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Abstract

The impact of instruction cache misses and branch mispredictions on performance

is becoming increasingly important for processors that issue multiple instructions per

cycle. Mechanisms that address these two sources of performance degradation need to

be studied and re�ned. In this paper, we consider the e�ects of one such mechanism,

namely code reordering algorithms.

We evaluate the performance improvements of three variations of the Pettis and

Hansen code reordering algorithm on two instruction set architectures: RISC Alpha

and CISC IA32. We show that the algorithms lead to substantial improvements in the

fall-through rate of branches which results in decreases in instruction cache miss rates

and branch mispredictions. We show that the improvement in fall-through rate and

branch prediction is comparable in both ISA's but that the relative improvement in

the instruction cache miss rate is higher on the IA32 architecture.
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1 Introduction

Many current and next generation processors use aggressive out-of-order execution tech-

niques to hide the penalty of high latency operations such as data cache misses. Unfortu-

nately, these architectures cannot hide the penalty associated with instruction cache misses

and branch mispredictions. Hence mechanisms that address these two sources of performance

degradation are becoming increasingly important. In this paper, we consider the e�ects of

one such mechanism, namely code reordering algorithms.

Code reordering algorithms improve performance by taking procedures and basic blocks

of a program and reordering them based on pro�le information to take advantage of speci�c

aspects of the memory hierarchy and the branch control implementation. For modern archi-

tectures, this involves mostly increasing the number of fall-through branches. A binary that

is reordered this way has several performance advantages over a non-reordered binary. First,

since many architectures impose a misfetch penalty even for branches that are correctly pre-

dicted but do not appear in the Branch Target Bu�er (BTB)

1

, code reordering algorithms

reduce the misfetch penalty by reducing the number of taken branches. Second, since most

modern architectures only store taken branches in the BTB, code reordering algorithms ef-

fectively reduces the BTB miss rate because a smaller number of branches need to use the

BTB. Third, by placing code that is commonly used together closer in space, code reordering

algorithms reduce the number of con
ict misses in the instruction cache and increase the

utilization of cache lines. Fourth, by increasing the length of uninterrupted code sequences,

code reordering algorithms increase the e�ectiveness of prefetching between the cache and the

instruction bu�er as well as expand the dynamic instruction window size. Finally, by moving

rarely used code to the end of a binary, code reordering algorithms reduce the working set

size of a program. This compaction can decrease memory requirements, reduce the Trans-

lation Lookaside Bu�er (TLB) miss rate, and reduce the tra�c on the processor-memory

bus.

In this paper, we evaluate the performance improvement of the Pettis and Hansen code

reordering algorithm [Pettis & Hansen 90] on two di�erent Instruction Set Architectures

(ISA): CISC (Intel IA32) and RISC (DEC Alpha). We show that the algorithm substan-

tially improves the fall-through rate of branches, reduces the instruction cache miss rate,

and improves the accuracy of branch prediction. We also show that the improvement in

fall-through rate and branch prediction is comparable in both ISA's but that the relative

improvement in the instruction cache miss rate is slightly higher on the IA32 architecture.

The rest of this paper is organized as follows. In Section 2 we brie
y review related

work in code reordering algorithms and describe in detail our implementation of the Pettis

and Hansen algorithm [Pettis & Hansen 90]. Section 3 presents our evaluation methodology

including our tools, benchmarks and experiments. Section 4 contains the results and analyses

of our simulations. We conclude with a summary of our results and suggestions for future

work in Section 5.

1

For example, the MIPS R10000 and the DEC Alpha 21164 impose a once cycle penalty even for correctly

predicted branches.
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2 The Pettis and Hansen Code Reordering Algorithm

2.1 Related Work

Several code reordering algorithms have been proposed over the past few years. Pettis and

Hansen [Pettis & Hansen 90] introduced the algorithm that we implemented for this work.

Their algorithm yields an impressive reduction in the instruction cache miss rate and does not

use inlining which can increase the size of the binary. Hwu and Chang [Hwu & Chang 89]

proposed a similar algorithm, with inlining, that performs layout of traces (basic blocks

which tend to execute in sequence) instead of basic blocks. McFarling [McFarling 89] takes

a slightly di�erent approach: instead of trying to position related basic blocks close to each

other, he tries to position them in non-con
icting cache locations. His algorithm is sensitive

to the size of the instruction cache and does not give a comparable increase in the branch

fall-through rate, but can yield the lowest instruction cache miss rate. In a similar vein,

Hashemi et al. [Hashemi, Kaeli, & Calder 97] use Pettis and Hansen as a base and extend

it through cache line coloring to avoid con
icts between concurrently executing procedures.

Their algorithm is cache size and line size speci�c. They report a reduction of 17% over Pettis

and Hansen in instruction cache miss rate. Calder and Grunwald [Calder & Grunwald 94]

address speci�cally the branch alignment problem and give two algorithms that improve on

Pettis and Hansen's for the reduction of penalties due to branch mispredictions.

Spurred by the advances in hardware based two-level branch predictors [Yeh & Patt 91],

Krall [Krall 94] and Young and Smith [Young & Smith 94] have proposed schemes which,

by pro�ling patterns, can recognize correlated branches. Prediction performance can be

improved at the expense of increased code size through duplication of some basic blocks.

We are not aware of any study that measures the impact of such schemes on the instruction

cache miss rate.

Finally, we should note that control 
ow predictions based on pro�ling runs are generally

good [Fisher & Freudenberger 92]. Our experiments con�rm this observation. The results

that we will report in Section 4 are based on input testing sets di�erent from the learning

input sets.

2.2 Pettis and Hansen algorithm

The Pettis and Hansen code reordering algorithm consists of two main parts: procedure

positioning and basic block positioning. Basic block positioning is done separately for each

procedure so code from di�erent procedures is not mixed. We describe this as the local

approach in Section 2.3. Depending on whether we keep the order of procedures unchanged

or we apply procedure positioning, there are two possible local reorderings: 1) basic block

only (bb only) where the original order of procedures is left unchanged, and 2) procedure

positioning in addition to local basic block positioning (proc-block). It is also possible to

apply Pettis and Hansen's basic block positioning algorithm to the whole binary, hence

mixing code from di�erent procedures. We call this the global approach and describe it in
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Section 2.4.

2.3 A Local Algorithm

2.3.1 Procedure Positioning

The procedure positioning algorithm takes an undirected call graph as input, and produces an

ordered list of procedures as output. In the call graph, vertices correspond to procedures, and

edge weights designate the dynamic call frequency obtained by the pro�ler. The heuristic

used by the algorithm is \closest is best", meaning that if one procedure calls another

frequently, we want them to end up close to each other in the �nal code. This strategy

helps improve performance in several ways. First, it helps avoid some instruction cache

con
icts between procedures that should often be in the cache at the same time. Second,

it reduces the distance of branches, which can have an impact on the length of the branch

instructions (such as with the Intel IA32 architecture), or on the type of instructions used

for the branches (such as with the DEC Alpha architecture). Finally, this heuristic can help

reduce the number of pages in the working set of an application, hence decreasing memory

requirements.

The algorithm takes a greedy approach by examining all the edges in order of decreasing

weight. At each stage, the two nodes connected by the edge of highest weight are merged.

A merged node contains an ordered list of all the procedures that compose it. Hence every

node in the graph is either a primitive node which corresponds to exactly one procedure, or

is a merged node which contains an ordered list of procedures.

The primary observation made by Pettis and Hansen is that when merging two nodes,

at most four di�erent con�gurations need to be considered, and that these con�gurations are

obtained by the binary choices of reversing the �rst node and reversing the second node. For

example, when merging A and B, we only need to consider the following four con�gurations:

AB, A

reverse

B, AB

reverse

, and A

reverse

B

reverse

. Note that each of these con�gurations has

a dual which corresponds to a node with the reverse con�guration, that is, a node whose

procedure list is reversed. For example, the dual of AB is B

reverse

A

reverse

. However, the duals

need not be considered at this stage because the procedure ordering in the merged node C

can be reversed when C is merged with another node if necessary. The best con�guration

is chosen via a rank function that takes the \closest is best" strategy into account. In our

implementation, we followed the original paper and used the sum of the edge weights for all

adjacent procedures as the ranking function.

2.3.2 Basic Block Positioning

Once the procedures have been positioned, either by keeping the original ordering or by

applying the above algorithm, the basic block positioning algorithm tries to improve perfor-

mance by making as many branches fall through as possible. We expect that block reordering

will increase the average number of instructions executed per cache line, and reduce the in-
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Figure 1: An example where depth-�rst traversal could produce a bad layout if C rather than

B is selected to be close to A.

struction cache miss rate. We also expect that it will reduce the number of entries in the

BTB (because the BTB does not allocate entries for fall-through branches), which in turn

reduces the BTB miss rate. Moreover, replacing correctly predicted taken branches by cor-

rectly predicted non-taken branches is also a bene�t for some microarchitectures. Finally,

block reordering should result in longer uninterrupted, control-
ow wise, code sequences

and in e�ectively expanding the dynamic instruction window size and in providing more

opportunities for code prefetching.

One major di�erence between the basic block positioning algorithms and the procedure

positioning algorithms is that basic block positioning algorithms deal with directed graphs.

In other words, since it is important for most branches to fall through, the �nal ordering of

basic blocks must depend on the order of the nodes in the graph, and not just their distance

from each other.

Pettis and Hansen proposed two basic block positioning algorithms in their original

paper. The �rst algorithm performs a simple depth-�rst traversal of the CFG (Control Flow

Graph), giving preference to edges with higher weights. This algorithm, however, doesn't

always make great choices. For example, suppose that both basic blocks A and B have

control transitions into C, with frequencies of 10 and 10,000 respectively (see Figure 1). If A

is encountered �rst in the depth-�rst traversal, then C may be placed immediately following

A, even though a much better layout would place C immediately following B. The second

algorithm overcomes this problem by considering all the edges in order of decreasing weight.

This algorithm creates ordered lists of basic blocks using a bottom-up traversal, keeping the

direction of edges in the original CFG. For this paper, we implemented the second algorithm.

2.4 A Global Algorithm

The approach described in Section 2.3 has very clean semantics, and is especially appealing

from an implementation perspective, because code from di�erent procedures is not mixed.

Such a local approach, however, does not take advantage of the full potential of code re-

ordering algorithms. Mixing code across procedures can signi�cantly reduce the working set
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of an application. We thus consider a global algorithm where the bottom-up basic block

positioning algorithm is used across procedures. In other words, the input basic block CFG

is that of the whole program and not just a single procedure. In some sense we e�ectively

inline part of a procedure where it is used most often. However, contrary to conventional

inlining, we do not replicate code and the \inlining" occurs only once per basic block.

3 Methodology

3.1 Tools and the Measurement Process

In practice, there are two main approaches for applying code reordering algorithms to pro-

gram binaries: as an optimization phase of the compiler, or as a post-compile optimization

phase using a binary rewriting engine. The �rst method requires the source code for the

compiler and may require that the implementation be compiler speci�c. However, other

phases of the compiler would have the opportunity to take advantage of the pro�le informa-

tion to generate better code. We chose to use the second method, binary rewriting, to share

the same reordering code across two very di�erent platforms running two di�erent compil-

ers (i.e., cc on the DEC Alpha platform and MSVC on the IA32 platform). The binary

instrumentation tools that we use are ATOM [Digital Equipment Corporation 94] running

on the DEC Alpha and Etch [Romer, et. al. 97] running on Pentium and Pentium Pro.

The measurement process consists of three phases:

1. We instrument the applications to record pro�ling information. We then run the

resulting binaries to produce a CFG where edge weights correspond to frequencies of

control transfer. The CFG and associated weights are gathered from a learning input

set for each application.

2. We use the pro�ling information to generate the optimized layout according to one of

the versions of the Pettis and Hansen algorithm described in the previous section.

3. We measure the e�ectiveness of the optimized layout by instrumenting the binary and

simulating a machine running the optimized binary. These runs are performed on a

testing input set di�erent from the learning input set.

Note that we never produce a binary with the new layout, because we don't have a tool

that modi�es the layout of a binary on the Alpha

2

. Instead, the simulator �rst translates

the original addresses to new addresses as if the binary were reordered. This means that

our measurements are not perfectly accurate because we don't modify the control transfer

instructions to re
ect the new layout but we believe that the error is a small, second order

e�ect.

2

Etch can produce modi�ed binaries on the IA32, but we chose not to use these so that we would use the

same methodology on both platforms.

6



3.2 Benchmarks

Table 1 shows some statistics for the six SPECInt95 benchmarks used for this study. The

same source �les, learning and testing input sets, were used on both the IA32 and the Alpha,

and they were compiled by MSVC 4.2 and Digital Unix cc 3.11 respectively. Measurements

were taken only for user activity.

Executable Instr. Executed Control Transfers Icache Miss Rate

Size learning/testing learning/testing learning/testing

in KBytes in Millions in Millions

Applic. IA32 Alpha IA32 Alpha IA32 Alpha IA32 Alpha

gcc 1478 2195 247/308 349/432 62/77 60/74 3.96%/3.90% 4.99%/4.97%

li 149 172 512/559 815/895 143/156 158/172 1.45%/1.44% 2.49%/2.63%

ijpeg 257 328 649/580 1018/910 119/105 117/104 0.00%/0.00% 0.03%/0.03%

compress 163 106 210/414 399/784 48/97 48/98 0.13%/0.00% 0.00%/0.00%

perl 414 500 12/1057 13/1025 2.7/242 2.3/192 3.91%/5.43% 4.69%/6.28%

m88ksim 223 300 82/418 76/391 14/69 14/70 0.01%/0.00% 4.11%/4.14%

Table 1: Benchmarks used for this study. The Icache miss rates are for a direct mapped 8K

cache with 32 bytes line size. Miss rates of less than 0.01% are shown as 0.00%. Note that

the testing set in perl executed 100 times more instructions than the learning set, compress

testing set executed twice as many instructions, and the testing set in m88ksim �ve times

as many.

Table 1 shows that the Alpha RISC architecture generally requires more instructions

to accomplish a given task than the IA32 CISC architecture (gcc, li, ijpeg, and compress).

In all cases but one (learning set of compress), the Alpha instruction cache miss rates are

higher than the IA32's for the 8 KB 32 byte line instruction cache size. Except for li, this

trend will be consistent even when we vary cache sizes, line sizes, and reordering algorithms.

We expect that the IA32 would have the better miss rate since its average instruction size

is smaller than the Alpha �xed 4-byte instruction size: more instructions can �t in a cache

line and a larger text in the cache itself. An extreme example is m88ksim where the miss

rate is quite high for the Alpha (over 4%) but negligible for the IA32 even though the IA32

executes more instructions.

While instruction cache miss rates depend to some extent on the ISA, the number of

branches depend on the program. We expect that the absolute number of branches be very

similar for each application on both architectures. This is indeed the case, with di�erences

of less than 3% on four benchmarks out of six (gcc, ijpeg, compress, and m88ksim). The

outliers are li where the Alpha has 9% more branches and perl where the IA32 executes 14%

more branches. We will discuss these statistics further in Section 4.

7



3.3 Measurements

Recall that one of the goals of the code reordering algorithms is to increase the number

of instructions that fall through hence improving the instruction cache hit rate and branch

prediction. We will examine how well this goal is realized by measuring the fall-through rate

of control transfer instructions.

To compare the e�ectiveness of the reordering algorithms on two di�erent ISA's, we

assume that the instruction caches and the branch control mechanisms are the same for

both architectures. Unless otherwise speci�ed, the instruction cache will be an 8 KB direct-

mapped cache with 32-byte line size. The branch architecture will use a 64 entry 4-way

set-associative BTB and a 512 entry gshare Pattern History Table (PHT) [McFarling 92].

To estimate the improvement in performance, we measure:

� The instruction cache miss rate.

� The reduction in branch misfetches: A branch misfetch occurs when there is a delay

in identifying an instruction as a branch, or when a correctly predicted branch has to

wait for its target address to be calculated.

� The reduction in branch mispredicts: A branch mispredict occurs when the behavior

of a conditional branch is predicted incorrectly by the PHT. or when an indirect jump

has the wrong address in the BTB.

Our expectations are that the reordering algorithms will reduce the cache miss rate by

better utilizing the cache lines and avoiding some con
ict misses, reduce the BTB miss rate

by decreasing the number of branches that require BTB entries, and reduce the number of

branch mispredicts by decreasing the harmful e�ects of aliasing in the PHT.

We combine the results of our measurements by assigning penalty cycles to instruction

cache misses, BTB misfetches, and branch mispredicts, and computing the number of cycles

saved in the optimized layouts. We recognize that this is only an approximation of the

performance improvement because other factors, such as the lengthening of uninterrupted

code sequences and using fewer entries in the TLB could add to the improvements. Moreover,

a much more detailed simulation would be needed to obtain the exact CPI and execution

time of the benchmarks. Nonetheless, by estimating a CPI as reported by other sources and

by knowing the number of instructions executed, we can get a good approximation of the

potential bene�ts due to code reordering.

4 Results

We measured the performance of the three variations of the Pettis and Hansen algorithm

using the metrics proposed in Section 3. Section 4.1 discusses the control transfer character-

istics of the di�erent layouts. These characteristics point towards performance improvements
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Control Transfer Instructions on the 
IA32
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Figure 2: Percentage of control transfer (forward and backward) instructions that are taken

on the original and the 3 variations of the reordering algorithm. Note the large decrease in

forward transfers (in white) for the reordered layouts.

in terms of instruction cache hit rates (Section 4.2), better branch prediction (Section 4.3),

and better utilization of the interface between the instruction cache and the processor fetch

and decode unit. We combine the �rst two metrics in Section 4.4 where we present the

reduction in the cycles wasted due to instruction cache misses, BTB misfetches, and branch

mispredicts.

4.1 Control Transfer Characteristics

The Pettis and Hansen basic block positioning algorithm improves performance by maxi-

mizing the number of control transfer instructions that fall through (Section 2.3.2). Control

transfer instructions include branches and jumps which transfer control within procedures,

and calls and returns which transfer control between procedures.

Figure 2 shows the percentage of control transfer instructions that are taken with the

di�erent code layouts. In the �gure, backward-taken control transfers are in black, and

forward-taken control transfers are in white. As expected, the percentage of taken control

transfers is highest with the original layout, and lowest with the global layout. The two local

layouts behave in the same manner because the procedure reordering algorithm does not

take the direction of calls and returns into account.

Note that almost the entire reduction in taken control transfers is due to a decrease in

the percentage of forward taken control transfers. The number of backward taken control

transfers decreases by very little if at all. Backward taken control transfers often de�ne the

boundary of loops and are thus hard to eliminate without loop unrolling.

Figure 2 also con�rms our expectation that di�erences in ISA should not impact the

occurrences and directions of control transfer instructions: the graphs for the Alpha and the

IA32 are very similar.
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Branches on the Alpha
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Figure 3: Percentage of branches that are taken. Notice the large reduction, a factor from 2

to 6 depending on the benchmarks. As expected, this reduction is independent of the ISA.

Figure 3 shows the same type of information as Figure 2 but consider only branches.

It indicates that code reorganization achieves a very important reduction in the proportion

of branches that are taken: from a factor of almost 2 in perl to a factor of above 6 in

m88ksim. We will elaborate more on the e�ect of code reorganization for branch prediction

in Section 4.3.

Returning to Figure 2, we see that the number of control transfer instructions is smallest

in the global layout. This property of the global layout is a direct consequence of the one-time

\inlining" of some procedures. Comparing Figure 2 and Figure 3, we see that the reduction

in control transfer instructions between the global layout and the local layouts is due to a

reduction in control transfers between procedures since the reduction in branches is similar

for the three reordered layouts.

Figure 3 puts to rest a concern with the global layout, i.e., that it may scatter the basic

blocks belonging to a single procedure into discontinuous regions in the address space. This

scattering would reduce the number of fall-through branches and hurt branch prediction.

The �gure shows that mixing code from di�erent procedures in the global layout does not

obstruct the control 
ow inside individual procedures.

Another measure of the success of the code reordering algorithms is the increase in

the length of code sequences uninterrupted by a transfer of control. Longer uninterrupted

code sequences are especially useful for wide superscalar architectures since they result in

better utilization of the interface between the instruction cache and the fetch and issue

mechanisms

3

. Figure 4 shows the cumulative distribution of the lengths of uninterrupted

code sequences for the three code layouts (bb only and proc-block yield the same results and

are called local in the �gure) on all benchmarks. The horizontal axis designates the number

of instructions in an uninterrupted sequence, and the vertical axis designates the percentage

of instructions that belong to a code sequence of length equal to or less than that indicated

3

We will not be able to quantify this increase in terms of saved cycles because it would require simulators

for both architectures which are much more detailed than those we have been using.
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Figure 4: Cumulative distribution of the lengths of uninterrupted code sequences for the three

code layouts (bb only and proc-block yield the same sequences and are plotted as local). For

example 80% of the code sequences in the original gcc on the Alpha are of length 20 or less

while in the global layout they are of length 90 or less.
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Figure 5: Instruction cache miss rates for a direct-mapped 8K cache with 32 byte lines for

the four layouts.

by the horizontal axis. Code sequences from the global layout are always signi�cantly longer

than those from the original code. The local layouts have signi�cantly longer sequences only

on some of the benchmarks such as on ijpeg and gcc, but not on compress, li and m88ksim.

These applications have frequent control transfers between procedures so procedure local

basic block code positioning does not increase the length of uninterrupted code sequences.

Figure 4 also shows that in general code sequences are longer on the Alpha ISA. This

is not surprising in light of the fact that it takes more instructions to perform the same

task (recall Table 1). Note however that perl and m88ksim which execute roughly the same

number of instructions on each architecture have comparable lengths of uninterrupted code

sequences.

4.2 Instruction Cache Miss Rates

Reordering code results in improved instruction cache hit rates for two reasons. First, the

program uses more of each cache line because of the longer uninterrupted code sequences.

Second, the program experiences less con
ict misses, because segments of code that are

frequently used together are likely to be placed close to one another.

Figure 5 presents the instruction cache miss rates for a direct-mapped 8 KB instruction

cache with 32-byte lines with the di�erent code layouts. Two of the benchmarks, ijpeg and

compress, have insigni�cant miss rates and won't be discussed any further. One benchmark,

m88ksim, shows a large miss rate for the Alpha ISA and an insigni�cant one for the IA32.

When the proc-block and global reorderings are applied to the Alpha version of m88ksim,

the miss rates become close to zero. We believe that the working set of m88ksim just �ts

in the cache in the IA32 case independently of the layout but that it is slightly too large to

�t without modi�cations in the Alpha case. For the Alpha, reordering procedures or blocks

belonging to di�erent procedures removes con
ict misses and allows the working set to be

resident in the cache.
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The three other benchmarks (gcc, li, perl) have signi�cant miss rates on both architec-

tures. We expected that the three reordering algorithms would all reduce the miss rates

and that the largest reduction would be for global followed by proc-block and bb only in that

order. For gcc on both ISA's and perl on IA32, this is indeed the case. However, code

reodering is only a heuristic and does not work perfectly in all instances. While global is

always better than original, it is not as good as proc-block on li and bb only on perl for the

Alpha. Moreover, the proc-block and bb only code reorderings of li on the IA32 lead to worse

miss rates. The strange behavior on li is also visible when we apply the reorderings to the

learning set so we cannot blame the failure of the algorithms to the di�erences between the

learning and testing data sets. A possible explanation for li's high miss rate on the IA32 for

the two local layouts is a con
ict between commonly used instructions in di�erent procedures

that are called for all input data sets, a con
ict that did not exist in the original layout

4

.

Overall, though, if we look at the totality of the results, the improvement in the instruc-

tion cache miss rate with the global layout is very signi�cant; for example improvements of

over a factor of two are achieved on both architectures for li and of almost a factor of two

for gcc. Improvements for perl are not quite as large but are still important. proc-block and

bb only also result in marked improvements. Generally, the improvements on the IA32 are

relatively larger than those on the Alpha.

Independently of the layouts, increasing the cache capacity will always reduce the number

of misses and increasing the cache line size, up to a reasonable size, is also known to be

bene�cial. Reordering algorithms accelerate the rate of improvement since the working set

of the application can �t in a smaller cache and the lengthening of uninterrupted code

sequences results in a better utilization of cache lines. Thus, it is not surprising to see cache

miss rates be reduced with increasing cache capacities (Figure 6) and for a given cache size,

with increasing line sizes (Figure 7), for all layouts.

As noted in Table 1, it takes less IA32 instructions than Alpha instructions to execute

the same task. The average size of an IA32 instruction is also smaller than the average size

of an Alpha instruction, and hence more instructions can �t in each cache line and in the

whole cache. The combination of these two factors should result in a better utilization of

the cache in the IA32 when we increase cache capacity and when we increase the line size.

Let us de�ne the relative bene�t of a layout L as the miss rate for the original layout

divided by the miss rate for L. We have computed the relative bene�ts of the three layouts

over the range of cache sizes shown in Figure 6 for gcc li and perl. Taking the global layout

as the more consistent example, the relative bene�ts peak for both ISA's around 16 or 32K

caches with a better bene�t for the IA32. Similarly, larger cache lines (128 or 256 bytes) yield

better relative bene�ts (computed from the data used for Figure 7) with the larger \e�ective

size" of the cache lines on the IA32 contributing to its slightly higher relative bene�t rate.

4

It is also possible that like all SPEC95 benchmarks, li's original layout is optimized for instruction cache

behavior. This could explain also the relatively poor performance of proc-block on Perl for the Alpha.
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Figure 6: Instruction cache miss rates for gcc, li, and perl for various cache sizes with 32

byte cache lines.

14



Alpha Instruction Cache Miss Rates 
on gcc

0%

5%

10%

15%

20%

25%

4 8 16 32 64 128 256

IA32 Instruction Cache Miss Rates 
on gcc

0%

5%

10%

15%

20%

25%

4 8 16 32 64 128 256

original
bb only
proc-block
global

Alpha Instruction Cache Miss Rates 
on li

0%

5%

10%

15%

20%

25%

4 8 16 32 64 128 256

IA32 Instruction Cache Miss Rates 
on li

0%

5%

10%

15%

20%

25%

4 8 16 32 64 128 256

Alpha Instruction Cache Miss Rates 
on perl

0%

5%

10%

15%

20%

25%

30%

4 8 16 32 64 128 256

IA32 Instruction Cache Miss Rates 
on perl

0%

5%

10%

15%

20%

25%

30%

4 8 16 32 64 128 256

Figure 7: Instruction cache miss rates for 8K caches with various cache line sizes.
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BTB Misfetches on the Alpha
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Figure 8: Misfetch rates for a 64 entry 4-way set associative BTB. The three layouts reduce

misfetches by almost a factor of 2 for those benchmarks that have large misfetch rates in the

original code.

4.3 Branch Prediction

The complexity and implementation sophistication of branch prediction mechanisms are

far apart in the recent Alpha and IA32 implementations [Bhandarkar 97]. We chose to

simulate mechanisms midway between those implementations to evaluate the e�ects of the

code reordering algorithms. The gshare con�guration used in our simulations is more complex

that the single PHT, associated with cache lines, of the Alpha 21164 and less complex than

the scheme present in the Pentium Pro [Microprocessor Report 95, Yeh & Patt 91].

Code reordering algorithms should improve on the use of the BTB because the BTB

only stores target addresses for branches that are taken. Increasing the number of non-taken

branches should leave more room in the BTB for those that are taken. The number of

branch misfetches, i.e., those branches for which there is a delay in identifying an instruction

as a branch, or when a correctly predicted branch has to wait for its target address to be

calculated, should therefore diminish. Figure 8 which displays the BTB misfetch rates

con�rms that fact. The misfetch rates of the benchmarks that have large misfetch rates

in their original layout are substantially reduced {approximately a factor of two on both

architectures. Note that the misfetch rates for the three reorderings are very similar for all

three layouts and are also similar across architectures.

While the reduction in the number of BTB misfetches is important, a decrease in the

number of branch mispredicts can improve performance even more, because the number of

issue slots lost for a branch mispredict is much higher than the cost of a BTB misfetch.

Recall that a branch mispredict occurs when the behavior of a conditional branch is pre-

dicted incorrectly by the PHT or when an indirect jump has the wrong address in the BTB.

Figure 9 shows the branch mispredict rates for our simulated mechanism. The mispredict

rates are highest on the original layout, generally the same for the three reorderings, and

quite consistent across the two ISA's. Di�erences in some cases occur because of aliasing in

the PHT. Overall though, improvements range from a few percent as in perl to about a 50%
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Figure 9: Branch mispredict rates for a 64 entry BTB and a 512 Entry PHT.

decrease as in li.

This experiment con�rms the observations of Section 4.1 that ISA's should have similar

branch behavior and that the global algorithm does not have an adversary impact on transfers

of control.

4.4 Estimating the savings in cycles

We have shown that control transfer instructions in the local and global Pettis and Hansen

layouts have higher fall-through rates, which reduce the instruction cache miss rates, BTB

misfetch rates, and branch mispredict rates. In this section we combine these reductions into

a single metric which estimates the number of cycles saved per 100 instructions.

We use a simple machine model where the cost of a miss in the instruction cache is

5 cycles, the cost of a BTB misfetch is 1 cycle, and the cost of a branch mispredict is 5

cycles. While this model does not accurately simulate modern architectures with complex

out-of-order execution designs, it is su�cient to give us a rough idea of the improvement in

performance one can expect to see. Note that these penalties are not the same as the ones in

the Alpha 21164, or the Pentium Pro. In particular, the penalty for a mispredicted branch

on the Pentium Pro is 10-15 cycles { quite a bit more than our choice of 5 cycles

5

, but the

branch mispredict rate on the Pentium Pro is also lower than the one we gathered in our

simulation since we simulated a simpler branch prediction mechanism.

Figure 10 shows the number of cycles lost per 100 instructions due to instruction cache

misses, branch mispredicts, and BTB misfetches when we apply the costs de�ned above.

In all cases, reordering algorithms yield bene�ts. The bene�ts are larger when both the

instruction miss rates and the branch mispredicts are reduced, as for example in gcc. Our

simulations are not detailed enough to give precise performance improvements. However,

we can estimate them with extreme caution by dividing the number of cycles lost reported

5

5 cycles corresponds to the branch mispredict penalty on the Alpha 21164
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Figure 10: Cycles lost per 100 instructions due to branch mispredicts, BTB misfetches, and

instruction cache misses.

in our simulation by a known CPI. For example, on the Pentium Pro, the CPI for gcc is

around 1.4 [Bhandarkar & Ding 97]. Thus, the performance improvement we could expect

with the global layout is approximately 15% (20 cycles saved

6

divided by 1.4). For the

other benchmarks and reordering algorithms the improvements would be smaller but still

non-negligible.

5 Conclusion

In this paper we have shown that code reordering algorithms improve the execution time

of applications by the combination of reductions in instruction cache miss rates, branch

mispredicts, and branch misfetches. We have quanti�ed these reductions by implementing

three variations of the Pettis and Hansen algorithm and simulating the reordered binaries of

six SPEC95 benchmarks on two instruction set architectures: Intel IA32 and DEC Alpha.

Our simulations show that a global algorithm that allows one time in-lining of procedures

and contiguity of basic blocks of di�erent procedures is best at reducing the instruction cache

miss rates, with a slightly better improvement for the IA32 instruction set architecture. The

global layout and the two local layouts which retain the adjacency of blocks within the same

procedure give similar improvements in branch prediction.

The relative degree to which applications will bene�t from code reordering is more ap-

plication speci�c than architecture-speci�c with those applications with a large code working

set bene�ting more.

As the depth of pipelines grows and the width of instruction issue widens, the penalties

6

from Figure 10
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for instruction issue slots lost because of instruction cache misses and of branch mispredicts

will rise. Therefore mechanisms such as code reordering that will decrease the number of

lost cycles due to these factors will increasingly become more important.

Future work could investigate reordering algorithms that consider correlation between

the use of basic blocks, or some other form of temporal relation between the blocks, rather

than a control 
ow graph based on total program execution frequencies. It would also be

interesting to know whether the improvement in branch prediction accuracy brought upon

by code duplication or by predication can compensate the potential harmful e�ects of code

expansion on the instruction cache miss rate.
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