
Strands: An E�cient and Extensible Thread Management

Architecture

Emin G�un Sirer Przemys law Pardyak Brian N. Bershad

May 15, 1996

1 Introduction

Applications can signi�cantly bene�t from specializing thread packages, schedulers and synchro-

nization primitives to their needs. In prior systems, specialization has been accomplished through

a partitioning of service across the user-kernel boundary. The kernel provides some basic control


ow services while user code implements the specialized interface. This approach, though, has been

shown to su�er from poor performance or poor integration [Anderson et al. 92].

In this paper, we describe a new architecture for thread and scheduling subsystems that pro-

vides correct, extensible and e�cient thread management for applications. The strand architecture

enables applications to place their specialized thread management code in the kernel address space.

This allows the operating system to perform upcalls without crossing costly hardware boundaries.

As well, it enables applications to contact other system services with low overhead.

The system safety issues that arise when placing application code in the kernel are handled

in two ways. First, application handlers are written in a typesafe language, Modula-3, to ensure

memory-safety. A user thread package executing in the kernel cannot corrupt the kernel's memory

or call inappropriate kernel procedures. Second, the strand interface is structured to prohibit the

failure of any application handler from a�ecting threads not directly managed by that handler.

The end result is that the strand architecture allows application code to be tightly integrated with

system services, thereby enabling correct, safe and e�cient implementations of specialized thread

managers.

We have implemented the strands architecture in the context of SPIN, which is an extensi-

ble operating system being developed at the University of Washington. Using strands, we have

implemented several threads packages, including CThreads[Cooper & Draves 88], Mach kernel

threads[Accetta et al. 86] and UNIX processes[Ritchie & Thompson 74], as well as low overhead

synchronization primitives[Bershad et al. 92], application-speci�c schedulers[Zahorjan & McCann

0

This research was sponsored by the Advanced Research Projects Agency, the National Science Foundation (Grants

no. CDA-9123308 and CCR-9200832) and by an equipment grant from Digital Equipment Corporation. Bershad

was partially supported by a National Science Foundation Presidential Faculty Fellowship. Sirer was supported by

an IBM Graduate Student Fellowship.

1



90, Marsh et al. 91], debugging tools[Redell 88] and sampling pro�lers. In a related publica-

tion [Bershad et al. 95], we brie
y described the performance of some of the threads packages.

In this paper, we focus on the strand architecture, and provide more detailed information about

performance.

1.1 Prior Work

Application-speci�c thread management has been a commonly recurring theme in many systems

projects. The lesson from prior work is that 
exible and fast thread management is di�cult to

provide.

Kernel threads[Dijkstra 66, Brinch Hansen 70], where the operating system directly supports

a thread management interface, su�er from lack of extensibility. Since the thread implementation

resides in the kernel, it cannot be specialized or extended by applications. Further, a kernel thread

implementation must be su�ciently general purpose in order to support the needs of a diverse

range of applications. The lack of extensibility in kernel-threads combined with their general

purpose nature has forced applications to seek more 
exible and higher performance alternatives.

User-level threads[Bershad et al. 88, Cormack 88] have been suggested as a means of addressing

the lack of extensibility in traditional, static thread systems. User-level threads multiplex a number

of application threads on top of a single kernel thread. This arrangement, though, su�ers from a

lack of integration with the operating system. Namely, the kernel is unaware of the amount of

application-level concurrency, and may thus make unfavorable decisions such as suspending the

kernel thread currently underlying a particular user thread. As a result, user-level thread systems

may exhibit incorrect behavior in the face of I/O or asynchronous events such as page faults.

Finally, user-upcall based schemes such as scheduler activations[Anderson et al. 92] and shared

threads[Marsh et al. 91] have been proposed as a way of combining the desirable aspects of user and

kernel thread systems. In approaches based on user-upcalls, the kernel manages the threads coop-

eratively with user-level handlers by making upcalls to user space in response to kernel scheduling

events. However, this approach su�ers from the partitioning of functionality across hardware pro-

tection barriers. The services that an application-speci�c thread handler might need, e.g. memory

managers, pagers, device drivers and IPC services, require subsequent system calls back into the

kernel. Further, the cost of the upcall itself may be prohibitive. The Fire
y implementation of

upcalls for scheduler activations, for example, required 2.4 milliseconds per kernel upcall alone, on a

roughly 1 MIP machine. An alternative implementation based on the Mach microkernel required up

to .915 milliseconds per upcall on a Sequent [Davis et al. 93]. Hence, despite various optimizations

aimed at batching requests and avoiding communication by sharing state, user-upcall based have

su�ered from poor performance due to the frequent crossing of hardware protection boundaries.

2 Strands

To address the shortcomings of kernel-threads (poor extensibility), user-threads (poor integration)

and scheduler activations (poor performance), we have designed and implemented a new thread

management architecture. Application-speci�c threads, called strands, are the central abstraction

of our architecture. A strand is an opaque handle to a kernel resource that represents a thread of

control in user-space. Essentially, it is a kernel object that names a user-level thread and provides

application supplied implementations for its methods.

The kernel cooperates with application-speci�c thread management code (strand packages) to

manage strands. A strand's state and semantics are determined by the application to which the

2



strand belongs. In particular, the application decides how much state the strand should carry (e.g.

CPU registers, FPU state, device status, system call emulation modes, etc.) and how that state

ought to be updated in response to system events. The kernel cooperates with strand packages by

sending noti�cations whenever the strand's execution state changes.

The interface by which the kernel communicates with strand packages consists of a set of

upcalls. These upcalls invoke user-supplied code, but di�er from user-upcall based schemes in that

they do not cross hardware boundaries to do so. The kernel invokes application code wherever

it would otherwise have to make a policy or implementation decision. Hence, strand packages

can have complete control over both the scheduling policies that govern their strands, and the

exact responses of their strands to system events. For instance, it is possible to implement fast

synchronization primitives based on restartable atomic sequences [Bershad et al. 92] by writing a

strand handler that will readjust the user program counter when a thread is preempted within a

critical section.

Strand packages execute in the kernel's address space, which enables low-overhead communica-

tion between the operating system and application-speci�c thread managers. Once the user thread

management code is placed in the same memory context as the kernel, it can interact with kernel

services without crossing hardware protection boundaries. Strand upcalls di�er in this respect from

scheduler activations, in that they do not require a hardware protection boundary crossing. As a

result of being located in the kernel, user code can contact system services and other application-

speci�c code via regular procedure calls and share data by passing references.

Application supplied upcall handlers that execute within the kernel are restricted in their mem-

ory accesses. A typesafe language, Modula-3[Nelson 91], restricts applications from issuing illegal

reads, writes and jumps. A safe linker prohibits applications from accessing interfaces for which

access has not been explicitly granted [Sirer et al. 96]. Combined, a typesafe language and a

safe linker provide the same level of isolation for application code in a shared address space as is

normally provided by separate hardware based address spaces. Users can of course run unsafe code

in separate address spaces, but this code must cross hardware protection domain to access kernel

services.

Though unprivileged applications may implement arbitrary semantics for user-level threads,

they are not allowed to change the state of kernel threads. Such an ability would allow applications

to circumvent system safety guarantees, for instance by modifying kernel register values. The

operating system itself uses a thread package implemented in terms of strands for in-kernel threads

that is not extensible.

Figure 1 illustrates the overall strands architecture. Multiplexing of the CPU between competing

applications is performed by the global scheduler. The kernel threads package provides a protected

execution context for threads executing in the kernel. Application speci�c schedulers and thread

packages reside above the global scheduler and communicate via the strand interface.

In the next section, we describe the interface between the operating system and user supplied

thread packages, and give examples of its use. The rest of the paper describes our strand imple-

mentation in the context of the SPIN operating system. Section 4 provides implementation details

and Section 5 demonstrates the performance advantages of strands. Section 6 concludes with an

overview of our experience.

3 Strand Upcalls

The kernel communicates system events to strand packages through the strand upcall interface. The

strand interface forms the bridge between application supplied thread implementations and the rest

3



kernel
thread
package

application
thread
package

Resume Block

Unblockglobal scheduler

synchronizationtimer interrupt

application
scheduler

application
thread
package

Resume

Checkpoint

Checkpoint

User 
space

Kernel 
space

Figure 1: This �gure shows the requisite parts of a strands implementation, and demonstrates the use of the strand

interface. Trusted kernel threads are for use within the kernel. Applications implement threads by providing thread

packages that handle strand events. Additionally, application-speci�c scheduling policies may be implemented by

installing a specialized scheduler that handles scheduling events. Scheduling and context related events events are

propagated through the scheduling hierarchy to thread packages.

of the operating system services which are oblivious to the particular thread implementation. The

interface is minimal, provides machine independence, and enables incremental extensions to thread

behavior. It consists of a set of upcalls for tracking the scheduling status of threads and another set

for managing their state. Decoupling the state management from scheduling and making it explicit

allows clients to extend thread functionality at �ne granularity. Applications may provide pieces

of a threads package or pieces of a scheduler, or they may implement the entire upcall interface,

depending on their needs.

Scheduling:

PROCEDURE GetCurrent() : Strand.T;

Return a handle for the currently ex-

ecuting strand.

PROCEDURE Block(s: Strand.T);

The strand is no longer eligible to run.

PROCEDURE Unblock(s: Strand.T);

The strand has become eligible to run.

Context:

PROCEDURE Checkpoint(s: Strand.T);

Checkpoint the current state of the strand.

PROCEDURE Resume(s: Strand.T);

Resume strand from last checkpointed state.

Table 1: The strand upcall interface.

The scheduling related upcalls are used by the system to query application-speci�c schedulers,

and to indicate whether or not an application thread is eligible for execution. The GetCurrent

upcall is used to acquire a handle to the currently running user thread. This handle identi�es an

application thread and may be used as an argument to subsequent calls in the strand interface.

The Block upcall indicates that the named thread is not going to make any progress and should

be stopped. For example, the virtual memory subsystem may, in response to a page fault, acquire

a handle to the current strand and perform the Block upcall to indicate that it is unable to make

4



progress. A typical scheduler would handle the upcall by stopping this thread and scheduling a

new one using a custom scheduling policy. The Unblock upcall is the opposite of Block. The VM

subsystem may perform this upcall when a page is fetched from disk, and a typical scheduler would

place the suspended thread back on its run queue. Hence, the strand interface enables subsystems

that are oblivious of the thread and scheduler implementations, such as virtual memory, device

drivers, input/output, etc., to communicate with application speci�c schedulers.

The Checkpoint and Resume upcalls comprise the subset of thread upcalls that are related

to execution state. They are used to communicate between schedulers, which decide when threads

should be scheduled, and thread packages, which determine how they should be executed. The

Checkpoint and Resume upcalls are used by schedulers to indicate to thread packages that a

strand has been selected to run, and that its state should be loaded onto the machine. For example,

a typical thread package would handle the Resume upcall by setting the user registers to their

appropriate values. An application-speci�c scheduler that handles the Block upcall could in turn

raise the Checkpoint upcall in order to signal to a thread package that the state of the current

computation should be saved.

The SPIN operating system provides default handlers for all of the upcalls in the strand in-

terface. The system scheduler handles scheduling related upcalls, while a bootstrap user-thread

package handles the state related upcalls. Applications that do not care about application-speci�c

thread behavior do not need to provide handlers for the strand upcalls. Further, applications can

extend their behavior on the granularity of single upcalls, and do not need to write whole thread

packages or schedulers in order to add incremental functionality.

3.1 Examples

Figure 2 demonstrates how a generic threads package might use the strand interface to imple-

ment lightweight user threads. The Resume handler is invoked whenever the thread is scheduled

to run. It sets the current translation mappings to the thread's address space, and transfers control

to the user-level thread. The Checkpoint handler saves the thread's state and noti�es the address

space manager that the user's address space is no longer active. Although both Checkpoint and

Resume are executed with the scheduler lock held, a rogue application cannot keep the system

from making forward progress by failing to relinquish control. The EPHEMERAL keyword indi-

cates that the handler may be safely terminated by the caller if it fails to relinquish control within

an allotted time frame. Section 4.4 further describes ephemeral handlers and the restrictions placed

on them by the language.

A real-time scheduler can be constructed just as readily by installing handlers on strand upcalls.

The application-speci�c real-time scheduler handles Block and Unblock events for its threads,

and performs Checkpoint and Resume upcalls which are caught by a real-time threads package.

Since the real-time scheduler intercepts Block and Unblock events, it has complete knowledge

about the schedulability of its threads, and can make application-speci�c policy decisions on which

thread to run �rst. For the user-level schedulers to be able to make real-time guarantees, the global

scheduler itself has to be real-time. Our current implementation of the global scheduler provides

�xed-priorities fair round-robin scheduling within a given priority level.

4 Implementation

We have implemented the strand interface in the context of the SPIN kernel. SPIN is an extensible

operating system which allows untrusted applications to extend system functionality by download-

5



MODULE BasicThreads;

IMPORT Space;

IMPORT CPUState;

TYPE T = Strand.T OBJECT cpustate: CPUState.T; space: Space.T; END;

EPHEMERAL PROCEDURE ResumeHandler(s: Strand.T) =

VAR th : T := NARROW(s, T);

BEGIN

(* switch to user address space *)

Space.Activate(th.space);

(* context switch to thread *)

CPUState.SetUserRegisters(th.cpustate);

END ResumeHandler;

EPHEMERAL PROCEDURE CheckpointHandler(s: Strand.T) =

VAR th : T := NARROW(s, T);

BEGIN

(* protect the user address space *)

Space.Deactivate(th.space);

(* save thread context *)

CPUState.GetUserRegisters(th.cpustate);

END CheckpointHandler;

BEGIN

END BasicThreads.

Figure 2: A generic thread package, which illustrates a typical client of the strands interface.

ing code into the kernel address space. It relies on typesafety and safe dynamic linking in order to

retain system wide safety guarantees. SPIN runs standalone on Alpha workstations. Some clients

of the system include a Unix server, a web server, and an NFS server.

In order to deliver high performance, our strand implementation takes advantage of the ex-

tension, integration and protection services o�ered by SPIN. First, we reduce upcall overhead by

placing application-speci�c thread packages in the same address space as the kernel. We further

optimize strand upcall dispatch through run-time code generation[Pardyak & Bershad 96]. In order

to reduce the latency of user-kernel boundary crossings, we delay scheduling actions until they are

necessary. Finally, we expose machine dependent architectural events to applications, and allow

applications to handle low-level trap events. Combined, these techniques yield competitive con-

ventional interfaces, such as CThreads, built on strands, as well as deliver high performance to

application-speci�c thread packages.

Although strands were designed and implemented in the context of SPIN, we believe that the

general architecture could be implemented in more conventional systems such as UNIX provided

they support kernel extensions in a safe fashion. Fundamentally, our strands architecture requires

that the kernel export two facilities: dynamic linking and in-kernel �rewalls. Dynamic linking is

necessary to install and remove new strands packages into and from the kernel. An in-kernel �re-

wall makes it possible to run user code within the kernel without compromising system integrity.

Typesafe languages are not the only mechanism for implementing �rewalls. Alternative strate-

gies include interpreted languages [Gosling & McGilton , Ousterhout 94] and software based fault

6



isolation techniques [Wahbe et al. 93].

4.1 Low-Overhead Communication

We colocate application-speci�c thread packages within the kernel to achieve high performance

for strand upcalls. Colocation enables the kernel to perform application upcalls without crossing

architectural protection boundaries.

The high cost of crossing hardware protection boundaries has been a barrier for thread man-

agement schemes based on user-level upcalls. The overhead of crossing protection boundaries has

forced previous systems to implement complicated schemes to reduce the number of cross-domain

upcalls. For instance, scheduler activations amortizes the cost of an upcall over multiple events

by batching them, which trades o� latency and simplicity of design for throughput. Psyche and

Symunix, on the other hand, share thread state between the kernel and user via mapped mem-

ory regions in order to reduce the number of protection boundary crossings. In strands, however,

downloading the application thread packages into the kernel enables operating system services to

contact user-supplied code through regular procedure calls.

An in-kernel dynamic linker provided by SPIN performs the dynamic linking. The linker accepts

object code from applications, ensures that it is typesafe, and that it only references kernel interfaces

for which it possesses capabilities. Once linked, applications can name kernel services directly and

without any overhead. The typesafety of code is ensured by only permitting code written in the safe

subset of Modula-3[Nelson 91], which prohibits pointer arithmetic, validates all array accesses and

forbids arbitrary pointer casting. The linker validates all accesses to interfaces against a capability

list presented by the application, to ensure that no application can access a kernel interface unless

authorized to do so. Hence, SPIN provides compile and link time facilities to draw �rewalls around

code in a single privileged address space[Sirer et al. 96].

4.2 E�cient Upcall Dispatch

Application-speci�c handlers that implement the strand interface need to be bound to the strand

upcalls in order to be invoked. Our implementation relies on the SPIN event dispatcher to establish

this binding. The dispatcher is a manager for control transfer, whose function is to invoke the right

set of handlers for a given event. Events in SPIN are typed Modula-3 procedures which carry

arguments and a return value. When a strand handler registers interest in a kernel upcall, the

dispatcher transparently interposes itself between the upcall sites and the handler. Upon an event

raise, it evaluates boolean guard expressions to determine which handlers should be executed, and

transfers control to the set of handlers that need to run.

The dispatcher utilizes run-time code generation in order to maximize invocation performance.

The guard predicates are possibly unrolled and inlined into a run-time generated dispatch stub,

which is transparently placed between event handlers and raisers. The stub is responsible for eval-

uating the guards and invoking the handlers. The SPIN dispatcher allows arbitrary interposition of

code between event raisers and handlers, and provides a uniform method of extending system func-

tionality within SPIN. The guard expressions provide 
exibility in specifying arbitrary predicates

for when a handler should execute. Although it is possible to achieve the binding functionality

o�ered by the dispatcher through method lookups on objects, our implementation relies on SPIN

event machinery to take advantage of unlimited interposition.

7



4.3 User-kernel crossings

Although users normally have full access to the execution state and semantics of a user thread, their

access needs to be revoked whenever the user thread crosses the kernel boundary. As discussed in

section 2, allowing users to manipulate the state of threads in the kernel could result in system-

wide safety problems. The naive way of revoking users' access rights to a user thread is to perform

a full context-switch from a user strand to a kernel strand upon kernel entry. However, a full

context switch is a relatively costly operation that will impact the performance of traps and system

calls, especially in the common case where the thread completes system call processing without

performing any scheduling operations.

We optimize the kernel entry path by performing a deferred context switch. A user thread is

logically paired with a kernel-level thread when it is activated. Upon a subsequent entry into the

kernel in response to a system call, fault, or interrupt, the system merely transfers control 
ow to a

kernel stack and establishes a binding between the kernel thread and the user thread that entered

the kernel. It defers all scheduling related operations until a scheduling event occurs. For instance,

if a user thread enters the kernel and is subsequently blocked, the Block upcall for the user strand

is delayed until the kernel thread performs a scheduler operation, such as yielding the processor.

This optimization allows us to eliminate redundant scheduler operations in the common case of

no scheduling state change during a system call, even though a logical context switch from a user

strand to a kernel strand has occurred. SPIN is thus able to achieve system call and trap handling

performance that is comparable to DEC OSF/1 and Mach.

4.4 Safety and Failure Isolation

In order to guarantee system safety, an implementation of the strand interface needs to provide

protection against rogue clients and failure isolation against erroneous handlers.

Our implementation limits thread manipulation to properly authorized handlers via imposed

guards. An imposed guard is a predicate that ensures that a user handler will not handle events to

which the user does not have access capabilities. For instance, a rogue client might try to subvert

other users' threads by installing a handler for all strand events, e.g. by specifying a guard that

always returns true. However, the installation is not allowed to complete unless the client can

present a strand capability to the system. The system then imposes a guard which ensures that

the strand argument to the imposed event matches the capability presented by the client.

Further, the strand implementation needs to protect the system from the failures of application-

speci�c handlers. The strand interface is designed such that any invocation of a handler a�ects at

most one strand. This limits the adverse e�ects of the failure of any handler to the user threads

managed by that handler. Failures in handlers are turned into language exceptions by the runtime,

which can be caught and appropriately handled [Hsieh et al. 96]. Hence, a program error in an

application-speci�c thread package causes the failure of the corresponding user strand, but does

not compromise system integrity.

It is important to note that a failure of a strand handler to relinquish the processor does not

cause system failure. Our scheduler and base kernel are preemptive, and a user handler that goes

into an in�nite loop is dealt with by preemption in the same manner as in�nite loops at user

level. Sometimes, however, user-supplied handlers need to be invoked with a lock held, and their

failure to relinquish a lock may keep other unrelated strands from making progress. For instance,

the system scheduler invokes the context related upcalls, Checkpoint and Resume, with the

global scheduler lock held. While this allows atomicity guarantees to be made about the system

state changes made by these handlers, it poses a problem should a handler block or go into an

8



in�nite loop. The straightforward solution is to guarantee some grace period to user handlers, as

measured by successive clock ticks, and then to terminate the o�ending handler. However, sudden

forceful termination may leave the system in an inconsistent state. For example, a handler that is

performing allocation may leave the heap in an inconsistent state if forcefully killed. A rogue client

may knowingly invoke an unsuspecting service until it is terminated in order to destroy the internal

consistency of this service. We have adopted a language-level solution which allows handlers who

agree to a revocation protocol to handle such restricted events, while being e�ectively prevented

from damaging the state of clients that are sensitive to termination. We have added a new subtype

of procedures to Modula-3, called EPHEMERAL, which designates that the procedure may be

terminated at any time. An ephemeral procedure can only invoke other ephemeral procedures,

which are similarly resilient against forceful termination. The strand context upcalls Checkpoint

and Resume, for instance, are declared to be ephemeral, and the system scheduler will forcefully

terminate any handlers that do not relinquish the scheduler lock within a small number of clock

ticks.

5 Results

In this section, we show that the strands architecture allows applications to construct application-

speci�c thread packages that deliver high-performance. More speci�cally, we �rst demonstrate via

a set of microbenchmarks that the strand interface has low overhead. This enables conventional

thread systems to be constructed out of strands without any performance degradation. In fact, our

strands based implementation is a factor of two to ten faster than its equivalent in DEC OSF, even

though it incurs a cost for providing extensibility. We then show that the strand architecture enables

application-speci�c thread packages to implement functionality not possible with user threads, and

to perform better than alternative approaches based on kernel threads.

We compare the strands performance in the SPIN release 1.22 operating system against DEC

OSF/1.0 V3.2, a monolithic operating system. The measurements are performed on an AlphaS-

tation 250 4/266Mhz workstation rated at 4.18 SPECint95. The operating systems were run in

single-user mode during the course of the measurements.

5.1 Microbenchmarks

The purpose of the microbenchmarks is to highlight speci�c bene�ts of the strand system structure.

First, we compare the relative performance of protected control transfer between di�erent domains

under monolithic systems versus the in-kernel control transfer provided by SPIN. In Table 2, System

Call re
ects the time for a user-level program to invoke a system service by crossing the user-kernel

boundary and returning. Protected Procedure Call re
ects a protected service invocation between

two kernel extensions in SPIN. The low overhead for software based protected domain transfer

demonstrates that there is a large incentive to shift application-speci�c thread management code

from user-space to inside the kernel. Further, the table also shows that SPIN provides comparable

system call performance despite performing a logical context switch on the system call path.

We now compare the performance of generic thread operations under a conventional monolithic

implementation model versus a user extension based on the strand interface. We examine Pthreads

under DEC OSF, which o�ers a mature implementation of the POSIX threads interface. Each

pthread is is bound to a separate kernel supported thread, which is required for correct concurrent

behavior with respect to I/O and page faults. We also measure an in-kernel implementation of

CThreads using strands. For the purposes of this experiment, the CThread and Pthread interfaces

9



DEC OSF SPIN

Protected Procedure Call N/A 0.10

System Call 1.7 2.9

Table 2: Communication latencies in microseconds. This table shows that there is a large incentive to shift thread

management code from user-space to inside the kernel.

are identical. As Table 3 demonstrates, the overhead of the strand based implementation is substan-

tially lower, which shows that the overhead of extensibility does not interfere with high-performance

thread implementations.

DEC OSF SPIN

Operation Pthreads Strands

Fork-Join 1440 135

Ping-Pong 180 95

Table 3: Thread management overhead in microseconds. This table demonstrates that it is possible to construct

conventional thread systems based on strands that are competitive with hand-tuned, non-extensible implementations.

5.2 Applications

In this section, we compare the performance of several applications and corresponding application-

speci�c thread packages under di�erent thread models. We compare kernel threads, user threads,

and strands. Our results show that the strand architecture can deliver high-performance thread

subsystems, due to two factors: (1) specialization, where no more code than is strictly necessary

for the application's task is executed, and (2) protection, where low overhead software protection

schemes obviate costly hardware protection boundary crossings.

For kernel threads, we report measurements made on DEC OSF PThreads. For user threads,

we report numbers from DEC OSF MiniThreads, which is a purely user-level thread package that

provides a similar interface to that of Pthreads. Finally, we examine the SPIN CThread extension.

Kernel threads User threads Strands

Application DEC OSF Pthreads DEC OSF MiniThreads SPIN CThreads

MemRegions N/A 2950 1540

CAS2Synch 309 309 64

Table 4: Application execution time in seconds. This table demonstrates that the strands architecture o�ers

high-performance for applications which need to interface closely with kernel services.

The �rst benchmark, MemRegions, is a local DSM system simulator, where each thread has

separate memory regions that are protected to track updates. Upon every context switch, the

memory mapping is updated to contain the pages in the thread's working set (i.e. pages it has

locked) and to protect the pages that the thread does not have access to. Since kernel thread

implementations are both immutable and do not expose preemptions and other scheduling events

to the user, implementing this behavior with kernel threads is not possible. A strands based

10



implementation is a factor of two faster than a user-level thread implementation, due largely to the

low communication overhead between the thread package and the VM system.

CAS2Synch is a multithreaded application that synchronizes through double compare and swap

(CAS2) operations. When used to synchronize with threads in other address spaces via shared

memory, the kernel and user thread based implementations both require the same sequence of

heavyweight synchronization mechanisms provided by the architecture. In this instance, the ker-

nel and user thread implementations both need to use load-linked/store-conditional primitives

exported by the hardware. However, the strands interface allows its clients to take advantage of

their application-speci�c knowledge by exposing all scheduling related events. For instance, on a

single processor, it is possible to implement CAS2 by executing application-speci�c code on each

thread preemption that checks the pc and either resets it to the beginning of the CAS region if no

writes have been performed, or rolls it forward from within the context save routine [Bershad 93].

This optimistic software implementation of CAS is roughly �ve times faster than the equivalent

implemented with hardware primitives.

Acknowledgements

We would like to thank all members of the SPIN group, in particular Marc Fiuczynski and Stefan

Savage, for their assistance during the course of this work.

6 Conclusion

In this paper, we have described an architecture for building extensible, e�cient and robust thread

implementations. For conventional thread interfaces, the strand architecture is able to provide high

performance competitive with hand-tuned, monolithic implementations. In addition, the strand

interface allows applications to build specialized thread implementations that are either hard to

construct or ine�cient under alternative concurrency models.

References

[Accetta et al. 86] Accetta, M. J., Baron, R. V., Bolosky, W., Golub, D. B., Rashid, R. F., Teva-

nian, Jr., A., and Young, M. W. Mach: A New Kernel Foundation for Unix Development.

In Proceedings of the 1986 Summer USENIX Conference, pages 93{113, July 1986.

[Anderson et al. 92] Anderson, T. E., Bershad, B. N., Lazowska, E. D., and Levy, H. M. Scheduler

Activations: E�ective Kernel Support for the User-Level Management of Parallelism.

ACM Transactions on Computer Systems, 10(1):53{79, February 1992.

[Bershad 93] Bershad, B. N. Practical Considerations for Non-Blocking Concurrent Objects. In

Proceedings of the Thirteenth International Conference on Distributed Computing Sys-

tems, pages 264{274, Pittsburgh, PA, May 1993.

[Bershad et al. 88] Bershad, B., Lazowska, E., and Levy, H. Presto: A system for object-oriented

parallel programming. Software: Practice and Experience, 18(8), August 1988.

[Bershad et al. 92] Bershad, B. N., Redell, D. D., and Ellis, J. R. Fast Mutual Exclusion for

Uniprocessors. In Proceedings of the Fifth International Conference on Architectural

11



Support for Programming Languages and Operating Systems (ASPLOS-V), pages 223{

233, Boston, MA, October 1992.

[Bershad et al. 95] Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M., Becker,

D., Eggers, S., and Chambers, C. Extensibility, Safety and Performance in the SPIN

Operating System. In Proceedings of the Fifteenth ACM Symposium on Operating Systems

Principles, Copper Mountain, CO, December 1995.

[Brinch Hansen 70] Brinch Hansen, P. The nucleus of a multiprogramming system. Communica-

tions of the ACM, 13(4):238{250, April 1970.

[Cooper & Draves 88] Cooper, E. C. and Draves, R. P. C Threads. Technical Report CMU-CS-

88-154, Carnegie Mellon University, June 1988.

[Cormack 88] Cormack, G. V. A Microkernel for Concurrency in C. Software|Practice and Expe-

rience, 18(5):485{491, May 1988.

[Davis et al. 93] Davis, P.-B., McNamee, D., Vaswani, R., and Lazowska, E. Adding Scheduler

Activations to Mach 3.0. In Proceedings of the Third USENIX Mach Symposium, pages

119{136, Santa Fe, NM, April 1993.

[Dijkstra 66] Dijkstra, E. W. The Structure of the THE Multiprogramming System. Communica-

tions of the ACM, 9(3):341{346, March 1966.

[Gosling & McGilton ] Gosling, J. and McGilton, H. The Java Language Environment: A White

Paper. http://java.sun.com.

[Hsieh et al. 96] Hsieh, W. C., Fiuczynski, M. E., Garrett, C., Savage, S., Becker, D., and Bershad,

B. N. Language Support for Extensible Systems. In First Annual Workshop on Compiler

Support for System Software, January 1996.

[Marsh et al. 91] Marsh, B., Scott, M., LeBlanc, T., and Markatos, E. First-Class User-Level

Threads. In Proceedings of the Thirteenth ACM Symposium on Operating Systems Prin-

ciples, pages 110{121, Paci�c Grove, CA, October 1991.

[Nelson 91] Nelson, G., editor. Systems Programming with Modula-3. Prentice Hall, 1991.

[Ousterhout 94] Ousterhout, J. K. Tcl and the TK Toolkit. Addison-Wesley Publishing Company,

1994.

[Pardyak & Bershad 96] Pardyak, P. and Bershad, B. Dynamic Binding for Extensible Systems.

Submitted to 1996 OSDI, May 1996.

[Redell 88] Redell, D. Experience with Topaz Teledebugging. In Proceedings of the ACM SIGPLAN

and SIGOPS Workshop on Parallel and Distributed Debugging, October 1988.

[Ritchie & Thompson 74] Ritchie, D. M. and Thompson, K. The UNIX Time-Sharing System.

Communications of the ACM, 17(6):365{375, July 1974.

[Sirer et al. 96] Sirer, E. G., Fiuczynski, M., Pardyak, P., and Bershad, B. N. Safe Dynamic Linking

in an Extensible Operating System. In First Annual Workshop on Compiler Support for

System Software, January 1996.

12



[Wahbe et al. 93] Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L. E�cient Software-

Based Fault Isolation. In Proceedings of the Fourteenth ACM Symposium on Operating

Systems Principles, pages 203{216, Asheville, NC, December 1993.

[Zahorjan & McCann 90] Zahorjan, J. and McCann, C. Processor Scheduling in Shared Memory

Multiprocessors. In Proceedings of the ACM SIGMETRICS Conference on Measurement

and Modeling of Computer Systems, pages 214{225, May 1990.

13


