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Abstract

We consider the problem of scheduling tasks with unpredictable service times on distinct processing nodes so as to
meet a real-time deadline, given that all communication among nodes entails some (possibly large) overhead. This work
is motivated by our effort to build a distributed rendering system that uses a cluster of commodity workstations to improve
the performance of multimedia applications that require real-time 3D rendering. In this context, the tasks correspondto sets
of scene objects that must be rendered to create a single image while the deadline corresponds to the fixed amount of time
available to render each frame. The abstract problem then corresponds to the problem of intra-frame scheduling, that is, how
to maximize the likelihood that all rendering tasks will be completed on time for the current frame.

In this work, we assume the existence of an inter-frame load-balancing agent; that is, we assume that the overall work is
periodically partitioned into a number of tasks with similar expected rendering times. Despite this longer-term load balancing,
however, load imbalances during a particular frame can still be significant: it’s difficult to accurately estimate tasks’ rendering
times and repartitioning is too expensive to be performed for every frame. Thus, while the initial assignment of tasks atthe
beginning of a frame may have equal expected processing times, the system must recover from imbalances discovered during
the processing of each frame.

We consider two distinct classes of scheduling policies,static, in which task reassignments can only occur at specific
times, anddynamic, in which reassignments are triggered by some node going idle. For both classes, we further examine
global reassignment, in which all nodes are rescheduled at a rescheduling moment, andlocal reassignment, in which only a
subset of the nodes engage in rescheduling at any one time.

We show that, over a range of parameterizations appropriateto clusters of commodity workstations, global dynamic
policies work best. We introduce a new policy, Dynamic with Shadowing, that places each of a small number of tasks in the
schedules of multiple nodes to reduce the amount of communication required for load-balancing. This policy dominates all
other alternatives considered over most of the parameter space.

This work was supported in part by the National Science Foundation (Grants CCR-9704503 and CCR-9200832), Microsoft Corporation, and Intel
Corporation.
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1 Introduction

The work in this paper is motivated by our effort to build
a system that uses a cluster of workstations to improve the
performance of multimedia applications that require real-
time 3D rendering. In our prototype system, a VRML viewer
[28], which allows interactive manipulation of 3D scenes
down-loaded over the World Wide Web, is the canonical
application. In this context, improving performance means
extending the complexity of the scenes that can be rendered
at a sufficiently fast as well as consistent frame rate. Our
goal is to achieve this performance gain through the use of
distributed rendering on a cluster of commodity worksta-
tions connected by a commodity local area network (LAN).

There are a number of issues that must be confronted in
building such a system. For example, a fundamental prob-
lem is how to partition the work. As in all parallel systems,
work partitioning affects load balance and communication,
and therefore is key to performance. Additionally, our sys-
tem makes use of both the CPU and the graphics accelerator
hardware on each workstation, and so each node is itself a
kind of parallel system.

While these (and other) issues are crucial in building the
prototype, in this paper, we restrict our attention to formu-
lating a model for and proposing solutions to a scheduling
problem that is applicable when the following conditions
hold:

� The application can be decomposed into multiple, in-
dependent tasks.

In our application, a task can correspond to the ren-
dering of a portion of the final 2D image (a spatial
decomposition) or of a specific set of scene objects (a
data decomposition).

� The tasks are executed on multiple processors con-
nected via a broadcast LAN.

Our prototype system consists of five 180 MHz SGI
O2 workstations connected via a dedicated 100 Mb/s
switched Ethernet.

� The goal of the scheduling policy is to maximize the
probability that all tasks are completed before a real-
time deadline expires.

In our application, the deadline corresponds to the
frame time, the inverse of the frame rate. Although
our system is not a “hard” real-time system, i.e., it
is acceptable to miss a small number of deadlines,
maintaining a constant frame rate is an important con-
cern. Users are often willing to trade (some) perfor-
mance for lower variance [18]. Smooth motion re-
quires at least 10 frames per second (fps), implying a

real-time period of at most 100 ms. At the current TV
rate of 30 fps, the period is reduced to 33 ms.

� All tasks are available at the beginning of the compu-
tation.

In our application, the set of objects in the scene is
assumed to be static. Only the viewpoint used to ren-
der the objects changes from frame to frame (e.g., in
fly-throughs of some structure). Each frame begins
with the broadcast of the new viewpoint to be used in
rendering that frame, but (essentially) no other infor-
mation needs to be exchanged.

� The tasks have unpredictable execution time require-
ments.

This is reasonable in our environment because the
work required to render a single object can change
dramatically from frame to frame. In particular, if an
object is completely out of view in a frame, it can be
culled very quickly. However, a small change in the
viewpoint in the next frame can bring it (partially)
into view, greatly increasing the amount of work re-
quired to deal with it.

� The tasks have statistically identical execution time
requirements.

The single class assumption is reasonable in our ap-
plication because a higher level component of the
scheduler, not addressed here, uses information about
object rendering times obtained over a sequence of
frames to occasionally regroup scene objects into
roughly equal sized tasks. (Examples of such schemes
have been described in [5, 17].)

� The cost of communicating for the purposes of schedul-
ing is relatively large, on the order of a few percent
of the deadline time.

Because we assume the application communicates
over a commodity LAN, scheduling overhead includes
the latency and computational costs associated with
messages sent over such a network. Viewed as a frac-
tion of the frame time, the fixed overhead of sending
a message can be quite high.

� The CPU is a scarce resource.

On commodity workstations, rendering typically uses
both the CPU and the graphics hardware accelerator:
the CPU is responsible for the geometric transforma-
tion phase while texturing and rasterization is done
on the graphics hardware. With such an architecture,
the CPU is often the system bottleneck.

The specific question we address is how best in this envi-
ronment to make decisions about which tasks to execute on
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each processor. If assigning a task to a processor required
transmitting the scene objects in that task to that processor,
it is very unlikely that the deadline could be met. Thus,
some aspect of the system design must address this prob-
lem.

One approach is to partition the scene data statically among
the processors, and to assign to each processor only those
tasks for which all data is available locally. When scene de-
scriptions are very large, this is the only available approach.
However, this approach is probably too inflexible to support
real-time rendering, because of its inability to deal with the
load imbalances that result from the changing viewpoints
from which successive frames are rendered.

In the work presented here, we assume instead that the scene
description has been replicated before rendering begins. The
replication can be full or partial. Under full replication,each
processor has a complete copy of the scene description. Un-
der partial replication, the processors are partitioned into
fixed subsets. Processors in a common subset store an iden-
tical portion of the scene description.

Given that the scene description is replicated, assigning tasks
to processors is relatively efficient, as we need to transmit
only task IDs. Thus, scheduling decisions can be made and
communicated at the cost of sending and receiving small
messages. In our prototype system, this overhead is on the
order of a few percent of the frame time, the magnitudes we
address in this paper.

While it may appear that replicating the scene description
limits the size of the scenes that can be rendered, in prac-
tice, this is not a problem. Rendering is a CPU/graphics
accelerator and memory bandwidth bound problem. Thus,
scene descriptions that stress the main memory capacities of
current workstations are almost certainly too complicated
to be rendered in real-time, even on multiple processors.
This is becoming increasingly true as scene description lan-
guages, like VRML, allow for very compact representations
of scenes containing an enormous number of object faces.
For example, the description of a test scene1 that can only
be rendered at about 1 fps on an SGI O2, a machine opti-
mized for graphics performance, requires less than 4 MB of
main memory storage. Thus, full replication is not unrealis-
tic for a large spectrum of applications. Additionally, allof
the policies we examine accommodate partial replication,
although at some performance degradation relative to full
replication.

1.1 Related Work

Although our work is motivated by the parallel rendering
problem, unlike much of the previous work on parallel ren-

1http://www.ocnus.com/models/Misc/aztec-city.wrl.gz

dering [3], we are as concerned with minimizing the inter-
frame variance as we are with maximizing the mean frame
rate. Thus, in this paper, we address the problem of schedul-
ing to maximize the probability of meeting a real-time dead-
line as opposed to structuring the parallel rendering system
to maximize the mean frame rate. Our work is perhaps clos-
est in spirit to that of Shekhar et al. [24]. While Shekhar
et al. consider some similar policies, however, they are not
concerned with meeting a real-time deadline.

Our work also differs in a number of respects from the es-
tablished literature on real-time scheduling. For one thing,
in contrast to the classical work on schedulability (e.g., [13,
23, 8, 25]) as well as scheduling of fault-tolerance real-
time systems (e.g., [10, 2, 19]), there is a single deadline
by which all of our tasks must be completed, rather than a
deadline per task. Additionally, we do not make any as-
sumption about the maximum service time of individual
tasks (other than that it is shorter than the frame time), and
do not use task service time information in any of our poli-
cies.

Our work is related to efforts in loop scheduling for paral-
lel processors (e.g., [22, 7, 26, 14, 16, 20, 29]) in that the
basic problem a loop scheduling discipline must solve is
how to balance the performance loss due to processors go-
ing idle when there is work left to be done against the over-
head of finding that work. Our environment differs from
loop scheduling, however, as our overheads are consider-
ably larger. These higher overheads place more emphasis
on reducing the number of scheduling operations performed
compared to the environment in which loop scheduling is
traditionally employed. Additionally, because we are deal-
ing with a broadcast communication medium, we have the
potential to amortize a single rescheduling overhead by com-
municating a new schedule to multiple processors, an op-
portunity all of our suggested policies exploit. Lastly, we
evaluate the policies based on the probability that a dead-
line is met, rather than on the average time to complete all
the work.

Finally, our work is also related in spirit to earlier results
on load balancing in distributed systems (e.g., [15, 30, 4,
11, 6]), especially those that dealt with real-time tasks (e.g.,
[12, 1]). However, the former had as a goal minimizing re-
sponse time, rather than meeting real-time deadlines, while
the latter addressed workloads in which each task had its
own deadline, rather than our situation in which there is a
single deadline for the ensemble of tasks. Additionally, we
deal with a system containing a fixed number of tasks, rather
than one subject to a stream of arrivals.
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1.2 Paper Structure

In the next section, we present the abstract model we use
to examine how to schedule systems like the one described
above. Section 3 quantifies the importance of minimizing
scheduling overhead in our environment, and contrasts our
problem with response time driven scheduling problems.
Section 4 provides an overview of the policies we consider,
while Section 5 compares their performance. Section 6 con-
cludes the paper.

2 Model Overview

Our model is quite simple. There areP processors, each
with a queue of tasks. There is an average ofN tasks per
processor in the system, orNP tasks in all. The goal is to
complete theNP tasks within a frame time, which is taken
to be the unit of time in the model.

For the reasons mentioned in Section 1, we assume that task
times are random variables. More specifically, we assume
that task execution times are exponentially distributed. A
major advantage of the exponential over other potential dis-
tributions is that it allows us to find an optimal schedule for
the static policy we propose. Additionally, it is the max-
imum entropy distribution [9], and so is motivated by the
absence of information available at this time on actual task
time distributions (which is highly data dependent in any
case).

One drawback of the exponential is that we cannot specify
the variance of the workload independently of the number
of tasks; lower variance implies more tasks, and vice versa.
However, this drawback is outweighed by the advantages
the exponential brings.

We denote the mean task service time by1=�. When speci-
fying a model, though, we typically give the mean computa-
tional load per processor, denoted by�. As the unit of time
in our model is the frame time, the mean task service time
and the load are related by1=� = �=N .

The final parameters of our model reflect the overhead of
communication. We break this into two parts, the computa-
tional requirement,C, and the “lag”,L. The former is the
CPU time consumed on a single processor by the commu-
nication. The latter reflects the additional delay (beyond the
costC) for a processor that has gone idle to receive new
work. Thus,L is defined to be the total elapsed time be-
tween a processor sending a message and its receiving a
reply, minus that processor’s computational costC. (In ad-
dition to the “on the wire” latency of the LAN, the lagL
includes the time required by the system receiving the mes-
sage to field the interrupt, to pass the message through the
protocol stack to the application, to perform whatever ap-

plication level work is required to compose a reply, and to
send the reply message.) The local processor is available to
perform useful work, if there is any available, during the lag
timeL, but not during the computational overheadC.

We evaluate a policy by computing the probability that all
NP tasks are completed by the deadline when the policy is
employed. However, because individual task times are ex-
ponential random variables, it is possible that a specific set
of task times exceeds the processing power available, and so
cannot be scheduled by any discipline. To factor out these
impossible task sets, we normalize our results by dividing
by the probability that a randomly chosen set ofNP expo-
nential tasks would complete on a system withP proces-
sors, a single shared queue, and zero scheduling overhead.
We denote the normalized probabilities byP [Success], and
use them as the performance metric for comparison through-
out the paper. (Recall that in our application domain, it is
acceptable to miss a small number of deadlines, i.e., we do
not insist thatP [Success] equals 1.)

3 The Importance of Minimizing
Overhead

It is important to appreciate that the appropriate balance be-
tween scheduling overhead and processor idleness is much
different in character when scheduling to meet a deadline
than it is when scheduling to minimize response time. For
example, a discipline that imposes an overhead of exactly
3% on each of theP processors would increase the aver-
age time to complete all the tasks by only 3%. On the other
hand, it might reduce the probability of meeting the dead-
line by over 20%, or might have essentially no effect at all.

To emphasize the influence of overhead on the probability
of meeting a deadline, we present here some measurements
of the idealP -processor, single queue, zero overhead sys-
tem. Figure 1a shows the distribution of the times at which
an 8-processor ideal system that has an average of 8 tasks
per processor completes all of its work for various values
of system load. (Note that while one might have guessed
that the mean time to complete at load� would be� in this
system – since the frame time is the unit of time, and since
there is no scheduling overhead – it’s actuallyN�1+H

P

N

�,
whereH

P

is theP th harmonic number. This reflects the
influence of the lastP tasks to go into service, and the re-
duced service rate of the system as each completes.)

The influence of overhead on the probability of meeting
the deadline is shown more directly in Figure 1b, which
is derived from the data in Figure 1a. Here we graph the
fraction of the task sets that would complete by the dead-
line on the ideal system but would fail to complete if the
deadline were reduced by the amount given on the X-axis.

4



(a) Lifetime Distribution
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(b) Probability Loss as a Function of Overhead
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Figure 1:Properties of the Ideal 8-Processor, Single Queue, Zero Overhead System.

That is, if p
t;l

[Success] denotes the fraction of task sets
at load l that would complete with a deadline of1 � t,
then in Figure 1b, each line plots the functionf

l

(x) =

p

0;l

[Success]�p

x;l

[Success]

p

0;l

[Success]

. Thus, at loadl, a policy that im-
poses an average overhead per processor ofx can at best
achieve aP [Success] � 1 � f

l

(x), even if the overhead
were spread evenly over all processors and no processor
were ever left idle while there were unstarted tasks in the
system. Based on Figure 1b, we expect all (reasonable)
policies to behave similarly at low loads. As the load in-
creases, however, policies that emphasize low overhead, pos-
sibly at the expense of somewhat worse load balancing prop-
erties, should gain the upper hand.

4 Overview of Policies

All of our policies begin the frame time with an initial sched-
ule that partitions the tasks equally among the processors.
This is the “best guess” initial policy, since the tasks are
assumed to have statistically identical execution times.

To help meet the deadline, a policy may reassign tasks from
one processor to another as the frame progresses. When
such reassignments take place, the policy must specify how
many of the remaining tasks to assign to each processor in-
volved in the reassignment. All our policies rebalance the
tasks each time a reassignment takes place. By balancing
the workload at each rescheduling moment, we hope to re-
duce the total number of rescheduling operations required.
Additionally, there is little motivation to consider schemes
that move fewer tasks than must be moved to rebalance, be-
cause we must transmit only task IDs to communicate the
new schedule (and so message costs increase only negligi-
bly with the number of tasks) and because we are commu-
nicating over a broadcast medium (so that a single message
suffices to update the schedules on multiple processors).

The questions that define a policy, then, arewhento perform

task reassignments andwhich processorsto involve in each
reassignment.

There are two approaches to deciding when to reassign,
which we callstaticanddynamic. The distinguishing char-
acteristic of static policies is that all task reassignments take
place at specific, pre-computed times during the frame. In
contrast, under dynamic policies, reassignments occur when
the system enters a specific state. For all our dynamic poli-
cies, reassignments are triggered by some single processor
going idle.

It should not be immediately evident which class of policy
is preferable. Dynamic policies have the advantage that re-
assignments occur only when it is guaranteed that without
them at least one processor would sit idle. However, be-
cause reassignments are expensive, only a limited number
of them can be tolerated in one frame time. It is much sim-
pler to limit the total number of reassignments performed
when using a static schedule than a dynamic one, and to en-
sure that they are concentrated during a time interval where
they will do the most good. Additionally, there is a practi-
cal consideration of some importance that gives an advan-
tage to static schedules. In particular, because they sched-
ule reassignments at particular times, the lag component of
communication (L) can be overlapped with useful compu-
tation: a brief timer-based interrupt triggers the reassign-
ment communication, but processors can continue working
on any tasks remaining to them during communication lag.
This overlap is not possible under dynamic schemes (or at
least is very difficult to realize since it would require the ap-
plication code to guess at zero cost when it was a lag period
from being done with its final task). Thus, the overhead of
reassignment is potentially greater for dynamic than static
policies.

There are also two approaches to deciding which processors
to involve in a reassignment, which we calllocalandglobal.
In global policies, the loads of all processors are rebalanced
at reassignment times. In local policies, each processor
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is associated with a fixed subset of other processors and
exchanges loads only with those processors. Global poli-
cies are possible for the rendering application only when
the scene description can be fully replicated, because any
task must be assignable to any processor. When only partial
replication is feasible, local policies must be used. When
full replication is available, both approaches are possible.
In this case, neither approach is clearly preferable to the
other: global reassignment is likely to be better at balancing
the workload, while local reassignment may require fewer
reassignments per processor.

We now present four alternative scheduling policies for our
real-time environment.

4.1 Static Multiple Reassignment (SMR)

Under Static Multiple Reassignment (SMR), a predeter-
mined list of reassignment times is used to trigger reassign-
ments: at each reassignment time, any unfinished tasks are
redistributed as evenly as possible over all participatingpro-
cessors. Reassignments can be either global or local.

To fully define SMR, we must specify a static set of reas-
signment times. This can be done in one of two ways. In
the first, there is a single list of times at which reassign-
ments will take place, independently of the state of the sys-
tem at each reassignment. In the second, the precomputed
time at which thekth reassignment takes place is specified
as a function of the state of the system (i.e., the number of
tasks remaining) at thek � 1st reassignment. For example,
the statically defined time for thekth reassignment might
be much later when the number of tasks remaining at the
k � 1st reassignment is large than when only a few tasks
remain. The second approach is clearly more flexible (in
particular, schedules of the first type are special cases of the
second), and so has an advantage over the first. Thus, we
consider schedules of this more general type.

The technique we use to evaluate SMR allows us to com-
pute static reassignment schedules that are optimal, subject
to some restrictions: we assume that we have precise infor-
mation on the average number of tasks per processor and
the expected service time of each task, that the tasks are ex-
ponentially distributed, and that the reassignments are con-
strained to take place on a discretized time scale. This tech-
nique is described in the Appendix.

4.2 Pure Dynamic Reassignment (PDR)

Under Pure Dynamic Reassignment, a reassignment is trig-
gered each time a processor goes idle, except that once no
processor is assigned more than one task the reassignments
cease. When a reassignment takes place, unfinished tasks

are balanced across the participating processors as evenly
as possible. Reassignments can be either global or local.

One potential problem with Pure Dynamic Reassignment is
the number of reassignments that occur. Figure 2a shows
the average number of reassignments per processor (using
global reassignment) for an eight processor system under
various loads and numbers of tasks. From the figure, it is
clear that the number of reassignments is largely insensitive
to load. This is expected, since the number of times some
processor goes idle under this policy is unaffected by load
(which reflects merely a change in the time scale). We see
also that the number of reassignments can be quite large.

It is intuitively clear that most of the reassignments that take
place under Pure Dynamic must occur when there are rela-
tively few tasks left per processor. Measurements confirm
this intuition. Figure 2b shows the average number of re-
assignments per frame that leaves a maximum number of
tasks assigned to any processor given by the X-axis value.
Figure 2c shows the distribution of the time between suc-
cessive reassignments. Clearly, there is a flurry of reassign-
ments that occurs towards the end of the schedule.

The next two disciplines attempt to improve upon Pure Dy-
namic Reassignment by reducing the number of reassign-
ments that occur during this final period.

4.3 Dynamic with Delay Reassignment (DDR)

Dynamic with Delay operates identically to Pure Dynamic
until the average number of tasks assigned to each proces-
sor at some reassignment is two or less. At that point, a
processor going idle waits a delay time that is a parame-
ter of the policy before triggering a reassignment. This is
motivated by the results in Figure 2c, which indicate that
many processors may go idle within a short time of each
other. The delay time allows multiple processor idle events
to be responded to with a single reassignment, thus reduc-
ing communication overheads at the cost of some increase
in processor idleness.

4.4 Dynamic with Shadowed Reassignment
(DSR)

Like Dynamic with Delay, Dynamic with Shadowed Reas-
signment operates identically to Pure Dynamic until the av-
erage number of tasks assigned to each processor at some
reassignment is two or less2. At that point, Dynamic with
Shadowed Reassignment creates a final schedule, i.e., one
that will be followed without further reassignment. Thus,

2In fact, both DDR and DSR are easily defined for threshold numbers
of tasks other than two. In our evaluations, though, we foundthat the best
performance is obtained when this number is two. Thus, we present the
policies and their results using that value.
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(a) Average Number of Reassignments Under PDR
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(b) Average Maximum Queue Length After Reassignment
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Figure 2:Reassignment Statistics for an 8 Processor System Under PDR.

Dynamic with Shadowed Reassignment is guaranteed to per-
form no more reassignments than Dynamic with Delay, and
is likely to perform many fewer.

The danger in discontinuing reassignments, of course, is
that load imbalance among the remaining tasks will cause
the deadline to be missed. To reduce this probability, Dy-
namic with Shadowed Reassignment places (nearly) all un-
finished tasks in some position in the final schedule of each
processor. (We call these multiple assignmentsshadowed
assignments, and the corresponding tasksshadowed tasks.
Note that shadowed assignments are legal because the tasks
are completely parallelizable and there is no shared memory
in the systems we consider.) Each processor then runs until
the deadline is reached, executing tasks in the order given
by its final schedule. The frame is successful if every task
is completed at least once by the deadline, and unsuccessful
otherwise.

An important part of the Dynamic with Shadowed Reas-
signment policy is the “shadowing schedule,” that is, the
ordering on each processor of the shadowed tasks. The
scheme we use to create the shadowing schedule attempts
to satisfy the following properties:

1. Any task that appears first in the schedule of any pro-
cessor once the initial rebalancing has taken place is
never shadowed; if these tasks fail to complete by the
deadline on the processor to which they are assigned,
they certainly will not complete by appearing later in
the schedule of some other processor.

2. All other tasks (i.e., the shadowed tasks) are sched-
uled exactly once on every processor.

3. All shadowed tasks appear at positionk in the sched-
ule of exactly one processor,1 � k � P . (The un-
shadowed task on a processor is in position 0, and the
shadowing schedule follows.)

4. For each pair of shadowed tasksX andY ,X appears
beforeY in the schedules of half the processors, and
afterY in the schedules of the other half. The pur-
pose of this is to minimize the impact of an unusually

long task on the likelihood that other tasks will be
completed by the deadline.

These goals can be met exactly when the number of proces-
sors is a power of two, and the number of shadowed tasks
equals the number of processors. We first show how to con-
struct such a schedule in this case, and then explain how
we adapt these schedules for the general case. (Remember
that the unshadowed tasks are scheduled first and are not
considered further.)

Theorem 1 Let the shadowing schedule for a single pro-
cessor be a single shadowed task. Represent the shadowing
schedule for aP -processor system as aP � P matrix, with
the schedule for processorp being columnp, read bottom to
top. The shadowing schedule for2P processors formed by
composing twoP -processor shadowing schedules,M and
M

0, containing distinct sets of shadowed tasks, according
to the pattern

M

0

M

M M

0

(1)

has properties 1-4 listed above.

Proof: Property 1 holds trivially because no such tasks are
included in the base case schedules. The other properties
hold by induction. All three are true for the base case of
a single processor schedule. For the induction step, prop-
erty 2 holds because each column ofM (M 0) contains one
instance of each task inM (M 0), andM andM 0 contain
distinct task sets. Property 3 holds because each row ofM

(M 0) contains one instance of each task inM (M 0), andM
andM 0 contain distinct task sets. Finally, property 4 holds
by definition when the two tasksX andY both come from
M (M 0). ForX in M andY in M

0, it holds becauseM
precedesM 0 the same number of times that it followsM 0

in the2P -processor schedule.2

Figure 3 shows the shadowing schedules for 2, 4, and 8
processors when the number of shadowed tasks equals the
number of processors. In this (and following) figure(s), we
use integers to represent task IDs. The schedule for an in-
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(a) (b) (c)

7 6 5 4 3 2 1 0
6 7 4 5 2 3 0 1
5 4 7 6 1 0 3 2
4 5 6 7 0 1 2 3

3 2 1 0 3 2 1 0 7 6 5 4
2 3 0 1 2 3 0 1 6 7 4 5

1 0 1 0 3 2 1 0 3 2 5 4 7 6
0 1 0 1 2 3 0 1 2 3 4 5 6 7
p0 p1 p0 p1 p2 p3 p0 p1 p2 p3 p4 p5 p6 p7

Figure 3:Shadowing Schedules on (a) 2, (b) 4, and (c) 8 Processors. (Only shadowed tasks are shown. The full schedule on
each processor also includes a single, unshadowed task thatprecedes the processor’s shadowing schedule.)

(a) (b)

7 6 5 * 3 * 1 *
6 7 * 5 * 3 * 1
5 * 7 6 1 * 3 *
* 5 6 7 * 1 * 3 7 6 5 5 3 3 1 1
3 * 1 * 7 6 5 * 6 7 7 6 1 1 3 3
* 3 * 1 6 7 * 5 ) 5 5 6 7 7 6 5 5
1 * 3 * 5 * 7 6 3 3 1 1 6 7 7 6
* 1 * 3 * 5 6 7 1 1 3 3 5 5 6 7
p0 p1 p2 p3 p4 p5 p6 p7 p0 p1 p2 p3 p4 p5 p6 p7

Figure 4: (a) Intermediate Shadowing Schedule for 8 Processors with 3Dummy Tasks (*), and (b) Corresponding Final
Shadowing Schedule.

7 6 5 4 3 * * *
6 7 4 5 * 3 * *
5 4 7 6 * * 3 *
4 5 6 7 * * * 3 7 6 5 4 3 3 3 3
3 * * * 7 6 5 4 6 7 4 5 7 6 5 4
* 3 * * 6 7 4 5 ) 5 4 7 6 6 7 4 5
* * 3 * 5 4 7 6 4 5 6 7 5 4 7 6
* * * 3 4 5 6 7 3 3 3 3 4 5 6 7
p0 p1 p2 p3 p4 p5 p6 p7 p0 p1 p2 p3 p4 p5 p6 p7

Figure 5:Shadowing Schedule for 8 Processors with 3 Dummy Tasks Placed Next to Each Other.
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dividual processor is given as a column, with the schedule
read from bottom to top.

To treat the general case, we need to allow sets of shad-
owed tasks that are smaller than the number of processors,
and numbers of processors that are not powers of two. We
do the former by adding dummy tasks to increase the num-
ber of shadowed tasks to equal the number of processors.
An intermediate schedule is built as described above. The
dummy tasks and their shadowed assignments are then re-
moved to form the final schedule. Figure 4 shows the inter-
mediate and final schedules for an 8-processor system with
3 dummy tasks, where the dummy tasks and their shadowed
assignments are denoted by asterisks. Of course, when a
schedule is constructed in this manner, some task(s) will be
shadowed more than once at each level; this is inevitable
when there are less shadowed tasks than there are proces-
sors. However, properties 1, 2, and 4 above are still guaran-
teed to hold.

When multiple dummy tasks must be added, they
should be placed as “far apart” as possible. This is signif-
icant because the regularity of the schedules increases the
duplication of particular tasks at each level if the dummy
tasks are placed close to each other. Figure 5 shows what
happens when three dummy tasks are placed next to each
other in an 8-processor system (instead of being spread out
as in Figure 4). Note the concentrated shadowing of task 3
at the top and bottom of the schedule, and the lack of shad-
owing in the middle of the schedule.

We construct a simple scheme for placing the dummy tasks
when the number of processors is a power of 2. For a system
with P processors, we construct a complete binary tree with
log

2

(P ) + 1 levels. At each internal node, the left child
edge is labeled with 0 and the right with 1. Each leaf is
labeled with the number corresponding to the binary value
of the path from that leaf back to the root, with the label
of the last edge (i.e., the edge next to the root) being the
least significant bit. Figure 6 shows such a tree for an 8-
processor system. Reading the leaves’ labels from left to
right then gives a permutation of0; 1; 2; :::; P � 1. When
multiple dummy tasks are to be added, thei

th dummy task
is placed at the processor given by theith number in this
permutation (0 � i < P�1). Figure 4 shows the placement
of three dummy tasks in an 8-processor system according to
this scheme.

We deal with numbers of processors that are not powers
of two in a similar way: we insert dummy processors and
dummy shadowed tasks to construct an intermediate sched-
ule. We then remove the columns corresponding to dummy
processors and all shadowed assignments of dummy tasks
to obtain the final schedule. When adding multiple dummy
processors, we place them in the same way that we place
dummy tasks. Figure 7 gives an example for a 6-processor

0

0

000

0

0 1 1 1 1

11

1

0 4 2 6 1 5 3 7

Figure 6:Dummy Task Placement Tree for an 8-Processor
System.

system, with dummy processors denoted by Xs and dummy
tasks by asterisks.

5 Policy Comparison

In this section, we compare the performance of the policies
described in the previous section. Recall from Section 2
that our performance metric isP [Success], the (normal-
ized) probability that allNP tasks are completed by the
deadline when a particular policy is employed.

We calculateP [Success] values for the static policy (SMR)
using the dynamic program described in the Appendix. Re-
sults for all other policies are obtained via simulation.
Enough trials were run in all cases that the 95% confidence
interval for allP [Success] probabilities falls in the (abso-
lute) range�:008. To help ensure a fair comparison among
policies, all simulations used the same random sequence of
task times to drive the trials.

In addition to the four policies from Section 4, we also con-
sider a policy intended to represent the large class of par-
allel loop scheduling techniques that have been developed.
We call this policy Idealized Loop Scheduling (ILS). We
include ILS in our comparisons to emphasize that the real-
time nature of our environment and the magnitudes of the
scheduling overheads are important to designing appropri-
ate policies, and that disciplines designed for a different, but
related, domain will not perform well.

While it is not possible to include every aspect of all the
variants of loop scheduling in ILS, we believe that ILS is
optimistic with respect to this class of disciplines because,
in evaluating it, we have artificially set many of the schedul-
ing overheads these policies incur to zero. Specifically, un-
der ILS, all processors begin the frame with an assignment
of N

2P

tasks. The remainder of the tasks are kept in a com-
mon work pool. When a processor completes its assigned
work, it obtains 1

2P

of the remaining work from the work
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7 6 5 * 3 2 1 *
6 7 * 5 2 3 * 1
5 * 7 6 1 * 3 2 6 5 5 2 1 1
* 5 6 7 * 1 2 3 7 7 6 3 3 2
3 2 1 * 7 6 5 * 5 6 7 1 2 3
2 3 * 1 6 7 * 5 ) 2 1 1 6 5 5
1 * 3 2 5 * 7 6 3 3 2 7 7 6
* 1 2 3 * 5 6 7 1 2 3 5 6 7
X p0 p1 p2 X p3 p4 p5 p0 p1 p2 p3 p4 p5

Figure 7:Shadowing Schedules for 6 Processors.

pool3. In our evaluation of ILS, we ignore the overhead
required to maintain the work pool and any possible con-
tention to access it. When a processor accesses the work
pool, it alone is charged the cost of communication.

5.1 Model Parameterization

Recall from Section 2 that our model has five parameters:
the number of processors,P , the number of tasks per pro-
cessor,N , the mean computational load per processor,�,
and the communication overhead per reassignment, which
is comprised of two components, the computational require-
ment,C, and the lag,L.

We consider systems withP ranging from 4 to 16, realistic
sizes for the application domain that we are most interested
in.

We consider systems withN ranging from 4 to 16. (Recall
that each task represents many scene objects.) We focus on
systems with relatively small numbers of tasks per proces-
sor because, typically, the partitioning of work and subse-
quent parallel execution incur overheads that grow inversely
with the grain of work. For example, in our prototype sys-
tem, dividing the overall scene into smaller pieces requires
additional overhead in traversing the scene description and
re-initializing the graphics hardware (setting up textures,
lighting, etc.). Because of our assumption that task times
are exponential, the number of tasks per processor deter-
mines the coefficient of variation of the per processor work-
load. For this range ofN , the coefficient of variation ranges
from 0.5 to 0.25.

We vary the system load,�, from 50% to 90%.

Finally, we parameterizeC andL using measurements of
the overheads experienced on our prototype system. Broad-
casting a single message to all processors and then waiting
until a message is received from each (using UDP) con-

3This policy is very similar to a number of loop scheduling policies that
have been proposed for NUMA systems [14, 16, 20, 29], and shares with
nearly all loop scheduling strategies the essential property that chunk sizes
decrease as the size of the work pool decreases.

sumes about 0.3 ms of CPU on both the sender (the one
performing the original broadcast and collecting the return
messages) and the receivers, with a lag of about 0.7 ms4.
Surprisingly, the effect of the number of receivers (and so
the number of return messages received) on these times is
below the threshold of what we can measure. We speculate
that this is because multiple messages that arrive close to-
gether in time are dequeued and enqueued together as they
move through the protocol stack, and that the major expense
of handling small messages has to do with the overhead of
moving through the stack, but we have no way to verify this
explanation.

Based on these measurements, we set the ratio ofC toL to
be 3 to 7 and consider a range of total communication over-
head,C+L, from 1% to 3% of the frame time. We consider
this range because it covers what we expect to be the most
common cases for real-time rendering applications: for sys-
tems with communication overheads like that measured on
our prototype system, this range spans frame rates from 10
to 30 fps; at a constant 30 fps, this range spans total (round-
trip) communication overheads from the 1 ms of our proto-
type system down to 333�s.

5.2 Results

We evaluated all policies for the 27 possible sets of model
parameters given byP = f4; 8; 16g, N =

f4; 8; 16g, and(C + L) = f1%; 2%; 3%g for loads� from
0.5 to 0.9. Based on these experiments, we make a num-
ber of observations, which we divide into two groups, one
appropriate when full replication of the scene description
is possible (the global policies), and the other when only
partial replication is available (the local policies).

4Unfortunately, current production operating systems impose over-
heads that are considerably larger than those achievable experimentally
(e.g., [21, 27]).
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5.2.1 Policy Comparison Under Full Replication
(Global Policies)

Figures 8 and 9 show twelve representative graphs compar-
ing the performance of the global variants of SMR, DSR,
PDR, and DDR, and of ILS, for communication overheads
of 1% and 3%, respectively. These results lead us to the
following conclusions.

Over the range ofP we have examined, it is possible to
scale a real-time application of the type we consider by a
factor of at leastP=2 but (considerably) less thanP , even
when communication overheads are large relative to the
deadline time.

All the scheduling disciplines we studied are able to meet
the deadline essentially every frame when the per processor
load is at most 50%. Thus, problems that are at leastP=2

times the size of those that can be computed by the deadline
on a single processor should be manageable onP proces-
sors. (Note that the traditional parallel measure speedup is
not applicable in our environment: a single processor would
miss every deadline if it were asked to handle the workload
representing a 50% load onP > 2 processors.)

On the other hand, none of the disciplines is able to meet an
acceptably high fraction of the deadlines when the per pro-
cessor load is high. As indicated by Figure 1b, high loads
are plausible only if overheads can be kept low. Thus, ex-
tremely efficient communication mechanisms would have
to be available to consider running at high loads.

For systems of the type and sizes we have examined, a dy-
namic policy seems preferable to the static policy.

The static policy (SMR) is dominated by one or more dy-
namic policies in nearly all of our experiments. The excep-
tions are when there are many processors and many tasks
(which corresponds to low workload variance), and the com-
munication overhead is large. In these situations, the ability
of the static scheme to limit the number of reassignments
while still achieving good load balance, as well as its lower
overhead per reassignment, start to show some advantage.

As our evaluation of the static policy is optimistic with re-
spect to any real implementation, we conclude that dynamic
policies are most appropriate for the prototype system we
are building, and others like it. However, for systems in-
tended to support many more processors than we have con-
sidered, and/or have communication overheads that are
larger fractions of the deadline time than we have consid-
ered, further effort to find a practical static policy might be
warranted.

The use of shadowed assignment to efficiently reduce the
amount of communication required to complete the sched-
ule provides best performance among the dynamic policies.

Both DDR and DSR were designed to reduce the number

of reassignments that occurs near the end of the frame time
under PDR in an attempt to improve performance. Figures
10a and 10b show that both policies achieve this immedi-
ate goal: the average numbers of reassignments are reduced
relative to PDR (see Figure 2a). However, Figures 8 and 9
show that DSR makes the best tradeoff between the number
of reassignments and load imbalance losses: DSR perfor-
mance dominates PDR and DDR in every experiment we
examined.

Before concluding that shadowed assignment is the key char-
acteristic, however, we must verify that DSR does not out-
perform DDR simply because it stops reassigning work al-
together when the average number of tasks per processor
falls below 2. We do this by introducing a new policy, PDR-
SE, that is identical to DSR except that the final schedule
includes only a rebalancing of unfinished tasks, and has no
shadowed assignment. (Thus, PDR-SE is also equivalent
to a PDR policy that “stops early,” i.e., when the maximum
number of tasks assigned to any processor at a reassignment
is no more than two.) Figure 11a shows a representative
graph comparing DSR, DDR, and PDR-SE. Clearly, the fact
that PDR-SE under-performs DDR while DSR outperforms
it shows that shadowed assignment is key to obtaining best
performance.

A related question is how much of the performance advan-
tage of DSR over PDR-SE is gained from the execution of
successive levels of the shadowing schedule. That is, how
deep do processors typically get into their shadowing sched-
ules before the deadline expires? To answer this question,
we look at the performance of DSR when the shadowing
schedule has been truncated at different levels. Figure 11b
shows a representative graph, where DSR-Ln denotes the
policy DSR with its shadowing schedule truncated ton lev-
els. Note that DSR-L1 is equivalent to PDR-SE when the
number of shadowed tasks is equal to the number of pro-
cessors. We observe that much of DSR’s performance ad-
vantage derives from the execution of the 2nd level of the
shadowing schedule, which corresponds to the first shadow-
ing assignment of each shadowed task. However, the next 2
to 3 levels also afford some additional performance gain.

The loop scheduling policy is not competitive even under
our idealized assumptions.

ILS has performance similar to the other policies at small
P , N , andC + L, but degrades rapidly as any one of these
parameters grows. This is not surprising given that loop
scheduling policies were designed for an environment with
different capabilities and cost model than ours.
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Figure 8:Performance Results for Total Communication OverheadC + L = 1%.
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Figure 9:Performance Results for Total Communication OverheadC + L = 3%.
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(a) Average Number of Reassignments Under DDR
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(b) Average Number of Reassignments Under DSR
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Figure 10: (a) Average Number of Reassignments Under Dynamic with Delay Reassignment, and (b) Average Number of
Reassignments Under Dynamic with Shadowed Reassignment.

(a) Comparison of DSR, DDR, and PDR-SE for
P=8, N=8, C+L=2%
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(b) Marginal Performance Gain of Shadowing Schedule 
for P=8, N=8, C+L=2%
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Figure 11:(a) Comparison of DSR, DDR, and PDR-SE, and (b) Marginal Performance Gain of Successive Levels of DSR’s
Shadowing Schedule.
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5.2.2 Policy Comparison Under Partial Replication (Lo-
cal Policies)

When only partial replication of the scene description is
possible, local policies must be used. Figure 12 shows a
representative sample of performance results comparing the
local variants of our policies. In each experiment shown,
the processors have been partitioned into two equal sized
subsets; task reassignments take place only among the pro-
cessors in each subset, but not between subsets.

Based on our experiments, we conclude that all the obser-
vations made about the global policy variants hold for the
local variants as well:

� A real-time application of the type we consider is
scalable over multiple processors (although less so
than when global scheduling is employed).

� Dynamic scheduling is generally preferable to
static.

� Shadowed scheduling affords the best performance
over a wide range of system parameters.

We also conclude that performance is generally maximized
by replicating each task as widely as possible, i.e., by mak-
ing the size of the subsets of processors over which load
reassignments take place as large as possible. Figure 13
shows representative results for our best policy, DSR, on 8
processors with all natural subset sizes. We see that a sub-
set size of 1, which corresponds to fixed assignment of data
and tasks to processors (with no reassignments at all) per-
forms the worst, and a subset size of 8 (i.e., the global DSR
policy) performs the best. Furthermore, performance rises
monotonically as the subset size increases.

5.3 Policy Comparison in Environments with
Very High Overheads

We briefly consider environments with communication over-
heads that are much larger fractions of the deadline time.
Large communication overheads can arise when the frame
rate is very high (e.g., at 72 fps, the frame time is only 13.9
ms) or when replication is not possible (so that the reassign-
ment of a task from one processor to another would require
the transmission of that task’s description). Figure 14 shows
four representative graphs comparing the performance of
global SMR, local SMR, global DSR, and local DSR for
a communication overhead of 10%.

Based on these results, we conclude that:

� A real-time application of the type we consider is
scalable over multiple processors, even at very high

communication overheads, if we can find a practical
static policy that performs similar to the optimistic
static policy studied here.

� Consistent with results reported in Section 5.2.1, the
static policy dominates the best dynamic policy at
very high communication overheads.

� Performance is still maximized by fully replicating
the scene description and rebalancing across all pro-
cessors at each reassignment: the global variant of
the best policy, SMR, still outperforms its local vari-
ant (even though the case is reversed for DSR, where
the local variant outperforms the global variant).

These results reinforce our conclusion that further effort
should be made to find a practical static policy for sys-
tems with (many) more processors or higher communica-
tion overheads than those considered in the previous sec-
tion.

6 Conclusions

As well as being an important application on its own, real-
time rendering is an essential component of an increasing
number of multimedia applications (e.g.,
VRML, virtual reality, data visualization, and geographical
information systems). The work in this paper is motivated
by our effort to build a system that improves the perfor-
mance of real-time rendering through the use of multiple
commodity workstations connected by a commodity LAN.
A key problem that must be confronted in building this sys-
tem is how to schedule the tasks associated with rendering a
frame to maximize the probability that the frame time dead-
line is met. In a cluster connected by a commodity LAN,
this problem is especially challenging because communica-
tion overheads can be high relative to the frame time. Thus,
scheduling policies designed for this environment must deal
effectively with large communication overheads when bal-
ancing the overhead of scheduling against the performance
loss due to processors being left idle when unfinished work
remains.

We have proposed and evaluated a set of policies that can
take advantage of the degree of data replication possible in
the system to improve performance. We have shown how
to analyze static policies that reschedule at specific, pre-
computed times, and have compared them with dynamic
policies. We found that static policies are not the right
choice for the range of system parameters most appropriate
for our prototype distributed rendering system, but that they
may hold promise in more extreme portions of the parame-
ter space. Instead, a dynamic policy employing a new tech-
nique called shadowing that assigns each of a small number
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Figure 12:Performance of Local Policy Variants When Reassignments Take Place Over Processor Subsets of SizeP=2. (The
numbers in parentheses after each policy name indicate the size of the local processor sets.)
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P=8, N=8, C+L=1%
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Figure 13:Effect of Subset Size on the Performance of DSR.
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Figure 14:Performance Results for Total Communication OverheadC + L = 10%. (The numbers in parentheses after each
policy name indicate the size of the local processor sets.)

17



of tasks to multiple processors provides best performance,
regardless of the amount of data replication possible.
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A Computing Performance Results for
Static Multiple Reassignment

We describe here how we computeP [Success] under Static Mul-
tiple Assignment. We begin with some preliminary notation,then
describe the dynamic program that is the key to this computation.

Let R
n;t

be a row vector of truncated Poisson probabilities of
lengthN + 1 defined by5

R

n;t

[k] =

8

>

<

>

:
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1 � k � n
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(2)

whereR
n;t

[k] denotes thekth element ofR
n;t

. R

n;t

[k] is the
probability thatk tasks remain unfinished after a service interval
of lengtht by a single server, given that the tasks are exponentially
distributed with mean1

�

and that the server starts withn customers
total.

Now define a row vectorS
n;t

of lengthNP + 1 where thekth
element represents the probability thatk tasks remain unfinished
after a service interval of lengtht on a system withP indepen-
dent servers that starts with a total ofn tasks assigned as evenly
as possible to the queues of those servers. By definition,M

L

=

n mod P processors begin withm
L

= d

n

P

e tasks andM
S
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processors begin withm
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c tasks. Then we have
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where� denotes vector convolution and
�

m

� V

�

means them-fold

convolution of vectorV with itself.

We are now prepared to describe the dynamic program we use to
computeP [Success] under SMR. LetQ(j)

t

be a column vector
of lengthNP + 1 whosekth element is the probability that a
system starting withk tasks allocated as evenly as possible onP

processors can complete those tasks using no more thanj statically
assigned reassignments during an interval of lengtht. Then we
have

Q

(j+1)

t

[n] = max

�

max

0�s�t�C

S

n;s

Q

(j)

t�s�C

; Q

(j)

t

[n]

�

(4)

with the base condition

Q

0

t

[n] = S

n;t

[0] (5)

The final step is dealing with the maximization problem. We do
this by discretizing time: we assume that all reassignmentstake
place at timest = k�, wherek is an integer and� = 1

D

for some
large integerD. This allows us to determine the value ofs that
maximizes the first term in Equation (4) by examining allD pos-
sibilities.

5The symbolsN ,P ,�, andC have the same meanings in this appendix
as throughout the paper, and are the only symbols taken from the body of
the paper. All functions defined here depend on these values,but we do
not explicitly include them in our notation to avoid clutter.

Additionally, this discretization bounds the number of reassign-
ments that can possibly be performed in an optimal reassignment
schedule toD. Thus, we have

P [Success] = Q

(D)

1

[NP ]=G(N; P; �) (6)

whereG(N; P; �) is the normalizing probability that an idealized
single queue, P processor, zero overhead system will complete
NP tasks by the deadline.
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