematic.) If we give these points to addPointStays: in the order p1, p2, and p3, then the stays on

p1 will have weight 1, those on p2 will have weight 0.5, and those on p3 will have weight 0.25. Then,

a one legitimate WSB solution would satisfy the stays on p1.x and p1.y, but another legitimate WSB

solution would satisfy the stays on p1.x, p2.y, and p3.y.

Here is a cleaner way to handle this situation. We �rst introduce a new comparator with the

dubious name of tilted-locally-error-better. The set of TLEB solutions can be de�ned by taking a

26

given hierarchy, forming all possible hierarchies by breaking strength ties in all possible ways to form

a totally ordered set of constraints, and taking the union of the sets of solutions to each of these

totally ordered hierarchies.

For example, consider the two constraints weak x = 0 and weak x = 10. The set of LEB solutions

is the in�nite set of mappings from x to each number in [0; 10]. Assuming equal weights on the

constraints, the (single) least-squares solution is fx 7! 5g. The TLEB solutions are de�ned by

producing all the totally ordered hierarchies and taking the union of their solutions. In this case the

two possible total orderings are:

weak x = 0, slightly weaker x = 10

slightly weaker x = 0, weak x = 10

These have solutions fx 7! 0g and fx 7! 10g respectively, so the set of TLEB solutions to the original

hierarchy is ffx 7! 0g ; fx 7! 10gg.

As an aside, we hypothesize that the only psychologically plausible solutions to the example are

fx 7! 0g, fx 7! 5g, and fx 7! 10g, but not e.g. fx 7! 3:8g | although this hypothesis hasn't been

tested. Another relevant question is whether users prefer any of these solutions over others (for a

given application domain).

Next, we introduce a notion of a compound constraint, a conjunction of primitive constraints, in this

case linear equalities or inequalities. For compound constraints, when we break the strength ties in

de�ning the set of tilted-locally-error-better solutions, we insist on mapping each linear equality or

inequality in a compound constraint to an adjacent strength. (We have actually been a bit sloppy in

the use of the term \constraint" in this paper, sometimes using it to denote a primitive constraint

and sometimes to denote a conjunction of primitive constraints. For the present de�nition, however,

we need to distinguish compound constraints that have been speci�cially identi�ed as such by the

user from conjunctions of primitive constraints more generally, such as the constraints C

S

and C

U

discussed in Section 2.1.)

Now, to de�ne addPointStays: in a more clean way, we could make each point stay a compound con-

straint. To illustrate why this works, consider the midpoint example again. We have two endpoints

p1 and p2, and a midpoint m. There are constraints (p1.x+p2.x)/2 = m.x and (p1.y+p2.y)/2 = m.y,

and we are editing m. Then the stays on p1 and p2 will each be compound constraints:

weak (p1:x stay & p1:y stay)

weak (p2:x stay & p2:y stay)

In de�ning the set of tilted-locally-error-better solutions, the total orderings of these constraints

that we will consider have the stays on p1:x and p1:y both stronger than those on p2:x and p2:y, or

both weaker. This produces the desired result.

Note that it is not su�cient just to de�ne a notion of \compound constraint" without adding the

notion of tilting | otherwise if we were using locally-error-better, we would just sum the errors of

the primitive constraints, which would allow us to trade o� the errors arbitrarily and hence satisfy

the stay on the x component of one point and the y component of another.

Note also that all of this is not a problem for QOCA| its least-squares-better comparator distributes

the error to the x and y components of all the points with stays of the same strength.

5 QOCA: Quadratic Optimization

Another useful way of comparing solutions to constraint hierarchies is least-squares-better, in which

case we are interested in solving optimization problems of the form, referred to as QP :

27

minimize f subject to C

where f =

P

n

i=1

w

i

(x

i

� d

i

)

2

The variables are x

1

; : : : ; x

n

, and C is the set of required constraints. The desired value for variable

x

i

is d

i

, and the \weight" associated with that desire (which should reect the hierarchy) is w

i

.

This problem is a type of quadratic programming in which a quadratic optimization function is

minimized with respect to a set of linear arithmetic equality and inequality constraints. In particular,

since the optimization function is a sum of squares, the problem is an example of convex quadratic

programming, meaning that the local minimum is also the global minimum. This is fortunate,

since convex quadratic programming has been well-studied and e�cient methods for solving these

problems are well-known in the operations research community. Here we will present two methods.

The �rst is a variant of the simplex algorithm introduced earlier, while the second, based on \active

sets," is the method of choice for medium scale problems consisting of up to 1000 variables and

constraints.

5.1 Linear Complementary Pivoting

Arguably the simplest approach to solving convex quadratic problems is a simple modi�cation of

the simplex algorithm that �nds the local optimum of a quadratic problem, which since the problem

is convex, is the global optimimum.

Now, a solution is a local minimum if in every direction either the optimization value increases or

the region becomes infeasible. The information about infeasibility is captured by the constraints in

the original problem (called the primal problem). Information about how the optimization function

decreases is captured in the so-called dual problem which is obtained by looking at the derivative of

the optimization function. The idea is therefore to combine the primal and dual problems and solve

these together. Any solution to their combination will be a feasible optimal solution for the original

problem. The point about a quadratic problem is that the derivative of a quadratic optimization

function is linear. Thus both the dual and the primal problem consist of linear arithmetic constraints

and so a variant of the simplex can be used to solve their conjunction. Let the constraints in the

primal problem be in basic feasible solved form:

PP :

n

^

i=1

x

i

= b

i

�

m

X

j=1

a

ij

y

j

where x

1

; :::; x

n

are the basic variables and y

1

; :::; y

m

are the parameters and let the function to

be minimized be O and assume that basic variables have been eliminated from O. Then the dual

problem is

DP :

m

^

j=1

t

j

=

@O

@y

j

+

n

X

i=1

a

ij

z

i

where z

1

; :::; z

n

� 0 are the dual variables (one for each equation in the primal problem) and

t

1

; :::; t

m

� 0 are the dual slack variables.

The combined problem CP is the conjunction of the dual and primal problem plus the constraints

that for all i and j, x

i

� z

i

= 0 and y

j

� t

j

= 0. Note that the last constraints mean that in the

combined problem every variable has a complementary variable which is not allowed to be positive

if it is.

28

For example, imagine that our primal problem is the constraints from before:

x

m

= 50 +

1

2

x

l

�

1

2

s

4

s

1

= 90 �x

l

�s

4

s

2

= 100 �x

l

s

3

= 95 �

1

2

x

l

+

1

2

s

4

x

r

= 100 �s

4

and that we have the weak stay constraints x

l

= 10, x

m

= 50 and x

r

= 90. The optimization

problem is therefore to minimize

(x

l

� 10)

2

+ (x

m

� 50)

2

+ (x

r

� 90)

2

:

Eliminating basic variables from this function gives

O = (x

l

� 10)

2

+ (

1

2

x

l

�

1

2

s

4

)

2

+ (10� s

4

)

2

:

Now

@O

@x

l

= 2(x

l

� 10) + (2�

1

2

)(

1

2

x

l

�

1

2

s

4

) =

5

2

x

l

�

1

2

s

4

� 20

and

@O

@s

4

= (2��

1

2

)(

1

2

x

l

�

1

2

s

4

)� 2(10� s

4

) = �

1

2

x

l

+

5

2

s

4

� 20:

The dual problem is therefore

t

1

= �20 +

5

2

x

l

�

1

2

s

4

+

1

2

z

1

�z

2

�z

3

�

1

2

z

4

t

2

= �20 +�

1

2

x

l

+

5

2

s

4

�

1

2

z

1

�z

2

+

1

2

z

4

�z

5

Putting the primal and dual together we obtain the problem:

x

m

= 50 +

1

2

x

l

�

1

2

s

4

s

1

= 90 �x

l

�s

4

s

2

= 100 �x

l

s

3

= 95 �

1

2

x

l

+

1

2

s

4

x

r

= 100 �s

4

t

1

= �20 +

5

2

x

l

�

1

2

s

4

+

1

2

z

1

�z

2

�z

3

�

1

2

z

4

t

2

= �20 +�

1

2

x

l

+

5

2

s

4

�

1

2

z

1

�z

2

+

1

2

z

4

�z

5

where the variables in the problem and their complements are given by:

x

l

$ t

1

x

m

$ z

1

x

r

$ z

5

s

1

$ z

2

s

2

$ z

3

s

3

$ z

4

s

4

$ t

2

A consequence of the way the dual is constructed is that a variable and its complement cannot both

be basic, meaning that the solution read from the basic feasible solved form automatically satis�es

the complementary condition.

29

Unfortunately the complete problem is not in basic feasible form. To transform it into basic feasible

form we add an arti�cial variable v to every equation giving the equations:

x

m

= 50 +v +

1

2

x

l

�

1

2

s

4

s

1

= 90 +v �x

l

�s

4

s

2

= 100 +v �x

l

s

3

= 95 +v �

1

2

x

l

+

1

2

s

4

x

r

= 100 +v �s

4

t

1

= �20 +v +

5

2

x

l

�

1

2

s

4

+

1

2

z

1

�z

2

�z

3

�

1

2

z

4

t

2

= �20 +v �

1

2

x

l

+

5

2

s

4

�

1

2

z

1

�z

2

+

1

2

z

4

�z

5

We now pivot on the row with the largest negative constant. In this case either the row with basic

variable t

1

or that with t

2

. Say we arbitrarily choose t

2

then we obtain:

x

m

= 70 +t

2

+x

l

�3s

4

+

1

2

z

1

+z

2

�

1

2

z

4

+z

5

s

1

= 110 +t

2

�

1

2

x

l

+

3

2

s

4

+

1

2

z

1

+z

2

�

1

2

z

4

+z

5

s

2

= 120 +t

2

�

1

2

x

l

�

5

2

s

4

+

1

2

z

1

+z

2

�

1

2

z

4

+z

5

s

3

= 115 +t

2

�2s

4

+

1

2

z

1

+z

2

�

1

2

z

4

+z

5

x

r

= 120 +t

2

+

1

2

x

l

�

7

2

s

4

+

1

2

z

1

+z

2

�

1

2

z

4

+z

5

t

1

= 0 +t

2

+3x

l

�3s

4

+z

1

�z

3

�z

4

+z

5

v = �20 +t

2

+

1

2

x

l

�

5

2

s

4

+

1

2

z

1

+z

2

�

1

2

z

4

+z

5

We have now obtained a solved form which is basic feasible and which satis�es the complementary

conditions. The only problem is that the arti�cial variable v is in the basis. We continue pivoting

until v leaves the basis. At each pivot we choose to make basic the variable which is complementary

to the variable which just left the basis. Thus in the next stage we would choose to move s

4

into the

basis since this is the complement of t

2

. We use the standard simplex row selection rule to determine

which variable to move out of the basis. This ensures that feasibility is maintained. Because we only

move a variable into the basis once its complementary variable has been moved out of the basis this

means that the solution corresponding to any of the solved forms will satisfy the complementary

conditions.

In analogy with the incremental simplex algorithm we can modify this algorithm so that it is incre-

mental for resolving. Changing the desired variable values only changes the constants in the solved

form. There are two possibilities. If the solved form remains feasible, then we just read the new

solution directly from the solved form. Otherwise, the solved form is now infeasible. In this case we

proceed as above, �rst introducing an arti�cial variable v and making the solved form feasible, then

pivoting until v leaves the basis.

We are currently exploring an implementation based on complementary pivoting.

5.2 Active Set Method

Our current implementation of QOCA uses the active set method [7] to solve the convex quadratic

programming problem. This method is an iterative technique for solving constrained optimization

problems with inequality constraints. It is reasonably robust and quite fast, and is the method of

choice for medium scale problems consisting of up to 1000 variables and constraints.

The key idea behind the algorithm is to solve a sequence of constrained optimization problems O

0

,

..., O

t

(t � 0). Each problem minimizes f with respect to a set of equality constraints, A, called

the active set. The active set consists of the original equality constraints plus those inequality

30

constraints that are \tight," in other words, those inequalities that are currently required to be

satis�ed as equalities. The other inequalities are ignored for the moment.

Essentially, each optimization problem O

i

can be treated as an unconstrained quadratic optimization

problem, denoted by U

i

. To obtain U

i

, we rewrite the equality constraints in O

i

in basic feasible

solved form, and then eliminate all basic variables in the objective function f . The optimal solution

is the point at which all of the partial derivatives of f equal zero. The problem U

i

can be solved

easily, since we are dealing with a convex quadratic function f and so its derivatives are linear. As

a result, to solve U

i

we need only solve a system of linear equations over unrestricted variables.

In more detail, in the active set method, we assume at each stage that a feasible initial guess

x

0

= (x

1

; � � �x

n

)

T

is available, as well as the corresponding active set A. Assume that we have just

solved the optimization problem O

0

, and let its solution be x

�

0

. We face the following two possibilities

when determining the new approximate solution x

1

.

1. x

�

0

is feasible with respect to the constraints in O

0

but it violates some inequality constraints

in QP that are not in the current active set A. In this case, a scalar � 2 [0; 1] is selected, such

that it is as large as possible and the point x

0

+ �(x

�

0

� x

0

) is feasible. This point is taken

as the new approximate solution x

1

, and the violated constraints are added to the active set,

giving rise to a new optimization problem O

1

.

2. x

�

0

is feasible with respect to the original problem QP . It is directly taken as the new ap-

proximate solution x

1

and we test to see it is also optimal QP . This requires us to check if

there exists a direction s at x

1

, such that a feasible incremental step along s reduces f . If such

direction s exists, then one constraint is taken out of the active set A to generate the direction

s, which results in a new optimization problem O

1

. If no such direction exists we are �nished

since x

1

is both feasible and optimal.

If the active set is modi�ed, the whole process is repeated until the optimal solution is reached.

Note that the active set method is closely related to the simplex method. Those inequalities whose

slack variables are not basic are in the active set, while those whose slack variables are basic are not.

Pivoting corresponds to moving one inequality out of the active set and replacing it by another.

Consider our working example with the weak constraints that x

m

= 50, x

l

= 30 and x

r

= 70. This

gives rise to the minimization problem QP

1

:

minimize f

1

= (x

m

� 50)

2

+ (x

l

� 30)

2

+ (x

r

� 70)

2

subject to

(1) 2x

m

�x

l

�x

r

= 0

(2) �x

l

+x

r

� 10

(3) �x

r

� �100

(4) x

l

� 0

Although it is obvious that x

m

= 50; x

l

= 30; x

r

= 70 or x

�

= (50; 30; 70)

T

is the optimal solution,

it is still instructive to see how the active set method computes this. The initial guess and active set

are read from the augmented simplex form tableux. We start with an initial guess x

m

= 50; x

l

=

0; x

r

= 100, i.e. x

0

= (50; 0; 100)

T

, and constraints 1, 3 and 4 are active. Thus A

(1)

0

= f1; 3; 4g is

the initial active set. The equality constrained optimization problem O

(1)

0

is therefore

minimize f

1

subject to

2x

m

�x

l

�x

r

= 0

�x

r

= �100

x

l

= 0

31

The problem O

(1)

0

has only one feasible solution x

m

= 50; x

l

= 0; x

r

= 100, so it is also the optimal

solution, denoted by x

�

0

. Next we check if x

�

0

is the optimal solution to the problem QP

1

. Constraint

4 forces x

l

to take the value 0 in x

�

0

. However, the value of the objective function f

1

can be reduced

if x

l

is increased. Thus the 4th constraint x

l

� 0 can be moved out of the active set in order to

further reduce the value of f

1

. This gives x

1

= x

�

0

as the new approximate solution, A

(1)

1

= f1; 3g

as the active set and the optimization problem O

(1)

1

as

minimize f

1

subject to

2x

m

�x

l

�x

r

= 0

�x

r

= �100

To solve O

(1)

1

, we rewrite the constraints in O

(1)

1

to a basic feasible solved form x

r

= 100 ^ x

l

=

2x

m

� 100, and then eliminate basic variables in the function f

1

. This results in the following

unconstrained optimization problem

minimize (x

m

� 50)

2

+ (2x

m

� 100� 30)

2

+ (100� 70)

2

Setting the derivative to be zero we obtain

2(x

m

� 50) + 2� 2(2x

m

� 130) = 0:

Solving this together with the constraint in O

(1)

1

, the optimal solution of O

(1)

1

is found to be

x

�

1

= (62; 24; 100)

T

. It is easy to verify that x

�

1

is still feasible. Similarly to the case for x

�

0

, in

x

�

1

x

r

is forced to take the value 100 because of the 3rd constraint, yet the function value f

1

can be

reduced if x

r

is decreased. So the 3rd constraint �x

r

� �100 is moved out of the active set. We

now have the new approximate solution x

2

= x

�

1

, the active set A

(1)

2

= f1g and the optimization

problem O

(1)

2

:

minimize f

1

subject to 2x

m

� x

l

� x

r

= 0:

To solve this problem, we repeat the same procedure as for solving O

(1)

1

. The solution to this problem

satis�es the equations:

2(x

m

� 50) + 2� 2(2x

m

� x

l

� 70) = 0

2(x

l

� 30) + 2(2x

m

� x

l

� 70) = 0

(1)

These together with the constraint in O

(1)

2

have the solution x

�

= (50; 30; 70)

T

. This is the optimal

solution to O

(1)

2

and is also the optimal solution to the original problem QP

1

.

x

r

0 10050

x

m

x

l

Figure 5: Resolving the constraints using QOCA

Now imagine that we have started to manipulate the diagram. We have the weak constraints that

x

l

= 30 and x

r

= 70 and the strong constraint that x

m

= 60. Reecting this, we change the �rst

term in the function f

1

to be 1000(x

m

� 60)

2

, denote it as f

2

and the corresponding optimization

32

problem as QP

2

. Starting from x

0

= (50; 30; 70)

T

, which is the optimal solution to QP

1

, an equality

constrained problem O

(2)

0

is formed. O

(2)

0

is the same as O

(1)

2

, except that they have di�erent

objective functions. The solution to O

(2)

0

satis�es similar linear equations to those of (1). These can

be obtained by replacing the term 2(x

m

�50) in the �rst equation of (1) by 1000(x

m

�60) reecting

the change in the objective function. A solved form for these equations is

x

m

=

500

501

� 60 +

50

501

x

l

= x

m

� 20

(2)

which leads to the optimal solution for both O

(2)

0

and QP

2

as x

m

= 59:98; x

l

= 39:98; x

r

= 79:98.

Note that the exact least-squares-better solution is actually x

m

= 60; x

l

= 40; x

r

= 80. With

quadratic optimization the strong constraints don't completely dominate the weak ones in the com-

puted solution. However, by choosing a suitably large constant we found a solution that is least-

squares-better to under a one-pixel resolution, so that the deviation from a least-squares-better

solution would not be visible in an interactive system.

In practice, this appears to work well. However, in principle it is possible to solve the problem

iteratively by computing the solution to a sequence of quadratic optimization problems in which the

constants grow by an order of magnitude and stopping when the solution is su�ciently close to the

limit. It might also be possible to solve the problem by using symbolic values, however, this is more

di�cult than in the Cassowary algorithm because of more complex manipulation.

To modify the active set method so that it is incremental for resolving, we observe that changing

the desired variable values only changes the optimization function f . Thus we can reuse the active

set from the last resolve and reoptimize with respect to this. In most cases the active set does not

change, and so we are done. Otherwise we proceed as above.

For example, if we now move x

m

from 60 to 90, we change the objective function again, but need

only change the desired values and can keep the weights the same as they are in f

2

, e.g. in the new

objective function f

3

, the variable x

m

has a new desired value 90. The corresponding optimization

problem is referred to as QP

3

. To solve this problem, the resolve procedure makes use of the

information from the previous solve QP

2

, while applying the active set method to QP

3

. When

resolving, it is important to notice that, if we start from the solution for the previous problem QP

2

,

i.e. x

0

= (59:98; 39:98; 79:98)

T

, then the solution to the corresponding equality constrained problem

O

(3)

0

,

minimize f

3

subject to 2x

m

� x

l

� x

r

= 0,

can be easily obtained. In fact, one can just replace the desired value 60 for x

m

in (2) by its new

desired value 90, which leads to the optimal solution to O

(0)

3

as x

�

0

= (89:9202; 69:9202; 109:9202)

T

.

If the desired value does not change too much, it is quite likely that x

�

0

is also optimal for QP

3

.

Unfortunately, this is not the case for this example, since x

�

0

violates the 3rd constraint �x

r

� �100.

Choosing � 2 [0; 1] to be as big as possible while still ensuring that x

1

= x

0

+�(x

�

0

�x

0

) is feasible,

we have � = 0:6687 and x

1

= x

0

+ �(x

�

0

� x

0

) as the new approximate solution, at which the 3rd

constraint becomes active. By solving the corresponding equality constrained problem Q

(3)

1

,

minimize f

3

subject to 2x

m

� x

l

� x

r

= 0; �x

r

= �100,

the optimal solution to QP

3

is found to be x

m

= 89:9003, x

l

= 79:8007, x

r

= 100.

Figure 5 shows the e�ect of moving the horizontal line with the least squares comparator. With

this comparator the line moves right maintaining the same length until it hits the right boundary,

33

at which point it starts to compress. This contrasts with the behaviour of the locally-error-better

comparator in which the line grew until it bumped against the side.

The actual implementation of QOCA is rather more complex than this example suggests and the

reader is referred to [7] for more details.

6 Empirical Evaluation

Both algorithms have been implemented and tested.

Our algorithms for incremental addition and deletion of equality and inequality constraints and

for solving and resolving for the least-square comparator using the QOCA algorithm have been

implemented as part of the QOCA C++ constraint solving toolkit. The results are very satisfactory.

For a test problem with 300 constraints and 300 variables, adding a constraint takes on average

1:5 msec, deleting a constraint 1:6 msec, the initial solve 12 msec, and subsequent resolving as the

point moves 4:5 msec. For a larger problem with 900 constraints and variables, adding a constraint

takes on average 9:7 msec, deleting a constraint 17 msec, the initial solve 120 msec, and subsequent

resolving as the point moves 67 msec. These tests were run a sun4m sparc, running SunOS 5.4.

Cassowary has been initially implemented in Smalltalk. Running the Smalltalk implementation

of Cassowary on the same problems, for the 300 constraint problem, adding a constraint takes on

average 38 msec (including the initial solve), deleting a constraint 46 msec, and resolving as the point

moves 15 msec. (Stay and edit constraints are represented explicitly in this implementation, so there

were also stay constraints on each variable, plus two edit constraints, for a total of 602 constraints.)

For the 900 constraint problem, adding a constraint takes on average 98 msec (again including the

initial solve), deleting a constraint 151 msec, and resolving as the point moves 45 msec. These tests

were run using an implementation in OTI Smalltalk Version 4.0 running on a IBM Thinkpad 760EL

laptop computer.

We have recently reimplemented Cassowary in Java, but haven't done any performance measure-

ments yet.

As these measurements are for implementations in di�erent languages, running on di�erent machines,

they should not be viewed as any kind of head-to-head comparison. Nevertheless, they indicate that

both algorithms are eminently practical for use with interactive graphical applications.

The QOCA toolkit has been employed in a number of applications. The �rst application is part of an

intelligent pen and paper interface that contains a parser to incrementally parse diagrams drawn by

the user using a stylus, and that has a diagram editor that respects the semantics of the diagram by

preserving the constraints recognized in the parsing process. QOCA is used for both error correction

in parsing and for diagram manipulation in the editor [6]. A second QOCA application is for layout

of trees and graphs in the presence of arbitrary linear arithmetic constraints and with suggested

placements for some nodes [8].

A Cassowary application currently being developed using the Java implementation is a web authoring

tool [5], in which the appearance of a page is determined by constraints from both the web author

and the viewer.

34

Acknowledgments

This project has been funded in part by the National Science Foundation under Grants IRI-9302249

and CCR-9402551 and in part by Object Technology International. Alan Borning's visit to Monash

University and the University of Melbourne was sponsored in part by the Australian-American

Educational Foundation (Fulbright Commission).

References

[1] David Bara�. Fast contact force computation for nonpenetrating rigid bodies. In SIGGRAPH

'94 Conference Proceedings, pages 23{32. ACM, 1994.

[2] Alan Borning, Richard Anderson, and Bjorn Freeman-Benson. Indigo: A local propagation

algorithm for inequality constraints. In Proceedings of the 1996 ACM Symposium on User

Interface Software and Technology, pages 129{136, Seattle, November 1996.

[3] Alan Borning and Bjorn Freeman-Benson. The OTI constraint solver: A constraint library for

constructing interactive graphical user interfaces. In Proceedings of the First International Con-

ference on Principles and Practice of Constraint Programming, pages 624{628, Cassis, France,

September 1995.

[4] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint hierarchies. Lisp and

Symbolic Computation, 5(3):223{270, September 1992.

[5] Alan Borning, Richard Lin, and Kim Marriott. Constraints for the web. In Proceedings of ACM

MULTIMEDIA'97, November 1997.

[6] S.S. Chok and K. Marriott. Automatic construction of user interfaces from constraint multiset

grammars. In IEEE Symposium on Visual Languages, pages 242{250, 1995.

[7] Roger Fletcher. Practical Methods of Optimization. John Wiley & Sons, Chichester, New York,

Brisbane, Toronto, Singapore, 1987.

[8] W. He and K. Marriott. Constrained graph layout. In Graph Drawing '96, volume 1190 of

LNCS, pages 217{232. Springer-Verlag, 1996.

[9] Richard Helm, Tien Huynh, Catherine Lassez, and KimMarriott. A linear constraint technology

for interactive graphic systems. In Graphics Interface '92, pages 301{309, 1992.

[10] Richard Helm, Tien Huynh, Kim Marriott, and John Vlissides. An object-oriented architecture

for constraint-based graphical editing. In Proceedings of the Third Eurographics Workshop on

Object-oriented Graphics, Champery, Switzerland, October 1992.

[11] Hiroshi Hosobe, Satoshi Matsuoka, and Akinori Yonezawa. Generalized local propagation:

A framework for solving constraint hierarchies. In Proceedings of the Second International

Conference on Principles and Practice of Constraint Programming, Boston, August 1996.

[12] Scott Hudson and Ian Smith. SubArctic UI toolkit user's manual. Technical report, College of

Computing, Georgia Institute of Technology, 1996.

[13] T. Huynh and K. Marriott. Incremental constraint deletion in systems of linear constraints.

Information Processing Letters, 55:111{115, 1995.

35

[14] Joxan Ja�ar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(R) language and

system. ACM Transactions on Programming Languages and Systems, 14(3):339{395, July 1992.

[15] Kim Marriott and Peter Stuckey. Introduction to Constraint Logic Programming. Mit Press,

1997. In preparation.

[16] Brad A. Myers. The Amulet user interface development environment. In CHI'96 Confer-

ence Companion: Human Factors in Computing Systems, Vancouver, B.C., April 1996. ACM

SIGCHI.

[17] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical

Recipes: The Art of Scienti�c Computing. Cambridge University Press, second edition, 1989.

[18] Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning. Multi-way versus

one-way constraints in user interfaces: Experience with the DeltaBlue algorithm. Software|

Practice and Experience, 23(5):529{566, May 1993.

[19] Ivan Sutherland. Sketchpad: A man-machine graphical communication system. In Proceedings

of the Spring Joint Computer Conference, pages 329{346. IFIPS, 1963.

[20] Brad Vander Zanden. An incremental algorithm for satisfying hierarchies of multi-way dataow

constraints. ACM Transactions on Programming Languages and Systems, 18(1):30{72, January

1996.

36

