
Access Control in Extensible Systems

�

Robert Grimm Brian N. Bershad

frgrimm, bershadg@cs.washington.edu

Dept. of Computer Science and Engineering

University of Washington

Seattle, WA 98195, U.S.A.

UW-CSE-97-11-01

Abstract

The recent trend towards dynamically extensible sys-

tems holds the promise of more powerful and exible

systems. At the same time, the impact of extensibility

on overall system security and, speci�cally, access con-

trol is still ill understood, and protection mechanisms

in these extensible systems are rudimentary at best.

In this paper, we identify the structure of extensible

systems as it relates to system security, and present

an access control mechanism that is user-friendly and

complete. The mechanism, by using ideas �rst intro-

duced by the security community, o�ers mandatory ac-

cess control which can be used to enforce a given se-

curity policy. Additional discretionary access control

allows users to express their own �ne-grained access

constraints.

We introduce a new access mode, called the extend

access mode, in addition to the familiar execute ac-

cess mode, to reect how extensions interact. Further-

more, in a departure from work in the security commu-

nity, we treat both extensions and threads of control

as subjects, i.e., as active entities, in order to correctly

capture their interaction in an extensible system. We

present the design of the access control mechanism and

de�ne a formal model. We describe an implementation

of the access control mechanism in the SPIN extensible

operating system, which allows us to evaluate its per-

formance and to explore optimizations that reduce the

overhead of access control. The measured end-to-end

overhead of access control in our system is less than

2%.

�

This research was sponsored by the Advanced Research

Projects Agency, the National Science Foundation and by an

equipment grant from Digital Equipment Corporation. Grimm

was partially supported by a fellowship from the Microsoft Cor-

poration. Bershad was partially supported by a National Sci-

ence Foundation Presidential Faculty Fellowship and an O�ce

of Naval Research Young Investigator Award.

1 Introduction

Dynamically extensible systems can provide applica-

tions, and ultimately users, with new and better func-

tionality as well as better performance. Motivated by

this promise of more power and more exibility, several

projects are pursuing system designs that are extensi-

ble by their very design: SPIN [6] and VINO [37] ad-

dress extensibility in the context of operating systems.

Inferno [26] focuses on extensibility for distributed ser-

vices. The Java system [22, 19, 24] provides an in-

frastructure for executable content on the world-wide

web. In addition, it is being proposed as the substrate

for extensible operating systems on network comput-

ers. Finally, Juice [16], which utilizes \slim binary"

technology [17, 21] originally developed for the Oberon

system [41], provides a faster and leaner alternative to

Java. At the same time, the impact of extensibility on

overall system security and speci�cally on access con-

trol is still ill understood. And, the protection mech-

anisms in these extensible systems are rudimentary at

best, as illustrated by the continuous string of security

breaches in the Java system [12, 29].

Exactly what constitutes a secure system is de�ned

by a security policy. Security policies usually reect

the requirements of an organization to control unau-

thorized access to and dissemination of data as well

as the integrity of data, and are thus external to the

system. At the core of any security policy are restric-

tions on who can access what system resources in what

way. Thus, to mechanically enforce a security policy,

an access control mechanism that can express and en-

force these restrictions is necessary. Such an access

control mechanism needs to address four criteria in or-

der to meet the requirements of users, administrators

and system programmers.

First, the access control mechanism must be com-

plete; i.e., it must be possible to enforce a system wide

security policy while also allowing users to introduce

their own, �ne-grained access restrictions. Second, it

must be user-friendly, so that users understand how it

impacts their work and use it to its potential. Third,

a formal model of the access control mechanism is re-

quired. Such a model enables the formal reasoning

about security in a given system and is necessary to

verify a given implementation, thus providing assur-

ance that it works correctly. Fourth, the access control

mechanism must allow for an e�cient implementation.

An e�cient implementation is especially important for

extensible systems which support �ne-grained compo-

sition primarily for reasons of performance.

The access control mechanism presented in this pa-

per draws on ideas explored by the security commu-

nity and provides non-discretionary (mandatory) ac-

cess control based on domain and type enforcement

(DTE) [3, 4, 2]. DTE associates all entities in a sys-

tem with a label that represents an entity's privileges

and access constraints. The label for subjects (i.e., the

active entities in a system) is called a domain, and the

label for objects (i.e., the passive entities) is called a

type. DTE de�nes a valid access mode for all practical

pairs of domains and types, which results in an access

matrix. For example, all trusted users in a given sys-

tem could be labeled with the TrustedUser domain

and all transaction data stored in the system with

the Transaction type. The access matrix could then

be set to only let users in the TrustedUser domain

access data of the Transaction type, which ensures

that no unauthorized users can access the (presum-

ably) mission-critical transaction data.

Mandatory access control policies allow an organiza-

tion to de�ne its security terms, and provide no path

by which an individual can circumvent security. As se-

curity is generally �rst an organizational, and then an

individual, concern, mandatory access control policies

have become increasingly important [11, 9, 4]. Domain

and type enforcement is mandatory in the sense that

it is imposed on all relevant system operations and

can only be changed by the security administrator. It

is thus an appropriate means to mechanically enforce

the security policy of a given environment

DTE's constraints, however, can be expected to be

relatively coarse-grained, and users may want to ex-

press their own, additional access constraints. Con-

sequently, our access control mechanism also supports

discretionary access control based on users, groups and

access control lists which is a proven feature of main-

stream �le and operating systems (both local and dis-

tributed) and familiar to users.

1.1 Contributions

We present an access control mechanism for extensi-

ble systems that is both user-friendly|the DTE ac-

cess matrix is a concise and explicit representation of

access constraints in a given system|and complete|

mandatory access control mechanically enforces a given

security policy while discretionary access control al-

lows users to express additional, �ne-grained access

constraints. Our particular contributions are as fol-

lows:

� We introduce the extend access mode in addition

to the familiar execute access mode to model the

interaction of services in an extensible system.

� We treat both extensions and threads in an ex-

tensible system as active entities, or subjects, to

correctly capture access constraints between the

two.

� We de�ne a formal model for the access control

mechanism.

� We present an implementation in the context of

the SPIN extensible operating system. We in-

troduce optimizations that minimize the perfor-

mance overhead of access control and use the for-

mal model to ensure that the optimizations pre-

serve the security of the system.

1.2 Rest of This Paper

The remainder of this paper is structured as follows:

Section 2 motivates our research by identifying the

structure of extensible systems as it relates to access

control, by describing the state of a�airs in current ex-

tensible systems, and by reviewing related work. Sec-

tion 3 describes the design of our access control mech-

anism. Section 4 discusses our implementation, and

section 5 presents a performance evaluation of this im-

plementation. Finally, section 6 concludes this paper.

Appendix A contains the formal model of our access

control mechanism.

The discussion in this paper focuses on just one as-

pect of overall security in extensible systems, namely

access control. Other important issues, such as the au-

thentication of extensions and users or the auditing of

security relevant system events are only touched upon

or not discussed at all. These issues are orthogonal

to access control, and we believe that a complete and

user-friendly access control mechanism, as presented in

this paper, can serve as a solid foundation for future

work on other aspects of security in extensible systems.

2 Motivation

The basic innovation of extensible systems for the pur-

poses of this paper is that units of code, which we call

\extensions," can be dynamically loaded and linked

into the base system and consequently become an in-

tegral part of the base system. Di�erent systems use

di�erent terms for the extension mechanism and the

2

extensions themselves, such as \applets" in Java or

\grafts" in VINO. But the basic functionality and

structure of these extensible systems is su�ciently sim-

ilar to rely on two basic mechanisms to tightly compose

extensions.

First, extensions can call other parts of the system to

build on already supported functionality. Second, ex-

tensions can extend the functionality of the base sys-

tem by adding new services which are then invoked

through already existing interfaces (which is sometimes

referred to as specialization). Both mechanisms are

usually provided by a central facility, by either build-

ing on programming language support (for example,

the use of inheritance in Java or VINO), or a dynamic

dispatch model (for example, the event-dispatch model

in SPIN [32]).

While seemingly similar, the two mechanisms repre-

sent di�erent semantics: In the �rst case, an extension

invokes other services, while, in the second case, an

extension is invoked by another service. The combi-

nation of both mechanisms provides extensions with

considerable exibility and power (which is one major

argument for using extensible systems). For example,

an extension can be used to provide a new data transfer

protocol that is not supported by the original system.

To provide this new network protocol, the implement-

ing extension uses existing services (e.g., the datagram

protocol) and builds upon them. At the same time, to

utilize the new data transfer protocol, a user invokes

the existing, general network interfaces that have been

extended (or specialized) by the extension to also han-

dle the new type of data transfer protocol.

In extensible systems, extensions are tightly inte-

grated within the same address space and e�ectively

form one system. The basic safety of the system is

ensured through either programming language sup-

port (using type-safe programming languages such as

the Java programming language in the Java system,

Modula-3 in SPIN, or Oberon in Juice) or software

fault isolation (e.g., in VINO). This tight integration

of extensions and the low overhead of the safety mech-

anism are the fundamental reason for the good per-

formance of extensible systems. The time to cross the

boundaries between extensions thus approaches that of

a procedure call (as opposed to closed systems which

rely on \hard" boundaries, such as address spaces, that

have a high crossing overhead), and the overhead of se-

curity checking becomes critical.

2.1 The State of A�airs

Access control in existing extensible systems is rudi-

mentary at best. The current Java security model [18,

29] distinguishes between trusted extensions (code

stored on the local �le system), which have access to

the full functionality of the Java system, and untrusted

extensions (all remote code). Untrusted extensions are

placed into a so-called \sandbox" that limits exten-

sions from using some system services, such as access-

ing the local �le system. Ideally, it would also isolate

extensions from each other, but see [29] for a counter

example.

Future versions of Java will provide authenticated

extensions with a �ner granularity of access control,

such as allowing some extensions to access some �les.

However, no clear and exible access control model,

detailing how this �ner grain of access control will be

provided, has been presented. Furthermore, the se-

curity of the Java system, instead of relying on one

central facility to enforce security (which is good de-

sign practice for secure systems [33]), relies on three

facilities, or \prongs" [29]. This design makes it di�-

cult to reason about the security of Java, and a design

or implementation error in any one of the three prongs

can break the security of the Java system, as has been

repeatedly demonstrated [12, 29].

In SPIN, system services are partitioned into \do-

mains" [38] (which are a separate concept from the

domains used in domain and type enforcement), where

each domain is a collection of Modula-3 interfaces. An

extension is linked against one or more domains, and

can only access and extend the system services that

are in those domains. Other system services are in-

accessible to an extension. Domains provide a useful

mechanism to avoid a at global name-space, to group

several interfaces according to, for example, the func-

tionality they provide, and to control the visibility of

interfaces. However, in earlier implementations, an ex-

tension could either call on and extend all interfaces in

all domains it had been linked against, or access con-

trol was ad hoc, with each extension responsible for

implementing its own access checks whenever it was

being extended.

Little or no information is available on system secu-

rity for other extensible systems: VINO distinguishes

between regular and privileged users, and uses dynamic

privilege checks before accessing sensitive data [36]. In-

ferno uses encryption for the mutual authentication of

communicating parties and their messages [27]. No in-

formation is available on security in Juice. While these

systems ensure the basic safety of the system by relying

on either programming language support or software

fault isolation, no security model and speci�cally no

access control model is discussed in the publicly avail-

able literature. In the absence of other information, we

thus assume that access control is still an open issue

that needs to be addressed in these systems as well.

2.2 Related Work

Discretionary access control based on users, groups,

access modes and access control lists is a familiar and

3

exible feature of mainstream �le and operating sys-

tems such as Unix [30], the Andrew File System [34]

and Windows NT [40]. However, it relies on all users

to enforce a given security policy, since the owner or

creator of a system resource also determines the ac-

cess control list for that resource. Furthermore, it can

be easily subverted and is thus not complete: an of-

ten cited example is the so-called \Trojan horse" at-

tack [1, 11, 10] where an application appears legitimate

but in fact also carries out some illicit action.

Mandatory access control as a method of enforcing a

given security policy has been developed within the se-

curity establishment of the United States. Most work

in this context is based on a lattice of subject and

object labels that implicitly de�nes legal types of op-

erations [5, 13, 7] and that has become part of the De-

partment of Defense's standard for trusted computer

systems [14]. For example, to enforce the Department

of Defense's security classi�cations, one would create

four labels TopSecret, Secret, Confidential, and

Unclassified (ordered as given with TopSecret being

the top-most label) and assign them to all subjects and

objects. Subjects with a given clearance label can read

all objects associated with the same or a lower label,

and they can write all objects with the same or a higher

label. The lattice model, while precise, is not very in-

tuitive or user-friendly since access modes are implicit.

It is not very exible since the lattice structure dictates

valid access modes. And, it only supports two di�erent

access modes, namely read and write [25, 11, 23, 9, 28].

The idea of domain and type enforcement as a

more exible and user-friendly alternative to the lattice

model is �rst developed by Boebert and Kain [8]. They

introduce the domain and type labels that represent an

entity's privileges and access constraints and the access

matrix that explicitly and concisely lists all legal access

modes. They also introduce the notion of changing a

subject's label (on invocation of a program) to provide

for a controlled way of changing privilege. This model

is later expanded by Badger et al. [3, 4, 2], who in-

troduce a high-level language, called domain and type

enforcement language, to express security policies, and

who also apply DTE on the Unix operating system.

Domain and type enforcement as a mandatory access

control mechanism is both more exible and more user-

friendly than the lattice model, since access modes are

explicit, subjects are grouped into domains, objects are

grouped into types and a high-level language is used to

express security policies.

3 Access Control Mechanism

Restrictions on who can access what resources in what

way involve the subject that wants to carry out some

operation (the \who" part), the subject or object on

which the operation is to be carried out (the \what

resources" part) and the operation itself (the \what

way" part). Since, in any system, there can be an un-

bounded number of subjects, objects and operations,

it becomes necessary to abstract over the subjects, ob-

jects and operations to mechanically enforce these re-

strictions. The key idea behind access control is thus

to manage execution \contexts," where a given con-

text determines what rights a particular subject has

at a particular point of execution.

Domain and type enforcement is one way to manage

such execution contexts. It associates all entities in a

system (i.e., all subjects and objects) with a label rep-

resenting an entity's privileges and access constraints.

The label for subjects is called a domain, and the la-

bel for objects is called a type. DTE also de�nes a

global access matrix that lists relevant access informa-

tion (specifying the legal types of operations) for all

pairs of subject labels and pairs of a subject and an

object label. Given the label of the particular subject

intending to carry out some operation and the label of

the particular subject or object on which the operation

is to be carried out, the DTE access matrix can now be

used to mechanically determine whether the particular

type of operation is legal or not.

DTE in Extensible Systems

In the original DTE model, subjects are processes ex-

ecuting in their own address space. However, since ex-

tensions execute within the same address space, with

no clear separation between extensions, the notion of a

process can not be maintained for extensible systems.

In a clear departure from this model (and other work

in the security community), we treat both extensions

and threads as subjects. Extensions are written by a

human programmer and some of their code may be ex-

ecuted by default (for example, to initialize the exten-

sion). Threads are active entities and, furthermore, are

often independent of the extension whose code they ex-

ecute (for example, when an extension calls another).

Both extensions and threads are thus considered ac-

tive entities, that is subjects, and are associated with

a DTE domain.

Since a domain represents a subject's privileges, a

particular subject can only be associated with one do-

main, where the choice of domain depends on the se-

curity policy and the user behind the subject (i.e., the

programmer of the extension or the user for whom the

thread is executing). We assume the authentication

of subjects through some mechanism, such as digital

signatures for extensions or passwords for users (who

initiate threads through some invocation mechanism).

The DTE access matrix maps pairs of subject labels

into an access mode, representing legal types of oper-

ations, and a so-called target domain, allowing for a

4

controlled change of privilege for a subject. The rel-

evant access modes are execute and extend, and they

represent the two ways extensions interact with each

other. We introduce the extend access mode to cap-

ture the fact that, in an extensible system, subjects

can extend existing interfaces; and we use the familiar

execute access mode for a subject calling an interface.

The access mode for pairs of DTE domains is used for

access control at link-time when one extension wants

to link against another extension (it needs to have ei-

ther execute or extend or both permissions depending

on the extension) and at run-time when a thread of

control wants to execute code of an extension (it needs

to have execute permission).

The target domain for pairs of DTE domains is used

at run-time when a thread of control calls an exten-

sion, and the thread's domain is changed to the target

domain for the duration of the call (after which the

original DTE domain of the thread is restored). The

intuition behind the use of target domains is that it

allows for a controlled change of privilege for a given

thread when executing a particular extension, compa-

rable to setgid and setuid programs in Unix [30].

Since, in extensible systems, both the ability to exe-

cute code and to extend an interface are provided by

a central mechanism, access control for extensions and

threads is enforced by this central mechanism.

In DTE, objects are labeled with a type, and the ac-

cess matrix maps pairs of a DTE domain and a DTE

type into an access mode, representing legal types of

operations. The extension that provides an object's

abstraction needs to enforce access restrictions on its

objects and explicitly uses the DTE access matrix, to-

gether with the subject's domain and the object's type,

to determine whether a given type of operation is le-

gal. Since, in an extensible system, not all objects

and their semantics can be known a priori, the mean-

ing of particular access modes (besides the extend and

execute permissions used for extensions and threads)

is left unspeci�ed. Access control for objects is thus

e�ectively delegated to the individual extensions. Cer-

tainly, a system-wide convention for common access

modes should be established (e.g., de�ning read and

write permissions). Furthermore, the fundamental ab-

stractions of a system, such as threads, memory or

the naming service, should be provided by extensions

that can be trusted to always enforce the access con-

straints of domain and type enforcement (otherwise, a

malicious extension could subvert the security of the

system).

Fine-Grained Access Control

Domain and type enforcement is used to enforce a secu-

rity policy on all relevant system operations. As such,

its access constraints can be expected to be rather

coarse-grained. Furthermore, its access constraints

are imposed on all users and can only be changed by

the security administrator. To give users the possibil-

ity of introducing their own, �ne-grained access con-

straints, our access control mechanism also supports

discretionary access control based on users, groups and

access control lists (ACLs). Discretionary access con-

trol is a familiar feature of traditional �le and oper-

ating systems [30, 34, 40] and is supported by associ-

ating subjects with a user and objects with an access

control list. Given mandatory access control based on

DTE and discretionary access control based on ACLs,

an operation is legal if and only if both grant permission

to carry it out.

3.1 An Example

This section illustrates the use of domain and type en-

forcement. It demonstrates the use of the DTE access

matrix to mechanically enforce a given security pol-

icy and to express both data integrity and information

ow constraints. Access control lists can be used to

further restrict access but, since they are not relevant

as far as the given security policy is concerned, have

been omitted from this example.

Assume an extensible system that uses a storage

manager to provide some form of �le abstraction. The

system also provides a transaction manager that ex-

tends the storage manager's interfaces and builds on

top of the storage manager's �le abstraction (so that,

for example, the storage manager's �le system main-

tenance utilities can be used for both regular �les and

transaction data). Both the storage manager and the

transaction manager associate access control lists and

DTE types with stored data and use read and write ac-

cess modes to control who can read and modify data.

Furthermore, assume a security policy that separates

the system's users into two classes, namely untrusted

users that can use the storage manager, but not the

transaction manager, and trusted users that are al-

lowed to use the transaction manager. One possible

motivation for this restriction could be that mission-

critical data is stored in transactions. The transaction

manager as a mission-critical resource in the system

should thus only be usable by trusted users.

Both classes of users can extend the system with

their own extensions, and the extensions of untrusted

users are allowed to utilize the extensions of trusted

users. Finally, to ensure the consistency of transac-

tions, transaction data must always be accessed and

modi�ed through the transaction manager (the storage

manager's �le system maintenance utilities are trusted

to not violate the consistency of transaction data and

can thus access that data as well). The basic structure

of this system and its security policy is illustrated in

�gure 1.

5

Transaction
Manager

Storage
Manager

Untrusted
Users

Trusted
Users

Regular
Files

Transaction
Data

Figure 1: Overview of the example system and security

policy. The storage manager provides a basic �le abstrac-

tion, and the transaction manager builds on top of it to pro-

vide transactions. Threads executing for trusted users can

access both regular �les and transaction data, and threads

executing for untrusted users can only access regular �les.

Transaction data can only be accessed through the transac-

tion manager but not through the storage manager directly.

To translate this security policy into domain and

type enforcement, we start by de�ning four DTE do-

mains, SM for the storage manager, TM for the trans-

action manager, TU for trusted users, and UU for un-

trusted users. Note that DTE domains are associated

with threads as well as with extensions. Consequently,

a thread executing for a trusted user is associated with

the TU domain and, if the user loads an extension into

the system, that extension is also associated with the

TU domain. Next, we de�ne two DTE types represent-

ing the two di�erent kinds of objects in the system,

namely S for regular �les and T for transaction data.

Finally, we need to de�ne the access modes and target

domains for all pairs of domains and the access modes

for all pairs of domains and types, resulting in a DTE

access matrix.

To illustrate the de�nition of the DTE access matrix

entries, we follow the right-most path in �gure 1. The

security policy requires that only trusted users can call

on the transaction manager, and consequently the TU

domain needs to have execute access to the TM domain.

The transaction manager builds on and extends the

storage manager, so the TM domain needs both extend

and execute access to the SM domain. The transaction

manager reads and writes transaction data for trusted

users (thus ensuring its integrity), so the TM domain

but not the TU domain has access to data of type T.

At the same time, threads executing for trusted users

should have access to transaction data, as long as they

access it through the transaction manager. But, the

TU domain does not have direct access to data of type

T. The solution is to provide for a controlled change of

privilege for trusted user threads that call the trans-

SM TM TU UU

SM

--ex

SM

--ex

TM

---x

TU

---x

UU

TM

--ex

TM

---x

TM

TU

--ex

TU

---x

UU

UU

--ex

UU

S
rw-- rw-- rw--

T
rw-- rw--

Table 1: DTE access matrix for the original example, rep-

resenting a policy that ensures data integrity. Column

headings are domains, and row headings are domains as

well as types. Matrix entries for pairs of domains are the

access mode (top) and the target domain (bottom). Ma-

trix entries for pairs of a domain and type are the access

mode. Table entries representing no permissions are left

blank, and table entries for a domain to itself always con-

tain execute and extend permissions and the domain itself

as target domain. Domains are SM for storage manager,

TM for transaction manager, TU for trusted users and UU

for untrusted users. Types are S for regular �les and T for

transaction data. Access modes are r for read, w for write,

e for extend and x for execute.

action manager. Consequently, the target domain for

calls from the TU domain into the TM domain is the TM

domain. Note that this is the only situation where a

change of privilege is necessary. All other target do-

main entries in the access matrix preserve the domain

associated with a thread. This process is then repeated

for all other paths in �gure 1.

Although the policy sounds complex, domain and

type enforcement admits a concise representation as

an access matrix. The complete DTE access matrix

for our example is shown in table 1. The columns

represent domains for a subject that wants to carry

out some operation, and the rows represent the types

for an object and the domains for a subject on which

the operation is to be carried out. To �nd out what

types of operations trusted users can carry out, for ex-

ample, inspect the column labeled TU. The �rst row

shows that trusted users can call the storage manager

(the TU domain has execute rights to the SM domain).

The second row shows that trusted users can call the

transaction manager as well, and, when calling code in

the TM domain, threads executing for trusted users are

re-associated with the TM domain. The TU domain has

execute and extend rights to itself (third row), and,

�nally, threads in the TU domain can read and write

regular �les (the TU domain has read and write rights

to type S).

While the above security policy ensures the integrity

6

SM TM TU UU

SM

--ex

SM

--ex

TM

---x

TU

---x

UU

TM

--ex

TM

---x

TM

TU

--ex

TU

UU

--ex

UU

S
rw-- rw--

T
rw-- rw--

U
rw-- r--- rw--

Table 2: DTE access matrix for the stricter security pol-

icy which ensures data integrity and prevents unauthorized

dissemination. It is structured as table 1 except that type S

is used only for regular �les accessible to trusted users, and

type U is introduced for regular �les accessible to untrusted

users (but readable to trusted users).

of the transaction data, untrusted users, with the col-

laboration of a trusted user, can still access transaction

data, for example through a regular �le. A stricter se-

curity policy may restrict all information ow to only

allow trusted users access to transaction data. This

can be achieved by introducing a third DTE type, say

U for untrusted data, that is associated with the regu-

lar �les of untrusted users. Untrusted users can read

and write such �les, but trusted users can only read

them and not write them. Furthermore, regular �les

of type S (which before were used by all users) must

only be accessible by trusted users. The resulting DTE

access matrix ensures the integrity of the transaction

data and, at the same time, prevents unauthorized dis-

semination of data to untrusted users. It is shown in

table 2, which has the same basic structure as table 1.

3.2 Summary

In this section, we have addressed the �rst two criteria

for an access control mechanism (as introduced in sec-

tion 1) and have described an access control mechanism

that is both user-friendly and complete. To address the

third criterion, we present the detailed and formal de-

scription of the full access control mechanism, which

encompasses both mandatory and discretionary access

control, in appendix A. The following two sections de-

scribe our implementation within the SPIN extensible

operating system, thus addressing the fourth and �nal

criterion.

4 Implementation

We have implemented our access control mechanism in

the SPIN extensible operating system developed at the

University of Washington. Our access control mecha-

nism does not depend on features that are unique to

SPIN, and could be implemented in other systems. It

requires support for dynamic loading and linking of ex-

tensions, for multiple concurrent threads of execution,

and for overriding existing interfaces. Consequently,

our access control mechanism could be implemented

in other extensible systems that provide these three

services, such as Java [19] or VINO [37].

Our implementation is guided by three constraints.

First, it has to correctly enforce the security policy of

a given environment. Second, it has to be simple, well-

structured and break down into separate interfaces for

the individual abstractions to allow for validation

y

and

for easy transfer to other systems. Third, the imple-

mentation should be fast to impose as little perfor-

mance overhead as possible.

4.1 Structure and Interfaces

In SPIN, a statically linked core provides the most ba-

sic services, including hardware support, the Modula-3

runtime [39, 20], the linker/loader [38], threads and the

event dispatcher [32]. All other services, including net-

working and �le system support, are provided by dy-

namically linked extensions. Services in the static core

are trusted and, if they misbehave, can undermine the

security of the system (and also crash the entire sys-

tem). Dynamically linked extensions are not trusted

and their access to other extensions must be carefully

controlled. Thus, to correctly enforce a security policy

on the system, the basic security services must be part

of the trusted static core.

We added support for our access control mecha-

nism to the static core. The implementation consists

of 900 lines of well-documented Modula-3 interfaces

and of 2200 lines of Modula-3 code. It includes access

modes (the AccessMode interface), users and groups

(the UsersGroups and UsersGroupsPrivate inter-

faces), access control lists (the ACL interface) and do-

main and type enforcement (the DTE and DTEPrivate

interfaces). We also associated threads with a user

identi�er (for discretionary access control and audit-

ing) and a stack of DTE domains (for mandatory ac-

cess control) which can be accessed but not changed

through the SecurityContext interface (the user iden-

tity and the original DTE domain are established at

login-time, and the DTE domain may be changed by

call-time access control). Furthermore, we changed the

linker/loader to enforce access control on extensions

at link-time and to set up call-time access control on

threads and extensions.

y

We have not validated the implementation. However, a crit-

ical characteristic of any security mechanism is that it be small

and well-structured [33].

7

The AccessMode interface provides an immutable

access mode abstraction. Each access mode consists

of a set of simple, pre-de�ned permissions and a list of

permission objects. The simple permissions include the

execute and extend permissions required for the access

control mechanism itself, but also common permissions

such as read and write. The list of permission objects

allows extensions to de�ne their own additional permis-

sions by subtyping from an abstract base class. The

simple permissions are implemented as a bit-vector and

thus add little performance overhead, while the list of

permission objects gives extensions the exibility to de-

�ne their own permissions (at some performance cost).

The UsersGroups interface supports user and group

identi�ers as well as an e�cient mapping between users

and groups; the UsersGroupsPrivate interface sup-

ports the de�nition of new users and groups as well as

the addition of users to groups. The ACL interface pro-

vides an access control list abstraction that consists of

both positive and negative rights.

The DTE interface provides the domain and type la-

bels for domain and type enforcement and lets exten-

sions query the DTE access matrix; the DTEPrivate

interface supports the de�nition of new DTE domains

and DTE types as well as the modi�cation of the

DTE access matrix. The DTE access matrix itself

is implemented as a two-level hierarchy of hash ta-

bles. We expect matrix entries that represent access

modes other than no access to be sparsely distributed

(e.g., over 40% of all table entries in tables 1 and 2

represent no access rights), and the two-level hash

table thus saves space over a two-dimensional array

while still being reasonably e�cient to access. The

SecurityContext interface lets extensions discover for

which user a thread is executing and with which DTE

domain that thread is currently associated (which is

the top of the domain stack maintained internally).

The AccessMode, UsersGroups, ACL, DTE and

SecurityContext interfaces are executable, but not

extendible, by all extensions. Extensions can use

these interfaces to discover all security-relevant sys-

tem state and to implement discretionary and manda-

tory access control on their own objects. The

UsersGroupsPrivate and DTEPrivate interfaces al-

low for the modi�cation of security-relevant state and

should thus only be executable, but not extendible,

by a few trusted extensions. Trusted extensions can

then be used to implement the user interface to the

basic access control mechanism and to support high-

level abstractions such as DTEL, the domain and type

enforcement language [3, 4].

4.2 Call-Time Access Control

Call-time access control determines whether a given

thread can call the interfaces of a given extension. In

Extension A Extension B Domain B

Thread T

Domain 1
Domain 2

Domain 3
Domain 2
Domain 1

Access Check

Pop Domain Stack

Figure 2: Illustration of call-time access control. Thread

T calls an interface in extension B from within extension

A. The access check uses T's current DTE domain, domain

2, and extension B's DTE domain, domain B, to �nd the

relevant access mode and target domain in the DTE access

matrix. If the access mode contains the execute permission,

the target domain, domain 3, is pushed onto T's domain

stack, and control transfers to extension B. On return, the

top of T's domain stack is popped o�.

other words, we need to execute a dynamic test that

performs this access check before invoking the actual

interface. Conceptually, this test determines the DTE

domain of the thread (through the SecurityContext

interface) and of the extension (which is passed to the

test as a closure and is established in the linker/loader)

and then does a lookup in the DTE access matrix for

the pair of DTE domains. If the access mode contains

the execute permission, the target domain is associ-

ated with the thread by pushing it onto the DTE do-

main stack, and the actual interface is invoked; if the

access mode does not contain the execute permission,

the interface is not invoked and an exception is raised.

On completion of the call to the interface and before

returning control to the call-site, the current DTE do-

main is popped o� the domain stack and the old DTE

domain is thus restored.

Call-time access control is illustrated in �gure 2.

Thread T executes code in extension A and intends

to call an interface provided by extension B. Before

control transfers to extension B, a dynamic call-time

access check is executed, which is based on the current

DTE domain of thread T, domain 2, and the domain

of extension B, domain B. If the corresponding access

mode in the DTE access matrix includes the execute

permission, the target domain, domain 3, is pushed

onto T's domain stack, and control is transferred to

extension B. Once control returns from extension B,

the top of T's domain stack is popped.

In the actual implementation, we use an optimized

version of the call-time access check. Since the DTE

8

Domain

Access mode,
target domain

Domain
or Type

Figure 3: Implementation of the DTE access matrix as a

two-level hierarchy of hash tables. The outer hash table

maps the DTE domain or type of the subject or object on

which the operation is to be carried out into another hash

table. Each inner hash table maps the DTE domain of

the subject that intends to carry out the operation into an

access mode and target domain.

domain of the extension is known when the test is im-

posed on the interface (i.e., at link-time), one dynamic

lookup in the two-level hierarchy of hash tables is un-

necessary. We thus structure the hierarchy of hash ta-

bles so that the outer hash table maps DTE domains

and types (associated with the subject or object on

which an operation is to be carried out) into hash ta-

bles. These hash tables, in turn, map DTE domains

(associated with the subject that intends to carry out

the operation) into access modes and target domains.

This structure of the DTE access matrix is illustrated

in �gure 3. So, instead of passing the DTE domain of

the extension as a closure to the dynamic test, we ex-

ecute the outer lookup at link-time and pass the inner

hash table to the dynamic test.

Transparent Implementation

In SPIN, extensions interact through a central dis-

patcher [32] by raising events, which corresponds to

calling an interface, and by handling events, which

corresponds to extending an existing interface. The

invocation mechanism for events is simply the proce-

dure call. The dispatcher also support guards, which

are imposed on a speci�c handler, and result handlers,

which are associated with an event. The dispatcher

�rst executes the guard for a handler, and only exe-

cutes the handler if the guard evaluates to true. The

result handler is executed after each regular handler

for that event. We use guards to perform the call-

time access test and target domain re-association, and

result handlers to restore the old DTE domain. The

necessary guards and result handlers are imposed at

link-time and are thus transparent to extensions.

In our implementation, the linker performs link-time

access control based on the DTE domains of extensions

(we also support access control lists on extensions to al-

low for user-speci�ed additional access constraints). If

an extension passes link-time access control, i.e., it can

be legally linked into the system, the linker determines

from the DTE access matrix what form of call-time ac-

cess control is necessary, and imposes necessary guards

and result handlers.

Optimizations

Since call-time access checks and target domain re-

associations need to be executed on the critical path,

i.e., when control transfers from one extension to an-

other, it is clearly desirable to avoid them whenever

possible. Intuitively, if all threads that can legally at-

tempt to call an interface are actually allowed to call

that interface, no call-time access check is necessary.

Similarly, if the target domain for all threads that can

call an interface is the same domain as the domain cur-

rently associated with the thread, no target domain

re-association is necessary.

For example, consider the storage manager discussed

in section 3.1. The DTE access matrix in table 1 shows

that all DTE domains have execute permission for the

SM domain associated with the storage manager. Fur-

thermore, the target domain for all DTE domains when

calling the storage manager is the original domain. As

a result, no call-time access checks or target domain

re-associations are necessary for the storage manager.

As illustrated by this example, both conditions can

be determined from the DTE access matrix. Conse-

quently, when loading an extension into the system,

we determine whether call-time access checks and tar-

get domain re-associations are actually necessary and

only impose the necessary guards and result handlers

on the interfaces of an extension. These optimizations

are based on the formal model, guarantee the integrity

of system, and are described in detail in appendix A.5.

5 Performance Evaluation

To determine the performance overhead of our im-

plementation, we evaluate a set of micro-benchmarks

that measure the performance of call-time access con-

trol. We also present end-to-end performance results

for a transaction benchmark that uses the example

setup and security policy described in section 3.1. We

collected our measurements on a DEC Alpha AXP

133 MHz 3000/400 workstation, which is rated at 74

SPECint 92. The machine has 64 MByte of mem-

ory, a 512 KByte uni�ed external cache and an HP

C2247-300 1 GByte disk-drive. In summary, the micro-

benchmarks show that call-time access checks incur

some latency on trivial operations, while the end-to-

end experiment shows that the overall overhead of ac-

cess control is minimal (less than 2%).

9

Hot Cold

Access test (Access) 2.8 6.0

Access test + domain push (Push) 3.1 7.2

Domain pop (Pop) 0.9 2.3

Dispatcher: Null procedure call 0.1 0.6

Dispatcher: Access + Null 2.8 6.2

Dispatcher: Push + Null + Pop 3.9 8.9

Table 3: Performance numbers for call-time access control.

All numbers are the mean of 1000 trials in microseconds.

Hot represents hot cache performance and Cold cold cache

performance. The �rst three tests perform access control

operations by themselves: Access performs an access con-

trol test, Push performs an access control test and a target

domain re-association, and Pop pops the old domain o� the

domain stack. The last three tests perform a null procedure

call through the dispatcher with additional access control

operations as indicated, and represent the actual call path

of the system.

5.1 Micro-Benchmarks

To evaluate the performance overhead of call-time ac-

cess control, we execute six micro-benchmarks that

break down the cost of the individual call-time access

control operations. The �rst three micro-benchmarks

perform the individual access control operations by

themselves. The other three micro-benchmarks mea-

sure the total time for a null procedure call through the

dispatcher with and without access control and repre-

sent the actual call path of the system.

The Access benchmark measures the performance of

a call-time access check. The Push benchmark mea-

sures the performance of a target domain re-association

in addition to the access check. And, the Pop bench-

mark measures the performance of restoring the origi-

nal DTE domain of a thread. We do not measure the

performance of a target domain re-association by it-

self, since the additional overhead of the access check

compared with the partial DTE matrix lookup and the

domain re-association is minimal (the access check is

a simple bit-vector operation). The �rst dispatcher

benchmark measures the the round-trip time for a null

procedure call through the dispatcher. The second dis-

patcher benchmark adds an access control check over

the �rst dispatcher benchmark. Finally, the third dis-

patcher benchmark further adds a target domain re-

association and the restoration of the original DTE

domain after completion of the null procedure call.

Table 3 shows the performance results for the six

micro-benchmarks. All numbers are in microseconds

and the average of 1000 trials. To determine hot cache

performance, we execute one trial to pre-warm the

cache, and then execute it 1000 times in a tight loop,

measuring the time at the beginning and at the end of

the loop. To determine the cold cache performance, we

measure the time before and after each trial separately,

and ush both the instruction and data cache on each

iteration.

The performance results show that call-time access

control has noticeable overhead. Performing both ac-

cess checks and DTE domain re-associations requires

that a procedure is executed before the actual inter-

face is invoked (for the check and to push the target

domain) and after it has been invoked (to pop the tar-

get domain). Consequently, its overhead is higher than

when performing the access check by itself, which only

requires an additional procedure execution before the

interface is invoked. The performance measurements

underline the need for optimizations described in sec-

tion 4.2, either to avoid target domain re-associations,

or, preferably, to avoid call-time access control alto-

gether.

5.2 End-to-End Performance

To evaluate the impact of the optimizations described

in section 4.2, we present end-to-end performance re-

sults for the storage/transaction manager example in

section 3.1. The storage manager used in our exper-

iment provides an extent-based �le system, and the

structure of the transaction manager is similar to that

of the Camelot system [15]. Both the storage and

transaction manager are implemented as extensions

while the benchmark runs as a user-space applica-

tion. The benchmark itself is modeled after the TPC-A

benchmark described in [35] and generates 100 trans-

actions. For each transaction, it reads and then writes

three 128 byte records and also writes a 64 byte record.

The three 128 byte records represent a bank, a teller

and an account, and the account for each transaction

is chosen randomly out of 32768 possible accounts (and

determines the teller and bank). The 64 byte record

serves as an audit trail.

We run the benchmark without access control, as a

baseline, and with access control, to measure the end-

to-end overhead of access control. We use the DTE

access matrix in table 1 for the experiments with access

control. Since all DTE domains have execute access to

the SM domain associated with the storage manager,

no call-time access control is performed for the storage

manager. The benchmark runs for a trusted user, and,

when calling the transaction manager, we perform call-

time access control and target domain re-association as

required by the DTE access matrix.

The average latency for 10 trials of the benchmark

without access control is 1.20 seconds, and for the

benchmark with access control 1.18 seconds. Trials

with access control incur 200 access checks and target

domain re-associations, two for each transaction. An-

other four to seven access checks (depending on the

number of page faults incurred while reading data)

10

would be necessary for each transaction, if the storage

manager also required call-time access checks. The dif-

ference between trials without and with access control

is in the noise for most trials. But, we consistently

see one or two outliers for the benchmark with access

control, which account for the 1.7% di�erence between

the two versions of the benchmark.

Our call-time optimizations have eliminated most

call-time access checks, and we see a minimal end-to-

end overhead for access control. It is di�cult to com-

pare these results to those reported for DTE in Unix by

Badger et al. [2] and for DTE in Mach by Minear [31],

since their performance data is inconclusive. Badger et

al. report a small performance improvement for some

network operations (since DTE eliminates the need for

re-authentication), but also a 13% worst-case overhead

for FTP and a factor two slowdown for HTTP. The

Mach version caches permissions since their lookup op-

eration has high overhead, and performance greatly

depends on the cache hit rate.

6 Conclusion

The access control mechanism for extensible systems

described in this paper encompasses both mandatory

access control, based on domain and type enforcement,

and discretionary access control, based on access con-

trol lists. We have extended domain and type enforce-

ment with the extend access mode, in addition to the

familiar execute access mode, to correctly model the

interaction of extensions. Furthermore, in a clear de-

parture from previous work within the security com-

munity, we treat both extensions and threads in an ex-

tensible system as active entities, that is as subjects.

The access control mechanism is user-friendly, com-

plete and precisely speci�ed in a formal model.

The implementation of our access control mechanism

within the SPIN extensible operating system is simple,

and, even though the latency of individual call-time ac-

cess checks is noticeable, shows good end-to-end per-

formance. Based on our results, we predict that most

systems will see a very small overhead for access control

and thus consider our access control mechanism an ef-

fective solution for access control in extensible systems.

Acknowledgments

We thank Cynthia Irvine at the Naval Postgraduate

School for sending us a \care package" of security pa-

pers; and we thank Timothy Redmond and Dennis

Hollingworth at Trusted Information Systems for their

input and discussion on domain and type enforcement.

Marc Fiuczynski, Charles Garrett, Wilson Hsieh, Ya-

sushi Saito, Stefan Savage, Emin G�un Sirer and espe-

cially Przemys law Pardyak at the University of Wash-

ington were most helpful with various implementation

issues and the integration of the access control mech-

anism into SPIN. Przemys law Pardyak and Wilson

Hsieh provided valuable feedback on earlier versions

of this paper.

References

[1] Stanley R. Ames, Jr., Morrie Gasser, and Roger R.

Schell. Security Kernel Design and Implementation:

An Introduction. Computer, 16(7):14{22, July 1983.

[2] Lee Badger, Karen A. Oostendorp, Wayne G. Mor-

rison, Kenneth M. Walker, Christopher D. Vance,

David L. Sherman, and Daniel F. Sterne. DTE

Firewalls|Initial Measurement and Evaluation Re-

port. Technical Report 0632R, Trusted Information

Systems, March 1997.

[3] Lee Badger, Daniel F. Sterne, David L. Sherman, Ken-

neth M. Walker, and Sheila A. Haghighat. Practical

Domain and Type Enforcement for UNIX. In Proceed-

igns of the 1995 IEEE Symposium on Security and

Privacy, pages 66{77, Oakland, California, May 1995.

[4] Lee Badger, Daniel F. Sterne, David L. Sherman, Ken-

neth M. Walker, and Sheila A. Haghighat. A Domain

and Type Enforcement UNIX Prototype. In Proceed-

ings of the Fifth USENIX UNIX Security Symposium,

pages 127{140, Salt Lake City, Utah, June 1995.

[5] D. Elliott Bell and Leonard J. La Padula. Secure Com-

puter System: Uni�ed Exposition and Multics Inter-

pretation. Technical Report MTR-2997 Rev. 1, The

MITRE Corporation, Bedford, Massachusetts, March

1976. Also ADA023588, National Technical Informa-

tion Service.

[6] Brian N. Bershad, Stefan Savage, Przemys law

Pardyak, Emin G�un Sirer, Marc Fiuczynski, David

Becker, Susan Eggers, and Craig Chambers. Exten-

sibility, Safety and Performance in the SPIN Operat-

ing System. In Proceedings of the 15th Symposium on

Operating Systems Principles, pages 267{284, Copper

Mountain, Colorado, December 1995.

[7] K. J. Biba. Integrity Considerations for Secure Com-

puter Systems. Technical Report MTR-3153 Rev.

1, The MITRE Corporation, Bedford, Massachusetts,

April 1977. Also ADA039324, National Technical In-

formation Service.

[8] W. E. Boebert and R. Y. Kain. A Practical Alternative

to Hierarchical Integrity Policies. In Proceedings of the

17th National Computer Security Conference, pages

18{27, Gaithersburg, Maryland, 1985.

[9] David F. C. Brewer and Michael J. Nash. The Chinese

Wall Security Policy. In Proceedings of the 1989 IEEE

Symposium on Security and Privacy, pages 206{214,

Oakland, California, May 1989.

[10] Center for Secure Information Systems, George Ma-

son University. Security Glossary. World-Wide

Web. http://www.isse.gmu.edu/~csis/glossary/

merged_glossary.html.

11

[11] David D. Clark and David R. Wilson. A Comparison

of Commercial and Military Computer Security Poli-

cies. In Proceedings of the 1987 IEEE Symposium on

Security and Privacy, pages 184{194, Oakland, Cali-

fornia, April 1987.

[12] Drew Dean, Edward W. Felten, and Dan S. Wallach.

Java Security: From HotJava to Netscape and Beyond.

In Proceedings of the 1996 IEEE Symposium on Secu-

rity and Privacy, pages 190{200, Oakland, California,

May 1996.

[13] Dorothy E. Denning. A Lattice Model of Secure

Information Flow. Communications of the ACM,

19(5):236{243, May 1976.

[14] Department of Defense Computer Security Center.

Department of Defense Trusted Computer System

Evaluation Criteria, December 1985. Department of

Defense Standard DoD 5200.28-STD.

[15] Je�rey L. Eppinger, Lily B. Mummert, and Alfred Z.

Spector. Camelot and Avalon: A Distributed Transac-

tion Facility. Morgan Kaufmann, San Francisco, Cal-

ifornia, 1991.

[16] Michael Franz and Thomas Kistler. Introducing Juice.

http://www.ics.uci.edu/~juice/intro.html, Octo-

ber 1996.

[17] Michael Franz and Thomas Kistler. Slim Bina-

ries. Technical Report 96-24, Department of Informa-

tion and Computer Science, University of California,

Irvine, June 1996.

[18] J. Steven Fritzinger and Marianne Mueller. Java Se-

curity. Sun Microsystems, Inc., White Paper, http://

www.javasoft.com/security/whitepaper.ps, 1996.

[19] James Gosling, Bill Joy, and Guy Steele. The Java

Language Speci�cation. Addison-Wesley, Reading,

Massachusetts, 1996.

[20] Wilson C. Hsieh, Marc E. Fiuczynski, Charles Garrett,

Stefan Savage, David Becker, and Brian N. Bershad.

Language Support for Extensible Operating Systems.

Workshop on Compiler Support for System Software,

February 1996.

[21] Thomas Kistler and Michael Franz. A Tree-Based Al-

ternative to Java Byte-Codes. Technical Report 96-

58, Department of Information and Computer Science,

University of California, Irvine, December 1996.

[22] Douglas Kramer, Bill Joy, and David Spenho�. The

Java Platform|A White Paper. JavaSoft White Pa-

per, ftp://ftp.javasoft.com/docs/JavaPlatform.

ps, May 1996.

[23] Theodore M. P. Lee. Using Mandatory Integrity to

Enforce \Commercial" Security. In Proceedings of the

1988 IEEE Symposium on Security and Privacy, pages

140{146, Oakland, California, April 1988.

[24] Tim Lindholm and Frank Yellin. The Java Virtual Ma-

chine Speci�cation. Addison-Wesley, Reading, Mas-

sachusetts, 1996.

[25] Steven B. Lipner. Non-Discretionary Controls for

Commercial Applications. In Proceedings of the 1982

Symposium on Security and Privacy, pages 2{10, Oak-

land, California, April 1982.

[26] Lucent Technologies Inc. Inferno: la Commedia In-

terattiva. http://inferno.bell-labs.com/inferno/

infernosum.html, 1996.

[27] Lucent Technologies Inc. Security in Inferno. http:

//inferno.bell-labs.com/inferno/security.html,

1997.

[28] Catherine Jensen McCollum, Judith R. Messing, and

LouAnna Notargiacomo. Beyond the Pale of MAC and

DAC|De�ning New Forms of Access Control. In Pro-

ceedings of the 1990 IEEE Symposium on Research in

Security and Privacy, pages 190{200, Oakland, Cali-

fornia, May 1990.

[29] Gary McGraw and Edward W. Felten. Java Security:

Hostile Applets, Holes and Antidotes. Wiley Computer

Publishing, John Wiley & Sons, Inc., New York, New

York, 1997.

[30] Marshall Kirk McKusick, Keith Bostic, Michael J.

Karels, and John S. Quarterman. The Design and

Implementation of the 4.4BSD Operating System.

Addison-Wesley Publishing Company, Reading, Mas-

sachusetts, 1996.

[31] Spencer E. Minear. Providing Policy Control Over Ob-

ject Operations in a Mach Based System. In Proceed-

ings of the Fifth USENIX UNIX Security Symposium,

Salt Lake City, Utah, June 1995.

[32] Przemys law Pardyak and Brian N. Bershad. Dynamic

Binding for an Extensible System. In Proceedings of

the Second Symposium on Operating Systems Design

and Implementation, pages 201{212, Seattle, Washing-

ton, October 1996.

[33] Jerome H. Saltzer and Michael D. Schroeder. The Pro-

tection of Information in Computer Systems. Proceed-

ings of the IEEE, 63(9):1278{1308, September 1975.

[34] M. Satyanarayanan, John H. Howard, David A.

Nichols, Robert N. Sidebotham, Alfred Z. Spector, and

Michael J. West. The ITC Distributed File System:

Principles and Design. In Proceedings of the 10th Sym-

posium on Operating Systems Principles, pages 35{50,

Orcas Island, Washington, December 1985.

[35] M. Satyanarayanan, Henry H. Mashburn, Puneet

Kumar, David C. Steere, and James J. Kistler.

Lightweight Recoverable Virtual Memory. In Pro-

ceedings of the 14th Symposium on Operating Systems

Principles, pages 146{160, Asheville, North Carolina,

December 1993.

[36] Margo I. Seltzer. Personal Communication, January

1997.

[37] Margo I. Seltzer, Yasuhiro Endo, Christopher Small,

and Keith A. Smith. Dealing With Disaster: Surviving

Misbehaved Kernel Extensions. In Proceedings of the

Second Symposium on Operating Systems Design and

Implementation, pages 213{227, Seattle, Washington,

October 1996.

12

[38] Emin G�un Sirer, Marc Fiuczynski, Przemys law

Pardyak, and Brian Bershad. Safe Dynamic Linking in

an Extensible Operating System. Workshop on Com-

piler Support for System Software, February 1996.

[39] Emin G�un Sirer, Stefan Savage, Przemys law Pardyak,

Greg P. DeFouw, Mary Ann Alapat, and Brian N. Ber-

shad. Writing an Operating System with Modula-3.

Workshop on Compiler Support for System Software,

February 1996.

[40] Karanjit S. Siyan. Windows NT Server Professional

Reference. New Riders Publishing, Indianapolis, Indi-

ana, 1995.

[41] Niklaus Wirth and J�urg Gutknecht. Project Oberon|

The Design of an Operating System and Compiler.

Addison Wesley Longman, Reading, Massachusetts,

1992.

A Formal Model

This appendix presents a formal model for access con-

trol in extensible systems. It is structured as follows:

Section A.1 de�nes the terms used in the formal model.

Section A.2 de�nes the access modes used for access

control. Section A.3 de�nes the discretionary compo-

nent of access control in extensible systems, and sec-

tion A.4 de�nes the mandatory component. Finally,

section A.5 de�nes safe optimizations for access con-

trol on extensions.

A.1 Terminology

Access Control List The mechanism used to en-

force discretionary access control. Provides a

mapping from users and groups to access modes.

Acronym is ACL.

Access Mode De�nes what type of operations a sub-

ject can carry out on an object or on another sub-

ject.

Discretionary Access Control A means of restrict-

ing access to objects and subjects based on users

and groups which can be changed by the users

themselves. Acronym is DAC.

Domain A label in domain and type enforcement that

is associated with a subject.

Domain and Type Enforcement The mechanism

used to enforce mandatory access control. Asso-

ciates subjects with domains and objects with types

and provides a mapping from domains and types

to access modes. Acronym is DTE.

Extension A unit of code. Traditionally, a unit of

code is an object (i.e., it contains the instructions

and data of the extension). However, since ex-

tensions are written by a human programmer and

their code is executed (thus turning extensions

into an active entity), they are considered subjects

as far as access control is concerned. Extensions

are associated with both a user and an access con-

trol list for discretionary access control, and with

a domain for mandatory access control.

Group A named collection of users.

Mandatory Access Control A means of restricting

access to subjects and objects that is imposed on

all system operations, that can only be changed

by the security administrator, and that is used to

enforce the security policy. Acronym is MAC.

Object A passive entity that contains or receives in-

formation. Associated with a type.

Security Policy The set of laws, rules, and practices

that regulate how an organization manages, pro-

tects and distributes information within the com-

puter system.

Subject An active entity. Here, either a thread of

control which executes some code for some user,

or an extension written by some user. Associated

with a domain.

Thread of Control A single, sequential ow of con-

trol. Considered a subject as far as access con-

trol is concerned. Associated with a user for dis-

cretionary access control and with a domain for

mandatory access control.

Type A label in domain and type enforcement that is

associated with an object.

User Any person who interacts directly with a com-

puter system and thus has threads of control exe-

cuting some code on her behalf. Also the unit of

accountability for auditing.

This glossary is inspired by [33], and some of the def-

initions are adapted from the security glossary in [10].

A.2 Access Modes

An access mode de�nes the legal types of operations a

subject can carry out on an object or another subject.

It is represented as a set of types of operations:

m � M ; The set of legal types of operations.

The following types of operations are necessary to

properly model how extensions interact with each

other. Other access modes are certainly necessary to

model a complete system, but depend on the exact se-

mantics of the objects a given system supports and of

the operations that can be carried out on these objects.

They are thus left unspeci�ed.

13

extend Extend a given interface.

execute Execute code, or invoke a given interface.

Two rules are needed to capture the restrictions im-

posed on system security by access modes. The �rst

rule simply formalizes the meaning of access modes,

and the second rule further restricts when an exten-

sion is allowed to interact with another extension:

Rule 1 A subject can only carry out those types of

operations on an object or another subject that are de-

scribed by the corresponding access mode.

Rule 2 An extension can only be linked against an-

other extension if the corresponding access mode in-

cludes the execute type of operation or both the

execute and the extend type of operation. Whether an

extension can be linked against another extension when

the corresponding access mode includes the extend but

not the execute type of operation, depends on the se-

mantics of the underlying extension model and is thus

implementation dependent.

A.3 Discretionary Access Control

Discretionary access control using access control lists is

a familiar mechanism to limit access to resources. An

access control list is a mapping from users and groups

to access modes:

u 2 U ; The set of legal users.

g 2 G ; The set of legal groups,

; where 8 g 2 G . g 2 P(U)

InGroups : U �! fG; : : :g

Acl : U �! fG; : : :g �!M

InGroups returns the set of groups a given user is

a member in, and Acl is an access control list, which

is a function local to each object and extension.

Access control lists are fully-featured and internally

use two mappings, one for positive rights and one for

negative rights. When trying to determine the access

mode for a given user and the groups she is a member

in, the access control list �rst collects all positive rights

and then subtracts all negative rights from the �rst re-

sult, thus generating the �nal access mode. Since ac-

cess control lists are a familiar mechanism, no pseudo-

code de�nition is given for Acl.

For the purposes of discretionary access control each

subject needs to be associated with exactly one user,

i.e., each thread of control and each extension are as-

sociated with a user. Extensions that are not clearly

associated with a legal user can be mapped to a well-

known anonymous user. Each object and each exten-

sion is associated with an access control list. Note that

a thread of control associated with a user u can very

well execute code in an extension associated with an-

other user u

0

, as long as the access control constraints

are not violated.

All discretionary access control decisions involving

extensions are done at link time. As a result a thread

associated with user u can call the interface of an ex-

tension associated with user u

0

, even though the ac-

cess control list for that extension forbids execute ac-

cess. While this obvious security loophole could be

avoided by imposing dynamic discretionary access con-

trol checks on all calls into an extension, this would

introduce unnecessary overhead while not solving the

fundamental problems of discretionary access control

(e.g., Trojan horse attacks would still be possible).

Furthermore, this potential security loophole is prop-

erly addressed by mandatory access control which does

dynamic access checks.

Discretionary access control is formalized by the fol-

lowing two rules:

Rule 3 Each subject, that is, each thread of control

and each extension, is associated with exactly one user

u and each object as well as each extension is associated

with an access control list Acl.

Rule 4 A subject associated with user u can at most

carry out those types of operations on an object

or another subject associated with an access con-

trol list Acl that are described by the access mode

Acl(u;InGroups(u)). Discretionary access control

decisions involving extensions are only done at link

time.

The use of the words \at most" in rule 4 reects the

fact that the �nal access mode for any access control

decision is the intersection of the two access modes re-

sulting from discretionary and mandatory access con-

trol.

A.4 Mandatory Access Control

Mandatory access control di�ers from discretionary ac-

cess control in that it is imposed on all relevant system

operations and can only be changed by a system's secu-

rity administrator. Its constraints are the expression of

some security policy external to the system. Further-

more, these constraints, to the user, appear to be dy-

namically enforced, that is, unlike discretionary access

control, the constraints of the Rights and Target

functions as de�ned below must always be adhered to.

The mechanism used for mandatory access control

is domain and type enforcement. It uses domains and

types in addition to access modes to express access

restrictions:

d 2 D ; The set of legal domains.

t 2 T ; The set of legal types.

14

For the purposes of domain and type enforcement

each subject needs to be associated with exactly one

domain, i.e., each thread of control and each extension

are associated with a domain. Extensions that are not

clearly associated with a legal domain can be mapped

into a dynamically created domain that is unique for

this extension. The Rights and Target functions

(see below) are then updated to also accommodate this

dynamically created domain according to a template.

Each object is associated with exactly one type. Note

that a thread of control associated with a domain d

can very well execute code of an extension associated

with another domain d

0

, as long as the access control

constraints are not violated. Furthermore, while the

association of an extension with a domain is �xed for

the lifetime of the extension within the extensible sys-

tem, the domain associated with a thread of control

may change according to rule 9 described below.

When a user logs in or an extension establishes its

user identity, there may be a choice as to with which

domain the initial thread of control or the extension

should be associated. Domain and type enforcement

includes a global mapping that de�nes which domains

are valid domains for a given user and can thus be used

to verify that the desired domain is legal. The global

function InDomains returns the set of legal domains

for a given user:

InDomains : U �! fD; : : :g

The association of subjects with domains and ob-

jects with types is captured by the following three

rules:

Rule 5 Each subject, that is, each thread of control

and each extension, is associated with exactly one do-

main d, and each object is associated with exactly one

type t.

Rule 6 An extension associated with a legal user u

must be associated with a domain d, such that d 2

InDomains(u). An anonymous extension is associated

with a unique, dynamically created domain whose ac-

cess rights are created according to a template. The do-

main an extension is associated with must not change

for the lifetime of the extension within the extensible

system.

Rule 7 A top-level thread of control, i.e., a thread

of control that is created when a user u logs in,

must be associated with a domain d, such that d 2

InDomains(u). The domain associated with a thread

of control may change according to the constraints ex-

pressed in rule 9.

As an access control mechanism, DTE expresses re-

strictions on what types of operations a subject can

carry out on objects and other subjects. These re-

strictions are expressed by two global functions, called

Rights and Target:

Rights : D �! (D [T) �!M

Target : D �! D �! D

The semantics of the two functions follow, and, since

both functions can be easily expressed as lookups in a

two-dimensional array or a similar data structure, a

pseudo-code de�nition is omitted:

� Rights(d; d

0

) : m | Given the domain d of a

subject and the domain d

0

of another subject, re-

turn the legal access mode m representing the

legal types of operations the �rst subject can

carry out on the second subject. If d = d

0

,

m = fexecute; extendg since a domain can al-

ways execute and extend itself.

� Rights(d; t) : m | Given the domain d of a

subject and the type t of an object, return the

legal access mode m representing the legal types of

operations the subject can carry out on the object.

� Target(d; d

0

) : d

target

| Given the domain d

of a subject and the domain d

0

of another sub-

ject, return the target domain d

target

. The target

domain d

target

represents the domain that will be

associated with a thread of control for the dura-

tion of a call to an extension in domain d

0

, given

that the thread of control is currently associated

with domain d. If d = d

0

, d

target

= d.

The two rules relating subjects and objects, domains

and types and the legal types of operations follow:

Rule 8 A subject associated with domain d can at

most carry out those types of operations on another

subject associated with domain d

0

or on an object asso-

ciated with type t that are described by the access mode

Rights(d; d

0

) or the access mode Rights(d; t) respec-

tively.

Rule 9 A thread of control associated with domain d

that calls on code of some extension in domain d

0

takes

on the domain Target(d; d

0

) for the duration of the

call.

Note that the restrictions imposed on a pair of sub-

jects in rule 8 are relevant for three possible situations,

namely for a thread of control executing code of an ex-

tension, for a thread of control that is about to call

code of another extension, and for extension about to

link against another extension.

15

A.5 Static Access Control for Exten-

sions

Mandatory access control, in contrast to discretionary

access control, must appear to the user as if it was

dynamically enforced for all system operations. This

implies dynamic access control checks for every call

into an extension and the possible re-association of a

thread of control with a new target domain (and the

dis-association with that target domain on return). As

it is clearly desirable to impose as little dynamic ac-

cess control checks and target domain re-associations

as possible, rules for possible optimizations are needed.

The rules discussed in this section depend on a new

set operation, called DomainSet : D �! fD; : : :g:

DomainSet(d) := fd

0

j

fexecuteg � Rights(d

00

; d) ^

d

0

= Target(d

00

; d)g

The intuition behind DomainSet(d) is that it re-

turns the set of all domains that are legal domains for

a thread of control that is executing code of an exten-

sion in domain d. Using this new set operation, the

following two rules capture when dynamic access con-

trol checks and target domain re-associations can be

avoided:

Rule 10 No dynamic access control checks are neces-

sary for an extension in domain d if the following is

true:

8 d

0

2 fd

00

j fexecuteg � Rights(d

00

; d)g .

8 d

000

2 DomainSet(d

0

) .

fexecuteg � Rights(d

000

; d)

Rule 11 No dynamic target domain re-associations

for threads of control calling code of an extension in

domain d are necessary if the following is true:

8 d

0

2 fd

00

j fexecuteg � Rights(d

00

; d)g .

8 d

000

2 DomainSet(d

0

) .

d

000

= Target(d

000

; d)

Both rules can result in further optimizations if the

set of domains d

00

is further limited to only consist of

domains associated with extensions that are currently

linked into the system. Another optimization uses two

entry points per interface, one unchecked (thus, both

rules must be true for all extensions that have access to

this entry point) and one using dynamic access checks

(for all other extensions).

16

