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Abstract

Parallel Prefetching and Caching

by Tracy Kimbrel

Co-Chairpersons of Supervisory Committee: Professor Anna R. Karlin

Professor Martin Tompa

Department of Computer Science

and Engineering

High-performance I/O systems depend on prefetching and caching to deliver good

performance to applications. These two techniques have generally been considered

in isolation, even though there are signi�cant interactions between them: a block

prefetched too early may cause a block that is needed soon to be evicted from the

cache, thus reducing the e�ectiveness of the cache, while a block cached too long may

reduce the e�ectiveness of prefetching by denying opportunities to the prefetcher.

Using both analytical and experimental methods, we study the problem of integrated

prefetching and caching for an I/O system with multiple disks.

In a theoretical analysis, we consider algorithms for integrated prefetching and

caching in a model abstracting relevant characteristics of �le systems with multiple

disks. Previously, the \aggressive" algorithm was shown by Cao, Felten, Karlin,

and Li to have near-optimal performance in the single disk case. We show that the

natural extension of the aggressive algorithm to the parallel disk case is suboptimal

by a factor near the number of disks in the worst case. Our main theoretical result

is a new algorithm, \reverse aggressive," with provably near-optimal performance in

the presence of multiple disks.

Using disk-accurate trace-driven simulation, we explore the performance charac-

teristics of several algorithms in cases in which applications provide full advance





knowledge of accesses using hints. The algorithms tested are the two mentioned

previously, plus the \�xed horizon" algorithm of Patterson et al., and a new algorithm,

\forestall," that combines the desirable characteristics of the others. We �nd that

when performance is limited by I/O stalls, aggressive prefetching helps to alleviate

the problem; that more conservative prefetching is appropriate when signi�cant I/O

stalls are not present; and that a single, simple strategy is capable of doing both.

We also consider three related problems. First, we present an optimal algorithm

for a restricted version of the single disk prefetching and caching problem. Next,

we propose an approach to the integration of prefetching and caching policies with

processor and disk scheduling policies. Finally, we show the NP-hardness of a problem

of ordering requests to maximize locality of reference.
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Chapter 1

INTRODUCTION

This dissertation presents a study of prefetching and caching strategies for achiev-

ing high performance in computer systems. The algorithms developed are evaluated

in the context of �le systems (i.e., main memory caching of disk-resident data). How-

ever, the same principles apply to any prefetching and caching problem. The under-

standing and some of the techniques developed here could prove useful between any

two levels of a memory hierarchy, as well as in any other context in which caching

and prefetching can be used to improve performance such as a networked information

storage and retrieval system.

1.1 Prefetching and caching

Prefetching and caching are fundamental techniques for achieving high performance

at low cost in computer systems. Prefetching and caching exploit the characteristic

of most computer applications known as locality of reference: a recently used data

item is likely to be re-used soon (temporal locality), and nearby data items are likely

to be used in the near future as well (spatial locality).

Caching refers to the technique of storing copies of data that are likely to be used

or re-used in the near future in a cache, which is a smaller, faster, and thus more

expensive (per unit of storage) device than the device that holds them for the long

term, which is known as the backing store. On a request for a data item, the cache is

searched �rst. If the item is present, we say the request hits in the cache; otherwise,

the request is a miss and the data item must be retrieved from the slower backing

store. This technique is used at many levels in a typical computer system: there are

one or more levels of processor cache, the processor cache is backed by main memory,
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main memory is backed by disk storage, and disk storage may be backed by tape

storage. This design is known as a memory hierarchy. (A processor's register set,

smaller and faster than the �rst level of processor cache, is part of this hierarchy as

well, but is not referred to as a cache since it is accessed explicitly.)

If a cache is smaller than the set of data being consumed, then a replacement

strategy must be used to determine which data item to evict from the cache to make

room for an incoming item. Some caches, known as direct-mapped caches, allow no

exibility in this choice. Each data item is allowed to reside in only a single particular

location in the cache, so that whichever item occupies an incoming item's location

must be evicted to make room for the incoming item. We will be concerned mostly

with fully-associative caches in this thesis, in which any data item may occupy any

cache location. Set-associative caches fall between the other two forms: each data

item is allowed to reside in any of a set of cache locations, so that there is a choice

of data items to evict, but there is not as much exibility as there is with a fully-

associative cache. A set-associative cache in which each data item maps to a set of

size t is termed t-way-associative.

Caching is generally e�ective in overcoming the gap between the bandwidth of

the backing store, that is, the maximum rate of data transfer, and the rate of data

consumption. A large enough cache can eliminate references to the slower backing

store to the point that the backing store's bandwidth equals or exceeds the rate at

which data are requested from it. Caching also reduces the problem of latency, the

delay from the time at which a data item is requested to the time at which the

item is delivered. However, caching alone is unable to completely overcome latency.

Prefetching is a technique to hide latency: if a request for data can be issued to the

backing store long enough before the data are needed, the backing store can return

the data to the cache by the time they are needed.

When a data item is prefetched, space in the cache must be allocated. Prefetching

displaces data from the cache earlier than would be necessary if data were fetched on

demand, i.e., if each request were not issued to the backing store until a cache miss

occurs. Because of this, more cache misses may occur in a prefetching system than

in a demand fetching system. This thesis explores the tension between prefetching

and caching and the tradeo�s raised by it.
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To prefetch e�ectively, some form of advance knowledge of future data requests

must be available. This knowledge, referred to as lookahead, may be complete or

incomplete, exact or inexact. Only some of the future requests may be known, or

errors may be present in the lookahead information. Many caches perform what

can be thought of as a form of prefetching that exploits spatial locality by fetching

data in blocks that contain two or more neighboring data items. The only lookahead

information used is the \guess" that neighboring data items are likely to be used in

the near future. This thesis considers prefetching and caching strategies for cases

in which detailed lookahead information is available. The question of the source of

lookahead information is orthogonal to the question of how best to use the information

for prefetching and caching. This thesis is concerned with the latter question.

1.2 An example

An example will serve to introduce our model and illustrate the challenge posed by

the multi-disk problem. An application program references one block per time unit.

If the application wants to reference a block that is not present in the cache, the

application must wait or stall until the block is present. Each disk can perform only

one fetch at a time. If the cache is full, every fetch requires the eviction of some

block from the cache. In a real system, it is not known in advance exactly how long a

fetch will take (though in our theoretical model, the fetch time is constant); because

of this, we assume the evicted block becomes unavailable at the moment the fetch

starts. The goal is to minimize the total time spent by the application, or equivalently

to minimize the stall time. In the following example, the cache holds four blocks, and

it takes two time units to fetch a block from disk.

Suppose the application references blocks according to the sequence

(A; b; C; d; E; F ), and the cache initially holds blocks A, b, d, and F . Blocks A,

C, E, and F reside on one disk; blocks b and d on a di�erent disk. A straightfor-

ward approach is to use the aggressive algorithm [7]: always fetch the missing block

that will be referenced soonest; evict the block whose next reference is furthest in

the future; but do not fetch if the evicted block will be referenced before the fetched

block. Figure 1.1(a) shows the schedule of prefetches, evictions, and block service

times produced by this algorithm. For example, initially, the �rst missing block is
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(a) A prefetching and caching schedule.

Figure 1.1: An example of prefetching and caching with two disks.

C, and the block whose next reference is furthest in the future is F . Moreover, the

reference to F is after the reference to C. Thus, the aggressive algorithm immediately

initiates a fetch for C, evicting F . Notice that this fetch is entirely overlapped with

computation (the references to A and b). The schedule produced using this algorithm

results in one unit of stall time (the sixth time unit). The entire sequence is served

in seven time units.

Figure 1.1(b) shows another schedule that is faster by one time unit. On the �rst

fetch, d is evicted rather than F , even though d is referenced earlier than F . This has

the advantage of o�oading one fetch from the heavily loaded disk to the otherwise

idle disk. This change allows the fetches of C and d, and of d and E, to proceed in

parallel, thus saving one time unit.

This example shows that it is helpful to take disk load into account when mak-

ing fetching and eviction decisions. This factor makes the multi-disk problem more

di�cult than the single-disk problem.

1.3 Applications

The primary application area of the techniques considered in this thesis is that of �le

systems. A typical modern �le system uses a portion of a computer's main memory

as a cache (referred to as a �le cache), backed by one or more disk drives. Advances in

technology have made magnetic disks both cheap and small. As a result, parallel disk
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arrays have become an attractive means for achieving high �le system performance

at low cost. Multiple disks o�er the advantages of both increased bandwidth and

reduced contention. Nonetheless, there are many applications which do not bene�t

from this I/O parallelism as much as they could, and end up stalling for I/O a

signi�cant fraction of the time. At the same time, it has been observed that many of

these applications have largely predictable access patterns. This has enabled the use

of prefetching and informed cache replacement(e.g., [12, 25, 35, 36]) as techniques for

reducing I/O overhead in such systems.

Typical disk drive response times are in the 5-30 millisecond range [38]. This

large cache miss cost makes it worthwhile to spend a large amount of e�ort to avoid

cache misses. The techniques in this thesis require nontrivial amounts of computation

to make available and maintain lookahead information and its relation to the cache

state. As processor speeds continue to increase, the increasing miss penalty between

a processor's cache and main memory (currently many tens of processor cycles) will

make it feasible to expend more resources and use similar techniques at higher levels of

the memory hierarchy. A case in point is the problem considered in Chapter 7. In that

chapter, a problem related to the main results of this thesis is considered. The results

described in Chapters 3{6 address the problem of exploiting locality of reference

and lookahead information to maximize performance. The problem considered in

Chapter 7 is one of increasing locality of reference by carefully constructing request

sequences. This idea has been applied at the level of the processor cache to avoid

main memory accesses [37].

1.4 Relation to previous work

Caching and prefetching have been known techniques to improve performance of

storage hierarchies for many years [4, 13]. In computer architecture, work on caching

and prefetching has focused on bridging the performance gap between processors and

main memory [41]. Research using caching and prefetching in database systems [10,

33, 11] showed that it is important to use applications' knowledge to perform caching

and prefetching.

File caching and prefetching have become standard techniques for sequential �le

systems [13, 28, 20, 31, 42, 5, 18, 6, 36]. The most common prefetching approach is
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to perform sequential readahead, i.e., to detect when an application accesses a �le

sequentially, and to prefetch in order the blocks of the �les that are so used [13, 28,

29]. The limitation of this approach is that it bene�ts only applications that make

sequential references to large �les. Recently, caching and prefetching have also been

studied for parallel �le systems [12, 25, 35].

Another body of work has been on predicting future access patterns [12, 42, 33,

11, 18]. A recent trend is to use applications' knowledge about their access patterns

to perform more e�ective caching and prefetching [5, 6, 35, 36]. Patterson et al. [35]

describe a mechanism by which an application's request sequence can be made known

in advance. They use a hinting interface through which an application can be ex-

plicitly programmed to diclose its future �le accesses to the �le system. Mowry et

al. [30] use a di�erent mechanism to make an application's demands known to the

system. There, compiler techniques are applied to regularly-structured computations

to predict applications' virtual memory page faults. An advantage of their mecha-

nism is that the lookahead information is generated automatically, without any e�ort

on the part of the application developer. A disadvantage is that applicability of the

method is limited to applications with access patterns that are amenable to prediction

through compiler analysis.

Much research on parallel I/O has concentrated on techniques for striping and

distributing error-correction codes among redundant disk arrays or other devices.

These techniques are used to achieve high bandwidth by exploiting parallelism and

to tolerate failures [21, 39, 9, 34, 17]. For purposes of this thesis, striping will refer

to a data layout in which block i of a �le resides on disk (i mod d), where d is the

number of disks. This allows any d consecutive blocks to be fetched in parallel, thus

bene�ting programs that exhibit spatial locality.

The work presented in this thesis complements these previous e�orts. File access

prediction or application-provided lookahead information can be used to provide the

inputs to the algorithms considered here. The reverse aggressive algorithm, described

in Chapter 2, has provably near-optimal performance for any given mapping of disk

blocks to disks. Its performance will only improve when a near-optimal layout is

used. As described in Chapter 4, a striped layout allows algorithms that are simpler

and more practical to compete with the provably near-optimal algorithm reverse

aggressive.
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1.4.1 The integrated prefetching and caching problem

Our problem is a generalization of, but much more complicated than, the classi-

cal paging problem. Indeed, one principle for prefetching (the optimal eviction rule

described in Section 2.3) is derived from Belady's optimal longest forward distance

paging algorithm [4]. As we will see, however, the application of this rule alone is

insu�cient to guarantee good prefetching performance.

We know of no prior theoretical analysis of the integration of prefetching and

caching in the presence of multiple disks. There have been some interesting results

on the use of data compression for the design of optimal prefetching strategies [27, 44],

and work on prefetching strategies for external merging under a probabilistic model

of request sequences [32]. However, these studies concentrated only on the problem

of determining which blocks to fetch, and did not address the problem of determining

which blocks to replace.

This thesis builds on recent studies by Cao, Felten, Karlin, and Li of the single-

disk prefetching and caching problem [7, 8]. They showed that it is important to

integrate prefetching, caching and disk scheduling and that a properly integrated

strategy can perform much better than a naive strategy, both theoretically and in

practice. Cao et al. proposed the aggressive prefetching and caching algorithm,

which is described in detail in Chapter 2. Another closely related line of research is

the work of Patterson, Tomkins, Gibson, Ginting, Stodolski, and Zalenka [35, 36, 43].

Patterson et al. proposed the �xed horizon prefetching and caching algorithm [36].

Fixed horizon is described in detail in Chapter 2. Mowry et al. [30] do not separate the

generation of lookahead information from its use, as do the other works mentioned.

Their compiler inserts prefetch requests in the code it generates. These are placed to

request each block a �xed amount of time ahead of the cache miss, much as the �xed

horizon algorithm of Patterson et al. does. The lookahead information generated

by their compiler could be used by any of the prefetching and caching algorithms

considered in this thesis.

As mentioned in Section 1.1, the generation of lookahead information is orthogonal

to, albeit necessary for, its use by a prefetching and caching algorithm. This thesis

focuses on the use and not the generation of lookahead information. We present

the reverse aggressive algorithm (developed in joint work with Anna Karlin) and the
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forestall algorithm (developed in joint work with Tomkins, Patterson, Bershad, Cao,

Felten, Gibson, Karlin, and Li). Like aggressive and �xed horizon, these algorithms

address the integrated prefetching and caching problem for a single process. All

four can be modi�ed to deal with incomplete and inexact lookahead information, as

discussed in Chapter 2.

Aggressive and �xed horizon were designed under di�erent workload assumptions.

Aggressive was designed assuming a single disk, which is expected to be a performance

bottleneck. Thus, aggressivemaximizes utilization of this constrained resource, which

is appropriate. Fixed horizon was designed assuming enough I/O parallelism so that

each request is issued to an idle disk. Fixed horizon prefetches more conservatively

than aggressive to make the best cache replacement for each prefetch. It does this by

delaying each prefetch until there is just enough time to complete it in time for the

reference. Again, this is appropriate under the workload for which the algorithm was

designed; however, it causes problems when the assumption of abundant disk band-

width is violated. As we will see in Chapter 4, each of these algorithms performs well

under the conditions for which it was designed, but each su�ers under the workload

for which the other is designed.

In contrast to aggressive and �xed horizon, reverse aggressive and forestall were

designed to take advantage of any amount of I/O parallelism. Reverse aggressive

carefully constructs a schedule of prefetches and evictions while considering the loads

placed on the multiple disks. This ensures that the loads are balanced. Reverse

aggressive is able to do this for any layout of data. All three other algorithms su�er

from a load imbalance problem in the worst case. Forestall achieves a compromise

between the aggressive prefetching of aggressive and the conservative prefetching of

�xed horizon. It does this by estimating the time at which prefetching must be

initiated to avoid causing the application process to stall, i.e., to wait for a prefetch

to complete because it was not initiated soon enough. This di�ers from �xed horizon's

mechanism in that more than one prefetch is considered at a time when deciding how

early to begin prefetching. This allows forestall to deal with congestion, i.e., the

situation in which more than one block must be prefetched from the same disk. With

a striped data layout, forestall is able to maintain load balance without the careful

deliberation of reverse aggressive. (Aggressive and �xed horizon are able to do so as

well.) In practice, striping eliminates the load imbalance problem of worst-case data
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layouts.

The algorithms described above determine prefetching and caching schedules for

a single application process. Cao et al. and Patterson et al. propose di�erent policies

to allocate cache resources to multiple, competing processes. Cao et al. [5, 6, 8]

describe LRU-SP, which determines cache allocations based on those that would be

obtained using the least recently used (LRU) replacement policy, applied globally to

all processes' interleaved reference streams. The cost-bene�t analysis of Patterson et

al. [36] compares the cost of one process giving up a cache bu�er to the bene�t of

reallocating that bu�er to another process. These are measured in terms of the time

saved or lost by a process divided by the amount of time the bu�er is used or given

up. The choice of prefetching and caching algorithm is orthogonal to that of the

cache allocator, as well as to that of the lookahead generation mechanism.

Along with the hinting interface of Patterson et al. or the compiler-generated

lookahead method of Mowry et al., each of the algorithms for prefetching and caching

represents a complete solution to the problem of improving I/O performance for those

applications that are amenable to the chosen lookahead generation mechanism. When

a hint-generating tool and a prefetching and caching algorithm are combined with one

of the cache allocation mechanisms described above, a complete solution for multi-

programmed workloads is obtained. Tomkins et al. have gone on to evaluate forestall

experimentally in conjunction with each of the cost-bene�t and LRU-SP allocation

mechanisms, as well as aggressive in conjunction with LRU-SP and �xed horizon in

conjunction with cost-bene�t [43] .

In addition to the single-process parallel prefetching and caching problem, this

thesis also addresses three related issues. The �rst is the development of an e�-

cient algorithm to �nd optimal prefetching and caching schedules. We make par-

tial progress by �nding such an algorithm for a restricted version of the single disk

prefetching and caching problem. The second is the integration of prefetching and

caching policies with processor and disk scheduling policies. With this idea, we take

a wider view than the previous studies of integrated prefetching and caching for mul-

tiple processes, which assumed standard time-sharing scheduling mechanisms. The

third is the ordering of request sequences for increased locality of reference to be

exploited by prefetching and caching systems.
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1.5 Contributions and organization of thesis

This dissertation makes the following research contributions:

� A theoretical understanding of the performance bene�t that is made possible

through e�ective prefetching and caching techniques for a system with multiple

backing stores is presented.

� A theoretical understanding of techniques that achieve the possible bene�t is

presented.

� A practical algorithm that achieves the aforementioned performance bene�t in

the presence of complete and accurate application-provided advance knowledge

of �le system data requests is developed and evaluated.

� An e�cient optimal algorithm for a restricted version of the single disk prefetch-

ing and caching problem is given.

� A step is made toward an understanding of the interaction of prefetching and

caching strategies with processor and disk scheduling policies and a technique

for integrating them is proposed.

� A partial analysis of a problem of scheduling independent threads of control to

increase locality of reference and thereby improve cache performance is given.

This dissertation is organized as follows. Chapter 2 describes �le prefetching and

caching in greater detail and presents a framework that is common to the problems

considered in Chapters 3{ 6. Chapter 2 also describes several algorithms for the par-

allel prefetching and caching problem. Chapter 3 contains a theoretical treatment

of the parallel prefetching and caching problem. Previously proposed algorithms are

analyzed, and a new algorithm, reverse aggressive, is shown to have near-optimal

performance for the abstract parallel prefetching and caching problem. Reverse ag-

gressive is not a practical algorithm. However, it serves as a benchmark against

which to compare practical algorithms. Perhaps more important, an understanding

of the reasons for reverse aggressive's good performance leads to the design of a more
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practical algorithm that is able to match its performance. Chapter 4 describes an

experimental evaluation of algorithms for prefetching and caching in a �le system

with multiple disks. Traces of �le accesses by real applications are used to drive a

simulator, which gives accurate estimates of the performance characteristics of the

algorithms considered. A practical algorithm, forestall, is found to match or exceed

the performance of reverse aggressive in trace-driven simulations. Chapter 5 proposes

a new approach to the single disk prefetching and caching problem. An e�cient al-

gorithm is given to �nd a schedule that does not stall for any sequence for which

such a schedule exists. Chapter 6 proposes a strategy for the integration of prefetch-

ing and caching policies with processor and disk scheduling for a multi-programmed

workload. An algorithm is described that �nds an optimal solution to a simpli�ed

version of the problem. It is argued that in conjunction with forestall, the algorithm

may nonetheless provide a practical solution to a problem that appears to be very

di�cult to analyze. Chapter 7 describes a mechanism that has been proposed pre-

viously by which performance can be improved by increasing a program's locality of

reference [37]. The problem of �nding an optimal solution is shown to be NP-hard.

Chapter 8 summarizes the thesis and presents conclusions and directions for future

study.

Preliminary versions of the results presented in Chapter 3 were presented in [23].

The results presented in Chapter 4 appeared previously in [24].



Chapter 2

THE PARALLEL PREFETCHING AND CACHING

PROBLEM

In this chapter, we describe a theoretical model that captures the important char-

acteristics of a system for prefetching and caching with multiple backing stores. We

also describe several prefetching and caching algorithms. Because the primary moti-

vation for this problem comes from �le systems, we will refer to the backing stores as

disks. In Chapter 3, we study the o�ine problem of constructing an optimal prefetch-

ing and caching schedule in this model, for a given stream of requests for blocks of

data residing on the disks. An optimal schedule minimizes the elapsed time required

to serve a given request stream.

1

Although complete information about future re-

quests is usually not available, partial information is often available in the form of

limited or even signi�cant lookahead into the request stream. All the algorithms

considered here can be modi�ed to deal with inexact and incomplete lookahead, as

described in Section 2.5. In addition, the design and analysis of an optimal o�ine

algorithm is an important step towards understanding and evaluating more practical

limited-lookahead algorithms. We can perhaps draw an analogy with the impact of

the optimal o�ine paging algorithm [4] on the design, implementation and evaluation

of online paging algorithms [40].

Our model is read-only. The algorithms we consider can improve the performance

of read-only and read-mostly applications (i.e., those for which the performance im-

pact of write tra�c is negligible). An interesting open problem is the integration of

the algorithms considered here with techniques to improve write performance.

Surprisingly, even in the read-only, complete and accurate lookahead, single-disk

situation, this is a challenging combinatorial problem. We know of no polynomial

time algorithm for determining an optimal prefetching schedule. The di�culty comes

1

In this chapter, we consider only the case of a single request sequence. Chapter 6 discusses

performance measures appropriate for a multi-programmed workload.
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from the fact that prefetching too soon can cause additional cache misses by replacing

blocks that would remain in the cache if prefetching were done later or not at all: new

and possibly better eviction opportunities arise as a program proceeds. Nonetheless,

Cao et al. [7] were able to show that a simple and natural algorithm called aggressive,

which prefetches as early as is reasonable, has performance that is provably close to

optimal in the single disk case.

We show in Chapter 3, however, that the natural extension of this algorithm

to the multiple disk case has performance that is suboptimal by a factor nearly

equal to the number of disks. The interaction between caching and prefetching is

signi�cantly more complicated in a system with multiple disks because a set of blocks

can be prefetched in parallel only if they reside on di�erent disks: each disk can serve

only one prefetch at a time. The prefetching schedule and choice of cache evictions

impact the potential for subsequent parallel prefetching in a complex way. Our main

theoretical result is a new algorithm, reverse aggressive, with provably near-optimal

performance for this problem.

2.1 Theoretical model

Our model generalizes the example of Section 1.2 in the obvious way.

� Let d be the number of disks.

� Let B be a set of blocks. We will refer to the disk on which a block b 2 B

resides as the color of b.

� There is a cache that contains at most K blocks in B at any time.

� A reference sequence, or request sequence, is an ordered sequence of references

R = r

1

; r

2

; : : : r

jRj

, where each r

i

2 B.

� Fetching a block from a disk into the cache takes F time units.

We imagine that there is a cursor which at any time points to the next request to

be served. If this request is for a block that is in the cache, the cursor advances by one
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during the next time unit. If this request is for a block that is not in the cache, the

cursor stalls until that block arrives in the cache (i.e., until the fetch for that block

completes). Note that to the extent that the cursor is advancing, a prefetch can

overlap the serving of requests. Also, prefetches can overlap each other provided that

the prefetched blocks reside on di�erent disks. We assume that each block resides on

only a single disk.

The goal is to determine a schedule of prefetches and evictions such that the time

required to serve the entire sequence is minimized. Since it requires one unit of time

to serve each request, the elapsed time is equal to the length of the request sequence

plus the total number of steps during which the cursor stalls.

De�nition: At any point in processing the sequence (i.e., for any given cache

state and cursor position), a hole is a block that is not present in the cache. We will

use the term \hole" to refer to both the missing block and its next occurrence in the

request sequence; which of these is meant will be clear from the context. If the cache

is full, there are K out of jBj blocks in the cache and thus jBj � K holes. After a

block is requested for the last time, we consider the corresponding hole in the request

sequence to be at position jRj+ 1, i.e., greater than the index of any request, where

R is the request sequence.

2.2 Algorithms for parallel prefetching and caching

We consider �ve algorithms for parallel prefetching and caching in this thesis, con-

servative, aggressive, reverse aggressive, �xed horizon, and forestall. The �rst two are

natural extensions of the two single disk prefetching strategies described by Cao et

al. [7]. They lie at opposite ends of the spectrum in terms of the total number of

fetches performed: Conservative performs the minimum possible number of fetches,

at the expense of a worse elapsed time in the worst case; Aggressive prefetches as

aggressively as possible without being foolish. Fixed horizon and forestall lie between

these extremes. For all four of these algorithms, there are reference patterns on which

their performance is suboptimal by a factor of nearly d, for values of d, F and K that

are typical in practice.

Our main theoretical result is the development and analysis of a new algorithm,
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called reverse aggressive, whose performance is provably close to optimal. Interest-

ingly, it achieves this by constructing a prefetching schedule backwards, i.e., by con-

sidering the reference sequence in reverse order. For reasons that will be made clear,

this causes it to avoid problems encountered by the (forward) aggressive algorithm.

Aggressive su�ers from load imbalance and an inability to keep lightly loaded disks

from outpacing (prefetching far ahead of) heavily loaded disks. We give an intuitive

explanation of reverse aggressive's advantages in Section 2.4.3. Detailed proofs are

contained in Chapter 3.

2.3 Prefetching with a single disk

Before proceeding, we review the results of Cao et al. [7] for prefetching and caching

in the single-disk case. They described four properties that can be assumed of any

optimal strategy in the single-disk case. These constrain the problem and by adhering

to them, we can ensure that an algorithm's performance is not far from optimal.

1. optimal fetching: when fetching, always fetch the missing block that will be

referenced soonest;

2. optimal eviction: when fetching, always evict the block in the cache whose next

reference is furthest in the future;

3. do no harm: never evict block A to fetch block B when A's next reference is

before B's next reference;

4. �rst opportunity: never evict A to fetch B when the same thing could have been

done one time unit earlier.

It is easy to show that any schedule for serving requests and performing fetch-

and-evict operations that does not follow these rules can be transformed into one

that does, with performance at least as good. The �rst two rules specify what to

fetch and what to evict, once a decision to fetch has been made. The last two rules

constrain the times at which a fetch can be initiated. However, these rules do not

uniquely determine a prefetching schedule. In particular, they do not specify how to
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choose between an earlier prefetch with a correspondingly earlier eviction and a later

prefetch with a correspondingly later eviction. The former helps prevent stalling on

earlier holes, whereas the latter may help prevent the introduction of holes, and hence

stalling at a later time.

Nonetheless, these rules do provide a fair amount of guidance in the design of

a prefetching algorithm. Cao et al. considered two natural algorithms, aggressive

and conservative, that follow these rules and lie at opposite ends of the spectrum of

possibilities. Aggressive is the algorithm that initiates a prefetch whenever its disk

is ready (i.e., is not in the middle of a prefetch) and the do no harm rule allows

it. Conservative is the algorithm that refuses to fetch until it can evict the block

that would be evicted by Belady's optimal longest forward distance [4] algorithm in

the classical paging model. Belady's algorithm su�ers the fewest page faults among

all paging algorithms. It does this by evicting the page not needed for the longest

time among all blocks in the cache whenever the next request is missing from the

cache. Conservativemakes the minimum number of total fetches, but it often declines

opportunities to prefetch blocks.

Cao et al. showed that in the single-disk case, conservative's elapsed time on any

sequence is at most twice the optimal time, and that aggressive's worst-case elapsed

time is at most min(1+F=K; 2) times optimal, where F is the time required to fetch

a block and K is the cache size measured in blocks. (They also showed that these

bounds are tight.) On real systems, F=K is typically small

2

, so aggressive is close to

optimal.

2.4 Detailed descriptions of algorithms for parallel prefetching and

caching

There is an obvious and natural extension of each of conservative and aggressive to

the multi-disk case.

2

F corresponds to the ratio of disk access time to the application program's inter-access time.

Our traced applications described in Chapter 4 spend over one millisecond computing between

requests, on average, and average disk response times are under 20 milliseconds, yielding F � 20.

A 10 megabyte cache holds 1280 8-kilobyte blocks. Putting these together, we have F=K � 0:016.
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2.4.1 Conservative

(Multi-disk) conservative is the following algorithm: Construct a page replacement

schedule using the longest forward distance o�ine paging algorithm. For each

fetch/eviction pair in this schedule, initiate a prefetch as soon as the evicted page is

referenced for the last time (until the schedule speci�es that it is to be fetched back

into the cache) and the disk containing the fetched page is free (i.e., the previous

prefetch from that disk is complete).

Conservative applies the rule optimal eviction as though the prefetch were to be

initiated immediately before serving the request to the missing block, then applies

the rule �rst opportunity (perhaps many times) to swap the chosen fetch/eviction

pair as early as possible.

We will see in Chapter 3 that conservative's performance can be suboptimal by a

factor greater than the number of disks in the worst case.

2.4.2 Aggressive

(Multi-disk) aggressive is the following algorithm: Whenever a disk is free, prefetch

the �rst missing block on that disk, replacing the block whose next reference is furthest

in the future, provided this does not violate do no harm.

Aggressive is the most aggressive prefetching strategy that is consistent with the

four optimal prefetching rules described in Section 2.3. As we shall see in Chapter 3,

aggressive does not enjoy the same performance guarantee in the multi-disk case as

it achieved in the single disk case. In fact, the four properties on which it was based

in the single disk case do not hold for optimal strategies in the multi-disk case. As

a result, it su�ers from two problems in the multi-disk case that did not exist in the

single disk case:

� The eviction decisions it makes are \color-blind." It chooses evictions to make

without consideration of the load on the disks. These choices can result in

a situation where many of the holes at any time are of the same color, and

therefore can not subsequently be prefetched in parallel. (See Figure 1.1 for an

example of this.)
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� Aggressive is too aggressive. The result is that it can cause some disks to fetch

too far ahead with respect to other disks. These fetches increase the share of

the cache occupied by blocks belonging to the lightly loaded disk(s), creating

even more holes for the heavily loaded disk(s) to �ll.

Therefore, we are motivated to approach the multi-disk prefetching problem in a

way that will constrain the space of possibilities for the prefetching schedule in the

same way that the four rules described above constrain the schedule in the single-disk

case.

2.4.3 Reverse aggressive

It is not hard to show that out of the four rules for optimal prefetching with one disk,

only the last (�rst opportunity) holds when there are multiple disks. Finding a rule

to replace optimal fetching is not much of a problem, however. The \colored" version

of the rule can be used, i.e., for each disk c, the next block to fetch from c is the next

missing block in the sequence that is colored c. Thus, as in the single-disk case, the

question of which block to fetch reduces to the question of when to initiate a prefetch

operation; this question needs to be answered for each disk, of course.

Optimal eviction is more troublesome. Suppose there are two disks, colored red

and blue. If there are many red blocks missing in the sequence, say, it may be that

the best choice for eviction is a blue block even though the block whose next request

is furthest in the future is red. This is because the relatively lightly-loaded blue disk

can better handle the increased burden of another missing block than the red disk

can. (See Figure 1.1.) Given that a blue block is to be evicted, say, it is true that the

best choice is the blue block that is not requested for the longest time. That is, the

colored version of this rule holds, but it does not tell us which color block to evict.

Even the seemingly obvious do no harm rule can be violated by the optimal

prefetching strategy. This is because the loads on the disks can be imbalanced. If

there are many red blocks missing from the sequence, say, but no blue blocks missing,

it may be advantageous to buy time by evicting a blue block (and completing a fetch

of a red block sooner than would be possible otherwise), and then bringing the blue

block back into the cache after a request to some red block has been served (so that
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a new eviction opportunity has arisen).

An interesting twist allows us to convert multiple-disk prefetching to a more con-

strained, and hence easier to solve, problem. In particular, we consider the request

sequence in reverse (in a sense we will describe momentarily). We will be able to

show that of the four rules, all but one (optimal eviction) hold for optimal schedules

serving the reverse sequence. Moreover, we will be able to replace this rule by a

simple \colored" variant (as we did with the optimal fetching rule for the forward

sequence).

First, we return to the single disk case, and observe that any prefetching schedule

that serves the reverse sequence S

r

in time T can be used to derive a schedule to

serve S in time T as follows. If the schedule for serving S

r

serves request r

i

between

times t and t + 1, the derived schedule for S serves r

i

between times T � t � 1 and

T � t. If the reverse schedule replaces a with b between times t and t+F , the derived

schedule replaces b with a between times T � t� F and T � t.

3

Applying this logic

twice, we see that the optimal elapsed time for the reverse sequence is the same as

the optimal elapsed time for the original sequence.

Reversal of the sequence is more complicated when multiple disks are considered.

In the forward direction, the prefetching schedule is constrained to fetch at most one

block at a time from each disk; eviction choices may be blocks of any color. Switching

between the forward sequence and the reverse sequence, fetches become evictions and

vice versa. To derive a useful schedule from a schedule serving the reverse sequence,

then, requires that the schedule for the reverse sequence be constrained to evict at

most one block of each color at a time. This is illustrated in the following example

(see Figure 2.1):

Consider the request sequence \ABcD", where upper case letters denote red blocks

and lower case letters denote blue blocks. Let F = 2 and K = 2. By assumption, at

time 0, blocks A and B reside in the cache (for the execution of the sequence in the

forward direction). At time 1, a fetch is initiated to bring c into the cache from the

3

We assume that all schedules start with the cache containing the �rst K distinct requests in

the sequence. Alternatively, all our results hold within an additive constant that accounts for

di�erences in algorithms' transient cold-cache startup behaviors. We can assume without loss of

generality that all schedules end with the last K distinct requests in the cache.
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(a) A forward schedule. (b) A reversed schedule.
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Figure 2.1: An example of reversing a schedule of prefetching and caching with two

disks.

blue disk, evicting A. At time 2, a fetch of D from the red disk is initiated, evicting B

from the cache. The schedule serves the request sequence in �ve units of time. See

part (a) of Figure 2.1.

In the schedule for the reverse sequence, at time 1, D is evicted to start fetching

B. Since c is blue and D is red, a fetch of A (evicting c) can be started at time 2,

even though A and B are both red. See part (b) of Figure 2.1. This schedule can be

transformed as described in the previous paragraphs into the valid schedule for the

forward sequence of part (a), which is its mirror image.

As previously mentioned, all of the rules presented in Section 2.3 except optimal

eviction can be assumed of optimal prefetching schedules for the reverse sequence.

This fact makes it easier to �nd a schedule for the reverse sequence, then transform

it into one for the original sequence, than to �nd a schedule for the original sequence

directly. The reason for this is that in the forward direction, any time a block is

prefetched a decision must be made as to which color block to evict. In the reverse

direction, this decision is made for us: the block to evict is the one not needed for the

longest time whose color matches the color of the free disk. (I.e., the \colored" version

of the optimal eviction rule can be used.) One might expect that fetch decisions are

harder, but this is not the case. In the forward direction, the missing block to fetch

is the one of the right color that is needed soonest. (This is the colored version

of optimal fetching described earlier.) In the reverse direction, it is the one needed

soonest, regardless of color.

Reverse aggressive is a prefetching and caching algorithm that performs aggressive
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prefetching on the reverse of its input sequence, then derives a schedule to serve the

forward sequence as described above. That is, on the reverse sequence, it behaves as

follows. Whenever a disk is not in the middle of a prefetch, it determines which block

in the cache is not needed for the longest time among those with the same color as

the disk. If the index of the next request to that block is greater than the index of

the �rst hole (of any color), the block identi�ed for eviction is evicted, and the �rst

hole is prefetched.

An intuitive explanation of reverse aggressive's advantage over (forward) aggres-

sive is the following:

� Whereas aggressive chooses evictions without considering the relative loads on

the disks, reverse aggressive greedily evicts to as many disks as possible on

the reverse sequence. In the forward direction, this translates to performing a

maximal set of fetches in parallel. The fact that these are fetches in the forward

direction means that at some point earlier in the sequence, corresponding blocks

were evicted. Thus the eviction decisions of reverse aggressive on the forward

sequence are based on the ability to prefetch the evicted blocks later on in

parallel.

� Whereas aggressive can wastefully prefetch ahead on some of its disks, reverse

aggressive is greedy in the reverse direction. Consequently, it is fetching pages

in the forward direction just in time (to the extent possible) for them to be

used. This results in performing close to the best evictions possible for those

fetches, and exploiting parallelism as much as possible without creating load

imbalance.

2.4.4 Fixed horizon

Fixed horizon is the following algorithm: Whenever there is a missing block at most

F references in the future and the disk on which it resides is free, issue a fetch for

that block, replacing the cached block whose next reference is furthest in the future,

provided that the do no harm rule is sati�ed (which will certainly be true if F < K).

Fixed horizon tries to fetch as late as possible without stalling in order to make

the best possible replacement decision. Each fetch is issued so that it will complete
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just in time for the reference. If parallelism increases to the point that each request is

made to an idle disk, this algorithm performs well. However, in practice, a su�cient

number of disks may not be available. In this case, �xed horizon may initiate fetches

too late to avoid stalling. In fact, because it never initiates a fetch more than F

references ahead of the missing block, �xed horizon may allow a disk to become idle

even though the future requests beyond the prefetch horizon contain many missing

blocks. On the other hand, if the missing blocks in the sequence tend to be separated

by many intervening references to blocks that are present in the cache, we would

expect �xed horizon to have performance much closer to optimal than its worst case.

We will see in Chapter 3 that in the worst case, �xed horizon can be suboptimal by

a factor nearly equal to the number of disks.

2.4.5 Forestall

Aggressive and �xed horizon are simpler than reverse aggressive and more practical.

As we will see in Chapter 4, despite their worst case lower bounds, they perform well

under a striped layout of data, since many real programs exhibit spatial locality. How-

ever, each has a weakness. Aggressive prefetches too aggressively in compute-bound

situations, and �xed horizon prefetches too conservatively in I/O-bound situations. A

highly-tuned version of reverse aggressive is able to perform comparably to the best

of aggressive and �xed horizon in any situation, but it is not a practical algorithm: it

is more complicated, and it requires a complete reverse pass over its input before the

application can begin processing its data.

Forestall is an algorithm designed to combine the best features of all the previ-

ously described algorithms: the good performance of reverse aggressive regardless of

I/O-boundedness or compute-boundedness, and the simplicity and implementability

of �xed horizon and aggressive. Forestall tries to avoid stalling while still making

good (late) replacement decisions by estimating the point at which it needs to begin

prefetching in order to prevent stalling. It makes this estimate based on its current

cache state.

Suppose that there is a single disk, and that at some point during the servicing of

the request sequence, the cache contains the next 2F � 1 blocks requested. Further

suppose that the subsequent two requests are missing from the cache. Aggressive
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immediately starts fetching and avoids stalling on the two holes, bringing the second

missing block into the cache at time 2F { just in time to serve the request without

stalling. Fixed horizon leaves its disk idle until the cursor is within F requests of the

�rst hole; it then stalls F � 1 steps on the second hole. In contrast, suppose there is

only one hole at a distance of 2F � 1 from the cursor. In this case, aggressive will

fetch immediately and make a possibly inferior replacement choice. Fixed horizon

waits until its cursor is within F steps of the hole, and prefetches just early enough

to avoid stalling; in the intervening time, it may have �nished using a block that is

not needed until later in the sequence (if at all) than the one evicted from the cache

by aggressive.

Forestall behaves as does aggressive in the �rst case, and as does �xed horizon in

the second. For each i, i � 1, let d

i

denote the distance from the cursor to the i

th

hole in the request sequence. For any i � 1, if iF > d

i

, processing will surely stall on

the i

th

hole or some earlier hole. It will take iF time units to fetch the �rst i missing

blocks, and at most the next d

i

requests can be served concurrently.

Forestall is the following algorithm: Whenever a disk is free, let d

i

denote the

distance from the cursor to the i

th

missing block that resides on the disk. If d

i

� iF

for any i < K and the do no harm rule allows a prefetch, prefetch the �rst missing

block that resides on the disk, evicting the block that is not used for the longest time

among all blocks in the cache.

Notice that forestall achieves an e�ect similar to one achieved by reverse aggres-

sive. Each fetch is completed just in time to avoid a stall, subject to the need to fetch

more than one block from the same disk. This is the second of the two advantages of

reverse aggressive over aggressive mentioned in Section 2.4.3. The �rst, the ability to

maintain balanced loads on the disks, can be achieved by using a striped data layout.

2.5 Coping with imperfect lookahead

In practice, lookahead information may not be perfect. Several forms of incomplete

and inexact lookahead are possible. It may be merely limited. That is, complete

and accurate lookahead may be available for some number of future requests, but no

more. Limited lookahead information is likely to arrive in \chunks." The application
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provides a chunk of lookahead, then proceeds to consume the corresponding data.

Some requests may be missing from the lookahead information. This could happen

when the entire lookahead sequence is available in advance, or when it is limited.

Another possibility is that the lookahead contains blocks in a di�erent order than

that in which they are subsequently requested. Finally, the lookahead sequence may

contain blocks that are never requested by the application. If this occurs too fre-

quently, it may be best to ignore the lookahead and fetch data on demand instead.

An interesting model (not considered in this thesis) is one in which the lookahead

information contains estimates of the probability of its correctness.

As mentioned, the algorithms can be modi�ed to deal with imperfect lookahead

information. This is rather straightforward for all the algorithms except reverse

aggressive. The other algorithms can simply prefetch using whatever lookahead is

available, behaving as they would if it were the real reference sequence. If all the

lookahead is used up at any time, no more prefetching occurs until more lookahead

becomes available. When a block is requested that is missing from the cache because

it was not present in the lookahead information or because the request comes earlier

in the sequence than indicated by the lookahead, a fetch should be started as soon

as the disk is free. If there is not enough lookahead information to determine which

block is not needed for the longest time among all blocks in the cache, the algorithms

can fall back on LRU replacement (i.e., replace the least recently used block in the

cache among those that are not present in the yet-to-be-consumed lookahead). Imple-

mentations of aggressive, �xed horizon, and forestall that incorporate these features

have been developed by Patterson, Tomkins, et al. [36, 43].

Modifying reverse aggressive is more complicated. Before describing an imple-

mentation that copes with imperfect lookahead, we describe a simple trick needed

to implement the algorithm even in the case of perfect lookahead. We can assume

without loss of generality that any (forward) schedule for a request sequence leaves

the last K distinct requests in the cache, since no evictions are necessary once these

are present in the cache. The \natural" reverse aggressive algorithm leaves the last K

requests of the reverse sequence in the cache at the end of its reverse schedule. These

are the �rst K distinct requests in the forward sequence. However, if we assume the

cache is empty at the time the application starts, we must somehow load it with the

�rst K distinct requests. The simple trick is to append requests for K dummy blocks
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to the end of the reverse sequence before running reverse aggressive. To \serve" these

requests, reverse aggressive ushes all real blocks from its cache on the reverse pass.

This sequence of evictions becomes a schedule of prefetches to load the cache with

the �rst K distinct requests in the forward direction.

Now consider the limited lookahead case. For the �rst chunk of lookahead infor-

mation, the scheduling problem is the same as in the complete lookahead case: the

cache is initially empty, and contains the last K distinct requests in the chunk at

the end of the schedule. (If there are fewer than K requests in the chunk, the cache

will contain all the blocks in the chunk, and will also \contain" some of the dummy

blocks.) We can think of this as producing a schedule that starts with the cache full

of dummy blocks, and ends with the cache containing some other set of blocks. For

subsequent lookahead chunks, the problem is to produce a schedule starting with the

cache contents at the end of the schedule for the previous chunk, rather than with the

cache full of dummy blocks. Thus we need to append the current cache contents to

the (reversed) lookahead chunk before running reverse aggressive. An implementation

of this approach was developed during the early stages of the simulations reported in

Chapter 4 [22].

The modi�cations described to make the other algorithms deal with other forms of

imperfect lookahead can be applied to reverse aggressive, now that we have a mecha-

nism for producing a schedule given some amount of partial lookahead information.



Chapter 3

THEORETICAL ANALYSIS

3.1 Overview of results

This chapter presents the results of joint work with Anna Karlin [23]. All the algo-

rithms are shown to perform nearly d times worse than optimal in the worst case, with

the exception of reverse aggressive. Reverse aggressive is shown to perform within

1 + F=K of optimal in the worst case.

Theorem 1 On any reference string R, the elapsed time of conservative with d

disks on R is at most d+1 times the elapsed time of the optimal prefetching strategy

on R.

This bound is nearly tight for d � F � K: There are arbitrarily long strings on

which conservative requires time 1 + d

K�F

K

F

F+d

times the optimal elapsed time.

Theorem 2 On any reference string R, the elapsed time of aggressive with d

disks on R is at most d +

(d+1)F

K

times the elapsed time of the optimal prefetching

strategy on R.

This bound is nearly tight for d �

p

F : There are arbitrarily long strings on

which aggressive requires time d�

3d(d�1)

F+3(d�1)

times the optimal elapsed time (within an

additive constant that depends only on F and K).

Theorem 3 The previous lower bound applies to �xed horizon and forestall for

d�

p

F : There are arbitrarily long strings on which each requires time d�

3d(d�1)

F+3(d�1)

times the optimal elapsed time (within an additive constant that depends only on F

and K).
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Theorem 4 Reverse aggressive requires at most 1 + dF=K times the optimal

elapsed time to service any request sequence, plus an additive term dF independent

of the length of the sequence.

This bound is nearly tight for small d: There are arbitrarily long strings on which

reverse aggressive requires (1 + (F � 1)=K) times the elapsed time of the optimal

prefetching strategy on R.

On real systems, dF=K is small

1

, so that the factor 1 + dF=K in Theorem 4 is

not much greater than one (hence our claim of \near-optimality").

In the remainder of this section we give high-level descriptions of the main ideas

used to derive our results. Full details are given in Section 3.2.

3.1.1 Performance of conservative, aggressive, �xed horizon, and forestall

The key concept in the upper bound of Theorem 2 is the notion of domination from the

work on prefetching and caching in the single-disk case [7]. This allows us to bound

the cost of aggressive's prefetching schedule in terms of the progress of the optimal

schedule at intermediate points during the processing of the request sequence.

De�nition: Given two sets A and B of holes with jAj � jBj, A is said to dominate

B if for all i, 1 � i � jAj, the index of A's i

th

hole (ordered by increasing index) is

no less than the index of B's i

th

hole. We will say that the i

th

hole in A is matched

to the i

th

hole of B. Notice that domination is transitive.

Let opt denote an optimal algorithm. For intuition, consider the following. If

aggressive's cursor is ahead of opt's cursor, aggressive's holes dominate opt's holes,

and both are initiating prefetches at the same times, then opt's cursor cannot pass

aggressive's: while aggressive stalls on a hole, opt's cursor cannot pass its matching

hole. We show that aggressive is able to continually regain and maintain such an

advantage (having its cursor ahead and its holes dominate) over opt at regular in-

tervals, without losing too much time to opt in the process. Aggressive can lose its

1

F=K is typically less than 0.02 as described in Chapter 2. Small disk arrays with at most 5-

10 disks are most common in practicem and are likely to continue to be so [15, 45]. Moreover,

technological trends are such that F=K will only get smaller with time: disk and memory speeds

(which dominate F ) change slowly, while memory size increases exponentially [19].
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advantage, and lose time to opt, by prefetching more aggressively than opt; this will

become clear as the details are presented.

The lower bounds of nearly d in Theorems 1, 2, and 3 come from the fact that an

adversary can construct request sequences that cause the algorithms to always fetch

blocks from only one disk (because they make poor eviction choices). The optimal

algorithm opt can serve these same sequences at nearly d times the rate because of

the parallelism of prefetching on d disks. The additive term of one for conservative

(in both the upper and lower bounds) comes from opt's ability to overlap prefetches

with the serving of requests. In contrast, conservative may not be able to do so.

The factor of d in the upper bounds comes from the fact that d is also a limit to

the parallelism available to opt. As in the single-disk case, the additive term

(d+1)F

K

in the upper bound for aggressive comes from the fact that aggressive's newly created

holes are always at least K steps from the cursor. From this, it follows that aggressive

prefetches too soon (creating extra holes) at most once every K requests.

3.1.2 Performance of reverse aggressive

The proof of Theorem 4 required several new ideas. The notion of domination from

the proof of Theorem 2 is replaced by a stronger notion that we call strong domination.

De�nition: Let A and B be sets of holes, possibly with di�erent numbers of holes

of each color, such that jAj � jBj. For each color c, let N

c

(A) (respectively, N

c

(B)) be

the number of holes of color c in A (respectively, B). Let N

c

= min(N

c

(A); N

c

(B)). If

N

c

(A) > N

c

(B), we say that c is an excess color of A; if N

c

(A) < N

c

(B), c is an excess

color of B; if N

c

(A) = N

c

(B), c is not an excess color. Let E

c

= jN

c

(A)�N

c

(B)j. If

c is an excess color of A, we refer to A's �rst E

c

holes of color c following the cursor

as excess holes; excess holes of B are de�ned similarly. We say the set of holes A

strongly dominates the set of holes B if

� for each c, A's last N

c

holes of color c dominate B's last N

c

holes of color c

(i.e., A's non-excess holes of color c dominate B's non-excess holes of color c,

whether c is an excess color of A or B or c is not an excess color), and

� all of B's excess holes precede the �rst hole in A of any color.
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Increasing request index

Figure 3.1: Strong domination example: the upper set of holes strongly dominates

the lower one.

This idea is illustrated in Figure 3.1, in which holes of di�erent colors are depicted

by di�erent shapes. Mismatched shapes represent excess holes. Edges show how

strong domination implies ordinary domination. (See Lemma 7 and the discussion

following.)

De�nition: For two sets A and B of holes, we say that A strongly dominates B

up to index y, if the subset of holes in A that occur at or before index y in the request

sequence strongly dominates the subset of holes in B that occur at or before index y.

When y is the end of the request sequence, we will simply use \strongly dominates"

rather than \strongly dominates up to the end of the sequence."

De�nition: Let New(H; (c; color)) denote the new set of holes should a prefetch

be initiated, if possible (i.e., if allowed by the do no harm principle), evicting a block

of color color, when the cursor position is c and the current set of holes is H. Note

that New(H; (c; color)) is uniquely determined by the optimal prefetching principles

optimal fetching and colored optimal eviction described in Section 2.4.3. If the do no

harm principle prevents a prefetch, de�ne New(H; (c; color)) = H.

The following crucial lemma is used to show that if reverse aggressive strongly

dominates opt, and both have the opportunity to initiate a fetch replacing blocks of

the same color, then reverse aggressive strongly dominates opt after the corresponding

fetches complete.

2

For purposes of analysis, we consider any blocks that are currently

2

We are speaking here of the performance of reverse aggressive on the reverse sequence, compared

to an optimal schedule for the reverse sequence. However, as described in Section 2.4.3, the

optimal elapsed time is the same in both directions, and from reverse aggressive's schedule, we

are able to derive a prefetching schedule for the forward sequence with the same elapsed time.
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new holefilled hole

Figure 3.2: Domination lemma: the upper set of holes continues to strongly dominate

the lower one.

being fetched to be in the cache, i.e., there is no corresponding hole in A or B, even

though the corresponding request cannot be served until the F steps are over.

Lemma 5 Strong Domination Lemma

Let A and B be two sets of holes in a request sequence R, and let y, c

A

< y, and

c

B

< y be indices in R. If A strongly dominates B up to index y, then:

1. For each color col, if c

A

� c

B

, New(A; (c

A

; col)) strongly dominates

New(B; (c

B

; col)) up to y.

2. For each color col, New(A; (c

A

; col)) strongly dominates B up to y.

3. For each color col, if c

A

� c

B

and every block of color col that is not a hole in A

is requested after c

A

and before the �rst hole in A so that New(A; (c

A

; col)) = A

(i.e., do no harm prevents a prefetch), A strongly dominates New(B; (c

B

; col))

up to y.

4. For each pair col

A

and col

B

of colors, if the best eviction choice of color col

A

given the set of holes A and the cursor position c

A

is a block that is not requested

between c

A

and y, New(A; (c

A

; col

A

)) strongly dominates New(B; (c

B

; col

B

)) up

to y.

Part 1 of Lemma 5 is illustrated in Figure 3.2.

Note that part 3 of Lemma 5 is a special case of part 1. We prove it separately

because it is an important case and because it will aid understanding later, where

the lemma is used.
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It is not possible to show that reverse aggressive strongly dominates opt through-

out the sequence. Instead, we show that by giving reverse aggressive a little more

time to serve every subsequence of K requests, it will strongly dominate opt at these

regular intervals. That is, reverse aggressive loses about dF steps by prefetching too

soon, thereby generating extra holes to �ll, only every K requests or so.

The di�culty in showing this is that, in fact, reverse aggressive may prefetch

prematurely very often, but with at most d � 1 disks. We show that it is able to

compensate by consistently making good (distant from the cursor) evictions with the

other (\good") disk. While reverse aggressive spends an extra F steps relative to opt

�lling the �rst extra hole created by one of the \bad" disks, the good disk �lls one

hole. This gives reverse aggressive a \one hole lead" over opt with respect to the �lling

of holes. (Remember, each disk can fetch blocks of any color.) This provides a bu�er

against stalling on the (further) extra holes created by the bad disks, at least until

an extra hole created by the good disk is reached. (The strong domination lemma is

used to show that this invariant is maintained.) The good disk creates extra holes

only once every K requests.

Formalizing these arguments is di�cult; the details are presented in Section 3.2.

3.2 Proofs

3.2.1 Terminology

The following de�nitions will be useful. Further de�nitions, speci�c to the particular

proofs in which they are used, will be introduced later.

We divide the request sequence (or, when appropriate, its reverse) into phases,

maximal-length subsequences of requests to K distinct blocks, as follows. The �rst

phase begins with the �rst request. Each phase ends immediately before the �rst

request to the (K +1)

st

distinct block since the beginning of the phase, and the next

phase begins with that request.

If algorithm a has fetches in progress at any time t, we denote a's holes before

initiating those fetches by H

�

a

(t) (i.e., H

�

a

contains the holes being �lled, but not

the ones being created), and a's holes after those fetches complete (but ignoring any
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fetches that haven't begun by time t) by H

+

a

(t).

In this section and the next, we assume all algorithms are working with the reverse

sequence, and denote the optimal algorithm for serving the reverse sequence by opt.

Under any algorithm that works on the forward sequence and follows the optimal

eviction rule, no new holes will be created in a phase once the cursor enters the

phase. For every hole in the phase, there is at least one block in the cache that is not

requested for the remainder of the phase (since there are only K blocks requested in

the phase, by de�nition, and the cache holds K blocks). In contrast, it is possible

that reverse aggressive (and opt working on the reverse sequence, in fact) will create

a new hole within a phase even after its cursor has entered the phase. Although it is

true that for every hole in the phase, there is a block in the cache that is not requested

until after the end of the phase, it may be that all those blocks are the same color,

and that the best eviction choice of another color is a block that will be requested

before the end of the phase. However, if reverse aggressive does create new holes in

the phase containing the cursor, it will create such holes of at most d� 1 colors. We

refer to the other disk as the busy disk for the phase. (If there are two or more such

disks, an arbitrary one is chosen.) As long as there are holes remaining in the phase,

the busy disk will initiate a fetch to �ll one of them every F steps, and will create

new holes beyond the end of the current phase.

A fetch using the busy disk (and evicting a block of the same color as the busy

disk; the block fetched may be any color) is referred to as a busy-disk fetch; fetches

using other disks are referred to as non-busy-disk fetches.

3.2.2 Reverse aggressive: upper bound

Outline of the proof

We �rst give some preliminaries, proving the claims of Section 2.4.3 and a simple

lemma on combining subsets of dominating and dominated sets of holes. We next

prove the strong domination lemma (Lemma 5).

The strong domination lemma is used to bound reverse aggressive's elapsed time

for a single phase relative to opt's elapsed time. Roughly speaking, if reverse aggres-

sive's holes dominate opt's, opt can not get ahead of reverse aggressive since opt's �rst
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hole is at least as early in the request sequence as reverse aggressive's. By allowing

reverse aggressive a small amount of time to correct for mistakes it makes by prefetch-

ing sooner than opt, strong domination up to the end of the phase is maintained as

an invariant until both algorithms reach the end of the phase. This step of the proof

is complicated by the fact that the algorithms may fetch blocks using their respective

disks in di�erent orders. We must permute one sequence of fetches in order to make

direct comparisons between the two algorithms' operations.

Finally, we show that by using a di�erent permutation (and a correspondingly

di�erent matching of one algorithm's prefetch operations to the other's), the strong

domination lemma implies that strong domination up to the end of the request se-

quence holds as an invariant as we compare the algorithms' progress from one phase

to the next.

Detailed proof

Lemma 6 Any prefetching schedule that does not satisfy the four rules described

in Section 2.4.3 can be transformed into one that does, with no increase in elapsed

time.

Proof:

1. optimal fetching (�ll the �rst hole): Suppose that at time t

1

, a fetch is initiated

to �ll some hole h

2

other than the �rst hole h

1

. h

1

must be �lled before it can

be served; say it is �lled by a fetch initiated at time t

2

> t

1

. Since the (later)

reference to h

2

cannot be served until after the reference to h

1

is served, the

schedule remains valid if h

1

is �lled at time t

1

and h

2

at time t

2

, and all other

operations (prefetches, evictions, and cursor movements) are unchanged. Since

we are working with the reverse sequence, this change can be made regardless of

the colors of h

1

and h

2

. If �lling h

1

at time t

1

allows the cursor to advance sooner

than it can if h

2

is �lled at time t

1

, then the eviction opportunities under this

schedule are at least as good as those under the original schedule; i.e., the set

of holes obtained strongly dominates that obtained under the original schedule.

Thus the transformed schedule can be completed to derive a schedule with

elapsed time no greater than that of the original.
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2. colored optimal eviction (evict the block not needed for the longest time among

those colored the same as the free disk): Suppose that at time t

1

, block b

1

is evicted, and block b

2

of the same color as b

1

is in the cache and is �rst

referenced after the next reference to b

1

. If b

2

is subsequently evicted before the

next reference to b

1

is served, the e�ect is the same if b

2

is evicted �rst, then b

1

.

Otherwise, b

1

must be fetched back at some time t

2

> t

1

before the reference to

it can be served. If b

2

is evicted at time t

1

instead of b

1

, it can be fetched back

at time t

2

. By assumption, there are no intervening references of b

2

on which

to stall; thus the transformed schedule stalls no more than the original.

3. do no harm (do not evict b

1

to fetch b

2

if b

1

is needed sooner): Suppose b

1

is

evicted to fetch b

2

. b

1

must be fetched back before the reference to it can be

served; this fetch evicts some other block b

3

. Since fetches on any disk can be

of any color, the fetch of b

1

can be replaced by a fetch of b

2

(evicting b

3

). By

assumption, there are no intervening references of b

2

on which to stall; thus the

transformed schedule stalls no more than the original.

4. �rst opportunity (perform each fetch/eviction pair as soon as possible): Suppose

that disk c is left idle at time t, a fetch of block b

1

is initiated at t+ 1 evicting

block b

2

of color c, and that the block served at time t is not b

2

. Then by

initiating the fetch at time t rather than t + 1, the hole (b

1

) is �lled one step

sooner; certainly, no additional stall is incurred by this change.

2

We assume without loss of generality that opt obeys these rules.

Lemma 7 Given two sets of holes A = A

1

[A

2

and B = B

1

[B

2

with jA

1

j � jB

1

j,

jA

2

j � jB

2

j, A

1

\ A

2

= ;, and B

1

\ B

2

= ;, if A

1

dominates B

1

and A

2

dominates

B

2

, then A dominates B.

Proof: Suppose the contrary. Let i be such that the i

th

member of A (ordered,

as usual, by increasing index in the request sequence) has an index less than the i

th

member of B. Then A contains i holes with indices less than or equal to that of A's

i

th

hole, and B contains only i� 1 such holes. But because A

1

dominates B

1

and A

2
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dominates B

2

, for each member of A there is a distinct member of B with lesser or

equal index. Thus we have a contradiction. 2

Note that Lemma 7 extends to pairs of sets composed of more than two disjoint

subsets each. Notice also that by Lemma 7, strong domination implies (ordinary,

color-blind) domination. (Match non-excess holes according to colors, and all of one

set's excess holes to all of the other set's excess holes. See Figure 3.1.)

Lemma 8 Strong domination is transitive.

Proof: Suppose A strongly dominates B and B strongly dominates C. We show

that A strongly dominates C. Fix a color c; for convenience (so it can be used as an

adjective), suppose c is red. De�ne N

c

(�) as before. For a collection S of sets of holes,

let N

c

(S) = min

s2S

(N

c

(s)). (We will drop the brackets when listing the members of

S.) Let N

c

= N

c

(A;B;C). We consider three cases, illustrated in Figure 3.3.

1. N

c

= N

c

(A). A has N

c

red holes, and these dominate the last N

c

red holes in B.

B's last N

c

(B;C) red holes dominate C's last N

c

(B;C) red holes, so B's last N

c

red holes must dominate C's last N

c

red holes. Since domination is transitive,

A's N

c

red holes dominate C's last N

c

red holes. Suppose h is a red hole in

C that is excess with respect to A. If h is matched to a red hole h

0

of B, h

0

is excess with respect to A and thus precedes A's �rst hole, so h must precede

A's �rst hole as well. If h is excess with respect to B, it precedes B's �rst hole,

which precedes or is the same as A's �rst hole, since strong domination implies

ordinary domination.

2. N

c

= N

c

(B). A's last N

c

red holes dominate B's N

c

red holes, which dominate

C's last N

c

red holes. Suppose h is a red hole in C that is excess with respect

to B. h must precede B's �rst hole. h precedes A's �rst hole as well, since B's

�rst hole precedes or is the same as A's �rst hole; again, this is because strong

domination implies ordinary domination. If h is excess with respect to A, we

are done. If h matches some hole h

0

of A, h surely does not occur after h

0

.

3. N

c

= N

c

(C). A's last N

c

(A;B) red holes dominate B's last N

c

(A;B) red holes,

so A's last N

c

red holes must dominate B's last N

c

red holes, which dominate

C's N

c

red holes. C has no excess red holes with respect to B or A.
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case 3

case 2

case 1

C

B

A

C

B

A

A

C

first holered hole

B

Figure 3.3: Strong domination is transitive.
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2

We now prove Lemma 5 (the Strong Domination Lemma).

Proof: De�ne N

c

(A), N

c

(B), and N

c

as before.

We consider the individual changes to A and B in three steps:

1. A's �rst hole is removed (if necessary).

2. B's new hole is added to B (if necessary) and A's new hole is added to A (if

necessary).

3. B's �rst hole is removed (if necessary).

We will show that after each step, strong domination of A over B up to y is preserved.

For convenience, we will say that (a hole at) index i is \left" of (a hole at) index

j, and (the hole at) j is \right" of (the hole at) i, if i < j.

First we prove part 1.

Step 1: A's �rst hole is �lled

Let c be the hole's color. First, since A's new �rst hole is to the right of its old

�rst hole (the one being �lled), B's excess holes all are still to the left of A's �rst hole.

If c was an excess color of A, we are done. Otherwise, B's hole that was matched to

A's �lled hole becomes an excess hole, and since it occurred no later than the hole it

matched, it is to the left of A's new �rst hole. Notice that jAj < jBj at this point, in

addition to the fact that A strongly dominates B.

Step 2: eviction

If c

A

> y, A's new hole does not a�ect strong domination up to y, and the addition

of a new hole to B (whether left of, right of, or at y) cannot a�ect strong domination.

If c

A

� y, let A's last N

c

holes of the same color c as the block evicted occur at indices

a

1

< a

2

< : : : < a

N

c

, and let B's occur at b

1

< b

2

< : : : < b

N

c

. Since A strongly

dominates B, we know that a

i

� b

i

for each i. Let B's new hole be its j

th

non-excess

hole of color c, i.e., the new hole occurs between b

j�1

and b

j

, or at an index greater

than b

N

c

in which case j = N

c

+ 1, or before b

1

in which case j = 1. (As a special

case, if c is an excess color of B, and the new hole is left of B's last excess hole of
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color c, the new hole becomes an excess hole and the last excess hole takes its place

in the following argument.) Let A's new hole be its r

th

hole of color c, with a special

case similar to that in the de�nition of j. Let a

0

1

< a

0

2

< : : : < a

0

N

c

+1

be the indices of

A's last N

c

+1 holes of color c after the eviction, and let b

0

1

< b

0

2

< : : : < b

0

N

c

+1

be the

indices of B's last N

c

+ 1 holes of color c after the eviction. Then for i < r, a

0

i

= a

i

and for i > r, a

0

i

= a

i�1

; for i < j, b

0

i

= b

i

and for i > j, b

0

i

= b

i�1

. To show that

domination is preserved, we need to show that a

0

i

� b

0

i

for each i, 1 � i � N

c

+1. For

i < min(r; j) and i > max(r; j) it is immediate that a

0

i

� b

0

i

. If r > j, then we have

a

0

r

> a

r�1

� b

r�1

= b

0

r

a

0

r�1

= a

r�1

� b

r�1

> b

0

r�1

: : :

a

0

j

= a

j

� b

j

> b

0

j

and we are done. If r � j, then we must show

a

0

j

� b

0

j

a

0

j�1

� b

0

j�1

: : :

a

0

r+1

� b

0

r+1

a

0

r

� b

0

r

:

Suppose that one or more of these inequalities does not hold, and let i be the largest

index for which a

0

i

< b

0

i

. Then either i = j = N

c

+ 1 and a

0

i

< b

0

i

, or

a

0

i

< b

0

i

< b

0

i+1

� a

0

i+1

;

where A's new hole at a

0

r

satis�es a

0

r

� a

0

i

. In either case, there is a block that is

not requested until index b

0

i

that is not a hole in A, and the new hole in A is a block

requested earlier at index a

0

r

instead. But the de�nition of New states that the best

possible eviction choice is made, i.e., that the block evicted is the block whose next

occurrence is at the greatest index among all blocks of color c in the cache. Thus we

have a contradiction.
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Since the holes of color other than c are una�ected by this change, and domination

of holes of color c is preserved, strong domination is preserved. Also, we still have

that jAj < jBj.

Step 3: B's �rst hole is �lled

Let c be the hole's color. If c is an excess color of B, then B will have one fewer

excess hole of color c; the remaining ones are unchanged, and thus are still to the left

of A's �rst hole. Otherwise, the hole was matched to some hole of A, which becomes

an excess hole. The newly excess hole's position is relevant in the de�nition of strong

domination only if it is A's �rst hole; in this case, since neither A's �rst hole nor B's

excess holes are changed, strong domination is preserved. Because jAj < jBj before

this step, we have that jAj � jBj afterwards, as needed for strong domination.

The proof of part 1 is complete.

For part 2, step 1 is the same as in the proof of part 1. For step 2, �rst note that

A's new hole is to the right of A's (old) �rst hole (by the do no harm rule), so that

B's excess holes still precede all of A's holes. Let c be the color of A's new hole. If c

is an excess color of B, an argument similar to the one above for part 1 shows that

A's holes of color c will dominate B's non-excess holes of the same color. If c is not

an excess color of B, the new hole or some previous hole of A will become an excess

hole. In the former case, A's last N

c

holes are unchanged. In the latter case, the

index of A's i

th

non-excess hole of color c is the same or greater than before, for each

i � N

c

. No changes are made in step 3.

For part 3 nothing happens in step 1. Let c be the color of B's new hole. Again,

for step 2, an argument similar to that for part 1 shows that A's non-excess holes of

color c dominate B's non-excess holes of color c; if not, A would contain a hole to the

left of the next request for some block that is not a hole. If c is not an excess color of

B, we are done with step 2. Otherwise, we need to show that all of B's excess holes

of color c precede A's �rst hole. Suppose that B has N

c

+ 1 holes of color c at or to

the right of A's �rst hole. A has only N

c

holes of color c, so B has some hole h of

color c that is not a hole of A and is to the right of A's �rst hole. Again, A would

then contain a hole to the left of the next request for some block that is not a hole.

Step 3 is the same as for part 1.

The proof of part 4 is an easy simpli�cation of that of part 1, since A's new hole
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is beyond y and need not be considered. (B's new hole may be beyond y as well.) 2

A particular case in which part 3 of Lemma 5 applies deserves mention. It may

be that all blocks of some color c are holes in A, i.e., there are no blocks of color

c in the cache, and that a fetch is not possible since there is no block of color c in

the cache to evict, but that there are blocks of color c that are not holes in B. It

may seem that a schedule with B as its set of holes has an advantage since it can

make use of its disk c, and a schedule with A as its set of holes can not. But there

is no advantage, provided that the conditions of strong domination are met. A is a

superior state, and the schedule �lling one of the holes in B by evicting a block of

color c is merely \catching up" to the other schedule by eliminating one of its excess

holes.

Here is our main result.

Theorem 9 Reverse aggressive requires less than 1 + dF=K times the optimal

elapsed time to service any request sequence, plus an additive term dF independent

of the length of the sequence.

Proof: For d = 1, the theorem follows directly from the result of [7]. Thus we

may assume d � 2.

We show that for each i � 0 (numbering the phases starting with 0), there are

times T

i

and T

0

i

, such that

� T

0

i

is the time opt's cursor reaches the i

th

phase;

� reverse aggressive's cursor position at time T

i

is at least as great as opt's cursor

position at time T

0

i

;

� For i > 0, T

i

� T

i�1

� T

0

i

� T

0

i�1

+ dF � 1.

� H

+

rev

(T

i

) strongly dominates H

+

opt

(T

0

i

);

� if reverse aggressive's busy disk for phase i will become free (i.e., complete any

fetch in progress) in z � F � 1 steps after T

i

, then opt's corresponding disk will

not become free until z

0

� z steps after T

0

i

.
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If there are p phases, we take T

p

(respectively, T

0

p

) to be the time at which reverse

aggressive (respectively, opt) �nishes serving the request sequence.

The theorem will follow from the �rst three conditions, as follows. For each

phase i, reverse aggressive's elapsed time e

rev

(i) = T

i+1

� T

i

and opt's elapsed time

e

opt

(i) = T

0

i+1

� T

0

i

satisfy

e

rev

(i) � e

opt

(i) + dF � 1

so that

e

rev

(i)

e

opt

(i)

� 1 +

dF � 1

e

opt

(i)

:

Each phase except possibly the last is of length at least K, so that e

opt

(i) � K.

Putting these together, we have that for all phases but the last,

e

rev

(i)

e

opt

(i)

� 1 +

dF � 1

K

:

The last phase may be incomplete, i.e., may contain requests for fewer thanK distinct

blocks. Reverse aggressive requires at most dF � 1 steps more than opt to serve the

last phase.

We prove the claims about T

i

and T

0

i

by induction. For the base case (i = 0),

we take T

0

= T

0

0

= 0. The fact that the claims hold at this time is trivial. For the

inductive step, assume the claims hold for the i

th

phase. We show that they hold for

the (i+ 1)-st phase via a two step process.

� We �rst show in Lemma 10 that in phase i, reverse aggressive (starting at time

T

i

) loses at most (d� 1)F steps to opt (starting at time T

0

i

).

� We then use this fact to show that at the end of the phase, by giving reverse

aggressive an extra dF � 1 steps relative to opt (from the start of the phase),

the invariants are restored.

We begin with a formal statement of the �rst of these steps.

Lemma 10 Suppose that at time T

i

, reverse aggressive's cursor is at position p

i

in the sequence. Let T

0

i

+ t

O

(j) (respectively, T

i

+ t

R

(j) ) denote the time at which opt
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(respectively, reverse aggressive) serves the request at cursor position j � p

i

, for any

j such that r

j

is in phase i. Then for all j in the phase, t

R

(j) � t

O

(j) + (d� 1)F .

Proof: For the sake of contradiction, suppose the contrary, and consider the least

index ` such that t

R

(`) > t

O

(`) + (d� 1)F .

First, consider the case in which ` precedes the �rst hole in H

+

rev

(T

i

). Each of

reverse aggressive's fetches in progress at time T

i

completes by time T

i

+ F � 1, so

that reverse aggressive's cursor cannot stall more than F�1 steps before reaching the

�rst hole in H

+

rev

(T

i

). Recall we have assumed d � 2; thus we have a contradiction.

The remainder of the proof of Lemma 10 (and the bulk of that of Theorem 9)

consists of the remaining case, in which ` is at or beyond the �rst hole in H

+

rev

(T

i

).

By the minimality of `, t

R

(`� 1) � t

O

(`� 1)+ (d� 1)F , and reverse aggressive stalls

at least one step more than opt on request r

`

. In particular, reverse aggressive stalls

at time T

i

+ t

R

(`)� 1, and opt does not stall at time T

0

i

+ t

O

(`). Reverse aggressive

initiates a prefetch for the block requested at index ` at time T

i

+t

R

(`)�1�x for some

0 � x � F �1; at this time, r

`

is reverse aggressive's �rst hole. We will show that opt

must have a hole that it has not yet begun to �ll at an index no greater than ` at time

T

0

i

+ t

O

(`)� x, and thus cannot serve r

`

before time T

0

i

+ t

O

(`)� x+ F > T

0

i

+ t

O

(`).

Recall that reverse aggressive's busy disk will be free in x � F � 1 steps after T

i

, and

opt's corresponding disk will be free in z

0

� z steps after T

0

i

.

Reverse aggressive will perform busy-disk fetches continuously, initiating a fetch

at time T

i

+ z + bF for each b � 0, at least until such a time as there are no holes

left in the phase. Once there are no holes left in the phase, reverse aggressive will

not stall at least until the end of the phase is reached. Let b and � be such that

t

R

(`)� 1� x� z = bF + � and 0 � � < F . Then reverse aggressive has �lled b holes

by busy-disk fetches by time T

i

+ t

R

(`)� 1� x, and opt has �lled at most b� d+ 1

holes by busy-disk fetches by time T

0

i

+ t

O

(`)� x, since

t

O

(`)� x� z

0

< t

R

(`)� x� z � (d� 1)F

= bF + � + 1� (d� 1)F

� (b� d+ 2)F:

Let n be the number of non-busy-disk fetches initiated by opt by time T

0

i

+ t

O

(`)�x.
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Consider the sequence S = ((c

1

; color

1

); : : : ; (c

n+b�d+1

; color

n+b�d+1

)) of fetches opt

initiates after time T

0

i

and at or before time T

0

i

+ t

O

(`) � x � F , where the pair

(c; color) denotes that a fetch evicting a block of color color is initiated at cursor

position c. For each fetch (c

0

; color

0

) of opt, we de�ne a matching fetch opportunity

of reverse aggressive. A matching fetch opportunity is a pair (c; color) such that

reverse aggressive has the opportunity to initiate a fetch of color color at a cursor

position at least as great as c. Each matching fetch opportunity to a fetch in S allows

reverse aggressive to initiate a fetch (if allowed by the do no harm principle) by time

T

i

+ t

R

(`)� 1� x� F . They are de�ned as follows:

� Let opt's j

th

non-busy-disk fetch be initiated at time T

0

i

+ t

0

j

. This fetch is

matched to the fetch on the same disk that reverse aggressive initiates (if any)

in the time interval

[T

i

+ t

0

j

+ (d� 1)F; T

i

+ t

0

j

+ dF � 1]:

Note that by the minimality of `, at time T

i

+ t

0

j

+(d� 1)F reverse aggressive's

cursor is already at or beyond the cursor position at which opt initiates its j

th

non-busy-disk fetch, and its disk of the same color becomes free (�nishes any

fetch already in progress) within another F � 1 steps. Therefore, such a fetch

opportunity exists. The fact that reverse aggressive's cursor position at the

time of this matching fetch opportunity is at least as great as opt's at the time

of its fetch will allow us to apply part 1 or part 3 of the strong domination

lemma (Lemma 5) to this pair.

If opt initiates a total of n non-busy-disk fetches by time T

0

i

+ t

O

(`) � x, then

each fetch except (possibly) the last one on each non-busy-disk (i.e., at least

n � (d � 1) of the n non-busy-disk fetches) is initiated at a time less than or

equal to T

0

i

+t

O

(`)�x�F . Therefore, reverse aggressive can initiate a matching

fetch if needed at a time strictly less than

T

i

+ t

O

(`)� x+ (d� 1)F < T

i

+ t

R

(`)� x:

� opt's j

th

busy-disk fetch is matched to the j

th

busy-disk fetch reverse aggressive

performs in the phase. Since reverse aggressive prefetches continuously using
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its busy disk, we know that each of these fetch opportunities corresponds to an

actual fetch. Part 4 of the strong domination lemma will be applied to this pair

of fetches.

� Finally, each non-busy-disk fetch initiated by opt between times T

0

i

+ t

O

(`) �

x�F +1 and T

0

i

+ t

O

(`)�x is matched to one of the last d�1 busy-disk fetches

initiated by reverse aggressive. Note that there can be only one such fetch of

each color. Part 4 of the strong domination lemma will be applied to this pair

of fetches.

We claim that reverse aggressive's holes after these n + b� d+ 1 matching fetch

opportunities pass strongly dominate opt's holes up to the end of the phase after

opt initiates its sequence S of n non-busy-disk fetches and at most b � d + 1 busy-

disk fetches. Let R

0

be reverse aggressive's set of holes H

+

rev

(T

i

) at time T

i

. Let

O

0

be opt's set of holes H

+

opt

(T

0

i

) at time T

0

i

. De�ne O

j

, j � 1, inductively as the

set of holes resulting from initiating opt's j

th

fetch (c

j

; color

j

) with the set of holes

O

j�1

; i.e., O

j

= New(O

j�1

; (c

j

; color

j

)). Similarly, de�ne R

j

, j � 1, inductively by

R

j

= New(R

j�1

; (c

j

; color

j

)). R

n+b�d+1

is the state that would be reached by starting

in reverse aggressive's state R

0

, but then initiating fetches (when allowed by do no

harm) according to opt's prefetching schedule. By a sequence of applications of part

1 and part 3, as appropriate, of the strong domination lemma (Lemma 5), we have

that R

n+b�d+1

strongly dominates O

n+b�d+1

up to the end of the phase.

We now show that reverse aggressive's holes after its matching fetch opportuni-

ties pass strongly dominate R

n+b�d+1

up to the end of the phase. Because strong

domination is transitive (Lemma 8), we will obtain that reverse aggressive's holes

strongly dominate opt's up to the end of the phase. Since opt and reverse aggressive

may perform fetches on di�erent disks at di�erent times and in di�erent orders, we

need to somehow permute opt's schedule of fetches into reverse aggressive's; then we

will be able to make pairwise comparisons between the two sequences of fetches and

apply the strong domination lemma. Toward this end, we de�ne the following:

De�nition: Consider a fetch sequence, de�ned by a sequence of triples of the

form (t

j

; c

j

; color

j

), where for each j, t

j

� t

j+1

and c

j

� c

j+1

. (t

j

; c

j

; color

j

) denotes

a fetch, or an opportunity to fetch, beginning at time t

j

with the cursor at position
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c

j

, where the color of the evicted block is color

j

. A fetch opportunity denotes an

opportunity to fetch in the sense that the disk is free, but no fetch may be possible

under the optimal prefetching rules.

De�nition: A fetch sequence S is obtained from a fetch sequence S

0

by

a busy-early swap if S

0

and S are the same except that a pair (t

0

j

; c

0

j

; color

j

),

(t

0

j+1

; c

0

j+1

; color

j+1

) in S

0

is replaced by (t

j

; c

j

; color

j+1

), (t

j+1

; c

j+1

; color

j

) in S, where

c

j

� p

i

(recall that p

i

is reverse aggressive's cursor position at time T

i

), c

j+1

� c

0

j

,

and color

j+1

is the color of reverse aggressive's busy disk for the phase. c

j

� p

i

will

be enough to ensure that reverse aggressive is able to complete a fetch with the busy

disk and that the new hole is beyond the end of phase i, which is enough to maintain

strong domination up to the end of the phase, regardless of the fetch/eviction pair of

opt to which this fetch of reverse aggressive is matched.

De�nition: A fetch sequence S is obtained from a fetch sequence S

0

by

an overlapping swap if S and S

0

are the same except that a pair (t

0

j

; c

0

j

; color

j

),

(t

0

j+1

; c

0

j+1

; color

j+1

) in S

0

is replaced by (t

j

; c

j

; color

j+1

), (t

j+1

; c

j+1

; color

j

) in S, where

t

0

j+1

< t

0

j

+F , t

j+1

< t

j

+F , c

j

� c

0

j+1

, and c

j+1

� c

0

j

. (Note that c

j+1

� c

0

j

is implied

by c

j

� c

0

j+1

, since cursor positions increase with time.)

We extend the notation New(A; (c; color)) to allow a series of fetches or fetch

opportunities, with or without the time indices (which have no e�ect on the resulting

set of holes), in the obvious way: New(A; S) = New(New(A; f

1

); f

2

; : : : ; f

jSj

) where

S = f

1

; : : : ; f

jSj

is a sequence of fetches or fetch opportunites.

Before we can complete the proof of Lemma 10, we need the following three

lemmas.

Lemma 11 Suppose that fetch sequence S within phase i is obtained from fetch

sequence S

0

by a busy-early swap. Then New(R

0

; S) strongly dominates New(R

0

; S

0

)

up to the end of the phase.

Proof: Let blue denote the color of reverse aggressive's busy disk, and let red

denote the color of the �rst disk to fetch under S

0

in the swapped pair. We refer to

fetches using the blue disk as blue fetches, even though blue is the color of the evicted

block; the block fetched may be any color. We refer to fetches using the red disk as

red fetches, even though red is the color of the evicted item. The sets of holes of
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the two sequences immediately before initiating the swapped pair of fetches are the

same. In both cases, a blue fetch can be initiated, since by hypothesis there are still

holes in the phase. This blue fetch will not require an eviction that creates a new

hole within the phase.

Unless the �rst hole �lled is a red block, the set of red blocks in the cache at the

time the red fetch is initiated is the same under S

0

and S. If the �rst hole is red,

then under S

0

, this red block is brought into the cache by the red fetch, and under

S, by the blue fetch. Thus, the best eviction opportunity at the time of the red fetch

under S is at least as good as that under S

0

, since under S the red fetch occurs at a

cursor position c

j+1

at least as great as that under S

0

, which is c

j

.

Let the �rst hole occur at index h

1

and the second at h

2

; let the new hole created

by the red fetch under S

0

occur at index h

r

. There are two possibilities:

� h

2

< h

r

. Under S

0

, the red fetch �lls h

1

and the blue fetch �lls h

2

; under S, the

blue fetch �lls h

1

and the red fetch �lls h

2

. The red hole created under S is at a

position in the request sequence at least as great as h

r

, since the cursor position

of the red fetch is at least as great as under S

0

. Under neither sequence does

the blue eviction create a new hole in phase i. Thus, the sets of holes remaining

in phase i after completing S

0

and S are the same, or after S one red hole has

a greater index than after S

0

.

� h

1

< h

r

< h

2

. Under S

0

, the red fetch �lls h

1

and creates a hole at h

r

. This

new hole is the �rst hole at the time of the blue fetch, and thus the blue fetch

�lls it (leaving h

2

un�lled). Under S, however, the red fetch may be unable to

proceed. The blue fetch �lls the hole at h

1

; after this, the �rst hole is at h

2

.

The red eviction of h

r

would violate the rule do no harm. But the end result

is the same as it is under S

0

(ignoring holes beyond the end of the phase): the

next hole is at h

2

, and a new blue hole has been created beyond the end of the

phase. The red block requested at h

r

does not get evicted and then fetched

back, as it does under S

0

. (Again, under S it may be possible to create a red

hole with greater index; in this case, h

2

gets �lled, and the holes dominate those

after S

0

up to the end of the phase by part 2 of the strong domination lemma.)

2
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Lemma 12 Suppose that fetch sequence S is obtained from fetch sequence S

0

by

an overlapping swap. Then for any set A of holes, New(A; S) strongly dominates

New(A; S

0

) up to the end of the entire sequence and thus up to the end of the phase.

Proof: Neither fetch a�ects the eviction opportunities of the other, since they

overlap and evict to di�erent disks. Because they overlap, the �rst does not bring

a block into the cache in time for it to be served before the second fetch starts. An

easy consequence of the rules described in Section 2.4.3 is that each block fetched is

served at least once before it is subsequently evicted. Because they evict to di�erent

disks, the �rst does not evict a block that could otherwise be evicted by the second.

For each of the two fetches under S

0

, the fetch of the same color under S is initiated

at a cursor position at least as great. An argument similar to the proof of Lemma 11

�nishes the proof. 2

Lemma 13 Reverse aggressive's sequence of fetch opportunities can be obtained

from the sequence leading to R

n+b�d+1

(i.e., opt's sequence of fetches) via a sequence

of busy-early swaps, overlapping swaps that do not involve fetches performed by the

busy disk, substitutions of busy-disk fetches for non-busy-disk fetches, and insertions

of extra fetches not matched to any fetch of opt.

Proof: The de�nition of matching fetch opportunities identi�es a su�cient set

of fetch opportunities. We will show that no operations other than those described

are necessary to transform opt's sequence of fetches to reverse aggressive's sequence

of matching fetch opportunities.

First we show that for each disk other than the busy disk, any inversion of fetches

on that disk and the busy disk is in the \right direction" (i.e., corresponds to a busy-

early swap). Let blue denote the color of the busy disk, and let red denote the color of

some other disk. For 1 � j � b, let T

i

+ t

B

j

be the time at which reverse aggressive's

j

th

blue fetch is initiated, and for 1 � j � b� d+1, let T

0

i

+ t

0

B

j

be the time at which

opt's j

th

blue fetch is initiated. For 1 � j � r, let t

0

R

j

be the time at which opt's

j

th

red fetch is initiated, and for 1 � j � r � 1, let t

R

j

be the time at which reverse

aggressive's matching fetch is initiated, where r is the number of red fetches initiated

by opt at or before T

0

i

+ T

O

(`).
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First, consider all of reverse aggressive's blue and red fetches except its last d� 1

blue fetches, and all of opt's blue and red fetches except its last red fetch (which is

matched to one of reverse aggressive's last d� 1 blue fetches). We have that for all

j � b� d+ 1, t

B

j

� t

0

B

j

(i.e., reverse aggressive's j

th

blue fetch is no later than opt's,

by the de�nition of matching fetch opportunities) and for all j � r � 1, t

R

j

� t

0

R

j

(i.e., reverse aggressive's j

th

red fetch is no earlier than opt's). Suppose that there is

an inversion in the \wrong direction," i.e., that for some j and some k, t

0

B

j

< t

0

R

k

and

t

R

k

< t

B

j

. Then

t

0

B

j

< t

0

R

k

� t

R

k

< t

B

j

� t

0

B

j

which contains the contradiction t

0

B

j

< t

0

B

j

.

Next, consider opt's last (r

th

) red fetch. Recall that this fetch is matched to one

of reverse aggressive's last d� 1 blue fetches. This requires the substitution of a blue

fetch for a red fetch, and possibly some number of busy-early swaps to move the blue

fetch forward to its place in reverse aggressive's sequence of fetches; no other red

fetches in the sequence are a�ected by this.

For fetches other than blue fetches (i.e., non-busy-disk fetches), let T

0

i

+ t

0

1

and

T

0

i

+ t

0

2

be the times of two fetches of opt, where t

0

1

� t

0

2

, and let T

i

+ t

1

and T

i

+ t

2

be

the times of reverse aggressive's matching fetch opportunities. If opt's fetches do not

overlap, then t

0

1

� t

0

2

� F . By the de�nition of matching fetch opportunites, we have

t

1

� t

0

1

+ dF � 1 and t

2

� t

0

2

+ (d � 1)F . Putting these together, we have t

1

< t

2

,

i.e., reverse aggressive's matching fetch opportunities occur in the same order as opt's

fetches.

That the cursor positions of the swapped pairs satisfy the inequalities in the

de�nitions of busy-early-swaps and overlapping swaps, respectively, can be seen from

the de�nition of matching fetch opportunities. 2

We now complete the proof of Lemma 10 using Lemmas 11, 12, and 13. We show

that reverse aggressive's holes at time T

i

+t

R

(`)�1�x strongly dominate opt's holes at

time T

0

i

+ t

O

(`)�x up to the end of the phase, as follows. Let S

opt

= S

1

; S

2

; : : : ; S

m

=

S

rev

be the series of fetch sequences obtained in the transformation of opt's fetch

sequence into reverse aggressive's that was shown to exist by Lemma 13. Recall that

we have already shown that New(R

0

; S

opt

) = R

n+b�d+1

strongly dominates opt's set

of holes New(O

0

; S

0

) = O

n+b�d+1

up to the end of the phase. For each 1 < i � m,
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New(R

0

; S

i

) strongly dominates New(R

0

; S

i�1

) by Lemma 11, if S

i

is derived from

S

i�1

by a busy-early swap, by Lemma 12, if S

i

is derived from S

i�1

by an overlapping

swap, by part 2 of the strong domination lemma (Lemma 5), if S

i

is derived from

S

i�1

by an insertion, or by part 4 of the strong domination lemma (Lemma 5), if S

i

is

derived from S

i�1

by the substitution of a busy-disk fetch for a non-busy-disk fetch.

By transitivity of strong domination (Lemma 8), New(R

0

; S

rev

) strongly dominates

New(O

0

; S

opt

) up to the end of the phase.

Thus we have

Corollary 14 Reverse aggressive's �rst hole at time T

i

+ t

R

(`) � 1 � x is at a

cursor position at least as great as opt's �rst hole at time T

0

i

+ t

O

(`)� x.

This contradicts the hypothesis that reverse aggressive stalls at time T

i

+ t

R

(`) � 1

and opt does not stall at time T

0

i

+ t

O

(`), and completes the proof of Lemma 10. 2

We now use Lemma 10 to complete the inductive step of Theorem 9.

Let T

0

i+1

be the time at which opt's cursor �rst reaches phase i+1 (i.e., one greater

than the time at which opt serves the last request in phase i). Let f

0

j

be the j

th

fetch

opt initiates after time T

0

i

and at or before time T

0

i+1

, and suppose it begins at time

T

0

i

+ t

0

j

. De�ne the j

th

dominating fetch opportunity to be the fetch opportunity

(possibly an actual fetch) that reverse aggressive has on the same disk as f

0

j

in the

time interval

[T

i

+ t

0

j

+ (d� 1)F; T

i

+ t

0

j

+ dF � 1];

say at time T

i

+t

j

. (Notice this is a di�erent matching than that used in Lemma 10. In

this matching, fetches of all colors are matched in the same way non-busy-disk fetches

were matched in Lemma 10.) By Lemma 10, we know that reverse aggressive's cursor

position at time T

i

+ t

j

is at least as great as opt's cursor position at time T

0

i

+ t

0

j

.

By the same argument as in the proof of Lemma 13, reverse aggressive's sequence

of dominating fetch opportunities can be obtained from opt's sequence of fetches by

a series of overlapping swaps and insertions. Applying the strong domination lemma

(Lemma 5), Lemma 12, and transitivity of strong domination (Lemma 8) as needed,

we obtain that reverse aggressive's holes after its dominating fetch opportunities have

passed strongly dominate opt's holes after completing its sequence of fetches. This
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is the same argument as in the proof of Lemma 10, but without the complication of

busy-early swaps.

By Lemma 10, reverse aggressive's cursor reaches phase i+1 by time T

i

+(T

0

i+1

�

T

0

i

)+(d�1)F . Within another F �1 steps, reverse aggressive initiates its dominating

fetches matching the ones opt has in progress at time T

0

i+1

. A fetch of opt started at

time T

0

i+1

� x is matched (if needed) by reverse aggressive by time T

i

+ (T

0

i+1

� T

0

i

) +

dF�1�x; in particular, if opt has a fetch in progress on reverse aggressive's busy disk

for phase i+ 1 at time T

0

i+1

, that fetch has at least as many steps remaining at time

T

0

i+1

as reverse aggressive's fetch (if any) has remaining at time T

i

+(T

0

i+1

�T

0

i

)+dF�1.

Thus if we take time T

i+1

to be T

i

+(T

0

i+1

�T

0

i

)+ dF � 1, the invariants are restored.

2

3.2.3 Reverse aggressive: lower bound

We have been unable to strengthen the lower bound of Cao, Felten, Karlin, and Li [7],

which showed that aggressive can perform (1+ (F � 1)=K) times worse than optimal

in the single-disk case. This bound applies directly to reverse aggressive, since there

is no asymmetry between the reverse and forward problems in the single-disk case. It

applies to the multiple-disk case as well, since a request sequence that contains only

blocks that reside on a single disk is a special case.

3.2.4 Conservative: lower bound

The following example shows that for d < F � K, there are arbitrarily long strings

on which conservative requires time 1 + d

K�F

K

F

F+d

times the optimal elapsed time.

Example: Suppose that F divides K, and also that d divides K, and consider

a repeated cycle on K + (

K

F

� 1)d blocks. Conservative always evicts the page just

referenced whenever it �lls a hole, since that is the page that will not be needed again

for the longest time. Thus conservative will never be able to overlap prefetches with

each other or with references. Since there are at least (

K

F

� 1)d holes on each pass

through the cycle, conservative will spend at least K + (

K

F

� 1)d+ (

K

F

� 1)dF steps

on each pass through the cycle. Suppose that the blocks are colored such that each

contiguous sequence of d blocks in the cycle contains one block from each of the d
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disks. It is not hard to see that opt is able to maintain its holes in groups of d, one of

each color, spaced F steps apart. Thus opt can service the entire sequence without

stalling, and requires only K + (

K

F

� 1)d steps on each pass through the cycle. The

ratio of these two expressions (after a little manipulation) turns out to be at least as

great as the stated bound.

3.2.5 Conservative: upper bound

Theorem 15 On any reference string R, the elapsed time of conservative with d

disks on R is at most d+1 times the elapsed time of the optimal prefetching strategy

on R.

Proof: Let m be the minimum number of fetches (which is exactly how many

fetches conservative performs) on request sequence R. Conservative's running time

is at most jRj+mF , even if it never overlaps prefetches with each other or with the

servicing of requests. Since the optimal algorithm opt must perform at least as many

fetches as conservative, and also must service the request sequence R, opt's running

time is at least max(jRj; mF=d). The ratio of these is maximized with jRj = mF=d,

and has the value d+ 1. 2

3.2.6 Aggressive, �xed horizon, and forestall: lower bound

The following example shows that for two disks, there are arbitrarily long strings on

which aggressive requires time 2 �

4

F+2

times the optimal elapsed time (within an

additive constant that depends only on F and K). In general, our bound is a little

weaker: for d disks, there are arbitrarily long strings on which aggressive requires

time d �

3d(d�1)

F+3(d�1)

times the optimal elapsed time (within an additive constant that

depends only on F and K). Consider the sequence

b

1

b

2

r

1

� � � r

F

b

3

b

4

r

F

� � � r

1

b

2

b

1

r

1

� � � r

F

b

4

b

3

: : :

where all r

i

are red and all b

i

are blue. Let K = F + 2. The initial cache contents

are b

1

, b

2

, and r

1

� � � r

F

; there are holes at the �rst references to b

3

and b

4

. Both

algorithms service the initial request of b

1

during the �rst unit of time. Aggressive
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then evicts the block in its cache not referenced for the longest time, b

1

, to fetch

b

3

; the optimal algorithm opt does the same. At the completion of this fetch, the

next hole for both algorithms is at b

4

, and the cursor is at the �rst request of r

F

.

Aggressive immediately evicts the block among those in the cache not used for the

longest time, which is now b

2

; opt evicts r

1

instead. Both algorithms stall for F � 2

steps on the hole at b

4

. However, opt is able to initiate a fetch of its next hole, r

1

,

evicting b

3

, since the hole is red and the fetch in progress is fetching a blue block;

aggressive is unable to perform a second fetch in parallel because its next hole (b

2

) is

also blue. Notice that aggressive still has no red holes, and thus can complete only

one fetch every F steps. From this point on, opt is able to create one red and one blue

hole in each subsequence of F +2 requests, and can always �ll them without stalling,

whereas aggressive will always create a pair of blue holes, and will require time 2F

to serve each subsequence of F + 2 requests, since it takes this long to complete two

fetches. Thus from this point on, the ratio of aggressive's running time to that of opt

is

2F

F+2

= 2�

4

F+2

.

We have illustrated the caseK = F+2, d = 2 for simplicity. It is easily generalized

to larger values of

K

F

(which are the cases of interest in practice) as follows: let

K = iF +2, and interleave i distinct subsequences of F distinct red blocks each with

i+ 1 distinct pairs of blue blocks in round-robin fashion, reversing each subsequence

of red blocks and each pair of blue blocks on alternate occurrences. It is not hard to

see that aggressive will behave similarly to the illustrated case, and that opt is able

to service the sequence without stalling (after an initial startup period).

The generalization to d > 2 is also straightforward. Consider the sequence

b

1

� � � b

d

b

1

� � � b

d�2

x

1

� � �x

d�1

r

1

� � � r

F�d+1

x

0

1

� � �x

0

d�1

� � �

� � � b

d+1

� � � b

2d

b

d+1

� � � b

2d�2

� � �

where F > d and K = F+2d�1, the colors of the b

i

are all the same, the colors of the

x

i

are distinct from each other and the color of the b

i

, and the color of x

0

i

is the same

as that of x

i

. We omit the details of the startup period, and note that if aggressive

has holes at b

1

� � � b

d

, it will �ll them by evicting b

d+1

� � � b

2d

and thus requires time

at least dF to serve the sequence up to b

d+1

. Its state is then similar to the state in

which it started, and thus the process can repeat inde�nitely. opt, on the other hand,
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is able to maintain d holes of d distinct colors, and can serve the sequence without

stalling. Each sequence of 3(d� 1) + F requests requires time 3(d� 1) + F for opt,

and dF for aggressive, for a ratio of

dF

3(d� 1) + F

= d�

3d(d� 1)

F + 3(d� 1)

:

Again, generalizing to arbitrary K=F is easy.

The bound applies to �xed horizon and forestall as well as to aggressive, since

their respective conditions for initiating a prefetch are true at each time that aggres-

sive initiates a prefetch in the above examples, and their prefetch and replacement

decisions are the same as aggressive's when their prefech conditions are true.

3.2.7 Aggressive: upper bound

First we state a very simple lemma, leaving the proof to the reader.

Lemma 16 If a set A of holes dominates a set B of holes, and some hole in A

is �lled and some hole at a larger index added to A, the resulting holes A

0

dominate

B.

Theorem 17 On any reference string R, the elapsed time of aggressive with d

disks on R is at most d +

(d+1)F

K

times the elapsed time of the optimal prefetching

strategy on R.

Proof:

In the analysis of aggressive prefetching with one disk, it was shown that if A's

holes dominate B's holes, A's cursor position is at least as great as B's, and each

algorithm initiates a fetch, A's holes will continue to dominate B's when the fetch is

completed. This result was referred to as the domination lemma [7]. The proof of

this is similar to but simpler than that of Lemma 5 for algorithms working with the

reverse sequence.

In order to apply this lemma to more than one disk, we must be sure that when

we are comparing a fetch A initiates to a fetch B initiates that the hole being �lled

by A is the �rst missing hole. If not, the domination lemma does not hold.
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In general, we can not ensure that d parallel prefetches aggressive initiates will �ll

the �rst d holes, since some of these holes may be of the same color. However, we do

know that by the time aggressive completes d prefetches on the same disk, the �rst d

holes that were present (and perhaps others) have been �lled.

Therefore, our proof strategy is to run opt at 1=d times the speed of aggressive, so

that during each subsequence of time in which aggressive �lls at least its �rst d holes,

opt can �ll at most its �rst d holes. We will show inductively that at the end of each

of these subsequences, aggressive's holes dominate opt's holes. This will imply that

aggressive can can take only about d times as long as opt to complete a phase.

Notice that as long as there are holes in the phase containing the cursor, there

are blocks in the cache which are not requested before the end of the phase (since

the cache holds K blocks and there are only K distinct requests in a phase). Since

aggressive always evicts the block that is not requested for the longest time, once

its cursor enters a phase, aggressive will not create any new holes within the phase.

Also, once aggressive enters a phase, each disk will initiate a fetch every F steps as

long as there are holes of that disk's color remaining in the phase.

We show that for each i such that 0 � i < p� 1 where p is the number of phases

(numbering the phases starting with 0), there are times T

i

and T

0

i

, such that

� T

i

� dT

0

i

+ i(d+ 1)F ;

� aggressive's cursor is in the i

th

phase of the request sequence at time T

i

;

� opt's cursor at time T

0

i

is not past the �rst request of phase i;

� H

�

agg

(T

i

) dominates H

+

opt

(T

0

i

), so that each of aggressive's disks is either ready

to initiate a prefetch or is already �lling a hole in phase i, for which opt has not

yet started �lling its matching hole.

The theorem will follow from the �rst three conditions, as follows. For each phase

i, aggressive's elapsed time e

agg

(i) and opt's elapsed time e

opt

(i) satisfy

e

agg

(i) � de

opt

(i) + (d+ 1)F



55

so that

e

agg

(i)

e

opt

(i)

� d+

(d+ 1)F

e

opt

(i)

:

Each phase except possibly the last is of length at least K, so that e

opt

(i) � K.

Putting these together, we have that for all phases but the last,

e

agg

(i)

e

opt

(i)

� d+

(d+ 1)F

K

:

The last phase may be incomplete, i.e., may contain requests for fewer thanK distinct

blocks. Aggressive requires at most d times as many steps as opt to serve the last

phase, as shown below.

This claim is proven by induction on i. The basis (i = 0) is trivial, since both

algorithms start at the beginning of the �rst phase in the same state, with all disks

idle.

For the induction, assume that the claim is true for i.

We �rst show that for each index j in phase i, aggressive's cursor passes j after at

most d times as many steps as opt's cursor takes to pass j. Let T

i

+ t

A

(j) be the time

aggressive serves request j, and let T

0

i

+t

O

(j) be the time opt serves j. Assume by way

of contradiction that aggressive's cursor falls behind opt's (relative to the start of the

phase) by more than a factor of d, and let ` be the least index for which this happens,

i.e., t

A

(`) > dt

O

(`). It must be true that aggressive has a hole at ` (or equivalently

stalls on the `

th

request in the phase) at time T

i

+ t

A

(`)� 1, and that the `

th

request

in the phase is in opt's cache before time T

0

i

+ t

O

(`), since T

i

+ t

A

(`) is the �rst time

aggressive's cursor falls behind opt's by more than a factor of d. As noted previously,

each disk of aggressive's �lls a hole every F steps as long as there are holes of that

disk's color in the phase. Let h be the number of holes in H

�

agg

(T

i

) that are the same

color as the one at `, up to and including the one at `. Then t

A

(`) � hF , since the

hole at ` is �lled at a time no later than T

i

+hF . H

+

opt

(T

0

i

) contains at least h holes at

or before `, since H

�

agg

(T

i

) dominates H

+

opt

(T

0

i

). Thus the earliest time opt could �nish

�lling all its holes up to index ` is T

0

i

+dh=deF , even if it �lls a hole every F steps with

each disk. Thus we have a contradiction: hF � t

A

(`) > dt

O

(`) � d(dh=deF ) � hF .

To show that aggressive's holes after �nishing phase i dominate opt's holes, we

need another induction. Let I

0

j

denote the F -step interval [T

0

i

+ jF; T

0

i

+ (j + 1)F ),
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j � 0, and let c

j

be opt's cursor position at time T

0

i

+ jF , for each j such that opt's

cursor is still in phase i at time T

0

i

+ jF . Let I

j

= [T

i

+ jdF; T

i

+(j+1)dF ). Consider

the set of at most d fetches that opt initiates during I

0

j

. We match these to the set of

fetches aggressive initiates during I

j+1

. We prove by induction on j that H

+

opt

(T

0

i

+jF )

is dominated by H

+

agg

(T

i

+d(j+1)F ). The base case follows from the hypothesis that

H

�

agg

(T

i

) dominates H

+

opt

(T

0

i

). Any fetches completed or initiated by aggressive during

I

0

do not a�ect this, by Lemma 16. For the inductive step (on j), note that each

fetch opt initiates during I

0

j

is initiated at a cursor position at most c

j+1

, and that

aggressive's cursor position is at least c

j+1

during the interval I

j+1

. Thus aggressive's

fetches can be matched to opt's and the domination lemma implies that aggressive's

resulting holes H

+

agg

(T

i

+(j+2)dF ) dominate opt's resulting holes H

+

opt

(T

0

i

+(j+1)F ).

Any extra fetches of aggressive (there may actually be as many as d

2

by aggressive

and as few as zero by opt during their respective time intervals) do not a�ect this, by

Lemma 16. As a special case, if aggressive should stop fetching altogether at some

time and thus have fewer than d fetches to match to opt's, aggressive has reached

the optimal cache con�guration: its cache contains the next K distinct requests, and

its holes are as far from the cursor as possible. These holes certainly dominate opt's

holes at any earlier cursor position.

Consider the value j

�

such that opt's cursor reaches phase i+1 during I

0

j

�

. Then by

the preceding arguments, aggressive's cursor reaches phase i+1 by time T

i

+(j

�

+1)dF

and aggressive's holes H

+

agg

(T

i

+(j

�

+1)dF ) = H

�

agg

((j

�

+1)dF +F ) after completing

all fetches initiated in I

j

�

dominate opt's holes H

+

opt

(T

0

i

+ j

�

F ) after completing all

fetches initiated in I

0

j

�

�1

. Let T

i+1

= T

i

+ (j

�

+ 1)dF + F and let T

0

i+1

= T

0

i

+ j

�

F ,

and the conditions for the induction step on the phase index i are met. 2

3.3 The algorithms' running times

In this section we consider the time required to determine a prefetching schedule in

the uniform-cost RAM model (see, for example, [3]). This is distinct from the time

required to serve the sequence in the model described in Chapter 2, which is the

primary measure we are trying to optimize.

First, consider the single-disk case. We assume that the i

th

member of the set B

of blocks is identi�ed by the integer i. We will need per-block lists of requests (indices
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in the request sequence R); let Next(b) refer to the head of the list of references to

block b. Initially, Next(b) points to the �rst request of block b; after that request is

served, Next(b) will be updated to point to the next occurrence of b in R, and so

on. We will also need a vector InCache indexed by the set B indicating for each

block whether or not it is present in the cache, and a pointer NextHole indicating

the index of the �rst hole in the request sequence. Finally, we will need a priority

queue Cache containing the identi�ers of all blocks present in the cache, and keyed

on the index in the request sequence of the next request to that block. Cache will

need to be augmented by an operation to update the key of an item (which could be

implemented as a deletion and a reinsertion), as well as to the usual operations to

insert items and delete the item with maximum key. Note Cache will never contain

more than K keys. Each operation on Cache thus requires O(logK) time (see, for

example, [3]). Note that the maximum element in Cache, the value of NextHole,

and the position of the cursor provide the information needed by aggressive, �xed

horizon, and reverse aggressive to decide when and what to prefetch, and what to

evict.

A preprocessing step to initialize these data structures requires time linear in

jBj+ jRj; we assume K � jBj, since the scheduling problem is trivial otherwise. To

maintain these structures when serving a request of block b, we need to update the

pointer Next(b) and update b's entry in the priority queue Cache. Thus scheduling

the servicing of a request requires O(logK) time. To maintain these structures when

evicting a block b

1

and fetching b

2

, we delete the maximum element (which is b

1

)

from Cache, insert b

2

in Cache, update the vector InCache appropriately, and scan

forward in R from NextHole until a request is found that is missing from the cache

(by referring to InCache); this index becomes the new NextHole. These operations

require time O(logK) with the exception of the scan of the request sequence to

�nd the new NextHole. The scans require O(jRj) time, amortized over the entire

sequence. jRj is an upper bound on the total number of fetches. The reversal of R and

of reverse aggressive's reverse schedule can be done in time linear in jRj. Thus, each

of the algorithms aggressive, �xed horizon, and reverse aggressive can be implemented

to run in time O(jBj+ jRj logK) in the uniform-cost RAM model.

A simple implementation of conservative is to run Belady's paging algorithm,

recording each fetch/eviction pair along with a \release index," i.e., the index of the
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last request of the evicted block (before it is fetched back into the cache later in

the schedule, if ever). A similar analysis to that above shows the same bound of

O(jBj + jRj logK) for the construction of this list of fetches and evictions. The list

can then be \played back" to construct a schedule for the fetches and the serving of

the sequence, issuing each fetch as soon as the cursor has passed the release index

and the disk is free. Thus, we have the same bound on conservative's running time

as on that of the other algorithms.

In the case of d > 1 disks, we assume a constant-time operation yields the disk

a block resides on, given the block's identi�er. The changes required in the analysis

of conservative are trivial. For the other algorithms, data structures are maintained

on a per-disk basis as needed. NextHole becomes a vector of d entries for aggressive

and �xed horizon. A linear time pre-processing step can be used to produce per-disk

request sequences; these are needed to update NextHole. In the case of reverse

aggressive, it is the priority queue Cache that needs to be split into d separate struc-

tures, one for each disk; none will ever contain more than K keys. Thus, the running

time bound given above applies to the multi-disk case as well as the single-disk case.

Finally, we consider the time required to evaluate forestall's prefetch predicate

d

i

� iF . We use a set of priority queues Holes, one per disk, containing the index of

the next request of each missing block that resides on the disk. The cursor position

is a �xed value (at any given point in the schedule) which can be subtracted from

the index of a hole to yield the distance to the hole. The priority queues of Holes

will need the usual priority queue operations insert and deletemin, and a special

operation slack = min

h

(h� F � rank(h)), where h ranges over the set of keys stored

(i.e., indices of holes). Forestall's prefetch predicate is then slack� cursor � 0. Note

that this data structure will never contain more than jBj elements. Forestall also

needs the data structures (and has the same running time components) as aggressive

and �xed horizon. Forestall's running time is thus O(jBj + jRj logK + T (jRj; jBj)),

where T (n;m) is the time required to execute n operations on the data structure

Holes and m is the maximum number of elements. We leave open the problem of

implementing this data structure in time o(m) per operation. A trivial bound on

T (n;m) is O(nm), yielding O(jRjjBj) for the running time of forestall.



Chapter 4

EXPERIMENTAL ANALYSIS

This chapter presents the results of joint work with Tomkins, Patterson, Bershad,

Cao, Felten, Gibson, Karlin, and Li [24]. The presentation follows the chronological

development of the results. An assessment was made of the practical algorithms

aggressive and �xed horizon, using reverse aggressive as a benchmark against which

to evaluate their performance. This comparison led to the search for a new algorithm

with the best characteristics and none of the drawbacks of the others. Forestall is the

result of that e�ort.

4.1 Overview of experimental results

In this chapter we describe the results of a performance evaluation of the di�erent

policies for the d-disk integrated prefetching and caching problem. Our results from

trace driven simulation demonstrate the practical performance characteristics of ag-

gressive, �xed horizon, reverse aggressive, and forestall. On our traces, we found

that:

� All four algorithms signi�cantly outperform demand fetching, even when ad-

vance knowledge of the access sequence is used to make optimal replacement

decisions in conjunction with demand fetching.

� In compute-bound situations, �xed horizon and forestall have the best perfor-

mance (which is usually matched by reverse aggressive's).

� In I/O-bound situations, aggressive and forestall have the best performance

(which is usually matched by reverse aggressive's).

� In any given situation, one of �xed horizon or aggressive performs close to the

theoretically near-optimal reverse aggressive.
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� In all situations, forestall performs close to reverse aggressive.

� When data is well-laid out on the disks (e.g., striped), disk loads are balanced

even without careful replacement choices. For this reason, reverse aggressive

does not signi�cantly outperform the other algorithms.

� Fixed horizon consistently places the least I/O load on the disks, due to its

conservative fetching and near-optimal replacement choices. Reverse aggressive

and forestall are intermediate between aggressive and �xed horizon.

� Batching of prefetch requests and disk head scheduling are crucial to the per-

formance of prefetching and caching strategies.

� Forestall is a promising new approach that combines the best features of

the other three algorithms: good performance regardless of I/O- or compute-

boundedness, simplicity, and practicality.

We have focused on a rather narrow range of the input space: the single process,

full-lookahead case. Prefetching and caching algorithms must deal e�ectively with

missing or incorrect hints, as well as multiple simultaneously executing processes.

Fixed horizon, aggressive and forestall can all be adapted to deal with these more

general situations [8, 36].

4.2 Simulation model

Our theoretical model described and analyzed in Chapters 2 and 3 simpli�es the

real situation by assuming that the CPU time between every two �le references is

the same, that all disk accesses take the same amount of time, and that there is no

CPU overhead incurred by issuing an I/O request. These simpli�cations were made

to make the problem theoretically tractable. Our simulations use actual CPU times

collected in our traces and an accurate simulation model of modern disk drives, and

charge a driver overhead for each request made to a disk. The following describes in

detail these di�erences between the theoretical and simulation models, and several

ways in which the algorithms are modi�ed to account for them.
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1. Disk response times and CPU times between I/O requests are not constant.

We use average values for each and expect that variation in event times does

not substantially invalidate the algorithm's decisions. In our experimentation,

this does not appear to be a major e�ect, with one exception (see Section 4.5.3).

(The systematic e�ects of disk scheduling on disk response time are considered

separately).

2. Access patterns exhibit locality of reference and data are striped across multi-

ple disks in practice; the theoretical model allows worst-case data layouts and

reference sequences.

In practice, the combination of striped data layout and locality of reference bal-

ances loads across the disks. This allows �xed horizon, aggressive, and forestall

to e�ectively utilize multiple disks and to achieve elapsed times comparable to

the theoretically superior reverse aggressive.

3. Disk accesses require signi�cant CPU overhead to form the request, communi-

cate with the disk, and service the resulting interrupt(s). Thus, avoidable data

fetches may add elapsed time even if they do not cause stalls.

Because the theory assumes that fetches entail no CPU overhead, this penalty

punishes overly aggressive fetching. In practice, this e�ect favors the �xed

horizon algorithm over aggressive since its late replacement decisions tend to

lead to fewer fetches.

4. Disk response time is sensitive to the order in which requests are serviced.

In particular, disk scheduling reduces average disk response time as more ac-

cesses are presented and allowed to be reordered by the disk (driver). Although

�xed horizon implicitly allows multiple outstanding requests at each disk, ag-

gressive, reverse aggressive, and forestall were de�ned to submit only one re-

quest at a time, since in the theoretical model there is no advantage to batching.

Because of the signi�cance of the disk scheduling e�ect, we modify the de�ni-

tions of aggressive, reverse aggressive, and forestall to submit disk requests in
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batches. We have found that the performance of all the algorithms bene�ts

from the CSCAN disk scheduling algorithm (see, for example, [40]).

Reverse aggressive also bene�ts from batching of requests during its construction

of its prefetching schedule (the reverse pass over the request sequence). This is

because typical request sequences exhibit spatial locality; by batching requests on

the reverse pass, reverse aggressive generates holes to be fetched on the forward

sequence in groups that exhibit locality of reference.

The inter-request CPU time is actually composed of two components, a �xed

amount of time to read a block out of the cache, and a variable amount of time to

process the data. Our implementation of �xed horizon assumes the data processing

time to be zero, and uses the ratio of the average disk response time to the time to

read a block from the cache as the prefetch horizon H (which is identical to the fetch

time F in the theoretical model). This ensures that any prefetch issued to an idle disk

will complete in time for the reference. Assuming an average disk response time of

15ms (which is usually an overestimate in our simulations) and 243�s to read a block

from the cache (which was measured on the implemented TIP2 system of Patterson et

al. [36]) yields a value of H = 62; we used this value in all our simulations, except

where noted otherwise.

4.3 Implementations of the algorithms

In the context of the considerations of the previous section, we summarize the imple-

mentations we compared.

Fixed horizon: Whenever there is a missing block at mostH references away, issue a

fetch for that block, replacing the block whose next reference is furthest in the future.

Note that this algorithm may at any time have up to H outstanding references to a

disk yielding opportunities for disk scheduling. As mentioned, the prefetch horizon

H is computed as the ratio of the average time it takes to read a block from disk to

the minimum time it takes to consume a single block of data.

Aggressive: Whenever a disk D is free, construct a batch of at most batchsize
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Table 4.1: Batch sizes used for aggressive.

1 disk 2 disks 3 disks 4 disks

80 40 40 16

5 disks 6 disks 7 disks > 7 disks

16 8 8 4

fetches (see Table 4.1) to initiate on D as follows: As long as the �rst missing block

B on disk D precedes the block B

0

whose next request is furthest in the future, add

the fetch/eviction pair B=B

0

to the batch. Issue the batch.

If two or more disks are free at the same time, we consider all their missing blocks

together, in order of increasing request index. Each next missing block is issued to

the appropriate disk (and the best possible choice of evictions is made), if the disk's

batch is not full and the do no harm rule allows it. At some point, either the last free

disk's batch becomes full or the do no harm rule disallows issuing further requests.

Reverse aggressive: Assuming a �xed ratio F between the time for a disk access

and the inter-reference CPU time, consider the reversed sequence, and use it to derive

a prefetching schedule as described in Chapter 2, but construct the schedule in batches

as done by aggressive.

This prefetching schedule is then transformed into a schedule of fetch/eviction pairs

for the forward sequence. Associated with each eviction is a release time, the earliest

index in the request sequence at which the block can be evicted (i.e., one greater than

the index of the last request to the block until it is possibly fetched back into the

cache at some later time.) The eviction choices are naturally ordered by increasing

release point due to the method used by reverse aggressive to construct its schedule.

Fetches may need to be re-ordered according to increasing request index; they are

then matched to eviction choices according to these orderings.

This schedule is used to drive the disk model as follows. Whenever a disk D is free,

add the �rst batchsize fetch/eviction pairs B

i

=B

0

i

that have been released (or all

that have been released, if there are fewer than batchsize), and for which B

i

resides

on disk D, to the batch. Issue the batch.

1

1

The batch sizes and estimate F used by reverse aggressive are discussed in Section 4.5.4.
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We postpone the description of our implementation of forestall until Section 4.6,

where it can be better motivated in light of the performance characteristics of the

other algorithms.

4.4 Simulation environment

Trace-driven simulation was used to evaluate the performance of the algorithms. We

believe our simulation model to be an accurate reection of the practical performance

characteristics of the algorithms. The reference streams are taken from traces of real

applications' behavior. The trace information we use is una�ected by prefetching

and caching activity, so that it makes sense to use the same trace with di�erent

prefetching and caching algorithms. The accurate modelling of disk fetch times, I/O

driver overhead costs, and application process compute times in the simulations is a

key di�erence relative to the theoretical framework. However, the simulators do not

model serialization of memory bus transactions.

2

Two separate simulators were developed, one at Washington (UW) and one at

Carnegie Mellon (CMU). The UW simulator uses the disk drive simulation of Kotz

et al. [26] (which is based on that of Ruemmler and Wilkes [38]) to accurately model

I/O costs. This simulation models �ne architectural details to provide a very accurate

simulation of the HP 97560 disk drive. Table 4.2 lists several characteristics of the

HP 97560 (taken from [38]). The CMU simulator uses the Berkeley RaidSim [9]

simulator, as modi�ed at CMU, to simulate 0661 IBM Lightning disk drives.

The simulators were cross-validated on a common set of traces. The CMU simula-

tor does not implement reverse aggressive. We obtained good agreement between the

simulators on the results for aggressive and �xed horizon for several traces. Table 4.3

shows the elapsed times measured by the simulators for the xds and synth traces

described below. Remaining di�erences between the simulators are consistent with

the di�erences in the disk models. We report here results for all algorithms obtained

using the UW simulator.

In our simulations, we ignore write operations. Write performance is less critical

2

We do not expect this to have a signi�cant e�ect on the results since the memory bus time is

much less than the disk access time.
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Table 4.2: HP 97560 characteristics.

Sector sectors tracks per

size per track cylinder

512 bytes 72 19

cylinders rotational disk cache

speed size

1962 4002 rpm 128 Kbytes

ave. access controller transfer

time (8Kbyte) interface rate

22.8ms SCSI-II 10 MB/sec

Table 4.3: Comparison of the simulators on the xds and synth traces.

xds elapsed times (secs)

CMU simulator UW simulator

disks F.H. Agg. F.H. Agg.

1 63.3 61.6 65.6 63.7

2 36.9 34.1 38.0 34.3

3 33.6 33.9 36.2 33.7

4 33.8 35.1 34.2 35.1

5 33.0 34.2 33.5 34.4

synth elapsed times (secs)

CMU simulator UW simulator

disks F.H. Agg. F.H. Agg.

1 213.0 168.5 201.4 155.8

2 136.3 126.9 130.9 121.7

3 118.9 149.5 118.9 150.4

4 118.9 150.4 118.9 150.1
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to I/O performance since the application generally does not have to wait for the disk

to be written. Moreover, the impact this has on the results is small since most of the

references in our traces are reads.

We simulated disk arrays of sizes 1-8, 10, 12, and 16. Most of our �gures show a

smaller range of sizes, however. In each case, the performance with a larger number

of disks is the same as that with the largest number of disks shown.

4.4.1 File access traces

We used a set of traces collected on a DECstation 5000/200. The running time of all

the applications is dominated by disk read accesses. Each trace consists of a sequence

of �le block read requests in the order in which they were issued, and the sequence of

measured process compute times between read requests, of a single execution thread.

We used an I/O driver overhead of :5ms per I/O operation, which is typical of the

5000/200.

The applications are:

cscope[1-3]: an interactive C-source examination tool written by Joe Ste�en, search-

ing for eight symbols (cscope1) in a 18MB software package, searching for four text

strings (cscope2) in the same 18MB software package, and searching for four text

strings (cscope3) on a 10MB software package. With multiple queries, cscope will

read multiple �les sequentially multiple times.

dinero: a cache simulator written by Mark Hill. This application reads one �le

sequentially multiple times.

glimpse: a text information retrieval system from the University of Arizona, search-

ing for four keywords in a 40MB snapshot of news articles. It builds approximate

indexes for words to allow both relatively fast search and small index �les. The result

is that the index �les are accessed repeatedly, whereas the data �les are accessed

infrequently.

postgres-join: the Postgres relational database system developed at the University

of California at Berkeley, performing a join between an indexed 32MB relation and
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Table 4.4: Trace summary data.

trace reads distinct compute avg. compute time

blocks time (sec) per read (msec)

dinero 8867 986 103.5 11.7

cscope1 8673 1073 24.9 2.87

cscope2 20206 2462 37.1 1.84

cscope3 30200 3910 74.1 2.45

glimpse 27981 5247 38.7 1.38

ld 5881 2882 8.2 1.39

postgres-join 8896 3793 11.5 1.29

postgres-select 5044 3085 79.2 15.7

xds 10435 5392 30.8 2.95

synth 100000 2000 99.9 0.999

a non-indexed 3.2MB relation. The relations are those used in the Wisconsin Bench-

mark [16]. Since the result relation is small, most of the �le accesses are reads. Here,

the index blocks are accessed much more frequently than the data blocks.

postgres-select: the Postgres relational database system executing a selection query

of choosing 2% of the tuples from an indexed 32MB relation. The selection query is

part of the Wisconsin Benchmark suite [16] and uses indexed search.

ld: the Ultrix link-editor, building the Ultrix 4.3 kernel from about 25MB of object

�les.

xds: a 3-D data visualization program, XDataSlice, generating 25 planar slice images

at random orientations from a 64MB data �le.

Finally, we used a synthetic trace synth containing 50 passes through a loop

of 2000 sequential blocks. Compute times between read requests were generated

according to a Poisson distribution with a 1 ms mean.

Table 4.4 shows the length (number of read requests), number of distinct blocks

requested, and application compute times for each of the traces.

The cache size was set to be 10MB (or K = 1280 blocks of 8 kbytes each) for all

traces except dinero and cscope1. These traces contain references to fewer than 1280

distinct blocks. For these traces, the cache size was reduced to 4MB (512 blocks).



68

We assume the cache to be empty (or to contain some other application's data) when

the traced application starts. The entire cache is available to the traced application.

4.4.2 Data placement and disk head scheduling

The data was striped across the array using a one-block stripe unit. Some of our

traces represented block numbers by (�le,o�set) pairs; for these we chose a random

starting point within a group of 8550 8kbyte blocks (which occupy 100 cylinders on the

HP 97560) for each �le, corresponding to typical �le system clustering mechanisms.

The maximum seek time within a group of 100 cylinders is 7.24ms. Thus, in our

simulations the average response time is typically lower than the 22.8ms listed in

Table 4.2. Other traces referred to logical �lesystem block numbers; for these traces

we used the actual block number for each access. Except where noted, we use CSCAN

disk head scheduling.

4.5 Performance of aggressive, �xed horizon, and reverse aggressive

In this section, we examine the behaviors of aggressive, �xed horizon, and reverse

aggressive in detail. We begin by comparing the performance of the algorithms with

that of demand fetching. We then examine the algorithms' performance on the syn-

thetic trace, an easily understood access pattern that illustrates the key di�erences

in behavior between the algorithms. Next we examine performance on the applica-

tion traces, and explore the e�ects on the results of changes in various simulation

parameters. The performance of forestall is reported in Section 4.6.

4.5.1 Comparison with demand fetching

To make this comparison as favorable as possible to demand fetching, we use the op-

timal o�ine replacement policy: whenever a block is fetched, the block in the cache

whose next reference is furthest in the future is replaced. Our implementation of

demand fetching does not include the sequential readahead common to many �le sys-

tems. However, the HP 97560 contains a readahead bu�er, so that sequential accesses

are served from the bu�er (requiring only about 3 milliseconds per read) rather than
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from the disk itself. Figure 4.1 shows the elapsed times of the three algorithms and

of optimal demand fetching on the postgres-select trace for varying numbers of disks

between one and sixteen. Each group of four bars represents the performance of
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Figure 4.1: Performance on the postgres-select trace.

the four algorithms; they are, in left to right order, optimal demand fetching, �xed

horizon, aggressive and reverse aggressive. The elapsed times are divided into three

components: process compute time, I/O driver overhead (processor) time, and the

time the processor spends idle, stalling on I/O. From this �gure we see that (1) all

three prefetching algorithms signi�cantly outperform optimal demand fetching, and

(2) the three prefetching algorithms achieve near linear reduction in I/O overhead

until the applications become compute-bound. These two behaviors are consistent

across all the applications we have studied.

4.5.2 Fundamental performance characterization of aggressive and �xed horizon

The synthetic trace is used to examine the algorithms' behavior on a simple, known

sequence in order to gain insight into the algorithms' performance. This trace shows

the relative behaviors typical of the three algorithms in exaggerated form. Figure 4.2

summarizes the results for one to four disks. Each group of three bars represents the

performance of the three algorithms �xed horizon, aggressive, and reverse aggressive,

in left-to-right order.

The sequential accesses allow excellent performance from the disks; average re-

sponse times are between 3 and 4 ms. In each case, �xed horizon performs 38000

fetches, 720 more than the minimum possible 37280 performed by optimal demand

fetching. (The total sequence length is 100,000).
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Figure 4.2: Performance on the synth (left) and cscope1 (right) traces.

With a single disk, the synthetic application is I/O bound. Fixed horizon's con-

servative prefetching strategy reduces I/O stalling relative to demand fetching, but

not as much as aggressive's and reverse aggressive's more aggressive strategies. After

each pass through the loop under �xed horizon, the cache contains 1280 sequential

blocks and the other 720 blocks in the sequence are not cached. The clustering of

the 720 missing blocks allows good disk performance; however, the clustering of the

1280 cached blocks causes �xed horizon to leave the disk idle until the last H cached

blocks are being read. Aggressive and reverse aggressive perform 39240 and 39265

fetches, respectively, slightly more fetches than �xed horizon's 38000, resulting in a

small di�erence in driver overhead. However, they are able to eliminate much of the

I/O stall time by prefetching distant blocks and thus not idling the disk appreciably.

With two disks, �xed horizon is able to eliminate most of the stall time, without

increasing the total number of fetches. Aggressive has nearly eliminated stall time

completely, but at a higher driver cost due to its increased number (41902) of fetches.

Reverse aggressive is between �xed horizon and aggressive in stall time; it performs

42000 fetches. Elapsed times are similar under all three algorithms. This case marks

the transition from I/O-boundedness to compute-boundedness.

With three disks, stall time has been eliminated completely by all three algorithms.

Aggressive uses the excess I/O bandwidth to prefetch and subsequently evict every

block for every reference. In fact, because aggressive is willing to prefetch signi�cantly

ahead on one disk relative to others, it wastes 994 fetches, replacing a prefetched

block from the cache before it is used to fetch a block on a di�erent disk that will

be needed sooner. Fortunately, this e�ect does not increase as the number of disks
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increases since with increasing I/O bandwidth, aggressive's prefetching becomes so

successful that every fetch is to the �rst missing block in the future. Such a block

can never be replaced before it is used, since that would violate the do-no-harm rule.

Nonetheless, the elimination of stall time by aggressive comes at a high cost: the

driver overhead for the extra fetches pushes aggressive's elapsed time higher than

the two-disk case. In contrast, �xed horizon prefetches far enough ahead to serve all

requests without stall, but no farther. Dedicating at most H bu�ers to prefetching,

�xed horizon is able to eliminate stalling altogether without any additional fetches.

Reverse aggressive performs 37907 fetches, fewer than �xed horizon, also eliminating

stall time.

4.5.3 Performance of aggressive and �xed horizon on application traces

The application traces show di�erences among the three algorithms similar to those

shown by the synthetic trace, but less pronounced.

The right portion of Figure 4.2 shows the performance of the three algorithms on

the CPU-bound cscope1 trace. The behavior here is similar to that for the synthetic

trace: aggressive eliminates stalling but issues too many fetches resulting in a greater

driver overhead.

At the I/O-bound end of the spectrum, Figure 4.3 shows a detailed breakdown of

the performance of the three algorithms on the ld trace, from one to sixteen disks.

With one disk, all three algorithms are I/O bound and have comparable performance.
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Figure 4.3: Performance on the ld trace.

From two to eight disks, the more aggressive prefetching of aggressive and reverse
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aggressive results in somewhat less stalling than �xed horizon. At ten disks, �xed

horizon's performance matches aggressive's. Beyond this point, the tradeo� between

excessive stalling caused by leaving disks idle, and excessive driver overhead caused by

prefetching aggressively, favors �xed horizon over aggressive. The other traces reect

similar trends, with di�erent points of crossover: above �ve disks for postgres-select,

glimpse, and cscope2, and below �ve disks for postgres-join, dinero, cscope1, and xds.

An exception to the generally best performance of reverse aggressive is the cscope3

trace, shown in Figure 4.4. Note that reverse aggressive's performance is much
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Figure 4.4: Performance on the cscope3 trace.

worse than aggressive's with one disk. This is a case in which the di�erences between

the theoretical model and the simulation model a�ect the performance of reverse

aggressive. Recall that since reverse aggressive is o�ine, it generates a complete

schedule based on its estimate of F . When it uses a smaller estimate of F , each

fetch is assumed to complete earlier (relative to the inter-reference compute time)

and therefore reverse aggressive generates a more aggressive prefetching schedule that

keeps the disk(s) busier. When it uses a larger estimate of F , each fetch is assumed to

take longer, and therefore reverse aggressive must delay the scheduling of subsequent

fetches in the sequence, thus generating a more conservative prefetching schedule.

In our implementation of reverse aggressive, the single best estimate of F is used

for each trace. On traces with large variation in inter-reference compute times, any

single estimate of F will be either too small or too large for some parts of the trace.

This is the case for cscope3 { examination of the trace reveals that the inter-reference

compute times are bursty. Runs of compute times near 1ms are interspersed with
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Table 4.5: Disk utilization on the postgres-select trace.

disks demand �xed aggressive reverse

fetching horizon aggressive

1 .82 .98 .99 .98

2 .41 .90 .92 .92

3 .27 .82 .87 .85

4 .20 .72 .81 .80

5 .16 .66 .70 .69

6 .13 .58 .63 .60

7 .12 .50 .62 .50

8 .10 .45 .56 .42

10 .08 .36 .43 .35

12 .07 .30 .35 .28

16 .05 .22 .26 .21

runs of times around 7ms. Since the average fetch time on this trace with one disk

is about 8ms, the ratio of fetch time to compute time (the \true" value of F ) varies

from about 1 to about 8.

In fact, with a single disk, aggressive has the same theoretical performance bounds

as reverse aggressive. It is not surprising that aggressive's inherent adaptivity to

varying fetch times and compute times should give it an advantage over reverse

aggressive in this case. This e�ect is noticable, but less pronounced, on the synth

trace as well.

On the remaining traces, reverse aggressive's elapsed time varies from 3.6% worse

to 10.7% better than the superior of �xed horizon and aggressive in any given con�g-

uration. For the full data, see Appendix A.

Table 4.5 shows the utilization of the disks (averaged over the disks when there

are more than one) for demand fetching and the three prefetching algorithms on

the postgres-select trace. For moderate numbers of disks, aggressive places the

greatest load on the disks, followed by reverse aggressive and then �xed horizon;

demand fetching places the least load on the disks. With a very high degree of disk

parallelism, reverse aggressive's o�ine schedule places even less load on the disks than

�xed horizon's conservative strategy.
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4.5.4 Varying parameters

The performance of the algorithms depends on a set of parameters which interact in

complicated ways with the applications' access patterns and inter-reference compute

times, the layout of data on disks, the disk-scheduling discipline, and the character-

istics of the disks. In this section, we explore the behavior of the algorithms when

some of these parameters are varied. For brevity, we present general observations and

only a small portion of the data. For the full data, see Appendix A.

We have already described most of the primary e�ects that explain what we see.

These are:

� scheduling: An increase in the number of outstanding fetches issued by a

prefetching algorithm results in increased latitude to reorder fetches and thus

reduced disk response times. This e�ect is strongest in I/O-bound situations.

� out-of-order fetching: Reordering of fetches can increase stall penalties when

early missing blocks are fetched after later missing blocks. This e�ect is

strongest in CPU-bound situations where any stall penalty is costly. When

there is signi�cant stalling, this e�ect is masked by other stalls and compen-

sated by the reduced average response time.

� early replacement: As prefetching becomes more aggressive, inferior replacement

choices are made, leading to more fetches and in many cases, an increase in

elapsed time.

� limited aggressiveness: The extent to which an algorithm can prefetch is limited

by the do no harm rule.

Disk-head scheduling

The results shown in the previous section were obtained using CSCAN disk-head

scheduling. CSCAN was used rather than SCAN since the HP 97560 contains a

readahead bu�er; CSCAN always scans in the same direction that the disk reads,

improving the hit rate in the readahead bu�er. We compared the performance impact
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Table 4.6: Percentage improvement of CSCAN over FCFS on the postgres-select

trace.

disks �xed aggressive reverse

horizon aggressive

1 14.9 19.2 24.0

2 4.85 11.3 22.1

3 2.59 8.36 19.9

4 0.53 3.59 6.71

5 -0.62 -0.77 0.0

6 -0.68 -0.31 0.0

7 -2.15 -0.45 0.0

8 -0.42 -0.17 0.0

10 -0.05 0.09 0.0

12 0.0 0.11 0.0

16 0.0 0.0 0.0

of CSCAN disk-head scheduling versus FCFS scheduling. Relative to FCFS, CSCAN

improves the performance of reverse aggressive the most, up to 24%, and that of �xed

horizon the least, up to 15%. For aggressive, the greatest bene�t was 19%. Because

of out-of-order fetching, CSCAN sometimes degrades performance slightly relative to

FCFS in compute-bound situations. This e�ect is strongest for �xed horizon since

it issues fetches later than they are issued by the other algorithms. The maximum

degradation we observed is 3.6% (for �xed horizon with six disks on the glimpse trace).

Table 4.6 shows the performance bene�t of CSCAN scheduling relative to FCFS

on the postgres-select trace for all three algorithms with 1-16 disks.

The batch size used by aggressive

Figure 4.5 shows the e�ect of varying aggressive's batch size on the cscope2 trace.

For each number of disks, performance initially improves with increasing batch size

due to improved scheduling. For example, for one disk, the average fetch time drops

from 10.4ms to 8.4ms as the batch size increases from 4 to 160. Eventually, out-of-

order fetching and early replacement become more important and performance drops

o� again. For example, for one disk the number of fetches increases from 6771 to

9806 as the batch size increases from 160 to 1280.
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Figure 4.5: Performance of aggressive on the cscope2 trace, as a function of the batch

size.

As the number of disks increases, the variation in performance with batch size

diminishes, and the best batch size shifts to a smaller value. This is because in more

compute-bound situations, out-of-order fetching and limited aggressiveness are the

dominant factors. Because of limited aggressiveness, the number of fetches increases

only from 11325 to 11399 as batch size increases from 160 to 1280 with 5 disks.

Although the best batch size decreases with the number of disks for all the traces,

it varies signi�cantly from trace to trace. For example, for the xds trace, the best

batch size for one to three disks was 16, and for four or more was 4. All the results

for aggressive presented in Section 4.5.3 were obtained using the batch sizes given in

Table 4.1. The performance of aggressive with these �xed batch sizes is on average

0.7 % worse (and at most 11% worse) than its performance with the best batch size

for the con�guration.

Prefetch horizon

The left side of Figure 4.6 shows the e�ect of varying �xed horizon's prefetch horizonH

on the cscope1 trace. We see that for each number of disks, performance deteriorates

with increasing H (except on one disk, where it improves slightly until H = 64 is

reached). This is due to out-of-order fetching and early replacement. For example,

with 1 disk, earlier replacements cause the number of fetches to increase from 4959

with H = 64 to 8535 with H = 2048. Out-of-order fetching accounts for all the stall

time with 2 and 3 disks when H � 512; using FCFS scheduling this stall time is
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Figure 4.6: Performance of �xed horizon as a function of the prefetch horizon H on

the cscope1 (left) and cscope2 (right) traces.

eliminated.

On the more I/O bound traces such as cscope2, also shown in Figure 4.6, we

�nd a signi�cant initial performance improvement with increasing H because the

more aggressive prefetching eliminates stalling. Only at very large values of H does

performance decline again.

The parameters used by reverse aggressive

We experimented with the batch size and �xed value of F used by reverse aggressive

to construct its schedule on its reverse pass over the request sequence, as well as

the batch size used on the forward pass. Since we use reverse aggressive only as a

benchmark against which to compare the other algorithms, the main purpose of these

experiments was to determine the best con�guration (choice of F and batch sizes)

for each trace and each number of disks.

These experiments show that, as with aggressive, a smaller (respectively, larger)

batch size bene�ts a more compute-bound (respectively, I/O-bound) application. Re-

calling that as reverse aggressive's estimate of F decreases, it becomes increasingly

aggressive, we similarly �nd that a smaller (respectively, larger) value of F bene�ts

a more I/O-bound (respectively, compute-bound) application.
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Table 4.7: Elapsed time as a function of the cache size and number of disks of �xed

horizon relative to aggressive (percentage di�erence) on the glimpse trace.

cache size 1 disk 2 disks 4 disks 8 disks 16 disks

640 6.0 14.7 24.8 7.3 -2.6

1280 11.3 20.2 24.5 5.7 -3.8

1920 13.8 25.0 21.7 5.7 -3.8

Processor speed and cache size

To assess the impact of improved CPU performance relative to disk performance,

we ran our trace-driven simulations assuming a processor twice as fast. For these

tests, �xed horizon's prefetch horizon H was doubled to 124. The results are entirely

unsurprising: faster processors are more dependent on I/O performance so that the

payo� of using multiple disks and prefetching is increased. In addition, since a larger

number of disks is needed to eliminate I/O overhead, the point at which the tradeo�s

begin to favor �xed horizon over aggressive is shifted to a larger number of disks. This

behavior was consistent across the applications.

To assess the impact of cache size on performance, we ran our trace-driven simu-

lations with varying cache sizes: 640, 1280, and 1920 blocks. As cache size increases,

the performance of all the algorithms improves. In I/O-bound cases, a larger cache

improves aggressive's and reverse aggressive's performance more than �xed horizon's

since they prefetch more aggressively. In more compute-bound cases, aggressive's

excessive driver overhead penalizes it even more with a larger cache, so that �xed

horizon's performance relative to aggressive improves slightly as cache size increases.

This is illustrated in Table 4.7, which shows the performance of �xed horizon relative

to aggressive as a percentage di�erence, as a function of the cache size and the number

of disks on the glimpse trace.

4.6 Forestall: an algorithm with the best features of the others

The simulation results of the previous section indicated the need for a new algorithm.

It is desirable to have a single algorithm that has good performance regardless of I/O-

boundedness or compute-boundedness, and that is simpler and more practical than
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reverse aggressive. The design of forestall to address these issues was described in

Chapter 2.

4.6.1 Implementation of forestall

As do the other algorithms, forestall requires modi�cations to account for di�erences

between the theoretical model and real systems. Requests need to be issued in batches

to reduce average disk access times. The ratio F of disk response time to interaccess

time is not constant and must be estimated. In our implementation, we estimate F by

tracking recent disk response times and compute times: F is dynamically computed

on a per-disk basis as the ratio between the sum of the most recent 100 disk access

times and the most recent 100 interreference CPU times.

Just as we needed the prefetch horizon H to be an overestimate of F for �xed

horizon to have adequate performance, forestall's performance depends on overesti-

mating F in certain situations as well. We denote by F

0

the overestimate of F used by

forestall. We evaluated forestall's performance with di�erent values of the parameter

F

0

. We found that the best choice of F

0

depended on the per-trace average disk access

times. For those traces for which the average disk access time was small, in the 3-4ms

range, it was best to take F

0

= F . For those traces for which the average disk access

time was larger, it was best to take F

0

= 4F . This is not hard to explain. Traces

with disk access times in the 3-4ms range must contain a great deal of sequential

access, so that most requests hit in the disk's readahead cache and are served by the

CSCAN scheduler in the order in which they are received. When this happens, it

is not necessary to prefetch aggressively. When the disk access times are large, the

access pattern is more complicated, and disk access times more varied. Forestall's

mechanism for deciding when to prefetch bene�ts from overestimating the potential

to stall. This smooths out the variations and avoids stalling due to the reordering

of requests by CSCAN. Our implementation of forestall adapts to the observed disk

access times, using the smaller value of F

0

= F if the average disk access times is

less than 5ms, and the larger value of F

0

= 4F for larger disk access times. Finally,

because of the reordering of requests by CSCAN, we found it necessary to add �xed

horizon's rule to issue a fetch whenever the cursor is within H requests of a missing

block. This avoids stalling on reordered requests in situations in which the iF

0

� d

i
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rule delays fetching until the cursor is very near the �rst missing block. A value of

F

0

= batchsize � F would eliminate this problem as well, so that the �rst hole is

fetched in time even in the worst case of reordering by CSCAN. However, this would

result in over-aggressive prefetching.

Rather than using complete lookahead information in our implementation of fore-

stall, we check the value of the expression iF �d

i

only for those missing blocks within

distance 2K of the cursor, where K is the cache size. We have not experimented with

di�erent values of this parameter, nor with variations of the history length 100 used

to track fetch times and application process compute times.

Forestall's dependence on batchsize is similar to aggressive's. We used for fore-

stall the batch sizes given in Table 4.1.

4.6.2 Performance of forestall

Figure 4.7 shows the performance of the three practical algorithms, �xed horizon, ag-

gressive, and forestall, on the synthetic trace and xds. Each group of bars represents
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Figure 4.7: Performance on the synth (left) and xds (right) traces.

the performance of the three algorithms �xed horizon, aggressive, and forestall, in left-

to-right order. Forestall behaves exactly as expected. In the I/O bound situations, it

prefetches aggressively enough to perform as well as or even better than aggressive.

In the CPU-bound situations, it becomes more conservative in its prefetching, and

has a lower driver overhead, matching the performance of �xed horizon.

Figures 4.8 and 4.9 show the performance of the three algorithms on the cscope2

and glimpse traces. Once again, forestall has the best performance of the three
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Figure 4.9: Performance on the glimpse trace.

practical algorithms. On all remaining traces, over all con�gurations, forestall's per-

formance was between 2% worse and 5.8% better than the better of aggressive and

�xed horizon in that con�guration. For the full data, see Appendix A.

Table 4.8 shows the utilization of the disks by forestall on the postgres-select

trace. Its utilization falls between those of aggressive and �xed horizon, as expected.

Moreover, in I/O-bound situations, it places a load on the disks similar to aggressive's;

in compute-bound situations, it places a lower load on the disks, similar to that of

�xed horizon.

Table 4.8: Utilization of disks by forestall on the postgres-select trace.

disks 1 2 3 4 5 6

util. .99 .92 .87 .81 .68 .63

disks 7 8 10 12 16

util. .62 .54 .39 .30 .22



Chapter 5

AN EXACT SOLUTION TO A RESTRICTED PROBLEM

Cao et al. [7] studied the problem of integrated prefetching and caching with a

single backing store. They left open the problem of �nding an optimal schedule in

time polynomial in both the input length and the cache size. We make partial progress

on this problem in this chapter. We present an algorithm that �nds a schedule with

zero stall time if one exists.

We allow an arbitrary subset of the set of blocks B (speci�ed as part of the input)

to be present in the cache initially. It is necessary that some subset of B is initially

present in the cache in order to avoid stalling completely; otherwise, the �rst request

would stall. However, it is not hard to show that if the cache is empty initially,

an optimal schedule can be obtained by fetching the �rst K distinct blocks in the

request sequence R during the �rst FK units of time. The algorithm given here will

then determine whether the remainder of the sequence can be served without any

additional stall time.

5.1 Identifying optimal intermediate states

Recall the four properties that can be assumed of any optimal strategy in the single-

disk case:

Optimal fetching: when fetching, always fetch the missing block that will be referenced

soonest;

Optimal eviction: when fetching, always evict the block in the cache whose next

reference is furthest in the future;

Do no harm: never evict block A to fetch block B when A's next reference is before

B's;

First opportunity: never evict A to fetch B when the same thing could have been

done one time unit earlier.
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Any schedule that does not follow these rules can be transformed into one that

does, with performance at least as good. The �rst two rules specify what to fetch and

what to evict, once a decision to fetch has been made. The last two rules constrain

the times at which a fetch can be initiated. Unfortunately, these rules do not specify

how to choose between an earlier prefetch with a correspondingly earlier eviction

and a later prefetch with a correspondingly later eviction. The former helps prevent

stalling on earlier holes, whereas the latter may help avoid the introduction of holes

due to superior eviction choices, and hence prevent stalling at a later time.

In the following, we describe an algorithm that determines whether a sequence

can be served with no stall time, given an initial cache state (i.e., a set of at most

K blocks initially contained in the cache). Notice that since we are looking for a

schedule to serve the sequence with no stall time, as we construct a schedule we may

assume that the time index and the cursor position are the same. Thus the state of

an intermediate point in a schedule is completely determined by the cursor position,

the set of blocks contained in the cache, the block currently being fetched (if any),

and the number of steps (from 0 to F � 1) remaining until the fetch completes. Let

n = jRj. We denote by C

i;f

the set of states that can be reached after i steps without

stalling such that there are f steps remaining until the current fetch completes, where

0 � f � F � 1 and 0 � i � n. C

0;0

contains exactly one state: the cache contains

whichever set of blocks is speci�ed by the input, and there is no fetch in progress

initially. C

0;f

is empty for 1 � f � F � 1. The sequence can be served without

stalling if and only if C

n;0

6= ;.

Recall the notion of domination.

De�nition: Given two sets A and B of holes, A is said to dominate B if for all

i, 1 � i � jAj, the index of A's i

th

hole (ordered by increasing index) is no less than

the index of B's i

th

hole. Notice that domination is transitive.

De�nition: If the set A of holes in state c

A

dominates the set B of holes in state

c

B

, and the cursor position of state c

A

is at least as great as that of c

B

, and the

number of steps remaining on the current fetch of c

A

(if any) is no greater than that

of c

B

, then we will say that c

A

is at least as good as c

B

.

Notice that, like domination, this relation is transitive. It is not hard to show

that given two states c

A

and c

B

, if c

A

is at least as good as c

B

and there is a schedule
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that completes the sequence in time t starting from state c

B

, then there is a schedule

that completes the sequence in time at most t starting from state c

A

.

Theorem 18 For every (i; f), where 0 � f � F � 1 and 0 � i � n, either C

i;f

is

empty, or contains a nonempty subset C

�

i;f

such that any state c

�

i;f

2 C

�

i;f

is at least

as good as any state c

i;f

2 C

i;f

.

For every c

i;f

, if there is a schedule that passes through c

i;f

and does not stall,

then there is a schedule that passes through any c

�

i;f

2 C

�

i;f

and does not stall. Thus

we can restrict our attention to �nding in polynomial time a unique representative

c

�

i;f

2 C

�

i;f

for each pair (i; f), if one exists. The following proof of theorem 18 outlines

such an algorithm.

Proof: We prove the existence of a unique polynomial time computable c

�

i;f

by

induction on i. The basis, i = 0, is trivial. For the induction (0 < i � n), we consider

three cases.

First, consider the case 0 < f < F � 1. By the induction hypothesis, either

C

i�1;f+1

= ; or we can �nd some c

�

i�1;f+1

. If the former, then C

i;f

= ;; i.e., if there is

no nonstalling schedule that reaches cursor position i� 1 with f + 1 steps remaining

on a fetch, then there is no nonstalling schedule that reaches cursor position i with f

steps remaining on a fetch. If the latter, then C

i;f

may still be empty; this is the case

if c

�

i�1;f+1

leads to a stall at step i because r

i�1

is missing from the cache. Otherwise,

we can take c

�

i;f

to be the same state as c

�

i�1;f+1

with the cursor advanced by one

position and one fewer step remaining until the fetch completes, since every schedule

that passes through c

�

i�1;f+1

must pass through this state.

Next, consider the case f = F � 1. If C

i�1;0

= ;, then C

i;F�1

= ;. If C

i�1;0

6= ;,

then C

i;F�1

may be nonempty. As in the previous case, c

�

i�1;0

may lead to a stall at

step i. Otherwise, by the optimal prefetching rules described previously, c

�

i;F�1

can be

taken to be the state that results from evicting the block not needed for the longest

time among all blocks in the cache when the state is c

�

i�1;0

and initiating a prefetch

for the �rst missing block.

Finally, consider the case f = 0. There are two ways to reach a state in C

i;0

. The

previous state may be in C

i�1;0

or C

i�1;1

. If C

i�1;0

and C

i�1;1

are both empty, then

so is C

i;0

. If either c

�

i�1;0

or c

�

i�1;1

exists but leads to a stall at step i and the other
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does not exist, or both exist but lead to a stall at step i, again C

i;0

is empty. If only

one exists and does not lead to a stall at step i, c

�

i;0

is easily identi�ed similarly to

the previous cases. Finally, if both C

i�1;0

and C

i�1;1

are nonempty and neither c

�

i�1;0

nor c

�

i�1;1

leads to a stall at step i, we may take c

�

i;0

to be the successor of c

�

i�1;1

. To

see this, consider the two sequences of states

c

�

i�F�1;0

! c

�

i�F;F�1

! � � � ! c

�

i�1;0

! c

i;0

and

c

�

i�F�1;0

! c

0

i�F;0

! c

0

i�F+1;F�1

� � � ! c

0

i�1;1

! c

0

i;0

:

Notice that at time i� F , the set of eviction choices available in state c

0

i�F;0

includes

all those available at time i� F � 1 in state c

�

i�F�1;0

, plus one more, possibly better

choice: the block referenced at time i � F � 1. The set of holes resulting from the

eviction at time i� F dominates that resulting from the eviction at time i� F � 1,

by the Domination Lemma of [7]. Thus c

0

i;0

is at least as good as c

i;0

. By choosing

the successor of c

�

i�1;1

for c

�

i;0

, we obtain a state at least as good as c

0

i;0

, which is at

least as good as c

i;0

. (c

�

i;0

may actually be di�erent from and possibly better than c

0

i;0

,

since it may be reached by a path through c

�

i�F�1;1

rather than c

�

i�F�1;0

. The alert

reader may notice that this choice may lead to a schedule which violates the rule �rst

opportunity. The schedule can be transformed easily into one that does not violate

the rule.) 2

5.2 The algorithm

The preceding inductive proof implicitly de�nes a directed graph G on the set of

vertices f(i; f)j0 � f � F � 1; 0 � i � ng. Each node represents a state c

�

i;f

that

is reachable without stalling. Each edge represents a single state transition (i.e., the

changes that occur during one time unit) in a set of schedules that do not stall (one for

each path that starts at (0; 0) and passes through the edge). If the state represented

by a node (i; f) leads to a stall at step i+ 1, there are no edges out of the node.

The graph and the state associated with each node are computed easily from the

request sequence and the initial cache contents, using the optimal prefetching rules

to determine cache content changes. A zero-stall schedule exists if and only if there
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is a path from (0; 0) to (n; 0). A zero-stall schedule is easily computed from such a

path.

The algorithm can be implemented in time O(jBj+ jRj logK + F jRj) as follows.

We consider the nodes of the graph G to be arranged in jRj + 1 columns, each

corresponding to a time index (or cursor position) and containing F nodes. Each

position in a column corresponds to a number between 0 and F �1 of steps remaining

until a fetch completes. G can be constructed one column at a time in a single forward

pass over the request sequence. Only F di�erent cache states need be maintained.

Moreover, in constructing column i+1 from column i, only one of the F states requires

a nontrivial change: the one which results from initiating a fetch at time i. The data

structures required to maintain the state information were described in Section 3.3.

A similar analysis to that of Section 3.3 yields the stated bound. The term jRj logK

comes from the (at most) one nontrivial cache state change per column. The term

F jRj reects the fact that F di�erent NextHole pointers need to be maintained.

Searching for a path (and schedule) once G is constructed requires time O(F jRj) as

well, for instance, by depth-�rst search.

The algorithm is easily extended by a brute force approach to determine whether a

sequence can be served with stall time c or less for any constant c, with a multiplicative

increase in running time of O(jRj

c

). This is done by inserting c dummy requests into

the request sequence, one for each unit of stall time. There are O(n

c

) ways to insert

c dummy requests in a sequence of length n.



Chapter 6

INTEGRATING PREFETCHING WITH PROCESSOR

AND DISK SCHEDULING

Integrated prefetching and caching policies, augmented by mechanisms to allo-

cate cache space among multiple processes, have been shown empirically to improve

the performance of multi-programmed workloads [8, 36, 43]. These studies used

standard multi-programming scheduling mechanisms to arbitrate the processes' com-

peting prefetch requests and processing demands. The goal was to improve average

I/O response time, leaving the scheduling policies unchanged.

A natural question arises: can performance improve further if we assume that

not only are prefetching and caching decisions under the control of a single manager,

but that the scheduling of I/O resources (i.e., the order in which di�erent processes'

prefetch requests are served) and processing resources (the order in which the pro-

cesses' computations are executed) are integrated into the policy as well? In this

chapter, we consider the problem of minimizing the total elapsed time of a set of

independent I/O-intensive processes. In scheduling terminology, this is referred to as

minimizing the makespan, or maximizing system throughput.

Consider the following example. Suppose each of two processes, P and Q, start

at time 0 and request data from a single disk in a cyclic fashion. For simplicity,

suppose each process uses a data �le that consists of only two blocks. Thus, process

P issues the request sequence p

1

; p

2

; p

1

; p

2

; : : : and Q issues the request sequence

q

1

; q

2

; q

1

; q

2

; : : :. Suppose further that F units of time are required to fetch a block

of data into the cache, and that it takes 1 unit of time to serve each request (i.e.,

each process computes for 1 unit of time after each request for a block of data).

The requested block must be present in the cache for the computation to proceed, of

course.

Suppose P 's and Q's data blocks are brought into the cache alternately, say in the

order p

1

; q

1

; p

2

; q

2

; these fetches complete at times F , 2F , 3F , and 4F , respectively.
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Until P 's last block of data is available at time 3F , only 2 units of work can be

completed by the CPU. P is able to complete one unit of work (on block p

1

at time

F + 1) and Q completes one unit of work (on block q

1

at time 2F + 1). Finally at

time 3F , P 's entire data set is resident in the cache and it can run unhindered by

I/O stalls. The same happens for Q at time 4F .

If instead we favor one of the processes, say P , by devoting resources to it ex-

clusively, we reach a state sooner in which the processor can be fully utilized. If the

blocks are fetched in the order p

1

; p

2

; q

1

; q

2

, P can run without stalling on I/O starting

at time 2F . Q's full data set still becomes resident at time 4F .

A simpli�ed version of this integrated scheduling problem reduces to the following

combinatorial problem. (The reduction is outlined in Section 6.3; full details are given

in Section 6.7.) Imagine that you are given a set of several independent streams

of transactions (drafts and deposits) on a checking account that is backed by an

unlimited savings account. Any time the checking account is overdrawn, the overdraft

must be covered from savings. Your goal is to produce an ordering of the transactions

that

1. respects the orders of the individual streams, and

2. minimizes the amount that has to be transferred from savings to cover overdrafts

in the checking account.

In Section 6.6, we present a simple and e�cient algorithm that �nds an exact solution.

The algorithm requires O(n logm) arithmetic operations, where n is the total number

of transactions in all of the m sequences. An algorithm that solves this problem and

has the same running time was given by Abdel-Wahab and Kameda [1]. However, as

described in Section 6.4, the algorithm given here is somewhat better suited to the

integrated scheduling problem.

6.1 Motivation and background

Suppose multiple processes share a cache backed by a storage device, and that the

system has advance knowledge of the processes' sequences of requests for items resid-

ing on the backing store. Suppose there are no constraints regarding the interleaved
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servicing of the requests of the di�erent processes, other than that the requests of an

individual process must be served in order. The goal is to minimize the completion

time of the last process to �nish.

As we have seen, the problem described above appears to be a di�cult one to

solve exactly, even in the case of a single process and a single storage device. To make

the multiple-process problem tractable, we restrict our attention to the single-disk

case. We further simplify the problem by ignoring the question of eviction choices.

Although this seems unrealistic, the forestall algorithm described in Section 2.4.5

determines whether to prefetch based only on its estimate of the likelihood of a stall

given its current cache state. The algorithm does not weigh this likelihood against the

bene�ts of waiting to prefetch to make a better eviction decision, and thus possibly

avoid stalling at a later point in the schedule. We have seen in the experiments

of Chapter 4 that this algorithm performs at least as well as an algorithm that is

provably near-optimal in a simpli�ed model of a prefetching and caching �le system.

This suggests that in practice, it is not necessary to solve the di�cult problem of

determining exactly when each prefetch should occur based on an optimal or near-

optimal sequence of eviction choices. It is su�cient to prefetch whenever a stall is

imminent given the current cache contents, and to delay prefetching if the cache

contains the blocks needed in the near future so that no stall is imminent.

Thus, in the more di�cult multiple process case, the algorithm given here may

well lead to a practical prefetch scheduler when combined with the forestall algorithm.

This is despite the fact that it is designed without considering the e�ects of cache

evictions, as will become clear in Section 6.2. A simple modi�cation of forestall,

which takes into account all m processes' request sequences and the holes in them,

can determine on a global basis whether prefetching is needed to keep the processor

busy. Recall forestall's inequality d

i

� iF which determines when prefetching is

needed to avoid a stall, where d

i

denotes the distance from the cursor to the i

th

hole

in the (single) request sequence, and F is the fetch time. Prefetching is needed if this

inequality is true for any i and the do no harm rule allows it.

For m request sequences, prefetching is needed if

m

X

j=1

min

i

(d

j;i

� iF ) � 0
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where d

j;i

denotes the distance from the j

th

sequence's cursor to the i

th

hole in the

j

th

sequence; otherwise, there are enough blocks in the cache that are needed in the

near future for at least one cursor to continue advancing. The algorithm given in this

chapter can determine an order in which to prefetch the multiple processes' blocks,

once the decision to prefetch has been made.

Notice that we have not completely speci�ed an algorithm for the integration of

all the resource scheduling problems considered. In particular, we have not speci�ed

a mechanism for choosing which cursor to advance (i.e., which process to run) in the

event that more than one process has its next request available in the cache. In the

special case in which no cache evictions are necessary, an arbitrary choice can be

made, and the solution produced by the algorithm of this chapter is still optimal. In

the general case, this choice a�ects the possibilities for evictions. Moreover, evictions

change the set of holes, which is the input to our algorithm that determines the order

in which to �ll them. We have two problems that interact in a complex way. Given

an interleaving of the multiple request sequences into a single sequence, we can use

forestall or one of the other algorithms analyzed in previous chapters to determine

a good schedule for prefetching and caching. Such a schedule �xes a complete list

of holes (partially determined by its eviction choices) that must be �lled over the

full lifetimes of all the request sequences. Given such a complete list of holes, the

algorithm of this chapter determines an ordering in which to �ll them and a partial

ordering of the requests; any interleaving of the requests that is consistent with the

partial ordering is optimal. Which of these problems is the chicken and which is the

egg?

One possible solution to this dilemma is to alternately run a prefetching and

caching algorithm and the interleaving algorithm of this chapter. Interesting open

questions are whether this process will converge, and if so, the quality of the schedule

produced.

Another, more practical, possibility is to use forestall as described above, along

with a mechanism such as the LRU-SP policy of Cao et al. or the cost-bene�t policy

of Patterson et al. to determine a victim process to give up a block for eviction each

time a block is prefetched; the optimal eviction rule will determine which of that

process' blocks to replace. The interleaving algorithm proposed in this chapter could

be used to schedule prefetch operations (and partially constrain cursor movements)
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incrementally in batches of requests for K distinct blocks (in all sequences together).

We have noted in Chapter 3 that it is never necessary to create a new hole among the

next K distinct blocks to be served, so that for batches of this size, the assumption

of no cache evictions is valid. We will also need a mechanism for determining how

many of the K blocks in a batch are devoted to each process.

6.2 Formal problem statement

The general problem (including cache evictions) is formalized as follows:

� Let B = B

1

[ : : : [B

m

be a collection of disjoint sets of blocks residing on the

backing store.

� A reference sequence, or request sequence, is an ordered sequence of references

R

k

= r

k

1

; r

k

2

; : : : r

k

jR

k

j

, where each r

k

i

2 B

k

.

� There are m separate reference sequences R

1

; : : : ; R

m

.

� There is a cache of size K that contains at most K blocks in B at any time.

� Fetching a block from a disk into the cache takes F time units.

The references in each sequence R

k

must be served in order. A single reference

can be served in one unit of time. However, for a reference to be served, it must be

in the cache. We imagine that for each reference sequence there is a cursor that at

any time points to the next request to be served. If this request is for a block that is

in the cache, the cursor can be advanced by one request during the next time unit. If

several cursors point to blocks that are present in the cache, one and only one of them

can be advanced in a single time unit. If all requests pointed to by the cursors are

for blocks that are not in the cache, processing stalls until one of the missing blocks

arrives in the cache (i.e., until the fetch for that block completes). Note that, to the

extent that the cursors are advancing, prefetches can overlap the serving of requests.

There are two constraints on the prefetches performed:
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1. If a fetch of block b is initiated at time t and the cache contains K blocks at

that time, some block b

0

in the cache must be evicted to make room for the

incoming block. Neither the fetched block b nor the evicted block b

0

is available

during the F time units between t and t+ F in which the fetch occurs.

2. The fetches are sequential: If a fetch is initiated for a block at time t, no other

fetch can be initiated until time t

0

� t+ F .

The goal of a multi-process prefetching and caching algorithm is to construct, on

input request sequences fR

k

g, a schedule for prefetching and serving requests that

minimizes the elapsed time required to serve all of the R

k

; this elapsed time is equal

to

P

m

k=1

jR

k

j plus the total stall time.

The schedule speci�es

� which blocks to fetch,

� when to fetch them,

� which cache blocks to evict, and

� when to service each request.

We solve this problem for the special case of an unbounded cache; that is, we

assume cache evictions are never necessary. However, for reasons described in the

previous section, we believe that this algorithm is nonetheless practical. We will thus

be concerned only with the order in which to fetch blocks into the cache, and not

which blocks to evict. The algorithm presented here will work no matter what set of

blocks is contained in the cache initially.

At any time during the processing of the requests, for each request sequence

there is some distance from the cursor to the �rst hole in that sequence. We refer

to the requests at or following the cursor and preceding the �rst hole as uncovered.

Uncovered requests can be thought of as work available to the processor; if a total of

U requests are uncovered in all sequences, then the cursors can be advanced a total

of U times before all cursors reach holes and a stall may be incurred. Clearly, an
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optimal prefetching algorithm can be assumed to always �ll the �rst hole (fetch the

�rst missing block) in some request stream. Since we assume the cache is in�nite, it

never pays to wait and leave the storage device idle before initiating a prefetch; this

would help only to make a better eviction decision if the cache were bounded. Thus

we assume that a fetch is initiated at time 0, and every F time units thereafter, until

the last hole is �lled.

6.3 A reduction

As mentioned previously, to minimize the overall completion time, we can focus on

minimizing the total stall time, i.e., the number of time steps during which no request

is served (because all cursors are blocked by holes and no request can be served until

the current fetch completes). If �lling a hole in some sequence uncovers F requests

(including the hole and all requests up to but not including the next hole in the

sequence), the schedule \breaks even" in terms of uncovered requests, since it takes F

steps to �ll the hole, and F uncovered requests for blocks already present in the cache

can be served concurrently. Any greater number represents a net gain of uncovered

requests from the time at which the fetch is initiated until it completes; fewer than

F requests uncovered will decrease the amount of work available to the processor,

and increase the chance of a stall. If there are U < F uncovered requests at some

time iF (i.e. the i

th

fetch has just completed), then only the U uncovered requests

can be served before the next fetch completes at time (i+1)F and more requests are

uncovered; F � U steps will be spent stalling.

We thus consider each request sequence to be simply a sequence of numbers. Cor-

responding to a request sequence containing u

1

uncovered requests, followed by a

hole, then u

2

� 1 cached blocks and then another hole, etc., we have the sequence

u

1

;�F; u

2

;�F; : : :. Intuitively, it costs F steps to �ll a hole; this cost must be paid

before the bene�t (that of being able to serve the requests uncovered) can be reaped.

The problem reduces to the following problem: We are given a set of several inde-

pendent streams of transactions (drafts and deposits) on a checking account, which

is backed by a savings account. Whenever the checking account is overdrawn, the

de�cit must be made up out of savings. We need to interleave the transactions in an

order respecting the orders of the individual streams and minimizing the amount that
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has to be transferred from savings to cover overdrafts in the checking account. (Each

time a dollar is moved from savings into checking to cover a check, one unit of stall

time is incurred.) We will give a more formal description of this reduction in Section

6.7; �rst, we introduce some notation and derive a solution to the new problem.

6.4 Reduced problem statement

De�nition: Given a sequence w = w

1

: : : w

n

of real numbers, the depth D(w) of w is

min

0�i�n

i

X

j=1

w

j

and the net N(w) of w is

n

X

i=1

w

i

:

We denote the net N(w

1

: : : w

i

) of a pre�x w

1

: : : w

i

of w by N(w; i) and similarly

denote the depth of a pre�x; we will also speak of the \depth of w at index i" or

the \net of w at index i" when the meaning is clear. Notice that in comparing two

sequences, the sequence whose depth is a greater number is the shallower of the two,

since a sequence's depth is a non-positive number.

Given a set W = fw

k

= w

k

1

: : : w

k

n

k

: 1 � k � mg of m sequences of numbers, an

interleaving I of W is a sequence I

1

: : : I

n

, where n =

P

m

k=1

n

k

, such that there is a

one-to-one map M from

f(k; i) : 1 � k � m; 1 � i � n

k

g

to [1::n] such that

1. for all 1 � k � m, for all 1 � i

1

< i

2

� n

k

, M(k; i

1

) < M(k; i

2

), and

2. for all 1 � k � m, for all 1 � i � n

k

, I

M(k;i)

= w

k

i

.

For a sequence w = w

1

: : : w

n

, let B(w) and R(w) denote the shortest non-empty

pre�x (if it exists) of w that sums to a non-negative value and the remaining su�x,

respectively; that is, B(w) = w

1

: : : w

l

and R(w) = w

l+1

: : : w

n

, where

l = min

1�i�n

fi : N(w; i) � 0g
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if fi : N(w

1

: : : w

i

) � 0 & 1 � i � ng 6= ;.

Lemma 19 Any su�x w

i

: : : w

jB(w)j

of B(w) sums to a non-negative value.

Proof: Since B(w) is the shortest non-empty pre�x of w with a non-negative net,

N(w; i � 1) � 0, with equality holding only in the case i = 1. (For any i, we take

w

i

: : : w

i�1

to be the empty sequence.) 2

De�nition: Let I(W ) denote the set of all interleavings of W . We seek an

interleaving I such that D(I) is maximum. Let I

�

(W ) denote the set of optimal

interleavings; that is,

I

�

(W ) = fI 2 I(W ) : D(I) = D

�

(W )g

where

D

�

(W ) = max

I2I(W )

D(I):

An algorithm that solves this problem and is very similar to the one described here,

with the same running time, was given by Abdel-Wahab and Kameda [1]. However,

their algorithm is fully o�ine; that is, it considers its entire input before producing

any of its output. The algorithm given here constructs its solution incrementally, at

least until it reaches a point at which it can not avoid \going into the hole," i.e.,

scheduling prefetches that uncover fewer than F requests. This makes the algorithm

more suited to the multiple-process prefetching and caching problem. While the

processor is not stalling (i.e., there are requests uncovered), it is desirable to avoid

scheduling overhead. Once the processor begins to stall, scheduling overhead is less

costly, or even free if it is entirely overlapped with I/O (which is likely).

6.5 Solving the reduced problem

The algorithm to �nd a \shallowest" interleaving is the following: consider each of

the input sequences, and choose that one (call it w) with the shallowest pre�x B(w),

i.e., choose w so that jD(B(w))j is minimum. Output B(w), replace w by the su�x

R(w) that remains after removing B(w), and repeat. The algorithm runs into trouble,

however, if none of the input sequences has a nonempty pre�x with a nonnegative sum.
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In this case, a dual construction allows the processing of the remaining sequences by

considering su�xes with nonpositive sums. This will be discussed later.

Lemma 20 (Shallowest �rst) Let W be a set of sequences, and suppose that

B(w

k

) exists and that for each k

0

6= k, either B(w

k

0

) does not exist or D(B(w

k

)) �

D(B(w

k

0

)). Let l = jB(w

k

)j. Then there is some interleaving I 2 I

�

(W ) such that

M(k; i) = i for all 1 � i � l, where M is the map associated with I.

Proof: We �rst show that for every interleaving I 2 I(W ), D(I) � D(B(w

k

)).

Let I be an interleaving of W , given by map M . Let k

0

be the index of the sequence

w

k

0

such that B(w

k

0

) \�nishes �rst" in I, i.e. M(k

0

; jB(w

k

0

)j) < M(k

00

; jB(w

k

00

)j)

for all k

00

6= k

0

such that B(w

k

00

) exists. Since each w

k

00

, k

00

6= k

0

, contributes a

non-positive sum to

D(I;M(k

0

; jB(w

k

0

)j) = min

0�i�M(k

0

;jB(w

k

0

)j)

i

X

j=1

I

j

(whether B(w

k

00

) exists or not), we have

D(I) � min

0�i�jB(w

k

0

)j

i

X

j=1

w

k

0

j

= D(B(w

k

0

)):

Since D(B(w

k

)) � D(B(w

k

0

), the claim follows.

Next, we show that any interleaving I, given by map M , that doesn't satisfy

the claim of the lemma can be transformed into an interleaving I

0

(given by a map

M

0

) that does, with D(I

0

) � D(I). I

0

is obtained from I by \moving up" the

entries in B(w

k

) to the beginning of the interleaving, without changing the respective

orderings among the entries of R(w

k

) and the sequences other than w

k

. For i � l,

let M

0

(k; i) = i and for i > l, let M

0

(k; i) = M(k; i). For each (k

0

; i

0

) such that

k

0

6= k, let M

0

(k

0

; i

0

) = M(k

0

; i

0

) + jfi � l : M(k; i) > M(k

0

; i

0

)gj. By the preceding

argument, the net value N(I

0

;M

0

(k; i)) = N(I

0

; i) for each 1 � i � l is at least as

great as the depth D(I) of the original interleaving. For each k

0

6= k, each entry w

k

0

i

0

has a (possibly empty) su�x of B(w

k

) moved ahead of it in I

0

. By Lemma 19, that

su�x has a non-negative net, so that N(I

0

1

: : : I

0

M

0

(k

0

;i

0

)

) � N(I

1

: : : I

M(k

0

;i

0

)

). Thus the

overall depth of I

0

is no smaller than that of I, since at each index of I

0

there is an

index of I with net value at least as small. 2
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To apply this lemma to the interleaving problem, it is necessary that at least one of

the sequences to be interleaved has a non-empty pre�x with a non-negative net. When

this fails, we use a dual notion. Notice that for a sequence w = w

1

: : : w

i

w

i+1

: : : w

n

,

N(w

1

: : : w

i

) = N(w)�N(w

i+1

: : : w

n

). Thus maximizing the minimum pre�x sum (of

an interleaving) is equivalent to minimizing the maximum su�x sum. This motivates

the following:

De�nition: For sequence w = w

1

: : : w

n

, let B

0

(w) and R

0

(w) denote the shortest

non-empty su�x (if it exists) of w that sums to a non-positive value and the remaining

pre�x, respectively; that is, B

0

(w) = w

l+1

: : : w

n

and R

0

(w) = w

1

: : : w

l

, where

l + 1 = max

1�i�n

fi : N(w

i

: : : w

n

) � 0g

if fi : N(w

i

: : : w

n

) � 0 & 1 � i � ng 6= ;. The height H(w) of any sequence

w = w

1

: : : w

n

is

max

0�i�n

n

X

j=i+1

w

j

:

A dual argument to Lemma 20 yields the following:

Lemma 21 (Lowest last) Let W be a set of sequences, and suppose that B

0

(w

k

)

exists and that for each k

0

6= k, either B

0

(w

k

0

) does not exist or H(B

0

(w

k

)) �

H(B

0

(w

k

0

)). Let l = jR

0

(w

k

)j. Then there is some interleaving I 2 I

�

(W ) such

that M(k; i) = (

P

m

j=1

n

j

) � n

k

+ i for all l + 1 � i � n

k

, where M is the map

associated with I.

6.6 The algorithm

Notice that, since every non-empty w is both a non-empty pre�x and a non-empty

su�x of itself, for every non-empty w either B(w) or B

0

(w) exists. Notice also that if

B(w) does not exist, then removing the su�x B

0

(w) from w will not change this; i.e.

B(R

0

(w)) does not exist. These observations, along with Lemmas 20 and 21, imply

that an optimal interleaving of W is obtained by the following algorithm:

Repeat until for each k, 1 � k � m, either w

k

is empty or B(w

k

) does not exist:
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Let k satisfy D(B(w

k

)) � D(B(w

k

0

)) for all k

0

such that B(w

k

0

) exists.

Output B(w

k

) and replace w

k

with R(w

k

).

Initialize a stack S to the empty stack.

Repeat until for each k, 1 � k � m, w

k

is empty:

Let k satisfy H(B

0

(w

k

)) � H(B

0

(w

k

0

)) for all k

0

such that w

k

0

is not empty.

Push B

0

(w

k

) on S (in reverse order) and replace w

k

with R

0

(w

k

).

While S is not empty output pop(S).

A straightforward modi�cation of the algorithm outputs the mapM by which the

interleaving is obtained from the input set W . The algorithm can be implemented

to use O(n logm) operations (comparisons, additions, and assignments), where n is

the sum of the lengths of the input sequences (and equal to the length of the output

sequence), and m is the number of input sequences. This is achieved even in the case

that each B(w

k

) and B

0

(w

k

) is short (length bounded by a constant). A linear scan

of each B(w

k

) can determine its length and depth (if it exists; if not, a linear scan of

all of w

k

determines this, and w

k

need not be considered again until the second loop

is entered.) These records can be stored in a priority queue keyed on the depth. On

each iteration of the �rst loop, a delete maximum operation determines which B(w

k

)

to output, and which w

k

to examine to insert (a description of) the new B(w

k

) into

the queue. The second loop can be handled similarly. Producing the output has

a total cost of O(n). Thus, the most expensive operations are the O(n) insert and

delete maximum (or minimum) operations on the priority queue, each with a cost of

O(logm) (see, for example, [3]).

Thus we have the following.

Theorem 22 The above algorithm �nds an optimal interleaving of the m se-

quences W = fw

k

= w

k

1

: : : w

k

n

k

: 1 � k � mg in time O(n logm) in the unit cost

RAM model.

6.7 Formalizing the reduction

We return now to the reduction of the prefetching and scheduling problem to the

checking and savings account problem. Lemma 20 allows us to assume that the
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initial non-negative entries of allm sequences (i.e., the numbers of initially uncovered

requests) occur �rst in the interleaving (in an arbitrary order; say in the same order

as that in which the input sequences occur). Lemma 20 also allows us to assume

that each subsequent pair (�F; u

j

i

) corresponding to the i

th

hole in the j

th

request

sequence occurs consecutively in an interleaving I, since the single positive value

u

j

i

is a zero-depth pre�x. It is thus easy to determine a prefetching schedule that

corresponds naturally to an interleaving I with associated mapM , such that I

m+2i

is

the number of requests uncovered by the i

th

fetch; for each prefetching schedule there

is a unique such corresponding map specifying an interleaving. In the following, we

assume that an interleaving I is known and has been used to determine a prefetching

schedule. We claim that jD(I)j is the total stall time of the prefetching schedule.

One direction (the lower bound on total stall time) is easy: since a total of

N(I;m + 2i) + iF requests are uncovered (initially and by prefetch operations)

before time (i + 1)F , at most N(I;m + 2i) + iF requests can be served by time

(i + 1)F . Thus, the stall time accumulated up to time (i + 1)F is at least

max(0; (i+1)F�(iF+N(I;m+2i))) = max(0; F�N(I;m+2i)). Unlessm+2i = jIj,

we have that I

m+2i+1

= �F , so that the stall time is at least max(0;�N(I;m+2i+1)).

Taking the minimum value over i of N(I;m+ 2i+ 1) (and noting that the minimum

net is achieved at such an index since I

m+2i

is positive for each i) yields the lower

bound.

We now show that this bound on the stall time can be met. We show by induction

on i that at time iF ,

1. the number of requests left uncovered and available for servicing between times

iF and (i+ 1)F is N(I;m + 2i)�D(I;m+ 2i), and

2. the accumulated stall time is jD(I;m+ 2i)j.

The basis (i = 0) is trivial. For the induction, assume the hypothesis is true for i.

Case 1: D(I;m + 2i + 2) = D(I;m + 2i). In this case, N(I;m + 2i + 1) �

D(I;m + 2i) so that N(I;m + 2i) �D(I;m + 2i) � F , since I

m+2i+1

= �F . Thus,

by the induction hypothesis, there are at least F requests uncovered at time iF ,

and no further stalling is incurred between times iF and (i + 1)F . F requests are
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served between times iF and (i + 1)F , the accumulated stall time is (unchanged)

jD(I;m + 2i)j = jD(I;m + 2i + 2)j, and the number of requests left uncovered is

N(I;m+ 2i)�D(I;m+ 2i)� F + I

m+2i+2

= N(I;m+ 2i+ 2)�D(I;m+ 2i+ 2) as

needed.

Case 2: D(I;m+2i+2) < D(I;m+2i). In this case, N(I;m+2i)�D(I;m+2i) <

F , and the number of additional stall steps incurred is F � (N(I;m+2i)�D(I;m+

2i)) = D(I;m+2i)�N(I;m+2i+1) = D(I;m+2i)�D(I;m+2i+2) so that the

total is jD(I;m+2i+2)j. The number of requests left uncovered at time (i+ 1)F is

I

m+2i+2

= N(I;m+2i+2)�N(I;m+2i+1) = N(I;m+2i+2)�D(I;m+2i+2)

as needed.



Chapter 7

HARDNESS OF ORDERING REQUEST SEQUENCES

TO MINIMIZE CACHE MISSES

In this chapter, we consider a generalization of the classic paging problem raised

by Philbin et al. [37]. Suppose we are given m distinct sequences of references, and

must process the sequences in succession. That is, each sequence must be served in

its entirety before serving another sequence. However, the ordering of the individual

sequences is arbitrary. We show that minimizing the number of cache misses is NP-

hard for direct-mapped, set-associative, and fully-associative caches.

7.1 Thread scheduling for improved locality

Philbin et al. describe the use of independent threads of control for increasing a

program's locality of reference. The threads are scheduled at run-time, allowing the

use of information that is not available, such as the values of pointers, at compile-time

in order to apply optimizations that improve cache performance. Even though there

is a run-time cost, they demonstrate that this technique can improve performance

for some applications by reducing the number of processor cache misses. Philbin et

al. use a clever heuristic to cluster threads based on the addresses of the data they

reference. The addresses are passed to the thread scheduler at run-time as threads

are created.

7.2 Hardness of the thread scheduling problem

We formalize the thread scheduling problem as follows. Let B denote a set of blocks

that reside on a backing store. A reference sequence, or request sequence, is an ordered

sequence of references R

i

= r

i

1

; r

i

2

; : : : r

i

jR

i

j

, where each r

i

j

2 B. There are m separate

reference sequences R

1

; : : : ; R

m

. There is a cache of size K that contains at most
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K blocks in B at any time. As mentioned, the references in each sequence R

i

must

be served in order and consecutively, but there is no restriction on the ordering

of the sequences. A block must be present in the cache when a reference to it is

served. The goal is to construct, on input request sequences fR

i

g, an ordering of the

sequences such that the number of cache misses is minimized. (The number of misses

is easily determined using Belady's algorithm [4] for an associative cache, and by an

even simpler method for a direct-mapped cache, once the individual sequences are

ordered).

We reduce the Directed Hamiltonian Path problem to the sequence ordering prob-

lem. This problem remains NP-complete for graphs in which no vertex is incident

to more than three edges [14]. A simple transformation allows us to assume that no

vertex has outdegree or indegree greater than two. This will allow us to take the

cache size to be a constant (K � 4 is enough) rather than to depend on the input

size. The transformation is as follows: replace any vertex v with outdegree three and

neighbors w

1

, w

2

, and w

3

by a directed cycle on new vertices v

1

, v

2

and v

3

plus the

edges (v

1

; w

1

), (v

2

; w

2

) and (v

3

; w

3

). v must have indegree zero and must hence be

the �rst vertex on any Hamiltonian path in the original graph. In the new graph,

any Hamiltonian path must �rst traverse two of the three edges on the cycle, then

exit the cycle to visit w

1

, w

2

, or w

3

. Thus every Hamiltonian path in the new graph

corresponds to a Hamiltonian path in the original graph. Vertices of indegree three

are handled similarly.

First we prove that the sequence ordering problem is NP-hard for a direct-mapped

cache. We will refer to the cache location to which a block is mapped as the color of

the block. The colors used are 0, 1, 2, and 3, corresponding to the (�rst) four cache

locations. Let G = (V;E) be a directed graph with the speci�ed degree restrictions.

We de�ne a set of blocks B that contains one block b

i;j

corresponding to each directed

edge (v

i

; v

j

) 2 E. Let each vertex arbitrarily assign di�erent colors to each of its (at

most two) in-edges from the colors 0 and 1, and to each of its (at most two) out-edges

from the colors 0 and 2. Let the sum of the colors assigned by an edge's two incident

vertices be the color of the edge. Each edge's color is assigned to the corresponding

block, and thus determines to which cache location the block maps. It is easy to see

that no two edges into or out of the same vertex have the same color, so that the

corresponding blocks will not conict (map to the same cache location). In addition
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to the blocks corresponding to the edges of G, for each vertex v

i

2 V , B contains

four \private blocks" p

i;0

: : : p

i;3

, where p

i;j

is colored j.

For each vertex v

i

2 V , we construct a request sequence R

i

. R

i

begins with

an initial subsequence consisting of one request for each block b

j;i

corresponding to

an edge into v

i

(in either order, if there are two). These are followed by a middle

subsequence p

i;0

p

i;1

p

i;2

p

i;3

. Finally, R

i

contains a �nal subsequence consisting of one

request for each block b

i;j

corresponding to an edge out of v

i

(in either order, if there

are two).

Each sequence R

i

will su�er 4 misses to bring its private blocks into the cache.

It is easy to see that during the servicing of each R

i

, R

i

's private blocks will ush

any shared blocks from the cache. Thus, each R

i

will also su�er outdegree(v

i

) misses

to bring its �nal subsequence (corresponding to the out-edges of v

i

) into the cache.

These blocks will remain in the cache at the end of the servicing of R

i

, since they do

not conict. Each R

i

will su�er either indegree(i) or indegree(i)� 1 misses to bring

its initial subsequence into the cache, depending on whether the previously served

sequence corresponds to a predecessor of v

i

in G. This is true regardless of the order

of the requests in R

i

's initial subsequence, since if it contains two blocks, they do not

conict. Thus G has a Hamiltonian path if and only if the optimal ordering of the

sequences su�ers only

X

v

i

2V

outdegree(v

i

) +

X

v

i

2V

indegree(v

i

) + 4jV j � (jV j � 1) = 2jEj+ 3jV j+ 1

cache misses.

The fully-associative cache case requires a bit more work to ensure that the private

blocks ush all shared blocks from the cache. Let K be the size of the cache; we will

need K distinct private blocks for each vertex. The middle subsequence of each R

i

is replaced by p

i;0

: : : p

i;K�1

p

i;0

: : : p

i;K�1

. As before, each of the private blocks will

cause a miss. The second reference to each p

i;j

ensures that none of the private blocks

will be evicted before all K of them have been brought into the cache,

1

by Belady's

[4] longest forward distance page replacement rule, since each must be served again

before any other blocks. Thus, after the �rst pass through R

i

's private blocks, all K

1

To be precise, we can assume without loss of generality that this holds for any optimal schedule.
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of them reside in the cache and all shared blocks are missing. The number of misses

that corresponds to a Hamiltonian path becomes

2jEj+ (K � 1)jV j+ 1:

For a t-way-associative cache with t � 4, we use the same proof as for a fully-

associative cache (replacing K with t, and simply arranging that all blocks map to

the same set). For 2 � t � 3, a straightforward combination of the fully-associative

and direct-mapped methods can be used. Blocks corresponding to edges are colored

as in the direct-mapped case; t private blocks of each color, requested twice each as

in the fully-associative case, assure the cache is ushed of all shared blocks. Again,

the number of misses that corresponds to a Hamiltonian path must be adjusted

accordingly.

Simple modi�cations also show the problem to be NP-hard if we assume a �xed

block-replacement policy such as LRU rather than optimal o�ine replacement in the

associative cache cases.



Chapter 8

CONCLUSION AND DIRECTIONS FOR FURTHER

RESEARCH

In Chapter 3 we presented a theoretical analysis of algorithms for the parallel

prefetching and caching problem. We showed that reverse aggressive is guaranteed to

�nd a solution within a factor near one of optimal, and that all the other algorithms we

considered can perform much worse in the worst case. Chapter 4 presented the results

of a trace-driven simulation study of integrated prefetching and caching algorithms on

a single read-only access sequence, assuming that all accesses are known in advance.

We studied four algorithms: aggressive, �xed horizon, reverse aggressive, and forestall.

We found that the theoretically near-optimal reverse aggressive usually has the best

performance of the four algorithms, but that, perhaps surprisingly, it was never much

better than the best of the other algorithms. This shows that carefully choosing

replacements is not necessary to balance the load across the disks when the data is

well laid out. We found that each of aggressive and �xed horizon performs well under

the conditions for which it was designed, and in any given situation, one or the other

performs similarly to reverse aggressive. Clearly, aggressive and �xed horizon are

much more practical algorithms than reverse aggressive. These observations led us

to the hybrid approach of forestall, which prefetches more aggressively in I/O-bound

situations and more conservatively in compute-bound situations, resulting in nearly

the best performance of the four in all con�gurations.

This thesis leaves unresolved several important issues related to parallel prefetch-

ing and caching. The problem of �nding an optimal algorithm in the abstract the-

oretical model with running time polynomial in both the input size and the cache

size remains open, even for a single disk. The performance of the algorithms depends

on a set of parameters which interact in a complicated way with the applications'

access patterns and inter-reference compute times, the layout of data on disks, the

disk-scheduling discipline, and the characteristics of the disks. At this time, we have
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no analytical basis for dynamically determining aggressive's batch size, �xed horizon's

prefetch horizon H, reverse aggressive's batch sizes and estimate of F , or forestall's

batch size and estimate F

0

of F . It is a challenging open problem to fully understand

the interaction between the algorithmic parameters and the speci�c application and

system characteristics.

Another direction for future research is the treatment of writes, both theoretically

and experimentally.

We have not evaluated the performance of the algorithms in cases of imperfect

lookahead. If the lookahead information is not quite perfect but highly accurate,

it is reasonable to expect the deviations from the predictions of our analysis and

experiments to be small. A very interesting direction is to extend these results to

the case in which only probabilistic lookahead information is available. How much

con�dence is needed before prefetching yields an expected payo�?

This work demonstrates that a �le system can e�ectively take advantage of accu-

rate lookahead information. An important research direction is to determine methods

by which applications can easily provide such hints.

In Chapter 5, we presented an e�cient algorithm to determine whether a request

sequence can be served with zero stall time in the single disk prefetching and caching

model. The algorithm produces a schedule to serve a sequence without stalling, if

possible. The algorithm can be applied to problems in which the cache is initially

empty, and in this case, determines whether the sequence can be served without

stalling more than is necessary to �ll the cache starting from the cold cache initial

state.

In Chapter 6, we considered an abstract combinatorial problem, \sequence inter-

leaving," derived from the integrated prefetching, caching, and processor scheduling

problem. A simple and e�cient algorithm was given for the sequence interleaving

problem. The sequence interleaving problem corresponds to a simpli�cation of the

integrated scheduling problem, which appears to be di�cult. However, there is reason

to believe that a solution to the simpli�ed problem will perform well in practice, as

discussed in Section 6.1. A direction for future work is the testing of this hypothesis

by comparing the algorithm to existing approaches, using simulation based on traces

of real programs' resource demands and/or development of a prototype system that
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uses the algorithm.

In Chapter 7, a problem of increasing a program's locality of reference by schedul-

ing independent threads of control was described, and a proof of NP-hardness was

given. The development of approximation algorithms for this problem and/or lower

bounds on its approximability are very interesting problems, as is that of determining

bounds on the quality of the approximation produced by the heuristic of Philbin et

al. [37].



Appendix A

SIMULATION DATA

A.1 Performance data: baseline measurements

This section contains the raw simulation data for the baseline parameters as described

in Chapter 4: the prefetch horizon of �xed horizon is 62, aggressive's batch size is set

according to table 4.1, reverse aggressive's fetch time estimate F and batch size are chosen to

minimize its elapsed time, and Forestall's fetch time estimate F

0

is determined dynamically

as described in section 4.6.

Table A.1: Performance on the dinero trace.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 4771 4771 4771 4771 4771 4771

driver time (sec) 2.3855 2.3855 2.3855 2.3855 2.3855 2.3855

stall time (sec) 0.027 0.009 0.009 0.009 0.009 0.009

elapsed time (sec) 105.951 105.933 105.933 105.933 105.933 105.933

average fetch time (msec) 3.156 3.178 3.233 3.258 3.274 3.319

average disk utilization 0.14 0.072 0.049 0.037 0.029 0.025

Aggressive

fetches 8812 8812 8823 8815 8812 8816

driver time (sec) 4.406 4.406 4.4115 4.4075 4.406 4.408

stall time (sec) 0.145 0 0 0 0 0.001

elapsed time (sec) 108.089 107.944 107.95 107.946 107.944 107.947

average fetch time (msec) 3.141 3.146 3.174 3.176 3.188 3.203

average disk utilization 0.26 0.13 0.086 0.065 0.052 0.044

Reverse Aggressive

fetches 4731 4764 4829 4830 4914 5018

driver time (sec) 2.3655 2.382 2.4145 2.415 2.457 2.509

stall time (sec) 0.023 0.021 0.019 0.017 0.015 0.013

elapsed time (sec) 105.927 105.941 105.972 105.97 106.01 106.06

average fetch time (msec) 3.31 3.36 3.366 3.437 3.494 3.288

average disk utilization 0.15 0.076 0.051 0.039 0.032 0.026

Forestall

fetches 4753 4753 4753 4753 4753 4753

driver time (sec) 2.3765 2.3765 2.3765 2.3765 2.3765 2.3765

stall time (sec) 0.145 0 0 0 0 0.001

elapsed time (sec) 106.06 105.915 105.915 105.915 105.915 105.916

average fetch time (msec) 3.183 3.196 3.253 3.272 3.298 3.324

average disk utilization 0.14 0.072 0.049 0.037 0.03 0.025
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Table A.2: Performance on the cscope1 trace.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 4953 4953 4953 4953 4953 4953

driver time (sec) 2.4765 2.4765 2.4765 2.4765 2.4765 2.4765

stall time (sec) 3.131 0.013 0.013 0.013 0.013 0.013

elapsed time (sec) 30.542 27.424 27.424 27.424 27.424 27.424

average fetch time (msec) 3.53 3.239 3.248 3.286 3.317 3.355

average disk utilization 0.57 0.29 0.2 0.15 0.12 0.1

Aggressive

fetches 6931 8570 8672 8678 8621 8576

driver time (sec) 3.4655 4.285 4.336 4.339 4.3105 4.288

stall time (sec) 0.911 0 0 0 0 0.001

elapsed time (sec) 29.311 29.219 29.27 29.273 29.245 29.223

average fetch time (msec) 3.758 3.361 3.429 3.365 3.39 3.356

average disk utilization 0.89 0.49 0.34 0.25 0.2 0.16

Reverse Aggressive

fetches 5349 4995 5024 5093 5132 5135

driver time (sec) 2.6745 2.4975 2.512 2.5465 2.566 2.5675

stall time (sec) 1.312 0.021 0.019 0.017 0.015 0.013

elapsed time (sec) 28.921 27.453 27.465 27.498 27.515 27.515

average fetch time (msec) 3.622 3.344 3.376 3.409 3.396 3.618

average disk utilization 0.67 0.3 0.21 0.16 0.13 0.11

Forestall

fetches 5210 4970 4953 4953 4953 4953

driver time (sec) 2.605 2.485 2.4765 2.4765 2.4765 2.4765

stall time (sec) 1.266 0 0 0 0 0.001

elapsed time (sec) 28.805 27.419 27.411 27.411 27.411 27.412

average fetch time (msec) 3.794 3.334 3.276 3.295 3.326 3.342

average disk utilization 0.69 0.3 0.2 0.15 0.12 0.1

Table A.3: Performance on the cscope2 trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fixed Horizon

fetches 5966 5966 5966 5966 5966 5966 5966 5966 5966 5966 5966

driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983

stall time (sec) 32.802 22.261 14.616 9.04 5.921 3.905 2.488 1.347 1.016 0.371 0.133

elapsed time (sec) 72.894 62.353 54.708 49.132 46.013 43.997 42.58 41.439 41.108 40.463 40.225

average fetch time (msec) 9.469 15.009 17.309 17.993 18.463 18.921 18.894 19.083 19.216 19.217 19.542

average disk utilization 0.77 0.72 0.63 0.55 0.48 0.43 0.38 0.34 0.28 0.24 0.18

Aggressive

fetches 6318 6592 8208 8956 10299 11014 11587 11717 11619 11102 10662

driver time (sec) 3.159 3.296 4.104 4.478 5.1495 5.507 5.7935 5.8585 5.8095 5.551 5.331

stall time (sec) 15.858 5.597 1.798 0 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 56.126 46.002 43.011 41.587 42.259 42.617 42.903 42.977 42.924 42.661 42.44

average fetch time (msec) 8.773 13.256 14.354 16.514 17.138 17.683 17.722 17.551 17.224 17.65 18.201

average disk utilization 0.99 0.95 0.91 0.89 0.84 0.76 0.68 0.6 0.47 0.38 0.29

Reverse Aggressive

fetches 6359 7320 6837 6290 6124 6071 6085 6115 6131 6177 6237

driver time (sec) 3.1795 3.66 3.4185 3.145 3.062 3.0355 3.0425 3.0575 3.0655 3.0885 3.1185

stall time (sec) 17.966 6.057 0.978 0 0.005 0.013 0.011 0.009 0.005 0.016 0.008

elapsed time (sec) 58.255 46.826 41.506 40.254 40.176 40.158 40.163 40.176 40.18 40.214 40.236

average fetch time (msec) 8.173 11.43 13.428 16.847 17.651 17.939 18.64 18.616 19.054 19.133 19.285

average disk utilization 0.89 0.89 0.74 0.66 0.54 0.45 0.4 0.35 0.29 0.24 0.19

Forestall

fetches 6318 6467 7217 7239 7715 7387 7355 7187 7086 6853 6476

driver time (sec) 3.159 3.2335 3.6085 3.6195 3.8575 3.6935 3.6775 3.5935 3.543 3.4265 3.238

stall time (sec) 15.858 5.677 1.798 0 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 56.126 46.02 42.516 40.729 40.967 40.804 40.787 40.712 40.657 40.537 40.347

average fetch time (msec) 8.773 13.251 14.466 16.675 16.97 18.158 18.274 18.821 19.133 19.123 19.23

average disk utilization 0.99 0.93 0.82 0.74 0.64 0.55 0.47 0.42 0.33 0.27 0.19
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Table A.4: Performance on the cscope3 trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fixed Horizon

fetches 11739 11739 11739 11739 11739 11739 11739 11739 11739 11739 11739

driver time (sec) 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695

stall time (sec) 28.459 12.906 7.046 2.961 1.669 0.762 0.221 0.164 0.152 0.014 0.014

elapsed time (sec) 108.429 92.876 87.016 82.931 81.639 80.732 80.191 80.134 80.122 79.984 79.984

average fetch time (msec) 7.843 11.914 14.814 16.147 16.993 17.482 17.906 18.178 18.671 18.875 19.108

average disk utilization 0.85 0.75 0.67 0.57 0.49 0.42 0.37 0.33 0.27 0.23 0.18

Aggressive

fetches 12092 13572 15938 16740 17713 18081 17894 17577 16917 16542 16314

driver time (sec) 6.046 6.786 7.969 8.37 8.8565 9.0405 8.947 8.7885 8.4585 8.271 8.157

stall time (sec) 13.943 2.862 0.64 0.052 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 94.09 83.749 82.71 82.523 82.957 83.142 83.048 82.898 82.564 82.373 82.258

average fetch time (msec) 7.741 11.597 14.215 15.92 16.553 16.568 16.711 16.905 17.605 17.966 18.49

average disk utilization 0.99 0.94 0.91 0.81 0.71 0.6 0.51 0.45 0.36 0.3 0.23

Reverse Aggressive

fetches 12228 12814 12501 12033 11880 11837 11852 11883 11919 11954 12004

driver time (sec) 6.114 6.407 6.2505 6.0165 5.94 5.9185 5.926 5.9415 5.9595 5.977 6.002

stall time (sec) 23.85 3.531 0.66 0.407 0.006 0.013 0.011 0.009 0.005 0.016 0.008

elapsed time (sec) 104.065 84.039 81.011 80.524 80.047 80.032 80.038 80.051 80.065 80.094 80.111

average fetch time (msec) 7.763 10.787 14.095 15.97 16.612 17.358 17.844 18.127 18.482 18.749 19.025

average disk utilization 0.91 0.82 0.73 0.6 0.49 0.43 0.38 0.34 0.28 0.23 0.18

Forestall

fetches 12054 13115 14217 13969 14125 13878 13846 13589 13322 13048 12536

driver time (sec) 6.027 6.5575 7.1085 6.9845 7.0625 6.939 6.923 6.7945 6.661 6.524 6.268

stall time (sec) 14.273 2.863 0.64 0.052 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 94.401 83.521 81.849 81.137 81.163 81.041 81.024 80.904 80.767 80.626 80.369

average fetch time (msec) 7.731 11.603 13.616 15.745 16.183 17.246 17.648 18.477 18.669 18.812 19.035

average disk utilization 0.99 0.91 0.79 0.68 0.56 0.49 0.43 0.39 0.31 0.25 0.19

Table A.5: Performance on the glimpse trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fixed Horizon

fetches 6493 6493 6493 6493 6493 6493 6493 6493 6493 6493 6493

driver time (sec) 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465

stall time (sec) 65.619 31.046 20.054 14.029 10.381 7.886 5.702 4.769 2.809 1.404 0.722

elapsed time (sec) 107.582 73.009 62.017 55.992 52.344 49.849 47.665 46.732 44.772 43.367 42.685

average fetch time (msec) 13.424 15.145 16.192 17.244 18.068 18.33 18.452 18.642 18.555 18.571 18.743

average disk utilization 0.81 0.67 0.57 0.5 0.45 0.4 0.36 0.32 0.27 0.23 0.18

Aggressive

fetches 6690 6888 7287 7551 8908 9376 10423 10992 12009 11530 11315

driver time (sec) 3.345 3.444 3.6435 3.7755 4.454 4.688 5.2115 5.496 6.0045 5.765 5.6575

stall time (sec) 54.58 18.58 6.384 2.495 0.826 0.035 0 0.009 0.005 0.001 0

elapsed time (sec) 96.641 60.74 48.744 44.987 43.996 43.439 43.928 44.221 44.726 44.482 44.374

average fetch time (msec) 12.889 14.259 14.645 16.247 15.973 16.836 16.79 16.896 16.137 15.917 16.198

average disk utilization 0.89 0.81 0.73 0.68 0.65 0.61 0.57 0.52 0.43 0.34 0.26

Reverse Aggressive

fetches 6712 7179 7630 8141 7619 6803 6656 6709 6750 6822 6978

driver time (sec) 3.356 3.5895 3.815 4.0705 3.8095 3.4015 3.328 3.3545 3.375 3.411 3.489

stall time (sec) 52.011 15.928 4.971 0.495 0 0 0.011 0.009 0.005 0.006 0

elapsed time (sec) 94.083 58.234 47.502 43.282 42.526 42.118 42.055 42.08 42.096 42.133 42.205

average fetch time (msec) 12.745 13.46 13.793 13.877 14.73 17.016 18.321 18.37 18.541 18.514 18.406

average disk utilization 0.91 0.83 0.74 0.65 0.53 0.46 0.41 0.37 0.3 0.25 0.19

Forestall

fetches 6610 6617 6945 6905 7033 6937 7113 7093 7125 7089 6941

driver time (sec) 3.305 3.3085 3.4725 3.4525 3.5165 3.4685 3.5565 3.5465 3.5625 3.5445 3.4705

stall time (sec) 54.886 18.833 6.58 2.906 1.397 0.099 0 0.009 0.005 0.001 0

elapsed time (sec) 96.907 60.858 48.769 45.075 43.63 42.284 42.273 42.272 42.284 42.262 42.187

average fetch time (msec) 13.001 14.378 14.797 16.382 16.651 17.627 17.557 18.099 18.015 18.055 18.273

average disk utilization 0.89 0.78 0.7 0.63 0.54 0.48 0.42 0.38 0.3 0.25 0.19
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Table A.6: Performance on the ld trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fixed Horizon

fetches 2904 2904 2904 2904 2904 2904 2904 2904 2904 2904 2904

driver time (sec) 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452

stall time (sec) 15.281 7.297 4.696 3.043 2.086 1.565 1.212 1.041 0.599 0.416 0.269

elapsed time (sec) 24.898 16.914 14.313 12.66 11.703 11.182 10.829 10.658 10.216 10.033 9.886

average fetch time (msec) 8.368 10.94 13.299 15.031 16.214 16.93 17.502 17.657 18.467 18.945 19.2

average disk utilization 0.98 0.94 0.9 0.86 0.8 0.73 0.67 0.6 0.52 0.46 0.35

Aggressive

fetches 2981 2982 3137 3102 3310 3505 3734 3779 4091 4285 4651

driver time (sec) 1.4905 1.491 1.5685 1.551 1.655 1.7525 1.867 1.8895 2.0455 2.1425 2.3255

stall time (sec) 15.245 6.329 3.433 2.052 0.579 0.265 0.023 0.009 0.005 0.001 0

elapsed time (sec) 24.9 15.985 13.166 11.768 10.399 10.182 10.055 10.063 10.215 10.308 10.49

average fetch time (msec) 8.248 10.583 12.037 14.199 14.932 15.958 16.444 17.175 17.62 18.017 18.261

average disk utilization 0.99 0.99 0.96 0.94 0.95 0.92 0.87 0.81 0.71 0.62 0.51

Reverse Aggressive

fetches 3041 3079 3202 3312 3161 3037 3103 3000 2953 3004 3008

driver time (sec) 1.5205 1.5395 1.601 1.656 1.5805 1.5185 1.5515 1.5 1.4765 1.502 1.504

stall time (sec) 14.662 6.217 3.233 1.704 0.879 0.618 0.211 0.151 0.035 0.016 0.008

elapsed time (sec) 24.347 15.921 12.999 11.525 10.624 10.301 9.927 9.816 9.676 9.683 9.677

average fetch time (msec) 7.932 10.036 11.585 13.254 14.43 16.016 16.269 17.39 18.558 18.995 18.992

average disk utilization 0.99 0.97 0.95 0.95 0.86 0.79 0.73 0.66 0.57 0.49 0.37

Forestall

fetches 2981 2982 3137 3102 3310 3505 3734 3799 3896 3799 3147

driver time (sec) 1.4905 1.491 1.5685 1.551 1.655 1.7525 1.867 1.8995 1.948 1.8995 1.5735

stall time (sec) 15.245 6.329 3.433 2.052 0.579 0.265 0.023 0.013 0.005 0.001 0

elapsed time (sec) 24.9 15.985 13.166 11.768 10.399 10.182 10.055 10.077 10.118 10.065 9.738

average fetch time (msec) 8.248 10.583 12.037 14.199 14.932 15.958 16.442 17.253 18.126 18.582 18.983

average disk utilization 0.99 0.99 0.96 0.94 0.95 0.92 0.87 0.81 0.7 0.58 0.38

Table A.7: Performance on the postgres-join trace.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 3856 3856 3856 3856 3856 3856

driver time (sec) 1.928 1.928 1.928 1.928 1.928 1.928

stall time (sec) 4.723 0.04 0.017 0.017 0.017 0.017

elapsed time (sec) 85.867 81.184 81.161 81.161 81.161 81.161

average fetch time (msec) 17.228 18.029 18.039 18.299 18.344 18.094

average disk utilization 0.77 0.43 0.29 0.22 0.17 0.14

Aggressive

fetches 4698 5836 6225 6156 6047 5919

driver time (sec) 2.349 2.918 3.1125 3.078 3.0235 2.9595

stall time (sec) 3.994 0.152 0.258 0 0 0.001

elapsed time (sec) 85.559 82.286 82.586 82.294 82.239 82.176

average fetch time (msec) 15.032 16.576 15.929 16.578 16.706 17.102

average disk utilization 0.83 0.59 0.4 0.31 0.25 0.21

Reverse Aggressive

fetches 3987 3853 3859 3873 3879 3892

driver time (sec) 1.9935 1.9265 1.9295 1.9365 1.9395 1.946

stall time (sec) 3.775 0.021 0.019 0.017 0.015 0.013

elapsed time (sec) 84.984 81.163 81.164 81.169 81.17 81.175

average fetch time (msec) 15.776 18.055 17.964 18.204 18.262 17.934

average disk utilization 0.74 0.43 0.28 0.22 0.17 0.14

Forestall

fetches 4694 4207 3929 3857 3855 3856

driver time (sec) 2.347 2.1035 1.9645 1.9285 1.9275 1.928

stall time (sec) 3.994 0.153 0.258 0 0 0.001

elapsed time (sec) 85.557 81.472 81.438 81.144 81.143 81.145

average fetch time (msec) 15.034 15.022 15.525 17.291 17.45 17.692

average disk utilization 0.82 0.39 0.25 0.21 0.17 0.14
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Table A.8: Performance on the postgres-select trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fixed Horizon

fetches 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 32.37 12.647 5.943 3.154 1.402 0.581 0.476 0.073 0.034 0.018 0.018

elapsed time (sec) 45.39 25.667 18.963 16.174 14.422 13.601 13.496 13.093 13.054 13.038 13.038

average fetch time (msec) 14.368 14.906 15.044 15.13 15.347 15.413 15.437 15.411 15.278 15.356 15.071

average disk utilization 0.98 0.9 0.82 0.72 0.66 0.58 0.5 0.45 0.36 0.3 0.22

Aggressive

fetches 3085 3085 3085 3085 3286 3317 3826 3937 3902 3852 3731

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.643 1.6585 1.913 1.9685 1.951 1.926 1.8655

stall time (sec) 30.691 10.772 3.517 0.844 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 43.711 23.792 16.537 13.864 13.121 13.137 13.391 13.455 13.434 13.405 13.343

average fetch time (msec) 13.985 14.173 13.95 14.55 13.923 15.036 15.221 15.274 14.797 14.8 15.155

average disk utilization 0.99 0.92 0.87 0.81 0.7 0.63 0.62 0.56 0.43 0.35 0.26

Reverse Aggressive

fetches 3106 3106 3318 3110 3109 3108 3112 3122 3116 3122 3124

driver time (sec) 1.553 1.553 1.659 1.555 1.5545 1.554 1.556 1.561 1.558 1.561 1.562

stall time (sec) 28.956 8.461 2.66 0.125 0 0.001 0 0 0 0 0.002

elapsed time (sec) 41.987 21.492 15.797 13.158 13.032 13.033 13.034 13.039 13.036 13.039 13.042

average fetch time (msec) 13.248 12.704 12.127 13.581 14.394 15.051 14.803 14.049 14.618 14.024 14.143

average disk utilization 0.98 0.92 0.85 0.8 0.69 0.6 0.5 0.42 0.35 0.28 0.21

Forestall

fetches 3085 3085 3085 3085 3085 3305 3797 3795 3399 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.6525 1.8985 1.8975 1.6995 1.5425 1.5425

stall time (sec) 30.691 10.791 3.517 0.844 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 43.711 23.811 16.537 13.864 13.02 13.131 13.376 13.384 13.182 13.021 13.02

average fetch time (msec) 13.985 14.154 13.933 14.524 14.392 15.056 15.242 15.249 15.2 15.086 15.032

average disk utilization 0.99 0.92 0.87 0.81 0.68 0.63 0.62 0.54 0.39 0.3 0.22

Table A.9: Performance on the synth trace.

Disks 1 2 3 4

Fixed Horizon

fetches 38000 38000 38000 38000

driver time (sec) 19 19 19 19

stall time (sec) 82.583 12.044 0 0

elapsed time (sec) 201.439 130.9 118.856 118.856

average fetch time (msec) 3.748 3.776 3.229 3.214

average disk utilization 0.71 0.55 0.34 0.26

Aggressive

fetches 39240 41902 100994 100548

driver time (sec) 19.62 20.951 50.497 50.274

stall time (sec) 36.37 0.933 0.015 0.015

elapsed time (sec) 155.846 121.74 150.368 150.145

average fetch time (msec) 3.965 5.647 3.37 3.164

average disk utilization 1 0.97 0.75 0.53

Reverse Aggressive

fetches 39265 42000 37907 38148

driver time (sec) 19.6325 21 18.9535 19.074

stall time (sec) 41.599 2.765 0.014 0.015

elapsed time (sec) 161.088 123.621 118.824 118.945

average fetch time (msec) 3.928 3.907 3.762 3.958

average disk utilization 0.96 0.66 0.4 0.32

Forestall

fetches 39240 38900 39838 38000

driver time (sec) 19.62 19.45 19.919 19

stall time (sec) 36.37 1.232 0.016 0

elapsed time (sec) 155.846 120.538 119.791 118.856

average fetch time (msec) 3.965 4.895 4.843 3.218

average disk utilization 1 0.79 0.54 0.26
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Table A.10: Performance on the xds trace.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 5900 5900 5900 5900 5900 5900

driver time (sec) 2.95 2.95 2.95 2.95 2.95 2.95

stall time (sec) 32.582 4.964 3.219 1.138 0.474 0.094

elapsed time (sec) 65.611 37.993 36.248 34.167 33.503 33.123

average fetch time (msec) 10.74 7.758 14.065 10.106 15.07 10.869

average disk utilization 0.97 0.6 0.76 0.44 0.53 0.32

Aggressive

fetches 5925 7778 6563 9831 8312 10215

driver time (sec) 2.9625 3.889 3.2815 4.9155 4.156 5.1075

stall time (sec) 30.667 0.337 0.356 0.129 0.133 0.055

elapsed time (sec) 63.708 34.305 33.716 35.123 34.368 35.241

average fetch time (msec) 10.711 7.496 14.101 9.801 15.454 10.711

average disk utilization 1 0.85 0.91 0.69 0.75 0.52

Reverse Aggressive

fetches 5892 5989 5927 6001 5893 6017

driver time (sec) 2.946 2.9945 2.9635 3.0005 2.9465 3.0085

stall time (sec) 31.155 0.275 0.528 0.046 0.017 0.018

elapsed time (sec) 64.18 33.348 33.57 33.125 33.042 33.105

average fetch time (msec) 10.79 7.732 14.092 9.864 14.883 10.173

average disk utilization 0.99 0.69 0.83 0.45 0.53 0.31

Forestall

fetches 5925 6929 6553 7451 7882 7032

driver time (sec) 2.9625 3.4645 3.2765 3.7255 3.941 3.516

stall time (sec) 30.667 0.337 0.356 0.129 0.133 0.055

elapsed time (sec) 63.708 33.88 33.711 33.933 34.153 33.65

average fetch time (msec) 10.711 7.559 14.082 9.945 15.53 10.7

average disk utilization 1 0.77 0.91 0.55 0.72 0.37
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A.2 Performance data: FCFS

This section contains the data for the baseline parameters as in the previous section, but

with FCFS disk head scheduling rather than CSCAN.

Table A.11: Performance on the dinero trace.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 4771 4771 4771 4771 4771 4771

driver time (sec) 2.3855 2.3855 2.3855 2.3855 2.3855 2.3855

stall time (sec) 0.009 0.009 0.009 0.009 0.009 0.009

elapsed time (sec) 105.933 105.933 105.933 105.933 105.933 105.933

average fetch time (msec) 3.153 3.181 3.218 3.247 3.26 3.314

average disk utilization 0.14 0.072 0.048 0.037 0.029 0.025

Aggressive

fetches 8812 8812 8812 8814 8812 8814

driver time (sec) 4.406 4.406 4.406 4.407 4.406 4.407

stall time (sec) 0 0 0 0 0 0.001

elapsed time (sec) 107.944 107.944 107.944 107.945 107.944 107.946

average fetch time (msec) 3.148 3.144 3.166 3.169 3.178 3.194

average disk utilization 0.26 0.13 0.086 0.065 0.052 0.043

Reverse Aggressive

fetches 4731 4764 4829 4830 4914 5018

driver time (sec) 2.3655 2.382 2.4145 2.415 2.457 2.509

stall time (sec) 0.023 0.021 0.019 0.017 0.015 0.013

elapsed time (sec) 105.927 105.941 105.972 105.97 106.01 106.06

average fetch time (msec) 3.311 3.356 3.352 3.431 3.483 3.284

average disk utilization 0.15 0.075 0.051 0.039 0.032 0.026

Table A.12: Performance on the cscope1 trace.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 4953 4953 4953 4953 4953 4953

driver time (sec) 2.4765 2.4765 2.4765 2.4765 2.4765 2.4765

stall time (sec) 3.131 0.013 0.013 0.013 0.013 0.013

elapsed time (sec) 30.542 27.424 27.424 27.424 27.424 27.424

average fetch time (msec) 3.533 3.245 3.247 3.277 3.305 3.335

average disk utilization 0.57 0.29 0.2 0.15 0.12 0.1

Aggressive

fetches 6778 8582 8606 8685 8621 8576

driver time (sec) 3.389 4.291 4.303 4.3425 4.3105 4.288

stall time (sec) 0.609 0 0 0 0 0.001

elapsed time (sec) 28.932 29.225 29.237 29.277 29.245 29.223

average fetch time (msec) 3.808 3.405 3.373 3.358 3.377 3.341

average disk utilization 0.89 0.5 0.33 0.25 0.2 0.16

Reverse Aggressive

fetches 5349 4995 5024 5093 5132 5135

driver time (sec) 2.6745 2.4975 2.512 2.5465 2.566 2.5675

stall time (sec) 1.162 0.021 0.019 0.017 0.015 0.013

elapsed time (sec) 28.771 27.453 27.465 27.498 27.515 27.515

average fetch time (msec) 3.656 3.342 3.366 3.4 3.382 3.619

average disk utilization 0.68 0.3 0.21 0.16 0.13 0.11
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Table A.13: Performance on the cscope2 trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fixed Horizon

fetches 5966 5966 5966 5966 5966 5966 5966 5966 5966 5966 5966

driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983

stall time (sec) 35.261 24.715 15.262 7.728 4.287 2.408 1.273 0.741 0.555 0.087 0.03

elapsed time (sec) 75.353 64.807 55.354 47.82 44.379 42.5 41.365 40.833 40.647 40.179 40.122

average fetch time (msec) 9.887 15.936 17.771 18.352 18.473 18.93 18.913 19.165 19.128 19.29 19.404

average disk utilization 0.78 0.73 0.64 0.57 0.5 0.44 0.39 0.35 0.28 0.24 0.18

Aggressive

fetches 6196 6324 7302 8450 9933 10777 11475 11707 11529 11102 10662

driver time (sec) 3.098 3.162 3.651 4.225 4.9665 5.3885 5.7375 5.8535 5.7645 5.551 5.331

stall time (sec) 17.951 8.281 3.024 0 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 58.158 48.552 43.784 41.334 42.076 42.499 42.847 42.972 42.879 42.661 42.44

average fetch time (msec) 9.358 14.89 16.761 17.499 17.804 17.917 17.767 17.571 17.348 17.734 18.257

average disk utilization 1 0.97 0.93 0.89 0.84 0.76 0.68 0.6 0.47 0.38 0.29

Reverse Aggressive

fetches 6359 7320 6837 6290 6124 6071 6085 6115 6131 6177 6237

driver time (sec) 3.1795 3.66 3.4185 3.145 3.062 3.0355 3.0425 3.0575 3.0655 3.0885 3.1185

stall time (sec) 19.611 12.595 3.118 0 0.017 0.013 0.011 0.009 0.005 0.016 0.008

elapsed time (sec) 59.9 53.364 43.646 40.254 40.188 40.158 40.163 40.176 40.18 40.214 40.236

average fetch time (msec) 8.869 13.946 16.125 17.786 18.115 18.048 18.615 18.678 19.186 19.328 19.283

average disk utilization 0.94 0.96 0.84 0.69 0.55 0.45 0.4 0.36 0.29 0.25 0.19

Table A.14: Performance on the cscope3 trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fixed Horizon

fetches 11739 11739 11739 11739 11739 11739 11739 11739 11739 11739 11739

driver time (sec) 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695

stall time (sec) 31.757 13.743 6.463 2.014 0.749 0.233 0.2 0.014 0.095 0.014 0.014

elapsed time (sec) 111.727 93.713 86.433 81.984 80.719 80.203 80.17 79.984 80.065 79.984 79.984

average fetch time (msec) 8.184 12.268 15.013 16.108 17.015 17.456 17.891 18.277 18.654 18.88 19.1

average disk utilization 0.86 0.77 0.68 0.58 0.49 0.43 0.37 0.34 0.27 0.23 0.18

Aggressive

fetches 11974 12937 15104 16457 17588 18048 17824 17547 16917 16542 16254

driver time (sec) 5.987 6.4685 7.552 8.2285 8.794 9.024 8.912 8.7735 8.4585 8.271 8.127

stall time (sec) 18.727 4.342 1.132 0.107 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 98.815 84.911 82.785 82.436 82.895 83.126 83.013 82.883 82.564 82.373 82.228

average fetch time (msec) 8.219 12.54 15.309 16.142 16.775 16.717 16.777 16.966 17.597 17.96 18.603

average disk utilization 1 0.96 0.93 0.81 0.71 0.6 0.51 0.45 0.36 0.3 0.23

Reverse Aggressive

fetches 12228 12814 12501 12033 11880 11837 11852 11883 11919 11954 12004

driver time (sec) 6.114 6.407 6.2505 6.0165 5.94 5.9185 5.926 5.9415 5.9595 5.977 6.002

stall time (sec) 27.37 6.138 1.178 0.195 0.005 0.013 0.011 0.009 0.005 0.016 0.008

elapsed time (sec) 107.585 86.646 81.529 80.312 80.046 80.032 80.038 80.051 80.065 80.094 80.111

average fetch time (msec) 8.408 12.53 15.639 16.608 16.992 17.386 17.832 18.199 18.542 18.83 19.076

average disk utilization 0.96 0.93 0.8 0.62 0.5 0.43 0.38 0.34 0.28 0.23 0.18
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Table A.15: Performance on the glimpse trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fixed Horizon

fetches 6493 6493 6493 6493 6493 6493 6493 6493 6493 6493 6493

driver time (sec) 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465

stall time (sec) 69.337 31.846 19.994 12.419 8.631 6.095 4.014 3.171 1.547 0.745 0.388

elapsed time (sec) 111.3 73.809 61.957 54.382 50.594 48.058 45.977 45.134 43.51 42.708 42.351

average fetch time (msec) 14.011 15.68 16.63 17.531 18.305 18.515 18.611 18.648 18.529 18.586 18.675

average disk utilization 0.82 0.69 0.58 0.52 0.47 0.42 0.38 0.34 0.28 0.24 0.18

Aggressive

fetches 6690 6786 7277 7400 8361 9196 10233 10959 11953 11500 11253

driver time (sec) 3.345 3.393 3.6385 3.7 4.1805 4.598 5.1165 5.4795 5.9765 5.75 5.6265

stall time (sec) 59.899 23.204 10.316 3.068 1.321 0.252 0 0.009 0.005 0.001 0

elapsed time (sec) 101.96 65.313 52.671 45.484 44.218 43.566 43.833 44.205 44.698 44.467 44.343

average fetch time (msec) 13.814 15.675 16.321 17.255 17.756 17.404 17.228 17.12 16.022 16.038 16.341

average disk utilization 0.91 0.81 0.75 0.7 0.67 0.61 0.57 0.53 0.43 0.35 0.26

Reverse Aggressive

fetches 6712 7179 7630 8141 7619 6803 6656 6709 6750 6822 6978

driver time (sec) 3.356 3.5895 3.815 4.0705 3.8095 3.4015 3.328 3.3545 3.375 3.411 3.489

stall time (sec) 59.04 22.734 8.948 1.776 1.094 0 0.011 0.009 0.005 0.006 0

elapsed time (sec) 101.112 65.04 51.479 44.563 43.62 42.118 42.055 42.08 42.096 42.133 42.205

average fetch time (msec) 14.018 15.73 16.272 16.806 18.093 18.293 18.44 18.529 18.633 18.563 18.547

average disk utilization 0.93 0.87 0.8 0.77 0.63 0.49 0.42 0.37 0.3 0.25 0.19

Table A.16: Performance on the ld trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fixed Horizon

fetches 2904 2904 2904 2904 2904 2904 2904 2904 2904 2904 2904

driver time (sec) 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452 1.452

stall time (sec) 16.029 7.491 4.39 2.843 1.865 1.291 0.913 0.839 0.431 0.218 0.176

elapsed time (sec) 25.646 17.108 14.007 12.46 11.482 10.908 10.53 10.456 10.048 9.835 9.793

average fetch time (msec) 8.63 11.143 13.432 15.137 16.323 17.033 17.311 17.876 18.615 18.958 19.23

average disk utilization 0.98 0.95 0.93 0.88 0.83 0.76 0.68 0.62 0.54 0.47 0.36

Aggressive

fetches 2943 2979 3000 3052 3228 3459 3712 3809 4061 4285 4608

driver time (sec) 1.4715 1.4895 1.5 1.526 1.614 1.7295 1.856 1.9045 2.0305 2.1425 2.304

stall time (sec) 15.651 7.305 3.955 2.126 0.983 0.509 0.017 0.009 0.005 0.001 0

elapsed time (sec) 25.287 16.959 13.62 11.817 10.762 10.403 10.038 10.078 10.2 10.308 10.469

average fetch time (msec) 8.575 11.002 13.144 14.781 15.716 16.17 16.718 16.973 17.723 18.074 18.23

average disk utilization 1 0.97 0.97 0.95 0.94 0.9 0.88 0.8 0.71 0.63 0.5

Reverse Aggressive

fetches 3041 3079 3202 3312 3161 3037 3103 3000 2953 3004 3008

driver time (sec) 1.5205 1.5395 1.601 1.656 1.5805 1.5185 1.5515 1.5 1.4765 1.502 1.504

stall time (sec) 15.977 7.36 4.121 2.409 1.197 0.82 0.412 0.2 0.035 0.016 0.008

elapsed time (sec) 25.662 17.064 13.887 12.23 10.942 10.503 10.128 9.865 9.676 9.683 9.677

average fetch time (msec) 8.425 10.763 12.743 14.394 15.897 16.876 17.324 17.799 18.616 19.074 19.137

average disk utilization 1 0.97 0.98 0.97 0.92 0.81 0.76 0.68 0.57 0.49 0.37



117

Table A.17: Performance on the postgres-join trace.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 3856 3856 3856 3856 3856 3856

driver time (sec) 1.928 1.928 1.928 1.928 1.928 1.928

stall time (sec) 8.916 0.017 0.017 0.017 0.017 0.017

elapsed time (sec) 90.06 81.161 81.161 81.161 81.161 81.161

average fetch time (msec) 18.516 18.188 18.122 18.342 18.369 18.109

average disk utilization 0.79 0.43 0.29 0.22 0.17 0.14

Aggressive

fetches 4138 5704 6188 6156 5978 5949

driver time (sec) 2.069 2.852 3.094 3.078 2.989 2.9745

stall time (sec) 8.546 0 0 0 0 0.001

elapsed time (sec) 89.831 82.068 82.31 82.294 82.205 82.191

average fetch time (msec) 18.584 17.688 16.933 17.105 17.293 17.357

average disk utilization 0.86 0.61 0.42 0.32 0.25 0.21

Reverse Aggressive

fetches 3987 3853 3859 3873 3879 3892

driver time (sec) 1.9935 1.9265 1.9295 1.9365 1.9395 1.946

stall time (sec) 8.427 0.021 0.019 0.017 0.015 0.013

elapsed time (sec) 89.636 81.163 81.164 81.169 81.17 81.175

average fetch time (msec) 18.51 18.173 18.06 18.344 18.335 18.037

average disk utilization 0.82 0.43 0.29 0.22 0.18 0.14

Table A.18: Performance on the postgres-select trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fixed Horizon

fetches 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 39.131 13.893 6.434 3.239 1.313 0.489 0.186 0.018 0.028 0.018 0.018

elapsed time (sec) 52.151 26.913 19.454 16.259 14.333 13.509 13.206 13.038 13.048 13.038 13.038

average fetch time (msec) 16.703 16.165 16.017 15.85 15.708 15.656 15.632 15.526 15.495 15.414 15.117

average disk utilization 0.99 0.93 0.85 0.75 0.68 0.6 0.52 0.46 0.37 0.3 0.22

Aggressive

fetches 3085 3085 3085 3085 3085 3234 3707 3891 3926 3882 3731

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.617 1.8535 1.9455 1.963 1.941 1.8655

stall time (sec) 39.072 13.453 4.9 1.342 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 52.092 26.473 17.92 14.362 13.02 13.096 13.331 13.432 13.446 13.42 13.343

average fetch time (msec) 16.703 16.214 16.06 15.91 15.742 15.512 15.774 15.251 14.928 14.962 15.202

average disk utilization 0.99 0.94 0.92 0.85 0.75 0.64 0.63 0.55 0.44 0.36 0.27

Reverse Aggressive

fetches 3106 3106 3318 3110 3109 3108 3112 3122 3116 3122 3124

driver time (sec) 1.553 1.553 1.659 1.555 1.5545 1.554 1.556 1.561 1.558 1.561 1.562

stall time (sec) 39.031 13.202 5.806 1.008 0 0.001 0 0 0 0 0.002

elapsed time (sec) 52.062 26.233 18.943 14.041 13.032 13.033 13.034 13.039 13.036 13.039 13.042

average fetch time (msec) 16.628 16.156 16.057 15.859 15.694 15.667 15.619 15.497 15.469 15.426 15.262

average disk utilization 0.99 0.96 0.94 0.88 0.75 0.62 0.53 0.46 0.37 0.31 0.23



118

Table A.19: Performance on the synth trace.

Disks 1 2 3 4

Fixed Horizon

fetches 38000 38000 38000 38000

driver time (sec) 19 19 19 19

stall time (sec) 82.583 12.044 0 0

elapsed time (sec) 201.439 130.9 118.856 118.856

average fetch time (msec) 3.748 3.776 3.229 3.214

average disk utilization 0.71 0.55 0.34 0.26

Aggressive

fetches 39240 41902 100994 100548

driver time (sec) 19.62 20.951 50.497 50.274

stall time (sec) 36.37 0.933 0.015 0.015

elapsed time (sec) 155.846 121.74 150.368 150.145

average fetch time (msec) 3.965 5.647 3.37 3.164

average disk utilization 1 0.97 0.75 0.53

Reverse Aggressive

fetches 39265 42000 37907 38148

driver time (sec) 19.6325 21 18.9535 19.074

stall time (sec) 41.599 2.765 0.014 0.015

elapsed time (sec) 161.088 123.621 118.824 118.945

average fetch time (msec) 3.928 3.907 3.762 3.958

average disk utilization 0.96 0.66 0.4 0.32

Table A.20: Performance on the xds trace.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 5883 5883 5883 5883 5883 5883

driver time (sec) 2.9415 2.9415 2.9415 2.9415 2.9415 2.9415

stall time (sec) 34.937 8.068 4.974 2.068 1.005 0.242

elapsed time (sec) 68.644 41.775 38.681 35.775 34.712 33.949

average fetch time (msec) 10.86 7.769 14.127 10.142 14.97 10.835

average disk utilization 0.93 0.55 0.72 0.42 0.51 0.31

Aggressive

fetches 5925 7662 6439 9847 8206 10114

driver time (sec) 2.9625 3.831 3.2195 4.9235 4.103 5.057

stall time (sec) 31.431 0.012 0 0 0 0

elapsed time (sec) 64.472 33.922 33.298 35.002 34.182 35.136

average fetch time (msec) 10.846 7.59 14.215 9.807 15.443 10.636

average disk utilization 1 0.86 0.92 0.69 0.74 0.51

Reverse Aggressive

fetches 5910 5997 5945 6007 5904 6024

driver time (sec) 2.955 2.9985 2.9725 3.0035 2.952 3.012

stall time (sec) 31.298 0.043 0.334 0.01 0.012 0.011

elapsed time (sec) 65.018 33.807 34.072 33.779 33.729 33.788

average fetch time (msec) 10.913 7.729 14.213 9.877 15.115 10.124

average disk utilization 0.99 0.69 0.83 0.44 0.53 0.3
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A.3 Performance data: double-speed CPU

This section contains the data for the xds trace, with the processor speed doubled.

Table A.21: Performance on the xds trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fixed Horizon

fetches 5900 5900 5900 5900 5900 5900 5883 5883 5883 5883 5883

driver time (sec) 1.475 1.475 1.475 1.475 1.475 1.475 1.47075 1.47075 1.47075 1.47075 1.47075

stall time (sec) 47.186 16.135 13.901 7.272 6.058 2.778 5.577 5.343 3.038 3.306 2.317

elapsed time (sec) 63.698 32.647 30.413 23.784 22.57 19.29 22.422 22.188 19.883 20.151 19.162

average fetch time (msec) 10.714 7.735 14.014 10.122 15.41 10.959 15.97 12.872 12.847 14.048 13.583

average disk utilization 0.99 0.7 0.91 0.63 0.81 0.56 0.6 0.43 0.38 0.34 0.26

Aggressive

fetches 5890 6272 5965 6471 5963 7602 6567 8701 10278 10607 10948

driver time (sec) 1.4725 1.568 1.49125 1.61775 1.49075 1.9005 1.64175 2.17525 2.5695 2.65175 2.737

stall time (sec) 46.755 10.572 11.808 2.384 2.776 0.048 0.097 0.045 0.046 0.036 0.026

elapsed time (sec) 63.264 27.177 28.336 19.038 19.303 16.985 17.113 17.595 17.99 18.062 18.137

average fetch time (msec) 10.737 7.664 14.121 10.064 15.496 10.871 16.398 12.921 12.7 13.709 12.392

average disk utilization 1 0.88 0.99 0.86 0.96 0.81 0.9 0.8 0.73 0.67 0.47

Reverse Aggressive

fetches 5892 6095 5939 6182 6001 6017 5970 6042 6055 6090 6164

driver time (sec) 1.473 1.52375 1.48475 1.5455 1.50025 1.50425 1.4925 1.5105 1.51375 1.5225 1.541

stall time (sec) 47.078 8.592 11.946 1.135 2.836 0.055 0.304 0.045 0.046 0.036 0.034

elapsed time (sec) 63.588 25.152 28.467 17.717 19.373 16.596 17.171 16.93 16.934 16.933 16.949

average fetch time (msec) 10.787 7.734 14.132 10.228 15.506 10.787 16.032 12.257 11.954 12.902 12.794

average disk utilization 1 0.94 0.98 0.89 0.96 0.65 0.8 0.55 0.43 0.39 0.29
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A.4 Performance data: varying cache size

This section contains the data for several traces with cache sizes of 5MB (640 blocks) and

15 MB (1920 blocks).

Table A.22: Performance on the glimpse trace, cache size 640.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 7804 7804 7804 7804 7804 7804

driver time (sec) 3.902 3.902 3.902 3.902 3.902 3.902

stall time (sec) 80.295 38.262 24.527 16.624 12.193 9.234

elapsed time (sec) 122.913 80.88 67.145 59.242 54.811 51.852

average fetch time (msec) 13.65 15.451 16.454 17.39 18.142 18.402

average disk utilization 0.87 0.75 0.64 0.57 0.52 0.46

Aggressive

fetches 8133 8407 9377 8777 9847 10220

driver time (sec) 4.0665 4.2035 4.6885 4.3885 4.9235 5.11

stall time (sec) 73.144 27.576 12.83 4.352 0.873 0.007

elapsed time (sec) 115.927 70.496 56.235 47.457 44.513 43.833

average fetch time (msec) 13.02 14.281 14.479 16.104 15.938 16.928

average disk utilization 0.91 0.85 0.8 0.74 0.71 0.66

Reverse Aggressive

fetches 8280 9007 9967 9318 9802 8251

driver time (sec) 4.14 4.5035 4.9835 4.659 4.901 4.1255

stall time (sec) 69.892 24.098 7.214 1.796 0.064 0

elapsed time (sec) 112.748 67.318 50.914 45.171 43.681 42.842

average fetch time (msec) 12.649 13.017 13.017 13.804 14.166 17.142

average disk utilization 0.93 0.87 0.85 0.71 0.64 0.55

Table A.23: Performance on the glimpse trace, cache size 1920.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 5853 5853 5853 5853 5853 5853

driver time (sec) 2.9265 2.9265 2.9265 2.9265 2.9265 2.9265

stall time (sec) 58.697 27.363 18.29 12.82 9.592 7.442

elapsed time (sec) 100.34 69.006 59.933 54.463 51.235 49.085

average fetch time (msec) 13.302 14.879 16.005 17.096 17.981 18.251

average disk utilization 0.78 0.63 0.52 0.46 0.41 0.36

Aggressive

fetches 6041 6121 6647 7044 8048 8390

driver time (sec) 3.0205 3.0605 3.3235 3.522 4.024 4.195

stall time (sec) 46.429 13.448 4.781 2.51 0.829 0.029

elapsed time (sec) 88.166 55.225 46.821 44.748 43.569 42.94

average fetch time (msec) 12.832 14.085 14.453 16.047 16.247 17.082

average disk utilization 0.88 0.78 0.68 0.63 0.6 0.56

Reverse Aggressive

fetches 5998 6072 6542 6377 6441 6035

driver time (sec) 2.999 3.036 3.271 3.1885 3.2205 3.0175

stall time (sec) 42.301 11.025 3.324 0.964 0 0

elapsed time (sec) 84.016 52.777 45.311 42.869 41.937 41.734

average fetch time (msec) 12.749 13.675 13.685 14.398 14.649 17.02

average disk utilization 0.91 0.79 0.66 0.54 0.45 0.41
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Table A.24: Performance on the postgres-join trace, cache size 640.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 4640 4640 4640 4640 4640 4640

driver time (sec) 2.32 2.32 2.32 2.32 2.32 2.32

stall time (sec) 4.96 0.04 0.017 0.017 0.017 0.017

elapsed time (sec) 86.496 81.576 81.553 81.553 81.553 81.553

average fetch time (msec) 17.211 18.089 18.152 18.378 18.463 18.217

average disk utilization 0.92 0.51 0.34 0.26 0.21 0.17

Aggressive

fetches 5378 7310 8013 8043 7758 7561

driver time (sec) 2.689 3.655 4.0065 4.0215 3.879 3.7805

stall time (sec) 3.994 0.152 0.258 0 0 0.001

elapsed time (sec) 85.899 83.023 83.48 83.237 83.095 82.997

average fetch time (msec) 15.152 17.332 16.677 16.709 16.899 16.909

average disk utilization 0.95 0.76 0.53 0.4 0.32 0.26

Reverse Aggressive

fetches 4912 4615 4631 4657 4676 4691

driver time (sec) 2.456 2.3075 2.3155 2.3285 2.338 2.3455

stall time (sec) 3.655 0.021 0.019 0.017 0.015 0.013

elapsed time (sec) 85.327 81.544 81.55 81.561 81.569 81.574

average fetch time (msec) 16.064 18.147 18.068 18.361 18.282 18.026

average disk utilization 0.92 0.51 0.34 0.26 0.21 0.17

Table A.25: Performance on the postgres-join trace, cache size 1920.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 3793 3793 3793 3793 3793 3793

driver time (sec) 1.8965 1.8965 1.8965 1.8965 1.8965 1.8965

stall time (sec) 4.723 0.041 0.018 0.018 0.018 0.018

elapsed time (sec) 85.835 81.153 81.13 81.13 81.13 81.13

average fetch time (msec) 17.261 18.038 18.066 18.353 18.357 18.126

average disk utilization 0.76 0.42 0.28 0.21 0.17 0.14

Aggressive

fetches 3943 4797 4976 4943 4863 4856

driver time (sec) 1.9715 2.3985 2.488 2.4715 2.4315 2.428

stall time (sec) 3.995 0.153 0.258 0 0 0.001

elapsed time (sec) 85.182 81.767 81.962 81.687 81.647 81.645

average fetch time (msec) 14.781 16.013 15.626 16.613 16.646 17.033

average disk utilization 0.68 0.47 0.32 0.25 0.2 0.17

Reverse Aggressive

fetches 3801 3795 3801 3801 3801 3801

driver time (sec) 1.9005 1.8975 1.9005 1.9005 1.9005 1.9005

stall time (sec) 3.775 0.009 0.001 0 0 0.001

elapsed time (sec) 84.891 81.122 81.117 81.116 81.116 81.117

average fetch time (msec) 14.786 17.122 17.184 17.237 17.173 17.464

average disk utilization 0.66 0.4 0.27 0.2 0.16 0.14
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Table A.26: Performance on the postgres-select trace, cache size 640.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 3155 3155 3155 3155 3155 3155

driver time (sec) 1.5775 1.5775 1.5775 1.5775 1.5775 1.5775

stall time (sec) 32.755 12.841 6.049 3.226 1.402 0.581

elapsed time (sec) 45.81 25.896 19.104 16.281 14.457 13.636

average fetch time (msec) 14.222 14.786 14.943 15.012 15.279 15.323

average disk utilization 0.98 0.9 0.82 0.73 0.67 0.59

Aggressive

fetches 3249 3299 3394 3317 3965 4099

driver time (sec) 1.6245 1.6495 1.697 1.6585 1.9825 2.0495

stall time (sec) 32.613 11.717 4.384 1.007 0 0.001

elapsed time (sec) 45.715 24.844 17.559 14.143 13.46 13.528

average fetch time (msec) 13.938 14.118 13.944 14.557 13.923 15.171

average disk utilization 0.99 0.94 0.9 0.85 0.82 0.77

Reverse Aggressive

fetches 3274 3354 3290 3341 3191 3170

driver time (sec) 1.637 1.677 1.645 1.6705 1.5955 1.585

stall time (sec) 31.026 10.967 4.271 0.353 0.005 0.013

elapsed time (sec) 44.141 24.122 17.394 13.501 13.078 13.076

average fetch time (msec) 13.282 13.614 14.029 13.744 15.048 15.574

average disk utilization 0.99 0.95 0.88 0.85 0.73 0.63

Table A.27: Performance on the postgres-select trace, cache size 1920.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 32.37 12.647 5.943 3.154 1.402 0.581

elapsed time (sec) 45.39 25.667 18.963 16.174 14.422 13.601

average fetch time (msec) 14.368 14.906 15.044 15.13 15.347 15.413

average disk utilization 0.98 0.9 0.82 0.72 0.66 0.58

Aggressive

fetches 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 30.691 10.772 3.517 0.844 0 0.001

elapsed time (sec) 43.711 23.792 16.537 13.864 13.02 13.021

average fetch time (msec) 13.985 14.173 13.95 14.55 14.446 15.175

average disk utilization 0.99 0.92 0.87 0.81 0.68 0.6

Reverse Aggressive

fetches 3106 3106 3122 3110 3109 3108

driver time (sec) 1.553 1.553 1.561 1.555 1.5545 1.554

stall time (sec) 28.956 8.461 2.656 0.125 0 0.001

elapsed time (sec) 41.987 21.492 15.695 13.158 13.032 13.033

average fetch time (msec) 13.248 12.668 12.072 13.581 14.419 15.115

average disk utilization 0.98 0.92 0.8 0.8 0.69 0.6
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Table A.28: Performance on the xds trace, cache size 640.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 6726 6726 6726 6726 6726 6726

driver time (sec) 3.363 3.363 3.363 3.363 3.363 3.363

stall time (sec) 38.883 6.666 4.75 1.751 0.653 0.128

elapsed time (sec) 72.325 40.108 38.192 35.193 34.095 33.57

average fetch time (msec) 10.533 7.597 14.077 9.972 15.262 10.713

average disk utilization 0.98 0.64 0.83 0.48 0.6 0.36

Aggressive

fetches 6866 8769 7501 10876 8913 11309

driver time (sec) 3.433 4.3845 3.7505 5.438 4.4565 5.6545

stall time (sec) 38.711 1.996 1.719 0.129 0.134 0.055

elapsed time (sec) 72.223 36.459 35.548 35.646 34.669 35.788

average fetch time (msec) 10.484 7.313 13.856 9.646 15.229 10.67

average disk utilization 1 0.88 0.97 0.74 0.78 0.56

Reverse Aggressive

fetches 6718 6983 6813 7070 6712 7040

driver time (sec) 3.359 3.4915 3.4065 3.535 3.356 3.52

stall time (sec) 37.569 0.371 1.292 0.096 0.016 0.023

elapsed time (sec) 71.007 33.941 34.777 33.71 33.451 33.622

average fetch time (msec) 10.527 7.58 14.184 9.639 14.91 10.011

average disk utilization 1 0.78 0.93 0.51 0.6 0.35

Table A.29: Performance on the xds trace, cache size 1920.

Disks 1 2 3 4 5 6

Fixed Horizon

fetches 5392 5392 5392 5392 5392 5392

driver time (sec) 2.696 2.696 2.696 2.696 2.696 2.696

stall time (sec) 29.047 4.104 2.404 0.892 0.304 0.094

elapsed time (sec) 61.822 36.879 35.179 33.667 33.079 32.869

average fetch time (msec) 10.857 7.848 13.977 10.251 14.806 10.846

average disk utilization 0.95 0.57 0.71 0.41 0.48 0.3

Aggressive

fetches 5392 7067 5894 8817 7483 9174

driver time (sec) 2.696 3.5335 2.947 4.4085 3.7415 4.587

stall time (sec) 26.626 0.337 0.355 0.129 0.134 0.055

elapsed time (sec) 59.401 33.949 33.381 34.616 33.954 34.721

average fetch time (msec) 10.841 7.613 14.085 10.061 15.434 10.683

average disk utilization 0.98 0.79 0.83 0.64 0.68 0.47

Reverse Aggressive

fetches 5415 5531 5415 5530 5396 5538

driver time (sec) 2.7075 2.7655 2.7075 2.765 2.698 2.769

stall time (sec) 26.357 0.107 0.206 0.02 0.016 0.017

elapsed time (sec) 59.143 32.951 32.992 32.864 32.793 32.865

average fetch time (msec) 10.828 7.809 14.095 9.927 14.775 10.376

average disk utilization 0.99 0.66 0.77 0.42 0.49 0.29
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A.5 Performance data: varying aggressive's batch size

This section contains the performance data for aggressive with varying batch size.

Table A.30: Aggressive performance as a function of batch size on the dinero trace.

Disks 1 2 3 4 5 6

Batch size 4

fetches 8812 8813 8812 8812 8812 8813

driver time (sec) 4.406 4.4065 4.406 4.406 4.406 4.4065

stall time (sec) 0.023 0.021 0.019 0.017 0.015 0.013

elapsed time (sec) 107.967 107.966 107.963 107.961 107.959 107.958

average fetch time (msec) 3.118 3.134 3.151 3.167 3.18 3.193

average disk utilization 0.25 0.13 0.086 0.065 0.052 0.043

Batch size 8

fetches 8812 8812 8812 8813 8817 8816

driver time (sec) 4.406 4.406 4.406 4.4065 4.4085 4.408

stall time (sec) 0.021 0.017 0.013 0.009 0.005 0.001

elapsed time (sec) 107.965 107.961 107.957 107.954 107.952 107.947

average fetch time (msec) 3.118 3.135 3.155 3.174 3.182 3.203

average disk utilization 0.25 0.13 0.086 0.065 0.052 0.044

Batch size 16

fetches 8812 8812 8812 8815 8812 8838

driver time (sec) 4.406 4.406 4.406 4.4075 4.406 4.419

stall time (sec) 0.017 0.009 0.001 0 0 0

elapsed time (sec) 107.961 107.953 107.945 107.946 107.944 107.957

average fetch time (msec) 3.131 3.14 3.162 3.176 3.188 3.206

average disk utilization 0.26 0.13 0.086 0.065 0.052 0.044

Batch size 40

fetches 8812 8812 8823 8852 8869 8826

driver time (sec) 4.406 4.406 4.4115 4.426 4.4345 4.413

stall time (sec) 0.015 0 0 0 0 0

elapsed time (sec) 107.959 107.944 107.95 107.964 107.973 107.951

average fetch time (msec) 3.141 3.146 3.174 3.198 3.217 3.229

average disk utilization 0.26 0.13 0.086 0.066 0.053 0.044

Batch size 80

fetches 8812 8813 8812 8853 8883 8812

driver time (sec) 4.406 4.4065 4.406 4.4265 4.4415 4.406

stall time (sec) 0.145 0 0.015 0 0 0

elapsed time (sec) 108.089 107.945 107.959 107.965 107.98 107.944

average fetch time (msec) 3.141 3.148 3.185 3.206 3.221 3.23

average disk utilization 0.26 0.13 0.087 0.066 0.053 0.044

Batch size 160

fetches 8812 8814 8840 8812 8812 8812

driver time (sec) 4.406 4.407 4.42 4.406 4.406 4.406

stall time (sec) 0.405 0 0.195 0.055 0 0

elapsed time (sec) 108.349 107.945 108.153 107.999 107.944 107.944

average fetch time (msec) 3.15 3.163 3.19 3.206 3.215 3.231

average disk utilization 0.26 0.13 0.087 0.065 0.052 0.044
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Table A.31: Aggressive performance as a function of batch size on the cscope1 trace.

Disks 1 2 3 4 5 6

Batch size 4

fetches 5325 8555 8599 8661 8621 8583

driver time (sec) 2.6625 4.2775 4.2995 4.3305 4.3105 4.2915

stall time (sec) 4.161 0.021 0.019 0.017 0.015 0.013

elapsed time (sec) 31.758 29.233 29.253 29.282 29.26 29.239

average fetch time (msec) 5.28 3.349 3.374 3.383 3.366 3.376

average disk utilization 0.89 0.49 0.33 0.25 0.2 0.17

Batch size 8

fetches 5802 8584 8624 8650 8635 8576

driver time (sec) 2.901 4.292 4.312 4.325 4.3175 4.288

stall time (sec) 1.812 0.017 0.013 0.009 0.005 0.001

elapsed time (sec) 29.647 29.243 29.259 29.268 29.257 29.223

average fetch time (msec) 4.513 3.373 3.379 3.367 3.37 3.356

average disk utilization 0.88 0.5 0.33 0.25 0.2 0.16

Batch size 16

fetches 6300 8585 8647 8678 8621 8572

driver time (sec) 3.15 4.2925 4.3235 4.339 4.3105 4.286

stall time (sec) 0.881 0.009 0.001 0 0 0

elapsed time (sec) 28.965 29.236 29.259 29.273 29.245 29.22

average fetch time (msec) 3.991 3.416 3.41 3.365 3.39 3.38

average disk utilization 0.87 0.5 0.34 0.25 0.2 0.17

Batch size 40

fetches 6616 8570 8672 8662 8705 8574

driver time (sec) 3.308 4.285 4.336 4.331 4.3525 4.287

stall time (sec) 0.665 0 0 0 0 0

elapsed time (sec) 28.907 29.219 29.27 29.265 29.287 29.221

average fetch time (msec) 3.796 3.361 3.429 3.381 3.421 3.389

average disk utilization 0.87 0.49 0.34 0.25 0.2 0.17

Batch size 80

fetches 6931 8570 8677 8747 8713 8572

driver time (sec) 3.4655 4.285 4.3385 4.3735 4.3565 4.286

stall time (sec) 0.911 0 0.007 0 0 0

elapsed time (sec) 29.311 29.219 29.28 29.308 29.291 29.22

average fetch time (msec) 3.758 3.374 3.465 3.423 3.424 3.404

average disk utilization 0.89 0.49 0.34 0.26 0.2 0.17

Batch size 160

fetches 7360 8699 8662 8678 8621 8572

driver time (sec) 3.68 4.3495 4.331 4.339 4.3105 4.286

stall time (sec) 1.83 0.192 0.187 0 0 0

elapsed time (sec) 30.444 29.476 29.452 29.273 29.245 29.22

average fetch time (msec) 3.757 3.436 3.417 3.413 3.412 3.407

average disk utilization 0.91 0.51 0.33 0.25 0.2 0.17
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Table A.32: Aggressive performance as a function of batch size on the cscope2 trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Batch size 4

fetches 5982 6098 7029 8240 9574 10678 11406 11717 11619 11102 10662

driver time (sec) 2.991 3.049 3.5145 4.12 4.787 5.339 5.703 5.8585 5.8095 5.551 5.331

stall time (sec) 24.775 9.407 3.736 0.807 0.015 0.013 0.011 0.009 0.005 0.001 0

elapsed time (sec) 64.875 49.565 44.36 42.036 41.911 42.461 42.823 42.977 42.924 42.661 42.44

average fetch time (msec) 10.407 15.336 16.97 17.65 17.787 17.891 17.752 17.551 17.224 17.65 18.201

average disk utilization 0.96 0.94 0.9 0.86 0.81 0.75 0.68 0.6 0.47 0.38 0.29

Batch size 8

fetches 6009 6194 7277 8541 9952 11014 11587 11758 11565 11134 10662

driver time (sec) 3.0045 3.097 3.6385 4.2705 4.976 5.507 5.7935 5.879 5.7825 5.567 5.331

stall time (sec) 23.367 8.442 3.15 0.299 0.005 0.001 0 0 0 0 0

elapsed time (sec) 63.481 48.648 43.898 41.679 42.09 42.617 42.903 42.988 42.892 42.676 42.44

average fetch time (msec) 10.298 14.97 16.392 17.193 17.527 17.683 17.722 17.532 17.195 17.534 18.135

average disk utilization 0.97 0.95 0.91 0.88 0.83 0.76 0.68 0.6 0.46 0.38 0.28

Batch size 16

fetches 6044 6321 7583 8956 10299 11364 11617 11758 11565 11134 10662

driver time (sec) 3.022 3.1605 3.7915 4.478 5.1495 5.682 5.8085 5.879 5.7825 5.567 5.331

stall time (sec) 20.041 6.887 2.507 0 0 0 0 0 0 0 0

elapsed time (sec) 60.172 47.157 43.408 41.587 42.259 42.791 42.918 42.988 42.892 42.676 42.44

average fetch time (msec) 9.793 14.201 15.654 16.514 17.138 17.426 17.444 17.343 17.098 17.498 18.085

average disk utilization 0.98 0.95 0.91 0.89 0.84 0.77 0.67 0.59 0.46 0.38 0.28

Batch size 40

fetches 6171 6592 8208 9684 10892 11553 11728 11884 11654 11164 10662

driver time (sec) 3.0855 3.296 4.104 4.842 5.446 5.7765 5.864 5.942 5.827 5.582 5.331

stall time (sec) 16.349 5.597 1.798 0.156 0.044 0.115 0.06 0.046 0 0 0

elapsed time (sec) 56.544 46.002 43.011 42.107 42.599 43.001 43.033 43.097 42.936 42.691 42.44

average fetch time (msec) 9.099 13.256 14.354 15.55 16.49 17.067 17.266 17.228 16.938 17.369 17.931

average disk utilization 0.99 0.95 0.91 0.89 0.84 0.76 0.67 0.59 0.46 0.38 0.28

Batch size 80

fetches 6318 7022 8799 10463 11331 11655 11753 11897 11807 11291 10662

driver time (sec) 3.159 3.511 4.3995 5.2315 5.6655 5.8275 5.8765 5.9485 5.9035 5.6455 5.331

stall time (sec) 15.858 4.803 1.017 0.48 0.285 0.4 0.197 0.183 0.091 0.115 0

elapsed time (sec) 56.126 45.423 42.526 42.821 43.06 43.337 43.183 43.241 43.104 42.87 42.44

average fetch time (msec) 8.773 12.278 13.331 14.736 16.237 16.979 17.106 17.009 16.756 17.182 17.717

average disk utilization 0.99 0.95 0.92 0.9 0.85 0.76 0.67 0.58 0.46 0.38 0.28

Batch size 160

fetches 6771 7778 9478 10967 11325 11942 11859 12039 11619 11130 10604

driver time (sec) 3.3855 3.889 4.739 5.4835 5.6625 5.971 5.9295 6.0195 5.8095 5.565 5.302

stall time (sec) 17.081 5.856 1.078 1.119 1.029 0.956 0.832 0.882 0.559 0.197 0.016

elapsed time (sec) 57.576 46.854 42.926 43.712 43.801 44.036 43.871 44.011 43.478 42.871 42.427

average fetch time (msec) 8.443 11.569 12.688 14.445 16.183 16.833 17.135 17.078 16.679 17.019 17.744

average disk utilization 0.99 0.96 0.93 0.91 0.84 0.76 0.66 0.58 0.45 0.37 0.28
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Table A.33: Aggressive performance as a function of batch size on the cscope3 trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Batch size 4

fetches 11763 12349 14291 16061 17462 18026 17821 17577 16917 16542 16314

driver time (sec) 5.8815 6.1745 7.1455 8.0305 8.731 9.013 8.9105 8.7885 8.4585 8.271 8.157

stall time (sec) 28.053 6.26 1.518 0.363 0.015 0.013 0.011 0.009 0.005 0.001 0

elapsed time (sec) 108.035 86.535 82.764 82.494 82.847 83.127 83.022 82.898 82.564 82.373 82.258

average fetch time (msec) 8.624 12.843 15.411 16.314 16.698 16.667 16.725 16.905 17.605 17.966 18.49

average disk utilization 0.94 0.92 0.89 0.79 0.7 0.6 0.51 0.45 0.36 0.3 0.23

Batch size 8

fetches 11779 12627 14881 16441 17635 18081 17894 17565 16902 16546 16284

driver time (sec) 5.8895 6.3135 7.4405 8.2205 8.8175 9.0405 8.947 8.7825 8.451 8.273 8.142

stall time (sec) 25.287 5.205 1.323 0.069 0.005 0.001 0 0 0 0 0

elapsed time (sec) 105.277 85.619 82.864 82.39 82.923 83.142 83.048 82.883 82.552 82.374 82.243

average fetch time (msec) 8.623 12.65 15.121 16.158 16.662 16.568 16.711 16.84 17.523 17.942 18.445

average disk utilization 0.96 0.93 0.91 0.81 0.71 0.6 0.51 0.45 0.36 0.3 0.23

Batch size 16

fetches 11811 13043 15366 16740 17713 18175 17924 17607 16902 16598 16314

driver time (sec) 5.9055 6.5215 7.683 8.37 8.8565 9.0875 8.962 8.8035 8.451 8.299 8.157

stall time (sec) 21.462 3.911 1.079 0.052 0 0.036 0 0 0 0.033 0

elapsed time (sec) 101.468 84.533 82.863 82.523 82.957 83.224 83.063 82.904 82.552 82.433 82.258

average fetch time (msec) 8.416 12.214 14.719 15.92 16.553 16.541 16.552 16.811 17.462 17.882 18.404

average disk utilization 0.98 0.94 0.91 0.81 0.71 0.6 0.51 0.45 0.36 0.3 0.23

Batch size 40

fetches 11925 13572 15938 17104 17842 18158 17924 17748 16981 16646 16344

driver time (sec) 5.9625 6.786 7.969 8.552 8.921 9.079 8.962 8.874 8.4905 8.323 8.172

stall time (sec) 15.648 2.862 0.64 0.274 0.264 0.249 0 0.06 0.179 0.204 0

elapsed time (sec) 95.711 83.749 82.71 82.927 83.286 83.429 83.063 83.035 82.77 82.628 82.273

average fetch time (msec) 7.949 11.597 14.215 15.737 16.3 16.35 16.496 16.651 17.391 17.777 18.264

average disk utilization 0.99 0.94 0.91 0.81 0.7 0.59 0.51 0.44 0.36 0.3 0.23

Batch size 80

fetches 12092 14105 16543 17257 17919 18357 18137 17819 16963 16766 16275

driver time (sec) 6.046 7.0525 8.2715 8.6285 8.9595 9.1785 9.0685 8.9095 8.4815 8.383 8.1375

stall time (sec) 13.943 2.195 0.715 0.584 0.704 0.489 0.219 0.368 0.494 0.338 0.093

elapsed time (sec) 94.09 83.348 83.087 83.313 83.764 83.768 83.388 83.378 83.076 82.822 82.331

average fetch time (msec) 7.741 11.093 13.798 15.546 16.225 16.284 16.339 16.549 17.325 17.639 18.155

average disk utilization 0.99 0.94 0.92 0.81 0.69 0.59 0.51 0.44 0.35 0.3 0.22

Batch size 160

fetches 12512 14919 16966 17314 18012 18450 18245 17733 16924 16468 16249

driver time (sec) 6.256 7.4595 8.483 8.657 9.006 9.225 9.1225 8.8665 8.462 8.234 8.1245

stall time (sec) 15.216 2.542 1.455 1.297 1.523 0.981 0.913 0.947 0.801 0.373 0.031

elapsed time (sec) 95.573 84.102 84.039 84.055 84.63 84.307 84.136 83.914 83.364 82.708 82.256

average fetch time (msec) 7.512 10.643 13.615 15.645 16.247 16.196 16.337 16.62 17.185 17.6 18.164

average disk utilization 0.98 0.94 0.92 0.81 0.69 0.59 0.51 0.44 0.35 0.29 0.22
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Table A.34: Aggressive performance as a function of batch size on the glimpse trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Batch size 4

fetches 6520 6597 6803 7178 7957 8946 10017 10992 12009 11530 11315

driver time (sec) 3.26 3.2985 3.4015 3.589 3.9785 4.473 5.0085 5.496 6.0045 5.765 5.6575

stall time (sec) 62.407 24.43 10.612 3.948 2.034 0.371 0.011 0.009 0.005 0.001 0

elapsed time (sec) 104.383 66.445 52.73 46.253 44.729 43.56 43.736 44.221 44.726 44.482 44.374

average fetch time (msec) 13.918 15.694 16.698 17.342 17.959 17.334 17.074 16.896 16.137 15.917 16.198

average disk utilization 0.87 0.78 0.72 0.67 0.64 0.59 0.56 0.52 0.43 0.34 0.26

Batch size 8

fetches 6532 6636 6883 7349 8475 9376 10423 11296 12085 11709 11457

driver time (sec) 3.266 3.318 3.4415 3.6745 4.2375 4.688 5.2115 5.648 6.0425 5.8545 5.7285

stall time (sec) 60.737 22.944 9.255 3.264 1.495 0.035 0 0 0 0 0

elapsed time (sec) 102.719 64.978 51.413 45.655 44.449 43.439 43.928 44.364 44.759 44.571 44.445

average fetch time (msec) 13.732 15.366 16.344 16.857 16.92 16.836 16.79 16.886 15.76 15.862 16.169

average disk utilization 0.87 0.78 0.73 0.68 0.65 0.61 0.57 0.54 0.43 0.35 0.26

Batch size 16

fetches 6553 6631 6959 7551 8908 9975 10860 11795 12487 11980 11499

driver time (sec) 3.2765 3.3155 3.4795 3.7755 4.454 4.9875 5.43 5.8975 6.2435 5.99 5.7495

stall time (sec) 59.057 20.883 7.529 2.495 0.826 0 0 0 0 0 0

elapsed time (sec) 101.05 62.915 49.725 44.987 43.996 43.704 44.146 44.614 44.96 44.706 44.466

average fetch time (msec) 13.523 15.002 15.658 16.247 15.973 16.255 16.513 16.529 15.635 15.695 16.172

average disk utilization 0.88 0.79 0.73 0.68 0.65 0.62 0.58 0.55 0.43 0.35 0.26

Batch size 40

fetches 6601 6888 7287 8524 9998 10670 11662 12237 12721 12148 11517

driver time (sec) 3.3005 3.444 3.6435 4.262 4.999 5.335 5.831 6.1185 6.3605 6.074 5.7585

stall time (sec) 56.841 18.58 6.384 1.608 0 0 0 0 0 0 0

elapsed time (sec) 98.858 60.74 48.744 44.586 43.715 44.051 44.547 44.835 45.077 44.79 44.475

average fetch time (msec) 13.225 14.259 14.645 14.741 14.873 15.694 16.011 15.98 15.585 15.677 15.951

average disk utilization 0.88 0.81 0.73 0.7 0.68 0.63 0.6 0.55 0.44 0.35 0.26

Batch size 80

fetches 6690 7128 7930 9430 11022 11778 12142 12540 12643 12026 11487

driver time (sec) 3.345 3.564 3.965 4.715 5.511 5.889 6.071 6.27 6.3215 6.013 5.7435

stall time (sec) 54.58 16.457 5.461 0.836 0 0.021 0 0.001 0 0 0

elapsed time (sec) 96.641 58.737 48.142 44.267 44.227 44.626 44.787 44.987 45.038 44.729 44.46

average fetch time (msec) 12.889 13.571 13.547 13.629 14.129 15.243 15.763 15.963 15.638 15.547 15.83

average disk utilization 0.89 0.82 0.74 0.73 0.7 0.67 0.61 0.56 0.44 0.35 0.26

Batch size 160

fetches 7007 7690 9473 10657 11387 11825 12417 12521 12885 12062 11487

driver time (sec) 3.5035 3.845 4.7365 5.3285 5.6935 5.9125 6.2085 6.2605 6.4425 6.031 5.7435

stall time (sec) 51.598 17.187 5.473 1.041 0.7 0.575 0.27 0.37 0 0 0

elapsed time (sec) 93.818 59.748 48.926 45.086 45.11 45.204 45.195 45.347 45.159 44.747 44.46

average fetch time (msec) 12.508 12.9 12.754 13.102 14.031 15.132 15.654 15.918 15.514 15.515 15.792

average disk utilization 0.93 0.83 0.82 0.77 0.71 0.66 0.61 0.55 0.44 0.35 0.26



129

Table A.35: Aggressive performance as a function of batch size on the ld trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Batch size 4

fetches 2885 2909 2916 2952 3048 3332 3586 3779 4091 4285 4651

driver time (sec) 1.4425 1.4545 1.458 1.476 1.524 1.666 1.793 1.8895 2.0455 2.1425 2.3255

stall time (sec) 16.476 8.221 5.117 2.955 1.414 0.737 0.174 0.009 0.005 0.001 0

elapsed time (sec) 26.083 17.84 14.74 12.596 11.103 10.568 10.132 10.063 10.215 10.308 10.49

average fetch time (msec) 8.679 11.449 13.866 15.474 16.32 16.472 17.13 17.175 17.62 18.017 18.261

average disk utilization 0.96 0.93 0.91 0.91 0.9 0.87 0.87 0.81 0.71 0.62 0.51

Batch size 8

fetches 2892 2918 2942 3021 3192 3505 3734 3951 4183 4410 4687

driver time (sec) 1.446 1.459 1.471 1.5105 1.596 1.7525 1.867 1.9755 2.0915 2.205 2.3435

stall time (sec) 17.041 8.126 4.675 2.65 1.241 0.265 0.023 0.012 0 0 0

elapsed time (sec) 26.652 17.75 14.311 12.325 11.002 10.182 10.055 10.152 10.256 10.37 10.508

average fetch time (msec) 8.981 11.609 13.686 14.984 15.797 15.958 16.444 16.804 17.436 17.624 18.105

average disk utilization 0.97 0.95 0.94 0.92 0.92 0.92 0.87 0.82 0.71 0.62 0.5

Batch size 16

fetches 2896 2942 2982 3102 3310 3626 3856 4107 4329 4559 4748

driver time (sec) 1.448 1.471 1.491 1.551 1.655 1.813 1.928 2.0535 2.1645 2.2795 2.374

stall time (sec) 16.552 7.34 3.845 2.052 0.579 0.287 0 0 0 0 0

elapsed time (sec) 26.165 16.976 13.501 11.768 10.399 10.265 10.093 10.218 10.329 10.444 10.539

average fetch time (msec) 8.919 11.194 12.99 14.199 14.932 15.516 15.914 16.277 17.002 17.214 17.786

average disk utilization 0.99 0.97 0.96 0.94 0.95 0.91 0.87 0.82 0.71 0.63 0.5

Batch size 40

fetches 2934 2982 3137 3297 3560 3893 4105 4338 4610 4776 4741

driver time (sec) 1.467 1.491 1.5685 1.6485 1.78 1.9465 2.0525 2.169 2.305 2.388 2.3705

stall time (sec) 15.58 6.329 3.433 1.594 0.368 0.22 0.077 0.013 0 0 0

elapsed time (sec) 25.212 15.985 13.166 11.407 10.313 10.331 10.294 10.347 10.47 10.553 10.535

average fetch time (msec) 8.523 10.583 12.037 13.131 13.917 14.641 15.208 15.687 16.162 16.703 17.38

average disk utilization 0.99 0.99 0.96 0.95 0.96 0.92 0.87 0.82 0.71 0.63 0.49

Batch size 80

fetches 2981 3142 3257 3571 3909 4326 4496 4692 4941 4862 4695

driver time (sec) 1.4905 1.571 1.6285 1.7855 1.9545 2.163 2.248 2.346 2.4705 2.431 2.3475

stall time (sec) 15.245 6.26 3.176 1.554 0.798 0.392 0.244 0.332 0.05 0.083 0

elapsed time (sec) 24.9 15.996 12.969 11.504 10.917 10.72 10.657 10.843 10.685 10.679 10.512

average fetch time (msec) 8.248 9.932 11.459 12.33 13.341 13.85 14.594 15.099 15.92 16.378 16.986

average disk utilization 0.99 0.98 0.96 0.96 0.96 0.93 0.88 0.82 0.74 0.62 0.47

Batch size 160

fetches 3134 3356 3823 4207 4560 4644 4914 4721 4788 4688 4630

driver time (sec) 1.567 1.678 1.9115 2.1035 2.28 2.322 2.457 2.3605 2.394 2.344 2.315

stall time (sec) 15.141 6.183 3.941 2.35 1.72 1.466 0.879 0.953 0.441 0.386 0

elapsed time (sec) 24.873 16.026 14.017 12.618 12.165 11.953 11.501 11.478 11 10.895 10.48

average fetch time (msec) 7.856 9.362 10.522 11.344 12.389 13.653 14.519 15.356 15.746 16.049 17.023

average disk utilization 0.99 0.98 0.96 0.95 0.93 0.88 0.89 0.79 0.69 0.58 0.47



130

Table A.36: Aggressive performance as a function of batch size on the postgres-join

trace.

Disks 1 2 3 4 5 6

Batch size 4

fetches 3925 5451 6044 6062 5978 5925

driver time (sec) 1.9625 2.7255 3.022 3.031 2.989 2.9625

stall time (sec) 11.351 0.021 0.019 0.017 0.015 0.013

elapsed time (sec) 92.529 81.962 82.257 82.264 82.22 82.191

average fetch time (msec) 18.345 17.669 16.975 17.051 17.256 17.288

average disk utilization 0.78 0.59 0.42 0.31 0.25 0.21

Batch size 8

fetches 4051 5642 6116 6078 5998 5919

driver time (sec) 2.0255 2.821 3.058 3.039 2.999 2.9595

stall time (sec) 9.318 0.017 0.013 0.009 0.005 0.001

elapsed time (sec) 90.559 82.054 82.287 82.264 82.22 82.176

average fetch time (msec) 17.772 17.483 16.701 16.848 17.034 17.102

average disk utilization 0.79 0.6 0.41 0.31 0.25 0.21

Batch size 16

fetches 4233 5718 6170 6156 6047 5951

driver time (sec) 2.1165 2.859 3.085 3.078 3.0235 2.9755

stall time (sec) 7.437 0.009 0.001 0 0 0

elapsed time (sec) 88.769 82.084 82.302 82.294 82.239 82.191

average fetch time (msec) 16.928 17.15 16.438 16.578 16.706 16.837

average disk utilization 0.81 0.6 0.41 0.31 0.25 0.2

Batch size 40

fetches 4510 5836 6225 6239 6137 5954

driver time (sec) 2.255 2.918 3.1125 3.1195 3.0685 2.977

stall time (sec) 4.611 0.152 0.258 0.258 0 0.207

elapsed time (sec) 86.082 82.286 82.586 82.593 82.284 82.4

average fetch time (msec) 15.643 16.576 15.929 16.083 16.36 16.349

average disk utilization 0.82 0.59 0.4 0.3 0.24 0.2

Batch size 80

fetches 4698 5900 6307 6279 6140 5992

driver time (sec) 2.349 2.95 3.1535 3.1395 3.07 2.996

stall time (sec) 3.994 0.712 0.758 0.673 0.129 0.487

elapsed time (sec) 85.559 82.878 83.127 83.028 82.415 82.699

average fetch time (msec) 15.032 16.431 15.682 15.941 16.042 16.047

average disk utilization 0.83 0.58 0.4 0.3 0.24 0.19

Batch size 160

fetches 4890 5940 6387 6270 6090 6176

driver time (sec) 2.445 2.97 3.1935 3.135 3.045 3.088

stall time (sec) 3.774 1.591 1.522 1.232 0.424 0.922

elapsed time (sec) 85.435 83.777 83.931 83.583 82.685 83.226

average fetch time (msec) 14.506 16.232 15.549 15.557 15.763 15.713

average disk utilization 0.83 0.58 0.39 0.29 0.23 0.19
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Table A.37: Aggressive performance as a function of batch size on the postgres-select

trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Batch size 4

fetches 3085 3085 3085 3085 3085 3220 3633 3937 3902 3852 3731

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.61 1.8165 1.9685 1.951 1.926 1.8655

stall time (sec) 39.507 13.89 5.578 1.786 0.177 0.013 0.011 0.009 0.005 0.001 0

elapsed time (sec) 52.527 26.91 18.598 14.806 13.197 13.101 13.305 13.455 13.434 13.405 13.343

average fetch time (msec) 16.582 16.121 15.884 15.833 15.544 15.172 15.412 15.274 14.797 14.8 15.155

average disk utilization 0.97 0.92 0.88 0.82 0.73 0.62 0.6 0.56 0.43 0.35 0.26

Batch size 8

fetches 3085 3085 3085 3085 3085 3317 3826 4068 3975 3854 3731

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.6585 1.913 2.034 1.9875 1.927 1.8655

stall time (sec) 37.572 13.285 4.968 1.198 0.005 0.001 0 0 0 0 0

elapsed time (sec) 50.592 26.305 17.988 14.218 13.025 13.137 13.391 13.512 13.465 13.405 13.343

average fetch time (msec) 15.972 15.679 15.45 15.156 15.113 15.036 15.221 14.961 14.501 14.653 14.895

average disk utilization 0.97 0.92 0.88 0.82 0.72 0.63 0.62 0.56 0.43 0.35 0.26

Batch size 16

fetches 3085 3085 3085 3085 3286 3563 3989 4158 3975 3854 3731

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.643 1.7815 1.9945 2.079 1.9875 1.927 1.8655

stall time (sec) 35.953 12.022 4.149 0.844 0 0 0 0 0 0 0

elapsed time (sec) 48.973 25.042 17.169 13.864 13.121 13.259 13.472 13.557 13.465 13.405 13.343

average fetch time (msec) 15.468 15.047 14.865 14.55 13.923 14.605 14.883 14.47 14.155 14.44 14.675

average disk utilization 0.97 0.93 0.89 0.81 0.7 0.65 0.63 0.55 0.42 0.35 0.26

Batch size 40

fetches 3085 3085 3085 3085 3498 3947 4207 4218 4059 3933 3741

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.749 1.9735 2.1035 2.109 2.0295 1.9665 1.8705

stall time (sec) 33.015 10.772 3.517 0.11 0.008 0.133 0.185 0.13 0 0.038 0

elapsed time (sec) 46.035 23.792 16.537 13.13 13.235 13.584 13.766 13.717 13.507 13.482 13.348

average fetch time (msec) 14.695 14.173 13.95 13.619 13.303 14.127 14.887 14.086 13.765 13.766 13.85

average disk utilization 0.98 0.92 0.87 0.8 0.7 0.68 0.65 0.54 0.41 0.33 0.24

Batch size 80

fetches 3085 3085 3085 3222 3873 4118 4331 4157 4061 4100 3741

driver time (sec) 1.5425 1.5425 1.5425 1.611 1.9365 2.059 2.1655 2.0785 2.0305 2.05 1.8705

stall time (sec) 30.691 9.611 2.918 0.584 0.358 0.568 0.57 0.439 0 0.147 0

elapsed time (sec) 43.711 22.631 15.938 13.673 13.772 14.105 14.213 13.995 13.508 13.675 13.348

average fetch time (msec) 13.985 13.567 13.137 12.899 13.015 14.239 14.299 13.683 13.409 13.434 13.109

average disk utilization 0.99 0.92 0.85 0.76 0.73 0.69 0.62 0.51 0.4 0.34 0.23

Batch size 160

fetches 3085 3085 3388 3762 4126 4355 4340 4237 3933 3820 3681

driver time (sec) 1.5425 1.5425 1.694 1.881 2.063 2.1775 2.17 2.1185 1.9665 1.91 1.8405

stall time (sec) 28.957 8.422 3.301 1.369 0.888 1.044 0.968 0.831 0.048 0.182 0

elapsed time (sec) 41.977 21.442 16.473 14.728 14.429 14.699 14.616 14.427 13.492 13.57 13.318

average fetch time (msec) 13.296 12.704 12.173 12.398 12.972 13.751 13.798 12.985 12.565 12.885 12.883

average disk utilization 0.98 0.91 0.83 0.79 0.74 0.68 0.59 0.48 0.37 0.3 0.22
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Table A.38: Aggressive performance as a function of batch size on the xds trace.

Disks 1 2 3 4 5 6

Batch size 4

fetches 5858 6939 6023 9564 8040 10098

driver time (sec) 2.929 3.4695 3.0115 4.782 4.02 5.049

stall time (sec) 32.888 0.162 1.06 0.02 0.018 0.015

elapsed time (sec) 65.896 33.71 34.15 34.881 34.117 35.143

average fetch time (msec) 10.977 7.635 14.623 9.75 15.515 10.778

average disk utilization 0.98 0.79 0.86 0.67 0.73 0.52

Batch size 8

fetches 5862 7200 6202 9827 8068 10215

driver time (sec) 2.931 3.6 3.101 4.9135 4.034 5.1075

stall time (sec) 32.197 0.077 0.59 0.071 0.065 0.055

elapsed time (sec) 65.207 33.756 33.77 35.063 34.178 35.241

average fetch time (msec) 10.914 7.583 14.355 9.788 15.45 10.711

average disk utilization 0.98 0.81 0.88 0.69 0.73 0.52

Batch size 16

fetches 5868 7522 6306 9831 8312 10124

driver time (sec) 2.934 3.761 3.153 4.9155 4.156 5.062

stall time (sec) 31.504 0.192 0.205 0.129 0.133 0.076

elapsed time (sec) 64.517 34.032 33.437 35.123 34.368 35.217

average fetch time (msec) 10.854 7.564 14.151 9.801 15.454 10.6

average disk utilization 0.99 0.84 0.89 0.69 0.75 0.51

Batch size 40

fetches 5890 7778 6563 9929 8418 10353

driver time (sec) 2.945 3.889 3.2815 4.9645 4.209 5.1765

stall time (sec) 30.61 0.337 0.356 0.232 0.312 0.18

elapsed time (sec) 63.634 34.305 33.716 35.275 34.6 35.435

average fetch time (msec) 10.745 7.496 14.101 9.92 15.441 10.63

average disk utilization 0.99 0.85 0.91 0.7 0.75 0.52

Batch size 80

fetches 5925 8126 6838 10150 8789 10461

driver time (sec) 2.9625 4.063 3.419 5.075 4.3945 5.2305

stall time (sec) 30.667 0.507 0.613 0.399 0.582 0.525

elapsed time (sec) 63.708 34.649 34.111 35.553 35.055 35.834

average fetch time (msec) 10.711 7.386 14.051 9.957 15.258 10.584

average disk utilization 1 0.87 0.94 0.71 0.77 0.51

Batch size 160

fetches 6005 8198 7519 10300 8601 10488

driver time (sec) 3.0025 4.099 3.7595 5.15 4.3005 5.244

stall time (sec) 31.271 0.951 1.998 1.331 1.608 0.978

elapsed time (sec) 64.352 35.129 35.836 36.56 35.987 36.301

average fetch time (msec) 10.707 7.447 13.692 9.715 15.213 10.363

average disk utilization 1 0.87 0.96 0.68 0.73 0.5
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A.6 Performance data: varying reverse aggressive's parameters

This section contains the performance data for reverse aggressive with varying batch sizes

and fetch time estimates. For brevity, only the elapsed times are shown.

Table A.39: Reverse aggressive elapsed time as a function of fetch time estimate and

batch size on the dinero trace.

Disks 1 2 3 4 5 6

Fetch time 4

Batch size 4 105.932 106.013 106.992 107.961 107.959 107.957

Batch size 8 105.946 106.013 106.991 107.953 107.949 107.945

Batch size 16 105.976 106.093 106.988 107.944 107.944 107.944

Batch size 40 106.03 106.348 107.021 107.944 107.944 107.944

Batch size 80 106.283 106.798 107.468 107.944 107.944 107.947

Batch size 160 106.825 107.719 108.033 108.044 107.944 107.954

Fetch time 8

Batch size 4 105.931 105.949 105.979 106.013 106.502 106.99

Batch size 8 105.944 105.981 106.023 106.119 106.502 106.99

Batch size 16 105.972 106.094 106.13 106.335 106.512 107.004

Batch size 40 106.01 106.332 106.476 106.891 107.282 107.542

Batch size 80 106.22 106.716 107.104 107.805 107.944 107.944

Batch size 160 106.708 107.425 108.11 108.148 107.944 107.954

Fetch time 16

Batch size 4 105.929 105.946 105.978 105.986 106.047 106.06

Batch size 8 105.945 105.977 106.028 106.09 106.146 106.191

Batch size 16 105.976 106.093 106.156 106.233 106.344 106.459

Batch size 40 105.975 106.32 106.478 106.743 107.241 107.499

Batch size 80 106.181 106.716 107.227 107.685 107.939 107.944

Batch size 160 106.684 107.425 108.149 108.059 107.944 108.014

Fetch time 32

Batch size 4 105.927 105.945 105.978 105.981 106.047 106.069

Batch size 8 105.942 105.977 106.064 106.091 106.134 106.163

Batch size 16 105.974 106.093 106.161 106.253 106.329 106.402

Batch size 40 105.982 106.288 106.508 106.783 107.107 107.454

Batch size 80 106.15 106.716 107.371 107.659 107.935 107.948

Batch size 160 106.612 107.398 108.159 108.074 107.944 108.014

Fetch time 64

Batch size 4 105.927 105.941 105.972 105.978 106.047 106.063

Batch size 8 105.941 105.977 106.025 106.106 106.139 106.171

Batch size 16 105.969 106.089 106.17 106.203 106.302 106.369

Batch size 40 105.987 106.304 106.464 106.749 107.011 107.513

Batch size 80 106.15 106.716 107.268 107.594 107.907 107.944

Batch size 160 106.628 107.407 108.153 108.163 107.944 107.944

Fetch time 128

Batch size 4 105.927 105.941 105.972 105.97 106.01 106.063

Batch size 8 105.941 105.969 106.017 106.09 106.135 106.171

Batch size 16 105.969 106.089 106.17 106.336 106.314 106.419

Batch size 40 105.987 106.312 106.539 106.689 106.994 107.484

Batch size 80 106.15 106.716 107.27 107.603 107.932 107.952

Batch size 160 106.66 107.425 108.154 108.164 107.944 107.984
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Table A.40: Reverse aggressive elapsed time as a function of fetch time estimate and

batch size on the cscope1 trace.

Disks 1 2 3 4 5 6

Fetch time 4

Batch size 4 29.884 27.485 28.328 29.219 29.217 29.215

Batch size 8 29.509 27.529 28.328 29.211 29.207 29.203

Batch size 16 29.42 27.589 28.327 29.202 29.202 29.202

Batch size 40 29.339 27.807 28.351 29.202 29.202 29.202

Batch size 80 29.098 28.238 28.778 29.202 29.202 29.202

Batch size 160 29.894 29.255 29.404 29.348 29.202 29.202

Fetch time 8

Batch size 4 30.199 27.47 27.489 27.526 27.854 28.326

Batch size 8 30.072 27.486 27.532 27.593 27.851 28.326

Batch size 16 29.987 27.536 27.619 27.757 27.872 28.349

Batch size 40 29.479 27.678 27.927 28.231 28.528 28.937

Batch size 80 28.921 28.015 28.522 29.065 29.195 29.202

Batch size 160 29.792 29.038 29.351 29.438 29.202 29.202

Fetch time 16

Batch size 4 30.379 27.461 27.477 27.498 27.515 27.541

Batch size 8 30.34 27.51 27.517 27.556 27.603 27.661

Batch size 16 30.177 27.525 27.639 27.682 27.78 27.894

Batch size 40 29.683 27.756 27.869 28.066 28.362 28.664

Batch size 80 29.105 28.104 28.463 28.906 29.181 29.202

Batch size 160 30.051 29.045 29.377 29.318 29.202 29.202

Fetch time 32

Batch size 4 30.499 27.457 27.471 27.513 27.528 27.527

Batch size 8 30.423 27.507 27.513 27.544 27.592 27.673

Batch size 16 30.351 27.51 27.605 27.673 27.767 27.888

Batch size 40 30.048 27.725 27.954 28.159 28.374 28.675

Batch size 80 29.672 28.072 28.618 28.907 29.188 29.202

Batch size 160 30.773 29.036 29.393 29.455 29.202 29.202

Fetch time 64

Batch size 4 30.544 27.453 27.471 27.506 27.518 27.515

Batch size 8 30.465 27.48 27.513 27.563 27.598 27.662

Batch size 16 30.319 27.513 27.61 27.654 27.743 27.855

Batch size 40 30.171 27.74 27.91 28.054 28.459 28.722

Batch size 80 30.055 28.087 28.521 28.904 29.185 29.202

Batch size 160 30.259 29.037 29.295 29.273 29.202 29.202

Fetch time 128

Batch size 4 30.559 27.453 27.465 27.505 27.517 27.515

Batch size 8 30.521 27.48 27.506 27.548 27.598 27.657

Batch size 16 30.433 27.513 27.608 27.745 27.753 27.874

Batch size 40 30.224 27.752 27.998 28.075 28.4 28.759

Batch size 80 30.088 28.111 28.529 28.898 29.189 29.202

Batch size 160 30.169 29.053 29.324 29.236 29.202 29.202
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Table A.41: Reverse aggressive elapsed time as a function of fetch time estimate and

batch size on the cscope2 trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fetch time 4

Batch size 4 73.646 76.154 58.632 46.844 42.027 42.025 42.023 42.021 42.017 42.028 42.02

Batch size 8 68.713 73.32 56.656 45.18 42.017 42.013 42.012 42.02 42.012 42.019 42.018

Batch size 16 64.597 69.609 54.03 42.527 42.012 42.012 42.012 42.012 42.012 42.012 42.014

Batch size 40 60.204 65.388 50.161 42.228 42.056 42.167 42.132 42.118 42.012 42.167 42.063

Batch size 80 58.676 61.528 46.006 42.612 42.377 42.467 42.295 42.303 42.242 42.397 42.414

Batch size 160 58.824 58.068 43.961 43.221 43.178 43.163 43.107 43.137 43.002 42.705 42.431

Fetch time 8

Batch size 4 66.301 53.815 49.939 45.845 42.027 42.025 42.023 42.021 42.017 42.028 42.02

Batch size 8 65.976 52.196 47.404 44.208 42.017 42.013 42.012 42.02 42.012 42.019 42.018

Batch size 16 63.699 50.01 44.751 42.175 42.012 42.012 42.012 42.012 42.012 42.012 42.014

Batch size 40 61.436 49.007 43.106 42.227 42.056 42.167 42.132 42.118 42.012 42.167 42.063

Batch size 80 59.443 48.204 42.297 42.612 42.377 42.467 42.295 42.303 42.242 42.397 42.414

Batch size 160 59.338 49.797 42.507 43.221 43.178 43.163 43.108 43.137 43.002 42.705 42.431

Fetch time 16

Batch size 4 65.726 55.805 46.45 41.044 40.724 41.196 41.659 41.944 42.014 42.028 42.02

Batch size 8 66.026 53.985 45.297 40.555 40.723 41.195 41.666 41.983 42.012 42.019 42.018

Batch size 16 64.078 52.309 44.325 40.254 40.734 41.215 41.694 42.005 42.012 42.012 42.014

Batch size 40 61.326 51.027 43.843 40.661 40.83 41.439 41.892 42.118 42.012 42.167 42.063

Batch size 80 59.733 48.032 42.27 41.451 41.396 41.849 42.191 42.303 42.242 42.397 42.413

Batch size 160 58.255 48.498 42.151 42.79 43.061 43.116 43.106 43.123 43.002 42.705 42.431

Fetch time 32

Batch size 4 66.369 55.811 47.22 42.32 40.412 40.16 40.163 40.251 40.722 41.209 41.918

Batch size 8 66.538 54.272 46.13 41.626 40.176 40.197 40.218 40.265 40.734 41.218 41.953

Batch size 16 64.857 52.296 44.816 40.717 40.258 40.309 40.344 40.375 40.77 41.255 41.994

Batch size 40 61.57 50.761 43.215 40.604 40.542 40.8 40.815 40.925 41.024 41.565 42.063

Batch size 80 60.573 48.144 41.63 41.277 41.251 41.61 41.587 41.846 42.048 42.355 42.415

Batch size 160 59.52 47.419 42.172 42.502 42.862 43.117 42.985 42.976 43.202 43.14 42.431

Fetch time 64

Batch size 4 66.686 55.88 47.224 42.28 40.322 40.162 40.164 40.176 40.18 40.214 40.265

Batch size 8 66.943 54.08 46.155 41.415 40.185 40.191 40.201 40.251 40.263 40.312 40.39

Batch size 16 65.161 52.358 44.88 40.69 40.255 40.279 40.321 40.363 40.436 40.503 40.655

Batch size 40 62.331 50.149 43.592 40.636 40.549 40.706 40.763 40.865 40.942 41.286 41.539

Batch size 80 60.58 47.05 41.959 41.281 41.211 41.485 41.504 41.703 41.978 42.323 42.296

Batch size 160 59.045 47.689 42.042 42.517 42.849 43.065 43.107 43.159 43.189 43.294 42.313

Fetch time 128

Batch size 4 66.981 56.125 47.224 42.265 40.322 40.158 40.164 40.177 40.19 40.229 40.236

Batch size 8 67.219 54.329 46.125 41.412 40.187 40.196 40.218 40.237 40.255 40.298 40.367

Batch size 16 65.627 52.364 44.691 40.759 40.244 40.267 40.361 40.346 40.394 40.479 40.617

Batch size 40 61.941 50.631 43.293 40.592 40.501 40.68 40.833 40.915 40.876 41.199 41.475

Batch size 80 60.618 48.25 41.506 41.355 41.268 41.476 41.473 41.665 41.959 42.289 42.339

Batch size 160 59.294 46.826 41.969 42.696 42.856 43.096 43.044 42.959 43.168 43.314 42.311
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Table A.42: Reverse aggressive elapsed time as a function of fetch time estimate and

batch size on the cscope3 trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fetch time 4

Batch size 4 120.374 106.657 86.841 82.28 81.905 81.903 81.901 81.899 81.895 81.906 81.898

Batch size 8 116.187 102.762 83.583 82.011 81.895 81.891 81.89 81.898 81.89 81.897 81.896

Batch size 16 112.783 96.87 82.994 81.957 81.89 81.926 81.89 81.89 81.89 81.968 81.892

Batch size 40 107.785 91.908 82.549 82.224 82.184 82.154 81.964 81.993 82.133 82.226 81.999

Batch size 80 105.834 87.809 82.778 82.593 82.617 82.408 82.259 82.375 82.433 82.482 82.347

Batch size 160 104.065 85.424 83.448 83.379 83.458 83.014 83.052 83.083 82.751 82.653 82.354

Fetch time 8

Batch size 4 118.714 99.498 82.058 82.09 81.905 81.903 81.901 81.899 81.895 81.906 81.898

Batch size 8 117.231 96.441 81.642 81.832 81.895 81.891 81.89 81.898 81.89 81.897 81.896

Batch size 16 114.398 93.24 81.419 81.797 81.89 81.926 81.89 81.89 81.89 81.968 81.892

Batch size 40 109.654 90.407 81.011 82.111 82.184 82.154 81.964 81.993 82.133 82.226 81.999

Batch size 80 105.912 87.902 81.411 82.556 82.617 82.408 82.259 82.375 82.433 82.482 82.347

Batch size 160 105.316 85.933 82.611 83.379 83.457 83.014 83.052 83.083 82.751 82.653 82.354

Fetch time 16

Batch size 4 120.959 99.258 86.509 82.047 80.095 80.317 81.024 81.7 81.895 81.906 81.898

Batch size 8 119.269 96.896 85.597 81.219 80.072 80.316 81.025 81.72 81.89 81.897 81.896

Batch size 16 116.419 92.958 84.417 80.524 80.17 80.371 81.047 81.738 81.89 81.968 81.892

Batch size 40 111.804 89.826 82.373 80.647 80.737 80.806 81.203 81.91 82.133 82.226 81.999

Batch size 80 107.929 86.972 81.381 81.365 81.597 81.633 81.846 82.362 82.431 82.482 82.347

Batch size 160 106.978 84.24 82.473 82.839 83.309 82.926 83.044 83.094 82.751 82.653 82.354

Fetch time 32

Batch size 4 121.953 100.686 86.669 82.028 80.113 80.043 80.05 80.058 80.082 80.33 81.644

Batch size 8 121.183 98.076 85.666 81.279 80.056 80.08 80.091 80.127 80.168 80.341 81.668

Batch size 16 118.298 94.376 84.202 80.741 80.13 80.202 80.214 80.259 80.357 80.545 81.709

Batch size 40 112.982 90.68 82.261 80.612 80.66 80.742 80.645 80.757 81.137 81.409 81.92

Batch size 80 109.193 86.671 81.336 81.293 81.505 81.491 81.592 81.856 82.252 82.319 82.295

Batch size 160 108.381 84.039 82.41 82.678 83.19 82.925 83.065 83.095 82.857 82.675 82.324

Fetch time 64

Batch size 4 122.666 101.556 87.388 81.982 80.065 80.035 80.038 80.051 80.065 80.094 80.131

Batch size 8 121.796 98.68 86.101 81.224 80.047 80.07 80.078 80.117 80.145 80.185 80.266

Batch size 16 118.707 94.765 84.931 80.619 80.111 80.186 80.195 80.248 80.319 80.452 80.535

Batch size 40 113.545 91.279 82.495 80.602 80.615 80.661 80.584 80.723 81.03 81.328 81.463

Batch size 80 108.795 86.447 81.422 81.186 81.401 81.361 81.526 81.765 82.225 82.32 82.2

Batch size 160 106.666 84.729 82.374 82.613 83.161 82.904 82.979 83.022 82.669 82.372 82.294

Fetch time 128

Batch size 4 123.14 102.073 87.561 81.879 80.069 80.032 80.054 80.051 80.065 80.109 80.111

Batch size 8 122.151 98.879 86 81.045 80.049 80.07 80.084 80.111 80.12 80.174 80.244

Batch size 16 118.865 94.58 84.897 80.559 80.111 80.176 80.177 80.207 80.274 80.445 80.495

Batch size 40 113.657 91.243 82.453 80.625 80.587 80.641 80.562 80.67 80.96 81.225 81.426

Batch size 80 109.424 87.42 81.338 81.213 81.425 81.377 81.401 81.753 82.214 82.361 82.153

Batch size 160 107.025 84.923 82.402 82.926 83.243 82.917 83.057 83.083 82.857 82.548 82.339
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Table A.43: Reverse aggressive elapsed time as a function of fetch time estimate and

batch size on the glimpse trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fetch time 4

Batch size 4 120.334 85.098 65.108 53.355 47.429 44.047 43.626 43.624 43.62 43.62 43.615

Batch size 8 117.591 83.434 63.074 51.409 46.198 43.674 43.615 43.623 43.615 43.617 43.615

Batch size 16 114.802 81.065 60.735 49.93 44.488 43.615 43.615 43.615 43.615 43.615 43.615

Batch size 40 111.624 76.967 57.331 46.21 44.075 43.615 43.615 43.615 43.615 43.615 43.615

Batch size 80 109.285 71.402 53.632 44.116 43.615 43.665 43.649 43.735 43.615 43.794 43.665

Batch size 160 104.802 67.211 51.041 44.23 44.131 44.265 44.2 44.229 43.615 43.979 43.655

Fetch time 8

Batch size 4 107.913 73.03 64.973 53.265 47.429 44.047 43.626 43.624 43.62 43.62 43.615

Batch size 8 105.957 71.325 62.994 51.409 46.198 43.674 43.615 43.623 43.615 43.617 43.615

Batch size 16 103.948 68.957 60.837 49.93 44.488 43.615 43.615 43.615 43.615 43.615 43.615

Batch size 40 101.399 65.479 57.211 46.21 44.075 43.615 43.615 43.615 43.615 43.615 43.615

Batch size 80 99.3 60.248 53.496 44.116 43.615 43.665 43.649 43.735 43.615 43.794 43.665

Batch size 160 97.201 60.57 51.011 44.23 44.131 44.265 44.2 44.229 43.615 43.979 43.655

Fetch time 16

Batch size 4 105.481 66.119 53.034 46.815 45.171 44.013 43.623 43.623 43.62 43.62 43.615

Batch size 8 103.729 65.143 51.537 45.8 44.713 43.652 43.613 43.623 43.615 43.617 43.615

Batch size 16 101.83 63.657 50.158 45.06 44.049 43.609 43.614 43.615 43.615 43.615 43.615

Batch size 40 99.838 60.979 48.998 43.969 43.77 43.614 43.615 43.615 43.615 43.615 43.615

Batch size 80 96.914 58.512 47.502 43.282 43.394 43.665 43.649 43.735 43.615 43.794 43.665

Batch size 160 94.952 58.988 48.418 43.967 44.053 44.264 44.2 44.229 43.615 43.979 43.655

Fetch time 32

Batch size 4 106.155 66.602 53.799 47.221 44.527 42.727 42.336 42.609 43.235 43.593 43.614

Batch size 8 104.101 65.488 52.235 46.245 44.08 42.394 42.358 42.623 43.252 43.605 43.614

Batch size 16 102.238 63.442 50.491 45.059 43.337 42.334 42.416 42.639 43.29 43.612 43.614

Batch size 40 98.747 61.039 48.803 44.041 42.977 42.54 42.66 42.794 43.391 43.615 43.614

Batch size 80 96.797 58.354 47.504 43.707 42.701 42.907 43.076 43.344 43.565 43.794 43.651

Batch size 160 95.56 58.234 48.023 43.924 43.899 44.209 44.195 44.209 43.615 44.024 43.655

Fetch time 64

Batch size 4 106.528 67.17 53.854 47.269 44.426 42.57 42.142 42.17 42.224 42.289 42.61

Batch size 8 104.416 66.029 52.415 46.318 43.831 42.257 42.159 42.198 42.262 42.339 42.637

Batch size 16 102.302 63.946 50.393 45.07 43.04 42.158 42.222 42.272 42.36 42.479 42.708

Batch size 40 99.538 60.855 48.945 43.91 42.873 42.303 42.509 42.542 42.717 42.911 43.22

Batch size 80 96.534 58.395 47.984 43.436 42.532 42.802 43.041 43.248 43.453 43.732 43.611

Batch size 160 94.083 58.341 48.649 44.205 43.903 44.172 44.197 44.102 43.614 44.067 43.614

Fetch time 128

Batch size 4 106.633 67.215 54.05 47.374 44.304 42.508 42.055 42.08 42.096 42.133 42.205

Batch size 8 104.446 66.059 52.287 46.112 43.782 42.211 42.078 42.114 42.136 42.186 42.28

Batch size 16 102.287 63.773 50.739 45.159 43.046 42.118 42.134 42.181 42.246 42.319 42.452

Batch size 40 99.762 60.971 48.726 43.902 42.849 42.377 42.315 42.416 42.577 42.759 43.17

Batch size 80 96.544 58.679 47.561 43.747 42.526 42.81 42.818 43.123 43.407 43.734 43.612

Batch size 160 94.895 60.33 48.078 44.09 44.062 44.092 44.094 44.014 43.611 44.067 43.612
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Table A.44: Reverse aggressive elapsed time as a function of fetch time estimate and

batch size on the ld trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fetch time 4

Batch size 4 26.128 18.833 17.411 15.52 13.862 12.667 11.554 10.437 10.249 10.26 10.252

Batch size 8 26.651 18.755 16.815 15.207 13.373 11.861 10.74 10.252 10.244 10.251 10.25

Batch size 16 26.177 17.831 16.035 14.473 12.608 11.452 10.244 10.244 10.244 10.244 10.246

Batch size 40 25.345 16.858 15.096 13.367 11.83 10.809 10.353 10.318 10.244 10.338 10.278

Batch size 80 24.775 16.712 14.936 13.224 11.23 10.582 10.591 10.577 10.448 10.597 10.569

Batch size 160 24.347 16.47 14.807 12.826 11.44 11.23 11.393 11.411 11.29 11.006 10.571

Fetch time 8

Batch size 4 26.157 17.987 14.787 13.436 12.555 12.183 11.417 10.437 10.249 10.26 10.252

Batch size 8 26.642 17.867 14.172 12.895 12.013 11.394 10.74 10.252 10.244 10.251 10.25

Batch size 16 26.027 16.935 13.557 12.131 11.382 10.928 10.244 10.244 10.244 10.244 10.246

Batch size 40 25.348 16.289 13.392 11.525 10.767 10.666 10.353 10.318 10.244 10.338 10.278

Batch size 80 24.95 16.012 13.046 11.622 10.91 10.654 10.646 10.577 10.448 10.597 10.569

Batch size 160 24.377 16.05 13.599 12.282 11.615 11.358 11.393 11.411 11.29 11.006 10.571

Fetch time 16

Batch size 4 26.082 18.02 14.686 12.761 11.182 10.599 10.147 9.886 9.959 10.138 10.252

Batch size 8 26.591 17.75 14.203 12.176 11.07 10.516 10.017 9.868 9.971 10.151 10.25

Batch size 16 25.982 17.166 13.636 11.806 10.683 10.341 9.927 9.854 10.01 10.18 10.246

Batch size 40 25.223 16.171 13.331 11.671 10.624 10.42 10.15 9.978 10.124 10.335 10.278

Batch size 80 24.825 15.921 13.057 11.805 11 10.664 10.587 10.61 10.46 10.597 10.569

Batch size 160 24.462 15.972 13.897 12.294 12.024 11.948 11.858 11.301 11.59 10.991 10.586

Fetch time 32

Batch size 4 26.029 17.934 14.696 12.701 11.163 10.571 10.128 9.861 9.676 9.683 9.793

Batch size 8 26.351 17.837 14.292 12.17 10.954 10.434 10.118 9.816 9.678 9.699 9.817

Batch size 16 25.962 16.986 13.582 11.772 10.711 10.344 10.052 9.835 9.768 9.754 9.879

Batch size 40 25.27 16.282 13.347 11.847 10.747 10.447 10.341 10.008 9.995 10.052 10.129

Batch size 80 24.9 16.073 13.288 12.003 11.215 10.837 10.781 10.647 10.382 10.572 10.577

Batch size 160 24.435 16.01 13.66 12.866 12.324 12.356 12.229 11.772 11.535 11.097 10.826

Fetch time 64

Batch size 4 26.029 17.934 14.68 12.656 11.224 10.504 10.166 9.834 9.692 9.767 9.677

Batch size 8 26.351 17.762 14.23 12.215 11.08 10.474 10.098 9.896 9.709 9.737 9.713

Batch size 16 26.244 17.018 13.503 11.91 10.825 10.375 10.111 10.009 9.768 9.746 9.794

Batch size 40 25.167 16.238 13.364 11.949 10.682 10.548 10.358 10.204 9.931 10.034 10.106

Batch size 80 24.888 16.188 13.216 12.046 11.189 10.97 10.776 10.645 10.605 10.708 10.67

Batch size 160 24.392 15.953 13.671 12.775 12.323 12.384 12.119 12.194 11.985 11.542 11.076

Fetch time 128

Batch size 4 26.029 17.934 14.68 12.656 11.285 10.481 10.165 9.903 9.677 9.767 9.678

Batch size 8 26.351 17.762 14.278 12.19 11.05 10.442 10.129 9.862 9.701 9.735 9.714

Batch size 16 26.244 16.973 13.547 11.743 10.779 10.301 10.188 9.871 9.774 9.759 9.796

Batch size 40 25.219 16.114 13.346 11.759 10.749 10.471 10.515 10.203 10.178 10.06 10.088

Batch size 80 24.771 16.056 12.999 11.9 11.462 11.147 11.111 11.12 10.722 10.721 10.447

Batch size 160 24.377 16.148 13.651 12.722 12.605 12.135 12.557 12.579 12.059 11.549 10.615



139

Table A.45: Reverse aggressive elapsed time as a function of fetch time estimate and

batch size on the postgres-join trace.

Disks 1 2 3 4 5 6

Fetch time 4

Batch size 4 92.487 81.692 81.991 81.993 81.992 81.99

Batch size 8 90.455 81.691 81.988 81.986 81.982 81.978

Batch size 16 88.578 81.69 81.976 81.977 81.977 81.977

Batch size 40 85.763 81.871 82.253 82.25 81.977 82.234

Batch size 80 85.166 82.485 82.732 82.68 82.106 82.544

Batch size 160 85.002 83.489 83.497 83.284 82.401 83.086

Fetch time 8

Batch size 4 92.487 81.163 81.359 81.694 81.965 81.986

Batch size 8 90.455 81.165 81.358 81.693 81.974 81.976

Batch size 16 88.578 81.169 81.357 81.7 81.975 81.975

Batch size 40 85.763 81.364 81.665 82.02 81.976 82.233

Batch size 80 85.166 82.024 82.204 82.525 82.105 82.543

Batch size 160 84.986 83.106 83.232 83.242 82.4 83.085

Fetch time 16

Batch size 4 92.487 81.164 81.166 81.173 81.224 81.365

Batch size 8 90.455 81.166 81.17 81.177 81.224 81.362

Batch size 16 88.578 81.168 81.177 81.192 81.238 81.384

Batch size 40 85.763 81.363 81.514 81.568 81.352 81.71

Batch size 80 85.165 81.998 82.126 82.186 81.68 82.257

Batch size 160 84.99 83.067 83.165 83.141 82.342 83.04

Fetch time 32

Batch size 4 92.487 81.164 81.165 81.17 81.173 81.177

Batch size 8 90.455 81.164 81.167 81.176 81.18 81.187

Batch size 16 88.578 81.164 81.171 81.193 81.208 81.226

Batch size 40 85.765 81.36 81.497 81.565 81.312 81.633

Batch size 80 85.165 81.984 82.073 82.116 81.689 82.219

Batch size 160 84.984 83.02 83.063 83.104 82.347 82.961

Fetch time 64

Batch size 4 92.487 81.164 81.164 81.169 81.17 81.176

Batch size 8 90.455 81.167 81.166 81.172 81.175 81.18

Batch size 16 88.578 81.169 81.168 81.184 81.199 81.213

Batch size 40 85.765 81.365 81.494 81.523 81.293 81.604

Batch size 80 85.165 81.976 82.051 82.086 81.627 82.155

Batch size 160 84.985 83.015 83.014 83.091 82.346 83.054

Fetch time 128

Batch size 4 92.487 81.165 81.166 81.172 81.171 81.175

Batch size 8 90.455 81.165 81.17 81.177 81.177 81.178

Batch size 16 88.578 81.169 81.172 81.18 81.195 81.213

Batch size 40 85.765 81.352 81.498 81.518 81.289 81.577

Batch size 80 85.168 81.982 82.059 82.082 81.617 82.155

Batch size 160 84.988 83.026 83.075 83.043 82.347 83.032
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Table A.46: Reverse aggressive elapsed time as a function of fetch time estimate and

batch size on the postgres-select trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fetch time 4

Batch size 4 52.54 26.927 20.823 16.389 13.787 13.277 13.275 13.273 13.269 13.28 13.272

Batch size 8 50.627 26.314 20.25 15.712 13.294 13.265 13.264 13.272 13.264 13.271 13.27

Batch size 16 49.017 25.066 19.493 14.959 13.264 13.264 13.264 13.264 13.264 13.264 13.266

Batch size 40 46.106 23.816 18.577 13.859 13.272 13.412 13.508 13.476 13.264 13.341 13.287

Batch size 80 43.782 22.778 17.716 13.878 13.622 13.906 13.88 13.821 13.313 13.618 13.641

Batch size 160 41.995 22.471 16.889 14.707 14.281 14.368 14.496 14.338 13.832 13.806 13.656

Fetch time 8

Batch size 4 52.54 26.925 18.686 14.807 13.157 13.248 13.27 13.271 13.268 13.28 13.271

Batch size 8 50.606 26.313 18.011 14.236 13.131 13.246 13.263 13.27 13.263 13.271 13.269

Batch size 16 48.987 25.066 17.278 13.882 13.146 13.259 13.263 13.262 13.263 13.264 13.265

Batch size 40 46.075 23.816 16.586 13.181 13.209 13.412 13.507 13.474 13.263 13.341 13.286

Batch size 80 43.782 22.724 16.002 13.749 13.611 13.907 13.879 13.819 13.312 13.618 13.641

Batch size 160 41.995 21.496 15.797 14.672 14.253 14.368 14.494 14.336 13.831 13.806 13.655

Fetch time 16

Batch size 4 52.557 26.925 18.687 14.807 13.078 13.052 13.05 13.048 13.134 13.255 13.272

Batch size 8 50.627 26.314 18.011 14.236 13.044 13.04 13.039 13.047 13.147 13.26 13.27

Batch size 16 49.017 25.066 17.278 13.882 13.039 13.039 13.039 13.051 13.185 13.263 13.266

Batch size 40 46.106 23.816 16.586 13.164 13.047 13.191 13.326 13.343 13.254 13.34 13.287

Batch size 80 43.782 22.724 16.001 13.654 13.432 13.779 13.814 13.814 13.314 13.617 13.641

Batch size 160 41.995 21.496 16.398 14.681 14.293 14.345 14.494 14.301 13.827 13.805 13.641

Fetch time 32

Batch size 4 52.535 26.921 18.681 14.801 13.074 13.05 13.049 13.048 13.044 13.055 13.054

Batch size 8 50.599 26.311 18.007 14.236 13.044 13.04 13.039 13.047 13.039 13.046 13.068

Batch size 16 48.98 25.066 17.278 13.882 13.039 13.039 13.039 13.039 13.039 13.039 13.118

Batch size 40 46.039 23.816 16.586 13.164 13.047 13.187 13.283 13.255 13.07 13.198 13.27

Batch size 80 43.711 22.724 16.001 13.654 13.406 13.746 13.791 13.754 13.309 13.615 13.617

Batch size 160 41.987 21.496 16.333 14.638 14.208 14.37 14.504 14.184 13.746 13.603 13.638

Fetch time 64

Batch size 4 52.531 26.918 18.682 14.802 13.073 13.047 13.045 13.044 13.041 13.053 13.047

Batch size 8 50.595 26.309 18.008 14.232 13.038 13.035 13.038 13.047 13.039 13.046 13.045

Batch size 16 48.98 25.062 17.275 13.882 13.039 13.039 13.039 13.039 13.039 13.039 13.042

Batch size 40 46.039 23.812 16.586 13.164 13.047 13.187 13.284 13.251 13.064 13.199 13.275

Batch size 80 43.711 22.716 16.001 13.653 13.424 13.779 13.777 13.748 13.317 13.6 13.588

Batch size 160 41.987 21.497 15.924 14.636 14.295 14.343 14.504 14.22 13.713 13.873 13.621

Fetch time 128

Batch size 4 52.529 26.914 18.676 14.798 13.07 13.045 13.045 13.043 13.04 13.053 13.047

Batch size 8 50.595 26.309 18.003 14.228 13.036 13.033 13.034 13.042 13.036 13.044 13.045

Batch size 16 48.98 25.062 17.27 13.874 13.032 13.037 13.035 13.039 13.039 13.039 13.042

Batch size 40 46.039 23.812 16.578 13.158 13.044 13.187 13.283 13.251 13.064 13.22 13.243

Batch size 80 43.711 22.716 15.993 13.649 13.397 13.733 13.801 13.774 13.266 13.609 13.622

Batch size 160 41.987 21.492 16.415 14.582 14.199 14.736 14.555 14.492 13.752 13.975 13.633
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Table A.47: Reverse aggressive elapsed time as a function of fetch time estimate and

batch size on the xds trace.

Disks 1 2 3 4 5 6

Fetch time 4

Batch size 4 66.434 33.368 39.661 34.022 34.103 34.097

Batch size 8 65.548 33.295 38.575 34.089 34.162 34.155

Batch size 16 65.02 33.423 37.646 34.181 34.242 34.181

Batch size 40 64.155 33.608 37.314 34.331 34.419 34.302

Batch size 80 64.275 33.807 37.418 34.563 34.701 34.741

Batch size 160 65.044 34.446 37.36 35.585 35.9 35.358

Fetch time 8

Batch size 4 66.426 33.35 34.334 33.23 33.538 33.767

Batch size 8 65.723 33.262 33.891 33.29 33.606 33.833

Batch size 16 64.971 33.302 33.285 33.38 33.704 33.876

Batch size 40 64.184 33.493 33.643 33.563 33.938 34.04

Batch size 80 64.185 33.728 33.934 33.934 34.315 34.533

Batch size 160 64.759 34.379 34.967 35.23 35.802 35.293

Fetch time 16

Batch size 4 66.423 33.348 34.616 33.138 33.048 33.127

Batch size 8 65.689 33.2 34.235 33.175 33.119 33.202

Batch size 16 64.974 33.3 33.477 33.269 33.235 33.276

Batch size 40 64.171 33.495 33.473 33.479 33.528 33.546

Batch size 80 64.336 33.731 33.866 33.834 34.058 34.226

Batch size 160 64.519 34.361 34.822 35.164 35.741 35.163

Fetch time 32

Batch size 4 66.423 33.348 34.534 33.125 33.044 33.105

Batch size 8 65.658 33.215 34.142 33.171 33.116 33.177

Batch size 16 64.967 33.293 33.57 33.257 33.227 33.251

Batch size 40 64.109 33.485 33.488 33.457 33.514 33.485

Batch size 80 64.092 33.792 33.859 33.844 33.966 34.173

Batch size 160 64.713 34.339 34.797 35.126 35.731 35.034

Fetch time 64

Batch size 4 66.423 33.348 34.534 33.125 33.042 33.105

Batch size 8 65.658 33.215 34.151 33.171 33.115 33.17

Batch size 16 64.967 33.293 33.433 33.252 33.223 33.229

Batch size 40 64.18 33.48 33.468 33.431 33.471 33.478

Batch size 80 64.199 33.688 33.813 33.796 33.951 34.162

Batch size 160 64.789 34.278 34.853 35.168 35.739 35.193

Fetch time 128

Batch size 4 66.423 33.348 34.534 33.125 33.042 33.105

Batch size 8 65.658 33.215 34.151 33.165 33.115 33.179

Batch size 16 64.967 33.293 33.433 33.259 33.225 33.239

Batch size 40 64.18 33.486 33.48 33.44 33.474 33.463

Batch size 80 64.26 33.692 33.826 33.778 33.915 34.159

Batch size 160 64.924 34.299 34.813 35.175 35.662 35.198
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A.7 Performance data: varying �xed horizon's horizon

This section contains the performance data for �xed horizon with varying values of the

horizon.
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Table A.48: Fixed horizon performance as a function of horizon on the dinero trace.

Disks 1 2 3 4 5 6

Horizon 16

fetches 4716 4716 4716 4716 4716 4716

driver time (sec) 2.358 2.358 2.358 2.358 2.358 2.358

stall time (sec) 0.023 0.023 0.023 0.023 0.023 0.023

elapsed time (sec) 105.919 105.919 105.919 105.919 105.919 105.919

average fetch time (msec) 3.153 3.171 3.196 3.234 3.245 3.293

average disk utilization 0.14 0.071 0.047 0.036 0.029 0.024

Horizon 32

fetches 4716 4716 4716 4716 4716 4716

driver time (sec) 2.358 2.358 2.358 2.358 2.358 2.358

stall time (sec) 0.022 0.022 0.022 0.022 0.022 0.022

elapsed time (sec) 105.918 105.918 105.918 105.918 105.918 105.918

average fetch time (msec) 3.145 3.182 3.201 3.241 3.259 3.294

average disk utilization 0.14 0.071 0.048 0.036 0.029 0.024

Horizon 64

fetches 4789 4789 4789 4789 4789 4789

driver time (sec) 2.3945 2.3945 2.3945 2.3945 2.3945 2.3945

stall time (sec) 0.026 0.008 0.008 0.008 0.008 0.008

elapsed time (sec) 105.959 105.941 105.941 105.941 105.941 105.941

average fetch time (msec) 3.155 3.19 3.232 3.269 3.29 3.328

average disk utilization 0.14 0.072 0.049 0.037 0.03 0.025

Horizon 128

fetches 5182 5182 5182 5182 5182 5182

driver time (sec) 2.591 2.591 2.591 2.591 2.591 2.591

stall time (sec) 0.249 0 0 0 0 0

elapsed time (sec) 106.378 106.129 106.129 106.129 106.129 106.129

average fetch time (msec) 3.171 3.208 3.256 3.286 3.32 3.37

average disk utilization 0.15 0.078 0.053 0.04 0.032 0.027

Horizon 256

fetches 6005 6005 6005 6005 6005 6005

driver time (sec) 3.0025 3.0025 3.0025 3.0025 3.0025 3.0025

stall time (sec) 0.664 0 0.025 0 0 0

elapsed time (sec) 107.205 106.541 106.566 106.541 106.541 106.541

average fetch time (msec) 3.183 3.217 3.266 3.292 3.33 3.365

average disk utilization 0.18 0.091 0.061 0.046 0.038 0.032

Horizon 512

fetches 8812 8812 8812 8812 8812 8812

driver time (sec) 4.406 4.406 4.406 4.406 4.406 4.406

stall time (sec) 1.444 0 0.205 0.04 0 0

elapsed time (sec) 109.388 107.944 108.149 107.984 107.944 107.944

average fetch time (msec) 3.147 3.163 3.187 3.204 3.214 3.228

average disk utilization 0.25 0.13 0.087 0.065 0.052 0.044

Horizon 1024

fetches 8812 8812 8812 8812 8812 8812

driver time (sec) 4.406 4.406 4.406 4.406 4.406 4.406

stall time (sec) 1.533 0 0.219 0.055 0 0

elapsed time (sec) 109.477 107.944 108.163 107.999 107.944 107.944

average fetch time (msec) 3.148 3.166 3.185 3.206 3.215 3.231

average disk utilization 0.25 0.13 0.086 0.065 0.052 0.044

Horizon 2048

fetches 8812 8812 8812 8812 8812 8812

driver time (sec) 4.406 4.406 4.406 4.406 4.406 4.406

stall time (sec) 1.533 0 0.219 0.055 0 0

elapsed time (sec) 109.477 107.944 108.163 107.999 107.944 107.944

average fetch time (msec) 3.148 3.166 3.185 3.206 3.215 3.231

average disk utilization 0.25 0.13 0.086 0.065 0.052 0.044
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Table A.49: Fixed horizon performance as a function of horizon on the cscope1 trace.

Disks 1 2 3 4 5 6

Horizon 16

fetches 4953 4953 4953 4953 4953 4953

driver time (sec) 2.4765 2.4765 2.4765 2.4765 2.4765 2.4765

stall time (sec) 3.476 0.022 0.022 0.022 0.022 0.022

elapsed time (sec) 30.887 27.433 27.433 27.433 27.433 27.433

average fetch time (msec) 3.543 3.249 3.255 3.257 3.295 3.311

average disk utilization 0.57 0.29 0.2 0.15 0.12 0.1

Horizon 32

fetches 4953 4953 4953 4953 4953 4953

driver time (sec) 2.4765 2.4765 2.4765 2.4765 2.4765 2.4765

stall time (sec) 3.38 0.022 0.022 0.022 0.022 0.022

elapsed time (sec) 30.791 27.433 27.433 27.433 27.433 27.433

average fetch time (msec) 3.51 3.237 3.242 3.272 3.283 3.326

average disk utilization 0.56 0.29 0.2 0.15 0.12 0.1

Horizon 64

fetches 4959 4959 4959 4959 4959 4959

driver time (sec) 2.4795 2.4795 2.4795 2.4795 2.4795 2.4795

stall time (sec) 3.121 0.012 0.012 0.012 0.012 0.012

elapsed time (sec) 30.535 27.426 27.426 27.426 27.426 27.426

average fetch time (msec) 3.524 3.251 3.277 3.301 3.333 3.368

average disk utilization 0.57 0.29 0.2 0.15 0.12 0.1

Horizon 128

fetches 5471 5471 5471 5471 5471 5471

driver time (sec) 2.7355 2.7355 2.7355 2.7355 2.7355 2.7355

stall time (sec) 3.107 0 0 0 0 0

elapsed time (sec) 30.777 27.67 27.67 27.67 27.67 27.67

average fetch time (msec) 3.558 3.373 3.405 3.404 3.439 3.472

average disk utilization 0.63 0.33 0.22 0.17 0.14 0.11

Horizon 256

fetches 6059 6059 6059 6059 6059 6059

driver time (sec) 3.0295 3.0295 3.0295 3.0295 3.0295 3.0295

stall time (sec) 2.726 0.135 0 0 0 0

elapsed time (sec) 30.69 28.099 27.964 27.964 27.964 27.964

average fetch time (msec) 3.624 3.398 3.427 3.424 3.464 3.504

average disk utilization 0.72 0.37 0.25 0.19 0.15 0.13

Horizon 512

fetches 8535 8535 8535 8535 8535 8535

driver time (sec) 4.2675 4.2675 4.2675 4.2675 4.2675 4.2675

stall time (sec) 5.01 0.487 0.198 0 0 0

elapsed time (sec) 34.212 29.689 29.4 29.202 29.202 29.202

average fetch time (msec) 3.751 3.318 3.354 3.318 3.363 3.38

average disk utilization 0.94 0.48 0.32 0.24 0.2 0.16

Horizon 1024

fetches 8535 8535 8535 8535 8535 8535

driver time (sec) 4.2675 4.2675 4.2675 4.2675 4.2675 4.2675

stall time (sec) 5.126 0.521 0.216 0 0 0

elapsed time (sec) 34.328 29.723 29.418 29.202 29.202 29.202

average fetch time (msec) 3.759 3.349 3.37 3.327 3.369 3.383

average disk utilization 0.93 0.48 0.33 0.24 0.2 0.16

Horizon 2048

fetches 8535 8535 8535 8535 8535 8535

driver time (sec) 4.2675 4.2675 4.2675 4.2675 4.2675 4.2675

stall time (sec) 5.126 0.521 0.216 0 0 0

elapsed time (sec) 34.328 29.723 29.418 29.202 29.202 29.202

average fetch time (msec) 3.759 3.349 3.37 3.327 3.369 3.383

average disk utilization 0.93 0.48 0.33 0.24 0.2 0.16
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Table A.50: Fixed horizon performance as a function of horizon on the cscope2 trace.

Disks 1 2 3 4 5 6

Horizon 16

fetches 5966 5966 5966 5966 5966 5966

driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983

stall time (sec) 37.752 28.281 21.894 16.112 13.633 11.645

elapsed time (sec) 77.844 68.373 61.986 56.204 53.725 51.737

average fetch time (msec) 10.09 16.023 17.859 18.343 18.647 19.025

average disk utilization 0.77 0.7 0.57 0.49 0.41 0.37

Horizon 32

fetches 5966 5966 5966 5966 5966 5966

driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983

stall time (sec) 35.359 25.027 17.587 12.245 8.758 6.44

elapsed time (sec) 75.451 65.119 57.679 52.337 48.85 46.532

average fetch time (msec) 9.793 15.518 17.596 18.151 18.57 18.739

average disk utilization 0.77 0.71 0.61 0.52 0.45 0.4

Horizon 64

fetches 5966 5966 5966 5966 5966 5966

driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983

stall time (sec) 32.366 21.956 14.063 8.965 5.545 3.756

elapsed time (sec) 72.458 62.048 54.155 49.057 45.637 43.848

average fetch time (msec) 9.393 14.97 17.165 18.012 18.49 18.971

average disk utilization 0.77 0.72 0.63 0.55 0.48 0.43

Horizon 128

fetches 5966 5966 5966 5966 5966 5966

driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983

stall time (sec) 30.072 19.129 11.066 6.34 3.078 1.395

elapsed time (sec) 70.164 59.221 51.158 46.432 43.17 41.487

average fetch time (msec) 9.201 14.447 16.555 17.684 18.147 18.608

average disk utilization 0.78 0.73 0.64 0.57 0.5 0.45

Horizon 256

fetches 5966 5966 5966 5966 5966 5966

driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983

stall time (sec) 25.667 14.606 7.443 4.047 1.299 0.076

elapsed time (sec) 65.759 54.698 47.535 44.139 41.391 40.168

average fetch time (msec) 8.94 13.632 15.803 17.261 17.691 18.401

average disk utilization 0.81 0.74 0.66 0.58 0.51 0.46

Horizon 512

fetches 5966 5966 5966 5966 5966 5966

driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983

stall time (sec) 19.192 8.934 3.017 1.164 0.208 0.169

elapsed time (sec) 59.284 49.026 43.109 41.256 40.3 40.261

average fetch time (msec) 8.456 12.84 15.156 16.622 17.596 18.407

average disk utilization 0.85 0.78 0.7 0.6 0.52 0.45

Horizon 1024

fetches 6736 6736 6736 6736 6736 6736

driver time (sec) 3.368 3.368 3.368 3.368 3.368 3.368

stall time (sec) 19.012 7.313 2.32 0.787 0.623 0.484

elapsed time (sec) 59.489 47.79 42.797 41.264 41.1 40.961

average fetch time (msec) 8.158 12.231 14.679 16.219 17.298 18.055

average disk utilization 0.92 0.86 0.77 0.66 0.57 0.49

Horizon 2048

fetches 8299 8299 8299 8299 8299 8299

driver time (sec) 4.1495 4.1495 4.1495 4.1495 4.1495 4.1495

stall time (sec) 23.94 8.745 2.803 2.103 1.709 1.176

elapsed time (sec) 65.199 50.004 44.062 43.362 42.968 42.435

average fetch time (msec) 7.744 11.784 14.304 16.248 17.258 18.029

average disk utilization 0.99 0.98 0.9 0.78 0.67 0.59
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Table A.51: Fixed horizon performance as a function of horizon on the postgres-select

trace.

Disks 1 2 3 4 5 6

Horizon 16

fetches 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 36.253 16.646 9.658 7.205 5.024 3.906

elapsed time (sec) 49.273 29.666 22.678 20.225 18.044 16.926

average fetch time (msec) 15.493 15.727 15.617 15.76 15.508 15.601

average disk utilization 0.97 0.82 0.71 0.6 0.53 0.47

Horizon 32

fetches 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 34.453 14.462 7.778 4.953 2.902 1.863

elapsed time (sec) 47.473 27.482 20.798 17.973 15.922 14.883

average fetch time (msec) 14.914 15.289 15.441 15.526 15.415 15.429

average disk utilization 0.97 0.86 0.76 0.67 0.6 0.53

Horizon 64

fetches 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 32.46 12.642 5.718 3.059 1.206 0.51

elapsed time (sec) 45.48 25.662 18.738 16.079 14.226 13.53

average fetch time (msec) 14.407 14.853 15.033 15.11 15.217 15.386

average disk utilization 0.98 0.89 0.83 0.72 0.66 0.58

Horizon 128

fetches 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 30.405 10.83 4.525 1.745 0.422 0.064

elapsed time (sec) 43.425 23.85 17.545 14.765 13.442 13.084

average fetch time (msec) 13.831 14.252 14.587 14.67 14.925 15.255

average disk utilization 0.98 0.92 0.85 0.77 0.69 0.6

Horizon 256

fetches 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 28.591 9.283 3.336 1.104 0.183 0

elapsed time (sec) 41.611 22.303 16.356 14.124 13.203 13.02

average fetch time (msec) 13.281 13.506 13.678 14.291 14.633 15.212

average disk utilization 0.98 0.93 0.86 0.78 0.68 0.6

Horizon 512

fetches 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 27.117 8.234 3.284 1.14 0.382 0.53

elapsed time (sec) 40.137 21.254 16.304 14.16 13.402 13.55

average fetch time (msec) 12.586 12.687 13.286 13.586 14.463 15.001

average disk utilization 0.97 0.92 0.84 0.74 0.67 0.57

Horizon 1024

fetches 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 23.842 6.768 2.743 1.827 1.116 1.066

elapsed time (sec) 36.862 19.788 15.763 14.847 14.136 14.086

average fetch time (msec) 11.305 11.583 12.206 13.098 13.752 13.99

average disk utilization 0.95 0.9 0.8 0.68 0.6 0.51

Horizon 2048

fetches 3572 3572 3572 3572 3572 3572

driver time (sec) 1.786 1.786 1.786 1.786 1.786 1.786

stall time (sec) 24.368 7.001 3.405 2.278 1.298 1.171

elapsed time (sec) 37.632 20.265 16.669 15.542 14.562 14.435

average fetch time (msec) 10.116 10.384 11.257 11.976 12.788 13.109

average disk utilization 0.96 0.92 0.8 0.69 0.63 0.54
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A.8 Performance data: forestall with a �xed fetch time estimate

This section contains the performance data for forestall with a static fetch time estimate.

Table A.52: Forestall performance as a function of static fetch time estimate on the

dinero trace.

Disks 1 2 3 4 5 6

Fetch time 2

fetches 8812 4753 4753 4753 4753 4753

driver time (sec) 4.406 2.3765 2.3765 2.3765 2.3765 2.3765

stall time (sec) 0.145 0 0 0 0 0.001

elapsed time (sec) 108.089 105.915 105.915 105.915 105.915 105.916

average fetch time (msec) 3.173 3.208 3.254 3.283 3.297 3.324

average disk utilization 0.26 0.072 0.049 0.037 0.03 0.025

Fetch time 4

fetches 8812 10268 4909 4753 4753 4753

driver time (sec) 4.406 5.134 2.4545 2.3765 2.3765 2.3765

stall time (sec) 0.145 0 0 0 0 0.001

elapsed time (sec) 108.089 108.672 105.993 105.915 105.915 105.916

average fetch time (msec) 3.143 3.857 3.341 3.283 3.297 3.324

average disk utilization 0.26 0.18 0.052 0.037 0.03 0.025

Fetch time 8

fetches 8812 8818 8838 10277 4948 4852

driver time (sec) 4.406 4.409 4.419 5.1385 2.474 2.426

stall time (sec) 0.145 0 0 0 0 0.001

elapsed time (sec) 108.089 107.947 107.957 108.677 106.012 105.965

average fetch time (msec) 3.143 3.152 3.185 3.943 3.551 3.343

average disk utilization 0.26 0.13 0.087 0.093 0.033 0.026

Fetch time 15

fetches 8812 8815 8844 8821 8830 8824

driver time (sec) 4.406 4.4075 4.422 4.4105 4.415 4.412

stall time (sec) 0.145 0 0 0 0 0.001

elapsed time (sec) 108.089 107.946 107.96 107.949 107.953 107.951

average fetch time (msec) 3.141 3.149 3.182 3.182 3.194 3.206

average disk utilization 0.26 0.13 0.087 0.065 0.052 0.044

Fetch time 30

fetches 8812 8812 8832 8824 8816 8821

driver time (sec) 4.406 4.406 4.416 4.412 4.408 4.4105

stall time (sec) 0.145 0 0 0 0 0.001

elapsed time (sec) 108.089 107.944 107.954 107.95 107.946 107.95

average fetch time (msec) 3.142 3.147 3.177 3.182 3.19 3.204

average disk utilization 0.26 0.13 0.087 0.065 0.052 0.044

Fetch time 60

fetches 8812 8812 8823 8816 8819 8825

driver time (sec) 4.406 4.406 4.4115 4.408 4.4095 4.4125

stall time (sec) 0.145 0 0 0 0 0.001

elapsed time (sec) 108.089 107.944 107.95 107.946 107.948 107.952

average fetch time (msec) 3.141 3.146 3.176 3.177 3.189 3.207

average disk utilization 0.26 0.13 0.087 0.065 0.052 0.044
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Table A.53: Forestall performance as a function of static fetch time estimate on the

cscope1 trace.

Disks 1 2 3 4 5 6

Fetch time 2

fetches 6892 4953 4953 4953 4953 4953

driver time (sec) 3.446 2.4765 2.4765 2.4765 2.4765 2.4765

stall time (sec) 0.782 0 0 0 0 0.001

elapsed time (sec) 29.162 27.411 27.411 27.411 27.411 27.412

average fetch time (msec) 3.74 3.243 3.321 3.295 3.331 3.342

average disk utilization 0.88 0.29 0.2 0.15 0.12 0.1

Fetch time 4

fetches 6931 8656 5108 4953 4953 4953

driver time (sec) 3.4655 4.328 2.554 2.4765 2.4765 2.4765

stall time (sec) 0.911 0 0 0 0 0.001

elapsed time (sec) 29.311 29.262 27.488 27.411 27.411 27.412

average fetch time (msec) 3.753 3.57 3.507 3.295 3.331 3.342

average disk utilization 0.89 0.53 0.22 0.15 0.12 0.1

Fetch time 8

fetches 6931 8570 8680 9650 5181 5063

driver time (sec) 3.4655 4.285 4.34 4.825 2.5905 2.5315

stall time (sec) 0.911 0 0 0 0 0.001

elapsed time (sec) 29.311 29.219 29.274 29.759 27.525 27.467

average fetch time (msec) 3.758 3.36 3.448 3.976 3.57 3.449

average disk utilization 0.89 0.49 0.34 0.32 0.13 0.11

Fetch time 15

fetches 6931 8570 8676 8680 8623 8582

driver time (sec) 3.4655 4.285 4.338 4.34 4.3115 4.291

stall time (sec) 0.911 0 0 0 0 0.001

elapsed time (sec) 29.311 29.219 29.272 29.274 29.246 29.226

average fetch time (msec) 3.759 3.362 3.438 3.368 3.394 3.359

average disk utilization 0.89 0.49 0.34 0.25 0.2 0.16

Fetch time 30

fetches 6931 8571 8673 8688 8623 8577

driver time (sec) 3.4655 4.2855 4.3365 4.344 4.3115 4.2885

stall time (sec) 0.911 0 0 0 0 0.001

elapsed time (sec) 29.311 29.22 29.271 29.278 29.246 29.224

average fetch time (msec) 3.759 3.365 3.427 3.366 3.389 3.358

average disk utilization 0.89 0.49 0.34 0.25 0.2 0.16

Fetch time 60

fetches 6931 8570 8673 8681 8627 8583

driver time (sec) 3.4655 4.285 4.3365 4.3405 4.3135 4.2915

stall time (sec) 0.911 0 0 0 0 0.001

elapsed time (sec) 29.311 29.219 29.271 29.275 29.248 29.227

average fetch time (msec) 3.758 3.362 3.43 3.363 3.394 3.36

average disk utilization 0.89 0.49 0.34 0.25 0.2 0.16
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Table A.54: Forestall performance as a function of static fetch time estimate on the

cscope2 trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fetch time 2

fetches 5966 5966 5966 5966 5966 5966 5966 5966 5966 5966 5966

driver time (sec) 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983

stall time (sec) 33.592 23.879 15.09 8.553 5.27 3.226 1.792 1.258 0.812 0.262 0.018

elapsed time (sec) 73.684 63.971 55.182 48.645 45.362 43.318 41.884 41.35 40.904 40.354 40.11

average fetch time (msec) 9.476 15.459 17.353 18.156 18.318 18.707 18.866 19.181 19.048 19.212 19.31

average disk utilization 0.77 0.72 0.63 0.56 0.48 0.43 0.38 0.35 0.28 0.24 0.18

Fetch time 4

fetches 6166 5966 5966 5966 5966 5966 5966 5966 5966 5966 5966

driver time (sec) 3.083 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983 2.983

stall time (sec) 20.969 24.945 15.09 9.212 5.27 3.226 1.792 1.258 0.812 0.262 0.018

elapsed time (sec) 61.161 65.037 55.182 49.304 45.362 43.318 41.884 41.35 40.904 40.354 40.11

average fetch time (msec) 8.827 15.325 17.353 18.085 18.318 18.707 18.866 19.181 19.048 19.212 19.31

average disk utilization 0.89 0.7 0.63 0.55 0.48 0.43 0.38 0.35 0.28 0.24 0.18

Fetch time 8

fetches 6284 6144 6025 5967 5966 5966 5966 5966 5966 5966 5966

driver time (sec) 3.142 3.072 3.0125 2.9835 2.983 2.983 2.983 2.983 2.983 2.983 2.983

stall time (sec) 15.971 14.011 20.831 11.275 7.757 3.371 1.912 1.258 0.812 0.262 0.018

elapsed time (sec) 56.222 54.192 60.953 51.368 47.849 43.463 42.004 41.35 40.904 40.354 40.11

average fetch time (msec) 8.768 13.401 14.909 17.84 18.302 18.699 18.803 19.191 19.048 19.212 19.31

average disk utilization 0.98 0.76 0.49 0.52 0.46 0.43 0.38 0.35 0.28 0.24 0.18

Fetch time 15

fetches 6318 6333 6613 6036 5990 5969 5966 5966 5966 5966 5966

driver time (sec) 3.159 3.1665 3.3065 3.018 2.995 2.9845 2.983 2.983 2.983 2.983 2.983

stall time (sec) 15.858 5.998 2.274 6.358 5.106 1.933 2.128 0.746 0.438 0.321 0.018

elapsed time (sec) 56.126 46.274 42.69 46.485 45.21 42.027 42.22 40.838 40.53 40.413 40.11

average fetch time (msec) 8.773 13.294 14.556 16.693 17.083 18.439 18.61 19.06 19.131 19.294 19.304

average disk utilization 0.99 0.91 0.75 0.54 0.45 0.44 0.38 0.35 0.28 0.24 0.18

Fetch time 30

fetches 6318 6592 7372 7298 7256 6664 6253 5997 5969 5970 5970

driver time (sec) 3.159 3.296 3.686 3.649 3.628 3.332 3.1265 2.9985 2.9845 2.985 2.985

stall time (sec) 15.858 5.597 1.798 0 0 0.002 0.16 0.009 0.023 0.02 0.025

elapsed time (sec) 56.126 46.002 42.593 40.758 40.737 40.443 40.396 40.117 40.117 40.114 40.119

average fetch time (msec) 8.773 13.256 14.494 16.687 16.764 17.98 18.135 18.889 19.126 19.144 19.305

average disk utilization 0.99 0.95 0.84 0.75 0.6 0.49 0.4 0.35 0.28 0.24 0.18

Fetch time 60

fetches 6318 6592 7683 7857 8513 8152 7922 7607 7136 6672 6157

driver time (sec) 3.159 3.296 3.8415 3.9285 4.2565 4.076 3.961 3.8035 3.568 3.336 3.0785

stall time (sec) 15.858 5.597 1.798 0 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 56.126 46.002 42.749 41.038 41.366 41.186 41.07 40.922 40.682 40.446 40.188

average fetch time (msec) 8.773 13.257 14.436 16.575 16.88 17.901 18.191 18.771 19.019 19.104 19.226

average disk utilization 0.99 0.95 0.86 0.79 0.69 0.59 0.5 0.44 0.33 0.26 0.18
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Table A.55: Forestall performance as a function of static fetch time estimate on the

cscope3 trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fetch time 2

fetches 11877 11739 11739 11739 11739 11739 11739 11739 11739 11739 11739

driver time (sec) 5.9385 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695

stall time (sec) 32.201 14.155 6.993 2.386 1.123 0.395 0.18 0.067 0.085 0.001 0

elapsed time (sec) 112.24 94.125 86.963 82.356 81.093 80.365 80.15 80.037 80.055 79.971 79.97

average fetch time (msec) 7.782 12.15 14.801 16.136 16.856 17.427 17.847 18.21 18.622 18.753 19.17

average disk utilization 0.82 0.76 0.67 0.58 0.49 0.42 0.37 0.33 0.27 0.23 0.18

Fetch time 4

fetches 11989 11739 11739 11739 11739 11739 11739 11739 11739 11739 11739

driver time (sec) 5.9945 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695

stall time (sec) 15.255 19.98 7.427 2.386 1.123 0.395 0.18 0.067 0.085 0.001 0

elapsed time (sec) 95.35 99.95 87.397 82.356 81.093 80.365 80.15 80.037 80.055 79.971 79.97

average fetch time (msec) 7.687 11.882 14.786 16.136 16.856 17.427 17.847 18.21 18.622 18.753 19.17

average disk utilization 0.97 0.7 0.66 0.58 0.49 0.42 0.37 0.33 0.27 0.23 0.18

Fetch time 8

fetches 12029 12380 11935 11739 11739 11739 11739 11739 11739 11739 11739

driver time (sec) 6.0145 6.19 5.9675 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695

stall time (sec) 14.198 3.272 15.339 5.365 2.089 0.439 0.18 0.067 0.085 0.001 0

elapsed time (sec) 94.313 83.563 95.407 85.335 82.059 80.409 80.15 80.037 80.055 79.971 79.97

average fetch time (msec) 7.697 11.635 13.861 16.069 16.776 17.444 17.847 18.21 18.622 18.753 19.17

average disk utilization 0.98 0.86 0.58 0.55 0.48 0.42 0.37 0.33 0.27 0.23 0.18

Fetch time 15

fetches 12069 13014 13732 12759 12118 11739 11739 11739 11739 11739 11739

driver time (sec) 6.0345 6.507 6.866 6.3795 6.059 5.8695 5.8695 5.8695 5.8695 5.8695 5.8695

stall time (sec) 13.943 2.862 0.64 0.052 0.935 0.188 0.335 0.009 0.084 0.001 0

elapsed time (sec) 94.078 83.47 81.607 80.532 81.095 80.158 80.305 79.979 80.054 79.971 79.97

average fetch time (msec) 7.703 11.602 13.64 15.752 16.266 17.462 17.749 18.334 18.598 18.749 19.162

average disk utilization 0.99 0.9 0.77 0.62 0.49 0.43 0.37 0.34 0.27 0.23 0.18

Fetch time 30

fetches 12092 13414 14940 14520 14134 13588 13184 12677 12078 11749 11742

driver time (sec) 6.046 6.707 7.47 7.26 7.067 6.794 6.592 6.3385 6.039 5.8745 5.871

stall time (sec) 13.943 2.862 0.64 0.052 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 94.09 83.67 82.211 81.413 81.168 80.896 80.693 80.448 80.145 79.976 79.972

average fetch time (msec) 7.741 11.586 13.625 15.76 16.23 17.39 17.76 18.613 18.804 18.924 19.105

average disk utilization 0.99 0.93 0.83 0.7 0.57 0.49 0.41 0.37 0.28 0.23 0.18

Fetch time 60

fetches 12092 13534 15442 15702 15780 15120 14760 14393 13977 13574 12798

driver time (sec) 6.046 6.767 7.721 7.851 7.89 7.56 7.38 7.1965 6.9885 6.787 6.399

stall time (sec) 13.943 2.862 0.64 0.052 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 94.09 83.73 82.462 82.004 81.991 81.662 81.481 81.306 81.094 80.889 80.5

average fetch time (msec) 7.741 11.585 13.8 15.782 16.244 17.301 17.723 18.584 18.766 18.925 19.119

average disk utilization 0.99 0.94 0.86 0.76 0.63 0.53 0.46 0.41 0.32 0.26 0.19
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Table A.56: Forestall performance as a function of static fetch time estimate on the

glimpse trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fetch time 2

fetches 6493 6493 6493 6493 6493 6493 6493 6493 6493 6493 6493

driver time (sec) 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465 3.2465

stall time (sec) 64.134 29.651 18.465 11.895 8.142 5.704 3.725 3.291 1.773 0.821 0.507

elapsed time (sec) 106.097 71.614 60.428 53.858 50.105 47.667 45.688 45.254 43.736 42.784 42.47

average fetch time (msec) 13.314 15.231 16.228 17.452 17.993 18.334 18.457 18.528 18.598 18.642 18.707

average disk utilization 0.81 0.69 0.58 0.53 0.47 0.42 0.37 0.33 0.28 0.24 0.18

Fetch time 4

fetches 6531 6495 6521 6493 6493 6500 6493 6493 6493 6493 6493

driver time (sec) 3.2655 3.2475 3.2605 3.2465 3.2465 3.25 3.2465 3.2465 3.2465 3.2465 3.2465

stall time (sec) 57.697 31.749 19.621 11.895 8.142 5.821 3.725 3.306 1.773 0.821 0.507

elapsed time (sec) 99.679 73.713 61.598 53.858 50.105 47.787 45.688 45.269 43.736 42.784 42.47

average fetch time (msec) 13.103 15.003 16.19 17.452 17.993 18.33 18.457 18.524 18.598 18.626 18.707

average disk utilization 0.86 0.66 0.57 0.53 0.47 0.42 0.37 0.33 0.28 0.24 0.18

Fetch time 8

fetches 6531 6578 6538 6503 6493 6497 6493 6493 6493 6493 6493

driver time (sec) 3.2655 3.289 3.269 3.2515 3.2465 3.2485 3.2465 3.2465 3.2465 3.2465 3.2465

stall time (sec) 56.363 24.886 35.324 16.784 11.185 6.451 4.07 3.321 1.818 0.821 0.507

elapsed time (sec) 98.345 66.891 77.309 58.752 53.148 48.416 46.033 45.284 43.781 42.784 42.47

average fetch time (msec) 13.104 14.396 15.337 17.336 17.923 18.361 18.455 18.533 18.614 18.628 18.707

average disk utilization 0.87 0.71 0.43 0.48 0.44 0.41 0.37 0.33 0.28 0.24 0.18

Fetch time 15

fetches 6531 6647 6688 6538 6530 6505 6494 6493 6493 6493 6493

driver time (sec) 3.2655 3.3235 3.344 3.269 3.265 3.2525 3.247 3.2465 3.2465 3.2465 3.2465

stall time (sec) 55.448 20.658 12.116 7.584 12.461 6.181 5.497 2.676 1.863 1.076 0.617

elapsed time (sec) 97.43 62.698 54.176 49.569 54.442 48.15 47.46 44.639 43.826 43.039 42.58

average fetch time (msec) 13.104 14.423 14.918 16.525 17.05 18.137 18.457 18.516 18.585 18.648 18.737

average disk utilization 0.88 0.76 0.61 0.54 0.41 0.41 0.36 0.34 0.28 0.23 0.18

Fetch time 30

fetches 6565 6687 6891 6769 6723 6616 6560 6514 6493 6493 6493

driver time (sec) 3.2825 3.3435 3.4455 3.3845 3.3615 3.308 3.28 3.257 3.2465 3.2465 3.2465

stall time (sec) 55.586 19.562 6.609 2.522 1.939 0.671 0.813 0.072 0.027 0.119 0.215

elapsed time (sec) 97.585 61.622 48.771 44.623 44.017 42.695 42.809 42.045 41.99 42.082 42.178

average fetch time (msec) 13.059 14.378 14.694 16.438 16.683 17.776 17.929 18.496 18.549 18.526 18.672

average disk utilization 0.88 0.78 0.69 0.62 0.51 0.46 0.39 0.36 0.29 0.24 0.18

Fetch time 60

fetches 6610 6687 7087 6911 6969 6823 6964 6836 6703 6624 6565

driver time (sec) 3.305 3.3435 3.5435 3.4555 3.4845 3.4115 3.482 3.418 3.3515 3.312 3.2825

stall time (sec) 54.845 19.089 5.792 2.521 1.062 0.099 0.014 0.009 0.005 0.001 0

elapsed time (sec) 96.866 61.149 48.052 44.693 43.263 42.227 42.212 42.143 42.073 42.029 41.999

average fetch time (msec) 12.998 14.374 14.565 16.422 16.75 17.762 17.634 18.282 18.499 18.486 18.626

average disk utilization 0.89 0.79 0.72 0.63 0.54 0.48 0.42 0.37 0.29 0.24 0.18
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Table A.57: Forestall performance as a function of static fetch time estimate on the

ld trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fetch time 2

fetches 2900 2903 2903 2903 2903 2903 2903 2903 2903 2903 2903

driver time (sec) 1.45 1.4515 1.4515 1.4515 1.4515 1.4515 1.4515 1.4515 1.4515 1.4515 1.4515

stall time (sec) 15.617 7.475 4.441 2.739 1.88 1.368 1.069 0.968 0.567 0.327 0.222

elapsed time (sec) 25.232 17.091 14.057 12.355 11.496 10.984 10.685 10.584 10.183 9.943 9.838

average fetch time (msec) 8.451 11.126 13.266 15.004 16.194 16.777 17.359 18.041 18.669 18.998 19.113

average disk utilization 0.97 0.94 0.91 0.88 0.82 0.74 0.67 0.62 0.53 0.46 0.35

Fetch time 4

fetches 2981 2903 2903 2903 2903 2903 2903 2903 2903 2903 2903

driver time (sec) 1.4905 1.4515 1.4515 1.4515 1.4515 1.4515 1.4515 1.4515 1.4515 1.4515 1.4515

stall time (sec) 15.245 8.724 4.8 2.835 1.88 1.368 1.069 0.968 0.567 0.327 0.222

elapsed time (sec) 24.9 18.34 14.416 12.451 11.496 10.984 10.685 10.584 10.183 9.943 9.838

average fetch time (msec) 8.248 10.959 13.249 15 16.194 16.777 17.359 18.041 18.669 18.998 19.113

average disk utilization 0.99 0.87 0.89 0.87 0.82 0.74 0.67 0.62 0.53 0.46 0.35

Fetch time 8

fetches 2981 2982 3093 2903 2903 2903 2903 2903 2903 2903 2903

driver time (sec) 1.4905 1.491 1.5465 1.4515 1.4515 1.4515 1.4515 1.4515 1.4515 1.4515 1.4515

stall time (sec) 15.245 6.329 3.461 3.358 2.261 1.374 1.204 0.983 0.567 0.327 0.222

elapsed time (sec) 24.9 15.985 13.172 12.974 11.877 10.99 10.82 10.599 10.183 9.943 9.838

average fetch time (msec) 8.248 10.583 12.135 14.947 16.031 16.705 17.329 18.036 18.669 18.998 19.113

average disk utilization 0.99 0.99 0.95 0.84 0.78 0.74 0.66 0.62 0.53 0.46 0.35

Fetch time 15

fetches 2981 2982 3137 3102 3302 2928 2909 2903 2903 2903 2903

driver time (sec) 1.4905 1.491 1.5685 1.551 1.651 1.464 1.4545 1.4515 1.4515 1.4515 1.4515

stall time (sec) 15.245 6.329 3.433 2.056 0.685 0.86 1.511 1.028 0.627 0.38 0.327

elapsed time (sec) 24.9 15.985 13.166 11.772 10.501 10.489 11.13 10.644 10.243 9.996 9.943

average fetch time (msec) 8.248 10.583 12.033 14.203 14.993 16.505 17.156 17.972 18.665 18.985 19.008

average disk utilization 0.99 0.99 0.96 0.94 0.94 0.77 0.64 0.61 0.53 0.46 0.35

Fetch time 30

fetches 2981 2982 3137 3102 3310 3505 3737 3663 3448 3017 2917

driver time (sec) 1.4905 1.491 1.5685 1.551 1.655 1.7525 1.8685 1.8315 1.724 1.5085 1.4585

stall time (sec) 15.245 6.329 3.433 2.052 0.579 0.265 0.164 0.022 0.019 0.018 0.101

elapsed time (sec) 24.9 15.985 13.166 11.768 10.399 10.182 10.197 10.018 9.908 9.691 9.724

average fetch time (msec) 8.248 10.583 12.037 14.199 14.932 15.957 16.449 17.305 18.174 18.925 18.949

average disk utilization 0.99 0.99 0.96 0.94 0.95 0.92 0.86 0.79 0.63 0.49 0.36

Fetch time 60

fetches 2981 2982 3137 3102 3310 3505 3734 3779 4080 4137 3880

driver time (sec) 1.4905 1.491 1.5685 1.551 1.655 1.7525 1.867 1.8895 2.04 2.0685 1.94

stall time (sec) 15.245 6.329 3.433 2.052 0.579 0.265 0.023 0.009 0.005 0.001 0

elapsed time (sec) 24.9 15.985 13.166 11.768 10.399 10.182 10.055 10.063 10.21 10.234 10.105

average fetch time (msec) 8.248 10.583 12.037 14.199 14.932 15.958 16.446 17.181 17.814 18.076 18.644

average disk utilization 0.99 0.99 0.96 0.94 0.95 0.92 0.87 0.81 0.71 0.61 0.45
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Table A.58: Forestall performance as a function of static fetch time estimate on the

postgres-join trace.

Disks 1 2 3 4 5 6

Fetch time 2

fetches 3855 3856 3855 3856 3855 3856

driver time (sec) 1.9275 1.928 1.9275 1.928 1.9275 1.928

stall time (sec) 4.765 0.152 0.258 0 0 0.001

elapsed time (sec) 85.908 81.296 81.401 81.144 81.143 81.145

average fetch time (msec) 16.863 17.094 17.051 17.666 17.507 17.701

average disk utilization 0.76 0.41 0.27 0.21 0.17 0.14

Fetch time 4

fetches 4108 3856 3855 3856 3855 3856

driver time (sec) 2.054 1.928 1.9275 1.928 1.9275 1.928

stall time (sec) 3.994 0.152 0.258 0 0 0.001

elapsed time (sec) 85.264 81.296 81.401 81.144 81.143 81.145

average fetch time (msec) 14.79 16.841 17.051 17.666 17.507 17.701

average disk utilization 0.71 0.4 0.27 0.21 0.17 0.14

Fetch time 8

fetches 4695 4174 3937 3856 3855 3856

driver time (sec) 2.3475 2.087 1.9685 1.928 1.9275 1.928

stall time (sec) 3.995 0.152 0.293 0 0 0.001

elapsed time (sec) 85.558 81.455 81.477 81.144 81.143 81.145

average fetch time (msec) 15.015 14.987 15.805 17.482 17.477 17.701

average disk utilization 0.82 0.38 0.25 0.21 0.17 0.14

Fetch time 15

fetches 4698 5803 6051 4044 3922 3872

driver time (sec) 2.349 2.9015 3.0255 2.022 1.961 1.936

stall time (sec) 3.994 0.153 0.258 0 0 0.001

elapsed time (sec) 85.559 82.27 82.499 81.238 81.177 81.153

average fetch time (msec) 15.033 16.514 15.716 16.161 16.335 17.349

average disk utilization 0.83 0.58 0.38 0.2 0.16 0.14

Fetch time 30

fetches 4698 5833 6194 6127 6200 5032

driver time (sec) 2.349 2.9165 3.097 3.0635 3.1 2.516

stall time (sec) 3.994 0.153 0.258 0 0 0.001

elapsed time (sec) 85.559 82.285 82.571 82.279 82.316 81.733

average fetch time (msec) 15.032 16.567 15.956 16.585 16.583 17.107

average disk utilization 0.83 0.59 0.4 0.31 0.25 0.18

Fetch time 60

fetches 4698 5837 6224 6160 6042 5910

driver time (sec) 2.349 2.9185 3.112 3.08 3.021 2.955

stall time (sec) 3.994 0.153 0.258 0 0 0.001

elapsed time (sec) 85.559 82.287 82.586 82.296 82.237 82.172

average fetch time (msec) 15.03 16.577 15.937 16.598 16.713 17.145

average disk utilization 0.83 0.59 0.4 0.31 0.25 0.21
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Table A.59: Forestall performance as a function of static fetch time estimate on the

postgres-select trace.

Disks 1 2 3 4 5 6 7 8 10 12 16

Fetch time 2

fetches 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 30.691 11.831 4.806 1.562 0.524 0.143 0.032 0.009 0.005 0.001 0

elapsed time (sec) 43.711 24.851 17.826 14.582 13.544 13.163 13.052 13.029 13.025 13.021 13.02

average fetch time (msec) 13.985 14.783 14.672 15.051 14.995 15.409 15.265 15.549 15.372 15.21 15.114

average disk utilization 0.99 0.92 0.85 0.8 0.68 0.6 0.52 0.46 0.36 0.3 0.22

Fetch time 4

fetches 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 30.691 10.837 5.617 1.562 0.524 0.143 0.032 0.009 0.005 0.001 0

elapsed time (sec) 43.711 23.857 18.637 14.582 13.544 13.163 13.052 13.029 13.025 13.021 13.02

average fetch time (msec) 13.985 14.13 14.653 15.051 14.995 15.409 15.265 15.549 15.372 15.21 15.114

average disk utilization 0.99 0.91 0.81 0.8 0.68 0.6 0.52 0.46 0.36 0.3 0.22

Fetch time 8

fetches 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 30.691 10.811 3.517 0.868 0.736 0.08 0.032 0.009 0.005 0.001 0

elapsed time (sec) 43.711 23.831 16.537 13.888 13.756 13.1 13.052 13.029 13.025 13.021 13.02

average fetch time (msec) 13.985 14.164 13.915 14.467 14.835 15.339 15.267 15.549 15.372 15.21 15.114

average disk utilization 0.99 0.92 0.87 0.8 0.67 0.6 0.52 0.46 0.36 0.3 0.22

Fetch time 15

fetches 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425 1.5425

stall time (sec) 30.691 10.791 3.517 0.844 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 43.711 23.811 16.537 13.864 13.02 13.021 13.02 13.029 13.025 13.021 13.02

average fetch time (msec) 13.985 14.166 13.936 14.514 14.38 15.096 14.868 15.383 15.289 15.182 15.132

average disk utilization 0.99 0.92 0.87 0.81 0.68 0.6 0.5 0.46 0.36 0.3 0.22

Fetch time 30

fetches 3085 3085 3085 3085 3085 3297 3764 3588 3123 3085 3085

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.5425 1.6485 1.882 1.794 1.5615 1.5425 1.5425

stall time (sec) 30.691 10.772 3.517 0.844 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 43.711 23.792 16.537 13.864 13.02 13.127 13.36 13.281 13.044 13.021 13.02

average fetch time (msec) 13.985 14.172 13.947 14.536 14.398 15.058 15.214 15.234 15.241 15.096 15.052

average disk utilization 0.99 0.92 0.87 0.81 0.68 0.63 0.61 0.51 0.36 0.3 0.22

Fetch time 60

fetches 3085 3085 3085 3085 3166 3313 3830 3942 3904 3860 4108

driver time (sec) 1.5425 1.5425 1.5425 1.5425 1.583 1.6565 1.915 1.971 1.952 1.93 2.054

stall time (sec) 30.691 10.772 3.517 0.844 0 0.001 0 0.009 0.005 0.001 0

elapsed time (sec) 43.711 23.792 16.537 13.864 13.061 13.135 13.393 13.458 13.435 13.409 13.532

average fetch time (msec) 13.985 14.173 13.95 14.548 14.243 15.037 15.228 15.284 14.8 14.764 14.865

average disk utilization 0.99 0.92 0.87 0.81 0.69 0.63 0.62 0.56 0.43 0.35 0.28
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Table A.60: Forestall performance as a function of static fetch time estimate on the

xds trace.

Disks 1 2 3 4 5 6

Fetch time 2

fetches 5925 5912 5889 5891 5889 5897

driver time (sec) 2.9625 2.956 2.9445 2.9455 2.9445 2.9485

stall time (sec) 30.831 3.009 3.435 1.188 0.52 0.1

elapsed time (sec) 63.872 36.044 36.458 34.212 33.543 33.127

average fetch time (msec) 10.717 7.708 14.253 10.062 15.601 11.066

average disk utilization 0.99 0.63 0.77 0.43 0.55 0.33

Fetch time 4

fetches 5925 6016 5907 5894 5890 5897

driver time (sec) 2.9625 3.008 2.9535 2.947 2.945 2.9485

stall time (sec) 30.667 0.421 3.216 0.707 0.546 0.1

elapsed time (sec) 63.708 33.508 36.248 33.733 33.57 33.127

average fetch time (msec) 10.711 7.706 14.132 9.903 15.673 11.06

average disk utilization 1 0.69 0.77 0.43 0.55 0.33

Fetch time 8

fetches 5925 7045 6444 6025 5910 5896

driver time (sec) 2.9625 3.5225 3.222 3.0125 2.955 2.948

stall time (sec) 30.667 0.337 0.355 0.16 0.225 0.06

elapsed time (sec) 63.708 33.938 33.656 33.251 33.259 33.087

average fetch time (msec) 10.711 7.499 14.085 10.019 14.989 10.639

average disk utilization 1 0.78 0.9 0.45 0.53 0.32

Fetch time 15

fetches 5925 7274 6563 8643 7534 6421

driver time (sec) 2.9625 3.637 3.2815 4.3215 3.767 3.2105

stall time (sec) 30.667 0.337 0.356 0.129 0.133 0.055

elapsed time (sec) 63.708 34.053 33.716 34.529 33.979 33.344

average fetch time (msec) 10.711 7.492 14.095 9.717 15.34 10.458

average disk utilization 1 0.8 0.91 0.61 0.68 0.34

Fetch time 30

fetches 5925 7742 6563 9699 8300 9846

driver time (sec) 2.9625 3.871 3.2815 4.8495 4.15 4.923

stall time (sec) 30.667 0.337 0.356 0.129 0.133 0.055

elapsed time (sec) 63.708 34.287 33.716 35.057 34.362 35.057

average fetch time (msec) 10.711 7.467 14.099 9.758 15.445 10.708

average disk utilization 1 0.84 0.91 0.67 0.75 0.5

Fetch time 60

fetches 5925 7778 6563 9807 8300 10015

driver time (sec) 2.9625 3.889 3.2815 4.9035 4.15 5.0075

stall time (sec) 30.667 0.337 0.356 0.129 0.133 0.055

elapsed time (sec) 63.708 34.305 33.716 35.111 34.362 35.141

average fetch time (msec) 10.711 7.497 14.096 9.798 15.451 10.678

average disk utilization 1 0.85 0.91 0.68 0.75 0.51
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