
Fast Interprocedural Class Analysis

Greg DeFouw, David Grove, and Craig Chambers

Department of Computer Science and Engineering
University of Washington

Seattle, Washington 98195 USA

Technical Report 97-07-02
July 1997

{gdefouw,grove,chambers}@cs.washington.edu
(206) 685-2094; fax: (206) 543-2969

Fast Interprocedural Class Analysis

Greg DeFouw, David Grove, and Craig Chambers

Department of Computer Science and Engineering
University of Washington

{gdefouw,grove,chambers}@cs.washington.edu

UW CSE Technical Report 97-07-02*

Abstract

Previous algorithms for interprocedural control flow analysis of higher-order and/or object-oriented languages have been
described that perform propagation or constraint satisfaction and take O(N3) time (such as Shivers’s 0-CFA and Heintze’s set-
based analysis), or unification and take O(Nα(N,N)) time (such as Steensgaard’s pointer analysis), or optimistic reachability
analysis and take O(N) time (such as Bacon and Sweeney’s Rapid Type Analysis). We describe a general parameterized analysis
framework that integrates propagation-based and unification-based analysis primitives and optimistic reachability analysis,
whose instances mimic these existing algorithms as well as several new algorithms taking O(N), O(Nα(N,N)), O(N2), and
O(N2α(N,N)) time; our O(N) and O(Nα(N,N)) algorithms produce more precise results than the previous algorithms with these
complexities. We implemented our algorithm framework in the Vortex optimizing compiler, and we measured the cost and
benefit of these interprocedural analysis algorithms in practice on a collection of substantial Cecil and Java programs.

1 Introduction

Interprocedural class analysis computes a set of classes for each program variable, such that each run-time value bound to a
variable is a direct instance of one of the classes computed for the variable. A program call graph is constructed as a side-effect
of this analysis, where the classes associated with the arguments to a dynamically dispatched message send call site determine
the set of callee methods that may be invoked by that call site. First-class functions and call sites of computed functions can be
analyzed using interprocedural class analysis by treating each definition of a first-class function (e.g., a lambda expression) as
a class with a method namedapply , each evaluation of a first-class function definition as a class instantiation operation, and
each application of a first-class function as sending theapply message to the function object.

A number of algorithms have been described for performing interprocedural class analysis (perhaps under different names) in
object-oriented and higher-order languages. Most algorithms incrementally construct the program’s dataflow graph (either
implicitly or explicitly) and propagate sets of classes forward through the dataflow graph, iterating analysis in the face of loops
and recursion as new call edges are discovered and new edges are added to the dataflow graph. A classic example of such an
algorithm is Shivers’s 0-CFA control flow analysis for Scheme [Shivers 88, Shivers 91], which in the worst case takes O(N3)
time, whereN is the size of the program. Heintze’s set-based analysis has a similar flavor (and complexity) to 0-CFA [Heintze
94]. Many more-expensive algorithms have been developed that include some degree of context-sensitivity or polyvariance to
achieve greater precision [Oxhøj et al. 92, Agesen et al. 93, Plevyak & Chien 94, Stefanescu & Zhou 94, Agesen 95,
Jagannathan & Weeks 95, Nielson & Nielson 97], but less-expensive algorithms are relatively rare. Steensgaard describes an
O(Nα(N,N)) pointer analysis algorithm that partitions the program’s dataflow graph using unification in place of propagation,
as in type inference [Steensgaard 96]; Steensgaard’s algorithm was inspired by Henglein’s non-standard type-inference
algorithm for higher-order binding-time analysis [Henglein 91]. Bacon and Sweeney describe Rapid Type Analysis (RTA), an
O(N) algorithm for optimistically removing unreachable code, which performs no propagation or unification at all [Bacon &
Sweeney 96]. Heintze and McAllester describe a subtransitive version of 0-CFA that requires only O(N) time, but it applies only
to statically typed programs with bounded-size types [Heintze & McAllester 97].

We have developed a general framework for interprocedural class analysis of both statically and dynamically typed programs
that integrates propagation and unification. A particular dataflow analysis algorithm instantiates this general framework by
specifying when and how to apply unification in place of propagation, and by specifying how many edges are used to connect

* An abbreviated version of this technical report will appear in the proceedings of POPL ‘98 [DeFouw et al. 98].

call sites to callees. Instantiations of our framework include 0-CFA, Steensgaard-style analysis, and RTA, as well as interesting
new algorithms with complexities of O(N2α(N,N)), O(N2), O(Nα(N,N)) (which achieves better precision than Steensgaard-style
analysis with the same worst-case cost), and O(N) (which achieves better precision than RTA with the same worst-case cost).
Section 2 describes our general framework and defines and compares several algorithm instantiations.

We have implemented our algorithm framework and several instantiations in the Vortex optimizing compiler [Dean et al. 96].
We analyzed several large Java [Gosling et al. 96] and Cecil [Chambers 93] programs using these instantiations. We measured
both the abstract precision and cost of the different algorithms as well as the bottom-line execution speedup and executable
space savings. We found that the hypothetical improvements in precision of the new algorithms over RTA and Steensgaard-style
analysis did occur in practice; resulting in improvements in bottom-line application performance. Section 3 reports our
experimental findings in detail. Section 4 identifies some areas of current and future work, section 5 discusses additional related
work, and section 6 concludes.

2 Analysis Framework

This section describes the general interprocedural analysis algorithm that allows us to explore a range of fast interprocedural
class analyses. The next subsection introduces the example language we use to illustrate our algorithm. Subsection 2.2 describes
our dataflow graph representation, subsection 2.3 describes the parameterized analysis algorithm itself, and subsection 2.4
analyzes its complexity. Subsection 2.5 describes the analysis algorithms instantiable from our framework. Subsection 2.6
discusses extensions to make the analysis modular. Subsection 2.7 describes how clients can extract information from the
analysis, and examines the complexity of extracting certain kinds of information.

2.1 Source Language

Figure 1 shows the abstract syntax of a simple, dynamically typed, object-oriented language that we will use to help explain our
framework.* It includes declarations of global and local mutable variables, classes with mutable instance variables, and
multimethods; assignments to global, local, and instance variables; and global, local, formal, and instance variable references,
class instantiation operations, and dynamically dispatched message sends.

A multimethod has a list of immutable formals. Each formal is specialized by a class, meaning that the method is only applicable
to message sends whose actuals are instances of the corresponding specializing class or its subclasses. We assume the presence
of a root class from which all other classes inherit, and specializing on this class allows a formal to apply to all arguments.
Multimethods of the same name and number of arguments are related by a partial order, with one multimethod more specific
than (i.e., overriding) another if its tuple of specializing classes is more specific than the other (pointwise). When a message is
sent, the set of multimethods with the same name and number of arguments is collected, and, of the subset that are applicable
to the actuals of the message, the unique most-specific multimethod is selected and invoked (or an error is reported if there is
no such method).

* Terminals are in boldface, and braces enclose items that may be repeated zero or more times, separated by commas.

Program ::= {Decl} {Stmt} Expr
Decl ::= ClassDecl | VarDecl | MethodDecl
ClassDecl ::= class ClassID isa {ClassID} { {InstVarDecl} }
InstVarDecl ::= instvar InstVarID
VarDecl ::= var VarID
MethodDecl ::= method MsgID ({Formal}) { {VarDecl} {Stmt}
Expr }
Formal ::= FormalID @ ClassID
Stmt ::= LValue := Expr
Expr ::= LValue | FormalID | NewExpr | SendExpr
NewExpr ::= new ClassID
SendExpr ::= send MsgID ({Expr})
LValue ::= VarID | InstVarLValue
InstVarLValue::= Expr . InstVarID

Figure 1: Abstract Syntax for Example Object-Oriented Language

Other realistic language features can be viewed as special versions of these basic features. For example, regular procedures and
procedure calls can be modeled with methods none of whose formals are specialized, and literals of a particular class can be
modeled with corresponding class instantiation operations (at least as far as class analysis is concerned). As described in the
introduction, a first-class lexically nested function can be modeled with a class containing anapply method, assuming that
some suitable renaming of identifiers has taken place and that local and formal variables in the lexically enclosing method can
be referenced from within theapply method.

We assume that the number of arguments to a method or message is bounded by a constant independent of program size, and
that the static number of all other interesting program features (e.g., classes, methods, call sites, variables, statements, and
expressions) is O(N).

2.2 Dataflow Graph Representation

All the algorithms supported by our framework operate over a dataflow graph, declared in pseudocode in Figure 2. Figures 4
and 5 contain the algorithm for constructing the initial dataflow graph from the program being analyzed.

2.2.1 Nodes and Edges

The heart of the dataflow graph representation is a set of nodes (instances ofNode) linked by a set of directed edges (Edge).
Each source variable declaration, method declaration, class instantiation operation, and message send in the program has an
associated node in the dataflow graph. Interprocedural class analysis computes a set of classes for each node (theclasses
member ofNode), indicating for the corresponding variable or expression what classes of objects may be stored in the variable
or returned by the expression at run time.

Two nodes are connected by a directed edge whenever classes that reach the first node can flow directly to the second node. For
example, to model an assignmenttarget := source , an edge is added from the node corresponding tosource to the node
corresponding totarget . An edge may have an associated filter class set (filter), which restricts propagation along that
edge to only classes contained in the filter set. Filters are used to restrict propagation of classes to a formal argument node of a
callee method to those that are subclasses of the argument’s specializing class (if given). Filters also can encode constraints
ensured by static type declarations or inference, which (given the approximations that fast algorithms need to make) may make
the information computed by interprocedural class analysis more precise.

2.2.2 Node Merging and Supernodes

A key feature of our framework is the ability to support merging nodes in the dataflow graph to achieve faster analysis. Our
framework is parameterized byP, the maximum number of times a node may be visited during propagation;P may be any

class SuperNode {
rep:SuperNode; equivalence-class representative, initially itself
live_nodes:set of Node; set of active nodes in supernode, initially a single node
dead_nodes:set of Node; set of collapsed nodes in supernode, initially empty
to_do:bag of ClassID; bag of classes remaining to be processed by supernode, initially empty
done :bag of ClassID; bag of classes that have been processed by supernode, initially empty

}
class Node {

super:SuperNode; enclosing supernode
edges:set of Edge; set of outgoing edges
classes:set of ClassID; set of classes processed by this node, initially empty
counter:int; number of times node can be processed before collapsing, initiallyP

}
class Edge {

source, target:Node; source and target nodes
filter:set of ClassID; filter of classes that can propagate across edge

}
class BarrierEdge subclass of Edge {

barrier:Barrier; the barrier of which this edge is a member
blocked:bag of ClassID; bag of classes blocked at this barrier edge, initially empty
is_arg:bool; whether this is an argument edge that can release the barrier

}
class Barrier {

edges:list of BarrierEdge; the edges in the barrier
num_blocked:int; the number of barrier edges that are still blocked
method:MethodDecl; method that is guarded by the barrier

}

Figure 2: Dataflow Graph Representation

integer value between 0 andN, inclusive.* After a node has been visitedP times during analysis, it is merged with each of its
successor nodes. Each node records the remaining number of times it may be visited during propagation (counter), initialized
to P. If P=0, then a node cannot be examined at all during propagation, causing nodes to be merged eagerly as connecting edges
are inserted.

We introduce supernodes to represent the set of nodes that have been merged together (SuperNode). Supernodes partition the
nodes of the graph. Initially, each node has its own unique supernode. Merging a node with its successor nodes is implemented
using supernodes by unifying the supernodes corresponding to the node and its successor nodes, putting all the nodes together
as members of the new unified supernode, and then “collapsing” the original node out of the dataflow graph by moving it to a
separate inactive list in the unified supernode; Figure 3 illustrates merging nodes. Later, when a class is propagated to any
member of the unified supernode, it is immediately forwarded to all of the active members of the supernode, skipping the
inactive members, ensuring that inactive nodes never incur additional work. We use fast union-find data structures [Tarjan 75]
to support quickly unifying two arbitrary supernodes and (lazily) updating all the member nodes to refer to the new unified
supernode (in O(Uα(U,U)+F) time forU unifications andF find-representative updates). To achieve unification and update in
only O(U+F) time, our framework allows algorithms to choose to always unify supernodes with a distinguished global
supernode; our framework’sMergeWithGlobal parameter flag selects this asymptotically faster though less precise behavior.†

Each supernode data structure refers (perhaps indirectly) to the supernode representing the unified supernode (rep). The
representative supernode records up-to-date lists of active (live_nodes) and merged (dead_nodes) member nodes, and
conversely each node refers to its containing supernode (super) (from which the representative supernode can be found). (The
to_do anddone fields of a supernode are temporary state maintained during analysis.)

2.2.3 Optimistic Elimination of Unreachable Classes and Procedures

Our framework optimistically prunes unreachable classes and procedures, in the style of RTA [Bacon & Sweeney 96]. A method
becomes reachable (and its body added to the dataflow graph) only when, for each classC on which one of the method’s formals
are specialized, a class instantiation operation forC or a subclass ofC has been seen in code already known to be reachable.
Several mechanisms are used in our dataflow graph representation to support optimistic pruning of unreachable code:

• A global set of reachable classes (live_classes) is updated as class instantiation operations are processed
(MakeClassReachable). Whenever a class becomes reachable, all of its superclasses are considered reachable.

• When connecting the node for an actual parameter at a call site to the corresponding formal parameter of a callee (in
RecordCallSite), only if the formal parameter’s specializer class is reachable is the connection made. If not reachable,

* By N here we mean some value that is O(N) but bigger than the number of classes in the program.
† We include theMergeWithGlobal option mostly to simulate previous algorithms such as RTA.

y

x

z

vu

y

x

z

vu

y

x

z

vu

Figure 3: Example of Node Merging

Initially After Merging x After Merging y

live node

dead node

supernode with two member nodes

P:int; parameter defining maximum number of times a node can be visited
MergeWithGlobal:bool; parameter defining whether nodes merge with the global supernode
MergeCalls:bool; parameter defining whether all senders of a given message are merged
nodes:set of Node; the set of nodes in the graph
supernodes:set of SuperNode; the set of representatives of supernodes in the graph
global:SuperNode; a special supernode, used forMergeWithGlobal
ConstructDataflowGraph() {

make the global node and supernode:
global_node:Node := MakeNode();
global := global_node.super;
create nodes for global variables, instance variables, method formals, and method results:
foreach ast:(VarDecl ∪ InstVarDecl ∪ MethodDecl ∪ Formal) in top-level decls do

n:Node := MakeNode();
ast.corresponding_node := n;

create top-level statement and expression nodes and edges:
CreateNodesAndEdges({}, top-level stmts, top-level expr);

}
CreateNodesAndEdges(vars:list of VarDecl, stmts:list of Stmt, expr:Expr) {

make the nodes:
foreach ast:(VarDecl ∪ NewExpr ∪ SendExpr) in vars ∪ stmts ∪ expr do

ast.corresponding_node := MakeNode();
add assignment edges:
foreach stmt:Stmt = [[lv := e]] in stmts do

source:Node := CorrespondingNode(e);
target:Node := CorrespondingNode(lv);
MakeEdge(source, target);

construct call edges:
foreach send:SendExpr = [[send msg (e1,... ,en)]] in stmts ∪ expr do

foreach i in [1..n] do
actual i :Node := CorrespondingNode(e i);

node:Node := CorrespondingNode(send);
LinkSend(msg, n, [actual 1,...,actual n], node);

update worklist and reachable classes from class instantiation nodes:
foreach new:NewExpr = [[new c]] in stmts ∪ expr do

n:Node := CorrespondingNode(new);
AddToWorklist(n, c);
MakeClassReachable(c);

}
CreateMethodNodesAndEdges(method:MethodDecl = [[method msg (...) {vars stmts expr }]]) {

if method has not been created yet then
CreateNodesAndEdges(vars, stmts, expr);

}
MakeNode() →Node {

n:Node := new Node;
s:SuperNode := new SuperNode;
n.super := s; n.edges := {}; n.classes := {}; n.counter := P;
s.rep := s; s.live_nodes := {n}; s.dead_nodes := {}; s.to_do := {}; s.done := �{};
add n to nodes; add s to supernodes;
return n;

}
MakeEdge(source, target:Node) {

e:Edge := new Edge;
InitEdge(e, source, target);
InstallEdge(e);

}
InitEdge(e:Edge, source, target:Node) {

e.source := source; e.target := target;
e.filter := FilterFor(source) ∩ FilterFor(target);

}
InstallEdge(e:Edge) {

add e to e.source.edges;
if e.source.counter = 0 then

CollapseNode(e.source);
}
MakeBarrierEdge(source,target:Node, is_arg:bool, b:Barrier) →BarrierEdge {

e:BarrierEdge := new BarrierEdge;
InitEdge(e, source, target);
e.is_arg := is_arg; e.barrier := b; e.blocked := {};
add e to b.edges;
return e;

}
MakeBarrier(n:int, m:MethodDecl) →Barrier {

b:Barrier := new Barrier;
b.edges := {}; b.num_blocked := n; b.method := m;
return b;

}

Figure 4: Dataflow Graph Construction Algorithm, Part 1

then the edge is saved on a separate list indexed by the specializer class (delayed_edges) to be entered into the dataflow
graph when the specializer class becomes reachable (MakeClassReachable).

• A method specialized on reachable classes is reachable from a particular call site only if each of the actual-to-formal
argument edges for that call site has a non-empty set of classes that pass through the edge’s filter. To block the flow of
classes through any of a call site’s argument edges (and through the reverse result edge) until all the argument edges have
non-empty sets of classes flowing successfully through them, we link the argument and result edges into a barrier

FilterFor(n:Node) →set of ClassID {
if n created from f in Formal = [[v @ c]] then

return set of c and its subclasses;
if n created from VarDecl or InstVarDecl or Method and

decl has static type T then
return set of all classes that conform to T;

return set of all classes;
}
CorrespondingNode(e:Expr) →Node {

if e in VarID = [[varID]] then
return CorrespondingVarDecl(varID).corresponding_node;

if e in FormalID = [[formalID]] then
return CorrespondingFormal(formalID).corresponding_node;

if e in InstVarLValue = [[e’ . instVarID]] then
return CorrespondingInstVarDecl(instVarID).corresponding_node;

return e.corresponding_node;
}
LinkSend(msg:MsgID, n:int, [actual 1:Node,...,actual n:Node], result:Node) {

if MergeCalls then
([msg_formal 1:Node,...,msg_formal n:Node], msg_result:Node) :=

MakeSharedMessageNodes(msg, n);
foreach i in [1..n] do

MakeEdge(actual i , msg_formal i);
MakeEdge(msg_result, node);

else
RecordCallSite(msg, n, [actual 1,...,actual n], result);

}
Table mapping message keys to shared message formal and result nodes, only forMergeCalls:
shared_message_nodes:(MsgID,n:int) →([Node 1,...,Node n], Node);
MakeSharedMessageNodes(msg:MsgID, n:int) →([Node 1,...,Node n], Node) {

if shared_message_nodes(msg,n) not defined then
foreach i in [1..n] do

formal i :MsgNode := MakeNode();
result:Node := MakeNode();
RecordCallSite(msg, n, [formal 1,...,formal n], result);
shared_message_nodes(msg,n) := ([formal 1,...,formal n], result);

return shared_message_nodes(msg,n);
}
RecordCallSite(msg:MsgID, n:int, [actual 1:Node,...,actual n:Node], result:Node) {

go through all the method declarations that this could map to, and create barrier links from call site to callee:
foreach method:MethodDecl = [[method msg’ (f 1@c1,... ,f n’ @cn’) {... }]]

where msg’ = msg and n’ = n do
create a tuple of barrier edges linked together in a barrier:
barrier:Barrier := MakeBarrier(n, method);
foreach i in [1..n] do

formal i :Node := CorrespondingNode(f i);
formal_edge i :BarrierEdge := MakeBarrierEdge(actual i , formal i , true, barrier);

method_result:Node := CorrespondingNode(method);
result_edge:BarrierEdge := MakeBarrierEdge(method_result, result, false, barrier);
link barrier edges into graph:
foreach i in [1..n] do

if c i in live_classes then
add to call site now:
InstallEdge(formal_edge i);

else
record for later processing:
add formal_edge i to delayed_edges(c i);

InstallEdge(result_edge);
}
live_classes:bitset of ClassID; set of classes live in program
delayed_edges:ClassID →bag of BarrierEdge; table mapping classes to lists of delayed edges
MakeClassReachable(c:ClassID) {

if c ∉ live_classes then
add c to live_classes;
foreach edge:BarrierEdge in delayed_edges(c) do

InstallEdge(edge);
foreach c’:ClassID in superclasses of c do

MakeClassReachable(c’);
}

Figure 5: Dataflow Graph Construction Algorithm, Part 2

(Barrier). A barrier records all the edges in the barrier (edges), the method that it guards (method), and a count of
the number of members of the barrier that are still empty (num_blocked), initialized to the number of arguments of the
method. Each time an argument edge in the barrier becomes non-empty, the barrier’s blocked count is decremented. When
it reaches zero, the barrier is broken and classes freely pass through the edge. A special kind of edge (BarrierEdge) is
used for edges in barriers. A barrier edge knows which barrier it is a member of (barrier), and, until the barrier is broken,
queues up each class that flows through the edge on a list (blocked) without forwarding it to the edge’s target node. A
flag (is_arg) distinguishes barrier edges that may be waited upon to become non-empty (the argument edges) from those
that simply are blocked by the emptiness of other edges (the result edges).

2.2.4 Message Send Linkage

Our framework supports two approaches to connecting call sites to callee methods. If the parameter flagMergeCalls is false,
then each actual parameter at each call site is linked to the corresponding formals of all methods with the same name and number
of arguments as the call site, and the reverse for message results, leading to O(N2) edges in the dataflow graph. IfMergeCalls
is true, an intermediate tuple of nodes is created for each distinct message name and number of arguments
(shared_message_nodes), one node per argument and result of the message. Actuals at call sites are linked to the
corresponding intermediate message formals, which in turn are linked to the corresponding formals of the possible methods
with matching name and number of arguments, and the reverse for message results, leading to only O(N) edges in the graph.
Figure 6 illustrates these two situations.

2.3 Parameterized Analysis Algorithm

Pseudocode for our general algorithm for interprocedural class analysis appears in Figures 7 and 8. The core of the algorithm
performs propagation of classes through the dataflow graph. During the propagation phase, each supernode maintains an
associated bag of classes that have reached the supernode but have not yet been processed by the supernode (to_do), as well

Figure 6: Example of Shared and Unshared Message Send Linkages

send msg (a1, a 2) ⇒ x send msg (b1, b 2) ⇒ y

a1 a2 x yb1 b2

method msg(f 1@C1, f 2@C2) {... } method msg(g1@D1, g 2@D2) {... }

f 1 f 2 g1 g2

@C1 @C2 @D2@D1

MergeCalls = true

send msg (a1, a 2) ⇒ x send msg (b1, b 2) ⇒ y

a1 a2 x yb1 b2

method msg(f 1@C1, f 2@C2) {... } method msg(g1@D1, g 2@D2) {... }

f 1 f 2 g1 g2

MergeCalls = false

@C1 @C2

@C1 @C2@D2@D1 @D2@D1

@Xshared message node filter barrier

m1 m2 r

as a bag of classes that have been processed by the supernode (done); at the end of analysis, the processed classes are used to
determine the final set of classes associated with all nodes in that supernode. Whenever a class instantiation node is created, the
instantiated class is added to the to-do list of the node’s supernode.

A global worklist is maintained holding all supernodes with non-empty to-do lists (worklist). Our algorithm starts by
constructing the nodes and edges of the top-level variable declarations, statements, and expressions in the program
(ConstructDataflowGraph), which adds supernodes to the worklist for all the top-level class instantiation expressions.
The main loop of the propagation phase (ProcessWorklist) removes a supernode from the worklist and processes it. The
propagation phase ends when the worklist is empty (and hence all supernodes have empty to-do lists).

To process a supernode (ProcessSuperNode), each of the classes on its to-do list are removed one-by-one, saved on the
done list, and forwarded to each of the unmerged member nodes for processing. To process a class at a member node
(ProcessNode), if the class has not been seen at that node before, then it is propagated along to each outgoing edge of the
node, and its counter of allowable future visits is decremented. To propagate a class along an edge (ProcessEdge), if the

worklist:set of SuperNode; the set of supernodes that have non-empty to-do lists
PerformInterproceduralClassAnalysis() {

worklist := {};
ConstructDataflowGraph();
ProcessWorklist();

}
ProcessWorklist() {

while worklist non-empty do
pop s:SuperNode off worklist;
ProcessSuperNode(s);

}
ProcessSuperNode(s:SuperNode) {

while FindRep(s).to_do non-empty do
remove c:ClassID from FindRep(s).to_do;
add c to FindRep(s).done;
foreach n:Node in FindRep(s).live_nodes do

ProcessNode(n, c);
foreach n:Node in FindRep(s).live_nodes.copy do

if n.counter = 0 then
CollapseNode(n);

}
ProcessNode(n:Node, c:ClassID) {

if c ∉ n.classes then
add c to n.classes;
foreach e:Edge in n.edges do

ProcessEdge(e, c);
decrement n.counter;

}
ProcessEdge(e:Edge, c:ClassID) {

if c ∈ e.filter then
if e is a BarrierEdge then

ProcessBarrierEdge(e, c)
else

AddToWorklist(e.target, c);
}
ProcessBarrierEdge(e:BarrierEdge, c:ClassID) {

if e.blocked is empty then
UnblockBarrierEdge(e);

if e.barrier.num_blocked = 0 then
AddToWorklist(e.target, c);

else
add c to e.blocked;

}
UnblockBarrierEdge(e:BarrierEdge) {

if e.barrier.num_blocked > 0 and e.is_arg then
decrement e.barrier.num_blocked;
if e.barrier.num_blocked = 0 then

ReleaseBarrier(e.barrier);
}
ReleaseBarrier(b:Barrier) {

CreateMethodNodesAndEdges(b.method);
foreach e:BarrierEdge in b.edges do

foreach c:ClassID in e.blocked do
AddToWorklist(e.target, c);

}

Figure 7: Interprocedural Class Analysis Algorithm, Part 1

class passes the edge’s filter, then, if the edge is not a barrier edge, the propagated class is added to the to-do list of the target
node’s supernode (AddToWorklist) which may cause the target supernode to be added to the worklist.

If the edge is a barrier edge, then there are several steps to perform (ProcessBarrierEdge). First, if this edge is an
argument edge that is part of a blocked barrier, and this is the first class to reach this edge, then the barrier’s blocked count is
decremented (UnblockBarrierEdge). If this edge was the last edge blocking the barrier, then the barrier is broken (creating
the guarded method’s dataflow graph if it hasn’t been created already), and all suspended classes on all edges in the barrier are
released and propagated to their target supernodes (ReleaseBarrier). After the effect on the barrier of a class passing the
edge’s filter has been computed, the class is either saved on the edge’s suspended classes list (if the barrier is still blocked), or
propagated through the barrier to the target supernode (if the barrier is broken).

If P<N, then a node’s counter may reach zero, at which point it will be merged with its successor edges. After passing a class
off the to-do list to a supernode’s unmerged member nodes (inProcessSuperNode), if a node’s counter has dropped to zero,
the node is merged with its successors (CollapseNode). To do this, the node’s supernode is merged with the supernodes of
each of the node’s successor nodes (CollapseEdge), and then the node is moved from the supernode’s list of unmerged
members to the list of merged members, ensuring that the node will never again be examined during propagation. Merging two
supernodes (MergeSuperNodes) selects one supernode to be the representative of the union (using the fast union-find
algorithm) and combines the two supernodes’ member node, to-do, and done lists. Some algorithms perform a simpler,

AddToWorklist(n:Node, c:ClassID) {
if FindRep(n.super).to_do is empty then

add FindRep(n.super) to worklist;
add c to FindRep(n.super).to_do;

}
CollapseNode(n:Node) {

if MergeWithGlobal then
MergeSuperNodes(global, FindRep(n.super));

foreach e:Edge in n.edges do
CollapseEdge(e);

remove n from FindRep(n.super).live_nodes;
add n to FindRep(n.super).dead_nodes;

}
CollapseEdge(e:Edge) {

if e is a BarrierEdge then
CollapseBarrierEdge(e);

MergeSuperNodes(FindRep(e.source.super), FindRep(e.target.super));
}
CollapseBarrierEdge(e:BarrierEdge) {

if e.barrier.num_blocked > 0 and e.is_arg then
decrement e.barrier.num_blocked;
if e.barrier.num_blocked = 0 then

ReleaseBarrier(e.barrier);
else

remove this edge from barrier
CreateMethodNodesAndEdges(e.barrier.method);
foreach c:ClassID in e.blocked do

AddToWorklist(e.target, c);
remove e from e.barrier.edges;

}
MergeSuperNodes(s1, s2:SuperNode) {

if s1 ≠ s2 then
rep:SuperNode := Union(s1, s2);
rep.live_nodes := s1.live_nodes ∪ s2.live_nodes;
rep.dead_nodes := s1.dead_nodes ∪ s2.dead_nodes;
rep.to_do := s1.to_do ∪ s2.to_do;
rep.done := s1.done ∪ s2.done;
s1.rep := rep; s2.rep := rep;
if s1 = rep then remove s2 from supernodes

else remove s1 from supernodes;
}
Fast union-find data structure operations:
FindRep(s:SuperNode) →SuperNode {

find and return the representative of the union, caching results for amortized O(α(N,N)) cost:
if s.rep ≠ s then s.rep = FindRep(s.rep);
return s.rep;

}
Union(s1, s2:SuperNode) →SuperNode {

pick and return one ofs1 or s2 to elect as the representative of the union; if either isglobal then choose it
}

Figure 8: Interprocedural Class Analysis Algorithm, Part 2

asymptotically faster merging of supernodes, where all merging supernodes are first merged with the global supernode; the
parameter flagMergeWithGlobal selects this behavior. If a blocked barrier edge is collapsed, that edge becomes unblocked.

2.4 Complexity Analysis

The main components of cost in our algorithm are constructing the dataflow graph (lazily), propagating classes through the
dataflow graph, and merging supernodes.

2.4.1 Core Data Structures

Before examining the complexity of the main components of the algorithm, we list our assumptions about the properties of its
core data structures:

• The sets of classesSuperNode.live_nodes andSuperNode.dead_nodes support constant-time initialization,
set union, element addition, and element removal. To support these operations, our implementation exploits the invariant
that at each step in the algorithm every instance of theSuperNode class is a member of at most onelive_node or
dead_node set. Thus, these sets can be represented by linkingSuperNode s together in doubly linked lists.

• The bags of classesSuperNode.to_do , SuperNode.done , andBarrierEdge.blocked support constant-time
initialization, union (ignoring duplicates), and element addition. Similarly, the bags of edgesNode.edges and
Barrier.edges support constant-time initialization and element addition. Our implementation uses singly linked,
circular lists to represent bags.

• The set of classesNode.classes supports constant-time initialization, membership testing, and element addition.
Depending on the value ofP, our implementation uses one of two representations: ifP is O(1) list sets are used, while ifP
is O(N) bit sets are used. A list set can be initialized in constant time, and it supports constant-time membership testing and
element addition if the maximum size of the set is bounded by a constant. A bit set supports constant-time membership
testing and element addition, but requires O(N) time to initialize.

• The filterEdge.filter can be initialized in constant time and supports constant-time membership testing. The filter can
be represented as a procedure to perform the subclass testing, for which there are several constant-time algorithms [AK et
al. 89].

2.4.2 Dataflow Graph Construction

In the worst case, all classes and methods in the original program will be reachable, implying that O(N) ASTs must be
represented in the dataflow graph. Each kind of AST node contributes O(1) nodes to the dataflow graph. With the exception of
SendExpr , each kind of AST also contributes O(1) edges. LetM (defined below) be an upper bound on the number of edges
contributed by a singleSendExpr AST. Then the dataflow graph contains O(N) nodes and O(N+N⋅M) edges. Each edge in the
dataflow graph can be initialized in constant time (each edge has one filter, participates in at most one barrier, and is added to
one node’s bag of edges). Depending on the value ofP, each node takes either O(1) or O(N) time to initialize. Thus the total
time to construct the dataflow graph is O(N⋅M) if P is O(1) and O(N2+N⋅M) if P is O(N).

The value ofM is either O(1) or O(N) depending on the value ofMergeCalls:*

• If MergeCalls is true, then an intermediate tuple of nodes (one tuple per message name) is inserted between callers and
callees. Exactly one edge per actual parameter is added between aSendExpr and the corresponding node in the
intermediate tuple. Similarly, the return value of the call is represented by adding one edge from the tuple’s return value to
the SendExpr . In addition, the intermediate tuples introduce edges connecting intermediate nodes to method formal
parameters and returns; each formal parameter and method return will have exactly one such edge. These additional O(N)
edges are can be amortized over the O(N) SendExpr s in the program, thusM is O(1). This results in a total of O(N) edges
in the dataflow graph.

• If MergeCalls is false, then eachSendExpr may be directly connected to O(N) target methods, causingM to be O(N).
This results in a total of O(N2) edges in the dataflow graph.

Figure 6 illustrated these two cases.

* We assume that the maximum number of actual parameters at a call site and the maximum number of formal parameters in a method
declaration is a constant independent of program size.

To support lazy construction of the program dataflow graph, additional overhead is incurred to tracklive_classes and
delayed_edges . Since a class can only become reachable once, this overhead takes O(N+N⋅M) time.

2.4.3 Propagation

If there is noSuperNode merging, the core unit of work in the propagation phase can be viewed from the perspective of a
class flowing across an edge: start with a class that is new to the edge’s source node (at the call toProcessEdge in
ProcessNode), and attempt to propagate it through the edge’s filter. If it passes the filter, check if this is a blocked barrier
edge, and if so suspend the class at the barrier edge, later to be released when the barrier is broken. Finally, add the class to the
target supernode’s to-do list, later remove it from the target supernode’s to-do list, and then test whether it is new to the
supernode’s one target node (ending at the same loop of calls toProcessEdge). Each of these steps takes constant time. By
ensuring that each class is processed across an edge at most once (by maintainingNode.classes), the total amount of time
for this edge propagation is O(E⋅C), whereE is the number of edges andC is the number of classes.C is proportional to the
program size (N), andE is O(N⋅M) as determined above (either O(N) or O(N2), depending on the value ofMergeCalls), leading
to a total cost for edge propagation of O(N2⋅M) time. The time to visit each supernode on the worklist and start the edge
propagation process is O(N), leading to an overall time for propagation of O(N2⋅M).

2.4.4 Unification

If P < N, then some nodes may be collapsed during propagation or graph construction. This affects the complexity of analysis
in three ways: the number of times a node (and consequently its successor edges) may be visited is reduced fromN to P,
additional work to collapse nodes is incurred, and the calls toFindRep may take more time due to collapsing.

• Instead of using theNode.classes set to bound the number of times a node is visited by the number of classes (O(N)),
node collapsing bounds the number of times a node is visited byP. Under this model, the constant-time unit of work
sequence is slightly shifted, since now multiple nodes may be in a supernode: start with considering a member node of a
supernode for a particular class at the call toProcessNode insideProcessSuperNode , then follow the class flowing
through the node and an edge through to being added and then later removed from a supernode’s to-do list, ending at the
same loop of calls toProcessNode . Each of these constant-time units of work may only be doneP times per edge. Using
P in place of oneN in the time for edge propagation gives a more general complexity assessment of O(P⋅N⋅M).

• Each call toMergeSuperNodes andCollapseEdge takes constant time, and each call toCollapseNode takes
constant time ignoring the per-edge work subsumed byCollapseEdge , leading to an overall cost for node collapsing of
O(N⋅M) time.

• If MergeWithGlobal is false, then the calls toFindRep can now take more than constant time, but overall, given a fast
union-find data structure implementation of supernodes, the additional cost for all of theFindRep calls is O(Nα(N,N)). If
MergeWithGlobal is true, however, all of the supernodes merge directly with the global supernode, preserving the constant-
time behavior ofFindRep .

2.4.5 Summary

Overall, the complexity of the entire graph construction and propagation phase is thus O(P⋅N⋅M + N⋅M), plus O(N⋅Mα(N,N)) if
P<N andMergeWithGlobal is false. By settingP to some constant, new algorithms with worst-case time complexities of O(N),
O(N2), O(Nα(N,N)), and O(N2α(N,N)) result, depending on the choices forMergeWithGlobal andMergeCalls.

2.5 Instantiations of the Framework

Table 1 identifies several algorithms that are instantiations of our framework; boldface rows are new algorithms.

Classic OO 0-CFA is the standard cubic-time, flow-sensitive but context-insensitive interprocedural class analysis. Equivalence
Class Analysis is Steensgaard-style near-linear-time division of the program’s dataflow graph into disjoint subgraphs, extended
to work in the object-oriented context. RTA is Bacon and Sweeney’s Rapid Type Analysis algorithm.

The five other algorithms represent new interesting points in the analysis design space. The three Linear-Edge algorithms bound
the number of call edges, dropping a factor of O(N) from the complexity of the other (quadratic-edge) algorithms. The two
Bounded algorithms use supernodes and merging to ensure only a constant number of visits per node, dropping another factor
of O(N) from the complexity (but adding back in the near-constant O(α(N,N)) to pay for the overhead of merging). The two
Simply Bounded algorithms avoid this extra O(α(N,N)) overhead by merging all supernodes with the distinguished global

supernode. The Bounded Linear-Edge algorithm and the Steensgaard-style Equivalence Class Analysis have the same near-
linear worst-case time complexities, but the Bounded Linear-Edge algorithm always provides solutions that are at least as
precise and often more precise than Equivalence Class Analysis. Similarly, the Simply Bounded Linear-Edge algorithm incurs
the same linear-time complexity but delivers precision at least as good and often better than RTA.

2.6 Analyzing Program Components

As described and implemented, our analysis framework assumes it has access to the entire program. Our framework could be
extended to support more modular analyses by allowing components of programs to be modeled by summary dataflow graphs.
Components whose source code is unavailable can then be analyzed as long as a summary dataflow graph is available. (The
summary dataflow graph need not be precise, merely a sound approximation of the “true” dataflow graph.) Furthermore,
components can be partially pre-analyzed, starting from known sources of class information within the component, with the
resulting partially propagated and/or collapsed dataflow graph being used in the analysis of containing programs. This would
lead to a kind of hierarchical, component-wise analysis of programs that may help the analyses scale to larger programs, along
the lines of Flanagan and Felleisen’s componential set-based analysis [Flanagan & Felleisen 97].

2.7 Clients of the Analysis

Our analysis provides information to clients in two forms. The program call graph can be constructed in time proportional to
the number of edges by recording when barriers along call edges are broken; each such broken barrier corresponds to an edge
in the program call graph. Additionally, the done list of the supernode of each variable’s node records the bag of classes that
may be stored in that variable. A number of interesting optimizations can exploit this information in only constant time per
access, including:

• checking whether only one method can be called from a given call site and if so replacing that dynamically dispatched
message with a direct procedure or inlined code,

• skipping compilation of any methods not called from any call site in the call graph (treeshaking).

Some other uses of the information may require more work, however. For example, to support constant-time testing of whether
a particular class is a member of a particular variable’s set of possible classes, to optimize run-time class tests for instance, the
done bag for the variable’s supernode needs to be converted into a set, which requires quadratic time in the worst case for
algorithms withMergeWithGlobal false andP<N. (Algorithms whereMergeWithGlobal is true can simply use the set of live
classes as the classes set for the distinguished global node, and uncollapsed nodes maintain the set of classes reaching them
directly.) Consequently, the bounded linear-edge algorithm, with asymptotic complexity O(Nα(N,N)), may not be appropriate
for clients which require this per-variable set-of-classes information.

Other authors of sub-quadratic algorithms have also encountered difficulties providing useful information to clients. For
example, Steensgaard presents a near-linear-time algorithm for performing pointer analysis, but to completely query the
resulting data structure to compute all points-to relationships among variables would require quadratic time [Steensgaard 96].

Table 1: Framework Instantiations

Algorithms P MergeWithGlobal MergeCalls Complexity

Classic OO 0-CFA N n/a false O(N3)

Linear-Edge OO 0-CFA N n/a true O(N2)

Bounded OO 0-CFA O(1) false false O(N2α(N,N))

Bounded Linear-Edge OO 0-CFA O(1) false true O(Nα(N,N))

Simply Bounded OO 0-CFA O(1) true false O(N2)

Simply Bounded Linear-Edge OO 0-CFA O(1) true true O(N)

Equivalence Class Analysis 0 false true O(Nα(N,N))

RTA 0 true true O(N)

But if only a subset of the possible points-to relationships are of interest, then less time may be incurred in a particular algorithm.
Similarly, Heintze and McAllester describe subtransitive control flow analysis which constructs an encoded representation of
the 0-CFA dataflow graph in linear time (for a restricted language model with function types bounded in size by a constant), but
performing the transitive closure to compute the full explicit dataflow graph requires quadratic time [Heintze & McAllester 97].
They offer other queries of their encoded representation, such as computing the call sites which have only one callee, which
require only linear time.

3 Experimental Assessment

In addition to asymptotic complexity results, we wish to understand how well the different algorithms perform in practice.
Accordingly, we implemented our framework in the Vortex optimizing compiler [Dean et al. 96] and applied all eight algorithms
to the collection of large Cecil and Java programs described in Table 2. We assessed the algorithms according to the following
three criteria:

• What are the relative precisions of the sets of classes and the induced call graph produced by the various algorithms?

• What are the relative costs of the various algorithms, measured in terms of analysis time and space costs?

• How do the differences in precision translate into differences in the bottom-line effectiveness of client optimizations, in
terms of program execution speed and executable size?

The results of our experiments are shown in Figures 9 and 10; the raw data may be found in Appendix A. Each graph plots two
pairs of two lines, one pair for bounded and simply bounded linear-edge OO 0-CFA and one pair for bounded and simply
bounded (quadratic-edge) OO 0-CFA, withP varying from 0 toN along the x-axis. WhenP=N, the pairs of lines converge into
linear-edge OO 0-CFA and classic OO 0-CFA, respectively. In the degenerate case whenP=0, bounded linear-edge OO 0-CFA
is equivalent to equivalence class analysis and simply bounded linear-edge OO 0-CFA is equivalent to RTA. Subsection 3.1
discusses the measured time and space costs of analysis, Subsection 3.2 discusses the relative abstract precision of the different
algorithms, and Subsection 3.3 addresses the impact of the results of interprocedural class analysis on run-time speed and
executable size. All experiments were performed on a Sun Ultra-1 model 170.

3.1 Time and Space Costs

The first column of graphs shows the analysis times in seconds. Overall, asymptotic time complexity is a fairly good predictor
of actual analysis time. As program size increases, the time required to perform instances of the two linear-time algorithmic
families also increases linearly. The gap between the linear-time and the quadratic-time algorithms widens as program size
increases. The larger constant values forP incur small increases in analysis time overP=0. For the four smallest programs,
analysis time actually decreases asP grows from 50 toN; in these programs, the additional precision of theP=N configuration

a. Excluding standard libraries. All Cecil programs are compiled with an 11,000-line standard library.
All Java programs include a 16,000-line standard library.

b. The two Java translators have no common code and were developed by different people.

Table 2: Benchmark Applications

Program Linesa Description

C
ec

il

richards 400 Operating systems simulation

deltablue 650 Incremental constraint solver

instr sched 2,400 Global instruction scheduler

typechecker 20,000 Cecil typechecker

compiler 50,000 Old version of Vortex compiler

Ja
va

toba 3,900 Java bytecode to C translator

espresso 13,800 Java source to bytecode translatorb

javac 25,550 Java source to bytecode translatorb

significantly reduces the number of reachable methods (and thus the number of nodes and edges in the dataflow graph) which
compensates for the additional propagation across non-unified edges.

For the larger programs, the space cost of explicitly representing the entire dataflow graph, especially whenMergeCalls is false,
becomes prohibitive. The missing data points for thetypechecker andcompiler programs are due to excessive memory
consumption. Future work includes implementing a more space-efficient representation of the dataflow graph, and investigating
mixing partially implicit representations of the dataflow graph with node unification.

3.2 Abstract Precision

A number of metrics can be used to measure the abstract precision of interprocedural class analysis. The second and third
columns of graphs present data for two of these metrics that are closely related to the optimizations performed by Vortex using
the results of interprocedural class analysis.

• Percentage of Singleton Class Sets: Each node in the dataflow graph has an associated set of classes. What fraction of these
nodes contain only a single class? This metric provides an abstract measure of the precision of interprocedural class
analysis and may be indicative of how useful the information will be when it is consulted during intraprocedural class
analysis.

• Percentage of Singleton Callees: A call graph can be built as interprocedural analysis proceeds. What fraction of all
message sends in the program can be proved to only invoke one target method? This metric is closely related to the
effectiveness of static binding (and subsequent inlining) of message sends during intraprocedural compilation and
optimization.

Since it only maintains a single global set of classes, RTA does not have any singleton class sets. The Steensgaard-style
Equivalence Class Analysis has the potential to do better than RTA, but only succeeds in doing so on a subset of the benchmark
programs; in the larger Cecil programs it was unable to identify enough disjoint regions of the dataflow graph to impact the
results. However, modest increases in the value ofP (up to aboutP=5) yield large increases in the fraction of singleton class
sets. We observed diminishing returns for larger constant values ofP, but settingP=N results in a large increase in the percentage
of singleton class sets. Increasing the number of edges from O(N) to O(N2) has a negligible impact on the percentage of
singleton class sets. Similar trends also hold for the percentage of singleton callees metric, with the slight complication that due
to treeshaking the total number of call sites actually decreases asP increases, and thus in a few cases the percentage of singleton
callees actually slightly decreases as algorithmic precision increases.

3.3 Bottom-Line Impact of Abstract Precision

To assess both the bottom-line impact of interprocedural analysis as well as how well the abstract precision metrics described
in the previous subsection predict algorithmic effectiveness, we compared, for each benchmark and algorithm pair, the
performance of a base configuration that did not use interprocedural optimizations against a configuration performing
interprocedural optimizations building on the class sets and call graphs produced by the algorithm. The base configuration
represents an aggressive combination of intraprocedural and limited interprocedural optimizations which include:
intraprocedural class analysis [Johnson 88, Chambers & Ungar 90], hard-wired class prediction for common messages (Cecil
programs only) [Deutsch & Schiffman 84, Chambers & Ungar 89], splitting [Chambers & Ungar 89], whole-program class
hierarchy analysis [Dean et al. 95], cross-module inlining, static class prediction [Dean et al. 96, Dean 96] and closure
optimizations (Cecil only). We applied these optimizations through our Vortex compiler to produce C code, which we then
compiled withgcc -O2 to produce executable code.

The interprocedural configuration augments the base configuration with interprocedural analyses that enabled the
intraprocedural optimizations inbase to work better:

• Class analysis: Intraprocedural class analysis exploits the class sets and the sets of possible callee methods computed by
interprocedural analysis, enabling better optimization of dynamically dispatched messages.

• Treeshaking: As a side-effect of constructing the call graph, the compiler identifies those procedures which are unreachable
during any program execution. The compiler does not compile any unreachable procedures, often resulting in substantial
reductions both in code size and compile time.

Figure 9: Experimental Results (Cecil)

0 2 5 12 25 50 N
0

2

4

6

ric
ha

rd
s

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0.0

0.5

1.0

1.5

base 0 2 5 12 25 50 N
0.0

0.2

0.4

0.6

0.8

1.0

0 2 5 12 25 50 N
0

2

4

6

8

10

de
lta

bl
ue

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0

1

2

3

4

base 0 2 5 12 25 50 N
0.0

0.2

0.4

0.6

0.8

1.0

0 2 5 12 25 50 N
0

20

40

60

in
st

r
sc

he
d

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0.0

0.5

1.0

1.5

base 0 2 5 12 25 50 N
0.0

0.2

0.4

0.6

0.8

1.0

0 2 5 12 25 50 N
0

200

400

600

ty
pe

ch
ec

ke
r

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0.0

0.5

1.0

1.5

base 0 2 5 12 25 50 N
0.0

0.2

0.4

0.6

0.8

1.0

0 2 5 12 25 50 N
0

50

100

150

200

250

co
m

pi
le

r

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0.0

0.5

1.0

1.5

base 0 2 5 12 25 50 N
0.0

0.2

0.4

0.6

0.8

1.0

Analysis Time % Singleton Sets % Singleton Callees Execution Speedup Executable Size

Analysis Time % Singleton Sets % Singleton Callees Execution Speedup Executable Size

Bounded OO 0-CFA
Simply Bounded OO 0-CFA

Bounded Linear-Edge OO 0-CFA
Simply Bounded Linear-Edge OO 0-CFA

The final two columns of graphs present application speedups and executable sizes relative to thebase configuration.
Interprocedural class analysis enabled speedups ranging from marginal improvements to slightly over a factor of three speedup
on one benchmark. With the exception of the two smallest benchmarks, theP=0 configurations (RTA and Equivalence Class
Analysis) did not help run-time speed. Increasing the value ofP beyond 0, however, improved run-time speed, and as
foreshadowed by the abstract precision results, a fairly smallP value (e.g., 5) was sufficient to obtain most of the benefit
available for constant values ofP. The additional precision obtained in theP=N configurations translated into additional
performance improvements over the P=50 configurations.

The least precise algorithm (RTA) was sufficient to enable most of the reduction in executable size. Increasing values ofP
enable little additional improvement over RTA for most benchmarks.

The number of edges, either O(N) or O(N2) depending on the value ofMergeCalls, did not have a significant impact on either
application speedup or executable size. Thus, the two linear-edge algorithms are clearly preferable to their quadratic-edge
counterparts, since they obtain virtually identical bottom-line results while consuming less analysis time and space. For the two
smallest benchmarks, the additional potential precision of the bounded algorithmsvs. the simply bounded algorithms had an
impact on bottom-line application performance, but there was not a measurable difference for the majority of the benchmarks.

Figure 10: Experimental Results (Java)

Bounded OO 0-CFA
Simply Bounded OO 0-CFA

Bounded Linear-Edge OO 0-CFA
Simply Bounded Linear-Edge OO 0-CFA

0 2 5 12 25 50 N
0

50

100

es
pr

es
so

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0.0

0.5

1.0

1.5

base 0 2 5 12 25 50 N
0.0

0.2

0.4

0.6

0.8

1.0

0 2 5 12 25 50 N
0

50

100

150

200

ja
va

c

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0.0

0.5

1.0

1.5

base 0 2 5 12 25 50 N
0.0

0.2

0.4

0.6

0.8

1.0

Analysis Time % Singleton Sets % Singleton Callees Execution Speedup Executable Size

Analysis Time % Singleton Sets % Singleton Callees Execution Speedup Executable Size

0 2 5 12 25 50 N
0

20

40

60

80

to
ba

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0

20

40

60

80

base 0 2 5 12 25 50 N
0.0

0.5

1.0

1.5

base 0 2 5 12 25 50 N
0.0

0.2

0.4

0.6

0.8

1.0

4 Future Work

We are currently investigating a number of extensions to our framework for fast interprocedural class analysis. First, we are
studying how to adapt the idea of lazily merging nodes, present for propagation, to apply to merging call site message nodes.
Initially, each call site could get its own separate message node, but use merging to ensure that each method is reached by at
most one call site. This would ensure a linear bound on the number of edges in the graph while still enabling a fair amount of
separation between independent callers. This facility may be particularly helpful for invocations of closures, where the shared
apply formal and result message nodes introduced eagerly whenMergeCalls is true are smearing the argument and result class
sets of all closures with a particular number of arguments together, while lazy merging of these message nodes could often keep
closures used in simple ways isolated from one another.

Allowing a quadratic number of edges in the graph offers a kind of context-sensitive or polyvariant analysis of the virtual
generic function that dispatches messages with a given name and number of arguments to the appropriate member methods.
More generally, we wish to explore adding other more explicit forms of context-sensitivity to our fast analyses. In other work
we have examined the impact of different context-sensitivity strategies on cost and precision of algorithms building upon the
cubic-time classic OO 0-CFA algorithm [Grove et al. 97], but we have not considered adapting those notions to the faster
algorithms presented here, nor have we considered ways of bounding the worst-case cost of context-sensitivity.

The parameters to our framework allow placing bounds on different aspects of the algorithm, to achieve better worst-case time
and space costs. However, each of these bounds was ensured uniformly across the program on a local basis. An alternative
approach could more adaptively redistribute the total budget of allowable work units so that parts of the graph that do not come
close to the original uniform bound can redistribute their unused work units to be used in parts of the graph that are more
challenging. Similarly, some kinds of approximations are more costly in final precision than others; for example, merging two
nodes within a method body probably has much less negative impact on the quality of the final solution than does collapsing a
barrier node which may allow whole trees of methods to become reachable that shouldn’t be, incurring much more work to
process the bodies of the otherwise unreachable methods.

5 Additional Related Work

Our framework integrates traditional propagation-based analyses such as 0-CFA and type-inference-style, unification-based
analyses such as Steensgaard’s pointer analysis, as well as coping with object-oriented method dispatch and supporting
optimistic pruning of unreachable classes and methods. Ashley presents an algorithm framework parameterized by a context-
sensitivity operator and an operator for removing undesired precision of abstract values during analysis [Ashley 96, Ashley 97].
He instantiates his framework to produce an algorithm that performs only a bounded amount of propagation before falling back
to a distinguished Unknown abstract value, which resembles our simply bounded OO 0-CFA O(N2) algorithm. Our framework
additionally supports local unification (MergeWithGlobal = false), linear-edge variants, and object-oriented language features.
Unlike our framework as presented here, Ashley’s framework supports context-sensitive analysis, and he examined combining
his bounded algorithm with 1-CFA-style context-sensitivity.

Relatively few interprocedural control flow or class analyses have been implemented and measured on substantial programs. In
order of increasing asymptotic complexity of the examined algorithms, Bacon and Sweeney examined C++ programs up to
30,000 lines in size, Steensgaard examined C programs up to 25,000 lines, Ashley examined Scheme programs up to 30,000
lines in size, Agesen examined Self programs up to 7,000 lines (although all but one were 1,000 lines or smaller), and Plevyak
and Chien examined Concurrent Aggregates programs up to 2,000 lines. Our benchmarks span a range from several hundred
to 60,000 lines in size (including library code), enabling us to assess the scalability of the different algorithm instances beyond
that examined by previous work.

6 Conclusion

We have developed a parameterized algorithm for interprocedural class analysis that describes a continuum of different
algorithms ranging in cost from O(N) to O(N3). Our framework integrates both propagation-style analysis and unification-style
analysis, allowing specific algorithms to mix the two methods to achieve desired time costs and precision benefits. Since
interprocedural class analysis is very similar in spirit to control flow analysis, closure analysis, and set-based analysis, and
includes mechanisms found in (non-standard) type inference systems, versions of our new algorithms should be applicable in

a wide range of interprocedural analysis domains for languages with data-dependent control flow (e.g., first-class functions and/
or dynamic dispatching).

We have implemented this framework and measured its effectiveness on a number substantial Cecil and Java programs. The
new bounded and simply bounded linear-edge OO 0-CFA algorithms substantially improve the values of such abstract metrics
as the percentage of singleton class sets and singleton callees, in comparison to previous linear- and near-linear-time algorithms
for interprocedural class analysis. This improvement in abstract precision often translates into improvements in bottom-line
application speed and compactness.

Acknowledgments

We thank Bjarne Steensgaard for several discussions on the topic of near-linear-time interprocedural analysis. Michael Ernst,
Todd Millstein, and the anonymous POPL reviewers provided helpful comments on the presentation in this paper. This research
is supported in part by an NSF grant (number CCR-9503741), an NSF Young Investigator Award (number CCR-9457767), a grant
from the Office of Naval Research (contract number N00014-94-1-1136), an Intel Foundation Graduate Fellowship, and gifts from
Sun Microsystems, IBM, Xerox PARC, Object Technology International, Edison Design Group, and Pure Software.

References
[Agesen 95] Ole Agesen. The Cartesian Product Algorithm: Simple and Precise Type Inference of Parametric Polymor-

phism. InProceedings ECOOP ’95, Aarhus, Denmark, August 1995. Springer-Verlag.

[Agesen et al. 93]Ole Agesen, Jens Palsberg, and Michael I. Schwartzback. Type Inference of Self: Analysis of Objects with
Dynamic and Multiple Inheritance. InProceedings ECOOP ’93, July 1993.

[AK et al. 89] Hassan A"it-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient Implementation of Lattice Op-
erations.ACM Transactions on Programming Languages and Systems, 11(1):115–146, January 1989.

[Ashley 96] J. Michael Ashley. A Practical and Flexible Flow Analysis for Higher-Order Languages. InConference
Record of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 184–
194, January 1996.

[Ashley 97] J. Michael Ashley. The Effectiveness of Flow Analysis for Inlining. InProceedings of the 1997 ACM SIG-
PLAN International Conference on Functional Programming, pages 99–111, Amsterdam, The Netherlands, June
1997.

[Bacon & Sweeney 96]David F. Bacon and Peter F. Sweeney. Fast Static Analysis of C++ Virtual Function Calls. InOOPS-
LA’96 Conference Proceedings, San Jose, CA, October 1996.

[Chambers & Ungar 89]Craig Chambers and David Ungar. Customization: Optimizing Compiler Technology for SELF, a Dy-
namically-Typed Object-Oriented Programming Language. InProceedings of the SIGPLAN ’89 Conference on
Programming Language Design and Implementation, pages 146–160, June 1989.

[Chambers & Ungar 90]Craig Chambers and David Ungar. Iterative Type Analysis and Extended Message Splitting: Optimiz-
ing Dynamically-Typed Object-Oriented Programs. InProceedings of the ACM SIGPLAN ’90 Conference on
Programming Language Design and Implementation, pages 150–164, June 1990.

[Chambers 93] Craig Chambers. The Cecil Language: Specification and Rationale. Technical Report TR-93-03-05, Depart-
ment of Computer Science and Engineering. University of Washington, March 1993.

[Dean 96] Jeffrey Dean.Whole Program Optimization of Object-Oriented Languages. PhD thesis, University of Wash-
ington, November 1996. TR-96-11-05.

[Dean et al. 95] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of Object-Oriented Programs Using Static
Class Hierarchy Analysis. InProceedings ECOOP ’95, Aarhus, Denmark, August 1995. Springer-Verlag.

[Dean et al. 96] Jeffrey Dean, Greg DeFouw, Dave Grove, Vassily Litvinov, and Craig Chambers. Vortex: An Optimizing
Compiler for Object-Oriented Languages. InOOPSLA’96 Conference Proceedings, San Jose, CA, October 1996.

[DeFouw et al. 98]Greg DeFouw, David Grove, and Craig Chambers. Fast Interprocedural Class Analysis. InConference
Record of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, January 1998.

[Deutsch & Schiffman 84]L. Peter Deutsch and Allan M. Schiffman. Efficient Implementation of the Smalltalk-80 System. In
Conference Record of the Eleventh Annual ACM Symposium on Principles of Programming Languages, pages
297–302, January 1984.

[Flanagan & Felleisen 97]Cormac Flanagan and Matthias Felleisen. Componential Set-Based Analysis. InProceedings of the
ACM SIGPLAN ’97 Conference on Programming Language Design and Implementation, pages 235–248, June
1997.

[Gosling et al. 96]James Gosling, Bill Joy, and Guy Steele.The Java Language Specification. Addison-Wesley, Reading, MA,
1996.

[Grove et al. 97]David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call Graph Construction in Object Oriented
Languages. InOOPSLA’97 Conference Proceedings, Atlanta, GA, October 1997.

[Heintze & McAllester 97]Nevin Heintze and David McAllester. Linear-Time Subtransitive Control Flow Analysis. InPro-
ceedings of the ACM SIGPLAN ’97 Conference on Programming Language Design and Implementation, pages

261–272, June 1997.

[Heintze 94] Nevin Heintze. Set-Based Analysis of ML Programs. InProceedings of the ACM Conference on LISP and
Functional Programming ’94, pages 306–317, Orlando, FL, June 1994.

[Henglein 91] Fritz Henglein. Efficient Type Inference for Higher-Order Binding-Time Analysis. InFunctional Program-
ming and Computer Architecture, 1991.

[Jagannathan & Weeks 95]Suresh Jagannathan and Stephen Weeks. A Unified Treatment of Flow Analysis in Higher-Order
Languages. InConference Record of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 393–407, January 1995.

[Johnson 88] Ralph Johnson. TS: AN Optimizing Compiler for Smalltalk. InProceedings OOPSLA ’88, pages 18–26, No-
vember 1988. Published as ACM SIGPLAN Notices, volume 23, number 11.

[Nielson & Nielson 97]Flemming Nielson and Hanne Riis Nielson. Infinitary Control Flow Analysis: A Collecting Semantics
for Closure Analysis. InConference Record of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 332–345, January 1997.

[Oxhøj et al. 92] Nicholas Oxhøj, Jens Palsberg, and Michael I. Schwartzbach. Making Type Inference Practical. In
O. Lehrmann Madsen, editor,Proceedings ECOOP ’92, LNCS 615, pages 329–349, Utrecht, The Netherlands,
June 1992. Springer-Verlag.

[Plevyak & Chien 94]John Plevyak and Andrew A. Chien. Precise Concrete Type Inference for Object-Oriented Languages. In
Proceedings OOPSLA ’94, pages 324–340, Portland, OR, October 1994.

[Shivers 88] Olin Shivers. Control-Flow Analysis in Scheme. InProceedings of the SIGPLAN ’88 Conference on Pro-
gramming Language Design and Implementation, pages 164–174, June 1988.

[Shivers 91] Olin Shivers.Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie Mellon University,
May 1991. CMU-CS-91-145.

[Steensgaard 96]Bjarne Steensgaard. Points-to Analysis in Almost Linear Time. InConference Record of the 23rd ACM SIG-
PLAN-SIGACT Symposium on Principles of Programming Languages, pages 32–41, January 1996.

[Stefanescu & Zhou 94]Dan Stefanescu and Yuli Zhou. An Equational Framework for the Flow Analysis of Higher-Order
Functional Programs. InProceedings of the ACM Symposium on Lisp and Functional Programming, pages 190–
198, June 1994.

[Tarjan 75] Robert E. Tarjan. Efficiency of a good but not linear set union union algorithm.Journal of the ACM,
22(2):215–225, 1975.

Appendix A Raw Data

Table 3: Experimental Results

Algorithm P
Analysis

Time
(msec)

% Singleton
Class Sets

% Singleton
Callees

Exectuion
Time (msec)

Executable
Size (bytes)

ric
ha

rd
s

S
im

pl
y

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 4,002 0 48 131 837,532

2 4,473 20 53 118 829,260

5 4,517 26 55 110 823,684

12 4,494 26 54 106 809,316

25 4,796 28 55 108 805,324

50 4,986 28 55 108 805,324

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 3,994 5 48 113 820,476

2 4,380 24 54 111 810,844

5 4,564 26 54 102 798,404

12 5,168 27 54 103 798,044

25 5,709 28 55 109 795,188

50 6,352 28 55 108 795,188

S
im

pl
y

B
ou

nd
ed

 O
O

 0
-C

FA 0 6,361 0 48 133 837,532

2 7,049 20 53 108 828,868

5 7,115 26 55 106 823,236

12 6,747 27 54 102 809,260

25 7,011 30 55 108 805,212

50 7,435 29 55 110 805,252

B
ou

nd
ed

 O
O

 0
-C

FA

0 6,839 6 49 113 820,476

2 7,676 23 54 110 811,484

5 7,600 27 54 103 802,148

12 7,548 29 54 109 795,340

25 7,805 30 55 109 795,140

50 7,981 29 55 108 795,172

Linear-Edge OO
0-CFA

N 5,298 42 62 106 782,092

OO 0-CFA N 5,692 45 66 106 768,780

de
lta

bl
ue

S
im

pl
y

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 4,140 0 43 1,750 882,204

2 4,832 21 50 1,686 871,548

5 4,827 25 53 802 850,196

12 5,216 27 54 789 843,532

25 5,197 29 55 742 834,004

50 5,663 29 55 745 834,004

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 4,562 3 43 1,450 884,684

2 5,132 24 52 816 854,556

5 5,277 27 54 823 845,076

12 5,954 27 55 787 842,204

25 6,303 29 55 732 831,356

50 7,365 29 55 733 831,356

S
im

pl
y

B
ou

nd
ed

 O
O

 0
-C

FA 0 8,274 0 43 1,874 882,204

2 9,424 22 50 1,736 867,260

5 9,328 25 53 778 849,804

12 9,370 28 54 782 843,324

25 9,434 30 55 790 833,948

50 9,854 30 55 740 833,948

B
ou

nd
ed

 O
O

 0
-C

FA

0 9,052 4 45 1,560 884,684

2 10,049 23 52 897 853,300

5 10,469 27 54 819 844,396

12 10,092 29 55 776 833,596

25 11,371 30 55 770 831,356

50 11,723 30 55 732 831,356

Linear-Edge OO
0-CFA

N 5,980 43 61 582 811,324

OO 0-CFA N 9,689 45 62 588 810,764

Table 3: Experimental Results

Algorithm P
Analysis

Time
(msec)

% Singleton
Class Sets

% Singleton
Callees

Exectuion
Time (msec)

Executable
Size (bytes)

in
st

r
sc

he
d

S
im

pl
y

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 8,493 0 35 1,054 1,405,384

2 9,726 20 42 1,054 1,410,432

5 10,010 24 44 1,071 1,396,976

12 10,499 25 45 989 1,389,080

25 10,661 26 45 989 1,388,752

50 12,921 26 45 976 1,388,752

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 9,049 4 35 1,058 1,408,264

2 10,353 23 43 1,041 1,400,816

5 11,069 24 45 974 1,393,528

12 13,397 26 45 965 1,387,264

25 15,789 26 46 944 1,386,176

50 19,967 26 46 966 1,386,176

S
im

pl
y

B
ou

nd
ed

 O
O

 0
-C

FA 0 35,592 0 35 1,061 1,405,384

2 39,885 20 42 1,013 1,408,472

5 37,818 24 44 994 1,395,128

12 37,301 25 45 994 1,388,464

25 41,617 26 45 993 1,388,616

50 44,357 26 45 1,006 1,388,616

B
ou

nd
ed

 O
O

 0
-C

FA

0 38,869 5 36 1,063 1,408,264

2 43,421 23 42 990 1,406,248

5 43,307 24 45 1,067 1,389,632

12 48,407 26 45 961 1,388,256

25 55,970 26 46 989 1,386,336

50 65,339 26 46 987 1,386,336

Linear-Edge OO
0-CFA

N 20,221 38 55 869 1,334,816

OO 0-CFA N 49,147 40 55 774 1,306,384

Table 3: Experimental Results

Algorithm P
Analysis

Time
(msec)

% Singleton
Class Sets

% Singleton
Callees

Exectuion
Time (msec)

Executable
Size (bytes)

ty
pe

ch
ec

ke
r

S
im

pl
y

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 27,702 0 39 9,586 3,995,464

2 32,757 20 47 8,719 3,911,136

5 34,647 23 49 8,297 3,883,312

12 37,041 24 50 8,392 3,856,200

25 39,736 24 50 8,360 3,849,784

50 44,267 25 50 8,289 3,836,232

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 30,078 1 39 9,607 3,995,496

2 37,200 22 48 8,506 3,904,552

5 42,583 24 49 8,365 3,875,680

12 56,298 24 50 8,366 3,850,224

25 74,906 24 50 8,267 3,847,104

50 113,490 25 50 8,356 3,834,888

S
im

pl
y

B
ou

nd
ed

 O
O

 0
-C

FA 0 481,208 0 39 9,702 3,995,464

2 538,726 20 47

5

12

25

50

B
ou

nd
ed

 O
O

 0
-C

FA

0 520,733 2 40 9,524 3,995,664

2 643,363 22 48 8,963 3,909,520

5

12

25

50

Linear-Edge OO
0-CFA

N 390,248 38 64 7,857 3,661,160

OO 0-CFA N

Table 3: Experimental Results

Algorithm P
Analysis

Time
(msec)

% Singleton
Class Sets

% Singleton
Callees

Exectuion
Time (msec)

Executable
Size (bytes)

co
m

pi
le

r

S
im

pl
y

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 63,116 0 37 194,195 7,811,120

2 76,960 19 44 183,214 7,633,032

5 81,419 23 46 175,374 7,534,816

12 85,722 24 47 174,129 7,452,768

25 90,657 24 47 173,914 7,441,112

50 103,825 24 47 174,047 7,440,664

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 66,505 1 37 194,578 7,806,944

2 83,180 21 45 181,398 7,599,776

5 95,785 23 47 172,982 7,515,448

12 137,205 24 47 175,606 7,440,096

25 185,006 24 47 173,193 7,437,616

50 276,803 24 47 174,261 7,437,480

S
im

pl
y

B
ou

nd
ed

 O
O

 0
-C

FA 0

2

5

12

25

50

B
ou

nd
ed

 O
O

 0
-C

FA

0

2

5

12

25

50

Linear-Edge OO
0-CFA

N

OO 0-CFA N

Table 3: Experimental Results

Algorithm P
Analysis

Time
(msec)

% Singleton
Class Sets

% Singleton
Callees

Exectuion
Time (msec)

Executable
Size (bytes)

to
ba

S
im

pl
y

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 66,982 0 43 1,198 1,463,984

2 70,700 34 44 1,241 1,463,792

5 69,743 41 44 1,290 1,463,624

12 70,927 50 44 1,180 1,462,128

25 71,097 52 44 1,191 1,461,640

50 70,595 53 44 1,196 1,461,640

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 68,047 32 43 1,201 1,463,984

2 69,246 52 44 1,229 1,463,816

5 71,640 52 44 1,267 1,463,624

12 70,550 53 44 1,174 1,462,128

25 70,854 53 44 1,199 1,461,640

50 71,994 56 44 1,190 1,461,640

S
im

pl
y

B
ou

nd
ed

 O
O

 0
-C

FA 0 70,452 0 43 1,222 1,463,984

2 75,796 34 44 1,238 1,463,792

5 75,104 42 44 1,256 1,463,624

12 78,002 50 44 1,187 1,462,128

25 78,108 52 44 1,205 1,461,328

50 77,552 53 44 1,203 1,461,328

B
ou

nd
ed

 O
O

 0
-C

FA

0 73,796 32 43 1,237 1,463,984

2 75,145 52 44 1,286 1,463,624

5 76,956 53 44 1,248 1,463,624

12 77,912 53 44 1,192 1,462,128

25 78,217 53 44 1,203 1,461,328

50 83,427 53 44 1,202 1,461,328

Linear-Edge OO
0-CFA

N 70,790 70 50 1,202 1,461,328

OO 0-CFA N 77,572 70 50 1,201 1,461,328

Table 3: Experimental Results

Algorithm P
Analysis

Time
(msec)

% Singleton
Class Sets

% Singleton
Callees

Exectuion
Time (msec)

Executable
Size (bytes)

es
pr

es
so

S
im

pl
y

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 107,174 0 14 1,607 2,082,456

2 113,684 32 15 1,573 2,081,000

5 114,019 39 16 1,577 2,069,976

12 111,390 43 16 1,591 2,066,464

25 111,425 46 16 1,587 2,065,992

50 112,392 47 16 1,581 2,065,808

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 108,328 33 14 1,706 2,082,456

2 115,263 45 15 1,612 2,079,912

5 112,442 47 16 1,578 2,067,032

12 112,858 48 16 1,660 2,066,280

25 113,387 48 16 1,636 2,065,808

50 115,137 48 16 1,599 2,065,296

S
im

pl
y

B
ou

nd
ed

 O
O

 0
-C

FA 0 112,292 0 14 1,568 2,082,456

2 120,799 32 15 1,621 2,080,104

5 120,484 39 16 1,608 2,069,976

12 120,133 43 16 1,578 2,065,992

25 121,515 46 16 1,560 2,065,992

50 124,091 47 16 1,573 2,065,808

B
ou

nd
ed

 O
O

 0
-C

FA

0 114,495 33 14 1,578 2,082,456

2 122,807 45 15 1,598 2,079,344

5 121,379 47 16 1,609 2,065,392

12 122,356 48 16 1,628 2,065,808

25 127,196 48 16 1,573 2,065,808

50 127,055 48 16 1,578 2,065,296

Linear-Edge OO
0-CFA

N 121,122 48 16 1,605 2,065,296

OO 0-CFA N 139,525 48 16 1,577 2,065,296

Table 3: Experimental Results

Algorithm P
Analysis

Time
(msec)

% Singleton
Class Sets

% Singleton
Callees

Exectuion
Time (msec)

Executable
Size (bytes)

ja
va

c

S
im

pl
y

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 154,182 0 24 1,158 2,648,656

2 170,409 31 26 1,077 2,647,064

5 167,895 35 28 1,112 2,645,288

12 169,687 39 29 1,134 2,639,256

25 168,380 42 29 1,129 2,634,824

50 170,610 44 31 1,134 2,628,072

B
ou

nd
ed

Li
ne

ar
-E

dg
e

O
O

 0
-C

FA

0 159,273 30 24 1,124 2,647,904

2 168,970 42 28 1,135 2,644,392

5 169,335 43 29 1,123 2,636,624

12 167,726 46 31 1,142 2,627,240

25 168,007 46 31 1,134 2,627,240

50 168,242 46 31 1,139 2,627,240

S
im

pl
y

B
ou

nd
ed

 O
O

 0
-C

FA 0 177,967 0 24 1,152 2,648,656

2 196,619 31 26 1,091 2,647,064

5 193,884 35 28 1,130 2,645,288

12 195,221 39 29 1,137 2,639,256

25 195,405 42 29 1,094 2,634,824

50 196,930 44 31 1,138 2,628,072

B
ou

nd
ed

 O
O

 0
-C

FA

0 184,080 30 24 1,150 2,647,904

2 191,072 42 27 1,112 2,646,992

5 197,896 43 29 1,142 2,639,256

12 197,725 43 29 1,221 2,637,560

25 196,124 45 31 1,123 2,627,736

50 196,711 46 31 1,123 2,627,240

Linear-Edge OO
0-CFA

N 174,291 46 31 1,155 2,627,240

OO 0-CFA N 207,608 46 31 1,135 2,627,240

Table 3: Experimental Results

Algorithm P
Analysis

Time
(msec)

% Singleton
Class Sets

% Singleton
Callees

Exectuion
Time (msec)

Executable
Size (bytes)

