
On Searching Sorted Lists: A Near-Optimal Lower Bound

Paul Beame

�

Computer Science and Engineering

University of Washington

Box 352350

Seattle, WA

USA 98195-2350

Faith Fich

y

Computer Science Department

University of Toronto

Toronto, Ontario

CANADA M5S 1A4

April 23, 1997

Abstract

We obtain improved lower bounds for a class of static and dynamic data structure problems

that includes several problems of searching sorted lists as special cases.

These lower bounds nearly match the upper bounds given by recent striking improvements in

searching algorithms given by Fredman andWillard's fusion trees [9] and Andersson's search data

structure [5]. Thus they show sharp limitations on the running time improvements obtainable

using the unit-cost word-level RAM operations that those algorithms employ.

1 Introduction

Traditional analysis of problems such as sorting and searching is often schizophrenic in dealing

with the operations one is permitted to perform on the input data. In one view, the elements being

sorted are seen as abstract objects which may only be compared. In the other view, one is able to

perform certain word-level operations, such as indirect addressing using the elements themselves,

in algorithms like bucket and radix sorting.

Traditionally, the second view is only applied when the number of bits to represent the data

is very small in comparison with the number of elements being sorted. More recently, algorithms

such as the fusion tree sorting algorithm of Fredman and Willard [9] and subsequent algorithms

in [10, 7, 3], have shown that one can obtain signi�cant speed-ups by fully exploiting unit-cost

word-level operations and the fact that data elements being sorted need to �t in words of memory.

For example, the fusion tree data structure of Fredman and Willard can store a list of s elements

in O(s) words of memory in such a way that range searching can be accomplished in amortized

sub-logarithmic (O(

p

log s)) time using word-level operations. This data structure forms the basis

of their ingenious O(n

p

logn) sorting algorithm. Fusion Trees require word-level multiplication as a

�
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unit-cost operation, which may be more than one wishes to allow, but Andersson [5], building on an

O(n log logn) time sorting algorithm in this model in [3], has shown that even a simpler collection

of word-level operations (all of them computable in AC

0

) permits the O(

p

log s) running time and

O(s) space as a worst case bound. Andersson's algorithm is not particularly complicated; in fact,

his paper even includes most of the C code that implements one variant of his sub-logarithmic

range searching!

Because these new algorithms fully exploit the freedom to use word-level operations, standard

lower bounds for sorting and searching do not always apply to them. What are the limits to the

improvements in running-time obtained using this freedom?

One of the most natural and general models for proving lower bounds for data structures

problems, and one that is ideally suited for representing word-level operations, is the cell-probe

model, introduced by Yao [18]. In this model, there is a memory consisting of cells, each of which

is capable of storing some �xed number of bits. A cell-probe algorithm is a decision tree with

one memory cell accessed at each node. The decision tree branches according to the contents of

the cell accessed. We only count the number of memory cells accessed in the data structure; all

computation is free. This means that no restrictions are imposed on the way data is represented

or manipulated, except for the bound on the size of values that each memory cell can hold. Thus,

lower bounds obtained in this model apply to all reasonable models of computation and give us

insight into why certain problems are hard.

Both static problems (just queries) and dynamic problems (updates and queries) have been

examined in the cell-probe model. (For static problems, it is also necessary to impose a bound on

the number of memory cells in order for the model to be meaningful; otherwise a precomputed table

of answers can be used to solve any given problem with only one access.) A number of authors

have considered lower bounds in the cell-probe model for both static and dynamic data structure

problems [18, 2, 8, 13].

The particular class of problems that we consider includes problems such as both the static

and dynamic predecessor and one-dimensional range query problems. For example, the

predecessor problem, the classical problem solved by binary search on sorted lists, requires one

to maintain a set S from a universe U in such a way that queries of the form \Is universe element

j an element of S and, if not, what element of S, if any, is just before it in sorted order?" may be

answered e�ciently.

Van Emde Boas et al. [14] showed that the dynamic version of the predecessor problem (as

well as the more general priority queue problem) in a universe of size n may be solved on a RAM

at a cost of only O(log logn) time per update. Willard [15] extended this result to show that if

the set S has size at most s then, in the static version of the predecessor problem, only O(s)

memory cells are needed so that each query can be answered in O(log logn) time on a RAM. Ajtai,

Fredman, and Komlos [1] also considered the static problem. They showed that, if n, the size of

the universe, is only polynomial in s = jSj then, using a trie, one can store S in O(s) memory cells

and answer predecessor queries in constant time in the cell-probe model.

In [2], on which many of the techniques of this paper are based, Ajtai showed that, even in the

very general cell-probe model, the result of Ajtai, Fredman, and Szemeredi cannot be extended to

general S, even if the memory size is permitted to be as large as s

O(1)

. More precisely, he showed

that if the size n of the universe U grows more than polynomially in s = jSj, then any cell-probe
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data structure using s

O(1)

memory cells requires non-constant time per query.

In [13], Miltersen de�ned a natural class of data structure problems that includes the prede-

cessor and one-dimensional range query problems as special cases and he generalized many

of the results above to this class of problems. He showed that Willard's translation of dynamic

data structures to static data structures can be extended to derive lower bounds on dynamic data

structure problems in this class. As well, he observed that, by choosing parameters as in Ajtai's

argument, one can �nd a set size s, in terms of the universe size n, for which the time per query

derived from Ajtai's argument is 
(

p

log log n). This lower bound on query time also applies to the

dynamic case when update time is at most 2

(log n)

1��

, for some constant � > 0.

One of the other nice contributions of Miltersen's paper is the observation that cell-probe

algorithms can be viewed as two-party communication protocols [17] between a Querier who holds

the input query and a Responder who holds the data structure. In each round of communication,

the Querier sends the name of a memory cell to access and the Responder answers with the contents

of that memory cell. (The only restriction is that the same query always receives the same response.)

He rephrases most of Ajtai's argument in this form where its similarities with the communication-

complexity lower bound argument of Karchmer and Wigderson [11] become quite apparent.

Fusion trees and Andersson's search structure also provide solutions to the static predecessor

problem. They use O(

p

log s) time per query. Unlike the predecessor data structure in [1], these

structures use only O(s) memory cells for a given set size s, independent of universe size (provided

that elements of the universe �t in individual words of memory.)

Miltersen et al. [12] observed that, for certain universe sizes, the lower bound of [13] also gives

an 
((log s)

1=3

) lower bound on the time to implement any static problem from the class considered

in [13] and thus on search data structures, such as fusion trees, with an s

O(1)

bound on the number

of memory cells.

In this paper, we nearly close the gaps between the upper and lower bounds for these data

structure problems in the cell-probe model. We improve the lower bound in terms of universe size to


(log logn= log log log n) which nearly matches the O(log logn) upper bound on RAMs of Van Emde

Boas et al. In terms of the number of elements, s, we improve the bound to 
(

p

log s= log log s)

nearly matching the O(

p

log s) upper bound on augmented RAMs due to Andersson.

The basic structure of our argument follows that of [2] as expressed by [13]. Our key im-

provement is that we �nd a better distribution of inputs on which to consider the data structure's

behaviour.

2 Preliminaries

In this section, we state two combinatorial results which are important for the lower bound proofs

given in the next section. We use the notation [1; n] to denote the set of integers f1; : : : ; ng and

(a; a

0

], for a < a

0

, to denote the set of integers fa+ 1; : : : ; a

0

g.

The following form of the Cherno�-Hoe�ding bound follows easily from the presentation in [6].

Proposition 1: Fix H � U with jHj � �jU j and let S � U with jSj = s be chosen uniformly at
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random. Then

Pr[jH \ Sj � �s=4] � (

p

2=e

3=4

)

�s

< 2

��s=2

:

The next result is a small modi�cation and rephrasing of a combinatorial lemma that formed

the basis of Ajtai's lower bound argument in [2].

Suppose we have a tree T of depth d such that all nodes on the same level have the same number

of children. For ` = 0; : : : ; d let V

`

be the set of nodes of T on level ` (i.e. at depth `) and for ` < d

let f

`

be the fan-out of each node on level `. Thus jV

`+1

j = f

`

jV

`

j for ` = 0; : : : ; d� 1.

For any node v 2 T , let leaves(v) denote the set of nodes in V

d

that are descendants of v and,

for v not the root of T , let parent(v) denote the parent of v. Let A(1); : : : ; A(m) be disjoint sets of

leaves of T and let A =

S

m

c=1

A(c). The leaves in A(c) are said to have colour c. A nonleaf node v has

colour c if leaves(v) contains a node in A(c). For c = 1; : : : ;m, let A

0

(c) = fv j leaves(v)\A(c) 6= �g

denote the set of nodes with colour c. Note that the sets A

0

(1); : : : A

0

(m) are not necessarily disjoint,

since a nonleaf node may have more than one colour.

A nonleaf node v is �-dense (where 0 � � � 1) if there is a colour c such that at least a fraction

� of v's children have colour c, i.e., if v is on level ` then v has at least � � f

`

children in A

0

(c).

Let R

�

`

(c) be the set of those nodes on level ` that are coloured c and do not have a �-dense

ancestor at levels 1; : : : ; ` � 1. In particular, R

�

1

(c) = A

0

(c) \ V

1

. The fraction of nodes on level `

that are in R

�

`

(c) decreases exponentially with `.

Proposition 2: For 1 � ` � d, jR

�

`

(c)j � �

`�1

jV

`

j.

Proof By induction on `. The base case, ` = 1, is trivial since R

�

1

(c) � V

1

.

Now let 1 � ` < d and assume that jR

�

`

(c)j � �

`�1

jV

`

j. If v 2 R

�

`+1

(c), then, by de�nition, v has

colour c and no ancestor of v at levels 1; : : : ; ` is �-dense. Since v has colour c, parent(v) also has

colour c and, thus, parent(v) 2 R

�

`

(c). Furthermore, parent(v) is not �-dense, so fewer than � � f

`

of its children are in R

�

`+1

(c). Hence,

jR

�

`+1

(c)j < � � f

`

jR

�

`

(c)j � � � f

`

� �

`�1

jV

`

j = �

`

jV

`+1

j;

as required. 2

We now prove Ajtai's Lemma:

Proposition 3: (Ajtai's Lemma) Let T be a tree of depth d � 2 such that all nodes on the same

level of T have the same number of children. Suppose that at least a fraction � of all the leaves in

T are coloured (each with one of m colours). Call this set of leaves A. Then there exists a level `,

1 � ` � d� 1, such that the fraction of nodes on level ` of T that are �-dense is at least

��m�

d�1

d� 1

:

Proof By Proposition 2, jR

�

d

(c)j � �

d�1

jV

d

j for all colours c. Let R

�

=

S

m

c=1

R

�

d

(c) � A. There are

m colours; therefore jR

�

j � m�

d�1

jV

d

j.
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If w 2 A � V

d

and none of its ancestors at levels 1; : : : ; d � 1 are �-dense, then w 2 R

�

. Thus

w 2 A�R

�

implies that some ancestor of w at some level 1; : : : ; d� 1 is �-dense.

For ` = 1; : : : ; d � 1, let �

`

denote the fraction of nodes in V

`

that are �-dense. Observe that

because the fan-out at each level of T is constant, for any v 2 V

`

, jleaves(v)j = jV

d

j=jV

`

j. Therefore,

for each `, 1 � ` � d� 1, the number of leaf nodes of T that lie below �-dense nodes in V

`

is �

`

jV

d

j.

It follows that

jA�R

�

j �

d�1

X

`=1

�

`

jV

d

j:

But jA�R

�

j = jAj � jR

�

j � � jV

d

j �m�

d�1

jV

d

j, so

d�1

X

`=1

�

`

� ��m�

d�1

:

Thus there is some `, 1 � ` � d� 1, such that �

`

� (��m�

d�1

)=(d� 1), as required. 2

3 Lower Bounds for Static Problems

As in Miltersen [13], we prove our lower bounds in a general language-theoretic setting. At the end

of the section, we show how to obtain the results for the speci�c data structure problems mentioned

in the introduction as corollaries of these lower bounds.

Throughout, we assume that � is a �nite alphabet that does not contain the symbol ?.

Definition 3.1: A regular language L is indecisive if and only if for all x 2 �

�

there exist z; z

0

2 �

�

such that xz 2 L and xz

0

=2 L. In other words, knowing the pre�x of any word does not determine

whether the word is in L.

If the minimal deterministic �nite automaton accepting L has q states, then the strings z and

z

0

may be taken to be of length at most q � 1 in De�nition 3.1. Furthermore, q � 2, since the

deterministic �nite automaton must accept some words and reject others.

Definition 3.2: For any string y = y

1

� � � y

n

2 (� [ f?g)

�

and any nonnegative integer j � n,

we use the notation PRE

j

(y) to denote the string obtained by deleting all occurrences of ? from

y

1

� � � y

j

, the length j pre�x of y.

Definition 3.3: Let Z(n; s) denote the set of strings in (� [ f?g)

n

containing at most s non-?

characters.

Definition 3.4: The static (L; n; s)-pre�x problem is to store an arbitrary string y 2 Z(n; s) so

that, for any j 2 [1; n], the query \Is PRE

j

(y) 2 L?" may be answered.

If n

0

� n and s

0

� s, then any string in Z(n; s) can be viewed as a string in Z(n

0

; s

0

) by

appending ?

n

0

�n

to it. Thus the static (L; n

0

; s

0

)-pre�x problem is at least as hard as the static

(L; n; s)-pre�x problem.
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We prove a lower bounds on the complexity of the static (L; n; s)-pre�x problem using an

adversary argument. As discussed in the introduction, Miltersen [13] observed that one can phrase

a static data structure algorithm in the cell-probe model in terms of a communication protocol

between between two players: the Querier, who holds the information about the input to be dealt

with, and the Responder, who holds the data structure. Each query that the Querier makes to

the data structure, a cell name, consists of logm bits of communication, where m is the number

of memory cells, and each response by the Responder, the contents of that named cell, consists

of exactly b bits of communication. We say that this cell-probe communication protocol uses m

memory cells of b bits. For technical reasons, we require that, at the end of the protocol, both

the Querier and the Responder know the answer to the problem instance. The number of rounds

of alternation of the players is the time t of the cell-probe communication protocol. Since we are

considering decision problems, the answer to each problem instance is a single bit. In this case,

once one of the players knows the answer, the other player can be told the answer in the next

round. Therefore, if there is an algorithm for the static (L; n; s)-pre�x problem that uses at most

t� 1 probes, then there is a cell-probe communication protocol that solves this problem in at most

t rounds.

The lower bound, in the style of [11], works `top down', maintaining, for each player, a relatively

large set of inputs on which the communication is �xed. Unlike [11], we actually have a non-uniform

distributions on the Responder's inputs, so our notion of `large' is with respect to these distributions.

The distributions change (get simpler) as the rounds of the communication proceed.

We �nd the following notation convenient for this.

Definition 3.5: If D is a probability distribution on a set Z and B � Z, de�ne �

D

(B) to be the

probability that D chooses an element of B.

The simplest probability distribution on the Responder's input that we consider is D(n; s),

which is de�ned as follows:

Definition 3.6: An element y = y

1

: : : y

n

from Z(n; s) is chosen according to D(n; s) by �rst

choosing S � [1; n] uniformly at random with jSj = s, then, independently for each j 2 S, choosing

y

j

2 �[f?g uniformly at random, and �nally setting y

j

= ? for j =2 S. That is, each of the

�

n

i

�

j�j

i

strings in Z(n; s) with exactly i non-? characters has probability

�

n�i

s�i

�

=[

�

n

s

�

(j�j+ 1)

s

].

First we argue that there does not exist a large set of positions A � [1; n] and a large set of

strings B � Z(n; s) for which the static (L; n; s)-pre�x problem can be solved, for all j 2 A and

y 2 B, without communication. We actually consider a slightly more general problem: determining

whether x � PRE

j

(y) 2 L.

Lemma 4: Suppose that L � �

�

is an indecisive regular language accepted by a deterministic �nite

automaton with q states. Let n � s > 0 and suppose that b � 2(j�j+1)

q

, � � max(8qb

2

=s; 12b

3

=s),

and � � 2

�2b+1

. Consider any set of positions A � [1; n], with jAj � �n, and any set of strings

B � Z(n; s), with �

D(n;s)

(B) � �. Then, for any x 2 �

�

, there exist integers a; a

0

2 A and a string

y 2 B such that x � PRE

a

(y) 2 L and x � PRE

a

0

(y) 62 L.
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Proof Let x 2 �

�

. Consider the event that a string y randomly chosen from the distribution

D(n; s) has x � PRE

a

(y) 2 L for all a 2 A or x � PRE

a

(y) 62 L for all a 2 A. We will show that the

probability of this event is less than �. Since �

D(n;s)

(B) � �, it will follow that there exist integers

a; a

0

2 A and a string y 2 B such that x � PRE

a

(y) 2 L and x � PRE

a

0

(y) 62 L.

It is convenient to restrict attention to a well spaced subset of A. Speci�cally, since jAj � �n �

�s > 2b

2

, it is possible to choose a

0

; : : : ; a

b

2
2 A at least distance b(�n � 1)=b

2

c � �n=b

2

� 1 >

�n=(2b

2

) apart from one another. Say a

0

< � � � < a

b

2
. Then j(a

i�1

; a

i

]j = a

i

� a

i�1

> �n=(2b

2

) for

i = 1; : : : ; b

2

.

Let S � [1; n] with jSj = s be chosen uniformly at random. Then, since q � �s=(8b

2

) and

�s=(4b

2

) � 3b, applying Proposition 1 with H = (a

i�1

; a

i

] and � = �=(2b

2

),

Prob[j(a

i�1

; a

i

] \ Sj < q] � Prob[j(a

i�1

; a

i

] \ Sj � �s=(8b

2

)] < 2

��s=(4b

2

)

� 2

�3b

:

Since b � 4, there are b

2

� 2

b

intervals. Therefore, the probability that at least one of them

contains fewer than q elements of S is less than b

2

2

�3b

� 2

�2b

� �=2.

Now consider any �xed choice for S that has at least q elements in each of these b

2

intervals.

For each interval (a

i�1

; a

i

], consider the set Q

i

of the last q elements of S in the interval. L is

an indecisive regular language. Therefore, for each �xed choice w for the symbols of y that occur

before the �rst element of Q

i

, there are strings z; z

0

2 (� [ f?g)

q

such that x � PRE

a

i

(wz) 2 L

and x � PRE

a

i

(wz

0

) 62 L. There are (j�j + 1)

q

equally likely ways that the characters of y in

positions indexed by Q

i

will be assigned values. Thus, with probability at least (j�j+ 1)

�q

, either

x � PRE

a

i�1

(y) 2 L and x � PRE

a

i

(y) 62 L or x � PRE

a

i�1

(y) 62 L and x � PRE

a

i

(y) 2 L. Therefore,

the probability that this event does not occur is at most 1� (j�j+ 1)

�q

.

Since the choices of the portions of string y in each of the b

2

intervals (a

i�1

; a

i

] are independent,

the probability that either x � PRE

a

i

(y) 2 L for all i = 0; : : : ; b

2

or x � PRE

a

i

(y) 62 L for all

i = 0; : : : ; b

2

is at most

(1� (j�j+ 1)

�q

)

b

2

� e

�(j�j+1)

�q

b

2

< 2

�2b

� �=2 < �

since b � 2(j�j+ 1)

q

.

Because �

D(n;s)

(B) � �, it follows that there exists a string y 2 B such that neither x�PRE

a

(y) 2

L for all a 2 A nor x � PRE

a

(y) 62 L for all a 2 A. 2

Let L � �

�

be an indecisive regular language. For any positive integers b, k, t, n, and s de�ne

� � = s

�1=(4t)

� � = 2

�2b+1

� u = 8kt

� r = b

2

u=�

� f = b

3

u

3

=�

2

.

� n

0

= n; s

0

= s

7



� and for i � t de�ne n

i+1

= (n

i

=f)

1=u

and s

i+1

= s

i

=(ru).

We say that the tuple of parameters (b; k; t; n; s) satis�es the integrality condition if 1=� is an

integer greater than 1 and, for every i � t, n

i

and s

i

are integers and n

i

� s

i

.

If s is the 4t-th power of an integer larger than 1, then 1=� is an integer greater than 1 and f

and r are also integers. Since f � ru and u � 1, the condition n

t

� s

t

implies that n

i

� s

i

for all

i � t. Furthermore, if n

t

and s

t

are both integers, then s

i

= (ru)

t�i

s

t

and n

i

= f

(u

t�i

�1)=(u�1)

n

u

t�i

t

for i = 0; : : : ; t� 1 are all integers. In particular, the integrality condition will hold for (b; k; t; n; s)

if s is the 4t-th power of an integer larger than 1 and there are integers n

t

� s

t

such that s = (ru)

t

s

t

and n = f

(u

t

�1)=(u�1)

n

u

t

t

.

Suppose that the integrality condition holds for (b; k; t; n; s). We will de�ne a distribution on

Z(n; s) and use it to demonstrate that no cell-probe communication protocol using s

k

memory cells

of b bits can solve the static (L; n; s)-pre�x problem in t rounds.

The general idea of the lower bound argument will be to �nd, after each round, a portion of the

Querier's and Responder's inputs on which the cell-probe communication protocol has made little

progress. After i rounds, the possible values of the Querier's input in this portion will correspond

to an interval [1; n

i

] of a smaller pre�x problem for language L. After i rounds, the Responder's

input for this smaller pre�x problem will have at most s

i

elements of � and thus be a member of

Z(n

i

; s

i

).

We begin with a distribution D

0

on the domain of the Responder's inputs Z(n

0

; s

0

). After i

rounds of the cell-probe communication protocol, the distribution on the portion of the Responder's

inputs that remains of interest, Z(n

i

; s

i

), will be denoted by D

i

. The �nal distribution, D

t

, will be

D(n

t

; s

t

). After t rounds, we will apply Lemma 4 to the remaining portion, to complete the lower

bound.

We de�ne the probability distribution D

i

on Z(n

i

; s

i

) inductively, for i = t�1; : : : ; 0. For every

i < t, each string in Z(n

i

; s

i

) will be thought of as labelling the leaves of a tree T

i

with depth

u + 1, having fan-out f at the root and having a complete n

i+1

-ary tree of depth u at each child

of the root. We choose a random element of D

i

as the sequence of leaf labels of the tree T

i

, which

we label using the distribution D

i+1

as follows: First, choose r nodes uniformly from among all

the children of the root. For each successively deeper level, excluding the leaves, choose r nodes

uniformly among the nodes at that level that are not descendants of nodes chosen at higher levels.

Notice that, since the root of T

i

has f � ru children, it is always possible to choose enough nodes

with this property at each level. Independently, for each of these ru nodes, v, choose a string

w

v

2 Z(n

i+1

; s

i+1

) from D

i+1

and label the leftmost leaf in the h-th subtree of v with the h-th

symbol of w

v

, for h = 1; : : : ; n

i+1

. Label all other leaves of T

i

with ?.

Lemma 5: Suppose that L is a regular language accepted by a deterministic �nite automaton M

with q states. Suppose (b; k; t; n; s) satis�es the integrality condition, b � 16, and 2

b

� 4q. Let

x 2 �

�

, A � [1; n

i

] with jAj � �n

i

, and B � Z(n

i

; s

i

) with �

D

i

(B) � �. Suppose there is a

t� i round cell-probe communication protocol, using m � s

k

memory cells of b bits, that correctly

determines whether x�PRE

j

(y) 2 L for all j 2 A and y 2 B. Then there exist x

0

2 �

�

, A

0

� [1; n

i+1

]

with jA

0

j � �n

i+1

, B

0

� Z(n

i+1

; s

i+1

) with �

D

i+1

(B

0

) � � and a t � i � 1 round cell-probe

communication protocol, usingm cells of b bits, that correctly determines whether x

0

�PRE

j

0

(y

0

) 2 L

for all j

0

2 A

0

and y

0

2 B

0

.

8



Proof The argument isolates a node v in T

i

with the following property: we can �x one round

of communication in the original t � i round cell-probe communication protocol to obtain a new

t� i� 1 round communication protocol that still works well in the subtree rooted at v.

Finding the node v

We examine the behaviour of the Querier during the �rst round of the original cell-probe commu-

nication protocol to �nd a set of candidates for the node v. For each value of j 2 A, the Querier

sends one of m messages indicating which of the m memory cells it wishes to to probe. Colour the

jth leaf of T

i

with this message.

Since jAj � �n

i

, it follows from Ajtai's Lemma that there exists a level ` such that 1 � ` � u

and the fraction of �-dense nodes in level ` of T

i

is at least (� � m�

u

)=u. By the integrality

condition, � � 1=2. Furthermore, u > 6 and m � s

k

= �

�4kt

= �

�

u

2

. Therefore

(��m�

u

)=u � �(1� �

u

2

�1

)=u > 3�=(4u):

We now argue that there is a su�ciently large set of candidates for v among the �-dense nodes

at level ` and a way of labelling all leaves of T

i

that are not descendants of these candidates so that

the probability of choosing a string in B remains su�ciently large.

Note that in the construction of D

i

from D

i+1

, the r nodes chosen on level ` are not uniformly

chosen from among from among all nodes on level `. The constraint that these nodes not be

descendants of any of the r(`� 1) nodes chosen at higher levels skews this distribution somewhat

and necessitates a slightly more complicated argument.

Consider the di�erent possible choices for the r(` � 1) nodes at levels 1; : : : ; ` � 1 of T

i

in the

construction of D

i

from D

i+1

. By simple averaging, there is some such choice with �

D

0

i

(B) � �,

whereD

0

i

is the probability distribution obtained fromD

i

conditioned on the fact that this particular

choice occurred. Fix some such choice.

Let S be the random variable denoting the set of r nodes chosen at level `. Since the choice of

nodes at higher levels has been �xed, there are certain nodes at level ` that are no longer eligible

to be in S. Speci�cally, each of the r nodes chosen at level h < ` eliminates its n

`�h

i+1

descendants

at level ` from consideration. In total, there are

`�1

X

h=1

r � n

`�h

i+1

< 2r � n

`�1

i+1

nodes eliminated from consideration at level `. There are fn

`�1

i+1

nodes at level `, so the fraction of

nodes at level ` that are eliminated is less than 2r=f = 2�=(bu

2

) � �=(4u). Thus, of the nodes at

level ` that have not been eliminated, the subset H of nodes which are �-dense constitutes more

than a fraction 3�=(4u) � �=(4u) = �=(2u).

We may view the random choice S of the r nodes at level ` as being obtained by choosing r

nodes randomly, without replacement, from the set of nodes at level ` that were not eliminated.

Applying Proposition 1 with � = �=(2u) and jSj = r,

Pr[jH \ Sj � r�=(8u)] < 2

�r�=(4u)

= 2

�b

2

=4

:

9



Since b > 8, this probability is smaller than 2

�2b

= �=2. Let E be the event that at least

dr�=(8u)e =

�

b

2

=8

�

of the elements of S are �-dense. Then �

D

00

i

(B) � � � �=2 = �=2, where D

00

i

is

the probability distribution obtained from D

0

i

conditioned on the fact that event E occurred.

Assume that event E has occurred. Then jH \ Sj �

�

b

2

=8

�

. Let V be the random variable

denoting the �rst

�

b

2

=8

�

nodes chosen for S that are also in H. By simple averaging, there is

some choice for V with �

D

000

i

(B) � �=2, where D

000

i

is the probability distribution obtained from D

00

i

conditioned on the fact that this particular choice for V occurred. Fix some such choice.

Finally, consider the di�erent possible choices � for the sequence of labels on those leaves

which are not descendants of nodes in V . By simple averaging, there is some choice for � with

�

D

�

i

(B) � �=2, where D

�

i

is the probability distribution obtained from D

000

i

conditioned on the fact

that this particular choice for � occurred. Fix some such choice.

By construction, the distribution D

�

i

is isomorphic to a cross-product of db

2

=8e independent

distributionsD

i+1

, one for each of the nodes in V . Speci�cally, for each v 2 V , the string consisting

of the concatenation of the labels of the leftmost descendants of v's children is chosen from D

i+1

.

(All other descendants of v are labelled by ?.) For v 2 V and y chosen from D

�

i

, let �

v

(y) denote

the string consisting of the n

i+1

characters of y labelling the leftmost descendants of the n

i+1

children of v. Let B

v

= f�

v

(y) j y 2 B is consistent with �g. Then

�=2 � �

D

�

i

(B) �

Y

v2V

�

D

i+1

(B

v

):

Hence, there is some v 2 V such that

�

D

i+1

(B

v

) � (�

D

�

i

(B))

1=jV j

� (�=2)

8=b

2

= 2

�16=b

� 1=2;

since b � 16. Choose that node v.

Fixing a round of communication for each player

Since v is �-dense, there is some message c the Querier may send in the �rst round such that

jA

0

j=n

i+1

� �, where

A

0

= fj

0

2 [1; n

i+1

] j the j

0

-th child of v is coloured cg:

Recall that the j

0

-th child of v is coloured c when there is some j 2 A on which the Querier sends

message c in the �rst round and the j-th leaf of T

i

is a descendant of that child. We �x the message

sent by the Querier in the �rst round to be c.

For each node v 2 V and string y 2 B, let �

v

(y) 2 �

�

denote the string consisting of the non-?

characters of y labelling the leaves of T

i

that occur to the left of the subtree rooted at v. For each

state p of the deterministic �nite automaton M , let B

v;p

denote the set of strings y

0

2 B

v

for which

there exists y 2 B consistent with � such that �

v

(y) = y

0

and x � �

v

(y) takes M from its initial

state to state p. Since B

v

is the (not necessarily disjoint) union of the q sets B

v;p

, there is a state

p

0

such that

�

D

i+1

(B

v;p

0

) � �

D

i+1

(B

v

)=q � 1=(2q):

10



Fix any function 
 : B

v;p

0

! B so that, for each string y

0

2 B

v;p

0

, 
(y

0

) is consistent with �,

�

v

(
(y

0

)) = y

0

, and x � �

v

(
(y

0

)) takes M from its initial state to state p

0

. In other words, 
(y

0

)

witnesses the fact that y

0

2 B

v;p

0

.

There are only 2

b

di�erent messages the Responder can send. Therefore, there is some �xed

message c

0

for which

�

D

i+1

(B

0

) � 1=(2q2

b

) � 2

�2b+1

= �;

where B

0

is the set of strings y

0

2 B

v;p

0

such that, in round one, given the input 
(y

0

) and the query

c, the Responder sends c

0

. We �x the message sent by the Responder in the �rst round to be c

0

.

Constructing the t� i� 1 round protocol

Choose x

0

2 �

�

to be any �xed word that takes M from its initial state to state p

0

.

Consider the following new t � i � 1 round protocol: Given inputs j

0

2 A

0

and y

0

2 B

0

, the

Querier and the Responder simulate the last t� i � 1 rounds of the original t� i round protocol,

using inputs j 2 A and y = 
(y

0

) 2 B, respectively, where j is the index of some leaf in T

i

with

colour c that is a descendant of the j

0

-th child of node v. Note that it doesn't matter which colour

c leaf in the subtree rooted at the j

0

-th child of v is chosen. This is because every leaf in this

subtree, except the leftmost leaf, is labelled by ?, so PRE

j

(y) is the same no matter which leaf in

the subtree is indexed by j.

It follows from the de�nitions of A

0

and B

0

that, for inputs j and y, the original protocol will

send the �xed messages c and c

0

during round 1. By construction, the new protocol determines

whether x � PRE

j

(y) 2 L.

Since �

v

(y) = y

0

and j is the index of a leaf in T

i

that is a descendant of the j

0

-th child of node

v, PRE

j

(y) = �

v

(y) �PRE

j

0

(y

0

). Furthermore x � �

v

(y) and x

0

both lead to the same state p

0

of M ,

so x � PRE

j

(y) = x � �

v

(y) � PRE

j

0

(y

0

) 2 L if and only if x

0

� PRE

j

0

(y

0

) 2 L. Thus the new protocol

determines whether x

0

� PRE

j

0

(y

0

) 2 L. 2

We now combine Lemma 4 and Lemma 5 in the main technical result.

Theorem 6: Let L be an indecisive regular language accepted by a deterministic �nite automaton

with q states. Suppose (b; k; t; n; s) satis�es the integrality condition with b � max(16; 2(j�j + 1)

q

)

and s � b

12t

(8kt)

4t

. Then there is no t round cell-probe communication protocol for the static

(L; n; s)-pre�x problem using s

k

memory cells of b bits.

Proof Suppose that there is a t round cell-probe communication protocol for the static (L; n; s)-

pre�x problem using m � s

k

memory cells of b bits. Since (b; k; t; n; s) satis�es the integrality

condition, b � 16, and 2

b

� b � 2

q+1

� 4q, we can apply Lemma 5 t times, starting with

A = [1; n] and B = Z(n; s), to obtain x 2 �

�

, A

0

� [1; n

t

] with jA

0

j � �n

t

, B

0

� Z(n

t

; s

t

) with

�

D

t

(B

0

) � �, and a 0 round cell-probe communication protocol such that the protocol correctly

determines whether x � PRE

j

(y) 2 L for all j 2 A

0

and y 2 B

0

. This implies that x � PRE

j

(y) 2 L

for all j 2 A

0

and y 2 B

0

or x � PRE

j

(y) 62 L for all j 2 A

0

and y 2 B

0

.

Since � = s

�1=(4t)

and t � 1, �

1+t

� s

�1=2

. Furthermore, s � b

12t

(8kt)

4t

, b � 16, and b � 4q, so

�s

t

=

�s

(ru)

t

=

s�

1+t

(bu)

2t

�

s

1=2

b

2t

(8kt)

2t

�

b

6t

(8kt)

2t

b

2t

(8kt)

2t

= b

4t

� b

4

> 12b

3

> 8qb

2

:

11



But n

t

� s

t

> 0, b � 2(j�j + 1)

q

, and � = 2

�2b+1

. Therefore, by Lemma 4, there exist integers

a; a

0

2 A

0

and a string y 2 B

0

such that x � PRE

a

(y) 2 L and x � PRE

a

0

(y) 62 L. This is a

contradiction. 2

Theorem 7: If L is an indecisive regular language, then for any n > 0 there exists s 2 [1; n] such

that any cell-probe data structure for the static (L; n; s)-pre�x problem using s

O(1)

memory cells

of 2

(log n)

1�
(1)

bits requires time 
(log log n= log log log n) per query.

Proof We show that, for each positive integer k and each positive constant � < 1, there is a constant

� > 0 so that, for each su�ciently large n, there exists s 2 [1; n] such that any cell-probe commu-

nication protocol using s

k

memory cells of 2

(log n)

1��

bits requires at least � log log n= log log logn

rounds to solve the static (L; n; s)-pre�x problem.

Let k be a positive integer, let � < 1 be a positive constant, and de�ne � = min(1=8k; �=3).

Let n be su�ciently large so that � log log n � log log log n, (log n)

�=3

� 16� log logn � 2, and

2

(log n)

1��

� max(16; 2(j�j+1)

q

), where q is the number of states in the minimal deterministic �nite

automaton for L. Let t = b� log logn= log log log nc, b =

j

2

(log n)

1��

k

, and s = b

12t

(8kt)

4t

. We will

argue, using Theorem 6, that no cell-probe communication protocol using s

k

memory cells of b bits

can solve the static (L; n; s)-pre�x problem in t rounds.

Let u = 8kt, r = b

5

u

2

, f = b

9

u

5

, n

t

= s

t

= s=(ru)

t

= (b

7

u)

t

, and n

0

= f

(u

t

�1)=(u�1)

n

u

t

t

. Then

(b; k; t; n

0

; s) satis�es the integrality condition. By Theorem 6, there is no cell-probe communication

protocol using s

k

memory cells of b bits that solves the static (L; n

0

; s)-pre�x problem in t rounds.

Observe that the de�nitions of t and � imply that u = 8kt � 8k� log log n= log log log n �

log logn, so u

t

� (log n)

�

. Furthermore, since 2 � 16� log log n � (log n)

�=3

, b � 2

(log n)

1��

, � � �=3,

and � < 1, it follows that

(bu)

16t

� b

16� log log n

(log n)

16�

� b

(log n)

�=3

2

(log n)

�=3

� 2

(log n)

1�2�=3

+(log n)

�=3

� 2

(log n)

1��=3

:

Therefore

n

0

< (fn

t

)

u

t

= (b

7t+9

u

t+5

)

u

t

< (bu)

16tu

t

� 2

(log n)

1��=3

(log n)

�

� 2

(log n)

= n:

Hence, the static (L; n; s)-pre�x problem is at least as hard as the static (L; n

0

; s)-pre�x problem.

This implies that there is no cell-probe communication protocol using s

k

memory cells of b bits

that solves the static (L; n

0

; s)-pre�x problem in t rounds. 2

Theorem 8: For any indecisive regular language L and any functions m(s) in s

O(1)

and m(n)

in (log n)

O(1)

, there is a function N(s) such that any cell-probe data structure for the static

(L;N(s); s)-pre�x problem usingm(s) memory cells of b(N(s)) bits requires time 
(

p

log s= log log s)

per query.

Proof Speci�cally, we will show that for each k; k

0

� 1 there is a � > 0 so that for any su�ciently

large s there is an n such that any cell-probe data structure for the static (L; n; s)-pre�x problem

using s

k=2

memory cells of (log n)

k

0

bits requires time at least �

p

log s= log log s per query.
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Let k; k

0

� 1 be integers and de�ne � = 1=3k

0

. For any value of s such that �

p

log s= log log s �

2, de�ne t =

j

�

p

log s= log log s

k

, u = 8kt, b =

j

s

1

12t

=u

1=3

k

, s

0

= b

12t

u

4t

� s, f = b

9

u

5

, n

t

=

s

t

= (b

7

u)

t

, and n = f

(u

t

�1)=(u�1)

n

u

t

t

< (fn

t

)

u

t

� s

2u

t

. Then (b; k; t; n; s

0

) satis�es the integrality

condition.

Now, for s su�ciently large, u �

p

log s, so

u

t

� (log s)

t=2

� (log s)

1

6k

0

p

log s= log log s

= 2

1

6k

0

p

log s log log s

and

b =

j

s

1

12t

=u

1=3

k

�

6

6

6

4

s

k

0

4

q

log log s

log s

=(log s)

1=6

7

7

7

5

=

�

2

k

0

4

p

log s log log s�

1

6

log log s

�

:

Therefore b=u

k

0

t

� (2 log s)

k

0

, for s su�ciently large.

Choose s large enough so that b � max((2u

t

log s)

k

0

; 16; 2(j�j + 1)

q

), where q is the number of

states in the minimal deterministic �nite automaton for L. Then, by Theorem 6, there is no cell-

probe communication protocol using s

k

0

memory cells of b bits that solves the static (L; n; s

0

)-pre�x

problem in t rounds. Since s � s

0

, the static (L; n; s)-pre�x problem is at least as hard.

Note that s < (b + 1)

12t

u

4t

= (1 + 1=b)

12t

s

0

< s

2

0

, since 1 + 1=b � b. Hence, s

k

0

� s

k=2

.

Furthermore, n < s

2u

t

, so (log n)

k

0

< (2u

t

log s)

k

0

� b. Thus there is no cell-probe communication

protocol using s

k=2

memory cells of (log n)

k

0

bits that solves the static (L; n; s)-pre�x problem in t

rounds. 2

Observe that any data structure for the static predecessor problem can be easily modi�ed to

solve the (L; n; s)-pre�x problem for the indecisive regular language L = (0+1)

�

1. We thus obtain

the following corollaries.

Corollary 9: The static predecessor problem for a set S from a universe of size n requires


(log logn= log log log n) time on any cell-probe data structure using jSj

O(1)

memory cells of

2

(log n)

1�
(1)

bits each.

A result similar to Corollary 9 was independently shown by Xiao [16].

As noted in the introduction, the static predecessor problem for a set S from a universe of

size jSj

O(1)

can be solved in constant time in the cell-probe model using only O(jSj) memory cells.

On the other hand, the running time of the fusion tree data structure does not depend on the

universe size (although the number of bits in each memory cell does depend on the universe size).

We obtain the following corollary of Theorem 8.

Corollary 10: The static predecessor problem for a set S from a universe of size n requires


(

p

log jSj= log log jSj) time on any cell-probe data structure using jSj

O(1)

memory cells of (logn)

O(1)

bits whose time does not depend on n.

4 Lower Bounds for Dynamic Problems

The results of this section are really simply translations of the results of the previous section to the

dynamic case, using the translation argument given by Miltersen [13].

13



The dynamic (L; n)-pre�x problem requires answers to the questions \Is PRE

j

(x) 2 L?" for

x 2 (� [ f?g)

n

. For this problem, an additional set of update operations on the input string

are permitted. These allow one to replace a particular character in a speci�ed position of that

string with a speci�c element of �[ f?g. For example, in the pre�x problem corresponding to the

predecessor problem, replacing an occurrence of ? by an occurrence of 0 or 1 corresponds to an

insert and replacing an occurrence of 0 or 1 by an occurrence of ? corresponds to a delete.

The basic idea of the translation is to observe that dynamic algorithms that have small cost

per query and do not run for very long can access only a small number of memory cells from a

moderate size set of potential memory cells. Using static dictionary techniques from [8] one can

obtain an e�cient solution to the static problem by beginning with string in f?g

�

, then inserting

the non�? elements needed, one by one, and recording in the dictionary the changes made to the

memory. For appropriate choices of parameters one can then use the static lower bounds to derive

the following.

Theorem 11: Let L be an indecisive regular language. For any dynamic cell-probe data structure

using cells of 2

(log n)

1�
(1)

bits, if updates for the dynamic (L; n)-pre�x problem take 2

(log n)

1�
(1)

worst-case time then queries require 
(log log n= log log log n) worst-case time.

Corollary 12: Any cell-probe data structure for the dynamic predecessor problem that uses

2

(log n)

1�
(1)

bits per memory cell and 2

(log n)

1�
(1)

worst case time for inserts requires


(log logn= log log log n) worst-case time for queries.

The following is a simple observation extending Miltersen's technique to amortized costs, pro-

vided the memory is not too large. The bound 2

O(b)

on the number of memory cells is reasonable;

it is the number of di�erent cells that can be accessed when performing indirect addressing.

Theorem 13: Let L be an indecisive regular language. For a dynamic cell-probe data structure

using 2

O(b)

memory cells of b = 2

(log n)

1�
(1)

bits, if updates for the dynamic (L; n)-pre�x problem

take 2

(log n)

1�
(1)

amortized time, then queries require 
(log logn= log log logn) worst-case time.

5 Conclusions

We have very nearly resolved the exact complexity of a number of problems related to searching

sorted lists. It would be nice to close the remaining gap of

p

log log jSj between the upper and

lower bounds. It is di�cult to estimate reliably which is closer to the truth, although it seems that

our lower bound argument gives away too much, leading us to suspect that the upper bound is the

correct answer. One might be inclined to rule out the lower bound based simply on its unusual

form. However, as Andersson et al. [4] have recently shown the complexity of the simpler static

dictionary problem on the more restricted AC

0

RAM model is the same function as in our lower

bound.
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