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Communication is a fundamental problem in parallel computing. Without high per-

formance communication, applications cannot exploit available parallelism e�ectively.

Communication time has three components: the overhead to send and receive a mes-

sage, the time to move a message between the processor and the network, and the time

in the network to deliver a message. Research has reduced the �rst two, producing

machines where time in the network is over �fty percent of the total communication

time.

We demonstrate methods to increase network performance by examining funda-

mental network issues such as routing algorithms, router implementation, and 
ow

control. We also make progress towards solving the routing problem, a search for a

router that provides high throughput, low latency network performance for all applic-

ation tra�c and network loads.

In this thesis, we formulate a methodology for evaluating multi-class routing al-

gorithms and present Triplex, the �rst triple class routing algorithm. Multi-class

algorithms increase performance and help solve the routing problem by providing

several kinds or classes of routing. This gives applications the 
exibility to select the





type of routing that best matches their communication needs. Multi-class routing

also removes a major liability of adaptive routing, out-of-order message delivery. By

providing a class for in-order delivery, multi-class routing can simplify the network

interface since message reordering becomes unnecessary.

We examine the e�ects of router implementation on network performance by com-

paring two methods of implementing a router: as an input driven and as an output

driven router. Although the methods are similar, the output driven routers almost

always perform as well as or better than the input driven routers. Almost all routers

are input driven, even though most routing algorithms can be implemented as either.

The e�ects of 
ow control on network performance are also explored. We compare

a variety of packet routing algorithms and demonstrate the following by simulation.

Packet routing provides throughput superior to traditional wormhole networks which

have a limited amount of bu�ering. And although often overlooked, non-minimal fully

adaptive routing with controlled randomization can achieve throughput and latency

that is superior to oblivious and minimal fully adaptive routing algorithms.
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Chapter 1

INTRODUCTION

The exchange of information over networks is essential in many aspects of com-

puting. Some networks, like the Internet, allow email messages to be sent or web

pages to be browsed from around the world. Other networks, called local area net-

works (LANS), support cooperative computing which enables sharing of computing

resources within a small area such as a building or campus. And still others provide

communication between processors in a parallel computer, enabling problems to be

solved faster than with a uni-processor. Each of these communication domains has a

unique set of communication requirements and constraints resulting in unique solu-

tions for sharing information e�ciently. This thesis considers methods of practical

communication in parallel computer networks, where practical refers to factors such

as algorithm complexity, ease of implementation, performance, and hardware costs.

1.1 Background

The model of computation considered in this work is the multicomputer [AS88]. See

Figure 1.1 for an example of a multicomputer. The multicomputer is a single computer

where each node is composed of a processor, local memory, network interface, and

hardware router. The nodes are connected in a point to point network by links or

channels in a regular topology such as a k-ary n-cube, shu�e-exchange, or cube-

connected cycles. See Figure 1.2 for examples of two-dimensional (2D) and three-

dimensional (3D) networks. Processors communicate by sending messages through
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Router
Multicomputer

Processor

Net interface

Memory

Figure 1.1: An example of a two-dimensional torus multicomputer.

the network via the network interface. The information used to route a message is

contained in the message header; the remaining portion of the message, called the

message body or payload, carries data. Hardware routers examine message headers

and forward each message to a neighboring router according to the routing algorithm

till it reaches its destination node. The routing algorithm represents the rules that

specify the path a message may take through the network. The algorithm consists

of two components: the routing relation, which computes the possible set of bu�ers

that may be used by a message, and the selection function, which chooses one of the

bu�ers from the set output by the routing relation. The selection function may make

decisions by considering factors such as the number of other messages in local bu�ers.

A routing algorithm is connected, if there is a path speci�ed by the routing relation

between every pair of nodes in the network. This is analogous to a graph which is

strongly connected, but in this case, routing connectivity not edge connectivity is

considered.

There are three components to total communication time: the message overhead

(processing time) to send and receive messages, the time in the network interface

to move messages between the processor and the router, and time in the network
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Figure 1.2: Clockwise from the top left are examples of k-ary n-cubes: a 2D mesh, a 2D torus, and

a 3D hypercube.

to deliver the messages. As research continues to reduce the message overhead and

network interface times [vEDCGS92, Dal90b, BLA

+

94, MBES94, BJM

+

96], time in

the network is becoming a signi�cant portion of total communication time [CKP

+

93].

This has motivated research in fundamental network issues and their e�ects on overall

communication performance. This dissertation explores three key network issues:

routing algorithms, router implementation, and 
ow control methods. See Table 1.1

for examples of the percentage of total communication time spent in the network in

various computers.

1.1.1 Network Assumptions

Routers in the parallel computing domain are quite di�erent from those in other net-

works. They are very simple, fast, low cost, and must be scalable since a multicom-

puter may contain hundreds or thousands of nodes. To achieve �ne-grain parallelism,

the latency constraints of multicomputers require routing decisions to be made very

quickly with information local to the node (this may include status from a neighbor-
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Table 1.1: Summary of the percentage of time a message spends in an uncongested network for

various computers [CKP

+

93]. Components of the total communication time are shown in units of

cycles. Overhead includes processing time for sending and receiving a message. Words per message

depends on the channel width and is shown for a 160-bit message. This represents the time for the

tail of the message to catch-up to header once it has been delivered. Node latency (node lat) is the

time to make a routing decision at each node. Hops is the average distance a message travels. Total

is the total communication time, while net is the percentage of time a message spends in the network.

The last two rows refer to machines using active messages (AM) instead of the commercially provided

software.

Machine Topology Overhead Words Node Lat Hops Total Net

nCUBE/2 Hypercube 6400 160 40 5 6760 5

CM-5 Fattree 3600 40 8 9.3 3714 3

DASH Torus 30 10 2 6.8 53 43

J-Machine 3D Mesh 16 20 2 12.1 60 73

Monsoon Butter
y 10 10 2 5 30 67

nCUBE/2-AM Hypercube 1000 160 40 5 1360 27

CM-5-AM Fattree 132 40 8 9.3 246 46
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ing node). Since the topologies are regular, a topology gathering phase is not needed.

The routers simply route or forward messages from one node to the next. Topology

gathering is useful in rapidly changing or more complex fault-tolerant systems since

this allows the network routes to be recon�gured. For a practical, low cost approach to

fault-tolerance in multicomputer networks, see [BY94]. To keep hardware costs down,

routers have small (hardware) bu�ers from a word to several hundreds of words in

size.

In parallel computers the distance between nodes is very small; and as a con-

sequence, the channels have very low transient error rates. Most errors are detected

by CRC codes. Messages are rarely lost or corrupted, so a higher-level protocol is used

to handle an infrequent error. Also because the distances between nodes are small,

hop-by-hop 
ow control is practical. This means it is not necessary to drop messages.

In fact, multicomputers do not intentionally drop messages. To prevent tra�c from

backing up the network, each router is assumed to remove delivered messages in a �-

nite amount of time. Flow control is described in more detail in the following section.

Finally, it is assumed that the network is secure and that messages do not need to be

encrypted to obtain protection from eavesdropping.

1.1.2 Flow Control

Flow control prevents the sender from over running the capacity of a receiver. Mul-

ticomputers use three types of 
ow control: circuit-switched, packet-switched, and

wormhole routing. The latter is actually a method of 
ow control, though its name

implies otherwise.

In circuit-switched 
ow control there are three phases. In the �rst phase, a con-

nection between the source and destination is set-up. Once set-up is complete, the

message is sent along the established path. When communication is �nished, the

connection is torn down. There is a high overhead for initiating communication, since

the entire path between the source and destination must be reserved. If there is
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substantial data to send, however, the initial set-up time becomes insigni�cant. A

telephone call is an example of a circuit-switched connection.

With wormhole routing, a message is broken into small pieces called 
its or 
ow

control digits [DS86]. The message header is contained in the initial 
it(s). All the


its in the message follow the path of the message header in a pipeline fashion. As

soon as the routing decision has been made, a message may be forwarded from its

current node to the next. Since 
it bu�ers are small, a blocked message may span

several nodes and hold many links in the network simultaneously. A message in an

uncongested wormhole network has lower latency than in a circuit-switched network,

since a set-up phase is not required.

In packet-switched networks, a message is segmented into units called packets, any

of which can �t completely in an empty bu�er in the network. Therefore when a

message gets blocked, it is completely bu�ered within one node. There are two main

types of packet-switched 
ow control: store-and-forward and virtual cut-through.

With store-and-forward 
ow control, a message must be completely received in a

node before it can be forwarded to another node. Virtual-cut through is a hybrid

of wormhole and store-and-forward 
ow control. With virtual-cut through, a mes-

sage may be forwarded as soon as the routing decision has been made, regardless

of whether the entire message has been completely received within the current node.

Packet-switched networks have a maximum packet size and use more bu�er space than

wormhole routing, but messages hold fewer resources when they block. Uncongested

message latency for packet-switched networks with virtual cut-through is equivalent

to that of wormhole networks.

Mad postman is an unusual optimization of packet routing that is used to avoid the

latency of the routing decision [YJ89]. When using mad postman routing, a message

is immediately forwarded in the same direction in which it is currently routing. If

the prediction is incorrect, the message is killed and forwarded out the appropriate

direction. This technique only works in directed acyclic networks and is rarely used.
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1.1.3 Routing Style

There are two major styles of routing: batch routing and continuous or dynamic rout-

ing. In batch routing, each processor injects a set of messages into the network. Then,

all the processors wait till the last message can be delivered before communicating

again. Batch routing algorithms are often synchronous. An important special case

of batch routing is permutation routing. In permutation routing, each node sends

one message to a unique destination. The development of batch routing algorithms

has been heavily in
uenced by the desire to make them analyzable. This means that

quantities like the maximum number of steps required to route a permutation, or

perhaps, the maximum queue size needed at any node can be determined.

With continuous routing, messages can be injected into the network at any time.

The quantities of interest are throughput and latency. Throughput represents mes-

sages delivered per time unit, often a cycle, while latency measures the time a message

spends in the network. Continuous routing algorithms are usually considered in the

context of real machines, and therefore must be practical.

Practical algorithms have several key properties. First, they use a reasonable num-

ber of resources per router. Second, they make decisions based on local information

only. And �nally, the algorithms must be deadlock-free, livelock-free, and starvation-

free. Deadlock-freedom insures a message never waits inde�nitely to progress in the

network; livelock-freedom guarantees a message will never circulate in the network

continuously without being delivered; and, starvation-freedom guarantees a waiting

message will eventually be injected into the network.

Because the requirements of being analytically tractable and of being practical

are usually con
icting, the literature in routing has been partitioned into two parts:

routing algorithms that have been analyzed for permutation or dynamic random rout-

ing and those that present deadlock, livelock, and starvation-free continuous routing

algorithms. Since we are interested in practical routers, we restrict our attention to



8

the latter. A survey of the former is presented in [Lei92b], and a more complete

treatment can be found in [Lei92a].

1.1.4 Classes of Routing Algorithms

Routing algorithms are often categorized by the kinds of paths messages may take

through a network. In a minimal algorithm, a message is required to take a shortest

path between its source and destination. See Figure 1.3 for an example. A non-

minimal algorithm, however, allows a message to take a path that is not a shortest

path. See Figure 1.4 for an example. When a message routes away from its destina-

tion, it is called a deroute or misroute. A minimal algorithm always moves a message

in a pro�table direction, since it never deroutes a message.

S

D

Figure 1.3: An example of a minimal path between a source (S) and destination (D) on a 2D mesh.

Routing algorithms are further categorized by the amount of adaptivity or 
ex-

ibility allowed in the path selection. An oblivious algorithm speci�es a single path

between each source and destination in the network. Oblivious routers have no ad-

aptivity. In fully adaptive algorithms, a message may take any shortest path between

its source and destination, in partially adaptive algorithms a message may take a

subset of the shortest paths, and in non-minimal fully adaptive algorithms a message
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S

D

Figure 1.4: An example of a non-minimal path between a source (S) and destination (D) on a 2D

mesh.

may take any shortest path as well as some longer paths. Speci�c routing algorithms

are described later in Chapter 2 and in the literature [DYN97, GY93, NM93].

1.1.5 Router Properties

As mentioned earlier, deadlock, livelock, and starvation-freedom are three main prop-

erties every practical router must possess. We brie
y discuss the di�erent methods

of achieving deadlock and livelock-freedom. All three properties are covered in more

detail in Chapter 2.

There are several techniques for achieving deadlock-freedom. The �rst method,

deadlock avoidance, ensures that deadlock can never occur. Currently, this is the

most common method of providing deadlock-freedom.

Another method to achieve deadlock-freedom is pre-emption. Pre-emption al-

lows messages to acquire resources like bu�ers already being held by other messages.

This technique is more commonly used outside the domain of multicomputers, where

routers are free to drop lower priority messages.

The last method, deadlock recovery, allows deadlock to occur. This method detects

potential deadlocks and then invokes measures to resolve the deadlock.
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For most routing algorithms livelock-freedom is not a problem. This is because

most algorithms are minimal (restricted to shortest path routes) and (deadlock-free)

minimal algorithms are naturally livelock-free.

Non-minimal algorithms usually maintain livelock-freedom in one of two ways.

The �rst is by using a priority scheme, usually age, distance traveled, number of

deroutes, or some other metric. When two messages con
ict for a resource, the

message with the highest priority takes the minimal route. The losing message gets

derouted. An alternative technique uses randomization to select a message to deroute

from the set of competing messages. In this case, the routing algorithm is probabil-

istically livelock-free. This means that the probability that a message remains in the

network goes to zero in the limit.

1.2 Thesis Structure

This dissertation considers multicomputer network fundamentals and examines their

e�ects on network performance. Chapter 2 describes three key properties of routing

algorithms: deadlock-freedom, livelock-freedom, and starvation-freedom and surveys

related work in multicomputer routing. Routing algorithms are almost always eval-

uated by simulation due to the complexity of an analytical analysis. The simulation

methodology used in this work is detailed in Chapter 3. Chapter 4 de�nes and

promotes the idea of multi-class routing. This chapter also introduces a novel multi-

class routing algorithm called Triplex. Besides routing algorithms, another factor in

network performance is the router implementation. Chapter 5 compares input and

output driven routing which are two methods of implementing routing algorithms in

a hardware router. Network performance is also e�ected by the type of 
ow con-

trol used. Chapter 6 evaluates several competitive routing algorithms using packet

switching. Most algorithms have been evaluated with wormhole 
ow control, despite

the higher throughputs achievable by packet routing. Finally, Chapter 7 discusses
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conclusions and suggestions for future work.

1.3 Contributions

The main contributions of this thesis are summarized below.

� This thesis de�nes multi-class routing and formulates a method to evaluate

multi-class routing algorithms. Multi-class routing algorithms increase perform-

ance by providing multiple kinds of routing in a single routing algorithm. This

dissertation also introduces a novel integrated multi-class routing algorithm

called Triplex. Triplex is the �rst triple-class routing algorithm. It supports

oblivious, minimal fully adaptive, and non-minimal fully adaptive routing.

� This thesis presents the �rst non-minimal fully adaptive wormhole deadlock

avoidance algorithm for tori.

� This thesis compares two methods of implementing a routing algorithm, as an

input driven and as an output driven router. The two methods are similar,

but surprisingly the output driven router almost always performs as well as or

better than the input driven router. Most algorithms are implemented as input

driven routers, even though almost all can be implemented as either.

� This thesis uses simulation to explore competitive packet routing algorithms.

The results demonstrate the advantages of adaptive routing, that packet rout-

ing can achieve substantially higher throughputs than traditional wormhole net-

works, that packet routing algorithms could bene�t from congestion control, and

�nally that non-minimal fully adaptive packet routing with controlled random-

ization is very e�ective at increasing throughput when compared with minimal

fully adaptive and oblivious routers.



Chapter 2

KEY PROPERTIES OF ROUTERS

A large number of routing algorithms have been developed with varying com-

plexity, resource requirements, and switching techniques. The complexity of the al-

gorithms varies depending upon the techniques used to solve deadlock, livelock, and

starvation. In multicomputer networks, substantial resources are required to resolve

the problem of deadlocks. Because of this, multicomputer algorithms can generally

be classi�ed by the methods in which they provide deadlock-freedom.

2.1 Deadlock-Freedom

2.1.1 Deadlock Recovery

Routing algorithms can achieve deadlock-freedom in several ways. The �rst is by

allowing deadlocks to occur and then to recover. This method is motivated by the

observation that deadlock is a rare event, and hence should not require signi�cant rout-

ing resources. Recovery schemes are used in both the Compressionless router [KLC94]

and in the Disha router [KP95]. The former uses an abort and retry technique, sim-

ilar to double-bu�ering [W

+

88], in which a message tries to acquire all the bu�ers

between its source and its destination. If the message is successful, it will be delivered

in time proportional to the length of the message, where all messages are assumed to

be as long as or longer than one plus the number of bu�ers between the source and

destination. Messages that are shorter than this are padded. If after some time, the

message does not reach its destination, the source sends a kill signal along the message

path causing the delivery attempt to be aborted. The aborted message is dropped
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from the network, and another try is made at a later time. The Compressionless

algorithm [KLC94] is adaptive, fault-tolerant, and does not require virtual channels,

though it is more complex than traditional routers. If message lengths are short,

bandwidth may be wasted on message padding. Compressionless routing, however, is

one of the few adaptive routers that provides in-order delivery.

The Disha router [KP95] also has a time-out mechanism to detect potential dead-

lock situations. In Disha, a message may take an arbitrary route to its destination;

but if it waits too long, it uses a special set of bu�ers called 
oating bu�ers to reach

its destination. Besides the standard bu�ers, there is one 
oating bu�er per routing

node. In the sequential version, access to the 
oating bu�ers is mutually exclusive

(by using a circulating token); and once a message obtains access, it takes a shortest

path to its destination. In the concurrent version of Disha [KPD96], access to the


oating bu�ers is no longer sequential. A message, however, must take a Hamilto-

nian path to its destination. The Disha algorithm is adaptive and does not use any

virtual channels. The main drawback is that neither version scales e�ciently, but like

Compressionless routing, it may be suitable for small networks.

2.1.2 Deadlock Avoidance

Deadlock avoidance is a more commonly used method than deadlock recovery to

achieve deadlock-freedom. Most of the schemes presented in the literature fall into

this category. The simplest of these methods is de
ection routing.

De
ection Routing

Deadlock is not a problem with traditional de
ection routing since all messages route

at every step. Because of this, de
ection routers are sometimes referred to as hot-

potato or desperation routers. Nevertheless, practical de
ection routing has spe-

cial requirements. With de
ection routing, all routers must operate synchronously,

and time-steps between routing decisions must be long enough to transmit an entire
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packet to a neighboring node. This enables routers to forward every packet at each

step. De
ection routing also requires livelock-protection since messages may deroute

away from their destinations. De
ection routers do not require virtual channels and

are classi�ed as non-minimal adaptive routers. The HEP and Tera computers use

de
ection routing [Smi81, ACK

+

90].

Packet-Exchange Protocol

Another method used to avoid deadlock is the packet-exchange protocol [NS89]. The

protocol is simple: if node a sends a packet to a neighboring node b, node a must

also be able to accept a packet sent from node b. The packet-exchange protocol

only works with packets and like de
ection routing requires livelock protection, since

an exchange may cause a packet to deroute. Routers using the packet-exchange

protocol are non-minimal adaptive routers and do not require virtual channels. The

Chaos router [KS94], as well as the priority router of Ngai and Seitz [NS89] employ

the packet-exchange protocol to achieve deadlock-freedom. Both of these algorithms

route packets on shortest paths whenever possible.

Directed Acyclic Graphs

One of the most common methods of avoiding deadlocks is to guarantee that bu�er

dependencies in the routing algorithm are acyclic. Informally, there is a bu�er depend-

ency from bu�er a to bu�er b if a message can use bu�er a followed by bu�er b. With

wormhole routing, the term channel dependency is often used instead; though with

special provisions, channels can be treated as bu�ers [SJ96, Dua95]. Dependencies

are often analyzed by examining a bu�er dependency graph (BDG) or channel depend-

ency graph (CDG) of the routing algorithm. In this graph, the nodes are the bu�ers

(channels) and the edges represent the dependencies between the bu�ers (channels).

Many of the algorithms augment channels with multiple virtual channels. Virtual

channels are a technique that creates the appearance of multiple physical channels.
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Each virtual channel maintains a separate input and output bu�er, and tra�c on

multiple virtual channels is multiplexed onto the (physical) channel. When virtual

channels support non-blocking bu�ering for wormhole routing schemes, they are often

referred to as (virtual) lanes [Dal92]. This idea is similar to lanes on a freeway, and

allows messages to pass one another.

S

D

0+

1+

Figure 2.1: An example of a message that has corrected dimension 0, is currently correcting dimension

1, and still needs to �nish correcting both dimensions.

The traditional method of avoiding deadlocks in wormhole networks is to insure

that the channel dependency graph forms a directed acyclic graph (DAG). Dally and

Seitz [DS87] showed that oblivious, wormhole algorithms are deadlock-free if and only

if the channel dependency graph is acyclic. They extended a dimension-order oblivi-

ous hypercube algorithm, called e-cube routing [SB77], to other k-ary n-cubes. These

algorithms, any of which is referred to as the oblivious algorithm, route a message by

correcting its dimensions from the lowest to the highest dimension. A message corrects

a dimension by routing on a shortest path towards its destination in this dimension.

See Figure 2.1 for an example of correcting a dimension and Figure 2.2 for an example

of a dimension-order oblivious route. The mesh and hypercube versions do not require

virtual channels, while the torus algorithm requires two to break cycles within a single
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dimension. These algorithms do not provide any adaptivity, but are simple and fast.

There are many machines that use oblivious routing in their networks. Machines with

oblivious hypercube networks include the Intel IPSC/2 [Nug88], oblivious mesh net-

works are found in the Intel Delta [Cor91], the Intel Paragon, the Alewife [ABC

+

95],

the J-Machine [ND92], the M-Machine [FKD95], the Ametek 2010 [SAF88], and the

SHRIMP [BLA

+

94] computers, while the Cray T3D [ST94] uses an oblivious torus.

S

D

1+

0+

Figure 2.2: An example of a dimension-order oblivious path between a source (S) and destination

(D) on a 2D mesh. This is the only path allowed between this source and destination.

Adaptive algorithms with acyclic channel dependencies are also deadlock-free.

Dally presented a minimal fully adaptive wormhole algorithm for k-ary n-cubes without

wrap edges (meshes) [Dal90a] which requires 2

n�1

virtual channels per channel. The

virtual channels are divided into 2

n�1

groups. A message selects a group corres-

ponding to the direction (positive or negative) in all but the lowest dimension that

it needs to travel to reach its destination. This algorithm does not scale well, but

is suitable for small-dimensional networks. The 2D mesh version, often referred to

as the double-y algorithm [GN92b], is equivalent to algorithms that have appeared

elsewhere [CK92, LH91].

Jesshope, Miller, and Yantchev observed that if networks are partitioned into
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independent virtual networks, then it is su�cient to provide deadlock-freedom within

each virtual network [YJ89]. Though presented in the context of packet routing,

this idea was used by Linder and Harden to create minimal fully adaptive wormhole

routing algorithms for k-ary n-cubes [LH91]. For torus networks, the Linder-Harden

algorithm requires (n + 1)2

n�1

virtual channels per channel, to support 2

n�1

virtual

networks, each with n + 1 levels. A message selects a virtual network at injection

corresponding to the direction (positive or negative) in all but the lowest dimension

that it needs to travel to reach its destination. A message starts at level zero; and

each time it uses a wrap edge, it switches to the next level. The mesh algorithm only

requires 2

n�1

virtual channels per channel since levels are unnecessary without wrap

edges. As with the previous adaptive algorithm, the Linder-Harden algorithm does

not scale well.

Using the Turn model [GN94], Glass and Ni developed routing algorithms which do

not require the use of virtual channels. The Turn model restricts enough message turns

(e.g. from one dimension to another) in the network so that the channel dependencies

are acyclic. This results in minimal partially adaptive algorithms for mesh networks

and non-minimal partially adaptive algorithms for tori [GN94]. One such algorithm

for the 2D mesh is called west-�rst. With west-�rst routing, if a message needs to

route west (in the negative x direction), it must �nish routing west before routing in

any other direction. Although the algorithm does not require virtual channels, the

turn restrictions often cause non-uniformities in channel usage which result in poor

performance that can be inferior to that of dimension-order routing. The 2D mesh

algorithm can be extended to a minimal fully adaptive algorithm called mad-y by

using two virtual channels per channel in the y dimension [GN92b]. The �rst set of

virtual channels implements west-�rst routing and the second set prohibits east-south

and east-north turns. Turns are allowed from the �rst set of virtual channels to the

second, but not vice versa.

Planar adaptive [CK92] and hierarchical adaptive routing [LC94] (described later)
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are partially adaptive algorithms that sacri�ce adaptivity to reduce the crossbar com-

plexity required of fully adaptive algorithms. The �rst algorithm, planar adaptive,

achieves this for an arbitrary k-ary n-cube by restricting adaptivity to two dimensions

(a plane) at a time. For example in a three-dimensional mesh, routing takes place in

the �rst plane consisting of the lowest two dimensions. After the lowest dimension is

corrected, routing proceeds in the second plane containing the highest two dimensions.

Routing in each plane is fully adaptive, independent of the other planes, and uses a

2D version of Dally's algorithm (mentioned earlier) [Dal90a]. Nevertheless, almost

any two-dimensional fully adaptive wormhole algorithm that uses a small number of

virtual channels per channel could be substituted. The algorithm requires three vir-

tual channels per channel for any mesh network with at least three dimensions. An

extension to the torus topology is straight-forward and for example requires 6 virtual

channels per channel if Duato's technique (described in the next section) is used. The

planar adaptive algorithm can also support in-order delivery of messages, provided

an extra bit is included in the message header. If the bit is set, the message takes an

oblivious rather than an adaptive path through the network.

Boppana and Chalasani observed that all packet routing algorithms can be con-

verted into wormhole routing algorithms in a straight forward manner. Each bu�er

in the node is replaced with a corresponding virtual channel for each channel of the

node [BC93]. The packet routing algorithms (which count message hops) and the con-

version are rather ine�cient, resulting in algorithms requiring O(nk) virtual channels

per channel for k-ary n-cubes.

The routing algorithms in this section achieve deadlock-freedom by insuring that

all the channel dependencies result in acyclic channel dependency graphs. This condi-

tion is not necessary and less severe restrictions will su�ce. The following algorithms

achieve deadlock-freedom even though their dependency graphs are not DAGs.
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Underlying Deadlock-free Network

The next few algorithms are based on the informal observation that a message can

route freely in one (or more) network(s), provided that the message can always move

to a deadlock-free network if it gets blocked.

The �rst algorithm in this category is one presented by Dally and Aoki [DA93].

The algorithm is a non-minimal partially adaptive algorithm for arbitrary mesh net-

works [DA93]. Each message counts its dimension reversals, i.e. routes from a higher

dimension to a lower dimension. The static version requires m virtual channels per

channel and allows a message to be routed freely until it experiences m dimen-

sion reversals, the maximum number allowed. After this, the message switches to

a (deadlock-free) dimension-order network

�

.

The dynamic version of the algorithm only requires two virtual channels per chan-

nel for a mesh; but before it can make a routing decision, it needs to obtain dimension

reversal values of messages located in bu�ers in neighboring nodes. A message routes

freely on the �rst channel until it must wait for another message with a smaller dimen-

sion reversal number. At this point, the message reverts to oblivious routing on the

second virtual channel. Simulations have shown that the underlying dimension-order

network quickly becomes a performance bottleneck. Deadlock-freedom is proved by

demonstrating that the packet-wait-for graph (PWG) is acyclic. In this graph, the

packets are the nodes of the graph, and there is an edge from packet p

i

to packet p

j

if packet p

i

waits for a channel held by packet p

j

.

The hierarchical adaptive routing algorithm [LC94] is similar to the Dally and

Aoki algorithm, except that it only requires the last network to be deadlock-free.

With hierarchical adaptive routing, a message is routed in a sequence of (linearly

ordered) independent virtual networks, where the last virtual network is assumed to

be deadlock and livelock-free by applying some other algorithm. As long as a message

�

A similar scheme which counts battle-scars is used to prevent livelock in the HEP computer and

is described in more detail in the section discussing livelock-freedom.
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is guaranteed to progress from one virtual network to the next, it will arrive in the last

virtual network and be routed in a deadlock-free manner. Liu and Chien also present

a unique minimal fully adaptive algorithm for the two-dimensional mesh using this

technique. The algorithm uses two virtual networks and requires two virtual channels

per channel. The �rst network is minimal fully adaptive, while the latter uses the

deadlock-free minimal partially adaptive positive-last algorithm which is based on the

Turn model. With positive-last routing, a message must �nish routing in the negative

directions before it starts routing in the positive directions. Only messages that need

to route in both dimensions in the same direction (i.e. either both in the positive x

and y directions or both in the negative x and y directions) are allowed to move to the

second network when blocked. This results in a deadlock-free minimal fully adaptive

algorithm, since each network becomes fully adaptive and deadlock-free for messages

which are allowed to block in the network.

The deadlock recovery algorithms are similar to algorithms employing an under-

lying deadlock-free network. With the deadlock-avoidance schemes, the decision to

switch from one virtual network to another is based on the routing options avail-

able to a message, whereas with deadlock recovery switching occurs after a time-out.

Time-outs are used either to abort message sends, to switch from one virtual network

to another, or to switch to another set of bu�ers.

The Reliable Router is an implementation of an adaptive algorithm for a two-

dimensional mesh [DDH

+

94]. The router is a combination of two dependent virtual

networks: a minimal adaptive network and a fault-handling network and requires

a total of �ve virtual channels per channel. The �rst network implements Duato's

method (see the next section) and uses four virtual channels. Two of the four vir-

tual channels provide adaptivity, while the other two support dimension-order routing

for two priority classes. The second network uses a deadlock-free non-minimal par-

tially adaptive Turn-based algorithm and requires one channel. The algorithm is very

complex, but tolerates a single arbitrary fault in the network.
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Acyclic Subgraphs

Duato created a framework for developing deadlock-free adaptive [Dua93, Dua95] (and

fault-tolerant [Dua94]) wormhole routing algorithms by noticing that the requirement

of an acyclic channel dependency graph is too restrictive. In his framework only a

subset of the virtual channels need to de�ne a connected routing subrelation which

has acyclic channel dependencies. An algorithm is deadlock-free if the extended chan-

nel dependency graph (ECDG) is acyclic, i.e. a particular subgraph of the channel

dependency graph is acyclic. The extended channel dependency graph includes edges

representing direct and indirect channel dependencies. A direct channel dependency

is a channel dependency between channels in the routing subrelation. There is an

indirect channel dependency from one channel to another in the routing subrelation,

if there is a path a message can take between the two channels only using channels

that are not used in the routing subrelation. This ensures that deadlock is not created

by using edges that are not in the acyclic subgraph. The idea is that a message can

take paths that may have cycles, provided that it can aways take an acyclic path if

needed.

Duato's k-ary n-cube algorithms are minimal fully adaptive and have two classes

of virtual channels, which we refer to as restricted and unrestricted. The restricted

virtual channel(s) support dimension-order routing, while the unrestricted virtual

channels provide adaptivity. The algorithm only requires three (two) virtual channels

per channel for the torus (mesh and hypercube), but requires bu�er status information

from neighboring nodes before making a routing decision. This insures a message

header only blocks in an input bu�er where it can select from multiple output bu�ers

of the virtual channels. An equivalent torus algorithm called *-channels was presented

in [GPBS94].

Using Duato's framework, Schwiebert and Jayasimha presented a minimal fully

adaptive wormhole algorithm for n-dimensional meshes [SJ95]. Their algorithm uses
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the Turn model for the restricted virtual channels and uses an additional virtual

channel in all but the lowest dimension to provide fully adaptive routing. For example,

the 2D mesh algorithm, called opt-y since it is optimal with respect to the number

of virtual channels and routing restrictions for a 2D mesh, uses west-�rst routing on

the restricted channels and an extra set of virtual channels in the y dimension. The

general mesh algorithm marks one direction in each dimension but the last. Before

using the �rst virtual channel in a dimension, a message must complete routing in

the marked direction of all lower dimensions. The second virtual channel is used for

minimal adaptive routes.

Permitting Cyclic Channel Dependencies

Unlike the previously mentioned approaches, the framework of Schwiebert and Jay-

asimha [SJ96] does not require a connected routing subrelation with an acyclic ex-

tended channel dependency graph. This is because cyclic dependencies, called False

Resource Cycles or unreachable con�gurations, may exist without causing deadlock.

Those that cause deadlock are called True Cycles. For an algorithm to be deadlock-

free in this framework, the bu�er waiting graph cannot have any True Cycles. In this

graph, the nodes are the bu�ers, and there is an edge, denoting a waiting dependence,

from bu�er b

i

to bu�er b

j

if a message can occupy bu�er b

i

and wait for bu�er b

j

.

Their framework results in algorithms with fewer routing restrictions than Duato's

technique since the dependencies are based on waiting rather than usage. Moreover,

in a recent development Schwiebert has shown, contrary to the claim of Dally and

Seitz, that there exists a deadlock-free oblivious routing algorithm with cyclic channel

dependencies [Sch97]. It is likely that Dally and Seitz only considered su�x-closed

deterministic algorithms, since deadlock-free oblivious algorithms with cyclic channel

dependencies cannot be su�x-closed [Sch97]. Algorithms that use local information

are usually su�x closed, whereas table-based routing algorithms are not always su�x

closed, because they often try to balance tra�c from di�erent sources among various
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routes.

Triplex is a novel algorithm presented in Chapter 4 which uses the framework of

Schwiebert and Jayasimha to achieve deadlock-freedom. Triplex is a deadlock-free

and livelock-free, non-minimal fully adaptive wormhole algorithm for tori that uses

three virtual channels per channel. Triplex is able to support oblivious, minimal,

and non-minimal routing by using two extra bits in the message header. Like other

non-minimal algorithms, Triplex uses minimal routes whenever possible.

Table 2.1 summarizes the techniques and resources used to achieve deadlock-

freedom for many of the algorithms described. If the algorithm supports hypercube,

mesh, and torus algorithms the torus version is described, since it is the most di�-

cult of the three to achieve deadlock-freedom. We have been lenient in categorizing

the following algorithms as fully adaptive: HEP, Dally-Aoki, and Disha since in the

�nal stages of these routing algorithms the paths are not fully adaptive. The HEP

algorithm uses an Euler path. In the Dally-Aoki algorithm, a dimension-order path is

used; while in Disha, either a Hamiltonian path or a �xed shortest path is used. We

have also omitted describing algorithms that only apply to hypercubes [SJ96, Kon90].

Any of the wormhole algorithms can be converted to packet routing algorithms by

adding packet bu�ers.

2.2 Livelock-freedom

Livelock is a distinct problem that plagues non-minimal adaptive routers and can

exist if there is no bound on the number of times a packet may be derouted. Livelock

occurs when a message moves continually, but never reaches its destination. Livelock

is not a problem for (deadlock-free) oblivious or minimal routers because deroutes

are not allowed. There are two basic methods of dealing with livelock: priorities and

randomness.
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Table 2.1: Comparison of deadlock-free routing algorithms for k-ary n-cubes including topology

(topo), virtual channels (VC), adaptivity class (adapt), type of path, method of achieving deadlock

freedom, and 
ow control (
ow).

Algorithm Topo VC Adapt Path Deadlock Flow

HEP all 0 fully non-min de
ect pkt

TERA all 0 fully non-min de
ect pkt

Ngai-Seitz all 0 fully non-min pkt-exchange pkt

Chaos all 0 fully non-min pkt-exchange pkt

Dally-Seitz all 2 obliv min acyclic CDG worm

Dally n-mesh 2

n�1

fully min acyclic CDG worm

Linder-

Harden all (n+ 1)2

n�1

fully min acyclic CDG worm

Turn all 0 part non-min acyclic CDG worm

Planar-

adaptive all 6 part min acyclic CDG worm

Hop-based all O(nk) fully min acyclic CDG worm

Mad-y 2D mesh 2 fully min acyclic CDG worm

Liu-Chien 2D mesh 2 fully min acyclic CDG worm

Dally-Aoki n-mesh 2 or r fully non-min acyclic PWG worm

Duato,

*-channels all 3 fully min acyclic ECDG worm

Reliable

Router 2D mesh 5 fully min acyclic ECDG worm

Schwiebert-

Jayasimha n-mesh 2 fully min acyclic ECDG worm

Triplex all 3 fully non-min no True Cycles worm

Disha all 2 fully min recovery worm

Compres-

sionless all 0 fully min recovery worm
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2.2.1 Priorities

Priority methods have two basic variations; one uses �xed priorities while the other

uses moving priorities. The �xed priority methods are usually time-stamp protocols,

while the moving priority schemes are usually methods that count deroutes.

Time-stamp protocols [Nga89] require that each message carry the time it was

injected into the network. Whenever a message needs to be derouted, the router avoids

selecting the oldest packet within the router. Since every router avoids derouting the

oldest local packet, the oldest message in the network is routed on a minimal path

to its destination. Livelock is prevented since a packet will reach its destination or

eventually become the oldest packet which is guaranteed to be delivered. Time-stamp

�elds are expensive to compare, since they must be large enough to be unique.

Moving priority methods are similar to time-stamps, but each message carries

information that is updated, for example a count indicating how many times it has

been derouted. There are several counting methods, and despite their similarities

they often use di�erent terminology to count deroutes or some equivalent metric.

The HEP computer counts battle scars [Smi81]. The message with the smal-

lest battle scar is selected for derouting. This gives priority to messages which

have su�ered more deroutes. When a message experiences the maximum number

of deroutes allowed, it is routed on an Euler path to its destination.

A similar method for the mesh which was proposed by Dally and Aoki counts

dimension reversals, i.e. when a message routes from a higher dimension to a lower

dimension (see Section 2.1.2) [DA93]. In the static version of the algorithm, a message

may route freely until it reaches the maximum number of dimension reversals, at which

point it is routed deterministically by the oblivious dimension-order algorithm.

The R2 switch prevents livelock by counting adaptive credits [DHR

+

94]. Each

message starts with an adaptive credit equal to one less than the minimal path length

to its destination. Each time a message makes a hop, its adaptive credit count is
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decremented. A message with zero adaptive credits must take a minimal path to its

destination.

Priority methods su�er from two problems: complexity and overhead. The routing

decision at each node becomes more complicated since priorities must be compared

and possibly updated before derouting. Also, the time-stamp or counts must be

transmitted in the header of the message, consuming bandwidth that could be used

for additional data.

2.2.2 Randomization

Randomization is an alternative to priorities for achieving livelock-freedom. A mes-

sage is selected for derouting at random from a set of competing messages. Random-

ization provides probabilistic livelock-freedom, i.e. the probability a packet is in the

network at time t goes to zero as t goes to in�nity [KS94]. Since the likelihood of

livelock is low to begin with, this provides a practical, though not a deterministic

solution. The Chaos router [Bol93b], the de
ection router found in the Tera com-

puter [ACK

+

90], and the Triplex routing algorithm [FS97b] use randomization to

provide probabilistic livelock-freedom.

2.3 Starvation-freedom

In addition to avoiding deadlock and livelock, routers must also protect against star-

vation. Starvation occurs when a node continually fails to inject a waiting message

into the network. Starvation develops when bu�ers in the node are full making it

di�cult to inject a message into the network. For most routers this is not a problem,

because either the injection frame is serviced in a fair fashion along with the other

input frames, or there is a positive probability that a message in an injection frame

is selected over other messages in the input frames.

Routers that use de
ection routing or the packet-exchange protocol can be subject



27

to starvation. The traditional solution is to have a special message tag or injection

token [Nga89]. When the token is delivered to its destination, the node will get an

opportunity to inject a message. A single token can be circulated among all nodes

in the network or each node can have an individual set of tokens. In the latter case,

a node tags some of its out-going packets as round-trip messages. When a message

returns, the node will be able to inject another message.

The injection-synchronization protocol of Ngai [Nga89] is an alternative to injec-

tion tokens. This technique uses local synchronization between neighbors to insure

that the total number of packets injected by a node is no more than a �xed positive

constant K from those of its neighbors. If a node would exceed this limit by inject-

ing additional messages, it must wait for its neighbors to catch-up. Idle nodes do

not prevent busy nodes from injecting, since idle nodes inject the equivalent of null

messages.



Chapter 3

SIMULATION METHODOLOGY

In this chapter we present the details of the routing algorithm simulations. This

includes the basic methodology used to estimate throughput and latency of the net-

works, the general model of the routing nodes, and a description of the workloads

considered.

3.1 Routing Algorithms

This section brie
y describes the routing algorithms used in the simulations. Speci�c

details of the algorithms can be found in the references.

oblivious The Dally-Seitz oblivious dimension order routing algorithm is, as its name

suggests, an oblivious algorithm which routes a message in dimension order

from the lowest dimension to the highest dimension (e.g. in the 2D case x,

then y) [DS87]. The torus version requires two virtual channels per channel to

avoid deadlocks, while the hypercube and mesh versions do not require virtual

channels. The oblivious algorithm is one of the simplest routing algorithms and

can be used with wormhole or packet routing.

Duato The Duato algorithm is a minimal fully adaptive routing algorithm [Dua93,

GPBS94]. It requires two sets of virtual channels which we refer to as restricted

and unrestricted. A message takes an oblivious path using the restricted virtual

channels and minimal adaptive paths using the unrestricted virtual channels.

Two virtual channels per channel are required for the mesh and hypercube,
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while three virtual channels are required for the torus. The Duato algorithm

can be used with wormhole or packet routing.

Triplex The Triplex algorithm is a non-minimal fully adaptive routing algorithm [FS97b]

and is described in more detail in Chapter 4. The algorithm also has two sets of

virtual channels, restricted and unrestricted. Messages are not always required

to use the restricted channels in an oblivious fashion. Besides oblivious paths,

adaptivity is provided by the restricted virtual channels. Adaptivity is also

provided by the unrestricted channels. Messages take a minimal path whenever

possible. When congestion is experienced, messages wait for minimal paths. If

congestion persists, messages may be allowed to deroute with a small probabil-

ity. Triplex requires two (three) virtual channels per channel for the mesh and

hypercube (torus). The Triplex algorithm can be used with wormhole or packet

routing.

Chaos The Chaos routing algorithm is a non-minimal fully adaptive routing al-

gorithm [KS94, Bol93b]. Messages take a minimal path whenever possible.

When congestion is experienced, messages move to and wait in a central queue

called the multiqueue. If congestion persists and the multiqueue becomes full,

a random message is selected from the multiqueue for derouting. The Chaos

routing algorithm does not require virtual channels. The algorithm is a packet

routing algorithm only.

3.2 Router Description

The following describes the high level design and operation of the routers. Each router

has an injection bu�er, an ejection or delivery bu�er, and an input and an output

bu�er for each channel or virtual channel in each direction. See Figure 3.1 for an

example. Nodes enter the network in the injection bu�er and leave the network via
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the delivery bu�er. A router is connected to a set of neighboring nodes by physical

channels which allow communication in both directions.

injection delivery

crossbar

input output

Figure 3.1: An example of a router with input bu�ers, output, bu�ers, crossbar, injection bu�er,

and ejection bu�er.

Flow control is either wormhole or packet-switched. The latter uses virtual cut-

through [KK79] routing to avoid store-and-forward latency penalties typically asso-

ciated with packet routing. With virtual cut-through routing, a bu�er may contain

parts of two distinct messages, one that is being received and one that is being trans-

mitted to another bu�er. Nevertheless, when a message blocks, it is bu�ered entirely

within a single bu�er.

For wormhole routing, standard unidirectional (simplex) channels are used. For

packet routing bidirectional (half-duplex) channels are shared between the two direc-

tions, though either unidirectional or bidirectional channels would su�ce. See [Bol93a]

for a discussion of the tradeo�s. To maintain a constant channel width, the unidirec-

tional channels simulated are half as wide as the bidirectional channels. In the future

it may be practical to use channels in both directions simultaneously [DLD93].
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In this work, a word refers to the amount of data transferred in one direction

between neighboring routers in one cycle. The bu�ers are one word for wormhole

routing, and 20 words for packet routing. This is a minimal amount of bu�ering

and greatly increases the throughput achieved by the network. The packet routing

simulations use short messages of 20 words. Wormhole channels are half as wide as

packet channels, and thus use 40-word short messages for the same amount of data.

Some experiments use a combination of long and short messages, where the short

messages are one-tenth the size and 10 times more frequent than the long messages.

Transmission of a word over a channel from an output bu�er to a neighboring

node's input bu�er costs one simulated cycle. The actual cycle time depends on the

technology used for implementation. Decoding and routing calculations are pipelined

to allow the router cycle time to match that of the channel. The more complex

algorithms require a larger pipeline depth. This study uses a node latency or routing

decision time of three cycles for the oblivious router, and four cycles for the adaptive

routers. These are based on the hardware design of several of the routers [Bol93b].

To keep the complexity manageable, during each cycle the router connects at most

a single message from an input bu�er to an output bu�er. This does not sacri�ce

performance, since the probability of message arrivals (which is dependent on message

length) is much smaller than the rate of service among the dimensions [Bol93b].

3.3 Workloads

Tra�c is injected continuously. Messages are introduced at each node at every cycle

with a constant probability speci�ed by the applied load. For clarity, the applied

load is normalized to the maximum sustainable load when an average of half the

messages cross the network bisection, as with uniform random tra�c. The network

bisection is the minimum number of channels cut to divide the network in half. For

a k-ary n-cube, a load of 1.0 speci�es that a node can inject a message with average
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length l every kl=4 cycles for tori, every kl=2 cycles for meshes, and every l cycles for

hypercubes. This assumes half-duplex channels. The rate with full-duplex channels is

twice as fast, since communication can take place in both directions simultaneously.

For example on a 2D 256-node network with half-duplex channels and an average

message length of 20 words, a load of 1.0 injects 1 message every 80 cycles for the

torus and 1 message every 160 cycles for the mesh.

The tra�c patterns considered are found in the literature, and are generally

thought to be di�cult, useful, or both. The following describes the tra�c patterns

simulated. Let the binary representation of the source node be a

n�1

a

n�2

: : : a

0

, and

let 0 = 1 and 1 = 0.

Random - all destinations including the source are equally likely.

Bit Reversal permutation - destination is a

0

a

1

: : : a

n�1

.

Complement permutation - destination is to a

n�1

a

n�2

: : : a

0

.

Perfect Shu�e permutation - destination is a

n�2

a

n�3

: : : a

0

a

n�1

.

Transpose permutation - destination is a

n=2�1

a

n=2�2

: : : a

0

a

n�1

a

n�2

: : : a

n=2

.

Hot spot - ten randomly selected nodes are four times more likely to be chosen as

destinations than the other nodes.

For the hot spot tra�c, two di�erent con�gurations were simulated. Assuming the

nodes are labeled in row major order from 0 to 255, the hot spot nodes for case 1 are

6, 86, 121, 123, 152, 158, 186, 201, 216, and 236. For case 2 they are 51, 51, 70, 92,

124, 140, 155, 201, 245, and 254.

The tra�c patterns illustrate di�erent features. As mentioned earlier random

tra�c is simply a standard benchmark used in network routing studies. Hot spot

tra�c models cases where references to program data, such as synchronization locks,
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bias packet destinations toward a few nodes. The complement is a particularly di�-

cult permutation since all messages cross the network bisection. Given an imaginary x

and y axis though the center of a mesh or torus network, the complement destination

is the composition of the x and y axes re
ection of the source. Because all mes-

sages cross the network bisection, the performance of the complement can be at most

half that of random tra�c. Perfect shu�e communication occurs in ascend/descend

algorithms [PV81] while the transpose and bit reversal are important because they

occur in computations such as matrix multiplication and fast-fourier transforms.

3.4 Performance Measures

The key performance measures for continuous tra�c are saturation point, throughput,

and latency. The saturation point is represented by the smallest applied load at which

more messages are created than can be delivered by the network. The saturation

point for a particular tra�c pattern is approximated by running various simulations

at applied loads in increments of .05.

Saturation point is important, since after saturation network performance is un-

predictable and may even degrade. Throughput represents messages delivered per

cycle and is normalized, like applied load, to the bisection bandwidth limitations of

the network when half the processors inject messages that cross the network bisec-

tion. Latency measures the time a message takes to transit the network and does

not include source queueing delay. Source queueing is measured separately since after

saturation, the source queue length is not de�ned. Examining throughput and latency

after saturation is useful even though real systems cannot sustain such loads, since it

provides information about the systems ability to tolerate large bursts of tra�c.

The simulator implements its own random number generator. This ensures that

the methodology used is sound and guarantees repeatability of the streams of random

numbers. The latter is useful for comparing various algorithms against the same
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inputs and also for debugging purposes. The next section will brie
y describe random

number generation. Once the proper context and terminology are described, the

random number generator employed by the simulator is presented.

3.5 Random Number Generation

The most widely used technique is a linear congruential generator. These generators

use a recurrence relationship of the form

X

n

= bX

n�1

+ c(modm): (3.1)

where b, c, and m are non-negative integers called the multiplier, increment, and

modulus respectively. The �rst term X

0

is called the seed. Successive applications

of Equation 3.1 produce a sequence of integers X

1

, X

2

, : : : between 0 and m � 1.

This sequence can be converted to numbers on the interval (0; 1) by dividing by m,

as speci�ed in the following.

U

n

= X

n

=m

The algorithm produces a deterministic, dependent sequence. Nevertheless, if the

parameters are chosen properly, the sequence will appear statistically like a random

sequence. Numbers that appear random are often called pseudo-random. If c is

positive, the generator is called a mixed congruential generator; and if c is zero, the

recurrence is a multiplicative or pure congruential generator.

3.5.1 Multiplicative Congruential Generators

Multiplicative congruential generators are the best understood pseudo-random num-

ber generators and are also the most widely used. To generate a large source of

numbers, it is also necessary to pick parameters that produce a long sequence before

repeating. This repeating sequence is called a cycle, and its length is called its period.
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There are number theoretic results that characterize the cycle length of these generat-

ors [Knu81]. In particular, if m is a prime integer and b is a primitive element modulo

m, then the generator will cycle through the integers in the set f1; 2; : : : ; m� 1g and

the period will be m� 1. Zero is not included in the cycle, since after the �rst occur-

rence of zero, the generator will continue to produce zeros. A generator that satis�es

these conditions is known as a prime-modulus multiplicative congruential generator.

Because computer words typically have 32 bits, the prime modulus 2

31

� 1 has

been well studied. There are several multipliers that have been found to have good

statistical properties and large periods. If b = 16807, the generator is sometimes

called the Learmonth-Lewis generator [LL74, Lea76] though it is attributed to Lewis,

Goodman, and Miller [LGM69]. It has the form

X

n

= 16807X

n�1

(mod2

31

� 1):

This generator is found in the APL, SPSS, and IMSL packages and is reliable and

su�cient for most simulations. When it was discovered to have dependencies in

its high (including three) dimensional structure, the multiplier b = 397204094 was

proposed as an alternative [LL74]. This is considered one of the best for simulation

work and is found in the GPSS and SAS packages [LO89].

Subsequently, Fishman and Moore [FM85] presented what they considered the

�ve \best" multipliers for the modulus 2

31

� 1 which produce generators with a cycle

length of m � 1. They selected them after searching through millions of multipliers

(which are positive primitive roots of 2

31

� 1) and running the latest set of statistical

tests. The general form of the generator is

X

n

= bX

n�1

(mod2

31

� 1);
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where b is one of the following multipliers:

950706376

742938285

1226874159

62089911

1343714438

The only caveat is that not all machines are able to evaluate bX

n�1

without dropping

digits or causing over
ow. This can be tested manually by calculating the product

2147483646b of the multiplier and the largest element (2

31

� 2) in the sequence, and

comparing it with the computed result.

Recent work by Marsaglia and Zaman may soon become the preferred method of

generating random numbers. They presented a new class of generators that can gen-

erate bits, integers, or reals, has provable uniformity for full sequences, and produces

extremely long sequences, e.g. 2

1376

32-bit integers [MZ91].

3.5.2 Random Number Generation for the Simulations

For the simulations we used a multiplicative congruential generator (mentioned earlier)

with multiplier 397204094 and modulus 2

31

� 1. It has the form shown below.

X

n

= 397204094X

n�1

(mod2

31

� 1):

Uniform random numbers on the interval (0; 1) were generated by multiplying the

number generated by the inverse of the modulus.

U

n

= X

n

1

2

31

� 1

:

Either multiplication or division can be used depending upon which operation is faster.

The simulator also supports the Learmonth-Lewis generator by providing an optim-

ized version of the algorithm developed for machines with 32-bit integers [BFS87].
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Each of the nodes in the network models requires several independent streams of

random numbers. For example, each node uses one stream for deciding whether to

inject a message, and another to generate a random destination of a new message.

A stream needs to use a non-overlapping section of the uniform random number

sequence; otherwise, the numbers generated may no longer be uniform random in

appearance. This is because random subsequences of the original sequence are not

guaranteed to be independent or to have the same distribution as the original se-

quence. Because the simulator requires many long streams, the seeds for the streams

for each node were computed o�ine and stored in a table. This was done by comput-

ing the interval size by dividing the period of the generator 2

31

� 2 by the number of

steams required. Then the generator was called repeatedly and the values generated

at the beginning of each interval were stored.

3.6 Gathering Statistics

For the simulations, we are primarily interested in obtaining values for the steady-

state mean throughput and latency of the network.

The simulator uses a standardized time series procedure called batch means for

computing con�dence intervals for the steady-state mean. In this section, we brie
y

introduce the terminology needed and present the methodology used.

3.6.1 Batch Means Method

We chose the method of standardized time series since it constructs asymptotic con-

�dence intervals for the steady-state mean from a single simulation run. The idea of

the batch means method is as follows. If the simulation run is large enough, it can

be divided into non-overlapping pieces of equal length called a batch, and each batch

can be treated as an independent simulation. The mean of each batch is computed

and treated as an independent estimate of the steady-state mean. The technique
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applies to <-valued stochastic processes, but for the purposes of the simulator, only

discrete-time stochastic processes are needed.

Given a discrete-time stochastic process fZ

k

: k � 0g that has steady-state mean

r, the sample batch means are de�ned as follows:

�

X

i

(n) =

m

n

k

X

j=1

Z

(i�1)k+j

; i = 1; 2; : : : ; m

where n is the length of the simulation run and k is the batch size. This results in

m batches of length k. A sample batch mean is simply the mean of the observed

data for a particular batch. In general the batch means

�

X

1

(n);

�

X

2

(n); : : : ;

�

X

m

(n)

are not independent, identically distributed (i.i.d.) random values. If Z satis�es

the appropriate conditions (a Functional Central Limit Theorem holds), as is often

assumed, then the batch means tend to be normally, independent, and identically

distributed [GI90]. De�ne r(n) as follows.
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expected value of a batch mean is equal to the steady-state mean r), the random

variable
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has a Student t distribution with m� 1 degrees of freedom where S
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follows
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The quantity S

2

m

is the sample variance of the batch means. The 100(1��)% asymp-

totic con�dence interval for the steady-state mean r is
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m

; r(n) + t

(m�1;�=2)
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(n)
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m

] (3.3)
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where t

(m�1;
)

denotes the (1� 
)-percentile of the Student t distribution with m� 1

degrees of freedom. Therefore,

lim

t!1

Pfr(n) 2

^

I(n)g = 1� �

where

^

I(n) is the interval in Equation 3.3. In other words, for large t the interval

with random end points r(n)� t

(m�1;�=2)

S

m

(n)

p

m

and r(n) + t

(m�1;�=2)

S

m

(n)

p

m

contains the

unknown constant r approximately 100(1 � �)% of the time. Notice that the half-

length of the con�dence interval decreases at the rate of O(1=

p

n). Most estimators

used in simulations are asymptotically normal, and hence have the same order of

convergence.

3.6.2 Simulator Statistics

For the simulations we compute the sample batch mean for each batch as it is �nished.

These sample batch means are then used to compute the sample mean and variance

of the batch means. From this, the con�dence interval for the steady-state mean is

computed. Instead of using Equation 3.2, however, the simulator computes the sample

variance using a single pass over the data, though both methods are supported in the

code. The simulator reports the estimate for the expected value of the steady-state

mean as well as its 95% con�dence interval. Values for t

(i;�=2=:025)

are stored in a table

for a range of values of i.



Chapter 4

TRIPLEX ROUTING

4.1 Introduction

This chapter describes multi-class routing and then introduces a novel multi-class

routing algorithm called Triplex. A multi-class router has two functions. First it

should provide several classes of routing. This is useful since no single class of routing

is suitable for all applications. Second, multi-class routers should simplify the network

interface or system software by providing services with the routing that might oth-

erwise be implemented in these other layers. Nevertheless, nearly all known routers

support a single class of routing, and few provide services such as in-order delivery

required by many applications.

4.2 Motivation

Oblivious routing continues to be the routing algorithm of choice [Nug88, Cor91,

ABC

+

95, ND92, FKD95, SAF88, BLA

+

94, ST94]. Oblivious routers are simple and

provide in-order delivery of messages. Since oblivious routers have no adaptivity, they

perform poorly in congested networks and fail when faults are present in the network.

Minimal adaptive routers are more complex than oblivious designs, but can achieve

higher throughputs, even with small amounts of congestion. Minimal adaptive al-

gorithms provide some fault-tolerance, though they rarely provide in-order delivery

since the 
exibility in route selection allows messages to pass one another. Min-

imal adaptive algorithms often su�er from severe throughput degradation in heavy

congestion [NS94].



41

Non-minimal algorithms can provide the highest throughputs because they tol-

erate large bursts of tra�c and heavy congestion. Like minimal adaptive routers,

delivery is rarely in-order. Non-minimal routers are also fault-tolerant, but are more

complex due to livelock-freedom requirements. In cases of extreme congestion, non-

minimal routers occasionally experience large increases in latency due to the overuse

of non-minimal routes.

There are performance-complexity trade-o�s to consider when selecting a class

of routing. If performance of the simplest oblivious algorithm is su�cient then the

choice is easy. Otherwise, an adaptive routing algorithm is preferable. The price of ad-

aptivity is increased complexity and out-of-order delivery. In-order delivery, however,

is necessary to support e�cient synchronization [WSC

+

95], checkpointing [LNP91],

memory consistency [LHH91] (e.g. via cache coherency algorithms or barriers), and

determinism in parallel computations. Furthermore, providing in-order delivery for

adaptive algorithms requires special hardware to avoid the substantial latency costs of

software reordering. Although a few such network interface designs have been demon-

strated [BJM

+

96, MBES94], there is reluctance to provide such a complex solution.

Multi-class routing is an alternative method to provide the bene�ts of adaptive

routing and is beginning to gain acceptance, as evidenced by the routing algorithms in

the Cray T3E [ST96] and the lastest IBM SP2 routers [ASAA96]. Furthermore, since

no router supports the needs of all applications, applications would bene�t from a

router that supports several kinds of routing simultaneously. Applications also bene�t

if services like in-order delivery are provided by routers. At present, almost all routers

provide a single kind of routing.

4.3 Overview

A multi-class router is not simply a combination of several routers, but rather is an

integrated router that shares resources to provide multiple kinds of routing. Multi-
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class algorithms should also simplify the network interface or system software. This

can simplify the network interface and reduce latencies for services that would oth-

erwise be provided in the network interface or system software. Although the idea

of a multi-class routing algorithm is perhaps obvious, and several routers have some

of these features, the advantages of multi-class routing have not been promoted and

multi-class performance has been ignored. Thus, our contribution lies in de�ning

this notion, describing the methodology to evaluate such routers, demonstrating their

usefulness, and introducing the Triplex routing algorithm.

Triplex provides oblivious, minimal fully adaptive, and non-minimal fully adaptive

routing for both wormhole or packet-switched 
ow control, including virtual cut-

through and store-and-forward techniques. The choice of class may be speci�ed at

system boot-time, by application, or individually by message. Dynamic class selection

may be useful when compile time information is available [Fel93], enabling the system

to select the best class for the expected tra�c.

Although we consider point-to-point networks in a parallel (multi)computer con-

text, the idea of multi-class routing is applicable to other types of networks as well.

4.4 Multi-class Routing

A multi-class router is a router designed speci�cally to provide routing for several

classes of tra�c, where each class of tra�c requests distinct algorithmic constraints.

Furthermore, messages of di�erent classes may reside in the network at the same time.

The key to an multi-class router is the uni�cation of the classes or modes of tra�c

it provides. Each routing class shares resources, such as bu�ers, with other classes

thus reducing the cost and complexity of multiple classes. Although classes share

resources, di�erent classes of messages can exist in the network simultaneously. The

typical method to distinguish messages of di�erent classes only requires adding a few

bits to the message header.
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For example, consider the multi-class Triplex algorithm which will be described

in more detail in Section 4.6. It provides three classes of routing: oblivious Triplex,

minimal adaptive Triplex, and non-minimal adaptive Triplex. In-order delivery is

provided by the oblivious class, which is the most restrictive class of the three. By

providing support for an oblivious class, Triplex is an adaptive router that does not

require a special network interface to reorder messages. Examples of other multi-class

routers can be found in Section 4.8.

4.5 Evaluation

This section outlines a methodology for evaluating multi-class routing algorithms.

Although multi-class algorithms have appeared in the literature, the performance of

multiple classes has been ignored. Evaluating a multi-class routing algorithm is dif-

�cult because its advantages include both quanti�able properties such as improved

throughput, as well as more qualitative properties such as in-order delivery. Obvi-

ously, a multi-class router's single class performance cannot exceed the best known

single class router; otherwise, a faster router for the class would have been discovered

�

.

The goal, however, is to be competitive for a combination of all the tra�c classes.

Conversely, if the ability to select routing classes signi�cantly degrades performance

from single class routing, then perhaps the versatility is not worth the price.

4.5.1 Single Class Tra�c Performance

One �gure of merit we use is the amount by which a multi-class router's performance

departs from the best router for each class. This is a rather stringent criterion,

unless a single class router provides su�cient performance

y

. This is because single

class comparisons ignore the advantages of multi-class routing such as selective in-

�

This may occur, however, when comparing a new multi-class router with an existing single class

router.

y

If the network will always be lightly loaded, a simple single class oblivious router will su�ce.
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order message delivery, as well as selective message adaptivity. The 
exibility of

multiple classes of routing can produce superior network performance compared with

a single class router, even when each class of the multi-class router does not perform

as well the comparable single class router. Nevertheless, single class comparisons

give an indication of the quantitative costs of multi-class routing by estimating the

performance range of the router.

4.5.2 Estimates of Mixed Class Tra�c Performance

This is not the complete picture, though. A more complete evaluation considers the

performance of mixed classes of tra�c, i.e. when several classes of messages reside

in the network simultaneously. Even if several classes of tra�c can be used by the

application, a single class router would need to provide the most restrictive kind of

routing required. Therefore with mixed class tra�c, the multi-class routing algorithm

is compared with the most restrictive single class routing algorithm necessary.

Because the performance space is so large, the �rst approach is to estimate mixed

class performance. Mixed class performance can be estimated by computing the

average of the single class performance results of the multi-class routing algorithm.

The average is simply weighted to re
ect the tra�c mix of interest. With the mixed

class performance estimates, it is then possible to compute an estimate of the range

of tra�c mixes for which the multi-class routing algorithm maintains its advantage

over the most restrictive single class routing algorithm.

4.5.3 Mixed Class Tra�c Performance

Experiments with mixed class tra�c can also be simulated. This gives a more ac-

curate representation of performance, since each class of tra�c actually shares router

resources while the estimates do not assume this. Such experiments allow comparisons

of the performance of the most restrictive single class router with the performance of

the multi-class router under mixed class tra�c loads. Although it may be tedious to
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determine the range of loads and tra�c mixes for which the multi-class router is su-

perior to using only the most restrictive single class router, representative experiments

can at least verify the estimates.

4.5.4 Other Considerations

There are also qualitative di�erences between the routers that are di�cult to measure.

This includes factors such as in-order delivery. Providing these services with the

routing helps simplify the network interface or software. Simplifying the network

interface can result in great savings in hardware complexity and may result in a

faster, cheaper, more manageable network interface. Alternatively, providing features

in routers that might otherwise be left to software provides a big latency savings.

Evaluating the qualitative advantages is left to the architects and systems engineers.

A particularly useful class of multi-class routers is one that provides in-order

delivery as well as fully adaptive routing. Fully adaptive routers generally achieve

higher throughputs and saturate at higher loads than deterministic routers, while in-

order delivery is usually assumed by programmers and helpful for providing e�cient,

low cost synchronization tasks.

Unlike the typical case where distinct applications use di�erent classes of routing,

there are also applications that may use several classes of routing simultaneously.

Some of them may need to send additional messages to provide ordering among the

di�erent phases of adaptive computation. Alternatively, it is possible that if minimal

adaptive routing is used, a small amount of additional hardware support in the router

may be useful in providing such ordering. The evaluation of these issues, however, is

not considered in this work.
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4.6 The Triplex Algorithm

In this section, the Triplex multi-class algorithm is introduced and evaluated accord-

ing to the method outlined in the previous section. Before describing the Triplex

algorithm, a few additional de�nitions are de�ned. The routing terminology and

network assumptions have already been described in Chapter 3.

A waiting bu�er is a bu�er that a message can wait to acquire when all other

bu�ers speci�ed by the routing relation cannot be selected. A routing algorithm is

wait-connected if a message always has at least one waiting bu�er [SJ96].

Triplex is a novel, non-minimal fully adaptive deadlock-free routing algorithm

for k-ary n-cube networks. Although the algorithm is non-minimal, no message is

forced to take a non-minimal route. Thus, a message may choose the kind of routing

it prefers from the oblivious, minimal, or non-minimal class. The algorithm gains

adaptivity by avoiding the traditional requirement of a connected set or subset of

channels with static acyclic channel dependencies. Depending upon the implement-

ation, the algorithm is also deterministically or probabilistically livelock-free. For

presentation clarity the mesh algorithm is presented �rst, and the torus algorithm

follows. There are two versions of the algorithm: one for wormhole routing and a

slightly more 
exible and less complex one for packet-switched routing. The mesh

algorithm uses two virtual channels per channel, while the torus algorithm uses three

virtual channels per channel.

The dimension-order Dally-Seitz oblivious, wormhole routing algorithm [DS87]

(DO) will be used as a subroutine. This algorithm is wait-connected and deadlock-

free, and routes a message from the lowest dimension to the highest dimension, where

the direction in each dimension is chosen to make the message route minimal. Al-

though the speci�c DO rules di�er slightly for the mesh and the torus, the particular

details are not relevant. Hence, the mesh algorithm will not be distinguished from

the torus algorithm except by context.
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The virtual channels are partitioned into two classes. The restricted class refers

to the set of virtual channels used by the DO subroutine (as well as by other mes-

sages), two virtual channels per channel for the torus and one for the mesh, while the

unrestricted class contains the remaining virtual channel for a total of three virtual

channels for the torus and two for the mesh.

A bu�er is unrestricted if its corresponding virtual channel is unrestricted, is re-

stricted if its corresponding virtual channel is restricted, and is called a wrap bu�er if

its corresponding virtual channel is a wrap channel

z; x

. For wormhole routing, a bu�er

representing a virtual channel is considered empty when both the input and output

bu�ers that compose the virtual channel are empty. This requires state information

from a neighboring node. For packet routing, a non-full bu�er is considered empty

since once a packet header progresses to a bu�er, it is guaranteed to be completely

accepted into this bu�er, even if the packet becomes blocked.

4.6.1 The Mesh Algorithm

For ease of explanation, we describe the mesh algorithm �rst, both informally and

then as a list of routing rules. The packet-switched version is presented �rst and is

followed by the wormhole version.

Packet Triplex on the Mesh

A message can route according to dimension-order rules (DO) at any time using

restricted bu�ers (Rule 1). A message may also take any minimal (Rule 2) or non-

minimal route (Rule 3), using an empty unrestricted bu�er. Moreover, a message can

use any bu�er in a dimension greater than the lowest dimension that needs correcting

z

A wrap channel in dimension i is simply a single distinguished channel in dimension i, though

by convention it is often the channel between the last and �rst node of dimension i.

x

For packet routing, only the output bu�er corresponding to the wrap virtual channel is considered

a wrap bu�er.
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provided that it needs to move in the negative direction of the lowest dimension it

needs to correct (Rule 4). This includes both minimal and non-minimal routes.

Let l be the lowest dimension that a message still needs to correct. A message

selects a path in the mesh at its current location subject to the following routing

restrictions.

1. A message may route according to DO (using restricted bu�ers).

2. A message may use an empty unrestricted bu�er on a minimal path.

3. A message may deroute using an empty unrestricted bu�er.

4. A message that needs to route in the negative direction of l may use any (re-

stricted or unrestricted) empty bu�er in a dimension i, i > l. This includes

non-minimal routes.

If none of these bu�ers is available, a message waits on all the bu�ers it needs includ-

ing the one speci�ed by DO. The unrestricted bu�ers provide most of the adaptivity,

while the restricted bu�ers provide deadlock-freedom and in some cases extra adaptiv-

ity, since the restricted channels are not limited to messages taking dimension-order

routes. For examples of the rules, see Figures 4.1 - 4.4. In these �gures, the input buf-

fers have been omitted. The restricted bu�ers appear shaded, while the unrestricted

bu�ers are unshaded.

There are three classes provided by Triplex: oblivious, minimal, and non-minimal.

The oblivious (minimal) class also called oblivious Triplex (minimal Triplex) results

from restricting Triplex to oblivious (minimal) routes. Triplex refers to both the multi-

class routing algorithm and in particular the non-minimal fully adaptive Triplex class.

Unless otherwise speci�ed, Triplex refers to the wormhole version of the algorithm.

Each class routes by selecting bu�ers speci�ed by the routing rules of its class. The

non-minimal Triplex class selects from all four rules, while the minimal class selects
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1+

0+

S

D

Figure 4.1: An example of a route allowed by Rule 1 between a source (S) and destination (D).

1+

0+

S

D

Figure 4.2: An example of a route allowed by Rule 2 between a source (S) and destination (D).
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1+

0+

S

D

Figure 4.3: An example of a route allowed by Rule 3 between a source (S) and destination (D).

S

D

1+

0+

Figure 4.4: An example of a route allowed by Rule 4 between a source (S) and destination (D).
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from Rules 1, 2, and the minimal routes of Rules 3 and 4. The oblivious Triplex

class selects from the bu�er speci�ed by Rule 1. See Figure 4.5 for an example of a

non-minimal class message route.

0+2+

1+

S

D

1,2

1,2

1,2,3,4

1,2,3,4

1,2,4

Figure 4.5: This is an example of a Triplex message path on a 3D mesh between a source (S) and

destination (D). Each edge is labeled by the rules which apply to the route.

Notice that the bu�ers are integrated. There are no bu�ers restricted to a single

class. Also there are no bu�ers limited to messages taking dimension-order paths as in

the Duato algorithm. Because a more 
exible deadlock avoidance technique is used,

Triplex provides additional adaptivity over fully adaptive algorithms like Duato. For

example, the last rule increases the number of routing choices by allowing messages

to violate dimension-order routing in the restricted bu�ers, either with minimal or

non-minimal routes. This creates cycles in the bu�er dependencies. Thus, there is

no acyclic ordering of the restricted bu�ers as in dimension-order routing or Duato.

Deadlock is avoided by providing an escape route [G�un81] for every message. See

Figure 4.6 for an example of an escape route.

The idea of the deadlock-freedom proof follows. Details can be found in Ap-

pendix A. A message always maintains an escape route. For Triplex, the escape



52

0+2+

1+

Figure 4.6: An example of a cyclic dependency that does not cause deadlock. One of the messages

in the cycle waits on a message that is not in the cycle. This is an escape route for the cycle.

route is in the lowest dimension that it needs to correct. A message insures this path

is deadlock-free by following special routing rules for dimension l which are slightly

more restrictive than the general routing rules. When a message gets delayed, it

avoids deadlock by waiting for bu�ers that include a speci�c deadlock-free bu�er in

dimension l. The proof shows that cycles like the one depicted in Figure 4.7 cannot

exist unless a message violates one of the routing rules.

Theorem 1: The packet-switched version of the Triplex routing algorithm, packet

Triplex, for the mesh is deadlock-free.

Wormhole Triplex on the Mesh

The (wormhole) Triplex algorithm is complicated by bu�er dependencies caused by ar-

bitrary length messages. Since messages can only wait on restricted bu�ers, any cycle

in the bu�er dependencies is created from waiting dependencies between restricted

bu�ers. These dependencies can be direct, resulting from a message in one restric-
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0+2+

1+

Figure 4.7: A potential cycle caused by Triplex routing. The proof shows that the turn highlighted

by dashed lines is not allowed.

ted bu�er waiting immediately for another restricted bu�er; or they can be indirect,

caused by a message which occupies a restricted bu�er followed by one or more un-

restricted bu�ers and waits for another restricted bu�er. The wormhole algorithm is

slightly more restrictive than the packet version. The empty bu�er criterion is stricter

and Rule 3 is replaced by Rule 3w. Rule 3w states that a message may deroute to an

empty unrestricted bu�er in a dimension greater than the lowest dimension it needs

to correct.

3w. A message may deroute using an empty unrestricted bu�er in a dimension i,

i > l.

Theorem 2: The Triplex routing algorithm for the mesh is deadlock-free.

4.6.2 The Torus Algorithm

The torus algorithm is more restrictive than the mesh algorithm since the wrap edges

pose an additional threat of deadlock. Let l be the lowest dimension in which a
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message still needs to route. A message m satis�es the wrap-free property if m is

guaranteed to have a minimal path speci�ed by Rule 1 to its destination position in

dimension l, where the path consists of waiting bu�ers that never contain a message

that uses or has a waiting dependence on the wrap bu�ers in the negative direction

of dimension l. Because a message always waits on a set of bu�ers that includes the

one speci�ed by DO, the wrap-free property is easy to determine. For Triplex, the

wrap-free property tests whether a message does not use a wrap bu�er or has already

used a wrap bu�er in dimension l in the negative direction. This is su�cient due to

the structure of the waiting dependences of the DO algorithm. A message selects a

path in the torus subject to the same routing restrictions as the mesh, except that

Rule 4 is replaced with Rule 4t. Rule 4t permits a message to use any empty bu�er

in a dimension greater than l provided it needs to correct l in the negative direction,

and it does not need or no longer needs a wrap bu�er in dimension l. There is nothing

special about the negative direction. The algorithm is simply trying to minimize the

number of routing restrictions, and this additional 
exibility can only be allowed in

a single direction. Otherwise, there is a potential for deadlock.

4t. A message that needs to route in the negative direction of l may use any (re-

stricted or unrestricted) empty bu�er in a dimension i, i > l if it satis�es the

wrap-free property. This includes non-minimal routes.

Theorem 3: The packet Triplex routing algorithm for the torus is deadlock-free.

The wormhole Triplex algorithm on the torus is the same as packet Triplex on the

torus, except that Rule 3 is replaced with Rule 3w.

Theorem 4: The Triplex routing algorithm for the torus is deadlock-free.

For Triplex, any route other than the one speci�ed by DO is optional. Thus, the

algorithm or class minimal Triplex (oblivious Triplex) class is also deadlock-free.
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Corollary 5: The minimal Triplex and oblivious Triplex algorithms are deadlock-

free for packet and wormhole routing.

Message delivery of the oblivious Triplex class is in-order since there is a unique path

between each source and destination, and with blocking bu�ering, messages cannot

overtake one another.

Corollary 6: Oblivious Triplex delivers messages in-order.

A message is never forced to take a non-minimal route. Therefore, livelock-freedom

can be achieved in several ways. The �rst, not so interesting alternative, is to use the

minimal adaptive version of the algorithm. The second method is to use a counting

scheme which allows each message a maximum number of deroutes, after which the al-

gorithm reverts to an alternative kind of routing like oblivious [DA93] or by following

an Euler path [Smi81]. These schemes require a message to carry and update addi-

tional routing information that records the number of misroutes experienced. The

third scheme is similar, but assigns a �xed priority or time-stamp [Nga89] to each

message. It also requires a message to carry additional routing information. Fixed

priorities are expensive to compare, since they must be large enough to be unique.

The fourth alternative is to use a probabilistic scheme, like the Chaos router [KS94] or

Tera computer router [ACK

+

90], which guarantees a message always has a chance of

taking a minimal route. This is simple to implement but results in a probabilistically

livelock-free algorithm. Nevertheless, this is su�cient in practice. See Section 2.2

for more details about achieving livelock-freedom and Appendix A.2 for the livelock

proof.

Theorem 7: If Triplex deroutes a message with probability p, 0 � p < 1, then

Triplex is probabilistically livelock-free.

Unlike the Chaos or Tera computer router, the Triplex algorithm is never forced to

deroute. Therefore the probability of derouting could be set at machine boot-up,
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by application, or individually based on the speci�cations of a particular message.

In the latter scheme, a message could specify oblivious, minimal, or non-minimal

routing at the cost of two bits in the header. The cost may be reasonable, since

routing possibilities can be computed before the selection bits arrive. Individual class

selection might be useful when in-order delivery is required for some messages, the


exibility of adaptive routing is needed by others, or when compile time information is

available [Fel93] and a particular kind of routing is preferred for the expected tra�c.

4.7 Comparisons

Performance of the Triplex algorithm is explored by simulation. The algorithm is

compared to three other routers: the Dally-Seitz oblivious router [DS87], the Du-

ato [GPBS94, Dua93] router, and the Chaos [KS94] router

{

using a 
it-level simu-

lator of a 256-node two dimensional (2D) torus (16-ary 2-cube) network. Each of the

three routers represents one of the routing classes o�ered by the Triplex router. The

�rst algorithm is the dimension order algorithm and has no adaptivity. The second

is a minimal fully adaptive algorithm which allows any shortest path. The last is a

non-minimal fully adaptive router which prefers any minimal path, but occasionally

deroutes a message in the presence of severe congestion. More details are described

in Chapter 3.

4.7.1 Router Description

The following brie
y describes the high level design and operation of the routers. Each

router has an injection bu�er, a delivery bu�er, and an input and an output bu�er for

each virtual channel in each dimension in each direction. The oblivious, Duato, and

Triplex algorithms have 2, 3, and 3 virtual channels per channel, respectively, yielding

{

There was no quali�ed non-minimal algorithm for the torus, except the Chaos router which does

not support wormhole routing.
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a total of 18, 26, and 26 bu�ers per node for each router. The oblivious router could

be given an extra set of virtual lanes [Dal92], but then it would not support in-order

delivery as desired. The Chaos router does not use virtual channels. Instead it uses

10 bu�ers, one for each dimension in each direction, an injection and a delivery bu�er,

in addition to a central queue with 5 bu�ers, for a total of 15 bu�ers per node.

The node latencies to make a routing and selection decision are three cycles for the

oblivious and four cycles for the more complex adaptive algorithms [BFSar]. Although

the adaptive algorithms appear quite complex to describe, the additional calculations

required beyond that of the oblivious router are actually easy to compute. The

computation determines, in parallel, the dimension and direction of all of the minimal

routes, the lowest dimension minimal route, and the non-minimal routes which are

the remaining directions in each dimension. Then, two masks are created, one for

the non-minimal routes and the other for all of the minimal routes, except for the

lowest dimension minimal route which uses a restricted bu�er. When the selection bits

arrive, the appropriate mask is combined with the routing choices to obtain oblivious,

minimal, or non-minimal routes.

The bu�ers are one word long for wormhole routing, while for packet routing, buf-

fers are 20 words long. Besides increasing throughput, packet routing also enables the

comparison of Triplex with a scalable non-minimal fully adaptive algorithm. Table 4.1

contains a summary of the di�erences among the routing algorithms examined.

Before moving a message from an input to an output bu�er within a node, the

Duato and (wormhole) Triplex algorithms require the full/empty status of the neigh-

boring node's input bu�er corresponding to the output bu�er under consideration.

This status is already present at the node, after a one cycle propagation delay, since

it is used for 
ow control of the channels. Nevertheless, there is a penalty for using

this information. The delay in status causes a two 
it bubble between consecutive

messages for packet and wormhole routing. This reduces the maximum throughput

achievable by both the Duato and Triplex algorithms. The other algorithms including
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Table 4.1: Summary of the di�erences between the various routing algorithms.

Router Node Latency Adaptivity Bu�ers per Node

Oblivious 3 none 18

Obliv Triplex 4 none 18

Duato 4 min adaptive 26

Min Triplex 4 min adaptive 26

Chaos 4 non-min adaptive 15

Triplex 4 non-min adaptive 26

the packet Triplex algorithm avoid this penalty, since they only require status about

the local output bu�ers.

4.7.2 Simulation Parameters

The standard routing workloads were simulated including random, bit reversal, trans-

pose, and hot spot tra�c. See Chapter 3 for details.

For non-minimal routers where derouting is forced, excessive derouting is a di�-

cult problem. This occurs in de
ection routers which may deroute every cycle; and to

a lesser extent, in chaotic routers which must �ll a special queue before deroutes are

forced. Triplex prevents a message from derouting continuously and wasting band-

width by routing minimally when possible, requiring a message to wait at least 160

cycles before becoming eligible for deroutes, and by derouting eligible messages with a

probability of .1 when no minimal path is available. For packet routing the values used

are 400 and .00001, respectively. These parameters were chosen by experimentation

which found nearly equivalent results for a large range of parameter values. Probab-

ilistic derouting is also used to guarantee probabilistic livelock-freedom. For packet

routing, the deroute probability selected is extremely small. Thus, very few packets

are derouted. This simply re
ects the fact that the non-minimal routing permitted by
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packet Triplex is not e�ective at improving throughput or decreasing latency beyond

that achievable by taking minimal routes.

4.7.3 Results

The methodology to evaluate multi-class routers described earlier is used to examine

the performance of Triplex and packet Triplex in each of its modes: oblivious, minimal

fully adaptive, and non-minimal fully adaptive. Single class tra�c comparisons are

made between Triplex and a single class router using the same mode and 
ow control,

while mixed class tra�c experiments compare Triplex performance with the single

class oblivious router. Tables 4.2 and 4.3 summarize the single class and mixed class

tra�c comparisons, respectively.

Table 4.2: Single class tra�c comparisons between each Triplex class and its corresponding single

class routing algorithm.

Single Class Tra�c Comparisons

Class Single Class Multi-class

oblivious Oblivious Obliv Triplex

min adaptive Duato Min Triplex

non-min adaptive Chaos

k

Non-min Triplex

Results show the Triplex algorithm performs well for the oblivious and minimal

adaptive modes and has a wide range of tra�c loads and patterns for which it is

advantageous compared with single class routing algorithms. Triplex does not perform

as well as expected in the non-minimal mode. Representative wormhole and packet

results are presented. The remainder of the graphs can be found in Appendix A.

k

Chaos is used for packet routing comparisons only.
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Table 4.3: Mixed class tra�c comparisons between Triplex and the oblivious routing algorithm, given

a tra�c mix where x%, 0 � x � 100, of the tra�c requires in-order delivery, while the remaining

(100� x)% may use adaptive routing.

Mixed Class Tra�c Comparisons

Single Class Multi-class

100% Oblivious x% Oblivious Triplex

(100� x)% Min or Non-min Triplex

Single Class Tra�c Results

Wormhole results are presented �rst. The �rst set of experiments consider short

messages, while the subsequent set of simulations contains tra�c with both short and

long messages.
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Figure 4.8: Wormhole performance on a 256-node 2D torus with 40-word messages.

Figure 4.8 depicts representative throughput and latency graphs. At very low

loads where no congestion is present, all the routers achieve the same throughput.
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The expected latency depends on the minimal latency of a message through the

network. The oblivious router has the smallest node latency (three versus four cycles

for all other routers); and therefore, has the best expected latency for the di�erent

tra�c patterns.

At higher loads, the throughput of the oblivious Triplex router does not quite

match that of the oblivious router. Oblivious Triplex throughput is within 23 percent

of the throughput of the oblivious router at the same applied load. The e�ect on

network throughput is not substantial though, since for all of the applied loads, the

di�erence in the normalized throughput achieved is at most 4 percent. This is a small

price to pay for the additional 
exibility of Triplex. The di�erence in throughput

occurs because the oblivious Triplex incurs an extra cycle of latency at each node

due to its higher node latency. Though small, the di�erence between the two routers

is greater for some tra�c patterns than one might expect (see Section 4.7.3 for a

comparison with packet routing). With wormhole routing a message holds multiple

bu�ers in multiple nodes in the network. Thus, the extra cycle of latency charged to

oblivious Triplex forces each message to hold scarce bu�er resources across multiple

nodes for a longer period of time than with the oblivious router. This increases

the amount of message blocking in the network and may reduce the throughput and

increase the latency of oblivious Triplex. The amount of performance degradation

is dependent on the the congestion and contention caused by the tra�c pattern.

As expected, oblivious Triplex experiences slightly higher latency than the oblivious

router.

The minimal Triplex algorithm matched or exceeded Duato throughput perform-

ance in half of the four cases (bit reversal and transpose), while in the other cases

(random and hot spot) the Duato achieved a higher throughput, despite its more

restrictive routing rules. Minimal Triplex is within 9 percent of Duato, while the dif-

ference in normalized throughput is 2 percent or less. Latency was slightly lower for

the minimal router that achieved the higher throughput. We conjecture that minimal
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Triplex does not always surpass Duato because Triplex allows the restricted bu�ers

to be used in a manner which violates dimension-order routing. This increases the

number of turns a message may make from one dimension to another which are a

source of potential con
icts.

For the non-minimal wormhole case, there is no quali�ed algorithm for comparison.

Triplex performs adequately, but not as well as the minimal Triplex algorithm. In the

cases where derouting was particularly ine�ective (random and hot spot), Triplex also

experienced higher latencies than the minimal routers. It is likely that the asymmet-

ries in the virtual channel usage makes the non-minimal routing less e�ective than

it should be. This may be caused by both the non-uniformities from the deadlock

avoidance scheme and the somewhat restricted non-minimal routes allowed for only

a subset of the messages in the network.

When the tra�c includes both long and short messages, the results are similar to

those with only short messages, though the overall throughput is lower and latency is

higher. Figure 4.9 shows representative throughput and latency graphs of the mixed

length messages. Even when Triplex does not match or exceed the single class router,

the di�erence is at most 2 percent of the normalized throughput for the minimal

adaptive class (an 10 percent degradation with respect to the Duato) and within

3 percent for the oblivious class (within 21 percent with respect to the oblivious

router). The routers have the same relative performance except for the non-minimal

case, where long messages emphasize the ine�ectiveness of non-minimal routing in

the Triplex algorithm. The performance di�erence between oblivious Triplex and the

single class oblivious routing algorithm should not be a big problem, since oblivi-

ous routing is only used when in-order delivery is needed, e.g. with synchronization.

Otherwise adaptive routing is used.

Table 4.4 contains the saturation points for each of the tra�c patterns and al-

gorithms. The saturation point is important, since after saturation network perform-

ance is unpredictable. Although real systems cannot sustain such loads, it provides
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Figure 4.9: Wormhole performance on a 256-node 2D torus with 40-word and 400-word messages in

a 10:1 ratio.
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Figure 4.10: Wormhole performance on a 256-node 2D torus with 40-word and 400-word messages

in a 10:1 ratio.
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Figure 4.11: Wormhole performance on a 256-node 2D torus with 40-word and 400-word messages

in a 10:1 ratio.
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Figure 4.12: Wormhole performance on a 256-node 2D torus with 40-word and 400-word messages

in a 10:1 ratio.
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information about the system's ability to tolerate large bursts of tra�c. The satura-

tion points of Triplex and the corresponding single class routers are nearly identical.

Long messages decrease the saturation point of the network slightly because large

messages hold more resources simultaneously.

Table 4.4: Minimum normalized applied load at which saturation is detected. Short refers to 40-word

messages and mix refers to 40-word and 400-word messages in a 10:1 ratio.

256-node 2D Torus Saturation Points for Wormhole Routing

Tra�c Oblivious Obliv Triplex Duato Min Triplex Triplex

Msg type short mix short mix short mix short mix short mix

Random .20 .20 .20 .15 .30 .25 .30 .20 .30 .20

Bit reversal .15 .15 .15 .15 .30 .25 .30 .30 .30 .25

Transpose .20 .20 .20 .20 .25 .25 .30 .25 .30 .25

Hot Spot 1 .20 .15 .20 .15 .25 .20 .25 .20 .20 .20

Mixed Class Tra�c Performance Estimates and Results

As mentioned previously, single class comparisons do not provide a complete per-

formance evaluation since they ignore the bene�ts of multi-class routing. Mixed class

tra�c evaluation helps highlight the bene�ts of multi-class routing which includes the

ability of selective messages to arrive in-order while other messages bene�t from the

higher throughputs achieved by adaptive routing.

The graphs in Figure 4.13 compare the oblivious algorithm with Triplex using

the estimated and experimental results for a range of tra�c mixes. The graphs

show that Triplex performs close to the estimates. This demonstrates that with this

multi-class router, examining the single class tra�c can help provide a reasonable

prediction of mixed class tra�c behavior despite the shared resources of the multi-

class router. The graphs also show that when almost all the tra�c requires in-order
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delivery, the single class oblivious routing algorithm has a slight advantage. But when

more of the tra�c may be delivered out-of-order, the adaptive class of Triplex helps

the Triplex algorithm provide higher throughput and lower latency than the oblivious

algorithm. The improvements are the greatest for tra�c that bene�ts signi�cantly

from adaptive routing. See Figures A.9{A.12 for additional comparisons between

Triplex and oblivious routing for a variety of tra�c patterns and applied loads.
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Figure 4.13: Throughput and latency comparisons between oblivious and Triplex algorithms for a

range of tra�c mixes on a 256-node 2D torus using wormhole routing with 40-word and 400-
it

messages in a 10:1 ratio.

The next set of graphs in Figure 4.14 show the advantage of Triplex over the

oblivious algorithm at a particular normalized load. The graph on the left represents

the di�erence in normalized throughput between Triplex and the oblivious algorithm,

while the graph on the right displays the di�erence in latency between the oblivious

algorithm and Triplex. As observed before, at very small loads there is no performance

advantage (actually a penalty). But the graphs show that the performance advantage

of the multi-class router increases as the percentage of adaptive tra�c in the tra�c

mix increases. Although the maximum di�erences may appear small, the multi-class
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Figure 4.14: The performance advantage of Triplex over the oblivious algorithm on a 256-node 2D

torus with 40-word and 400-word messages in a 10:1 ratio.

throughput (latency) improvement is 72 (30) percent with respect to the oblivious

algorithm. These results also show that it is possible for a multi-class router to

provide superior performance over a single class router, even when the single class

performance of each mode of the multi-class router does not match or exceed that of

the single class router.

Packet Results

This section presents single class comparisons of the di�erent routers using packet

routing. In this case, we can compare packet Triplex to Chaos, a competitive non-

minimal packet routing algorithm. See Figures 4.15, and A.2{A.4 for the �nal com-

parisons between Triplex and the corresponding single class routers.

As in the wormhole case, at very low loads where no congestion is present, all

the routers achieve the same throughput. The oblivious router has the smallest node

latency; and thus, has the best expected latency for the di�erent tra�c patterns.

At higher loads, the throughput of the oblivious packet Triplex router does not
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Figure 4.15: Performance on a 256-node 2D torus with 20-word packets.

quite match that of the oblivious router. Triplex throughput is within 5 percent (and

usually less) of the throughput of the oblivious router at the same applied load while

the di�erence in the normalized throughput achieved is at most 2 percent. As before,

the only di�erence between the two oblivious classes is the extra cycle of latency

that packet Triplex incurs at each node. The throughput di�erence is smaller with

the packet network than with the wormhole network. With packet routing when

the packet header is blocked (due to a routing decision, congestion, or con
ict), the

tail of the message continues to progress towards the bu�er containing the message

header. This helps minimize the amount of additional blocking caused by the higher

latency charged to oblivious packet Triplex messages. In contrast, with wormhole

routing the entire message is blocked when the header blocks

��

. Due to its higher

node latency, the oblivious packet Triplex router experiences a slightly higher latency

than the oblivious network.

Although the minimal packet Triplex is less restrictive than the Duato algorithm,

��

This assumes single word bu�ers, like those used in the wormhole experiments.
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it did not match the Duato performance. For all the tra�c patterns, Duato matches

or exceeds the maximum throughput of minimal Triplex. Nevertheless, for two tra�c

patterns bit reversal and perfect shu�e, the throughput of minimal Triplex did not

degrade nearly as much as Duato. Latency for minimal Triplex is also worse. The

only exception was for the perfect shu�e tra�c pattern, where the latency of Duato

is over twice that of minimal Triplex.

Performance of minimal packet Triplex is improved substantially by omitting (the

minimal routes of) Rule 4t. In this case, the two algorithms have the same routing

rules but di�er in their empty bu�er de�nition. The Duato algorithm has a stricter

criterion resulting in bubbles between consecutive messages in the network. Con-

sequently, the throughput of minimal Triplex equals or exceeds (bit reversal and per-

fect shu�e) that of Duato, although the additional occupied bu�ers of Triplex results

in higher after saturation latency. We conjecture that Rule 4t, which allows messages

to use the restricted bu�ers according to rules which violate dimension-order, per-

mits more turns from one dimension to another in the restricted output bu�ers. This

causes con
icts which impede the 
ow of messages in a congested network. Max-

imizing adaptivity seems like a good strategy to increase throughput; however, the

results demonstrate that this is not always the case. From here on, we assume that

the packet Triplex implementation has omitted the minimal routes of Rule 4t.

For the non-minimal case, packet Triplex performs well, equivalent to the min-

imal packet Triplex, but has higher latencies than and lacks the sustained throughput

achieved by the Chaos router at high loads. We believe that this performance dif-

ference arises from the non-uniformities introduced into the network by the routing

restrictions that prevent deadlock for the Triplex router. This includes both the un-

derlying oblivious network and the restricted nature of the non-minimal routes. Some

messages are not allowed to deroute, while others are but eventually lose this ability.

This loss may be bene�cial when the message is a hop or two away from its destin-

ation [Kon92], but not if it is far from its destination. The Chaos router has none
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of these non-uniformities, since it relies on the packet-exchange protocol for deadlock

prevention [NS89]. The protocol has a simple requirement: if node a sends a message

to node b, node a must also accept a message from node b.

Next, packet Triplex was tested with Rule 4t completely omitted. Deroutes were

still allowed by Rule 3. For all the cases tested, the throughput of the modi�ed

packet Triplex is equivalent to that of the packet Triplex algorithm. Likewise, latency

was equivalent or lower than the Triplex algorithm. As before, we believe that al-

lowing some messages to violate dimension-order rules, in bu�ers used primarily for

dimension-order routing, impedes message 
ow in congested networks. In the follow-

ing, we assume that the Triplex implementation has omitted Rule 4t entirely.

Finally, since the Chaos router does not allow messages in an injection bu�er

to deroute, this feature was disabled in packet Triplex. This reduced the standard

deviation of the throughput and latency �gures; but otherwise, was insigni�cant in

improving the performance of Triplex.

4.8 Related Multi-class Work

A large number of single class k-ary n-cube routing algorithms have been developed

[DS87, KP95, LH91, Dua95, GPBS94, GN94, CK92, LC94, SJ96, KS94]. See Chapter 2

for more details. Each balances algorithm 
exibility against resource requirements and

router complexity.

Only a few routers provide in-order message delivery. The Dally Seitz oblivious

algorithm [DS87] is one and requires two virtual channels per channel. Messages follow

a dimension-order path by correcting dimension from the lowest to highest. Another

is the Compressionless router [KLC94]. Compressionless routing, which uses an abort

and retry technique, is designed for small diameter networks with minimal bu�ering

since it requires a message to own the entire path between its source and destination

before sending is completed. Thus, if messages are sent in-order at the source, they
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arrive in-order at their destination. This method su�ers from high contention in large

congested networks, and wastes bandwidth on padding required for short messages

when the network diameter is large; but it achieves adaptivity and fault-tolerance

without the use of virtual channels, and may be su�cient for small networks.

Even fewer routers o�er several classes of routing. The planar-adaptive

router [CK92] is a partially adaptive wormhole routing algorithm that sacri�ces al-

gorithm adaptivity to reduce the crossbar complexity required by fully adaptive al-

gorithms. The algorithm restricts routing to two dimensions (a plane) at a time. The

highest dimension in one plane is the lowest dimension in the next plane. By tagging

messages and sending them on a dimension-order path, messages can also be delivered

in-order.

The Cray T3E router [ST96] is a fully adaptive (in theory, not implementation)

packet routing algorithm. The router uses a modi�ed version of Duato's technique

and provides four virtual channels for oblivious routes and a �fth virtual chan-

nel for adaptivity. Using packet-switching (either store-and-forward or virtual cut-

through [KK79] as in the T3E) simpli�es the routing and 
ow control requirements

of using Duato's technique. For the T3E, the oblivious route is direction-order in-

stead of dimension-order. Direction-order [YDG] routes the positive directions in

dimension-order and then the negative directions in dimension-order. A message can

be restricted from minimal adaptive routes to oblivious routes to avoid faults in the

network. Oblivious routes can also be used to provide in-order delivery, as in the

planar-adaptive router.

The Triplex router [FS97b, FS97a] described in this chapter is a non-minimal

fully adaptive wormhole algorithm for the torus, that supports oblivious, minimal

fully adaptive, and non-minimal fully adaptive routing. It uses three virtual channels

per channel. Unlike the T3E, Triplex supports wormhole 
ow-control between all

of the bu�ers. Triplex uses a deadlock-avoidance technique of Schweibert and Jay-

asimha [SJ96] that allows cyclic channel dependencies. This yields extra adaptivity
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over traditional adaptive algorithms since there is no set of virtual channels that are

restricted to messages taking acyclic routes. Unlike the traditional solution which uses

two virtual channels for oblivious routing and a third for adaptive routing, Triplex

makes no such distinction. Adaptive routes are allowed in all three virtual channels.

4.9 Summary

In this chapter we de�ne and describe the idea of multi-class routers which allow ap-

plications, or di�erent messages within applications, to use di�erent classes of routing.

Multi-class routers are useful because not all applications have the same network re-

quirements. Applications can achieve greater performance if they are allowed to use a

class of routing which is most advantageous. Typically systems provide a single class

one-size-�ts-all routing algorithm. This generally provides routing which is overly re-

strictive for some messages. In addition multi-class routers are an alternative method

to provide adaptive routing which is attractive because it avoids the complexity of

designing a network interface to reorder messages.

Further, this chapter describes how to evaluate multi-class routers. Comparing

the multi-class router against the best single class algorithm for each of its modes is

not su�cient. Despite the costs of 
exibility, multi-class routers can be advantageous

for a large combination of tra�c classes because all the tra�c is not forced to use a

single class of routing.

In addition to promoting multi-class routing, we have mentioned a few routers that

provide multi-class routing and have presented Triplex, a novel multi-class routing al-

gorithm. Triplex is the �rst triple class router. It can select from oblivious, minimal

fully adaptive, or non-minimal classes at boot-time, application invocation, or indi-

vidually by message. Triplex is deadlock-free and livelock-free, and supports both

packet and wormhole routing on k-ary n-cubes. Triplex provides additional adaptiv-

ity over traditional fully adaptive algorithms since it uses a more 
exible deadlock
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avoidance technique. Triplex is also the �rst non-minimal fully adaptive wormhole

deadlock avoidance algorithm for tori. Although the algorithm is non-minimal, no

message is forced to take a deroute. The algorithm is also deterministically or prob-

abilistically livelock-free, depending upon the implementation chosen.

Simulations show that the performance penalty for providing the 
exibility of

oblivious and minimal fully adaptive classes is reasonable and that multi-class routing

is advantageous for a wide variety of loads and tra�c patterns. The performance of

the non-minimal option, however, is disappointing.



Chapter 5

INPUT VERSUS OUTPUT DRIVEN ROUTING

In this chapter, we experimentally compare two methods of implementing a partic-

ular router, as an input driven or as an output driven router. Although the two choices

are conceptually similar, they result in noticeable performance di�erences when com-

pared with each other. Three algorithms, the Dally-Seitz oblivious router, the Duato

router, and the minimal Triplex router, are simulated on a 256-node two-dimensional

mesh and torus. Each algorithm is con�gured as an input and as an output driven

router. The output driven versions of the algorithms are almost always equivalent or

superior to the input driven versions when the networks are congested. This is the

critical area of network performance, since communication is often bursty and does

not always present easy, light loads to the network.

5.1 Input versus Output Driven

Routers that make decisions based on local information can usually be classi�ed as

either input driven or output driven. The input driven algorithms make routing

decisions from an occupied input bu�er while the output driven algorithms select

routes from an empty output bu�er. Typically the input driven algorithms service

the input bu�ers in round-robin order, and the output driven algorithms service the

output bu�ers in round-robin order. After routing, the pointer to the current bu�er is

advanced to the next dimension where an interesting bu�er resides. For input driven

algorithms an interesting input bu�er is one that contains a ready message that needs

an available output bu�er. For output driven algorithms an interesting output bu�er
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is one that is empty and is wanted by some ready input message.

An input driven router operates as follows. First it computes for the current input

message which output bu�ers the message needs. Then it selects one of the available

output bu�ers and routes the message to that output bu�er. Many of the routing

algorithms in the literature fall into this category. See Figure 5.1 for an example of

an input driven router.

S
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Figure 5.1: An example of an input driven router. The short arrow marks the current input bu�er.

The long arrows are the choices of empty output bu�ers for the message in the current input bu�er.

Messages can travel north (N), east (E), south (S), or west (W). Bu�ers that are �lled in are not

available, while the un�lled bu�ers are available.

An output driven router considers the current empty output bu�er. The router

tries to �nd a message in an input bu�er that needs to be routed to the current output

bu�er. If messages are found, it selects one to be routed to the current output bu�er.

The Chaos router is a good example of an output driven router [KS94]. See Figure 5.2

for an example of an output driven router.

Many algorithms can be implemented as either input or output driven algorithms.

For these algorithms, it would be advantageous to implement the router with the best

performing routing mechanism. This chapter shows that for the algorithms examined,

the output driven algorithm generally performs as well as, or better than the input
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Figure 5.2: An example of an output driven router. The short arrow marks the current output

bu�er. The long arrows are from messages that are competing for the current empty output bu�er.

Messages can travel north (N), east (E), south (S), or west (W). Bu�ers that are �lled in are not

available, while the un�lled bu�ers are available.

driven algorithm. A few algorithms cannot easily be transformed into output driven

algorithms, for example algorithms that consider probabilities over the possible output

choices.

5.2 Methodology

Performance of input versus output driven routing algorithms is compared by ex-

perimentation. Three algorithms are simulated as both input and as output driven

routers: the Dally-Seitz oblivious router [DS87], the Duato router [GPBS94, Dua93],

and the minimal Triplex router

�

[FS97b] using a 
it-level simulator of 256-node 2D

torus and mesh networks.

The �rst algorithm, the Dally-Seitz oblivious router, provides no adaptivity and

routes messages by correcting the dimensions from lowest to highest. Unless speci�ed,

the oblivious router uses two virtual lanes [Dal92] resulting in four virtual channels

�

An early implementation of the Triplex router is used. Since then, performance has improved,

though the di�erences between the input and output driven routers should remain unchanged.
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per channel for the torus and two virtual channels for the mesh. When more than

one lane is available, the one with the most space is chosen. The Duato algorithm is a

minimal fully adaptive algorithm which uses three (two) virtual channels per channel

for the torus (mesh). The minimal Triplex router is a minimal fully adaptive version

of the Triplex router. It also uses three (two) virtual channels per channel for the

torus (mesh). All the algorithms have routing restrictions that prevent deadlock.

The following describes the high level design and operation of the routers. Each

router has an injection bu�er, a delivery bu�er, and an input and an output bu�er

for each virtual channel in each dimension in each direction. This yields 26 (18)

bu�ers per node for the Duato and minimal Triplex routers on the torus (mesh),

since each uses an injection bu�er, a delivery bu�er, and three (two) virtual channels

per channel per direction. The oblivious router is con�gured with four (two) virtual

channels per channel per direction for the torus (mesh) or 34 (18) bu�ers per node.

Table 5.1 summarizes the di�erences between the routers. See Chapter 3 for other

details about the methodology.

Table 5.1: Summary of the di�erences between the various routing algorithms. The number in

parentheses refers to the number of bu�ers required when no virtual channels are used.

Router Node Latency Adaptivity Bu�ers per Node

Torus Mesh (no vc)

Oblivious 3 none 34 18 (10)

Duato 4 min adaptive 26 18

Min Triplex 4 min adaptive 26 18

Experiments were run to determine the �rst normalized applied load at which the

network saturates for each of the routers and tra�c patterns. Although saturation is

tested in increments of .05, a di�erence in saturation points of .05 between an input

and output driven router for a particular tra�c pattern is signi�cant, unless otherwise
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noted. If the data for determining saturation point has overlapping 95% con�dence

intervals, it was marked as statistically insigni�cant.

5.3 Results

The results are presented in two parts. The �rst set of experiments compare output

driven routers to input driven routers that choose deterministically the �rst available

output bu�er from the set of needed output bu�ers. Since any deterministic order

su�ces, the routers search in a simple dimension-order manner. In the second set

of experiments the input driven router selects an available output bu�er at random

from the set of needed output bu�ers. For this set-up, the input driven router is

very similar to the output driven router which chooses at random among interesting

messages from the input bu�ers. Table 5.2 summarizes the comparisons in the two

sets of experiments. In both sets of experiments, the output driven routers perform

as well as or better than the input driven routers for all but a few cases. As expected,

the results are more dramatic for the �rst case.

Table 5.2: Summary of the input driven versus output driven router experiments. The comparisons

in the two sets of experiments are made for three di�erent routing algorithms using seven di�erent

tra�c patterns for both the mesh and torus topologies.

Set Input Driven Output Driven

1 �xed order output bu�er selection random input bu�er selection

2 random output bu�er selection random input bu�er selection

5.3.1 Fixed Order Output Bu�er Selection

The �rst set of experiments considers input driven routers with a �xed order output

bu�er selection policy. Table 5.3 speci�es the saturation point of each 256-node torus

network for a variety of tra�c patterns. For all three algorithms and all tra�c patterns
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except one, the complement, the saturation point for the output driven router is at

least as great as the saturation point of the corresponding input driven router. The

advantage ranges from zero to �fty-four percent of the input driven saturation point.

Table 5.3: Minimum normalized applied load within .05 at which saturation is detected.

16x16 Torus Saturation, input driven, order is �xed

Tra�c Oblivious Duato Min Triplex

input output input output input output

Random 0.80 0.80 0.85 0.95 0.80 0.85

Bit reversal 0.50 0.50 0.70 0.80 0.65 0.75

Complement 0.50 0.50 0.45 0.40 0.40 0.40

Perfect shu�e 0.50 0.50 0.50 0.50 0.40 0.45

Transpose 0.55 0.55 0.55 0.55 0.55 0.55

Hot Spot 1 0.65 0.65 0.70 0.90 0.65 0.85

Hot Spot 2 0.55 0.55 0.55 0.85 0.60 0.80

We conjecture that the output driven algorithms are better at balancing the load

among the channels because the empty output bu�ers are �lled by dimension in

round-robin order which naturally tries to keep all the physical channels busy. More

speci�cally, when a message has been routed to an empty output bu�er in a dimension,

the router will consider the next dimension that has an empty output bu�er. The

input driven algorithm, however, routes a message to the �rst available output bu�er it

�nds. This bu�er may share the same physical channel as a recently routed message.

This cannot happen in an output driven router unless all the other output bu�ers

in the other dimensions are full, or all the messages in the input bu�ers only need

dimensions that are being used by previously routed messages. The advantage of the

output driven router is that it balances the use of the channels by selecting interesting
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messages from any of the input bu�ers. In contrast the input driven algorithms

balance messages leaving the input bu�ers, but must select an output bu�er based

only on its availability.

Table 5.4 presents the saturation loads for the 256-node mesh and shows that

output driven routers are superior to input driven routers for the mesh also. The

advantage ranges from zero to thirteen percent. Again, the only exception is the

complement tra�c for the Duato and minimal Triplex adaptive routers.

Table 5.4: Minimum normalized applied load within .05 at which saturation is detected.

16x16 Mesh Saturation, input driven, order is �xed

Tra�c Obliv (no vc) Oblivious Duato Min Triplex

input output input output input output input output

Random 0.90 0.90 0.95 0.95 0.95 0.95 0.90 0.90

Bit reversal 0.50 0.50 0.55 0.55 0.80 0.80 0.70 0.75

Complement 0.45 0.50 0.50 0.50 0.45 0.35 0.45 0.35

Perfect shu�e 0.75 0.80 0.90 0.90 0.90 0.95 0.80 0.90

Transpose 0.50 0.50 0.55 0.55 0.85 0.85 0.85 0.85

Hot Spot 1 0.75 0.75 0.80 0.80 0.80 0.85 0.75 0.85

Hot Spot 2 0.70 0.70 0.75 0.75 0.75 0.85 0.75 0.85

We expect the bene�t of output driven routers to be less pronounced or non-

existent in oblivious routers than in adaptive ones, since the two oblivious routers

make the same routing decisions. The oblivious routers may, however, move a message

from an input to an output bu�er at a di�erent time or select a di�erent lane to route

a message to, though the latter is unlikely to e�ect performance since lanes share the

same underlying physical channel. The data supports this hypothesis since there is

almost no di�erence between the saturation points of the input and the output driven

oblivious routers on the torus and mesh.
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Routing the complement permutation using the Duato algorithm is the one case

where the output driven saturation point did not equal or exceed the input driven

saturation load for either topology. The complement is unusual since dimension order

routing helps prevent con
icts in this tra�c pattern, i.e. when two messages compete

for the same output bu�er.

To see this, consider the following idealized scenario. Each node simultaneously

injects a single message destined for the bit complement of its source id. When routing

is by a synchronous, oblivious dimension-order algorithm, there are no con
icts for

channels. With dimension-order routing, every message m with source (i; j) is routed

in row i in exactly the same way as message m

0

with source (k; j) is routed in row

k. All messages move within the rows in lock step. Con
icts can only occur when a

message turns from its source row to its destination column. Messages from column

j are the only messages that need to travel in destination column

�

j. Messages m and

m

0

arrive at their destination column

�

j at the same time, and hence do not impede

each other from progressing to their respective destinations. Arbitrary injections are

used in our routing experiments, however, perturbing this orderly 
ow of messages.

Adaptive routing further destroys this property by letting messages take any minimal

path.

For the Duato algorithm the input driven router has a slight advantage in exploit-

ing this phenomenon since it prefers the lowest dimension output bu�er needed, while

the output driven algorithm selects a random message that needs the current output

bu�er. Nevertheless, the second set of experiments shows this advantage disappears

when the input driven algorithm selects at random from the needed output bu�ers.

For the mesh, the oblivious algorithm was also simulated with no virtual channels

(vc), i.e. with no extra lanes. In this case, a message waiting in an input bu�er

needs exactly one output bu�er. Therefore, the input and output driven algorithms

do not make di�erent routing decisions or bu�er choices. Rather, the di�erence in

performance is due to the ordering of messages and the router's ability to keep the
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channels busy. As hypothesized, the di�erence in saturation points between input and

output driven routers is very modest, non-existent in �ve tra�c patterns and within a

normalized load of .05 for the two remaining ones. For the two lane oblivious routers,

there is no di�erence in the saturation points between the input and output driven

routers.

Figures B.1{B.7 show the expected throughput and latency versus the normalized

applied load for each of the tra�c patterns on the 256-node torus and mesh.

At low loads the input and output driven routers are indistinguishable. Never-

theless, the output driven router achieves an equivalent or higher peak throughput

than the corresponding input driven router for all but one of the tra�c patterns and

routers simulated. The peak throughput of the output driven router on the torus

(mesh) is up to 36 (13) percent better than that of the input driven router with �xed

order selection. See Tables B.1{B.6 for details. As with the saturation data, the com-

plement tra�c is the only exception. For the minimal Triplex router on the mesh and

torus, the peak throughput of the output driven router under the complement tra�c

does not quite reach that of the input driven router. The same is true for Duato on

the mesh.

After saturation, the output driven router almost always maintains a higher through-

put than the input driven router, though there are three exceptions. The output

driven router degrades slightly more than the input driven router for a few of the ap-

plied loads for the perfect shu�e and second hot spot case with the oblivious router

on the torus and for the second hot spot tra�c with Duato on the mesh.

The latency curves have three phases. Initially the input and output schemes

have equivalent latencies. Any router and routing decision will do when the router is

lightly loaded. When the applied load is in the neighborhood of saturation and the

network is congested, the output driven routers almost always exhibit an equivalent

or lower latency (and latency variance) than the input driven router. This is apparent

by observing that the output driven routers experience a steep increase in latency at
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the same or higher load than the input driven routers. We believe this is because the

output driven router is doing a better job at keeping the physical channels utilized.

There are two exceptions. The adaptive output driven routers show an increase in

latency at a slightly lower load than the input driven router for the complement on

the torus and mesh and for random tra�c on the mesh.

After saturation the network cannot keep up with the message arrivals; and again,

any kind of routing will do. Furthermore, the latency di�erences are less predictable,

though they tend to converge for many of the tra�c patterns. In two instances,

bit reversal and transpose on the torus, the oblivious input driven router shows a

decrease in its after saturation latency. In these cases, many fewer messages with

distant destinations are injected into the network, thereby lowering the expected

latency of a message. This appears to be caused by the unfair access each node has to

a congested network. A similar phenomena occurs with bit reversal tra�c at a load

of .8 using input driven Triplex routing.

5.3.2 Random Output Bu�er Selection

To validate our conjecture that the advantage of output driven routers is not entirely

from the non-deterministic search for available output bu�ers, the following changes

were made to make the input driven routers as similar as possible to the output

driven routers. Each input driven router was modi�ed so that it selects a needed

output bu�er at random, instead of choosing the lowest dimension output bu�er

available. The output driven routers were unchanged and choose messages from the

input bu�ers at random. Experiments showed the modi�ed input driven algorithms

to have better channel utilization resulting in improved performance

y

.

Tables 5.5 and 5.6 compare the saturation points of the input and the output driven

y

It is possible that round-robin selection could approximate this improvement without the use of

randomization, since deterministically spreading the outgoing messages among the various chan-

nels would still help channel utilization.
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routers for the torus and mesh. The change from �xed order to random output bu�er

selection does not change the bu�er selection of the oblivious routers, and hence the

results for input driven routing with random selection are the same as those with

�xed order bu�er selection.

Table 5.5: Minimum normalized applied load within .05 at which saturation is detected.

16x16 Torus Saturation, input driven, order is random

Tra�c Duato Min Triplex

input output input output

Random 0.95 0.95 0.85 0.85

Bit reversal 0.80 0.80 0.70 0.75

Complement 0.40 0.40 0.35 0.40

Perfect shu�e 0.50 0.50 0.45 0.45

Transpose 0.55 0.55 0.55 0.55

Hot Spot 1 0.85 0.90 0.80 0.85

Hot Spot 2 0.75 0.85 0.75 0.80

For the adaptive routers the di�erence between the saturation points of the input

and output driven algorithms on the mesh and torus has nearly been eliminated for

almost all the tra�c patterns. The output driven advantage ranges from 0 to 14

percent of the input driven saturation point for the torus and from 0 to 13 percent for

the mesh. The input driven routers with random output bu�er selection are superior

to those with �xed order output selection, since removing the bias of �xed order selec-

tion improves the utilization of the physical channels of a node. The only exception

is the complement. The complement saturates at a lower load than previously for

both adaptive routers on the mesh and torus. This is because the �xed order input

selection prefers the dimension-order route if available; and as mentioned earlier, the

complement prefers dimension-order routing.
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For the mesh hot spot tra�c, the Duato input driven router with random selection

has a higher saturation point than the output driven router, even though the output

driven router nearly achieves the same throughput. The input driven router is able

to prevent congestion around the hot spots from spreading as quickly into the whole

network compared to the output driven router. The reasons for this are unclear, but

most likely related to the lack of wrap edges in the mesh since the torus does not

exhibit this behavior.

Table 5.6: Minimum normalized applied load within .05 at which saturation is detected. If an entry

is marked with an asterisk, the di�erence in saturation points between the input driven and output

driven router is not signi�cant.

16x16 Mesh Saturation, input driven, order is random

Tra�c Duato Min Triplex

input output input output

Random 0.95 0.95 0.90 0.90

Bit reversal 0.80 0.80 0.75 0.75

Complement 0.35 0.35 0.35 0.35

Perfect shu�e 0.95 0.95 0.90 0.90

Transpose 0.80 0.85 0.75 0.85

Hot Spot 1 0:90

�

0:85

�

0.85 0.85

Hot Spot 2 0.90 0.85 0.85 0.85

Figures B.9{B.15 compare the expected throughput and latency of the input and

output driven algorithms on the torus and mesh. The oblivious comparisons are

identical to the previous set of experiments.

The adaptive input driven routers improve their maximum achieved throughput,

and in some cases now match the throughput of the corresponding output driven

routers. This is observed with bit reversal and random tra�c with Duato routing and
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random tra�c using Triplex routing on the torus. For the mesh, random selection

closed the gap between input and output driven performance. This occurs with

Triplex for bit reversal, random, perfect shu�e, and both hot spot cases, as well as

for the perfect shu�e tra�c pattern with the Duato algorithm. In addition, random

selection sometimes results in less throughput degradation for the adaptive algorithms

on the mesh, as with the perfect shu�e tra�c pattern.

The output driven router achieves up to an 11 (6) percent greater peak throughput

than the input driven router on the torus (mesh). The two exceptions, as with the

saturation points, are the hot spot cases where the Duato input driven algorithm

achieves a slightly higher peak throughput than the output driven algorithm. See

Tables B.1{B.6 for details.

There are also latency improvements for the adaptive routers with many of the

tra�c patterns. In these cases, the steep increase in latency occurs at a higher load

and latency after saturation is also smaller. In a few cases however, throughput

degradation causes an increase in latency. See Figures B.17{B.23 in Appendix B

for direct comparisons between the two input driven schemes for both the mesh and

torus.

5.4 Summary

We have experimentally compared the performance of input and output driven al-

gorithms on the mesh and torus. Although the two are conceptually similar, for

almost all the cases examined, the performance of the output driven algorithms is

equivalent to or superior to that of the input driven algorithms. We believe this is

because the output driven algorithms implicitly capture some information about the

status of all the output channels of the router, and thus use the channels more ef-

fectively. In contrast, the input driven algorithms have a more limited view of the

system. They only examine the availability of an output bu�er needed by an input
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message and are less e�cient at using the channels. The di�erence is diminished when

randomization is added to the output bu�er selection of the input driven algorithm,

since this prevents the input driven algorithms from favoring a particular channel.

Although the �ndings presented only apply to the routers considered, we believe that

the results can be generalized to routers where the designer is indi�erent to which

approach to use.

An open problem is whether the performance of the input driven router can be

increased to match that of the output driven router by keeping extra state. This

information might include which output bu�ers have most recently received messages

from the input bu�ers. This would provide the input driven algorithm with more

complete information about the status of the channels, allow it to make routing

choices that distribute the messages among the channels, and possibly increase the

utilization of its channels.



Chapter 6

PACKET ROUTING PERFORMANCE

Chapter 4 introduced a new wormhole algorithm and compared it with other com-

petitive wormhole algorithms. Wormhole algorithms gained popularity when archi-

tects combined the processor and router on the same chip, as in the MOSAIC [Sei92].

Since space was limited, the small 
it bu�ers of wormhole routing were preferable

over typical packet bu�ers. Nevertheless, wormhole algorithms continue to be popu-

lar despite the current trend of building routers separately from the processor. Now

that routers are distinct, there is more than enough space to satisfy the requirements

of competitive packet routing algorithms. Therefore, in this chapter we consider the

often overlooked choice of packet routing.

The main attraction of packet routing is that it provides substantially higher

throughput than wormhole routing. Packet routing also has the advantage that all

wormhole algorithms can be implemented as packet routing algorithms. This means

that a competitive wormhole algorithm, such as the oblivious router, can also be

implemented as a packet algorithm. The simulations demonstrate that some of the

most competitive packet routing algorithms are ones that are known as wormhole

algorithms.

As expected, there is a cost to packet routing. First, virtual cut-through routing

needs to be used to avoid the latency of store-and-forward 
ow control typically used

with packet routing. This requires larger, more complex bu�ers than the single 
it

wormhole bu�ers, though they can be implemented e�ectively as demonstrated by

the Chaos chip [Bol93b]. Long messages are a more serious problem, since they must

be segmented into packets for network transmission and reassembled before being
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delivered to the receiving node. If the packets arrive in the same order in which they

were sent, this is trivial, provided there are no lost packets. On the other hand if

packets may arrive out-of-order, mechanisms must be provided to reorder the packets

into the original message.

Oblivious routers always deliver packets in order because there is a single path

between a source and destination, so packets do not pass each other on the same

route

�

. For adaptive routers, this is not true since packets may take di�erent paths

and arrive out-of-order. Re-ordering can be done by software at the receiving node,

but this adds substantial latency to the communication time. A simple hardware

solution to this problem has been proposed by McKenzie in which packets include

information on their length and their destination in memory [MBES94]. The Cranium

interface places packets into their proper place in memory and signals the processor

as soon as the entire message has arrived. The Hamlyn interface is more 
exible and

complex than Cranium and also provides message reordering [BJM

+

96].

Though some of the most competitive packet routing algorithms are ones that are

derived from wormhole algorithms, there is one notable exception. Chaotic routers

are randomizing, non-minimal adaptive packet routers which combine the 
exibility

found in adaptive routing with a design simple enough to be competitive with the most

streamlined oblivious routers. In this chapter, we compare oblivious, minimal adapt-

ive, and chaotic routing by exploring the performance of comparable implementations

through simulation. The results indicate that chaotic routers provide very e�ective

and e�cient high-performance packet routing.

6.1 Simulations

In this section, we present the results of simulating oblivious, minimal fully adapt-

ive, and chaotic routing on several two dimensional 256-node networks under various

�

If non-blocking bu�ering, such as virtual lanes, is added to an oblivious router, packets may

pass each other and delivery could be out-of-order.
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synthetic tra�c workloads. In particular, the Dally-Seitz oblivious, Duato, and the

Chaos algorithms were simulated. The oblivious algorithm was con�gured with two

virtual lanes per virtual channel to minimize the disparity in bu�er usage among the

routers. Table 6.1 summarizes the design di�erences between the routers. Additional

details can be found in Chapter 3. The oblivious and Chaos algorithms are among the

few, if not the only, practical oblivious and non-minimal packet algorithms, respect-

ively. The Duato algorithm was chosen over other minimal algorithms, because it is

minimal fully adaptive, it uses a very small number of virtual channels for wrapped

or unwrapped k-ary n-cubes, and it does not su�er severe performance degradation

from non-uniformities in the network, like other minimal adaptive algorithms. The

Duato algorithm is similar to the modi�ed packet Triplex algorithm described earlier

in Chapter 4. The only di�erence is the Duato algorithm introduces a slightly lar-

ger bubble between consecutive messages on a channel. The results are comparable

though. Additional comparisons can be found elsewhere [BFS94] and include hyper-

cube networks [FS93] and de
ection routing [Bol93b].

Table 6.1: Summary of the design di�erences between the packet routing algorithms simulated.

Router Node Latency Adaptivity Bu�ers per Node

Oblivious 3 none 34

Duato 4 min adaptive 26

Chaos 4 non-min adaptive 15

6.1.1 Saturation

The �rst set of results simply identi�es the saturation points for the di�erent tra�c

patterns. Table 6.2 reports saturation points for mesh and torus networks with various

tra�c patterns. The load where the system saturates is an important measure since

after saturation it is not possible to predict the delivery time of messages.
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Table 6.2: Minimum load at which saturation is detected for 256-node 2D networks.

Mesh Torus

Tra�c Oblivious Duato Chaos Oblivious Duato Chaos

Random 0.95 0.95 0.85 0.80 0.95 1.00

Bit reversal 0.55 0.80 0.80 0.50 0.80 0.90

Complement 0.50 0.35 0.35 0.50 0.40 0.35

Transpose 0.55 0.85 0.70 0.55 0.55 0.55

Perfect shu�e 0.90 0.95 0.85 0.50 0.50 0.45

Hot Spot 1 0.80 0.85 0.80 0.65 0.90 0.90

Hot Spot 2 0.75 0.85 0.80 0.55 0.80 0.95

The tra�c patterns exhibit considerable diversity in the throughput they are able

to sustain. With the mesh network, the oblivious router achieves equivalent or higher

saturation levels for random and complement tra�c. Bolding and Pertel have com-

pared oblivious routing with minimal adaptive routing on mesh networks and found

the oblivious router to perform better with random tra�c [Bol93b, Per92]. The main

reason is that when dimension-order routing is used, packets follow `L'-shaped paths

and are not as likely to use the paths near the center as intensively as in minimal

adaptive routing (though the center paths will still be more congested than the edge

paths). Thus, the hot spot in the center is not as \hot" when using oblivious routing

as when using minimal adaptive routing, so performance is potentially better.

Similar results are observed for chaotic adaptive routing. The center becomes a

very \hot" hot spot, resulting in severe congestion and excessive derouting. Because

the mesh hot spot creates so many di�culties, and since the addition of only a few

extra links to create a torus doubles the bisection bandwidth and halves the network

diameter, we will concentrate on the torus for the remaining discussion. Simulation

results for mesh networks which include both uniform and non-uniform tra�c can be
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found elsewhere [BFS94].

For torus networks, saturation almost always occurs earlier when using oblivious

routing than when using minimal adaptive or chaotic routing. One exception to this

is the complement permutation, which achieves an unusually high throughput under

oblivious routing when compared to the other non-uniform tra�c patterns. This

occurs because the complement is routed nearly con
ict-free using oblivious routing,

but causes two large hot spots to form in chaotic and Duato routing. See Section 5.3.1

for an explanation.

6.1.2 Throughput and Latency

In this section the behavior of the three routers is compared by examining expected

throughput and expected latency for the tra�c patterns. The graphs in Figure 6.1

- 6.5 display the throughput and latency versus the o�ered load for uniform random,

bit reversal, complement, transpose and perfect shu�e tra�c patterns. Results of

more detailed comparisons are found elsewhere [BFS94]. Throughput of the Chaos
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Figure 6.1: Throughput and latency for 256-node 2D torus networks with uniform random tra�c.
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Figure 6.2: Throughput and latency for 256-node 2D torus networks with bit reversal tra�c.
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Figure 6.3: Throughput and latency for 256-node 2D torus networks with complement tra�c.
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Figure 6.4: Throughput and latency for 256-node 2D torus networks with transpose tra�c.
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Figure 6.5: Throughput and latency for 256-node 2D torus networks with perfect shu�e tra�c.
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network is greater than or equal to that of the oblivious and Duato networks for

the torus topology for all tra�c patterns at all loads except two. These loads occur

on the complement where the di�erence in normalized throughput of the routers is

no more than �ve percent. The throughput for the bit reversal permutation on the

Chaos torus is especially noteworthy. With the bit reversal permutation, the 79%

throughput of the torus Chaos router at saturation is close to double the throughput

of the oblivious router at 45% and nearly 10% better than the Duato algorithm at

70%.

The throughput and saturation points of the packet routing algorithm are sub-

stantially higher than those of traditional wormhole routing implementations which

have limited bu�ering. Though these results do not show a fair comparison with

respect to bu�ering or message header overhead if long messages were considered, it

demonstrates the bene�ts of packet routing over traditional router con�gurations and

shows that wormhole networks would bene�t from additional bu�ering. It is likely

that further studies would show there is a large range of message sizes for which

packet routing is advantageous over wormhole routing because a blocking packet only

holds a single resource in the network.

Throughput for the oblivious and Duato torus networks degrades after satura-

tion with the complement, perfect shu�e, and random tra�c patterns. For Duato,

throughput degradation also occurs for the bit reversal tra�c pattern. The most likely

cause of this is the asymmetry in the oblivious and Duato networks introduced by the

virtual channels used for deadlock avoidance in the torus [Bol92, AV94]. Throughput

degradation has also been reported for other minimal adaptive routers [NS94].

At very low loads, latency for the torus is slightly higher for the Chaos and Duato

routers than for the oblivious router, due to the lower per-hop latency of the oblivious

router. At higher loads before Chaos saturation, the Chaos network generally has the

lowest latency. After the Chaos router saturates, the relative latencies between the

routers depend upon the tra�c pattern under consideration. Due to the additional
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bu�ering, the after saturation latency in packet routing is much higher than those

experienced by wormhole routers. Thus, packet routers may bene�t from congestion

control to avoid this region of performance. For more on congestion control, see the

future work described in Section 7.2.1.

6.1.3 Hot Spots

Simulations were run for six torus and six mesh hot spot arrangements. Results are

only shown for two typical torus arrangements. The results of the others exhibit

the same trends, although the particular values di�er slightly from case to case. Full

results are available elsewhere [BFS94]. When hot spots are added to random tra�c,
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Figure 6.6: Throughput and latency for 256-node 2D torus networks with ten four-times hot spot

tra�c.

the maximum throughput of the oblivious torus is reduced from 76% to 63%, as shown

in Figure 6.6. With the same hot spots, however, the Chaos torus achieves a maximum

throughput of 95%, a slight reduction from its peak throughput of 98% achieved with

random tra�c. The Duato router experiences a drop in maximum throughput from
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Figure 6.7: Throughput and latency for 256-node 2D torus networks with ten four-times hot spot

tra�c.

89% to 85%. For the second case, shown in Figure 6.7, the oblivious and Duato

routers su�ered further reductions in throughput. The Duato router reached a peak

throughput of 74% and the oblivious router reached 50%. The Chaos router was

comparable to the �rst case achieving a peak throughput of 96%.

The Duato router experiences throughput degradation with hot spot tra�c. As

mentioned earlier, this is most likely caused by the asymmetric use of the virtual

channels employed for deadlock avoidance in the torus [Bol92, AV94].

In some of the hot spot cases, the throughput after saturation degrades and then

appears to improve. The apparent gains in throughput are not signi�cant, but occur

because the network has greater variability in these cases. For the oblivious and

Duato routers, almost all the con�dence intervals for throughput have less than a

one percent error. The percentage is greater for hot spot tra�c after saturation,

where it occasionally reaches three percent. Experimental results suggest that the

increase in variability is caused by unfair access to the network. Some nodes are able

to inject a substantially greater number of messages than other nodes. Thus, some
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messages enter the network quickly, while others languish in the injection bu�ers

before proceeding. This unfairness is most likely caused by the asymmetric use of

virtual channels which is accentuated by the hot spots. The Chaos router, which

does not use virtual channels, does not exhibit an increase in variability for hot spot

tra�c after saturation. See Section 7.2.1 for a more detailed discussion about unfair

access to the network.

6.2 Summary

Although many multicomputer routing algorithms have been proposed in the last

decade, no algorithm has yet eclipsed the popularity of the simple-but-fast oblivious

routing algorithm. The primary reservations about adaptive routing algorithms are

implementation complexity and out-of-order delivery. Network interface solutions to

out-of-order delivery were mentioned in the beginning of this chapter. Any adapt-

ive router is more complex than a straightforward dimension-order oblivious router.

To compete, a careful design is required to produce a router that can deliver mes-

sages with the low node-to-node latency of an oblivious router. The simulations in

this chapter are based on hardware designs of the oblivious and Chaos routers and

demonstrate the feasibility and advantages of adaptive routing.

The experiments in this chapter explore the potential advantages and disadvant-

ages of adaptive packet routing algorithms. The �ndings show that packet networks

can achieve substantially higher throughputs than traditional wormhole networks.

They also show that because of the larger amount of bu�ering used in the network,

packet algorithms need to avoid operating beyond saturation conditions due to the

high latencies experienced in this range. Further, the simulations show that non-

minimal adaptive routing with controlled random derouting can be very e�ective at

tolerating congestion and hot spots, and is even better than minimal adaptive routers.

In particular, although the Chaos router has a slightly larger per-node routing latency



99

than the oblivious router, the throughput it achieves is much higher than with obli-

vious or minimal adaptive routing.



Chapter 7

CONCLUSIONS

Communication performance continues to be a critical problem in parallel com-

puting. This thesis examines fundamental network issues such as routing algorithms,


ow control, and router performance. Besides questioning the traditional methods of


ow control and router implementation, we promote the idea of multi-class routing

algorithms which increase network performance and simplify the network interface.

Multi-class routing also re
ects the emerging trend for an end-to-end approach to

achieving communication performance which includes the software overhead, time in

the network interface, and time in the network.

7.1 Contributions

The main contributions of this thesis are as follows.

� This thesis de�nes and formulates a method to evaluate multi-class routing al-

gorithms. Multi-class routing algorithms support multiple classes of routing sim-

ultaneously, thereby allowing di�erent applications, and even di�erent messages,

to select the most advantageous kind of routing and avoid overly restrictive

routing whenever possible. Multi-class routing algorithms are important since

they can selectively provide in-order delivery of messages. Consequently, multi-

class routing is also an alternative to traditional adaptive routing algorithms

for achieving high throughput, low latency network performance. Almost all

adaptive algorithms deliver messages out-of-order, and therefore have been slow

to gain acceptance due to the additional complexity required to reorder mes-
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sages. Multi-class routing provides the bene�ts of adaptive routing without the

problems of out-of-order message delivery.

� This dissertation also introduces a novel integrated multi-class routing algorithm

called Triplex. Triplex is the �rst triple class algorithm supporting oblivious,

minimal fully adaptive, and non-minimal fully adaptive routing. Unlike tra-

ditional minimal fully adaptive routing algorithms, Triplex does not reserve a

virtual network or virtual channels exclusively for oblivious routing. Triplex

is also the �rst non-minimal fully adaptive wormhole torus routing algorithm

using deadlock avoidance.

� This thesis also compares two methods of implementing a routing algorithm, as

an input driven and as an output driven router. In particular these methods

describe techniques to move messages from the input to the output bu�ers of

a router. The two methods are similar, but surprisingly the output driven

router almost always performs as well as or better than the input driven router.

Most algorithms are implemented as input driven routers, even though almost

all can be implemented as either. This work suggests that hardware designers

select output driven routers whenever this is not precluded by other design

considerations.

� Finally this thesis uses simulation to explore competitive packet routing al-

gorithms for a variety of uniform and non-uniform tra�c patterns. The results

demonstrate the advantages of adaptive routing, that packet routing achieves

higher throughput than traditional wormhole networks, that packet routing al-

gorithms could bene�t from congestion control to avoid the high latencies exper-

ienced after saturation, and most importantly that non-minimal fully adaptive

routing that uses controlled random derouting is very e�ective at increasing

throughput over oblivious and minimal fully adaptive routers.
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7.2 Future Work

7.2.1 Extensions

The idea of a multi-class router appears to be very useful. The Triplex router works

well as both an oblivious and a minimal adaptive router. Unfortunately, the non-

minimal mode does not do signi�cantly better than the minimal mode, making it

di�cult to justify. Thus, the question remains; is there a multi-class routing al-

gorithm that e�ectively supports all three classes (or alternatively an oblivious and

non-minimal class) of routing, has non-minimal performance similar to the high

throughput Chaos packet router, scales well, and is practical to implement? There are

two speci�c improvements that could be made. The �rst is to �nd an algorithm that

allows every message to deroute in a less restrictive fashion. This is rather di�cult

with long, wormhole messages. The second possibility is to try to �nd an algorithm

that performs a majority of its routing in a network free of virtual channels. Virtual

channels cause asymmetries in channel use which result in performance degradation.

From the simulations it is clear that on a 2D torus, packet routing can achieve

throughput which is sometimes twice as great as the throughput achieved with tra-

ditional wormhole routing. The main disadvantage of packet routing, however, is

its high after saturation latencies which appear to be dependent upon the type of

tra�c present in the network. Thus, to take advantage of the high throughput and

low latency packet performance before saturation, without experiencing the higher

post-saturation latencies, some sort of congestion control is necessary.

Very little work has been done in congestion control since slow network interfaces

in parallel machines have limited the rate at which tra�c can enter the network.

Now that network interfaces are receiving attention, routing performance will become

more critical to overall communication performance. One of the reasons congestion

control is di�cult is that network saturation is a measure of global network tra�c.

A particular router cannot easily acquire such global knowledge without contributing
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to congestion. Furthermore, the point of saturation not only di�ers from workload

to workload, but some tra�c patterns may have only a few nodes which place high

demands on the network, while the other nodes remain idle. Patterns such as these

may still require congestion control. Cherkasova, Davis and Hodgson have recognized

the need for congestion control with non-minimal routers [CDH

+

96]. They suggest

three techniques for congestion control including alpha scheduling of messages, back-

pressure 
ow control, and balanced injection control.

Fair access to the network is a problem closely related to injection control which

has almost been completely ignored in the literature. In an ideal situation, each node

has equal access to network bandwidth, independent of its location in the network.

If the network is partitioned with each job allocated to a di�erent partition, fair

access helps provide equivalent performance, regardless of the partition assigned to a

particular job. Within a partition, unfair access may cause nodes to wait for slower

nodes unnecessarily; and in some cases, throughput of the network may be constrained

by the slowest part of the network.

There are three main sources of unfairness in networks. Often, the scheme used

to achieve deadlock-freedom causes unfairness. In particular, using virtual channels

can cause performance problems resulting from asymmetric channel use, even when

tra�c is random [Bol92, AV94]. Asymmetries cause congestion around some nodes,

while others remain clear. Because injection depends upon the availability of bu�ers,

congestion inhibits injection. Thus, some nodes have easy access to the network, while

others often wait much longer. See the literature [NS94] for an example of unfairness

caused by a routing algorithm. Nodes also experience unfair access to the network if

tra�c from one partition travels through another partition. Tra�c that traverses a

partition occupies bu�ers in the network needed by local messages for injection and

may even reduce the throughput of the resident job. A solution to this likely requires

the cooperation of the network and operating system.

Almost all experiments have been with continuous routing. Continuous routing is
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ideal for observing the performance of a routing algorithm over a complete range of

applied loads and extracting such measures as saturation point, peak throughput, and

behavior after saturation. Another interesting possibility is to model bursty, batch

tra�c which is subject to the constraints of a network interface (either a particular

interface or one that represents the common features of those likely to be designed in

the near future). This model is appealing since it may be more representative of real

workloads, though a combination of the two models would likely provide the most

insight.

7.2.2 Other Work

As technology continues its rapid progress, the performance di�erences between per-

sonal computers (PCs), workstations, and parallel computers continues to blur. Re-

cently networks of workstations (NOWs) or networks of PCs have become a popular

alternative to parallel computing. In this model, commodity processors are connec-

ted by a high speed, low cost network, such as Myrinet. If the nodes are less than

3 meters apart, a system area network (SAN) can be used, otherwise a local area

network (LAN) is used. Parallel programs are executed on available processors in the

network. In this domain low latency is essential, since lower latency allows �ner grain

parallelism. In the past, these networks were designed for high throughput only. For

example, ATM switches generally su�er from high latency communication due to lack

of attention to the network interface implementation. Therefore, adapting the low

latency, high throughput multicomputer network techniques to SANs and LANs may

be bene�cial.

There are multiple layers of routing in these fast, low cost networks. Typically

there are switches in the network which are connected either to other switches or to

processing nodes. Routing on a switch is similar to routing in multicomputers and

can bene�t from many of the techniques used in the parallel domain. This has been

demonstrated by Myricom, a company that developed a switch by transforming a
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Caltech routing chip to support the SAN and LAN environments [BCF

+

95]. Routing

between switches is less complex and likely to be performed by a separate routing

technique in order to support more general topologies than are typically found on

a switch. Support for arbitrary networks, though, may not be necessary since most

LANs will serve workstations located in a 3D building or campus. Nevertheless,

routing between switches needs to be e�cient.

Several interesting possibilities exist for future work in this area. The �rst is to

explore routing on the switch. The Myrinet switch uses simple oblivious wormhole

routing and implements a cross bar which requires a quadratic number of internal

switching elements, but only allows a linear number of processors to be connected to

the switch. This ensures incremental scalability (which is important since computing

environments typically add tens of processors at a time), but makes large switches

expensive to build. Perhaps a cheaper interconnect that still supports a reasonable

bisection bandwidth across the switch might su�ce. There is also a proposed design

to use the Chaos packet router in a LAN switch [MBES97]. Unlike Myrinet, this

design allows processors to be connected to every switching element.

Another interesting problem is special support for long messages to ensure high

throughput, to prevent short message performance degradation, and in some in-

stances, to provide low latency for large messages. Switches have not been optimized

to provide high throughput and low latency, though recently the need has become

more apparent. For example, video and multimedia applications, which require high

throughput for large volumes of data and low latency for responsive control messages,

are becoming more common as the trend to web-based applications continues. An-

other example is the global memory system which uses spare network memory as a

cache for virtual memory and �le pages to reduce the need for disk accesses [JFV

+

96].

The system uses both short control messages and much larger subpage or page size

messages. After a fault, computations may proceed once a request for a subpage from

remote memory has been satis�ed. This system is much more e�ective in networks
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that provide low latency for both short and long messages.

Another interesting problem in fast, low cost networks is determining the switch

topology to facilitate e�cient routing algorithms between the switches. Since the

topologies are unlikely to be regular, popular multicomputer techniques do not apply

directly. Nevertheless because paths between nodes are relatively short, source routing

techniques may su�ce. If adaptivity is the key to performance, it may be necessary

to provide alternative routes for messages. This may be di�cult to do with source

routing, since the source does not have current information about the rapid changes

in network tra�c.

Though an optimal switch topology may be the most e�ective, other constraints

such as ease of network management may demand support for arbitrary topologies.

In this case, a topology gathering phase is needed to acquire information about the

current topology of the network. With this information a set of deadlock-free routes

between each host can be constructed. This information is stored in routing tables

and used for route selection when forwarding messages through the network. See the

literature [MCSW97] for an example of a network mapping algorithm. Open prob-

lems include developing algorithms that send a minimal number of messages, that

terminate within a small �xed time bound, and that allow dynamic recon�guration,

i.e. recomputing the topology while allowing running applications to continue unin-

terrupted. Another open issue is to de�ne switch primitives, such as queries for a

unique switch id, that can be added to a switch to make it easier to con�gure the

network.

Finally there is a need to provide quality of service in high speed, low cost net-

works. Quality of service is important for applications that require predictable net-

work performance such as for voice, video, and other real-time applications. Quality

of service can also be used to provide fair-access to the network (described earlier).

Traditional solutions are complex and often use expensive priority queues and per-

connection queueing. Besides limiting the number of simultaneous connections, it
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makes switches very expensive. Rotating Combined Queueing (RCQ) is one proposed

solution that reduces the costs of providing quality of service guarantees [KC96]. The

RCQ switch uses a table look-up rather than a priority queue operation when a mes-

sage arrives. This method avoids the use of hardware priority queues, per connection

queueing, and allows best e�ort tra�c to utilize unused bandwidth.
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Appendix A

TRIPLEX

A.1 Proofs of Deadlock-freedom

We show the Triplex algorithm is deadlock-free by applying a theorem of Schwiebert

and Jayasimha [SJ96]. To keep this section self-contained, we brie
y review in this

paragraph the de�nitions needed to prove the theorems. A waiting bu�er is a bu�er

a message can wait to acquire when all other bu�ers speci�ed by the routing relation

cannot be selected. The bu�er waiting graph (BWG) for a routing algorithm is a

directed graph BWG = (B;E) where the vertex set B represents the set of bu�ers in

the network and the edge set E represents pairs of bu�ers (b

1

; b

2

) where a message

occupying bu�er b

1

can wait for bu�er b

2

. A routing algorithm is wait-connected if a

message always has at least one waiting bu�er.

There is a waiting dependence between two bu�ers a and b if a message can use

bu�er a and wait for waiting bu�er b. Waiting dependencies can occur between bu�ers

more than one hop away. There is also a waiting dependence between a and b if there

is a sequence of bu�ers (a = b

1

; b

2

; : : : ; b

s

= b) such that there is a message m

i

that

uses bu�er b

i

and waits for waiting bu�er b

i+1

for 1 � i < s. This is equivalent to

having a path from a to b in the bu�er waiting graph being considered.

Theorem 1: [SJ96] If a routing algorithm, R, is wait-connected and the BWG

for R is acyclic, then R is deadlock-free.

Next we de�ne the terminology and notation needed. Let DO be the dimension-

order Dally-Seitz oblivious, deadlock-free wormhole routing algorithm [DS87]. This

algorithm is minimal, makes routing decisions independent of the message source and

input channel, and is su�x closed

�

. Furthermore, this algorithm is wait-connected,

�

Informally, every path a message takes to a particular destination through a node a can be used



120

deadlock-free, and has an acyclic BWG. Let DO

i

be the restriction of the Dally Seitz

algorithm to dimension i. The restricted algorithm DO

i

also makes routing decisions

independent of dimensions other than i.

The DO algorithm routes a message from the lowest dimension 0 to the highest

dimension n � 1 by applying DO

0

, then DO

1

, : : :, and �nally DO

n�1

, where the

direction in each dimension is chosen to make the message route minimal. Although

the speci�c DO

i

rules di�er slightly for the mesh and the torus

y

, the particular details

are not relevant. Hence, the mesh algorithm will not be distinguished from the torus

algorithm except by context.

Let b

+

i

(b

�

i

) denote the bu�ers corresponding to a virtual channel in the positive

(negative) direction of dimension i. The direction will only be speci�ed when a

distinction between the positive and negative direction is necessary. The distinction

between an input bu�er b

in

i

in dimension i and an output bu�er b

out

i

in dimension i

will only be made for packet routing, and only when necessary. When using packet

routing, the terms packet and message are used interchangeably.

For convenience, we assume that for all the routing algorithms presented, if a

message waits, it waits on the bu�er speci�ed by DO. Thus with wormhole routing,

all waiting bu�ers are restricted bu�ers; while with packet routing, all output waiting

bu�ers are restricted bu�ers. For packet routing, a packet in an input bu�er waits

on the appropriate bu�er in the lowest dimension it needs to correct, while a packet

in an output bu�er must wait on the corresponding input bu�er (there is no other

choice). We proceed by showing that each algorithm has an acyclic BWG, and hence

by Theorem 1 is deadlock-free. Later, we show how to remove this waiting restriction

so that if a message waits, it waits on all the bu�ers it needs.

A.1.1 The Mesh Algorithm

For ease of explanation, we describe the mesh algorithm �rst. The packet-switched

version is presented �rst and is followed by the wormhole version.

by a message injected at node a to reach the same destination.

y

The torus algorithm uses two virtual channels per direction per dimension, while the mesh uses

one.
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Packet Triplex on the Mesh

In packet routing each message in a cycle occupies a single bu�er, regardless of whether

store-and-forward or virtual cut-through 
ow control is used. Thus waiting depend-

encies between bu�ers occur only when a message in one bu�er waits directly for

another waiting bu�er in the same or neighboring node. Furthermore, since a packet

in an input bu�er can only wait on a restricted bu�er, a cycle in the BWG only

contains restricted bu�ers.

Fact 1: For wormhole (packet) routing, when a message waits in an (input) bu�er,

it waits for the restricted bu�er speci�ed by DO which is in the minimal direction of

l, the lowest dimension it needs to correct.

Lemma 2: Given a cycle in the BWG where l is the lowest dimension (input and

output) bu�er in the cycle, the lowest dimension any message needed to correct when

it was routed to the output bu�er corresponding to the input bu�er it holds in the

cycle is l.

Proof: Consider a cycle in the BWG where the lowest dimension in the cycle

is l. A message in a cycle only occupies one bu�er. So if a message m in a cycle

needed to correct a dimension lower than l, when it was routed to the output bu�er

corresponding to the input bu�er it holds in the cycle,m would wait on this dimension.

Thus, l would not be the lowest dimension in the cycle. �

Lemma 3: Given a cycle in the BWG where l is the lowest dimension (input and

output) bu�er in the cycle, all input bu�ers in the cycle in dimension l have been

used minimally according to DO.

Proof: Consider a cycle in the BWG where l is the lowest dimension bu�er in

the cycle. Let m be a message in a restricted (all bu�ers in the cycle are restricted)

input bu�er b

in

l

in dimension l in the cycle. By Lemma 2 dimension l was the lowest

dimension m needed to correct when it was routed to restricted output bu�er b

out

l

corresponding to input bu�er b

in

l

. And by de�nition of the routing algorithm, message

m was routed to its restricted bu�er in dimension l by DO rules, which are minimal.

�
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Lemma 4: There are no cycles in the BWG where the lowest dimension in the

cycle is used in the positive and negative direction.

Proof: Assume there is a cycle in the BWG. Let l be the lowest dimension of

the cycle, and assume l is used in the positive and negative direction. Then, there

exists a message m in an input bu�er in the cycle that is not in the positive direction

of dimension l, which waits for a restricted output bu�er b

+

l

in the positive direction

of l. We show that message m violates the routing rules, and hence no such cycle

exists. See Figure A.1 for an example of such a con�guration. There are two cases.

The �rst case assumes m resides in a restricted bu�er in a dimension greater than l,

and the second assumes that m occupies a restricted bu�er in the negative direction

of dimension l. With packet routing, there are no other cases to consider, since each

message in a cycle resides in exactly one restricted bu�er.

1+

0+

D

S

X

Figure A.1: An example of a route that violates the rules of Triplex. (The illegal bu�er is marked.)

The shaded bu�ers are the restricted output bu�ers, while the unshaded bu�ers are unrestricted.

First, message m holds a restricted input bu�er b

h

in the cycle, for some dimension

h > l, and waits for restricted output bu�er b

+

l

in the positive direction of dimension
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l. By Fact 1, this direction is minimal. By Lemma 2, l is the lowest dimension m

needed to correct when m was routed to bu�er b

h

. But m is not allowed to use a

restricted bu�er b

h

in a dimension greater than l, when it needs to route in the positive

direction of l.

Second, messagem occupies a restricted input bu�er b

�

l

in the negative direction of

dimension l in the cycle, and waits for the restricted output bu�er b

+

l

in the positive

direction of dimension l. By Lemma 3, m was routed minimally in the negative

direction to its current input bu�er b

�

l

in the cycle. And by Fact 1, m waits in the

minimal direction for b

+

l

which is positive. This is a contradiction. �

Theorem 5: The packet-switched version of the Triplex routing algorithm, packet

Triplex, for the mesh is deadlock-free.

Proof: The algorithm is wait-connected since a message in a bu�er can always

wait on the waiting bu�er speci�ed by DO, which is wait-connected.

A cycle must use both directions of each dimension on a mesh. Thus, it follows

from Lemma 4 that the BWG is acyclic. And by Theorem 1, the algorithm is deadlock-

free, since the BWG is wait-connected and acyclic. �

Wormhole Triplex on the Mesh

The (wormhole) Triplex algorithm is complicated by bu�er dependencies caused by

arbitrary length messages. Since messages can only wait on restricted bu�ers, any

cycle in the bu�er dependencies is created from waiting dependencies between re-

stricted bu�ers. These dependencies can be direct, resulting from a message in one

restricted bu�er waiting immediately for another restricted bu�er; or they can be

indirect, caused by a message which occupies a restricted bu�er followed by one or

more unrestricted bu�ers and waits for another restricted bu�er. Thus, a message in

a cycle occupies at least one restricted bu�er and waits for another restricted bu�er.

Furthermore, the waiting dependencies between two restricted bu�ers do not have to

be in the same or a neighboring node.

Another complication of the longer messages, is that the lowest dimension in a

cycle in the BWG is no longer guaranteed to be the lowest dimension in the original
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cycle in the network. Thus, we need to refer to the network cycle to reason about the

routing decisions made.

Lemma 6: Given a cycle in the network corresponding to a cycle in the BWG

where l is the lowest dimension bu�er in the network cycle, the lowest possible di-

mension any message needed to correct when it was routed to a bu�er it holds in the

cycle is l.

Proof: Let m be a message in a network cycle corresponding to a cycle in the

BWG. Also let l

0

be the lowest dimension message m needed to correct when it was

routed to a bu�er b it holds in the cycle. Furthermore, suppose l

0

is less than the lowest

dimension l in the cycle. There are two possibilities. Either m corrected dimension l

0

sometime after acquiring bu�er b, or m still needs to correct dimension l

0

and waits

on a bu�er in dimension l

0

in the cycle (a message must wait on the lowest dimension

it needs to correct). Both, however, contradict the assumption that l is the lowest

dimension bu�er in the cycle. (Nevertheless, a message blocked in the cycle may have

a tail that extends beyond the cycle and holds a bu�er in a dimension lower than l.)

�

Lemma 7: Consider a cycle in the network corresponding to a cycle in the BWG.

Let l be the lowest dimension in the network cycle. Then all bu�ers in the network

cycle in dimension l have been used minimally according to DO or by using unres-

tricted bu�ers in dimension l.

Proof: Consider a cycle in the network corresponding to a cycle in the BWG. Let

l be the lowest dimension in the network cycle. By Lemma 6, l is the lowest possible

dimension any message needed to correct when it occupied any bu�er it currently

holds in the cycle. A message can only deroute in a dimension greater than the

lowest dimension that it needs to correct, which for messages in the cycle is at least

as great as l. Thus, a message in the cycle was routed minimally when obtaining

its bu�ers in the cycle in dimension l; and by de�nition of the routing algorithm,

the bu�ers were chosen according to DO rules or by using unrestricted bu�ers in

dimension l. �
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De�nition: A positive turn bu�er is a bu�er b

+

l

in the positive direction of

dimension l in a cycle which resides in a node which has the smallest

z

position or

o�set in dimension l of any node in the cycle.

Lemma 8: There are no cycles in the BWG where l, the lowest dimension in the

corresponding network cycle is used in both the positive and negative direction.

Proof: Assume there is a cycle in the BWG. Let l be the lowest dimension in the

corresponding network cycle, and suppose l is used in both the positive and negative

directions. Then, there exists a message m which holds a bu�er in the cycle that is

not in the positive direction of l and later waits for or uses a positive turn bu�er b

+

l

in the cycle, We show that message m violates the routing rules, and hence no such

cycle exists. There are three cases.

First messagem holds a restricted bu�er b

h

in the cycle, in some dimension h, h > l

and later waits for or uses and holds positive turn bu�er b

+

l

in the positive direction

of dimension l. By Fact 1, this direction of l is minimal for m. By Lemma 6, l is the

lowest dimension m needed to correct when m used bu�er b

h

. But m is not allowed

to use a restricted b

h

bu�er in a dimension greater than l, when it needs to route in

the positive direction of l.

Second, message m holds a (restricted or unrestricted) b

�

l

bu�er in the cycle in the

negative direction of dimension l and later waits for or uses and holds positive turn

bu�er b

+

l

in the cycle. By Lemma 7, message m was routed minimally to all bu�ers it

holds in the cycle in dimension l. If m holds b

�

l

and b

+

l

, this is a contradiction since

m cannot be routed minimally by being routed �rst in the negative, and then in the

positive direction. If m holds b

�

l

and waits for b

+

l

, Fact 1 says that m waits in the

minimal direction; and again, this is a contradiction.

Third, message m does not satisfy either of the above cases. There are two possib-

ilities. If m waits for positive turn bu�er b

+

l

, all the bu�ers m holds are unrestricted

bu�ers in dimensions greater than l, andm is not part of the cycle. Ifm holds positive

turn bu�er b

+

l

, all the bu�ers m holds after positive turn bu�er b

+

l

are unrestricted

z

Without loss of generality, we assume the nodes are ordered in row major order.
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bu�ers in dimensions greater than l. Hence, there must be another message in the

cycle that waits on positive turn bu�er b

+

l

. �

Theorem 9: The Triplex routing algorithm for the mesh is deadlock-free.

Proof: The algorithm is wait-connected since a message can always wait on the

waiting bu�er speci�ed by DO, which is wait-connected.

A cycle must use both the positive and negative directions of each dimension when

routing on a mesh. Thus, it follows from Lemma 8 and Theorem 1 that the BWG is

acyclic, and the algorithm is deadlock-free. �

A.1.2 The Torus Algorithm

The proof for the torus is similar to the mesh but requires three additional lemmas to

show that cycles are not created by routing on the wrap edges. Since a message that

needs to correct the lowest dimension l in the negative direction has more freedom

than one that needs the positive direction of l, we need to consider two separate cases,

one where dimension l is used only in the negative direction, and the other where l is

used in the positive direction. We start with the base case, which considers a cycle

in a single dimension l and follow with the more general case. Again, the packet

algorithm is presented �rst.

Packet Triplex on the Torus

Lemma 10: There are no single dimension cycles in the BWG.

Proof: Assume there is a cycle in the BWG that only uses bu�ers in dimension

l. By Lemma 3, all messages in input bu�ers in the cycle in dimension l were routed

minimally by DO rules using restricted bu�ers. DO is su�x-closed, and independent

of the current input bu�er. So given a message m in an input bu�er in the cycle, there

exists some packet that always follows DO routing which could reside in m's bu�er

and wait for the same bu�er as message m in the cycle. The output bu�ers in the

cycle can be �lled identically. Thus in this case, the edges or waiting dependencies in

the BWG are equivalent to those of DO which is acyclic. �
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Lemma 11: On the torus, there are no multi-dimensional cycles in the BWG

which use the lowest dimension in the cycle in the positive direction only.

Proof: Assume there is a multi-dimensional cycle in the BWG which uses l, the

lowest dimension in the cycle in the positive direction only. Then, there exists a

message m that holds a restricted input bu�er b

h

in the cycle, in some dimension

h, h > l and waits for an output bu�er b

+

l

in the positive direction of dimension l.

By Fact 1, this direction in dimension l is minimal for m. By Lemma 2, l is the

lowest dimension m needed to correct when m used bu�er b

h

. But m is not allowed

to use restricted bu�er b

h

in a dimension greater than l, when it needs to route in the

positive direction of l. �

Lemma 12: On the torus, there are no multi-dimensional cycles in the BWG

where the lowest dimension in the cycle is used in the negative direction only.

Proof: Assume there is a multi-dimensional cycle in the BWG where l, the lowest

dimension in the cycle, is used in the negative direction only. Since dimension l is

used in a single direction, the cycle must use a wrap bu�er w in dimension l. Also,

there exists a restricted input bu�er b

h

in some dimension h, h > l, in the cycle

immediately before the wrap bu�er w, but excluding bu�ers in dimension l. Let m be

the message that holds input bu�er b

h

. Since a message in a cycle occupies a single

restricted bu�er, m waits on a restricted output bu�er in dimension l at or before the

wrap bu�er w. But m is not allowed to use a restricted bu�er in a dimension greater

than l unless m is guaranteed to have a minimal path to its destination position

in dimension l, where the path consists of waiting bu�ers which never have waiting

dependencies on the wrap bu�ers in dimension l (wrap-free property). �

Theorem 13: The packet Triplex routing algorithm for the torus is deadlock-free.

Proof: The algorithm is wait-connected since a message can always wait on the

waiting bu�er speci�ed by DO, which is wait-connected. The result follows from

Lemmas 4, 10, 11, 12, and Theorem 1. �
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Wormhole Triplex on the Torus

Lemma 14: There are no single dimension cycles in the BWG in dimension l,

the lowest dimension of the corresponding cycle in the network.

Proof: Assume there is a single dimension cycle in the BWG which only uses

(restricted) bu�ers in dimension l, the lowest dimension in the corresponding cycle in

the network. If bu�ers in dimensions greater than l are used in the cycle, they must

be unrestricted bu�ers.

By Lemma 7, all the bu�ers in the cycle in dimension l were routed minimally by

DO rules or by using unrestricted bu�ers in dimension l. The waiting dependencies

of DO are acyclic. Routing by DO

l

is independent of dimensions other than l. Thus

taking unrestricted bu�ers in dimensions other than l does not cause a cycle in dimen-

sion l in the BWG. These routes only add the following edges. If there exists a route

from node a to node b in dimension l, using an unrestricted bu�er in a dimension i

not equal to l results in an edges in the BWG from node a to b

0

, where b

0

is any node

with the same positions as b in each dimension, except dimension i.

Furthermore, since DO is su�x-closed and independent of the current bu�er (and

whether it's restricted or unrestricted), routing a message minimally in dimension l

either by DO or unrestricted bu�ers does not alter the subsequent route or waiting

bu�er used by the message in dimension l, as speci�ed by DO rules. So routing in

unrestricted bu�ers in dimension l only adds new dependencies in the BWG from

an unrestricted bu�er in dimension l to restricted waiting bu�ers speci�ed by DO.

There are no edges from restricted bu�ers to unrestricted bu�ers. Thus, there can be

no cycle in dimension l. �

Lemma 15: On the torus, there are no cycles in the BWG which contain a dimen-

sion greater than l, the lowest dimension in the corresponding cycle in the network,

provided that l is used in the cycle in the positive direction only.

Proof: Assume there is a cycle in the BWG containing a restricted bu�er in some

dimension h, h > l, where l is the lowest dimension in the corresponding cycle in the

network. Also suppose l is used in the network cycle in the positive direction only.
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Then, there exists a message m that holds a restricted bu�er b

h

in the cycle, and later

waits for or uses and holds a bu�er b

+

l

in the positive direction of dimension l. By

Fact 1, this direction in dimension l is minimal for m. By Lemma 6, l is the lowest

dimension m needed to correct when m used bu�er b

h

. But m is not allowed to use

a restricted b

h

bu�er in a dimension greater than l, when it needs to route in the

positive direction of l. �

Lemma 16: On the torus, there are no cycles in the BWG which contain a di-

mension greater than l, the lowest dimension in the corresponding cycle, provided

that l is used in the negative direction only.

Proof: Assume there is a cycle in the BWG containing a restricted bu�er in some

dimension h, h > l, where l is the lowest dimension in the corresponding cycle in the

network. Also suppose l is used in the negative direction only. Since dimension l is

used in a single direction, the cycle must use a wrap bu�er w in dimension l. Let b

h

be

a restricted bu�er in dimension h, in the cycle immediately before the wrap bu�er w,

but excluding unrestricted bu�ers and bu�ers in dimension l. Let m be the message

that holds bu�er b

h

. Message m cannot wait for an unrestricted bu�er, so one of the

following describes m. Message m waits on a restricted bu�er in dimension l at or

before the wrap bu�er w. Alternatively, m uses the wrap bu�er w in dimension l and

waits on a restricted bu�er in the cycle after the wrap edge. Both are impossible.

First, m is not allowed to use a restricted bu�er in a dimension greater than l unless

m is guaranteed to have a minimal path to its destination position in dimension l,

where the path consists of waiting bu�ers which never have waiting dependencies on

the wrap bu�ers in dimension l (wrap-free property). Second as a consequence of the

wrap-free property, m cannot use restricted bu�ers in a dimension greater than l, if

it needs to use a wrap bu�er in dimension l. �

Theorem 17: The Triplex routing algorithm for the torus is deadlock-free.

Proof: The algorithm is wait-connected since a message can always wait on the

waiting bu�er speci�ed by DO, which is wait-connected. The result follows from

Lemmas 8, 14, 15, 16, and Theorem 1. �
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It is not necessary to restrict a message to wait on the bu�er speci�ed by DO.

A message may actually wait on all the bu�ers it needs. To see this, we de�ne

a subgraph BWG

0

of the BWG for each algorithm as follows. Let BWG

0

be the

subgraph of the BWG obtained by removing all the edges from the restricted bu�ers

to the unrestricted bu�ers. Furthermore, remove all edges between restricted bu�ers

that violate DO routing. The resulting bu�er waiting graph BWG

0

is still wait-

connected. The proof is similar to those presented, except that the following de�nition

and theorem are needed instead. A True Cycle is a cycle in the BWG which can be

created without the simultaneous use of any bu�er.

Theorem 18: [SJ96] A routing algorithm, R, that allows a blocked message

to wait for multiple output bu�ers is deadlock-free i� R is wait-connected for some

subgraph BWG

0

of BWG and BWG

0

has no True Cycles.

A.2 Proof of Livelock-Freedom

To prove livelock-freedom for Triplex, we generalize an argument that �rst appeared

in [KS94]. Our argument works for many networks besides the Chaos hypercube.

Theorem 19: Given a strongly connected, deadlock-free network with diameter

d where the indegree equals the outdegree of each node and the maximum indegree of

any node is g, if the probability a message does not deroute at every step is at least

p, 0 < p � 1, then the network is livelock-free.

Proof: Consider a strongly connected, deadlock-free network with diameter d

where the indegree equals the outdegree of each node, the maximum indegree of any

node is g, and the probability a message does not deroute at every step is at least p,

0 < p � 1.

Since the network is deadock-free a message can be delayed in a node at most

a �nite amount of time t. Thus each message is subjected to at most t (usually

substantially less) deroute decisions.

Let m be a message. Let a superstep consist of d hops of m. Let S

i

be the event

that m is not delivered in its ith superstep. If we consider a superstep in isolation,
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as in the �rst superstep, P [S

1

] � 1 � p

td

, since in the worst case m may only reach

its destination in d hops after avoiding deroutes for t time steps at every node on its

path to its destination.

Consider the probability that m is not delivered after i supersteps.

P [S

i

&S

i�1

& � � �&S

1

] = P [S

i

jS

i�1

& � � �&S

1

]P [S

i�1

& � � �&S

1

]

� (1� p

td

)P [S

i�1

& � � �&S

1

]

� (1� p

td

)

i

Taking the limit as supersteps (and hence time) goes to in�nity, shows that the

probability m is not delivered goes to zero in the limit. Since

lim

i!1

(1� p

td

)

i

= 0

m is eventually delivered and livelock does not occur. �

Corollary 20: If Triplex deroutes a message with probability p, 0 � p < 1 at

each step, then Triplex is livelock-free.

This is a general argument and can be used for Triplex, chaotic or de
ection

routers. For a chaotic router, let p = (q�1)=q where q, an integer greater than one, is

the multiqueue size. Chaotic routers deroute when the multi-queue is full by selecting

one message at random to be derouted. The remaining q�1 packets are not derouted.

For a de
ection router, let t = 1 since packets move at every step. For example, if

the de
ection router uses a random one-pass greedy assignment, let p = 1=g since a

packet has, at the very least, a 1=g chance of getting its �rst choice.

Notice that this is a very pessimistic analysis. Even if we assume p � 1=2, i has

to be about 2

td

before (1� 1=2

td

)

i

is a constant (approximately 1/e). It is not known

whether this is the best one could do with such a general argument and topology.

A.3 Performance Comparisons



132

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Random

Oblivious 
Oblivious Packet Triplex
Duato 
Minimal Packet Triplex
Chaos
Packet Triplex 

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Random

Oblivious 
Oblivious Packet Triplex
Duato 
Minimal Packet Triplex
Chaos
Packet Triplex 

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Complement

Oblivious 
Oblivious Packet Triplex
Duato 
Minimal Packet Triplex
Chaos
Packet Triplex 

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

1000

2000

3000

 L
at

en
cy

 (
cy

cl
es

)

 Complement

Oblivious 
Oblivious Packet Triplex
Duato 
Minimal Packet Triplex
Chaos
Packet Triplex 

Figure A.2: Throughput and latency on 256-node 2D torus with packet routing for 20-word messages.
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Figure A.3: Throughput and latency on a 256-node 2D torus with packet routing for 20-word

messages.
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Figure A.4: Throughput and latency on a 256-node 2D torus with packet routing for 20-word

messages.
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Figure A.5: Throughput and latency on a 256-node 2D torus with wormhole routing for 40-word

messages.



136

0.0 0.2 0.4

 Normalized Applied Load

0

10

20

30

40

50

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Hot Spot 1

Oblivious 
Oblivious Triplex
Duato 
Minimal Triplex
Triplex 

0.0 0.2 0.4

 Normalized Applied Load

0

200

400

600

800

1000

 L
at

en
cy

 (
cy

cl
es

)

 Hot Spot 1

Oblivious 
Oblivious Triplex
Duato 
Minimal Triplex
Triplex 

Figure A.6: Throughput and latency on a 256-node 2D torus with wormhole routing for 40-word

messages.
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Figure A.7: Throughput and latency on a 256-node 2D torus with wormhole routing for 40-word

and 400-
it messages in a 10:1 ratio.
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Figure A.8: Throughput and latency on a 256-node 2D torus with wormhole routing for 40-word

and 400-word messages in a 10:1 ratio.
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Figure A.9: Throughput and latency comparisons between oblivious and Triplex algorithms for a

range of tra�c mixes on a 256-node 2D torus using wormhole routing with 40-word and 400-
it

messages in a 10:1 ratio.
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Figure A.10: Throughput and latency comparisons between oblivious and Triplex algorithms for a

range of tra�c mixes on a 256-node 2D torus using wormhole routing with 40-word and 400-
it

messages in a 10:1 ratio.
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Figure A.11: Throughput and latency comparisons between oblivious and Triplex algorithms for a

range of tra�c mixes on a 256-node 2D torus using wormhole routing with 40-word and 400-
it

messages in a 10:1 ratio.
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Figure A.12: Throughput and latency comparisons between oblivious and Triplex algorithms for a

range of tra�c mixes on a 256-node 2D torus using wormhole routing with 40-word and 400-
it

messages in a 10:1 ratio.



Appendix B

INPUT AND OUTPUT DRIVEN

B.1 Peak throughput

Tables B.1{B.6 contain the peak normalized throughput, rounded to the nearest whole

number, achieved by each of the routers for the various tra�c patterns.

Table B.1: Shows the normalized applied load (load) at which the maximum normalized throughput

(xput) is achieved by the tra�c pattern. The percent error (error) is also shown.

16x16 Torus, Oblivious

Tra�c output input �xed or random

load xput error load xput error

Random 0.80 78 0.3 0.80 77 0.4

Bit reversal 1.00 46 0.2 0.60 44 0.3

Complement 0.45 45 0.2 0.45 44 0.3

Perfect shu�e 0.45 45 0.4 0.45 45 0.3

Transpose 0.55 50 0.1 0.60 50 0.1

Hot Spot 1 0.65 63 1.1 0.65 63 1.1

Hot Spot 2 0.50 50 0.2 0.55 51 2.6
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Table B.2: Shows the normalized applied load (load) at which the maximum normalized throughput

(xput) is achieved by the tra�c pattern. The percent error (error) is also shown.

16x16 Torus, Duato

Tra�c output input �xed input random

load xput error load xput error load xput error

Random 0.90 89 0.2 0.80 70 1.3 0.90 90 0.2

Bit reversal 0.75 70 0.2 0.65 61 0.3 0.75 70 0.2

Complement 0.40 39 0.3 0.40 40 0.3 0.40 39 0.4

Perfect shu�e 0.45 45 0.3 0.45 45 0.6 0.45 45 0.3

Transpose 0.55 50 0.1 0.55 50 0.1 0.55 50 0.2

Hot Spot 1 0.85 85 0.4 0.80 70 2.1 0.80 80 0.2

Hot Spot 2 0.80 80 1.2 1.00 59 2.2 0.75 72 1.9

Table B.3: Shows the normalized applied load (load) at which the maximum normalized throughput

(xput) is achieved by the tra�c pattern. The percent error (error) is also shown.

16x16 Torus, Minimal Triplex

Tra�c output input �xed input random

load xput error load xput error load xput error

Random 0.80 80 0.2 0.75 74 0.2 0.80 80 0.2

Bit reversal 0.70 66 0.2 0.60 56 0.3 0.65 61 0.3

Complement 0.40 36 0.6 0.40 40 0.5 0.35 34 0.5

Perfect shu�e 0.45 44 0.6 0.40 39 1.2 0.40 40 0.3

Transpose 0.55 50 0.1 0.55 50 0.2 0.55 50 0.1

Hot Spot 1 0.80 80 0.3 0.65 61 3.7 0.75 74 0.2

Hot Spot 2 0.75 75 0.5 0.55 55 2.2 0.70 70 0.2
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Table B.4: Shows the normalized applied load (load) at which the maximum normalized throughput

(xput) is achieved by the tra�c pattern. The percent error (error) is also shown.

16x16 Mesh, Oblivious

Tra�c output input �xed or random

load xput error load xput error

Random 0.95 93 0.4 1.00 94 0.5

Bit reversal 1.00 61 0.2 1.00 61 0.2

Complement 0.45 44 0.5 0.45 45 0.5

Perfect shu�e 0.90 86 0.7 0.90 86 0.9

Transpose 1.00 72 0.2 1.00 72 0.2

Hot Spot 1 0.80 76 0.8 0.80 77 0.9

Hot Spot 2 0.75 71 1.2 0.75 71 1.2

Table B.5: Shows the normalized applied load (load) at which the maximum normalized throughput

(xput) is achieved by the tra�c pattern. The percent error (error) is also shown.

16x16 Mesh, Duato

Tra�c output input �xed input random

load xput error load xput error load xput error

Random 1.00 93 0.4 1.00 92 0.5 0.95 92 0.4

Bit reversal 0.90 77 0.3 0.80 74 0.6 0.90 75 0.4

Complement 0.40 36 0.9 0.40 40 0.5 0.35 34 0.4

Perfect shu�e 0.90 89 0.4 0.85 84 0.6 0.90 89 0.5

Transpose 0.95 81 0.3 1.00 76 0.9 1.00 78 0.2

Hot Spot 1 0.95 87 0.8 0.95 87 0.8 0.90 89 0.6

Hot Spot 2 1.00 83 0.8 0.90 83 1.0 0.85 85 0.3
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Table B.6: Shows the normalized applied load (load) at which the maximum normalized throughput

(xput) is achieved by the tra�c pattern. The percent error (error) is also shown.

16x16 Mesh, Minimal Triplex

Tra�c output input �xed input random

load xput error load xput error load xput error

Random 0.90 89 0.3 0.85 85 0.3 0.90 88 0.8

Bit reversal 0.70 65 0.4 0.65 61 0.4 0.70 65 0.7

Complement 0.35 34 0.5 0.40 40 0.5 0.35 32 2.8

Perfect shu�e 0.90 85 1.3 0.75 75 0.3 0.85 84 0.3

Transpose 1.00 82 0.2 0.90 76 0.6 1.00 78 0.2

Hot Spot 1 0.80 80 0.3 0.75 72 3.4 0.80 80 1.7

Hot Spot 2 0.80 80 0.3 0.75 71 2.7 0.80 80 0.3

B.2 Performance Comparisons

Figures contain the throughput and latency graphs of the three routers for both

input and output driven modes for six tra�c patterns. The �rst set of graphs compare

output driven routers to input driven routers with a �xed order output bu�er selection

policy. The second set of graphs compare output driven routers to input driven routers

with a random output bu�er selection policy. The last set of graphs directly compare

the performance of the input driven routers with �xed versus random selection.
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Figure B.1: Throughput and latency on a 256-node 2D torus with �xed output bu�er selection.
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Figure B.2: Throughput and latency on a 256-node 2D torus with �xed output bu�er selection.
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Figure B.3: Throughput and latency on a 256-node 2D torus with �xed output bu�er selection.
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Figure B.4: Throughput and latency on a 256-node 2D torus with �xed output bu�er selection.
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Figure B.5: Throughput and latency on a 256-node 2D mesh with �xed output bu�er selection.



151

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Complement

Oblivious Output
Oblivious Input
Duato Output
Duato Input
Triplex Output
Triplex Input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

1000

2000

3000

4000

5000

 L
at

en
cy

 (
cy

cl
es

)

 Complement

Oblivious Output
Oblivious Input
Duato Output
Duato Input
Triplex Output
Triplex Input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Perfect Shuffle

Oblivious Output
Oblivious Input
Duato Output
Duato Input
Triplex Output
Triplex Input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

2000

 L
at

en
cy

 (
cy

cl
es

)

  Perfect Shuffle

Oblivious Output
Oblivious Input
Duato Output
Duato Input
Triplex Output
Triplex Input

Figure B.6: Throughput and latency on a 256-node 2D mesh with �xed output bu�er selection.
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Figure B.7: Throughput and latency on a 256-node 2D mesh with �xed output bu�er selection.
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Figure B.8: Throughput and latency on a 256-node 2D mesh with �xed output bu�er selection.
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Figure B.9: Throughput and latency on a 256-node torus with random output bu�er selection.
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Figure B.10: Throughput and latency on a 256-node torus with random output bu�er selection.
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Figure B.11: Throughput and latency on a 256-node torus with random output bu�er selection.
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Figure B.12: Throughput and latency on a 256-node torus with random output bu�er selection.



158

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Random

Oblivious Output
Oblivious Input
Duato Output
Duato Input
Triplex Output
Triplex Input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

 L
at

en
cy

 (
cy

cl
es

)

 Random

Oblivious Output
Oblivious Input
Duato Output
Duato Input
Triplex Output
Triplex Input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Bit Reversal

Oblivious Output
Oblivious Input
Duato Output
Duato Input
Triplex Output
Triplex Input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

2000

 L
at

en
cy

 (
cy

cl
es

)

 Bit Reversal

Oblivious Output
Oblivious Input
Duato Output
Duato Input
Triplex Output
Triplex Input

Figure B.13: Throughput and latency on a 256-node mesh with random output bu�er selection.
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Figure B.14: Throughput and latency on a 256-node mesh with random output bu�er selection.
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Figure B.15: Throughput and latency on a 256-node mesh with random output bu�er selection.
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Figure B.16: Throughput and latency on a 256-node mesh with random output bu�er selection.
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Figure B.17: Throughput and latency on a 256-node torus comparing input driven routing with

�xed and random selection.
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Figure B.18: Throughput and latency on a 256-node torus comparing input driven routing with

�xed and random selection.
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Figure B.19: Throughput and latency on a 256-node torus comparing input driven routing with

�xed and random selection.
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Figure B.20: Throughput and latency on a 256-node torus comparing input driven routing with

�xed and random selection.



166

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Random

Duato Input Fixed
Duato Input
Triplex Input Fixed
Triplex Input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

 L
at

en
cy

 (
cy

cl
es

)

 Random

Duato Input Fixed
Duato Input 
Triplex Input Fixed
Triplex Input 

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

20

40

60

80

100

 T
hr

ou
gh

pu
t (

Pe
rc

en
t)

 Bit Reversal

Duato Input Fixed
Duato Input
Triplex Input Fixed
Triplex Input

0.0 0.2 0.4 0.6 0.8 1.0

 Normalized Applied Load

0

500

1000

1500

2000

 L
at

en
cy

 (
cy

cl
es

)

 Bit Reversal

Duato Input Fixed
Duato Input
Triplex Input Fixed
Triplex Input

Figure B.21: Throughput and latency on a 256-node mesh comparing input driven routing with

�xed and random selection.
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Figure B.22: Throughput and latency on a 256-node mesh comparing input driven routing with

�xed and random selection.
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Figure B.23: Throughput and latency on a 256-node mesh comparing input driven routing with

�xed and random selection.
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Figure B.24: Throughput and latency on a 256-node mesh comparing input driven routing with

�xed and random selection.


