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Abstract

Planning and Knowledge Representation for Softbots

by Keith Golden

Chairperson of Supervisory Committee: Professor Dan Weld

Computer Science and Engineering

This thesis describes the design of a planner and knowledge representation languages

for building software agents, known as softbots. While the focus of this thesis is on

softbots, the ideas and algorithms presented here are general-purpose and could be

applied to robotic domains as well. The major contributions are:

� The lcw (Local Closed World) knowledge representation, used to capture an

agent's incomplete information about the world, which can include localized

closure information, such as knowledge of all �les in a directory. We present

lcw inference and update procedures that are sound, fast and e�ective.

� The sadl action language, used to describe actions and goals available to the

agent, including sensing actions and goals of acquiring new information. We de-

�ne the semantics for sadl and we illustrate the expressiveness of the languages

by showing the encodings of 50 UNIX commands.

� puccini, a program for generating and executing plans in the presence of in-

complete information. puccini exploits lcw knowledge to solve universally

quanti�ed goals even in the presence of incomplete information, and uses sadl

to represent a rich variety of sensors and e�ectors. We prove puccini sound,

and demonstrate its e�ectiveness by solving 10 representative planning prob-

lems from the UNIX domain.
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Following is a list of non-standard terms and symbols used in this thesis. Items

are listed according to the following lexicographic order. Non-alphabetic symbols are

listed �rst, followed by Greek letters in alphabetic order, and then letters of the Latin

alphabet, also in alphabetical order.

Glossary of terms and symbols

Term Page Description

? 96 Returned by MGU, indicates that the two

formulas do not unify.

 24 The assignment operator

` 28 The RHS follows from the inference proce-

dures from the LHS

; 82 The successor relation for actions.

� 82 The transitive closure of ;.

� 56 An axiomatization of the agent's knowl-

edge in the initial state.

� 86 A goal given to the agent



�

'

(a) 51 Secondary precondition of e�ect � of action

a. The * stands for the type of e�ect. . . .

�(x; tv1! tv2) 60 Indicates an update to the truth value of x

from tv1 to tv2. Possible truth values are

T, F and U.

S

p

q

!S

c

83 A causal link, recording the commitment

to support precondition q of action S

c

with

an e�ect of action S

p

.

"

a

44
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Glossary of terms and symbols (continued)

Term Page Defn

� Always used as a variable to represent vari-

able binding constraints or instantiations

of variables.

�

tv

P

(a) 51 Secondary precondition for observational

e�ect of action a.

�

a

44

�

a

'

52 The conditions under which action a pre-

serves ' being true.

�

a

'

52 The conditions under which action amakes

' true.

� 92 The universal base

� Always used to represent a literal.

� Always used to represent a formula.

 Always used to represent a literal.

	 Always used to represent a formula.

fag

n

1

33 A sequence of actions from a

1

to a

n

.
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Chapter 1

INTRODUCTION

In the jigsaw-puzzle approach to building intelligent agents, the agent is divided

into a number of parts, such as a \knowledge base" (to capture the agent's beliefs), a

\planner" (to �gure out what to do next), \sensors" (such as vision algorithms), and

so on. Researchers are then supposed to go o� into their separate corners to build

their respective pieces in the hope that these pieces can be assembled into a complete

agent. Most of the work in planning has been in this spirit, treating a planner not

as an integral part of an agent that must �nd its way in a complex world, but as a

function that maps a goal description into a sequence of actions, without interacting

with the world in any way.

While divide-and-conquer is an e�ective method of tackling hard problems, as

Rodney Brooks [4] complained, in paying too much attention to the piece, and not

enough to the puzzle, we are in danger of solving an irrelevant problem | designing

a piece that will never �t together with the other pieces to form a competent agent.

1.1 Planning for Softbots

This thesis reports on the design of a planner that was integrated from day one with a

working software agent, the Internet Softbot [26], rather than consisting of an isolated

puzzle-piece. Because of this design constraint, much of the work is concerned not

with the planning algorithm per se, but with the knowledge representations needed by

the agent as a whole to behave competently in its environment. Figure 1.1 shows the
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architecture of the Softbot. The three main contributions of this thesis are the three

shaded regions of the �gure: The planner, called puccini, and the representations of

knowledge and actions.

1

The word softbot stands for software robot. For our purposes, a softbot is an

intelligent, autonomous software agent, loosely analogous to a robot, except whereas

a robot lives in the physical world, a softbot lives in a software world, such as UNIX

or the Internet. So instead of having grippers, a softbot has commands like mv,

2

to

move �les around. And instead of having cameras or range �nders, a softbot has

sensors like ls to list �les, or finger to �nd information about a user.

LCW
 Knowledge 

PUCCINI
Planner

SADL
Actions

Task
Manager

EffectorsSensors

UNIX, Internet & World Wide Web

Figure 1.1: The Internet Softbot

We want our softbots to perform useful tasks for us. Ideally, we just say what

we want, and rely on the softbot to �gure out how to accomplish it. For example,

I might ask my softbot to �nd a colleague's phone number or to fetch and print

1

Portions of this thesis were previously published in [34, 25].

2

For readers unfamiliar with UNIX, a brief description of UNIX commands can be found in Sec-

tion 1.4.2.
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some papers from some online repository. Goals like these require the softbot to

integrate multiple resources. There is no single command that will �nd and print

papers from an online repository; the softbot will need to �rst �nd out where the

repository is, which will require sensing, then fetch the papers using ftp, and �nally

print them out. We also want our softbots to be easily adaptable to changing software

environments. Internet resources come and go all the time; it should be as simple as

possible to \instruct" our agents about new resources when they become available,

and the softbot should continue to function when resources go away. This argues for

a declarative representation; if the representation were procedural, then any time a

resource changed or vanished, many procedures would potentially need to be changed,

but with a declarative representation, only a single description of the resource would

need to be added or removed.

1.1.1 Planning

The problem just described strongly resembles the AI planning problem. A planner

takes as input a goal, a declarative description of the actions it can execute, and

a description of the initial state of the world, and produces as output a sequence

of those actions that, when executed, will solve the goal. It would seem like all we

need to do is encode the commands and resources at the softbot's disposal as planner

actions, and we can then use a planner to build our softbots. However, it's not

quite that simple; most of the past work in planning has focused on toy domains,

such as the Blocks World, and has made all sorts of unrealistic assumptions, such

as the infamous Closed World Assumption (i.e., that the agent is omniscient) and

the assumption that executing actions will always produce the intended result (i.e.,

that the agent is infallible). The challenge then, and the focus of this thesis, is to

relax some of these assumptions, and extend planning technology to handle the task

of building softbots.

Note that planners make all sorts of assumptions; this thesis does not attempt to
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tackle all of them | only the ones that get in the way of building softbots, such as the

assumptions of omniscience and infallibility just mentioned. While we don't assume

the agent's information is complete, we do make the strong assumption that it is

correct; for this assumption to be valid, the agent would need be be informed about

any changes to the outside world that would invalidate its beliefs. Nor do we deal

with uncertainty. Information is said to be uncertain when it is believed to be true

with some probability. This is important, for example, when relying on noisy sensors.

It is often possible in software environments to provide sensors that are noise-free, so

we only address the problem of incomplete information, meaning that there are facts

that the agent doesn't know, but those facts it does know, it is certain about.

1.1.2 Knowledge Representation

It turns out that when we try to scale planners up to build softbots, we run into all

sorts of representational problems; the traditional representations of used by planners

are inadequate for describing the actions and knowledge used by software agents. It

is well-known in AI that there's a tradeo� between tractability and expressiveness.

Because of this tradeo�, we would like our languages to be as expressive as we need,

but no more so.

Information  � Tractability Expressiveness �!

Complete strips adl Situation Calculus

Incomplete uwl SADL Moore et al

If we look at action languages for planning with complete information about the

world (i.e., making the Closed World Assumption) we �nd that Pednault's adl [69]

nicely captured the middle ground between inexpressive strips [29] and the ex-

pressive situation calculus. [60] But before the work described here, there was no

middle-ground language for planning with incomplete information. At one end of the

spectrum, we �nd languages like uwl [27], which is based on strips, and at the
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other end, we �nd very expressive languages by Moore [63], Morgenstern [64, 65] and

others [17, 9, 80], for which no practical planners have ever been written. In this

thesis, we present sadl, a language that provides enough expressiveness to encode

rich software domains, while still lending itself to practical planning.

Information  � Tractability Expressiveness �!

Complete Closed World Assumption (CWA)

Incomplete OWA LCW Circumscription

We �nd a similar tractability/expressiveness spectrum for knowledge representa-

tion languages. If we look at ways of representing an agent's incomplete information

about the world, we see that at one end of the spectrum, the agent can make the Open

World Assumption (OWA), an assumption of ignorance, which is the exact opposite

of the Closed World Assumption. At the other extreme, the agent could use some

form of circumscription [59], which in general is undecidable. Once again, we would a

like representation in between these two extremes. We provide such a representation,

in the form of Local Closed World knowledge (LCW).

Since we want to use a planner to build softbots, we obviously need to represent

actions that the softbot will use, such as ls and finger, and goals that we would

like the softbot to solve, such as \Rename paper.tex to kr.tex" or \Print all �les in

directory papers." We would like the softbot to be able to solve these goals even in

the presence of incomplete information. For example, the softbot may not know what

�le has the name paper.tex, and it may not know what �les are in the directory

papers. While these goals and actions are simple, no implemented planner prior to

the one reported in this thesis could express and reason about them them adequately.

1.2 The sadl action language

sadl is based on both uwl [27] and adl [69], both of which are based on strips.

uwl extends strips by representing incomplete information and sensing. adl extends
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strips by adding universal quanti�cation and conditional e�ects. By combining both

languages, sadl can represent goals and actions that neither alone can represent. For

example, by combining universal quanti�cation (from adl) with observational e�ects

(from uwl), sadl can represent actions, like ls, that return an unbounded amount

of information (listing all �les in a directory, regardless of how many there are).

1.2.1 Annotations in sadl and uwl

Both sadl and uwl extend strips by adding annotations to goals and e�ects. The

following are the annotations common to both languages. Goal annotations include

satisfy and hands-o�. satisfy means \achieve the goal by whatever means possi-

ble." Readers familiar with planning will note that all goals in a classical planner

are, in fact, satisfy goals. hands-o� indicates a maintenance goal. It means \don't

change this condition under any circumstances."

E�ect annotations are cause and observe. cause e�ects describe changes to the

world, and are just like all e�ects in a classical planner. observe e�ects describe

changes limited to the agent's knowledge about the world, and are used to encode

sensors.

To see how these annotations work in practice, consider the goal of �nding and

deleting some �le named core. There are two components to this goal; we want to

�nd a �le named core, and we want that �le to be deleted. We might be tempted

to represent this goal as: satisfy(name(f , core)) ^ satisfy(deleted(f)). But if we

do, we'll have a problem. Since satisfy means achieve the goal by any means, one

way of achieving satisfy(name(f , core)) would be to rename some existing �le, such

as thesis.tex to core: mv thesis.tex core. But that would be a disaster, since

then thesis.tex would be deleted, which was not the intent of the goal. One way

to prevent this would be to state explicitly that the name of the �le is not allowed

to change: hands-o�(name(f)). The hands-o� will prevent the agent from using

the UNIX mv command to rename some existing �le to core, but still allows the
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agent to passively sense the �le's name, using an e�ect annotated with observe.

Note that the combination of satisfy and hands-o� can be interpreted as \look, but

don't touch," and is one possible interpretation of an information goal, or a goal of

acquiring information about the world. In fact, this is the interpretation used by the

uwl language. We argue, though, that this interpretation is overly restrictive.

1.2.2 Information Goals

The reason it is overly restrictive is that information goals are inherently temporal.

Whenever I ask for the truth value of some uent (i.e., a proposition that changes

over time), the question is simply ambiguous unless I specify the time at which I want

to know that uent's truth value. For any information goal, there are two time points

that are potentially of interest: the time when the truth value of the uent is sampled

and the time when the information about the uent is returned. For example, I could

ask someone to tell me now who was president in 1883, or I could ask someone to

tell me tomorrow who is president now. Going back to the example of �nding the

�le named core, what I meant to say was \Tell me as soon as possible the �le that's

now named core. The reason the satisfy + hands-o� (\look, but don't touch")

interpretation of this goal works is that the hands-o� forces the �le to have the same

name at both time points (now and when the goal is achieved) and at all times in

between, so whatever time I was interested in, I will get the correct answer. However,

in general, using hands-o� is overly restrictive.

To see why, consider another goal: \Rename paper.tex to kr.tex" The inter-

esting thing about this goal is that we're using the name of the �le, paper.tex as

a designator, to identify it to our agent, and then asking that the designator be

changed. There are two di�erent time points implicit in this goal: the time the �le is

named paper.tex and the time the �le is named kr.tex. The uwl goal annotations

satisfy and hands-o� can only express goals with respect to a single time point: the

time the goal is achieved by the agent. This limitation is not unique to uwl; most
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other action languages have the same restriction. We can represent the above goal,

however, by adding a minimal notion of time to the language. We do this with the

initially annotation, which refers explicitly to the time when the goal was given the

the agent. With initially, we can express the above goal as follows: initially(name

(f , paper.tex)) ^ satisfy(name (f , kr.tex))

Note that initially gives us an absolutely minimal representation of time. We

can only express goals with respect to two time points: the time the goal was given

to the agent and the time when the goal was achieved. We could also express this

goal with temporal logic. The reason we don't is that planning with temporal logic

tends to be computationally expensive, whereas the initially annotation adds no

computational overhead to the planner. Furthermore, it captures the kinds of goals

that we're interested in.

Going back to the goal of �nding and deleting the �le named core, what we really

want to say is \�nd the �le initially named core, and delete that �le":

initially(name (f , core)) ^ satisfy(deleted (f))

We don't need hands-o�, since changing the name of the �le won't help identify the

�le initially named core; it will only obscure the identity of that �le. Furthermore,

once the agent has identi�ed the correct �le, there's no reason a priori that it should

avoid renaming it afterward. If renaming the �le helps to solve the goal, it should go

ahead and do so; it will still delete the correct �le.

Using initially also allows us to represent tidiness goals [87]: goals of having the

agent clean up after itself. For example, I keep my postscript �les compressed, to save

disk space. If my agent prints a �le for me, I want to make sure it recompresses the

�le afterward. I can achieve this by assigning the variable tv to the truth value of the

proposition that the �le is initially compressed, and requiring that the proposition

have the same truth value when the goal is achieved:

initially(compressed (paper), tv) ^
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action ls(d)

precond: satisfy(current.shell(csh)) ^

satisfy(protection(d, readable)) ^

effect: 8 !f when in.dir(!f, d)

9 !p, !n

observe(in.dir(!f, d)) ^

observe(pathname(!f, !p)) ^

observe(name(!f, !n))

Figure 1.2: UNIX action schema. The sadl ls action (UNIX ls -a) to list all

�les in a directory.

satisfy(printed (paper)) ^

satisfy(compressed (paper), tv)

However I don't need to specify the truth value of the proposition any time in

between. This allows the agent to uncompress the �le, print it, then recompress it.

By combining universal quanti�cation with observational e�ects, we can also rep-

resent actions that return an unbounded amount of information about the world.

Figure 1.2 shows the sadl encoding of the UNIX command ls -a, which lists all

of the �les in some directory d. The key thing to note is that there is a universally

quanti�ed observational e�ect. For all �les f in directory d, the agent will observe

the �le's name, length, etc.

1.2.3 Knowledge Preconditions

One of the representational problems we grappled with when designing the Softbot

concerned the use of knowledge preconditions to encode the information needed by

the agent to execute an action. In the process, we uncovered some subtle problems
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underlying the use of knowledge preconditions.

Moore [63] introduced two types of knowledge preconditions needed by an agent

trying to achieve some condition P by executing an action. Namely,

1. The agent needs to know what that action is (i.e., it needs an unambiguous

executable description of the action) and

2. The agent needs to know that executing the action will in fact achieve P.

The �rst case is not a problem in our representation because the agent always

has an unambiguous description of the actions it executes. For an example of the

second case, suppose we want to call Avogadro by executing the action dial.phone

(602-1023). In order to know that this action to has the intended result, we need

to know that 602-1023 is indeed Avogadro's number and, furthermore, that he'll be

home. Note that this presupposes that the agent must know in advance that the

action will have its intended outcome. This is a perfectly reasonable requirement

for classical planners, but is completely unreasonable when planning with incomplete

information.

To see what the problem is, we will �rst consider Moore's example of opening

a safe, when we happen to have the combination to the safe written on a piece of

paper. Our goal is for the safe to be opened, which we can achieve by dialing the safe's

combination: dial(n). But in order to know that the action will succeed, we need to

know that n is the combination of the safe. We can achieve this goal by reading the

piece of paper. Thus, we may be tempted to specify knowing the combination as a

precondition of the dial action.

But let's consider another example: suppose we want to �nd out whether the

combination of the safe is 31-24-15. We can obviously use the dial action to achieve

this goal; namely, dial 31-24-15. If the safe opens, then that was the right combi-

nation. However, if we specify knowing the safe's combination as a precondition of
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dial, there's no way we can use dial to achieve our goal, because dial will have the

precondition of knowing that the combination is 31-24-15, which is what we were

trying to �nd out in the �rst place.

Now consider an even more extreme example: suppose we want to open the safe,

but we don't know the combination and don't have it written down anywhere. The

goal is still solvable: There is only a �nite number of combinations; why not try all

of them? For point of reference, Richard Feynman estimated that he could open a

safe using this method in about four hours on average. [28]

While rigid knowledge preconditions are clearly a problem, it is still necessary for

an agent to gather information: to reduce search or avoid dangerous mistakes. Most

importantly, the agent needs su�cient knowledge so that after it has completely

executed its plan, it knows whether it has achieved its goal. However, it is not

always necessary, before executing any given action, to know that the action will

have its intended result. In the examples above, the agent doesn't need to know,

before executing the dial action, that the action will succeed. It su�ces to verify

afterward that the action succeeded. As we discuss in Section 3.2.6, the solution is

to eliminate rigid knowledge preconditions, and provide the planner with a exible

means (discussed in Section 5.2.7) for adopting subgoals of obtaining information

when needed and for making assumptions that will be veri�ed later.

1.3 Local Closed World Knowledge

Before we discuss Local Closed World knowledge (LCW), we will �rst motivate it

by discussing the obvious alternatives. Classical planners make the Closed World

Assumption (CWA). That is, their representation consists entirely of a list of facts

that are true, and anything not on that list is assumed to be false. This is equivalent

to assuming that they know everything. This assumption is obviously unrealistic for

real-world agents.
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The solution adopted in many planners that deal with incomplete information

(e.g., [1, 67, 27, 47, 73]) is to make the opposite assumption, which we call the Open

World Assumption (OWA). That is, the agent has a list of facts that are true and

facts that are false, and anything not listed is assumed to be unknown. While the

OWA is obviously an improvement over the CWA, there are some problems with it

as well: Planners that make the OWA fall victim to a problem called Sensor Abuse,

and they can't solve universally quanti�ed goals.

1.3.1 Sensor Abuse

The term Sensor Abuse [58, 61] was �rst used to describe robots that just don't know

when to stop sensing. The problem also exists in software domains, and is a particular

problem with planner-based agents. The problem with planners is that they're so darn

systematic. Often there are many di�erent sensing actions that will �nd the same

bit of information, and there may be many viable information-gathering plans that

contain many of the same sensing actions. A persistent planner that doesn't know

when to quit might consider a huge number of plans that gather the same bits of

information. We would like our agents to realize that after executing the command

find / -name foo, which �nds all �les on the �lesystem named foo, that

� Executing ls bin won't reveal more �les named foo.

� Executing ls tex won't reveal more �les named foo.

� On the other hand, going to a Web search engine like Alta Vista may reveal

more �les named foo, since Alta Vista returns the contents of many �lesystems,

not just one.

A planner that makes the OWA cannot perform this sort of reasoning. In fact, even

after executing ls bin and �nding no �les, the agent will not be able to conclude
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that there is no �le named foo in bin. While this may seem odd, remember that the

agent's entire knowledge representation consists of a list of things that are true and

a list of things that are false; and both lists are necessarily �nite. However, there are

in�nitely many possible �les that are not in bin. Unless the agent speci�cally listed

the fact that foo is not in bin, it doesn't know that foo is not in bin.

1.3.2 Universally Quanti�ed Goals

Another problem with planners that make the OWA is that they can't solve univer-

sally quanti�ed goals. To see why this is, let's consider how a classical planner solves

a universally quanti�ed goal. Given the of putting all blocks on the table, assuming

the only blocks are A, B and C, then the planner will replace the original goal with

the goal of putting A on the table, putting B on the table and putting C on the table.

This approach obviously depends on the agent knowing all the blocks, but that's no

problem for a classical planner, since the CWA means it knows everything.

A planner that makes the OWA can never conclude that it knows all the blocks,

thus it can never solve a goal such as \put all blocks on the table."

1.3.3 Local Closed World Knowledge

What we need, obviously, is a way to represent the fact that the agent knows all

blocks on a table, all �les in a directory, etc. We call this knowledge local closed world

knowledge, or lcw. Formally speaking, lcw is a restricted form of circumscription,

but unlike full circumscription, it provides fast inference and updates. Furthermore,

lcw is speci�cally tailored to the action languages used by modern planners, like

the sadl language described in this thesis. The synergy between sadl and lcw is

especially nice; lcw knowledge can be naturally inferred from sadl encodings of

actions such as the UNIX command ls, which lists all �les in a directory.

With lcw, we can represent a statement like \I know all �les in directory bin"
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quite simply. If the relation in.dir(f , bin) means �le f is in directory bin, then the

formula

lcw(in.dir(f , bin))

means the agent knows all �les f satisfying that relation, i.e., all �les in bin. This is

equivalent to saying that for all �les f , either the agent knows that f is in bin or the

agent knows that f is not in bin. This latter statement corresponds to an in�nite

number of false statements; it was precisely the inability to represent an in�nite

number of false facts that created a problem with the OWA.

We represent this information using two databases: M and L. M is a database

of ground literals, and is exactly the same as the representation used by the agents

that make the OWA. That is, we list facts that are true and facts that are false. We

augment this database with another database, L, which contains lcw formulas that

describe the contents ofM. For example,M might consist of the following facts:

� in.dir(bar, papers)

� in.dir(core, papers)

� : executable(core)

And L might consist of the lone lcw formula lcw(in.dir(f , papers)), meaning

that the agent knows all �les in papers. Performing inference using these databases

is straightforward. Suppose we ask whether some �le foo is in directory papers.

The agent can check in M to see whether there's any statement to the e�ect that

foo is or is not in papers. If there were such a statement, it would just return that

information. Since no such fact is stored in M, the agent checks L and discovers

that it knows all �les in papers. Since it knows all the �les in papers, and it doesn't

know about �le foo, it follows that foo is not in papers. If there hadn't been such

an lcw formula, the agent would have concluded that it didn't know.
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1.3.4 Local Closed World Reasoning

The notion of closed world reasoning is not new; the information in L lcw database

is equivalent to the \closed roles" found in knowledge-representation systems such

as classic [2] and loom [3], to predicate completion axioms [8, 46] and, as we

mentioned, circumscription axioms [59, 56]. However, none of the earlier work was

well-suited to the needs of a planner-based agent, i.e., the ability to express and

e�ciently reason about the changes to the agent's closed-world knowledge that result

from executing actions. This reasoning requires the agent to be able to quickly answer

questions like the following:

Inference:

� If I know all �les in tex, and I know the size of every �le, then do I know the

size of every �le in tex?

Updates:

� If I know the size of every �le in tex, and I remove a �le from tex, do I still

know the size of every �le in tex?

� What if I add a �le to tex?

In Chapters 2 and 3, we discuss how this reasoning is performed. Obtaining

fast lcw reasoning is a challenge, since (as we mentioned) full circumscription is

undecidable, and (as we will discuss) even for propositional theories, lcw reasoning,

over arbitrary formulas containing disjunction and negation, is NP-hard. Since we

need fast lcw reasoning, we limit lcw formulas to positive �rst-order conjunctions.

In Chapters 2 and 3, we show that this representation gives us polynomial-time

inference and updates. In Chapter 7, we show empirically that this reasoning is fast.
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1.4 Reader's Guide

1.4.1 Typographic Conventions

The following conventions are used throughout this thesis. The names of languages

or algorithms described in the literature or presented in this thesis are printed in

Small Capitals. Symbols in italics denote variables and symbols in typewriter

font denote constants. Special keywords and annotations are in bold. Names of

procedures are in san serif.

For the sake of clarity, symbols used to denote variables representing various sorts

of objects are always used consistently throughout this thesis. � and 	 are always

used to denote formulas and ' and � are used to represent literals or atomic formulas

The Greek letters �, � and � are used to denote substitutions, or mappings from

variables to constants, and �� denotes the result of applying the substitution � to

the formula �. a is used to indicate an action and s is used to indicate a situation,

or state of the world.

1.4.2 UNIX commands

The examples in this thesis all come from the UNIX and Internet domain (example

operators from this domain can be found in Appendix B). For those readers who

are unfamiliar with UNIX, we provide a brief explanation of the UNIX commands

mentioned in examples in this thesis. Those readers familiar with UNIX will want to

skip ahead to page 19. Variable arguments to commands are shown in italics.

� cd dir changes the current directory to dir. Many commands treat the current

directory as an implicit argument.

� chmod perm file changes the read, write and execute permissions of file, as-

suming the user owns the �le in question. There are three categories of users

who can be given or denied permission to access a �le: the \user" who owns
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the �le, the \group" to which the �le belongs,

3

and \other," meaning everyone

else. A �le is said to be \group writable" if members of the group associated

with the �le have write permission for the �le. chmod * uses the UNIX wildcard

character * to change the permissions on all �les in the current directory.

� cp source dest makes a copy of the �le source in the speci�ed �le or directory,

dest.

� finger user[@host] provides information about users, including name, email

address and whether the user is currently logged on. If the user is logged on,

finger will display how long the user has been \idle" (hasn't typed anything).

If the user isn't logged on, finger will display how long ago the user last logged

on. finger also displays the contents of a �le, named \.plan", in the user's

home directory. This �le usually contains other personal information, such as

phone number, address, and funny quotes the user would like to share.

� ftp host is used to transfer �les between di�erent computers on the Internet.

� grep regexp file+ lists all occurrences of the regular expression regexp in the

given �le(s). The regular expression could simply be a string, in which case

grep lists all occurrences of that string in the �le(s).

� INSPEC is a bibliographic database for science and engineering publications. It

is accessible indirectly by means of telnet, a program for connecting to another

computer on the Internet.

� lpr file -Pprinter schedules file to be printed to printer.

3

A group is a collection of users, such as all people working on a given project, or all graduate

students in a department. Users can belong to multiple groups, but every �le belongs to exactly one

group. A user is free to give members of the group no privileges with respect to a �le.
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� lpq -Pprinter is used to �nd out what �les are scheduled to print, or currently

printing, on printer.

� ls -la filejdir lists all �les in dir

4

or lists information about file.

� mv source dest changes the pathname of source to dest, which could involve

changing its name, parent directory, or both.

� netfind is an Internet resource accessed by the telnet command. It provides a

guess of a user's email address given that user's last name and location. Location

can be speci�ed by institution, city, state, country, etc. The exact information

provided is up to the user, but if the location is either under-constrained or

over-constrained, netfind will fail.

� pushd dir is like cd except that before changing the current directory to dir,

it stores the (original) current directory on a stack.

� popd is like cd, except that instead of taking a directory argument, it pops the

directory argument from the top of the stack written to by pushd, and makes

that directory current. Thus popd reverses the e�ect of pushd.

� pwd displays the current directory.

� rm file deletes file. rm * deletes all �les in the current directory.

� wc lists the name, line count, word count and character count of a given �le.

wc * provides the same information for all �les in a directory.

4

Along with sundry information about the �les, such as size, owner, permissions, and time of last

modi�cation to be listed.
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1.4.3 Road map

A glossary appears on page xiii, providing brief de�nitions of all nonstandard terms

and symbols used in this thesis, along with page numbers indicating where those

terms are introduced.

The remainder of this thesis is organized as follows. Chapter 2 discusses the

representation of the agent's incomplete knowledge about the state of the world.

Chapter 3 discusses the representation of actions. Chapter 4 describes how these

actions are combined to form plans. Chapter 5 describes the XII planner, which

uses these representations of knowledge and actions to create and execute plans that

achieve a user's goals. Chapter 6 discusses the formal properties of the representations

and algorithms, including soundness and completeness. Chapter 7 o�ers empirical

evaluation of the algorithms presented in the previous chapters. Chapter 8 describes

related and future work.



Chapter 2

INCOMPLETE INFORMATION

2.1 Semantics

We de�ne the semantics of knowledge and action in terms of the situation calculus [60],

a �rst-order logic used to capture changes to the world that come about by the

execution of actions. We will discuss the aspects of the situation calculus that concern

action and change in Chapter 3. Here we focus on the representation of an agent's

incomplete knowledge about the world.

The situation calculus is really a discipline within �rst-order predicate calculus for

representing the state of the world as a function of time. A situation is essentially a

state of the world at a given time. By using situations as arguments to relations, we

can make statements about facts that hold in particular situations (i.e., at particular

times), or about the relationship between two (real or hypothetical) situations. A

uent is a proposition whose truth value may change over time. Every uent, '(x),

takes an additional argument, namely a situation, s. '(x; s) represents the statement

that '(x) holds in situation s. By convention, s is always the last argument of ',

so we will freely add or drop the s, depending on whether we are referring to ' in a

particular situation. Thus, if in.dir(f; d) means �le f is in directory d, in.dir(f; d; s)

means this fact holds in situation s.

Following [68, 31, 80] and many others, we formalize an agent's incomplete infor-

mation with a set of possible world states that are consistent with its information.

At any given time there's one actual situation, s, which holds at that time. For

any ground, atomic sentence ', either '(s) or :'(s). Hence, the set of ground facts
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holding in situation s forms a complete logical theory, which we denote W . How-

ever, if the agent's knowledge is incomplete then it can't know for certain that the

actual situation is s. There are many other situations that, as far as the agent knows,

might hold instead. Following [80] and many others, we represent these situations

using the predicate K. K(s

0

; s) is true if and only if it is consistent with the agent's

knowledge in situation s to believe that the situation could in fact be s

0

. In other

words, fs

0

jK(s

0

; s)g denotes the set of all possible worlds consistent with the agent's

knowledge in situation s. We assume that an agent's knowledge is correct, so the

actual situation is always considered possible by the agent (8s:K(s; s)), We de�ne

KNOW('; s) �8s

0

:K(s

0

; s)) '(s

0

), i.e., ' is true in all worlds consistent with the

agent's knowledge.

While the actual world, represented by the theoryW , is inaccessible to the agent,

reasoning directly with sets of possible worlds is impractical for real-world applica-

tions, so we introduce S to denote the incomplete theory of ground literals known by

the agent.

S � f' j KNOW('; s)g

We say that the agent possesses complete information when S = W . Incom-

plete information means that there are facts, ', such that neither KNOW('; s) nor

KNOW(:'; s); in this case we say ' is unknown to the agent. We say that an atomic

formula, ', has truth value T if KNOW('; s), has truth value F if KNOW(:'; s), or

has truth value U (unknown) otherwise. Note that S is considerably less expressive

than the possible-worlds representation, since it only contains individual ground lit-

erals. We cannot express facts like \Either it is raining and Fido is wet, or it is sunny

and Fido is dry." The most we will be able to conclude from S is that we don't know

if it's raining and we don't know if Fido is wet. However, despite these restrictions, S

is still impractical to reason with, since the number of ground literals may be in�nite.
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2.2 Local Closed World Information

We say that an agent has Local Closed World information (lcw ) relative to a logical

formula � if every ground sentence that uni�es with � is either known to be true or

is necessarily false:

lcw(�) � (KNOW(��)) _ (KNOW(:��)) for all ground substitutions � (2.1)

In essence, this de�nition speci�es which parts of the logical theory, S, are com-

plete (cf. [24] and others). Note that since S is a subset of W, the de�nition of lcw

amounts to a limited correspondence between the agent's knowledge about the world,

represented by S, and the facts that actually hold in the world, represented by W .

As a concrete example, given that in.dir(f,d) means \The parent directory of �le

f is directory d," then we can encode the fact that an agent knows all the �les in the

directory /kr94 with:

lcw(in:dir(f ; /kr94))

If the only �les that the agent knows to be in /kr94 are paper.tex and proofs.tex,

then this lcw formula is equivalent to the following implication:

8f; in.dir(f, /kr94)!

(f = paper:tex) _ (f = proofs:tex)

An lcw formula can also be understood in terms of circumscription [56]. For the

example above, one de�nes the predicate P(x) to be true exactly when in.dir(x,

/kr94) is true, and circumscribes P in the agent's theory.

While our work can be understood within the circumscriptive framework, our

implemented agent requires the ability to infer and update

1

closed world informa-

tion quickly. We have developed computationally tractable closed-world reasoning

1

Following [41, 42] we distinguish between updating a database and revising it. We assume that
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and update methods, applicable to the restricted representation languages used by

modern planning algorithms. In the next section, we explain how to represent lcw

knowledge in a manner that facilitates e�cient inference. Section 2.4 describes the

theory underlying lcw inference and Section 2.5 develops and analyzes an algorithm

for lcw inference using these syntactic structures described below.

2.3 Representing Closed World Information

In this section, we explain how our agent represents its incomplete information about

the world, and how it represents lcw in this context. Clearly, an agent cannot

represent all possible situations (a potentially in�nite set of large structures) explicitly.

Nor can one represent S explicitly, since this theory can contain an in�nite number

of sentences.

Instead we represent the facts known by the agent with a partial database, M,

of ground literals. Formally, M is a subset of S; if ' 2 M then ' 2 S. Since S

is incomplete, the Closed World Assumption (CWA) cannot be applied to M. The

agent cannot automatically infer that any atomic formula absent from M is false.

Thus, the agent is forced to represent false facts inM explicitly, as sentences tagged

with the truth value F.

This observation leads to a minor dilemma: the agent cannot explicitly represent

inM every sentence it knows to be false (there is an in�nite number of �les not in the

directory /kr94). Yet the agent cannot make the CWA. We adopt a simple solution:

we represent local closed world information explicitly as a meta-level database, L,

containing localized closure axioms of the form lcw(�); these record where the agent

has closed world information. Together, theM and L databases specify an agent's

state of incomplete information about the world (i.e., they constitute a partial rep-

our agent's knowledge is correct at any given time point, hence there is no need to revise it. When

the world changes, however, the agent may need to update its theory to remain in agreement with

the world.
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function Query(�,M, L): 3-Boolean

1 let Result  T

2 let LCW  QueryLCW(�,M, L)

3 for each atomic conjunct ' 2 � do begin

4 if :' 2 M then return F

5 else if ' 62 M then

6 if LCW then return F

7 else let Result  U

8 end(* for *)

9 return Result

Figure 2.1: Query, a fast algorithm for determining the agent's belief in a ground

conjunction. Query returns the truth value of �, if � can be deduced fromM. Oth-

erwise it returns either F, if QueryLCW(�) succeeds, or U if QueryLCW fails (QueryLCW

is de�ned in Figure 2.2). We use the notation ' 2 � to signify that ' is one of �'s

conjuncts.

resentation of S).

When asked whether it believes an atomic sentence ', the agent �rst checks to see

if ' is inM. If it is, then the agent responds with the truth value (T or F ) associated

with the sentence. However, if ' 62 M then ' could be either F or unknown (truth

value U). To resolve this ambiguity, the agent checks whether L entails lcw('). If

so, the fact is F; otherwise it is U. Figure 2.1 formalizes this intuitive procedure by

providing pseudocode for the Query algorithm.

Note that the agent need not perform inference on M, since it contains only

ground literals, but it may need to perform some deduction on its lcw sentences. To

make lcw inference and update tractable, we restrict the formulas in L to conjunc-

tions of positive literals. As a result, we lose the ability to represent lcw statements

that contain negation or disjunction such as \I know the protection of all �les in

/kr94 except the �les with a .dvi extension." Thus, for any consistent M, L pair,
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there exists an S that entails the same set of lcw sentences, but the converse is false.

On the other hand, for any theory S, there exists (at least one) pair of databasesM,

L that represents a strict subset of the sentences in S. We call such aM, L pair a

conservative representation of S.

Restricting the expressiveness of L provides signi�cant e�ciency gains. To see

this, consider a singleton lcw query such as lcw(in:dir(f; /kr94)). If L contains

only positive conjunctions, the query can be answered by examining only singleton

lcw assertions indexed under the predicate in.dir. If negation is allowed, however,

then a combination of multiple lcw sentences has to be explored. For instance,

lcw(� ^ 	) ^ lcw(� ^ :	)j=lcw(�). Introducing disjunction as well would make

matters even worse. In general, answering a singleton lcw query, in the presence of

negation and disjunction, is NP-hard.

2

Theorem 2.1 (NP-hardness of lcw queries for unrestricted L) If L contains

unrestricted lcw formulas and p is a single literal, then answering a query lcw(p)

is NP-hard in the size of L.

Since our planner makes numerous singleton queries, we chose to sacri�ce com-

pleteness in the interest of speed and restrict L to positive conjunctions.

2.4 Local Closed World Inference

Correctly answering lcw queries is not a simple matter of looking up assertions in a

database. For instance, suppose the agent wants to establish whether it knows which

�les are in the /kr94 directory, and it �nds that it has lcw on the contents of every

directory. Then, a fortiori, it knows which �les are in /kr94. That is:

lcw(in.dir(f; d)) j= lcw(in.dir(f; /kr94))

2

The proofs for all theorems are in Appendix A.
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In general, we have:

Theorem 2.2 (Instantiation) If � is a logical formula and � is a substitution, then

lcw(�)j=lcw(��).

Moreover, lcw assertions can be combined to yield new ones. For example, if

one knows all the group-readable �les, and for each group-readable �le, one knows

whether that �le is in /kr94, then one knows the set of group-readable �les in /kr94.

In general, if we know the contents of set A, and for each member of A, we know

whether that member resides in another set B, then we know the intersection of sets

A and B. More formally:

Theorem 2.3 (Composition) If � and 	 are logical formulas and lcw(�) and

for all substitutions �, we have that �� 2 S implies lcw(	�), then we can conclude

lcw(� ^	).

Note that if the agent knows all the group-readable �les, and it knows which �les

are located in /kr94, it follows that it knows the set of group-readable �les in /kr94.

This is a special case of the Composition Theorem, in which lcw(	) holds for all �,

but it's interesting in it's own right. In general, we have:

Corollary 2.4 (Conjunction) If � and 	 are logical formulas then

lcw(�) ^ lcw(	) j= lcw(� ^	):

The intuition behind this corollary is simple | if one knows the contents of two

sets then one knows their intersection. Note that the converse is invalid. If one knows

the group-readable �les in /kr94, it does not follow that one knows all group-readable

�les. The rule lcw(�) j= lcw(� ^ 	) is also invalid. For instance, if one knows all

the group-readable �les, it does not follow that one knows exactly which of these �les

reside in /kr94.
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Two additional observations regarding lcw are worth noting. Knowing whether

an element is in a set is equivalent to knowing whether an element is not in the set:

Theorem 2.5 (Negation) If � is a logical formula then lcw(�)j= lcw(:�).

Finally, if one knows the contents of two sets then one knows their union. More

formally:

Theorem 2.6 (Disjunction) If � and 	 are logical formulas then

lcw(�) ^ lcw(	) j= lcw(� _ 	):

As we explain in the previous section, our representation of lcw sentences is re-

stricted to positive conjunctions, so the above theorems are mainly of only theoretical

interest. Given an lcw query containing disjunction and negation, an agent could

use the previous two theorems to break it down into conjunctive lcw formulas, how-

ever, such an inference procedure might result in many false negatives. If the query

succeeds, the original lcw formula is guaranteed to be true, but since but nothing

can be concluded from a negative result.

2.5 Inference Method

We have discussed the semantics of lcw entailment in terms of S, but since the agent

has access only to the syntactic representations L andM, we must describe inference

in terms of these databases. As it turns out, the actual inference procedure directly

corresponds to the Instantiation and Composition Theorems (Theorems 2.2 and 2.3).

We can de�ne the transitive closure of L using the following two rules.

1. Instantiation Rule If lcw(�) 2 L and � is a substitution, then L

0

 L [

flcw(��)g.



28

2. Composition Rule If lcw(�) 2 L and for all ground substitutions � (�� 2

M) lcw(	�) 2 L) then L

0

 L[ flcw(� ^ 	)g

Given the direct correspondence between these two rules and Theorems 2.2 and 2.3,

this inference process (denoted `) is clearly sound. Unfortunately, however, the in-

ference rules are incomplete.

Theorem 2.7 (Incompleteness) Let M be a set of consistent ground literals and

let L be a set of positive conjunctive lcw formulas. There may exist an lcw formula

lcw(�) that logically follows from L andM, but which is not in the transitive closure

of L given the Instantiation and Composition rules.

Fortunately, the incompleteness of these inference rules is not a problem in prac-

tice. Section 7.2.2 provides an empirical demonstration that they miss substantially

fewer than 1% of the lcw inferences requested during Softbot operation.

Note that maintaining an explicit transitive closure of L is impractical. For each

lcw formula in L, the Instantiation Rule alone generates a number of new lcw

formulas that is polynomial in the number of objects in the universe. Given �nite

memory resources, we choose instead to compute the closure lazily, by performing the

necessary inference during queries. Figure 2.2 shows the inference algorithm.

3

Since

the correctness of this backward-chaining algorithm is less obvious than that of the

inference rules used to de�ne the transitive closure, we prove soundness formally.

Theorem 2.8 (Soundness) Let M be a set of consistent ground literals and let L

be a set of positive, conjunctive lcw formulas such thatM and L form a conservative

representation of S. If QueryLCW(�, M, L) returns T then lcw(�).

In the worst case, QueryLCW has to consider all possible decompositions, which is

exponential in the number of conjuncts in the query.

3

This algorithm omits the conjunction rule, since it is subsumed by the composition rule. In

practice, the conjunction rule is applied when applicable, since it is more e�cient.



29

function QueryLCW(�,M, L): Boolean

1 QLCW*(�, fg,M, L)

function QLCW*(�, Matches,M, L): Boolean

1 if � = fg then return T

2 else if � is ground and 9' 2 �;:' 2 M or 8' 2 �; ' 2 M

then return T

3 else for C such that lcw(C) 2 L do

4 for �

0

� � such that 9�;�

0

� C� do

5 if (C� � �

0

) � Matches ^ j�

0

j > 0 then

6 if 8� 2 ConjMatch(Matches [ �

0

,M)

QLCW*((�� �

0

)�, (�

0

)�,M,L)

then return T

7 return F

Figure 2.2: The QueryLCW algorithm determines whether a conjunctive lcw state-

ment follows from the agent's beliefs as encoded in terms of theM and L databases.

Since L is restricted to positive conjunctions, lcw inference is reduced to the problem

of matching a conjunctive lcw query against a database of conjunctive lcw asser-

tions. A successful match occurs when repeated applications of the Composition Rule

(line 6) decompose the query into sub-conjunctions, which are directly satis�ed by

the Instantiation Rule applied to L (line 4) or reduced to ground formulas and found

inM (line 2). Note that unlike Query, the QueryLCW algorithm allows variables in its

� input. QueryLCW calls the QLCW* helper function which calls ConjMatch in turn.

ConjMatch(C,M) performs a standard conjunctive match, returning all bindings �,

such that M j= C�. The variable Matches represents all conjuncts of the original

query that have so far been matched by some lcw formula. The query is satis�ed

when all conjuncts have been matched. Matching against a conjunct multiple times

is permitted, which is why �

0

� C� in line 4 and (C���

0

) �Matches in line 5. Line

5 guarantees that progress is made in each recursive invocation, so the depth of the

recursion is bounded by the number of conjuncts in �. We use the notation � � �

0

to denote the conjunction � with conjuncts in �

0

omitted.
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Theorem 2.9 (Complexity of QueryLCW) Let � be a positive conjunction with c

conjuncts, letM be a set of ground literals, and let L be a set of positive conjunctive

lcw sentences. In the worst case, QueryLCW(�, M, L) may require O(jLj

c

jMj

c

)

time.

For our purposes, the number conjuncts in an lcw query is bounded by the

planning domain theory (i.e., the set of available actions) used by the agent. In

our softbot's domain (see Appendix B) for example, lcw queries are typically short

(c � 2) and never greater than 4. As a result, the worst case complexity is polynomial

in the size of L and M. With the aid of standard indexing techniques, this yields

extremely fast lcw inference in practice. In our experiments, lcw queries averaged

about 2 milliseconds (see Section 7.2 for the details).

2.6 Summary

We have presented a representation of incomplete information, which is described

semantically in terms of the situation calculus and a possible-worlds interpretation of

knowledge. However, for the sake of tractability, this representation uses three-valued

logic and lcw formulas to represent the agent's locally complete information. We

have presented sound inference mechanisms for this lcw knowledge, and have shown

that the inference can be done in polynomial time.

In the next chapter, we discuss changes to this knowledge brought about by the

execution of actions. We also discuss goals, including goals of acquiring information.



Chapter 3

ACTION AND CHANGE

One of the stumbling blocks to past research in planning with incomplete in-

formation has been inadequate or imprecisely de�ned languages for representing in-

formation goals and sensing actions. Many researchers have devised formalisms for

reasoning about knowledge and action [63, 64, 65, 17, 9, 80, 51], but those languages

are too expressive to be used in practical planning algorithms. uwl [27] o�ered a

more tractable representation (based on strips) that was tailored to current plan-

ning technology, but as Levesque [51] observes, the semantics of uwl are unclear

| the de�nitions were made relative to a speci�c planning algorithm. In our ef-

forts to de�ne a semantics for uwl, we determined that uwl confused information

goals with maintenance goals, and conated knowledge goals with knowledge pre-

conditions. Furthermore, years of experience with uwl convinced us that it wasn't

expressive enough to fully handle the real-world domains (e.g., unix and the Inter-

net) for which it was intended. Since uwl didn't support universal quanti�cation or

conditional e�ects, it could not correctly represent the unix command ls, which lists

all �les in a directory, or rm *, which deletes all writable �les.

In this chapter, we present the action representation language sadl,

1

which com-

bines ideas from uwl with those from Pednault's adl [71, 69]. Just as adl marked

the \middle ground" on the tractability spectrum between strips and the situation

calculus, sadl o�ers an advantageous combination of expressiveness and e�ciency.

Since sadl supports universally quanti�ed information goals and universally quanti-

1

sadl (pronounced \Saddle") stands for \Sensory Action Description Language."
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�ed, conditional, observational e�ects, it is expressive enough to represent hundreds

of unix and Internet commands (see Appendix B for some examples). Indeed, four

years of painful experience writing and debugging the Internet Softbot [26] knowl-

edge base forced us to uncover and remedy some subtle confusions about information

goals:

� In a dynamic world, knowledge goals are inherently temporal | If proposi-

tion P is true at one time point and false in another, which time point do we

mean when we ask about P 's truth value? Since uwl has limited provision to

make temporal distinctions, it cannot encode an important class of goals. In

particular, uwl cannot express goals that require causal change to attributes

used to designate objects, e.g., \Rename the �le paper.tex to kr.tex." (See

Sections 3.2.2 and 3.2.3 for the sadl solution)

� We identify a large class of domains, called Knowledge-free Markov domains,

and argue that actions in these domains are best encoded without knowledge

preconditions. The multiagent scenarios that inspired Moore, Morgenstern,

and others are not knowledge-free Markov, but UNIX and much of the Internet

are. While sadl discourages knowledge preconditions it recognizes the need for

knowledge subgoals. (Section 3.2.6 elaborates).

Section 3.1 discusses how the semantics of sadl are described using situation

calculus. Section 3.2 describes problems with the uwl formulation of knowledge

goals and presents the sadl solution. In Section 3.3, we discuss observational e�ects

of actions, and causal e�ects, which can decrease the agent's knowledge about the

world. We also demonstrate the representational adequacy of sadl by presenting

encodings for 50 of the UNIX commands (see Appendix B). In Section 3.4 we discuss

temporal projection in sadl. In Section 3.5 we discuss how executing actions a�ects

lcw knowledge.
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3.1 The Situation Calculus

Although the semantics of uwl was de�ned procedurally [27], we provide sadl's se-

mantics in terms of the situation calculus (discussed in Section 2.1). All state changes

are assumed to result from the execution of actions. The special function DO is used

to describe these changes: DO(a; s) returns the situation resulting from executing

action a in situation s. We use fag

n

1

to represent the sequence of actions a

1

; a

2

;

. . . ; a

n

. DO(fag

n

1

; s) denotes nested application DO(a

n

;DO(a

n�1

; : : : ;DO(a

1

; s))),

i.e., the result of executing the entire sequence, starting in situation s. We use s

0

to

represent the initial situation and we use s

n

as a shorthand for DO(fag

n

1

; s

0

). Our

formulation of sadl is based on Scherl and Levesque's [80] solution to the frame prob-

lem for knowledge-producing actions. We adopt their Completeness Assumption, and

their formulation of incomplete knowledge (as discussed in Chapter 2), and thus their

results (i.e., the persistence of knowledge and of ignorance) hold for us as well.

The Completeness Assumption is essentially the strips assumption | that is, all

changes produced by executing an action are listed in the action's e�ects, so anything

else can be assumed to stay the same. This holds for the K operator as well as

ordinary uents, giving us persistence of knowledge. The Completeness Assumption,

like the strips assumption, is used to solve the frame problem, but in the situation

calculus, this assumption needs to be axiomatized explicitly. We discuss how the

frame problem is solved in the framework of the situation calculus in Section 3.4.

Another standard assumption we adopt is the Unique Names Assumption. That

is, for all situations s

1

, s

2

and all actions a

1

, a

2

, DO(a

1

; s

1

) = DO(a

2

; s

2

) if and

only if a

1

= a

2

and s

1

= s

2

. In other words, all situations with unique histories are

unique, even if the conditions that hold in them are the same. This is reasonable,

since situations with di�erent past histories are di�erent by virtue of their histories.

We face a slight complication when we want to say something about sadl goals

and e�ects using the situation calculus, since sadl expressions are not objects in
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the situation calculus. For this reason, we introduce two predicates that take sadl

expressions as arguments: We de�ne ACHV(G; s

0

; fag

n

1

) to mean that the sadl goal

G is achieved in the situation resulting from executing plan fag

n

1

in situation s

0

.

EFF(E; a; s) means E becomes true after action a is executed in situation s

3.2 Goals

In uwl, preconditions and goals were limited to conjunctions of literals, each anno-

tated with one of three tags: satisfy, hands-o�, and �nd-out. The sadl action

language is based on uwl, but uses a di�erent set of annotations: satisfy, hands-o�,

and initially, which provide a cleaner semantics for information goals and greater

expressive power; additionally, sadl uses unannotated literals to designate precon-

ditions that don't depend on the agent's knowledge. Furthermore, sadl supports

universal quanti�cation and conditional e�ects, both of which have interesting ram-

i�cations in the context of incomplete information. We proceed by reviewing uwl,

uncovering some confusions, presenting the sadl solution, and sketching the formal

semantics.

In uwl (and in sadl) individual literals have truth values expressed in a three-

valued logic: T, F, U (unknown). Free variables are implicitly existentially quanti�ed,

and the quanti�er takes the widest possible scope.

2

For example, satisfy(in.dir (f ,

tex), T)

3

means \Find a �le in directory tex." Truth values can also be represented

by variables. For example, satisfy(in.dir (myfile, tex), tv) means \Find out whether

or not myfile is in tex."

2

Explicit quanti�ers can be used to indicate a narrower scope.

3

For notational convenience, an omitted truth value defaults to T, so this could be rewritten as

satisfy(in.dir (f , tex)). We use this shorthand in the remainder of the paper.
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3.2.1 Satisfaction and Maintenance Goals

The goal satisfy(P ) indicates a traditional goal (as in adl [69]): achieve P by what-

ever means possible. In the presence of incomplete information, we make the further

requirement that the agent knows that P is true. Recall that ACHV(G; s

0

; fag

n

1

)

means that goal G is achieved in the situation resulting from executing plan fag

n

1

in

situation s

0

; since we assume the agent's knowledge is correct, it is su�cient to state

that the agent knows P :

ACHV(satisfy(P; T); s

0

; fag

n

1

) � KNOW(P; s

n

) (3.1)

ACHV(satisfy(P; F); s

0

; fag

n

1

) � KNOW(:P; s

n

) (3.2)

ACHV(satisfy(P; tv); s

0

; fag

n

1

) �

(KNOW(P; s

n

) ^ tv = T) _ (KNOW(:P; s

n

) ^ tv = F) (3.3)

Note that when given an (existentially quanti�ed) variable as truth value, a

satisfy goal requires that the agent learn whether the proposition is true or false

(which could be achieved by making it true or false). The variable tv in Equa-

tion 3.3 serves as a proposition that has the same truth value that P has in sit-

uation s

n

. The reason for including it is to ensure that, given a goal such as

satisfy(P; tv) ^ satisfy(Q; tv), we get the correct interpretation that P and Q must

have the same truth value in situation s

n

. Because tv is essentially just a proposition,

in the context of boolean formulas, we will abbreviate tv = T as tv and we will write

tv = F as :tv. If tv only appears once in a formula, its value is unimportant, and

Equation 3.3 can be simpli�ed to:

ACHV(satisfy(P; tv); s

0

; fag

n

1

) �

KNOW(P; s

n

)_

KNOW(:P; s

n

)

(3.4)

In other words, in situation s

n

, the agent knows whether or not P is true.

The hands-o� annotation indicates a maintenance goal that prohibits the agent

from changing the uent in question. As a notational shorthand, we use ORIG

n
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Figure 3.1: The region surrounded by dotted lines represents the set ORIG

n

, the

set of states indistinguishable from s

0

, based on the agent's knowledge in state s

n

.

ORIG

n

is a subset of fs j K(s; s

0

)g, the states that were consistent with the agent's

knowledge in s

0

, since the agent has learned more about what originally held, but

has not forgotten anything it knew originally.

(Figure 3.1) to represent the agent's knowledge in s

n

about the past situation s

0

, i.e.,

the set of situations indistinguishable from s

0

after execution of the plan: ORIG

n

=

fs j K(DO(fag

n

1

; s);DO(fag

n

1

; s

0

))g. The de�nition of hands-o� is then:

ACHV(hands-o�(P ); s

0

; fag

n

1

) �

n

^

i=1

8s 2 ORIG

i

[P (DO(fag

i

1

; s), P (s)] (3.5)

Thus, the de�nition of hands-o� requires that P not change value during exe-

cution of the plan. [27] noted that together, satisfy + hands-o� can be used to

indicate a \look but don't touch" goal: the agent may sense the uent's value, but is

forbidden to change it. While hands-o� goals are clearly useful, we argue that they

are an overly restrictive way of specifying knowledge goals. In particular, they outlaw

changing the value of a uent after it has been sensed.

3.2.2 Knowledge Goals are Inherently Temporal

Before explaining the sadl approach to knowledge goals, we discuss the uwl �nd-out

annotation. �nd-out is problematic because the original de�nition was in terms of a
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particular planning algorithm [27]. The motivation for �nd-out was the existence of

goals for which hands-o� is too restrictive, but satisfy alone is too permissive. For

example, given the goal \Tell me what �les are in directory tex," executing rm tex/*

and reporting \None" would clearly be inappropriate. But what about the conjunc-

tive goal \Free up some disk space and tell me what �les are in directory tex"? In

this case excluding the rm seems inappropriate, since it may be necessary in service of

freeing disk space. Yet the knowledge that the directory is now empty is relevant to

the information goal. Proponents of �nd-out argued that rm was unacceptable for

the �rst goal, but acceptable in service of the conjunction [27]. We contend that this

de�nition is unclear and unacceptable; a plan that satis�es the conjunction A ^ B

should also be a solution to A.

While the examples used to justify the original �nd-out de�nition are evocative,

their persuasive powers stem from ambiguity. At what time point do we wish to

know the directory contents? Before freeing disk space, afterward, or in between?

Since uents are always changing, a general information goal requires two temporal

arguments: the time a uent is sensed, and the time the sensed value is to be reported.

E.g., one can ask \Who was president in 1883," or \Tell me tomorrow who was

president today."

Since planning with an explicit temporal representation is slow, our quest for the

\middle ground" along the expressiveness / tractability spectrum demands a minimal

notion of time that captures most common goals. We limit consideration to two time

points: the time when a goal is given to the agent, and the time the agent gives

its reply. Note that satisfy(P; tv) (Equation 3.3) allows one to specify the goal of

knowing P 's truth value at this latter time point. To specify the goal of sensing a

uent at the time the goal is given, we introduce the annotation initially .

ACHV(initially(P; tv); s

0

; fag

n

1

) � 8s2ORIG

n

(P (s), tv) (3.6)

The de�nition of initially states that when the agent has �nished executing the
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plan, it will know whether P was true or false when it started. initially(P ) is not

achievable by an action that changes the uent P , since such an action only obscures

the initial value of P . However, changing P after determining its initial value is �ne.

By combining initially with satisfy we can express \tidiness" goals (modify P at

will, but restore its initial value by plan's end) [87]. Furthermore, we can express goals

such as \Find the the �le currently named paper.tex, and rename it to kr.tex,"

which are impossible to express in uwl. Since uwl can't make temporal distinctions,

there is no way to ask for the past value of a uent without also requiring that the

uent have the same value when the reply is given, so any goal of the form \Find

some x such that P (x), and make P (x) false" is inexpressible in uwl.

3.2.3 Universally Quanti�ed Goals

When de�ning universally quanti�ed goals, one must again be speci�c with respect

to time points: does the designator specifying the Herbrand universe refer to s

0

or

s

n

? Since sadl allows an arbitrary goal description to be used to scope a universally

quanti�ed goal, one can specify a wide range of requests. For example, suppose an

agent is given the goal of seeing to it that all �les in directory tex are compressed.

What plans satisfy the goal? It depends on what the request really means. In sadl,

one can write one of the following precise versions, thus eliminating the ambiguity.

1. Ensure that all �les that were initially in tex end up being compressed: 8f ini-

tially(in.dir (f , tex))) satisfy(compressed (f)). Executing compress tex/*

solves this goal, as does executing mv tex/* temp then compress temp/*.

2. Ensure that all �les that end up in tex end up being compressed: 8f satisfy(in.dir

(f , tex)) ) satisfy(compressed (f)). Executing compress tex/* solves this

goal, but so does rm tex/*!

3. Determine if all �les initially in tex were initially compressed: 8f initially(in.dir

(f , tex)) ) initially(compressed (f)).
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4. Determine if all �les, in tex at the end of execution, were initially compressed:

8f satisfy(in.dir (f , tex)) ) initially(compressed (f)).

The �rst example seems the most likely interpretation of the goal in this case,

but it still leaves something to be desired, since the user may not want the �les

moved from tex. We can easily state the additional requirement that the �les not

be moved (hands-o�(in.dir (f , tex))), or that they be returned to tex by the end

(satisfy(in.dir (f , tex))). We should be careful not to make goals overly restrictive,

though. If the desire is that the agent should fail if there's no way to compress the

�les without moving them, then adding such restrictions is correct. If the desire is

merely that the agent should avoid moving the �les unnecessarily, then we want the

original solution, with some background preference to minimize unnecessary changes.

Such background preferences could be expressed in terms of a utility function over

world states [76], a measure of plan quality [74, 88], or an explicit notion of harm [87].

Note that even if we decide to forbid moving the �les from tex, there are still other

actions, such as deleting all the �les in important/papers, or sending threatening

email to president@whitehouse.gov that haven't been excluded. This is a general

problem with satis�cing plans: anything goes as long as the goal is achieved. Spec-

ifying all the undesired outcomes with every goal would be tedious and error-prone.

A better solution is to separate the criteria of goal satisfaction from background

preferences, as is done in [89, 36, 87].

Given the appropriate annotations on uents, which provide temporal informa-

tion, the semantics of 8 goals is straightforward:

ACHV(8~x:P ; s

0

; fag

n

1

) � 8~x:ACHV(P; s

0

; fag

n

1

) (3.7)

ACHV(P)Q; s

0

; fag

n

1

) �

ACHV(P; s

0

; fag

n

1

))

ACHV(Q; s

0

; fag

n

1

)

(3.8)

Logical operators such as ^, _, and 9 follow the same form as above.
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3.2.4 lcw Goals

As we discuss in Section 5.2.5, one way of satisfying universally quanti�ed goals

involves subgoaling on lcw goals. Our discussion of lcw in Section 2.2 is incomplete

because, as with universally quanti�ed goals, we must also specify the time point

at which we want complete information. We augment our earlier de�nition of lcw

formulas by allowing individual conjuncts to be labeled with initially, indicating

that the time point over which we want complete information is the time when the

goal was given to the agent. This change does not e�ect the de�nitions or algorithms

given earlier { it merely adds another kind of term. conjuncts of an lcw goal tagged

with initially are sent o� to a separate L database, which describes lcw over the

initial state, but the inference procedures are the same. Updates to this other L

database are discussed in Section 3.5.5.

lcw goals and lcw e�ects are part of the sadl language, but they typically

don't appear directly in user-speci�ed goals or actions. Rather, they are generated

automatically by the planner, as discussed in Sections 3.5 and 5.2.5.

3.2.5 Variables, Types, and Predicates

sadl is strongly typed. Every variable has a type, which may be inferred from

its context rather than being declared explicitly. The de�nition of every predicate

includes a type for each argument. For example, the in.dir predicate requires its

�rst argument to be a �le and its second argument to be a directory (which is a

kind of �le). Predicate arguments also have a speci�ed cardinality. For example, the

pathname predicate is functional in both arguments. Given a �le, there is exactly

one pathname, and vice versa. The �lename relation is functional in only one of

its arguments (each �le has exactly one name, but di�erent �les can have the same

name). The string.in.�le relation, which states that a given string appears somewhere

in a given �le, is not functional in any argument.
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Formally speaking, a type is merely a unary predicate. The requirement that all

arguments be typed may be regarded as a discipline that is enforced by the planner.

The type declarations themselves may be regarded as logical inference rules that relate

predicates to the types of their arguments, and types to their subtypes. Cardinality

information can also be regarded in terms of inference rules.

4

Types and cardinality

in sadl thus are a notational convenience, and have no real impact on the semantics

of the language.

3.2.6 Knowledge Preconditions Considered Harmful

Moore [63] identi�ed two kinds of knowledge preconditions an agent must satisfy

in order to execute an action in support of some proposition P : First, the agent

must know a rigid designator (i.e., an unambiguous, executable description) of the

action. Second, the agent must know that executing the action will in fact achieve

P . Subsequent work, e.g. [64], generalized this framework to handle scenarios where

multiple agents reasoned about each other's knowledge.

In the interest of tractability, we take a much narrower view, assuming away

Moore's �rst type of knowledge precondition and refuting the need for his second

type. Our argument occupies the remainder of this section, but the summary is

that there is a large class of domains, which we call Knowledge-free Markov domains,

for which actions are best encoded without knowledge preconditions. While the

multiagent scenarios considered by Moore and Morgenstern are not knowledge-free

Markov, UNIX and much of the Internet are.

We start the argument by assuming away Moore's �rst type of knowledge precon-

dition. We de�ne actions as programs that can be executed by a robot or softbot,

without the need for further reasoning. In this view, all actions are rigid designators.

dial (combination(safe)) is not an admissible action, but dial(31-24-15) is. Lifted

4

Note, however, that these are the only inference rules supported by the planner, and that since

type declarations are static and subtype relations are hierarchical, this inference is of an extremely

simple nature.
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action schemas, e.g. dial(x), are not rigid designators, but it is easy to produce one

by substituting a constant for x. Thus Moore's �rst type of knowledge precondition

vanishes.

Moore's second type of knowledge precondition presupposes that an action in a

plan must provably succeed in achieving a desired goal. This is a standard assumption

in classical planning, but is overly restrictive given incomplete information about the

world; enforcing this assumption by adding knowledge preconditions to actions is

inappropriate. For example, if knowledge of the safe's combination is a precondition

of the dial action, then it becomes impossible for a planner to solve the goal \�nd out

whether the combination is 31-24-15" by dialing that number, since before executing

the dial action, it will need to satisfy that action's precondition of �nding out whether

31-24-15 is the right combination!

5

On the other hand, it is often necessary for an agent to plan to obtain information,

such as the combination of a safe, either to reduce search or to avoid dangerous

mistakes. These knowledge subgoals,

6

naturally, have a temporal component, but the

only time point of interest is the moment the action is executed. For example, the

goal of knowing the safe's combination could be satis�ed by watching another agent

open the safe, but it might also be satis�ed by changing the combination to some

known value (for instance, at some earlier time when the safe is open).

We say that an action is knowledge-free Markov (KFM) if its e�ects depend only

5

Note that eliminating the knowledge precondition from the dial action also allows the unhurried

agent to devise a plan to enumerate the possible combinations until it �nds one that works. Indeed,

the Internet Softbot [26] follows an analogous strategy when directed to �nd a particular user, �le or

a web page, whose location is unknown. If finger and ls included knowledge preconditions, then

the actions would be useless for locating users and �les.

6

It is commonplace in the planning literature to conate goals and preconditions. This is un-

doubtably because an agent naturally adopts the preconditions of an action (or an e�ect) as its

goals when it wants to use the action for some purpose. This conation is encouraged by planning

algorithms (including puccini) that represent high-level goals as preconditions of a \goal step." We

believe this trend has led to some confusion, so we make a �rm distinction between preconditions,

which are descriptions of an action (and hence of the world), and goals, which are part of the agent's

mental state. The agent is free to adopt action preconditions as goals, but the two are very di�erent

concepts
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on the state of the world (and not on that agent's knowledge about the world) at the

time of execution. Note that simple mechanical and software systems are naturally

encoded as KFM, while multiagent systems are typically not, because it is useful to

endow one's model of another agent with state (i.e., I know that Bill knew . . . ). The

abstract actions used by HTN planners are also not KFM, since these are more plans

than they are actions, and depend on the agent's knowledge to expand appropriately.

If all actions in a domain are KFM, then all knowledge sub-goals will be of the

same form: 1) The agent needs to know the value of some uent at the time the

action is to be executed, and 2) it doesn't matter if the agent a�ects the uent while

obtaining its value.

7

These requirements for knowledge sub-goals are met by the

sadl de�nition of satisfy (Equation 3.3),

8

if we regard the action sequence fag

n

1

as

a plan to achieve the preconditions of action a

n+1

. In Section 5.2.7, we discuss how

the puccini planner is able to adopt goals of acquiring information, without making

that a prerequisite for executing actions.

The knowledge-free Markov assumption for actions yields a substantially simpler

representation of change than those de�ned by Moore and Morgenstern. While their

theories are more appropriate for complex, multi-agent domains, sadl gains tractabil-

ity while retaining enough expressive power to model many important domains.

7

The reader may object that (non-rigid) indexical references could appear as preconditions to

actions. For example, suppose that running Netscape requires that the �le netscape.bookmarks be

in a given directory. It is not su�cient that a �le of that name be there, because renaming paper.tex

to netscape.bookmarks would cause Netscape to fail. But this example makes it clear that the

proposed preconditions of Netscape are simply under-speci�ed. They should be \The directory

contains a �le named netscape.bookmarks, which is a valid bookmarks �le, and . . . " This is just

the quali�cation problem [59] in disguise. Granted, it will usually be impossible (or undesirable) to

model all such preconditions.

8

A justi�cation that might be given for initially or hands-o� preconditions is to minimize

destructive actions used by an agent to satisfy a goal (i.e. don't use mv to �nd out the name of a

�le). We agree on the need for reasoning about plan quality, but an accurate theory of action should

distinguish action preconditions from user preferences.
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3.3 E�ects

Following uwl [27], sadl divides e�ects into those that change the world, annotated

by cause, and those that merely report on the state of the world, annotated by

observe. Because it lacked universal quanti�cation, uwl couldn't even correctly

model UNIX ls. sadl goes beyond uwl by allowing both observational and causal

e�ects to have preconditions and universal quanti�cation.

3.3.1 Observational E�ects

Executing actions with observational e�ects assigns values to runtime variables that

appear in those e�ects. By using a runtime variable as a parameter to a later action

(or to control contingent execution), information gathered by one action can a�ect

the agent's subsequent behavior. Inside an e�ect, runtime variables (syntactically

identi�ed with a leading an exclamation point, e.g. !tv) can appear as terms or as truth

values. For example, ping twain has the e�ect of observe(machine.alive(twain),

!tv), i.e. determining whether it is true or false that the machine named twain is alive,

and wc myfile has the e�ect observe(word.count(myfile, !word)), i.e. determining

the number of words in myfile.

Before we de�ne individual e�ects, we discuss what it means to execute an action,

with all its e�ects. Recall that EFF(E; a; s) means E becomes true after action a is

executed in s. Let �

a

be the precondition of action a, and let "

a

be the e�ects. An

action's e�ects will only be realized if the action is executed when its preconditions

are satis�ed. Furthermore, the agent always knows when it executes an action, and

it knows the e�ects of that action. Following Moore [63]:

8s:ACHV(�

a

; s; fg)) 8s

00

:[K(s

00

;DO(a; s)),

9s

0

:K(s

0

; s) ^ s

00

= DO(a; s

0

) ^ EFF("

a

; a; s)] (3.9)
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The agent's knowing the e�ects of a doesn't imply that those e�ects are always

certain. As we discuss in Section 3.3.3, actions with conditional e�ects can result in

uncertainty.

We now de�ne the semantics of observe in terms of primitive situation calculus

expressions:

EFF(observe(P; T); a; s) � 8s

0

(K(s

0

;DO(a; s)))

9s

i

:K(s

i

; s) ^ s

0

= DO(a; s

i

) ^ P (s

i

)) (3.10)

EFF(observe(P; tv); a; s) � 8s

0

(K(s

0

;DO(a; s)))

9s

i

:K(s

i

; s) ^ s

0

= DO(a; s

i

) ^ (P (s

i

), tv)) (3.11)

The situations s

0

above refers to all situations that the agent considers possible

after executing a from situation s. Because the agent's knowledge is correct, DO(a; s)

will be one such situation. The s

i

refers to the situation immediately preceding s

0

, i.e.,

the situation that would have held prior to executing a if the situation afterward were

in fact s

0

. Thus the set of situations s

i

consist of all the previous states that the agent

considers to have been possible, after executing a. Since the agent has performed an

observation, the set of all such situations s

i

will be a subset of situations that were

considered possible in situation s. Since the agent's knowledge is consistent, one of

the situations s

i

will be s itself.

Note that if we substitute DO(a; s) for s

0

in Equation 3.11, we �nd that P (s), tv.

Since tv has the same truth value as P (s), Equation 3.11 gives us P (s

i

) , P (s),

meaning that the agent knows, after executing a, whether or not P was true in

situation s.

In other words, if action a has an e�ect observe(P; tv) and is executed in situation

s, then in the resulting situation, the agent knows what value P had in s. For

example, if in s the agent observes that the sky is blue, we would say that in situation

s

0

= DO(look; s), the agent knows that the sky was blue in situation s. The double
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use of the K operator in Equations 3.9 and 3.10/3.11 is a trie redundant given

only a single observational e�ect. Indeed, if we assume positive introspection (i.e.

K is transitive), as in the modal logic S4 [37], the resulting equation can be greatly

simpli�ed. However, in more complex e�ects, we wish to distinguish between the

agent knowing that the e�ect as a whole took place, and knowing the value of a

single uent.

sadl supports universally quanti�ed run-time variables. By nesting universal

and existential quanti�ers, sadl can model powerful sensory actions that provide

several pieces of information about an unbounded number of objects. For example,

ls -a, (Figure 1.2), reports several facts about each �le in the current directory. The

universal quanti�er indicates that, at execution time, information will be provided

about all �les !f that are in directory d. Since the value of !f is observed, quanti�cation

uses a run-time variable. The nested existential quanti�er denotes that each �le has

a distinct �lename and pathname. The conditional when restricts the �les sensed to

those in directory d. It may seem odd that the in.dir relation appears in two places,

but as we shall explain, the �rst use of in.dir refers to the actual situation s, whereas

the second refers to the agent's knowledge (i.e., all possible situations). Figure 3.2

shows an EBNF description of the sadl language.

It is useful to note that, after executing ls -a tex, the agent not only knows

all �les in tex; it knows that it knows all �les (i.e., it has lcw on the contents of

tex). Because of the 8 in the e�ects of ls, and since it knows the e�ects of ls, the

agent can infer closed-world knowledge. Such inference would be costly if it were done

using �rst-order theorem-proving in the situation calculus. We have devised e�cient

algorithms for doing this reasoning, which we describe in Section 3.5.

The translation of 8 e�ects into the situation calculus is straightforward (other

logical operators follow the same form):

EFF(8~x:E; a; s) � 8~x:EFF(E; a; s) (3.12)
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This de�nition of 8 e�ects may seem anticlimactic. The magic, however, stems

from the way in which when introduces secondary preconditions, restricting the

universe of discourse to a (possibly) �nite set, and indicating precisely the range of

the quanti�er.

3.3.2 Conditional E�ects

An e�ect precondition, also known as a secondary precondition, de�nes the conditions

under which action execution will achieve that e�ect. Unlike action preconditions,

e�ect preconditions need not be true for the action to be executed. If p is the e�ect

precondition of e�ect e, then the resulting conditional e�ect is de�ned as:

EFF(when p e); a; s) � p(s)) EFF(e; a; s)

Note the use p(s) on the left side of the ), instead of some expression involving

satisfy, hands-o� or initially. We don't use these annotations because the when

preconditions are not like the goals we have discussed so far. Since they need to hold,

if at all, when the action is executed, they are di�erent from initially preconditions.

But satisfy requires that the agent know that the condition is true, which would lead

to the faulty conclusion that the e�ect only occurs if the agent knows that the e�ect

preconditions hold. So we omit the annotation, to indicate that the conditions must

hold at the time of execution, with or without knowledge of the agent.

This ensures that whether the e�ects occur depends only on the state of the world.

It also makes it clear what is being quanti�ed over in ls: The �les really in d, at the

time of execution.

3.3.3 Uncertain E�ects

In some cases, executing actions with causal e�ects can decrease the agent's knowledge

about the world. sadl provides two ways of encoding these actions: as conditional
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e�ects whose precondition is unknown, or by explicitly specifying the U truth value.

As an example of the former, executing rm tex/* deletes all writable �les in tex; if the

agent doesn't know which �les are writable, then it won't know which �les remain in

tex even if it knew the contents before executing the action. As an example of explicit

creation of uncertainty, we encode compress myfile with the e�ect 8n cause (size

(myfile, n), U).

9

We de�ne causal e�ects for T, F and U truth values as follows:

EFF(cause(P; T); a; s) � P (DO(a; s)) (3.13)

EFF(cause(P; F); a; s) � :P (DO(a; s)) (3.14)

EFF(cause(P; U); a; s) �

Unk

P

(a;DO(a; s)), P (DO(a; s)) (3.15)

where, Unk

P

is a predicate such that

:KNOW (Unk

P

(a);DO(a; s)) ^

:KNOW (:Unk

P

(a);DO(a; s)) (3.16)

In other words, we represent an uncertain e�ect as a deterministic function of

hidden state. Unk

P

(a) denotes a unique unknown predicate, which represents the

hidden state responsible for the change in truth value of P . It must be unique to

avoid biasing correlation of independent unknown e�ects.

It is clear from the above de�nition how a cause e�ect may make P unknown.

What may not be clear is how a cause e�ect can make P known. In fact, it wouldn't,

if not for the fact that the agent knows all the e�ects of an action (Equation 3.9).

However, knowledge of a conditional e�ect does not necessarily mean knowledge of the

consequent. For example, if an agent executes compress myfile, it only knows that

if it had write permission prior to executing compress, then myfile is compressed

afterward.

9

In principle, we could represent all uncertain e�ects as conditional e�ects with unknown precon-

ditions, but doing so would be cumbersome. However, we de�ne the semantics of uncertain e�ects

in precisely this manner.
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action-schema ::= (action name ([varlist])

[precond: GD]

effect: e�ect)

execute: function-symbol(arglist)

sense: frtvlistg := function-symbol(arglist)

e�ect ::= cause (literal) j observe (literal)

e�ect ::= e�ect ^ e�ect j (e�ect) j when (GD) e�ect

e�ect ::= 8 (varlist) when (GD) e�ect j 9 (rtvarlist) e�ect

alit ::= satisfy (literal) j initially (literal) j

hands-off (literal) j literal

GD ::= alit j GD ^ GD j GD _ GD j (GD) j :GD

GD ::= GD ) GD j vc � vc j vc 6� vc

GD ::= 8 (ptvarlist) GD j 9 (ptvarlist) GD

literal ::= predicate-symbol ([arglist]), [truth-value]

truth-value ::= T j F j U j var

var ::= ptvar j rtvar

ptvar ::= variable-symbol

rtvar ::= !variable-symbol

varlist ::= [type-symbol] var | [type-symbol] var, varlist

rtvlist ::= type-symbol rtvar | type-symbol rtvar, rtvlist

arglist ::= var | constant-symbol | argli.st, arglist

ptvarlist ::= type-symbol (ptvar) j type-symbol (ptvar), gvarlist

Figure 3.2: EBNF speci�cation of sadl.
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3.4 Temporal Projection

We have discussed the function DO, which maps a situation and an action (or se-

quence of actions) to a new situation, but we haven't yet said how the two situation

terms relate to each other. If s

0

= DO(fag

n

1

; s), we want to answer the following

questions.

� Progression: What can we say about s

0

, given knowledge of the conditions that

hold in s?

� Regression: What must be true in s to guarantee some desired condition in s

0

?

We treat each in turn.

3.4.1 Projection & the Frame Problem

The de�nitions for preconditions and e�ects that we have given are insu�cient to

solve the temporal projection problem. sadl e�ects only list uents that an action

a�ects, but what about uents it doesn't a�ect? Explicitly stating everything that

doesn't change would be tedious | this is the well-known frame problem. The stan-

dard approach to the frame problem, and the one we adopt, is to make the strips

assumption: anything not explicitly said to change remains the same. To fully specify

the sadl semantics, it is necessary to express the strips assumption in terms of the

situation calculus. We use the formulation introduced in [79], and augmented in

[80] to account for sensing actions. This strategy consists of providing a formula for

each uent, called a successor state axiom, that speci�es the value of the uent in

terms of 1) the action executed, and 2) the conditions that held before the action

was executed. By quantifying over actions, we can produce a single, concise formula

for each uent that includes only the relevant information. Producing such a formula

from the e�ects of an action depends on a strips assumption (which in the situation

calculus formulation is called the Completeness Assumption). That is, it must be the
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case that all the updates produced by the action are speci�ed in its e�ects. How-

ever, once we have the successor state axiom, we no longer need the Completeness

Assumption, since this assumption is stated explicitly in the \if and only if" form of

the successor state axiom.

Specifying update axioms for each uent independently requires uents to be

logically independent of each other, so disjunction is not allowed. E�ects consist of

conjunctions of terms, each term being equivalent to one of the following

when 

T

P

(a) cause(P; T) (3.17)

when 

F

P

(a) cause(P; F) (3.18)

when 

U

P

(a) cause(P; U) (3.19)

when �

tv

P

(a) observe(P; tv) (3.20)

where a is an action and P is a uent, which may contain universally quanti�ed

variables or constants,

10

and 

tv

P

(a) and �

tv

P

(a) are arbitrary expressions.

11

For ex-

ample, if compress tex/* changes the size of all writable �les in directory tex, then



U

size(f)

(compress tex/*) = in.dir(f , tex) ^ writable(f). Clearly, all actions can be

represented by specifying the  and � preconditions for each uent in the domain the-

ory. If a has a non-conditional e�ect, cause(P , tv), then 

tv

P

(a) = T. We can express

the fact that action a doesn't a�ect P at all by saying 8tv(

tv

P

(a) = F). We don't list

observe(P; T) above, since it is subsumed by the conjunction observe(P; v) ^ v = T

(similarly for F). We can assume, without loss of generality, that for any proposi-

tion P , there is only one expression of the form when 

T

P

(a) cause(P , T), since if

there were more than one, they could easily be combined into one. Combining this

fact with the Completeness Assumption, it follows that the when clauses are in fact

bi-implications. That is, the e�ect cause(P , T) will only occur if 

T

P

(a) is true.

10

Including variables that will resolve to constants.

11

with the restriction that e�ects must be consistent, so, for example, 

T

P

(a) ^ 

F

P

(a) must always

be false.
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Given these de�nitions, we can state the conditions under which an action changes

or preserves a uent's truth value. Following Pednault [69], we de�ne �

a

'

to be

the conditions under which an executable action a will establish ', and �

a

'

to be

the conditions under which a will preserve '. We have the following establishment

conditions:

�

a

'

(s) , 

T

'

(a; s) _ (Unk

'

(a; s) ^ 

U

'

(a; s)) (3.21)

�

a

:'

(s) , 

F

'

(a; s) _ (:Unk

'

(a; s) ^ 

U

'

(a; s)) (3.22)

where Unk

'

(a) is the unknown predicate introduced in Equations 3.15 and 3.16. The

presence of an e�ect with a U truth value will make ' true or false, depending on

the value of Unk

'

(a). Since Unk

'

(a) is unknown by de�nition, e�ects with U truth

values aren't generally useful for goal establishment. We also have the following

preservation conditions:

�

a

'

(s) , :

F

'

(a; s) ^ (Unk

'

(a; s) _ :

U

'

(a; s)) (3.23)

�

a

:'

(s) , :

T

'

(a; s) ^ (:Unk

'

(a; s) _ :

U

'

(a; s)) (3.24)

As one might expect: �

a

'

,:�

a

:'

.

For each uent, we can then generate an expression that speci�es precisely when

it is true or false, by quantifying over actions. For each uent P , there is a successor

state axiom, which combines update axioms and frame axioms for P . The successor

state axioms are straightforward statements of the strips assumption: a uent is

true if and only if it was made true, or it was true originally and it wasn't made false:

Theorem 3.1 (Successor State Axiom) Let P be an arbitrary predicate.

ACHV(�

a

; s; fg) ) [P (DO(a; s)), �

a

P

(s) _

P (s) ^ �

a

P

(s)]

Similarly, there is a successor state axiom for K.



53

Theorem 3.2 (Successor State Axiom for K)

ACHV(�

a

; s; fg)) [K(s

00

;DO(a; s)), 9s

0

K(s

0

; s)

^(s

00

= DO(a; s

0

)) ^

8P (�

v

P

(a; s)) [P (s

0

), v])]

We have stated this formula in second-order logic, but only because the formula

depends on all of the actual uents in the domain theory. Given any speci�c domain,

this second-order formula could be replaced with an equivalent �rst-order formula by

replacing P with each uent in the domain.

The situations s

00

above are the states consistent with the agent's knowledge after

executing a from situation s, so the situations s

0

are those previous states that the

agent considers to have been possible after it has executed a. Because the agent's

knowledge is correct, one of these situations s

0

will be s itself. If we substitute

DO(a; s) for s

00

, we �nd that s

0

= s, which means P (s) , v. Putting this result

back in Equation 3.2 gives us P (s

0

) , P (s), meaning that the value that P had in

situation s is known to the agent after executing a.

The above de�nition only speci�es when information is gained, and seems to

say nothing about when it is lost. However, information loss is indeed accounted for,

through the successor state axiom for P . If P becomes true in some situations s

0

such

that K(s

0

; s) (i.e., in some possible worlds), and false in others, then by de�nition, P

is unknown. For example, compress myfile compresses myfile if it is writable. If

it is unknown whether myfile is writable, then in some possible worlds, myfile is

writable and will be compressed. In other worlds, myfile is not writable and won't be

compressed. The result is that it becomes unknown whether myfile is compressed.

Similarly, if P was known previously and not changed then, by the successor state

axioms for P and K, P will continue to be known. [80].

The above formula correctly describes how K changes, but it is a little unwieldy

if what we want to know about is KNOW('). Intuitively, KNOW(') becomes true
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if ' is known to become true or if ' is observed. Additionally, ' continues to be

known true until it possibly becomes false. The following formulas follow from the

successor state axioms for ' and K.

�

a

KNOW(')

(s) , KNOW(�

a

'

; s) (3.25)

�

a

KNOW(')

(s) , KNOW(

T

'

(a); s) _

(�

tv



T

'

(a; s)

(a) ^ 

T

'

(a; s)) _ (�

tv

'

(a; s) ^ '

^�

a

KNOW(')

(s))

12

(3.26)

The causation precondition for KNOW(') is interesting in that it allows the pre-

condition 

T

'

(a) to be observed immediately after the action is executed, rather than

insisting that it be known true beforehand. Actually, there is no reason that the

observation need be immediately after execution, except that it introduces messy cor-

relations that the agent can't represent. The knowledge representation discussed

in Chapter 2 can't represent facts like KNOW(P , Q) when :KNOW(P ) and

:KNOW(Q), so to keep things simple, we will assume for the time being that no

such correlations are introduced by executing actions. It turns out that this condi-

tion can be enforced by ensuring that actions aren't executed when the preconditions

of their causal e�ects are unknown, unless those preconditions are veri�ed immedi-

ately afterward. Before stating the above more formally, we introduce a few useful

de�nitions.

De�nition 3.3 (Plan Fluent) A plan uent of fag

n

1

is any uent appearing in the

preconditions or e�ects of any action in fag

n

1

.

12

The additional requirement �

a

KNOW(')

may come as a surprise, since an action that simultane-

ously observes ' and causes ' to become false or unknown would seem to violate our rule against

inconsistent actions. However, such e�ects aren't inconsistent, since the observation pertains to

situation s, whereas the update is to situation DO(a; s). Such destructive sensing actions are com-

monplace. For example, biologists �nd out the number of insects living in a tree by fogging the tree

with poison and counting the insects that fall out.
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De�nition 3.4 (Correlation) Two uents P and Q are said to be correlated in

situation s if KNOW(P ) Q; s) or KNOW(Q ) P; s). P and Q are correlated

unknown uents if they are correlated but their truth values are unknown in situation

s.

Theorem 3.5 (No Correlations) Assume the following conditions hold: There are

no correlations between unknown plan uents in situation s

0

, no disjunctive e�ects,

and no action a

i

in fag

n

1

(or any e�ect of a

i

) has any preconditions that are unknown

in the situation DO(a

i

; s

i

). Then there will be no correlations between unknown plan

uents at any time during the execution of fag

n

1

.

An immediate consequence of the lack of correlations is that KNOW(A _ B) )

KNOW(A)_KNOW(B). Since KNOW(:A) B), the truth value of A or of B must

be known true or false. It follows immediately that one must be known true.

are correlated, they cannot both be unknown

As we will see in Chapter 5, this restriction can be relaxed, since the structures

used by the planner provide a limited ability to keep track of these correlations, but

for now we will assume that no correlations exist. Given this assumption, we provide

the following successor state axiom for KNOW.

Theorem 3.6 (Successor State Axiom for KNOW) If there are no correlations

between unknown plan uents in the agent's knowledge, then

ACHV(�

a

; s; fg) ) [KNOW(P;DO(a; s)), �

a

KNOW(P )

(s) _

KNOW(P; s) ^ �

a

KNOW(P )

(s)]

If there did happen to be correlations in the agent's knowledge, then the \,"

above would be replaced with a \(" | that is, the condition above is su�cient, but

not necessary, for knowing P .
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3.4.2 Regression

Most modern planners build plans using goal regression | starting with a goal and

successively adding actions that achieve either part of the goal or preconditions of

previously added actions. Once all preconditions are satis�ed by some action (or were

true in the initial state) and preserved by all intervening actions, the plan is complete.

It is therefore useful to have a formal speci�cation of what conditions must be true

for a given action sequence to achieve a given goal. Let R

a

be a regression operator

for action a. R

a

(') is a formula that, if true immediately before the execution of

a, results in ' being true after a is executed. We de�ne R

fag

n

1

(') to be R

a

1

(R

a

2

(

. . . (R

a

n

(')))). Naturally, regression on an action sequence of zero length is the

identity function: R

fg

(') = '.

Let � be an axiomatization of the initial conditions, and let � be some goal

expression. The objective of planning is to produce an executable sequence of actions,

fag

n

1

, such that �j=R

fag

n

1

(�). We discuss executability in Section 3.4.3.

We specify regression operators for satisfy, initially and hands-o� goals below.

Since some conditions could be true in the initial state, we also must specify when

a condition is true after executing a plan of zero length. Since initially indicates

something that must be true before the plan is executed, and satisfy indicates things

true afterwards, it follows that if there are no actions in the plan, then initially and

satisfy have the same interpretation: For all ',

R

fg

(initially(')) = KNOW(') (3.27)

R

fg

(satisfy(')) = KNOW(') (3.28)

hands-o� is always true in the initial state, since it can only be violated by

changing the proscribed uent:

R

fg

(hands-o�(')) = T (3.29)

We now consider how to regress a sadl goal formula through an action. A goal
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satisfy(') is achieved if the agent knows that ' is true; i.e., ' just became true, was

just observed to be true, or was previously known to be true and wasn't subsequently

a�ected. The �rst two conditions are captured by �

a

KNOW(')

. The latter holds

when satisfy(') held in the previous state, and knowledge of ' was preserved:

R

a

(satisfy(')) = �

a

KNOW(')

_ (satisfy(')

^�

a

KNOW(')

) (3.30)

A hands-o� goal holds if the truth value of ' always remains the same as it was

in the initial state. hands-o�(') doesn't forbid actions that a�ect ' | just actions

that change '. For example, an action compress myfile doesn't violate the goal

hands-o�(compressed(myfile)) if myfile was already compressed initially.

13

R

a

(hands-o�(')) = (KNOW(�

a

:'

) _ initially('))

^(KNOW(�

a

'

) _ initially(:'))

^hands-o�(') (3.31)

initially(') is satis�ed after the execution of action a if it was already satis�ed,

or if ' was observed by action a, and wasn't a�ected by any previous actions. Unlike

other goals, we are interested in the �rst time point at which an initially goal is

achieved, as opposed to the last. The disjunct initially(') ensures that the �rst

occurrence is considered, because it is always regressed back.

R

a

(initially(')) = initially(') _ (�

tv

'

(a) ^ '

^hands-o�(')) (3.32)

This de�nition doesn't rule out using destructive sensing actions. All that matters

is that ' be undisturbed before it is sensed. It's �ne if the act of sensing the value of

' itself a�ects '.

13

This is a departure from uwl's notion of hands-o�, in which the compress would be a viola-

tion. However, uncompressing the �le and then recompressing it does violate the goal, since the

uncompress changes the uent.
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Unannotated preconditions merely need to be satis�ed in the �nal state, and it

isn't necessary that they be known true.

R

a

(') = �

a

'

_ (' ^ �

a

'

) (3.33)

Logical operators are simply regressed back to the initial state, since their inter-

pretation is the same across all situations, as detailed in [70].

With these de�nitions, we can show that regression is correct | that is, if the

formula returned by R

a

(�) is true, and fag

n

1

is successfully executed, then � will

indeed be true.

Theorem 3.7 (Soundness of Regression) Let fag

n

1

be an executable action se-

quence. Let � be a goal formula, and let � be an axiomatization of the domain,

including the successor state axioms. Then

�j=(ACHV(R

fag

n

1

(�); s

0

; fg)) ACHV(�; s

0

; fag

n

1

))

We would like the reverse to be true as well | i.e., if � is true after fag

n

1

is

executed, then R

a

(�) must have been true. However, as with the successor state axiom

for KNOW, that is not the case unless we make the additional restriction that no

actions can be executed when doing so would introduce correlations between unknown

uents (see Theorem 3.5), since that would require more sophisticated reasoning to

ensure completeness of regression.

Theorem 3.8 (Completeness of Regression) Let fag

n

1

be an executable action

sequence. Let � be a goal formula, and let � be an axiomatization of the domain,

including the successor state axioms. If the conditions speci�ed in Theorem 3.5 hold,

then �j=(ACHV(�; s

0

; fag

n

1

) ) ACHV(R

fag

n

1

(�); s

0

; fg))
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3.4.3 Executability

Regression operators alone only tell part of the story about when an action, or se-

quence of actions, can achieve a goal. R

a

(') consists of the conditions under which a

will achieve ', assuming it is successfully executed. So to ensure that a brings about

', we must also ensure that a can be executed. Action a is executable in situation

s i� the preconditions of a, �

a

, are true in s. A sequence of actions, fag

n

1

, is exe-

cutable in s i� a

1

is executable in s, a

2

is executable in DO(a

1

; s), a

3

is executable

in DO(a

2

;DO(a

1

; s)), and so on.

3.5 lcw Updates

As the agent is informed of the changes to the external world | through its own ac-

tions or through the actions of other agents | it can gain and lose information about

the world, and will update its database M of ground literals (see Chapter 2). For

example, after executing the UNIX command finger weld@june, the agent should

updateM with the newly observed truth value for active.on(weld, june). Simi-

larly, an agent's actions can cause it to gain or lose lcw. When a �le is compressed,

for example, the agent loses information about the �le's size; when all postscript

�les are deleted from a directory, the agent gains the information that the directory

contains no such �les.

This section presents a sound and e�cient method for updating L, the agent's

store of lcw sentences. In Section 3.5.1, we start by showing how complex updates

can be partitioned into atomic components. The next four subsections (3.5.2{3.5.4)

present policies for handling the four di�erent types of atomic updates (see Table 3.1

for a summary). Section 3.5.6 provides an example illustrating the update mechanism.

Then, in Section 3.5.7, we show that the updates can be performed in polynomial

time. The �nal two sections discuss the optimality of our policies: Section 3.5.8

demonstrates that no valid lcw sentences are discarded by the atomic update policies,
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and Section 3.5.9 presents an optimal order for handling the atomic components of a

complex update.

3.5.1 Representation of Change

The lcw knowledge must be updated based on changes resulting from executing

sadl actions. We show that these changes can be decomposed into a set of atomic

updates, each concerning the truth value of a set of literals matching a pattern. For

example, suppose that initially the agent doesn't know whether weld is active on the

machine called june, so it executes a UNIX finger action, which observes that weld

is active. We can describe the resulting change in the agent's information with a

single atomic update: �(active.on(weld, june); U! T), meaning that the truth

value of the proposition active.on(weld, june) changed from U to T.

Below, we de�ne this � notation formally, but before delving into the technical

details, note that the description of more complex changes may require multiple

atomic components. For example, consider the UNIX action mv /papers/kr94.tex

/archive/kr94.tex, which has the e�ect of moving a �le from one directory to

another. The change due to the execution of this action can't be represented as a

single update by our de�nitions, but it can be expressed as the following set of atomic

updates:

� �(in.dir(kr94.tex, /papers); T! F)

� �(in.dir(kr94.tex, /archive); F! T)

� �(in.dir(kr94.tex, /archive); U! T)

The last two atomic components capture the fact that, regardless of whether the

agent knew whether a �le named kr94.tex was present in /archive before the mv, the

agent knows that such a �le is present afterward. Informally, �(in.dir(kr94.tex,
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/archive),F ! T) should be read as \If the agent knew (before the mv) that no �le

named kr94.tex was in /archive, then the agent now knows (after the mv) that

there is such a �le in /archive."

As mentioned in Section 3.4.1, we require that the atomic updates corresponding

to a compound change are consistent, i.e., at most one atomic update changes the

truth value of any single ground formula. Given this assumption, our update policy

is free to process the atomic components in any order.

14

Furthermore, we assume

that these atomic updates constitute a complete list of changes in the world, thus

sidestepping the rami�cation problem [33].

15

In the example above, each of the three

atomic updates changed the truth value of at most one ground literal, but in general

an atomic update need not be ground; in other words, a single atomic update can

a�ect the truth value of an unbounded number of ground literals. For example, sup-

pose that size(paper:tex; 14713) 2 S before the agent executes the UNIX command

compress paper.tex. In this case, numerous literals change their truth value when

the size of paper.tex becomes unknown: size(paper.tex, 14713) changes from T

to U, while size(paper.tex, 14712) (and an unbounded number of similar literals)

change from F to U. In this case, we summarize the change with the following pair

of updates, the last of which a�ects the truth value of an in�nite number of ground

literals:

� �(size(paper.tex, x); T! U)

� �(size(paper.tex, x); F! U)

So far our discussion of atomic updates has been informal, but we now make the

14

Section 3.5.9 explains how transformations exploiting this commutativity can lead to improved

performance.

15

This is standard in the planning literature. For example, a strips operator that moves block A

from B to C must delete on(A, B) and also add clear(B) even though clear(B) can be de�ned as

8y :on(y,B).
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notion precise.

16

We model a change from an agent's incomplete theory, S, to a new

theory, S

0

, as follows. Let ' be a positive literal possibly containing free variables,

for example, ' =size(paper.tex, x). We de�ne the sets T (', S), F(', S), and

U(', S) as the ground instances of ' that are true, false or unknown, respectively:

U(';S) � f j = '� ^  62 S ^ : 62 Sg

T (';S) � f j = '� ^  2 Sg

F(';S) � f j = '� ^ : 2 Sg

Note that for any value of x, size(paper.tex, x) will be in exactly one of the

three sets. Finally, �('; F! U) means that all elements of F(', S) are elements

of U(', S

0

), i.e., all matches to ' that are false before execution become unknown

afterwards.

To de�ne � precisely, we need one more notational device. For convenience in

representing those literals that remain unchanged from S to S

0

, we de�ne the operator

	 which, given a theory S and a set of positive, ground literals N , returns S with all

positive and negated members of N removed:

S	N = f j 2 S ^  62 N ^ : 62 Ng (3.34)

To understand the intuition behind 	, consider the previous example in which

' =size(paper.tex, x). T (',S) = fsize(paper.tex, 14713)g, so S	T (';S)

is equivalent to S with the information size(paper.tex, 14713) removed. Thus

S

0

	T (';S) = S	T (';S) is simply a concise way of saying that the only change

from S to S

0

concerns the belief that paper.tex has the size 14713. Neither the

belief that paper.tex is in directory /papers, nor the belief that paper.tex doesn't

16

Readers satis�ed with this informal explanation may wish to skip to Section 3.5.2.
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have size 14712 has changed. In other words, S

0

	T (';S) = S	T (';S) is a frame

axiom stating that nothing has changed aside from the truth value of literals contained

in T (',S).

The formal de�nition of �('; T! F) appears below.

�('; T! F) � T (';S

0

) = fg ^

F(';S

0

) = F(';S) [ T (';S) ^

S

0

	T (';S) = S	T (';S) (3.35)

De�nitions for most other truth values are similar, but one bears discussion:

�('; U! (T _ F)). There is no need to specify the change from a disjunction of

truth values because such a change can be decomposed into a pair of simpler up-

dates. Speci�cally, there is no need to de�ne �('; (T _ F)! U) because it would be

equivalent to the set containing both �('; T! U) and �('; F! U). However, some

useful changes cannot be modeled without using a disjunction on the right hand side

of the arrow. For example, the UNIX ls -a command observes the name of all �les

in a directory argument; when applied to the /tex directory, the command induces

the update �(in:dir(o; /tex); U! (T _ F)), because some �les are observed to be

present while all others are now known to be absent. We de�ne the update formally

as follows:

�('; U! (T _ F)) � U(';S

0

) = fg ^

T (';S

0

) � T (';S) ^

F(';S

0

) � F(';S) ^

S

0

	U(';S) = S	U(';S) (3.36)

In subsequent sections, we describe a process for handling these updates. Specif-

ically, we assume that the agent starts with aM, L pair that forms a conservative
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representation of an incomplete theory S. When informed of a change, i.e. a set of

atomic updates described using the � notation de�ned above, the agent must create

a newM

0

and L

0

, ensuring that these databases are still conservative representations,

yet retain as much information as possible. We present our method for processing

updates as a set of rules and state them as theorems since they are sound: i.e., they

preserve conservative representations.

By distinguishing between transitions to and from U truth values, L updates can be

divided into four mutually exclusive and exhaustive cases, which we call Information

Gain, Information Loss, Domain Growth, and Domain Contraction:

� Information Gain: �('; U! T _ F).

� Information Gain: �('; T! U) or �('; F! U).

� Domain Growth: �('; F! T).

� Domain Contraction: �('; T! F).

These update classes are easily generated from sadl actions, as the following

theorems attest

Theorem 3.9 (Updates generated by cause(', T)) If the only e�ect of an ex-

ecuted action is of the form cause('; T), then updates to M will be of the form

�('; U _ F! T), which can be decomposed into a combination of Domain Growth

and Information Gain updates.

Theorem 3.10 (Updates generated by cause(', F)) If the only e�ect of an ex-

ecuted action is of the form cause('; F), then updates to M will be of the form

�('; U _ T! F), which can be decomposed into a combination of Domain Contrac-

tion and Information Gain updates.
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Theorem 3.11 (Updates generated by cause(', U)) If the only e�ect of an ex-

ecuted action is of the form cause('; U), then all updates to M will be of the form

�('; T _ F! U) (Information Loss)

Theorem 3.12 (Updates generated by observe(', tv)) If the only e�ect of an

executed action is of the form observe('; tv), then updates toM will be of the form

�('; U! T _ F) (Information Gain).

In the next four sections, we consider each case in turn.

3.5.2 Information Gain

An agent gains information when it executes an information-gathering action (e.g.,

UNIX wc or ls), or when a change to the world results in information gain. In general,

if an agent gains information, it cannot lose lcw, and will gain lcw in some cases

as explained below.

Theorem 3.13 (Information Gain Rule) Let L be part of a conservative rep-

resentation. If an atomic change is of the form �('; U! (T _ F)), then L

0

 L [

flcw(')g yields a conservative representation.

The Information Gain Rule is obviously true when ' is ground, in which case this

lcw update would be vacuous. However, the rule can also apply when ' contains

universally quanti�ed variables. For example, execution of the UNIX command ls

-a /tex produces a �(in.dir(f; =tex); U! (T _ F)) update, where f is a universally

quanti�ed variable. As a result, the Information Gain Rule concludes that the agent

now knows all �les in the /tex directory: lcw(in.dir(f; =tex).

If the unique value of a function is determined, such as the word count of a �le,

then a ground update can lead to lcw of a lifted sentence. For example, if an agent

discovers that foo.tex has length 5512 then it knows that the length is neither 5513

nor any other value. In other words, the agent knows lcw(word.count(foo.tex,

x)).
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In order to make this precise, we de�ne the cardinality of a (lifted) literal, ', in

a set of sentences (e.g.,M or W) to be the number of ground literals in the set that

unify with '.

Cardinality(';M) = jf� 2 M such that � is ground and 9� � = '�gj

When an update causes the cardinality of ' to be the same inM as it is in W ,

we can conclude that we have lcw('):

Theorem 3.14 (Counting Rule (after [83])) Let M, L be a conservative repre-

sentation and let � be a substitution. If an atomic change of the form �('�; U! T)

causes Cardinality(';M

0

) = Cardinality(';W) then L

0

 L[flcw(')g yields

a conservative representation.

To utilize the Counting Rule in practice, our agent relies on a set of explicit

axioms that de�ne the cardinality of predicates in W , as mentioned in Section 3.2.5.

For example, we tell our agent that word.count is functional in its �rst argument,

as is file.size etc.

In some cases the Information Gain and Counting Rules, used in conjunction with

the Composition Rule, can lead to additional forms of local closed world information.

For example, the UNIX command ls -la /tex detects the size of all �les in the

directory /tex. The update �(in.dir(f; =tex); U! (T _ F)) allows the Information

Gain Rule to conclude lcw(in.dir(f, /tex)), as explained above. Suppose that

there are two �les in the directory, foo.tex and bar.tex, which are 55 and 66 bytes

long respectively. The following two updates �(size(foo.tex, 55); U! T) and

�(size(bar.tex, 66); U! T) will yield lcw(size(foo.tex, l)) and lcw(size

(bar.tex, l)) via the Counting Rule. The Composition Rule can now be used

to conclude

lcw(in:dir(f; bin) ^ size(f; l))
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Cases like this (i.e., where lcw results from the execution of an action) are so

common that we apply the Composition Rule proactively. In other words, we add the

lcw statement above at the time that the � updates are received rather than waiting

for an lcw query. The procedure for doing this optimization is straightforward:

� If any non-universally quanti�ed variables are in predicate arguments with car-

dinality 1, then those variables can be replaced with universally quanti�ed vari-

ables, provided all other arguments are held constant. This follows from the

counting rule. If there is only one value to observe, and that value is in fact

observed, then all values are observed.

� If any e�ect � contains only universally quanti�ed variables or constants, and

� has no precondition, then we can add an e�ect of the form lcw(�). This is

a straightforward application of the de�nition of lcw.

� If � does have a precondition �, but lcw(�) follows from some e�ect of the

same action, then we can add an e�ect lcw(� ^ �). This follows from the

composition theorem.

� If � has precondition �, but lcw(�) does not follow from any e�ect of the same

action, then we can add an e�ect when(lcw(�) lcw(� ^ �).

� If there is any e�ect of the form when(�) observe(�) or when(�) cause(�,

F) then we can add an e�ect of the form lcw(�).

It is important to note that the policy does not add lcw sentences of arbitrary

length to L. The maximum length of an lcw formula generated from an e�ect is

one plus the maximum number of conjuncts appearing in the e�ect precondition. For

example, in the softbot domain tested in Section 7.2, all lcw sentences added to L

had fewer than 3 conjuncts.
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3.5.3 Information Loss

An agent loses information when a literal, previously known to be true (or false), is

asserted to be unknown. When a UNIX �le is compressed, for example, information

about its size is lost. In general, when information is lost about some literal, all

lcw statements \relevant" to that literal are lost. To make our notion of relevance

precise, we begin by de�ning the set PREL(') to denote the lcw assertions potentially

relevant to a positive literal ':

17

PREL(') � f� 2 L j 9x 2 �; 9�; 9�; x� = '�g

For example, if an agent has complete information on the size of all �les in /kr94,

and a �le lcw.tex in /kr94 is compressed (' = size(lcw:tex; n)), then the sentence

lcw(in:dir(f; /kr94) ^ size(f; c)) (3.37)

is in PREL(') and should be removed from L. Unfortunately, when a �le in the direc-

tory /bin is compressed, the above lcw sentence is still in PREL(') (x = size(f; c))

even though the agent retains complete information about the �les in /kr94. Clearly,

lcw sentence 3.37 ought to remain in L in this case. To achieve this behavior, we

check whether the agent has information indicating that the lcw sentence does not

\match" the compressed �le. If so, the lcw sentence remains in L. In general, we

de�ne the set of lcw assertions relevant to a positive literal ' to be the following

subset of PREL('):

REL(') � f� 2 L j 9x 2 �; 9�; 9�; x� = '� ^ L ^M 6` :(�� x)�g

If � is not a complete mapping then, to exclude � from REL('), it is necessary that

all possible ground instances of (�� x)� are known to be false, or equivalently, that

17

Since the sentences in L are conjunctions of positive literals, we use the notation ' 2 � to signify

that ' is one of �'s conjuncts, and the notation ��' to denote the conjunction � with ' omitted.
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lcw((� � x)�), and there is no match to (� � x)� in M. We can now state our

update policy for Information Loss:

Theorem 3.15 (Information Loss Rule) Let L be part of a conservative repre-

sentation. If an atomic change is either of the form �('; T! U) or �('; F! U),

then L

0

 L� REL(') yields a conservative representation.

Note that compressing a �le foo in /bin does not remove lcw sentence 3.37. To

see this, let x = size(f; c), � = (foo=f), and �

i

= in:dir(f; /kr94). Since foo is

known to be in /bin (and in.dir is a functional relation), from L^M one can prove

that :�

i

�. Hence, (L ^M 6` :�

i

�) is false and � is not included in REL('). Note

also that, given our assumptions (correct information, etc.), information is only lost

when the world's state changes.

3.5.4 Changes in Domain

Finally, we have the most subtle cases: an agent's theory changes without strictly

losing or gaining information. For example, when the �le ai.sty is moved from the

/tex directory to /kr94, we have that the updated M

0

6=M but neither database

is a superset of the other. When the theory changes in this way, the domain of sen-

tences containing in:dir(f; /kr94) grows whereas the domain of sentences containing

in:dir(f; /tex) contracts. lcw information may be lost in sentences whose domain

grew. Suppose that, prior to the �le move, the agent knows the word counts of all the

�les in /kr94; if it does not know the word count of ai.sty, then that lcw assertion

is no longer true. As with Information Loss, we could update L by removing the

set REL('). However, this policy is overly conservative. Suppose, in the �le move

described above, that the agent does know the word count of ai.sty. In this case,

it retains complete information over the word counts of the �les in /kr94, even after

ai.sty is moved.

More generally, when the domain of an lcw sentence grows, but the agent has

lcw on the new element of the domain, the lcw sentence can be retained. To make
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this intuition precise, we de�ne the following \minimal" subset of REL('):

MREL(') = f� 2 L j 9x 2 �; 9�; 9�; x� = '� ^ L ^M 6` lcw((�� x)�)g

We can now state our update policy for Domain Growth:

Theorem 3.16 (Domain Growth Rule) Let L be part of a conservative represen-

tation. If an atomic change is of the form �('; F! T), then L

0

 L� MREL(') yields

a conservative representation.

When the domain of a sentence contracts, no lcw information is lost. For

instance, when a �le is removed from the directory /kr94, we will still know the size

of each �le in that directory.

Theorem 3.17 (Domain Contraction Rule) Let L be part of a conservative rep-

resentation. If an atomic change is of the form �('; T! F), then L

0

 L yields a

conservative representation.

It might seem that the Domain Contraction Rule misses some important oppor-

tunities to gain lcw. Suppose the agent executes rm /kr94/*. It ought to realize

that it is now familiar with all the �les in /kr94, because the directory is empty. In

fact, the agent does realize this because the rm /kr94/* command is processed as

two separate sets of updates:

� �(in.dir(f, /kr94); T! F)

� �(in.dir(f, /kr94); U! F)

The second update invokes the Information Gain Rule which results in: lcw(in.dir(f,

/kr94)).

In summary, the above rules guarantee that L does not contain invalid lcw

assertions, so long as the agent is apprised of any changes to the world state. However,

for the sake of tractability, the rules are conservative | L

0

may be incomplete. For
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Table 3.1: A summary of the mutually exclusive and exhaustive atomic update rules

for the lcw database L.

�('; ! ) Update Rule L ! L

0

UNIX Examples

U! (F _ T) Information gain L

0

 L[ lcw(') ls, wc

(F _ T)! U Information loss L

0

 L� REL(') compress

T! F Domain contraction L

0

= L rm

F! T Domain growth L

0

 L� MREL(') cp

example, if ai.sty is moved into /kr94, but the word count of ai.sty is unknown,

we might wish to say that we know the word counts of all the �les in /kr94 except

ai.sty. However, we refrain from storing negated sentences in L for the sake of

speedy lcw inference, as discussed in Section 2.3.

3.5.5 Initial Closed World Knowledge

As we describe in Chapter 5, the agent maintains a record of its knowledge about the

initial situation. This record includes separate lcw knowledge over the initial state,

designated with formulas such as lcw(initially(')). This knowledge is updated

in the same manner that the current lcw knowledge is updated, except that in

many ways the updates are simpler. No updates can can retract lcw, since initially

knowledge never goes away (Lemma 6.3). Any time lcw(�) is added to L, it will also

be added to I, provided none of the ground literals matching � have been changed

prior to being observed.

3.5.6 Example

Table 3.1 provides a capsule summary of our lcw update rules discussed in the pre-

vious four sections. Below, we provide an extended example of the update machinery

in action. Speci�cally, we illustrate how the update rules a�ect L as the following
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command sequence is executed:

ls -al /kr94

ls -al /papers

mv /kr94 /kr.ps /papers

compress /papers /kr.ps

Initially, both the databases representing ground formulas (M) and lcw formulas

(L) are empty. The execution of ls -al in the directory /kr94 reveals the �les in the

directory and their size in bytes. For brevity, we will ignore other e�ects. Suppose

that the �les are kr.tex and kr.ps, and their sizes are 100 and 300 respectively. In

this case,M is updated as follows:

M = fin.dir(kr.tex, /kr94),

size(kr.tex, 100),

in.dir(kr.ps, /kr94),

size(kr.ps, 300)g

The agent knows the contents of /kr94, and the sizes of all the �les therein. In

addition, because the parent directory and size of each �le are unique, the Counting

Rule implies that the agent has lcw on the size and parent directory of each �le.

This information is recorded in the lcw database as follows:

L = flcw(in.dir(f, /kr94)),

lcw(in.dir(f, /kr94) ^ size(f, l))

lcw(in.dir(kr.tex, d)),

lcw(size(kr.tex, l)),

lcw(in.dir(kr.ps, d)),

lcw(size(kr.ps, l))g
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The directory /papers is initially empty. Thus, after executing ls -al in the

directory /papers, the agent records lcw information for the directory /papers, but

no updates are made toM.

L = flcw(in.dir(f, /kr94)),

lcw(in.dir(f, /kr94) ^ size(f, l)),

lcw(in.dir(kr.tex, d)),

lcw(size(kr.tex, l)),

lcw(in.dir(kr.ps, d)),

lcw(size(kr.ps, l)),

lcw(in.dir(f, /papers)),

lcw(in.dir(f, /papers) ^ size(f, l))g

Moving the �le kr.ps from the directory /kr94 to the directory /papers results

in both Domain Contraction to the directory /kr94, and Domain Growth to the

directory /papers. M is updated as follows:

M = fin.dir(kr.tex, /papers),

size(kr.tex, 100),

in.dir(kr.ps, /kr94),

size(kr.ps, 300)g

There is no change to L due to Domain Contraction. However, Domain Growth

could potentially result in statements being retracted from L. This example illustrates

the advantage of having the Domain Growth Rule retract the set of MREL sentences

from L, rather than naively retracting the set of REL sentences. There are three

statements in REL:
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REL(in.dir(kr.ps, /papers)) = flcw(in.dir(f, /papers)),

lcw(in.dir(kr.ps, d)),

lcw(in.dir(f, /papers) ^ size(f, l))g

However, the MREL of the update is empty, because we have lcw on the size of

kr.ps:

MREL(in.dir(kr.ps, /papers)) = fg

As a result, L remains unchanged after the mv command is executed. However, if

we did not know the size of kr.ps when it was moved, we would have lost lcw on

the size of the �les in the directory /papers.

The last action in our example is compressing the �le kr.ps. This action illustrates

the advantage of retracting REL rather than PREL in the Information Loss Rule. After

the �le kr.ps is compressed, its size becomes unknown. Thus,M shrinks to:

M = fin.dir(kr.tex, /papers),

size(kr.tex, 100),

in.dir(kr.ps, /kr94)g

The set of PREL statements is:

PREL(size(kr.ps, l)) = flcw(in.dir(f, /kr94) ^ size(f, l)),

lcw(in.dir(f, /papers) ^ size(f, l)),

lcw(size(kr.ps, l))g

In contrast, because we know that kr.ps is now in the directory /papers, the set

of REL statements contains only the following:
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REL(size(kr.ps, l)) = flcw(in.dir(f, /papers) ^ size(f, l)),

lcw(size(kr.ps, l))g

Thus after the compress action is executed, we remove the REL statement from

L, obtaining:

L = flcw(in.dir(f, /kr94)),

lcw(in.dir(f, /kr94) ^ size(f, l)),

lcw(in.dir(kr.tex, d)),

lcw(size(kr.tex, l)),

lcw(in.dir(kr.ps, d)),

lcw(in.dir(f, /papers))g

3.5.7 Computational Complexity of Updates

As stated earlier, our motivation for formulating conservative update rules has been

to keep lcw update tractable. We make good on this promise below by considering

the complexity of applying each update rule.

� Information Gain: The Information Gain Rule implies that no sentences have

to be retracted from L. lcw sentences may be added by the Information Gain

Rule in time that is independent of the size of L. The Counting Rule requires

counting ground instances of a literal inM, which requires time that is at most

linear in the size of the database. For the most part, the Composition Rule is

applied only in response to lcw queries; when applied proactively after action

execution, it requires time that is linear in the number of atomic � updates,

which correspond to the action's e�ects.
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� Information Loss: First, the agent computes the set PREL('), which takes

time linear in the size of L in the worst case. Next, the agent computes REL(')

from PREL('). Since this means determining whether L ^M ` :(�� ')�, the

agent can incur an O(jLj

c�1

jMj

c�1

) cost for an lcw query (where c denotes

the maximum number of conjuncts in a sentence in L) for each element in PREL

(Theorem 2.9). Thus, to determine the worst case complexity of Information

Loss, one must calculate the maximum length of the elements of L. This is easy

because there are only two ways that lcw sentences can be added to L: via the

Information Gain Rule or via proactive use of the Composition Rule. Since the

�rst method only adds literals, c = 1. While the Composition Rule could (in

theory) lead to an lcw sentence of arbitrary length, it is only used for forward

chaining in a limited context (as explained in Section 3.5.2). As a result, it

never adds sentences that are longer than a constant bound determined by the

planning domain. For the UNIX and Internet domains, this constant is 3. In

summary, jPREL(') j is potentially linear in the size of L, so computing REL(')

from PREL(') could take O(jLj

c

jMj

c�1

). This cost dominates the time for the

entire update.

� Domain Growth: The agent has to compute the set REL(') which, as ex-

plained above, is polynomial in the size of L andM. Computing MREL(') from

REL(') is linear in the size of REL, but polynomial in the size of L and M,

since additional bounded-length lcw queries may be involved. The agent then

removes each element of the set from L, which takes time linear in the size of

the set MREL('). Thus the whole operation is O(jLj

c

jMj)

c�1

).

� Domain Contraction: L remains unchanged in this case.

We summarize the preceding discussion with the following theorem.
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Theorem 3.18 (Tractability of Updates) LetM be a set of ground literals, and

let L be a set of positive conjunctive lcw sentences such that no member of L has

more than c conjuncts. Updating L

0

in response to an atomic change requires time

that is at most O(jLj

c

jMj)

c�1

).

The use of standard indexing techniques (e.g., hashing on the predicates in ')

renders the e�ective polynomial coe�cient lower than the conservative bound we

present.

3.5.8 Optimality of Atomic Update Policies

Since sentences in L are restricted to positive conjunctions, and since our update

rules are conservative, the update process is incomplete. Nevertheless, it is easy to

see that our algorithm is better than the trivial update algorithm (L

0

 fg). In our

softbot's domain, for example, the Information Gain and Counting Rules enable us to

derive lcw from a wide range of \sensory" actions, including pwd, wc, grep, ls,

finger, and many more. Furthermore, our update rules retain lcw in many cases.

For example, changes to the state of one \locale" (such as a directory, a database,

an archive, etc.) do not impact lcw on other locales. This feature of our update

calculus applies to physical locales as well.

Below, we make a much stronger claim, that the sets of sentences retracted by

theorems 3.15 through 3.17 are, in fact, minimal. Every sentence retracted is invalid

and must be removed from L to maintain soundness. This statement is trivially

true for Domain Contraction where no sentences are retracted. Clearly, we cannot

do better than that. The following theorem asserts that each lcw sentence retracted

due to Information Loss is, in fact, invalid.

Theorem 3.19 (Minimal Information Loss) Let M, L be a conservative repre-

sentation, and let ' be a positive literal. Let A denote an atomic change of the form
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�('; T! U) or of the form �('; F! U). If � 2 REL(') then lcw(�) does not hold

after A has occurred.

The corresponding result holds for Domain Growth.

Theorem 3.20 (Minimal Domain Growth) Let M, L be a conservative repre-

sentation, and let ' be a positive literal. Let A denote an atomic change of the form

�('; F! T). If � 2 MREL(') then lcw(�) does not hold after A has occurred.

Are the update rules for Information Loss and Domain Growth the best possible?

At �rst blush, the answer to this question would seem to be yes, since the rules are

sound and they retract the minimal set of sentences from L. So what more could

we want? However, this observation overlooks the key fact that inference in our

framework is lazy, so that when the sentence ' is retracted we e�ectively also retract

'� for any variable substitution �. Above, we claimed that the sentence ' really

ought to be retracted, but we didn't claim that the sentence '� (which is weaker!) is

invalid. In fact, there are cases where such sentences are valid. For example, consider

the case where we have lcw on the size of all the �les in the directory /bin, but then

the �le a.out in that directory is compressed. Our update rule for Information Loss

would retract the lcw statement, when, in fact, a weaker statement that we know

the size of all the �les in /bin | except a.out | is true. Since the sentences in L are

conjunctions of positive literals, we have no way of expressing the above statement

in a single lcw formula; thus, the original formula would have to be replaced with

many new formulas.

3.5.9 Optimal Order of Atomic Updates

So far our discussion has been restricted to atomic updates, but many updates consist

of a set of such atoms. While the order in which these atomic components are handled

does not a�ect the eventual contents ofM, this is not true for L. Of course theM, L
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pair will be a conservative representation of S regardless of the order chosen, but some

orderings will discard more sentences from L than others. For example, consider the

following imaginary UNIX command gen-file d which creates a new �le in directory

d and gives it zero size. Say the e�ects of executing gen-file /tex are as follows:

�(in.dir(G003, /tex); F! T)

�(size(G003, n); U! T _ F)

Now, suppose that before executing gen-file /tex the agent knew the of all �les

in /tex.

lcw(in.dir(f, /tex) ^ size(f; c))

If the atomic updates are processed in the order given, then the Domain Growth

Rule will eliminate this lcw sentence from L, but if the updates are processed in the

reverse order then that retraction is unnecessary.

To obtain an optimal order, an agent must be sure that as many sentences are

added to L as possible and that as few are removed as possible. We believe the

following order su�ces:

1. Process Domain Contraction updates.

2. Process Information Gain updates and apply the Counting Rule.

3. Process Domain Growth updates.

4. Process Information Loss updates.

The insight behind this order is as follows. The only types of updates that re-

move items from L are Domain Growth and Information Loss, which remove the sets

MREL(') and REL(') respectively. More information present inM, L means that we'll

have more lcw information and be able to prove more sentences are false. This in
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turn means that the REL and MREL sets will be as small as possible. So Information

Gain and Domain Contraction updates should be processed �rst.

18

It can be useful to

process Domain Contraction Updates before Information Gain because this improves

the chance that the proactive application of the Composition Rule (Section 3.5.2)

will result in new lcw sentences.

3.6 Summary

We introduced sadl, a language for representing sensing actions and information

goals.

1. Since knowledge goals are temporal, sadl supports the temporal annotation

initially.

2. In knowledge-free Markov domains, such as UNIX, knowledge preconditions for

actions are inappropriate, but subgoaling to obtain knowledge is often necessary;

sadl handles this paradox by eliminating knowledge preconditions from actions,

but using secondary preconditions to clearly indicate when subgoaling to acquire

knowledge could be useful.

We described the connections between sadl and lcw, by

1. Explaining how sadl supports lcw goals, including goals tagged with initially.

2. Explaining how sadl e�ects can result in updates to lcw, and providing sound,

tractable procedures for performing these updates to lcw.

In the next chapter, we discuss how the actions presented in this chapter are com-

bined to form plans, and we introduce the structures used by the puccini planning

algorithm.

18

The only problem with this argument would arise if a Domain Growth or Information Loss update

removed an lcw sentence that had been added by Information Gain, but this is impossible because

we assume that every set of updates corresponding to a single action or event is mutually consistent.
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PLANS AND PLANNING PROBLEMS

4.1 Partially speci�ed plans

We have described plans as totally-ordered sequences of ground actions, but when

building plans incrementally, it's useful to have a less rigid speci�cation of a plan. We

describe plans instead as partially-ordered sequences of partially-instantiated action

schemas.

Planning can be regarded as a search, through a space of partially-speci�ed plans,

for a complete plan that achieves the goal. A puccini plan consists of a tuple

hA;O;B; C; Ei, where A is of a set of steps (partially instantiated action schemas),

O is set of ordering constraints, representing a partial temporal ordering relation

over A, B is a set of variable binding constraints, representing a a partial equivalence

relation over the variables and constants in the plan, C is a set of causal links [84]

and E is a set of step execution labels, representing a function mapping each step to

its execution status.

4.1.1 Steps and E�ects

Steps are structures representing partially speci�ed actions. Semantically, they are

sets of actions, containing all ground actions consistent with the action schema and the

binding constraints in B, which will be narrowed down to singletons prior to execution.

Thus we can talk about executing steps or executing actions interchangeably. Since

steps are sets of actions, we will represent them using uppercase A. We de�ne a step

formally as follows.
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De�nition 4.1 A step A is a tuple h�; "; �;Proci, where �

A

and "

A

(preconditions

and e�ects of A

)

are lifted versions of the action preconditions and e�ects �

a

and "

a

introduced in Section 3.3. �

A

is the set of equality and inequality constraints on free

variables in �

A

, and Proc

A

is a procedure for executing A and returning the sensed

information to the planner.

Recall that conditional e�ects are de�ned in Section 3.4.1 as sentences of the form

when 

T

P

(a) cause(P, T). These are represented internally as planner structures.

De�nition 4.2 An e�ect " is a triple h

P

; P; �i, where 

P

"

is the (lifted) e�ect pre-

condition of ", P

"

is the outcome of ", and �

"

the set of equality and inequality

constraints on free variables in 

P

"

.

4.1.2 Ordering constraints

O consists of pairwise ordering constraints, using two ordering relations: The intran-

sitive successor relation \;" and the transitive closure of \;", \�". A

a

;A

b

means

that in any total ordering A

t

of A, if A

t

[i] = A

a

then A

t

[i + 1] = A

b

. \�" is the

customary ordering relation used by partial-order planners. A

a

� A

b

means that in

any total ordering of steps A

t

, if A

t

[i] = a and A

t

[j] = b, then i < j. The ordering

of steps corresponds to the temporal order in which they are executed. The reason

for the relation \;" is that steps are executed during planning, which represents a

stronger commitment to order than \�" alone can express. That is, any executed step

is necessarily before all unexecuted steps, including steps that haven't been added to

the plan yet. We can ensure that no actions will be ordered before the executed pre�x

A

1

. . .A

e

by imposing the constraints A

0

;A

1

;. . . ;A

e

. We say that O is consistent if

there is some permutation of A that doesn't violate any of the ordering constraints

imposed by O.
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4.1.3 Binding constraints

B consists pairwise binding constraints using two binding relations: The codesignation

relation �, and the non-codesignation relation 6�; by de�nition, if a and b are distinct

constants, a 6� b. B is consistent if there is some assignment of constants to variables

that obeys all of these constraints.

4.1.4 Causal links

A causal link is a tuple hA

p

; e; q; A

c

; t

1

; t

2

i, consisting of a record of the planner's

decision to support precondition q of step A

c

with an e�ect e of step A

p

, and a

protection interval [t

1

; t

2

] over which condition q must be preserved. Typically, [t

1

; t

2

]

is just [A

p

; A

c

]. A

c

is known as the consumer of q and A

p

is known as the producer of

e. We will use the notation t

1

e;q

!t

2

to represent links; it will always be obvious who the

producer and consumer are, since these are the actions with e�ect e and precondition

q, respectively.

We use causal link as a generic term, even though links are not only used to record

causal support; they are also used to record observational support, lcw support, and

even assumptions. We also use the terms observational link, lcw link, 8 link, etc.

Once the causal link is added, the planner is committed to ensure that condition q

remains true over the protection interval. A step A

t

that could possibly be executed

during this interval and might make q false is said to threaten the link, and the planner

must make take evasive action | for example, by ensuring that A

t

is executed after

A

c

. Techniques for handling threats are discussed in Section 5.3

4.1.5 Step execution

In the simplest case, E maps each step in the plan to executed or unexecuted, though

other values, such as executing can be used to give a �ner level of information

of the status of steps. Knowing that a step is executing would be useful when
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executing multiple steps simultaneously, for example to handle resource conicts [43].

By de�nition, E(A

0

) is always executed, and when E(A

1

) = executed, planning is

complete.

4.1.6 Plan re�nement and repair

Planning proceeds by making incremental additions to previous plans, until a com-

plete plan is generated. The normal planning process only adds structures to a plan,

in a process known as re�nement, thus reducing the set of complete plans consistent

with the partial plan:

De�nition 4.3 A plan R = hA

R

;O

R

;B

R

; C

R

; E

R

i, is a re�nement of a plan P =

hA

P

;O

P

;B

P

; C

P

; E

P

i if and only if A

P

� A

R

, O

P

� O

R

, B

P

� B

R

, C

P

� C

R

and

E

P

� E

R

.

When all we are concerned with is plan generation, re�nement is su�cient to

explore all plans that could achieve the goal. However, when these plans are being

executed in the course of planning and both the state of the world and the agent's

knowledge are changing, the idea of plan repair becomes useful. In the course of plan

repair, structures are removed from the plan, and no structures are added:

De�nition 4.4 A plan R = hA

R

;O

R

;B

R

; C

R

; E

R

i, is a repair of a plan P =

hA

P

;O

P

;B

P

; C

P

; E

P

i if and only if A

R

� A

P

, O

R

� O

P

, B

R

� B

P

, C

R

� C

P

and E

R

� E

P

.

4.2 Interleaving Planning and Execution

In the classical planning framework, plans are constructed completely by the planner

before they are executed, and there is no feedback between the planner and the en-

vironment. When planning with incomplete information, the planner must obviously

take into account the result of sensing actions. This can be done within the classical
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planning framework by adding branches to the plan to decide what course of action

to take based on the result of the sensors, and producing complete sub-plans for all

possible sensor values.

While this contingency planning approach is formally clean, it has a number of

drawbacks. Because the plans produced can be exponential in the size of the problem,

and the planning problem itself already requires searching an exponentially large

space of plans, contingency planners have a double exponential time complexity.

Furthermore, since there is no bound on the number of values that can be sensed by

an action with universally quanti�ed observational e�ects, contingent plans can have

an in�nite branching factor. Also, as we've discussed, actions like �nding a �le or

a web page can involve an unbounded amount of search, so there's no way, in the

absence of using loops, to decide when to stop planning.

A more practical approach is to interleave planning with execution (IPE), thus

�nding information needed to determine which branch to follow (before generating

all options), and to determine when planning should stop. We can view the plans

produced by interleaving planning with execution in terms of contingency plans. In-

tuitively, such a plan follows one branch of the corresponding contingent plan, by

deferring the planning for contingencies until the information needed to make the

correct choice is known.

4.3 The Planning Problem

The traditional de�nition of a planning problem is a tuple consisting of a set of

allowable actions, a complete description of the initial state, and a goal. Given that

our agents have incomplete information about the world, we replace the complete

description of the initial state with an incomplete theory of the initial state. The

agent cannot consult the actual state of the world directly, but it does interact with

the world, and thus can acquire information about the true state indirectly, through
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sensing. Thus, the world state acts as a kind of oracle, which the agent can query in

a restricted way.

Recall that, in Chapter 2, we described the agent's knowledge as part of the state,

using the predicate K. While that makes the formalism simpler, when we actually

build the agent, we need to separate the agent's knowledge from the state itself,

since its knowledge is all that can be represented explicitly (in our case, using the

L and M databases). The actual initial state of the world (s

i

), not including the

agent's knowledge, is just the situation s

0

but without the predicate K. The agent's

incomplete theory of the initial state, which we will denote I, consists of those facts

that can be inferred from s but not from s

i

.

De�nition 4.5 A planning problem is a tuple hD; s

i

; I;�i, where D is a theory of

action, s

i

is the initial state of the world (which is possibly unknown to the agent), I

is an incomplete theory of the world, which is consistent with s

i

and � is a goal given

to the planner to solve.

Our de�nition of a solution to a planning problem is similar to the classical def-

inition. Note, however, that the agent need not know prior to executing the plan

that the plan is indeed a solution. The agent must know after execution that it has

succeeded, but that follows from the de�nition of the sadl goal annotations. We

separate the state of the world, s

i

from the agent's knowledge in I to make it clear

how the two inputs are used, but for simplicity, we will still refer to their combination,

s

0

.

De�nition 4.6 A sequence of actions, fag

n

1

, is a solution to a planning problem

hD; s

i

; I;�i i�

1. fag

n

1

consists entirely of actions instantiated from D

2. fag

n

1

is executable from s

0

(see Section 3.4.3).
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3. and DO(fag

n

1

, s

0

) j= �.

The use of the actual situation s

i

is key, since what counts is that the goal is

satis�ed when the plan is executed from s

i

, not that the agent can prove it will

succeed before it begins execution. Finding an action sequence that is guaranteed a

priori to work in all situations s consistent with I is in general impossible. However,

since the agent can consult s

i

as an oracle in the course of planning, it can produce

a plan that does in fact work for the particular situation s

i

.

De�nitions such as 4.6 are usually applied to planners that produce a single,

correct plan before executing it. But using IPE, the planner might blunder along,

executing the pre�xes of many \plans" before �nding the correct one. The above

de�nition applies to IPE, but we must be more speci�c about what fag

n

1

refers to.

Since the planner may execute the pre�x of more than one plan, only considering the

action sequence of the last plan visited is too narrow. This is a particular problem for

initially and hands-o� goals, since the entire history of action execution is relevant.

Thus, fag

n

1

refers to the entire sequence of actions generated by the planner, regardless

of what \plans" these actions correspond to.

4.4 Summary

In this chapter, we presented the structures used to represent plans and planning

problems based on the action language presented in the previous chapter. In the

next chapter, we discuss the puccini planning algorithm, which constructs plans

using these structures.
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PUCCINI ALGORITHM

In this chapter, we describe the puccini algorithm. puccini

1

is based on our xii

planner [35], which in turn is based on ucpop [72], a classical planner that supports a

subset of adl [71]. puccini extends ucpop by handling incomplete information and

lcw, interleaving planning with execution, and handling all of the sadl extensions

to adl.

puccini is given a planning problem as input, and executes a sequence of actions,

returning success if that sequence consists of a solution to the planning problem. We

�rst provide a high-level overview of the puccini algorithm. We then discuss how

puccini achieves preconditions of actions, including a powerful mechanism known as

assumption. We then discuss how puccini prevents subgoal clobbering and �nally

how it interleaves planning with execution. puccini is sound, but incomplete. In the

next chapter, we prove soundness and discuss the incompleteness of puccini.

5.1 Planning overview

The input to puccini is a planning problem (see Chapter 4), hD; s

0

; I;�i. This

problem is encoded as a \dummy plan," P

0

, which the puccini algorithm re�nes

into a complete solution by incremental additions to the plan in the form of steps,

causal links, binding constraints, etc. This plan consists of two \dummy" steps: the

initial step, A

0

, whose e�ects represent I, and the goal step, A

1

, whose precondition

is �. Using this representation simpli�es the algorithm, since the same code used to

1

puccini stands for Planning with Universal quanti�cation, Conditional e�ects, Causal links, and

INcomplete Information
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reason about preconditions and e�ects of actions can be used to reason about goals

and initial conditions. The e�ects of A

0

are not stored explicitly in the step structure,

as the size of I can be quite large. Rather, the planner consults the databases M

and L discussed in Chapter 2 whenever e�ects of A

0

are requested. Furthermore,

since the agent's knowledge of the initial state changes over time, I is not static.

The agent's knowledge about the current situation also changes over time, but this

additional information is reected in the e�ect structures of the plan itself. The only

time the agent's knowledge of the current state needs to be consulted explicitly is

after backtracking over execution (see Section 5.4.2 for details).

Literals in I have the standard truth values T, F and U, as well as a fourth

truth value, I, meaning inaccessible. A literal labeled with I has been changed

prior to being sensed, so it is impossible to �nd out what truth value it originally

had. There is also lcw knowledge associated with I, but the only lcw knowledge

the agent keeps track of is current lcw knowledge about what held in the initial

state, which is weaker (and more useful) than knowledge about lcw statements

that were valid in s

0

. That is, the agent can record lcw(initially(')), but not

initially(lcw(')). initially(lcw(')) means the agent had lcw knowledge over ' in

the initial state. Since knowledge about the initial state never goes away (Lemma 6.3),

initially(lcw('))) lcw(initially(')):

The initial call to puccini (Figure 5.1) is puccini(P

0

, h�; A

1

i, D, s

0

), where

h�; A

1

i is the initial contents of the goal agenda, G, which contains pairs hg; Si,

consisting of a goal condition g and a step S for which g is a precondition.

In subsequent recursive calls: puccini(P , G, D, s), puccini re�nes plan P , adding

to and removing from G as appropriate, and changing the situation s by executing

actions. As conditions are satis�ed, they are removed from G, and when actions are

added to the plan, preconditions of those actions are added to G. puccini terminates

with success if P is complete and consistent, G is empty, and all steps in A are labeled

as executed in E . puccini returns failure (and backtracks) if constraints in O or B
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become inconsistent, a required condition is revealed to be false after executing an

action, or a condition on G cannot be achieved.

5.1.1 Searching through Plan-Space

Generative planning can be viewed as a process of gradually re�ning a partially-

speci�ed plan, until it is transformed into a complete plan that solves the goal.

We refer to the aspects of the plan that need to be changed before the plan can

be complete as aws, and the changes made as �xes. In traditional least-commitment

planners, the aws to consider are open goals (goals on the goal agenda G), and threats

to causal links. In order to interleave planning and execution in this framework,

we treat an unexecuted action as another type of aw, whose �x is to execute it

(Section 5.4). Treating execution in this manner has some profound impacts on the

search algorithm, as we discuss in depth in Section 5.4. Once no more aws exist,

the plan is complete (and fully executed), and the goal is achieved.

puccini(hA;O;B; C; Ei, G, D, s)

1. If G = ; ^ E = ; ^ 8` 2 C ` not threatened, return success.

2. Pick one of

(a) HandleGoal(A, O, B, C, G, D)

(b) s = HandleExecution(A, O, B, C, E , s)

3. HandleThreats(O, B, C, G)

4. puccini(hA;O;B; C; Ei, G, D, s)

Figure 5.1: puccini Algorithm

In general, there will be more than one �x for a given aw, and for completeness,

all �xes must be considered. Considering all �xes requires search, but we can view
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the algorithm in terms of nondeterministic choice by assuming that for each aw,

puccini miraculously chooses the correct �x. Using nondeterminism simpli�es the

algorithm description, and allows us to separate the details of the planner from the

details of the search strategy. However, it conceals the phenomenon of backtracking

over execution (Section 5.4.2) because a nondeterministic planner will never make

choices requiring it to backtrack.

In the rest of this chapter, we elaborate on some novel elements of the puccini

search space. Sections 5.2, 5.3 and 5.4 discuss how puccini handles the aws of open

goals, threats and unexecuted steps, respectively.

5.2 Handling Open Goals

A goal is said to be \open" if it is still on the goal agenda. An open goal in puccini

can be any arbitrary goal expression in the sadl language, including disjunction,

conjunction, and nested quanti�cation. To cope with this complexity, puccini breaks

the goals apart into simpler goals using a divide-and-conquer strategy.

5.2.1 Canonical Form

The key to this divide-and conquer strategy is a preprocessing step that converts all

preconditions and e�ects into a canonical form. With the exception of lcw conditions

(see Section 5.2.6), all preconditions and postconditions are converted into a uniform

representation in which the atomic elements are free of conjunction and disjunction,

but may involve universal quanti�cation. Each atomic element is a literal in the sadl

language consisting of an annotation such as initially or cause, a truth value of T,

F, U or a variable, and a condition, consisting of a predicate with its arguments, any

of which may be a universally quanti�ed variable. We call these atomic elements alits

for annotated literals. Matching is done between alits using simple uni�cation (see

Section 5.2.4).
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Existentials are replaced with Skolem functions. The scope of universal quanti�ers

becomes global and the scope of negation is restricted to individual literals. For

conditional e�ects, the scope of the precondition is also restricted to individual literals.

The e�ect of this conversion is that all expressions consist of alits, possibly with

preconditions, connected by ^ and _. Since disjunction is not allowed in e�ects, all

e�ects, which become conjunctions of alits, are conceptually equivalent to STRIPS

add and delete lists. The conjunctions and disjunctions in preconditions are handled

within the planning algorithm, where conjuncts are added as separate elements to

the goal agenda G, and a disjunction is treated as a nondeterministic choice (Lines

3 and 4 of Reduce, Figure 5.3) . The result is that atomic goals on G are alits, and

these are satis�ed by alits on the add/delete list.

The canonical form for universally quanti�ed goals is a little more involved. sadl

places no restrictions on the form of 8 goals, and does not require an explicit universe

of discourse to be speci�ed. However, being able to obtain lcw on a conjunctive

universe provides a powerful way of solving 8 goals. In order to exploit this, puccini

converts 8 goals, when possible, into a form 8~x (P (~x) ) Q(~x)), where the P (~x) is

referred to as the context of the goal. As we will see, the context can be used in other

interesting ways as well. In order to compute the context, puccini converts the goal

into DNF, and moves all the single negated disjuncts over to the left-hand side of the

implication symbol.

5.2.2 The Universal Base

Like other planners, puccini makes use of the universal base [86] �, a universally

ground conjunctive formula in which universally quanti�ed variables have been re-

placed by each possible constant in the universe of discourse. Obviously, this depends

on the universe of discourse being �nite and known to the agent, two assumptions

that most planners depend on. As we discuss in Section 5.2.5, we don't assume that

either condition holds.
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HandleGoal(A, O, B, C, G, D)

if G 6= ; then pop hg, S

c

i from from G and select case:

1. If g = Context) cond, and Contextj= cond then g is trivially satis�ed.

2. If g is a hands-o� goal, then call AddLink(A

0

, g, nil, S

c

, O, B)

3. Else nondeterministically choose

(a) Reduce(g, G)

(b) Instantiate a new action A

new

from D, such that MGU(e, g) 6=?, and add it

to A. Call Addlink(A

new

, g, e, S

c

, O, B). Add preconditions of A

new

to G.

(c) Choose an existing action A

old

from A, such that MGU(e, g) 6=?, and Call

Addlink(S

p

, g, e, A

old

, O, B).

Figure 5.2: Procedure HandleGoal

The universal base, �, is a function from goals, possibly including quanti�ers,

to quanti�er-free goal expressions. The idea is quite simple. For example, given

the goal of putting all blocks on a table, if there are three blocks in the universe,

named A, B and C, then the universal base would consist of the goal of putting A

on the table, putting B on the table and putting C on the table. Formally speaking,

the universal base replaces universally quanti�ed variables with their extensions and

replaces existentially quanti�ed variables (which are represented as Skolem functions)

with Skolem constants. We de�ne the universal base as follows:

�(8x:f(x)) g(x)) = g(x

1

) ^ : : : ^ g(x

n

); for each x

i

such thatf(x):

�(9x:g(x)) = g(x

0

);where x

0

is a Skolem constant

�(R(x

1

: : : x

n

)) = R(x

1

: : : x

n

)

�(

n

^

i=1

'

i

) = �('

1

) ^ : : : ^�('

)

�(

n

_

i=1

'

i

) = �('

1

) _ : : : _�('

)

(5.1)
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Reduce(g, S

c

)

1. If g is an lcw goal, then nonderministically choose one of the following

(a) Choose � and 	, such that g = lcw(� ^ 	). Add hlcw(�), S

c

i to G and

add h8~x:�) lcw(	)), S

c

i (where ~x is the set of free variables appearing in

�) to G, tagged to wait on the result of lcw(�).

(b) Choose � and 	, such that g = lcw(� ^ 	). Add hlcw(�), S

c

i and

hlcw(	), S

c

i to G.

2. If g is of the form 8~x:�) 	 then nonderministically choose one of the following

(a) If lcw(�) is true, replace g with the universal base �(g). Otherwise, add

hlcw(�), S

c

i to G, and add h8~x:� ) 	, S

c

i to G, tagged to wait on the

result of lcw(�).

(b) Partition: Nondeterministically choose some expression $.

Add h$) g, S

c

i to G.

Add h:$) g, S

c

i to G.

3. If g = g

1

^ g

2

^ : : : ^ g

n

: Add all g

1

, g

2

, . . . , g

n

to G

4. g = g

1

_ g

2

_ : : : _ g

n

: Nondeterministically add one of g

1

, g

2

, . . . , g

n

to G

Figure 5.3: Procedure Reduce
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5.2.3 Atomic Goals

An atomic goal is a goal that is free of conjunction and disjunction. It may, however,

involve universal quanti�cation. We explain how universally quanti�ed goals are

handled in Section 5.2.5.

Atomic goals can be satis�ed by one of two means: adding a new action or com-

mitting to use the e�ect of an action already in the plan to support the goal (Lines

3(b,c) of HandleGoal, Figure 5.2). In the latter case, if the action supporting the goal

is A

0

, then the precondition is already satis�ed, and we are simply adding constraints

to ensure that it remains satis�ed (see Figure 5.4). In puccini, the contents of the

agent's knowledge base, and hence the e�ects of A

0

, can change during planning, so

the search space can change dynamically, as we discuss in Section 5.4.2. If the goal is

annotated with initially, then the protection interval of the link extends from A

0

to

the producer S

p

. Otherwise, the protection interval extends from producer S

p

to con-

sumer S

c

. For example, if the goal is to know what �le was initially named core, the

name of the �le must be left unchanged until it is sensed by S

p

, but may be changed

afterward. On the other hand, if the goal is to know what �le is ultimately named

core, then changing it before S

p

is �ne, but changing it afterward would invalidate

the answer given by S

p

.

It is easy to tell whether an e�ect satis�es an atomic goal. Since both e�ects and

atomic goals are alits, determining whether an e�ect satis�es a goal reduces to the

problem of matching two alits.

5.2.4 Matching

Matching between atomic preconditions and postconditions is fairly simple. The

precondition of a conditional e�ect is not considered when matching that e�ect to a

goal, so we need only match between alits, which consist of annotation, literal and

truth value. We introduce the function MGU(e, p) (Figure 5.5), which returns the
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Addlink(S

p

, goal, e�, S

c

, O, B)

(goal = Context) g; e� = when(p) e)

� If g is an initially goal, add A

0

e;goal

! S

p

to C. Otherwise, add S

p

e;goal

! S

c

to C.

� Unless g is unannotated and e is an observe e�ect

1. Add S

p

� S

c

to O

2. If e is supported by an assumption link, whose producer is A

a

, add A

a

� S

c

to O

� Add MGU(e, g) to B.

� Add hContext) p, Sprodi to G

Figure 5.4: Procedure Addlink

MGU(e; g)

1. If there is a consistent mapping � of terms in e to terms in g, such that e� and g�

are identical, then return that assigment.

2. If e = (A

1

(P (~x); v

1

)) and g = A

2

(Q(~y); v

2

)), and either

(a) A2 = satisfy OR

(b) A1 = observe

then return MGU(P (~x; v

1

); (Q(~y; v

2

)))

3. If e = lcw( 

1

^: : :^ 

n

)), and g = lcw('

1

^: : :^'

n

) and there is some permuta-

tion j

1

: : : j

n

such that MGU(( 

j

1

; : : :  

j

n

); ('

i

; : : : ; '

n

)), return that assignment

4. Else, return ?

Figure 5.5: Most General Uni�er
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most general uni�er, of e and p, meaning the minimal variable bindings to ensure

that e and p will unify. If e and p can't unify, MGU(e, p) returns ?.

In the course of unifying two variables, v

e

from an e�ect, with v

g

from a goal, we

must consider the case in which one or both of them are universally quanti�ed. Since

a universally quanti�ed goal can never be satis�ed by a non-universally quanti�ed

e�ect, there are only two cases we need to consider:

� When both variables are universally quanti�ed, we match them using MGU, but

any codesignation constraints imposed by MGU between v

g

and other variables

in p are adopted as preconditions of e. Constraints are not posted to B, which

only records existential constraints

� When only v

e

is universally quanti�ed, the match succeeds without imposing

any constraints on v

e

. Constraints involving v

g

are existentialized and added

to B.

5.2.5 Universally Quanti�ed Goals

The e�ects of many UNIX commands are not easily expressed without 8. The ubiq-

uitous UNIX wildcard * can make almost any command universally quanti�ed, and

many other commands, such as ls, ps, lpq, and rm have 8 e�ects.

However, the approach used by planners like ucpop [72] and prodigy [62] to solve

8 goals depends on the CWA, which presents a challenge for puccini. Traditionally,

planners satisfy 8 goals by subgoaling to achieve the universal base (Equation 5.1),

but this strategy relies on the closed world assumption. Only by assuming that

all members of the universe of discourse are known (i.e., represented in the agent's

knowledge base) can one be con�dent that the universal base is equivalent to the

8 goal. Since the presence of incomplete information invalidates the closed world

assumption, the puccini planner uses three new mechanisms for satisfying 8 goals:
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1. Sometimes it is possible to directly support a 8 goal with a 8 e�ect, without

expanding the universal base. For example, given the goal of having all �les in a

directory group readable, puccini can simply execute chmod g+r *; it doesn't

need to know which �les (if any) are in the directory. Because uni�cation

between 8 variables is handled during matching, as we discussed in Section 5.2.4,

supporting a 8 goal with a 8 e�ect is just a special case of supporting an atomic

goal with an e�ect from a new or existing action. (Note that since universally

quanti�ed e�ects cannot appear in the agent's knowledge base, supporting a 8

goal directly with e�ects of A

0

is not an option.) The only di�erence in the case

of 8 goals is that matching is between universally quanti�ed expressions, and

the causal link is labeled with a universally quanti�ed expression. If the e�ect

is conditional, and the precondition involves a 8 variable, then a universally

quanti�ed precondition is added to G.

2

However, if the context of the goal

(introduced in Section 5.2.1) entails the precondition of the e�ect (or part of

it) then that part of the precondition will be dropped (Line 1 of HandleGoal).

Constraints on universally quanti�ed variables are not handled in the same way

as existential variable constraints. Indeed, care must be taken when matching

8 variables in e�ects and preconditions. For example, given the goal 8person

1

8person

2

likes(person

1

, person

2

), one may be tempted by an e�ect of the form

8p likes(p; p). Matching the goal and e�ect would, of course, produce the con-

straint person

1

� person

2

. While we could simply say that the match is in-

valid, since the e�ect is less general than the goal, The proper way to view

this constraint is as a precondition. That is, the goal will only be satis�ed

if 8person

1

; person

2

(person

1

= person

2

). This is actually no di�erent from

2

Note that if a conditional 8 e�ect were used to satisfy an 9 goal then a non-universally quanti�ed

subgoal would be added to G instead. For example, compress * compresses all �les in the current

directory that are writable. If compress * is used to ful�ll the goal of compressing all �les in the

directory, then all the �les must all be writable, but if the goal is merely to compress a single �le,

then it is su�cient for that �le alone to be writable.
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the existential case { it just happens that in the existential case we can take a

shortcut by posting binding constraints to B, whereas here we store the con-

straints in the newly-generated subgoal. This ensures that neither the goal

nor the e�ect is incorrectly restricted by the variable bindings. The subgoal

8person

1

; person

2

(person

1

= person

2

) can in theory be satis�ed by the same

mechanisms that apply for other goals { namely, �nding an e�ect that produces

it, or �nding that the context of the goal entails it. However, since sadl ef-

fects don't include binding constraints, the only option is to check whether the

binding constraints are redundant when evaluated in the goal context, in which

case the e�ect is not less general than the goal.

2. Alternatively, if the goal is of the form � ) 	, where � contains all the

universally quanti�ed variables in 	, then puccini can subgoal on obtaining

lcw on the context �. If � contains terms labeled with initially, these terms

are labeled with initially in the lcw goal as well. Once puccini has lcw(�),

the universe of discourse is completely represented in its knowledge base. At

this point puccini generates the universal base and subgoals on achieving it

(Line 2(a) of Reduce, Figure 5.3). Note that this strategy di�ers from the

classical case since it involves interleaved planning and execution. Given the

goal of printing all �les initially in /papers, puccini would plan and execute

an ls -a command, while protecting the initially goal, then, after executing

the ls -a, would plan to print each �le it found, and �nally execute that plan.

3. In case neither mechanism alone is su�cient, puccini also considers combi-

nations of these mechanisms to solve a single 8 goal, via a technique called

partitioning, shown in Line 2(b) of Reduce, Figure 5.3. Partitioning simply con-

sists of splitting the context of the goal into two more restricted contexts whose

disjunction entails the original context. For example, the goal of printing all

�les in a directory could be replaced with the goals of printing the postscript
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�les and the non-postscript �les. Partitioning can be on predicates or variable

bindings (i.e., codesignation and non-codesignation constraints). Partitioning

on codesignation constraints can be used to overcome the problem mentioned

above when the 8 e�ect is more speci�c than the goal. We could partition the

context into person

1

� person

2

and person

1

6� person

2

. The former context

would enable us to use 8p likes(p; p) in partial ful�llment of the goal, and then

tackle the more di�cult part another way.

It would seem as if partitioning introduces a huge combinatorial disaster, which

would be the case if any predicate or binding relation could be used to split the

goal, but there's a saner way. Given a 8 e�ect, like the one above, that partially

ful�lls the goal, we partition only on the preconditions introduced by that goal.

That is, we never partition until after we've linked to the 8 goal, and we do

so only as a way of eliminating terms from the precondition. Partitioning of a

goal that is not to be solved via 8 linking is unnecessary and unhelpful, since

lcw reasoning only works on positive conjunctions, and partitioning introduces

negation into at least one context. Partitioning on terms that don't appear

in the e�ect preconditions is also unhelpful, since the resulting partitions will

be no easier to solve than the original. That's because as far as 8 links are

concerned, the context is only useful in eliminating preconditions. We believe

this partitioning scheme can solve any goal that partitioning on any condition

could solve (but see Section 6.4 for a discussion on completeness).

Note also that the classical universal base mechanism requires that a universe

be static and �nite. puccini correctly handles dynamic universes, using the threat

resolution techniques described in Section 5.3.1. Furthermore, puccini's policy of

linking to 8 e�ects handles in�nite universes, but this is not of practical import.

For example, suppose Sloppy Joe has to clean the kitchen: 8i (initially(in(i,

kitchen)) ) satisfy(clean(i))). There are only three actions that Joe is willing to
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use

1. Loading and running the dishwasher cleans everything small enough to �t in

the dishwasher: 8d (when(�ts.in (d, dishwasher)) cause(clean(d)))

2. Spraying an object with a hose will clean that object, provided it's not so small

that the stream of water washes it away: (when(heavy(o) cause (clean(o))))

3. Looking around reveals the objects in the kitchen.

Say Joe �rst decides on loading the dishwasher. This results in the subgoal: 8i

satisfy(�ts.in(i, dishwasher)). This subgoal can't be achieved, since some objects,

such as the stove, are too big to �t in the dishwasher. However, we can partition

on �ts.in(i, dishwasher). Then loading the dishwasher can be used to satisfy one

partition, since the context entails the goal. That leaves the remaining goal of cleaning

all objects in the kitchen that won't �t in the dishwasher. This goal can be achieved

by �rst looking around to obtain lcw on the objects in the kitchen that don't �t in

the dishwasher, and then spraying each one of those objects with the hose, assuming

they're heavy enough to stay put under the water pressure; but since they're too big

to �t in the dishwasher, let's assume they all are.

5.2.6 lcw Goals

As we mentioned, one way of solving universally quanti�ed goals is to �rst obtain

lcw on the universe of discourse. But how is that to be accomplished? What we

do is post the desired lcw formula to the goal agenda G, and then re-evaluate the 8

goal once the lcw goal has been achieved (Line 2(a) of Reduce, Figure 5.3). As with

standard goals, lcw goals can be satis�ed by adding a link from a new or existing

action or linking from A

0

(i.e. using lcw information stored in the database L).

lcw goals can also be handled by two other techniques, known as Intersection

Cover and Enumeration. These techniques correspond directly to the Conjunction
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and Composition rules described in Chapter 2. Both techniques can be easily under-

stood by thinking of lcw formulas in terms of sets. The conjunction of two lcw

formulas, � and 	 can be thought of as representing knowledge about the intersec-

tion of the sets described by � and 	. For example, if � is in.dir(f, /bin) and

	 is postscript(f), then lcw(�) represents knowledge of all �les in /bin, lcw(	)

represents knowledge of all postscript �les, and lcw(� ^	) represents knowledge of

all postscript �les in /bin, the intersection of the two sets.

One way of identifying all members � ^ 	 would be to �rst identify all members

of �, and then for each member, determine whether it is also a member of 	. We

call this approach Enumeration, because it relies on enumerating elements of 	. A

goal lcw(� ^	) can be solved by �rst obtaining lcw(�), and then for each ground

instance �� of �, subgoal on LCW(	�). For example, to �nd all postscript �les in

bin, one could �rst �nd out all �les in bin and then for each �le in that directory,

�nd whether the �le is postscript.

It may be costly to enumerate all members of the extension of � if that set is

large. Or it may be the case that � and 	 have no variables in common, in which

case enumeration of 	 is pointless. Another alternative is to realize that if one knows

the members of both sets, then one knows their intersection, so a goal lcw(�^	) can

be achieved by subgoaling on lcw(�) ^ lcw(	). For example, one way of �nding

out all postscript �les in bin is to �nd out all �les in bin and �nd out all postscript

�les. We call this approach Intersection Cover.

5.2.7 Making Assumptions (Leap before you look)

As discussed earlier, it is often desirable to execute actions for their conditional e�ects

even when the precondition is not known ahead of time to be true. For example,

the UNIX command ls papers will only �nd the �le paper.tex if paper.tex is in

directory papers, but subgoaling to ensure that paper.tex is in directory papers

misses the point. All we really care about is that we will be able to verify that
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paper.tex is there after the fact. While preconditions explicitly tagged with satisfy

must always be achieved prior to execution,

3

unannotated sadl preconditions need

not be, provided they can be veri�ed later.

What we want is the ability to assume the precondition is true, and to later

verify that the assumption was valid by performing an observation. Formally, an

assumption is a quadruple hS

p

; p; e; S

e

i, where p is a precondition of some e�ect of

S

p

. p is assumed to be true, and is to be veri�ed by e�ect e of step S

e

. Because

the observation will only be valid if the condition p remains unperturbed, we must

protect p over the interval between S

p

and S

e

.

The observant reader will notice a striking similarity between assumptions and

causal links. In fact, they are identical to causal links, with the exception that

the order of the producer and consumer is reversed! Because we want to consider

supporting these preconditions by either prior observation or assumption, we can

accomplish this feat quite simply by omitting the ordering constraint that would

normally be placed between producer and consumer (See Figure 5.4). Relaxing this

constraint allows for self-links as well | in fact, that is the most common type.

Consider the following e�ect of ls: 8 !f when in.dir(!f, d) observe(in.dir(!f, d))

We can satisfy the in.dir precondition by linking to the e�ect of the same action.

If the desired �le is not in the directory, the assumption will be proven false, and the

plan will fail. In the discussion of sadl, self-links were the only type of assumptions

permitted. The precondition had to be veri�ed immediately after execution. The

reason for this is that verifying the precondition later introduces correlations into the

agent's knowledge, and the knowledge representation doesn't support correlations.

However, the causal link structure of the plan provides a limited mechanism for keep-

ing track of correlations, and thus we can exploit it to provide greater exibility. This

3

satisfy goals, by de�nition, must be known to hold at the time they are required. The rational for

annotating action preconditions (as opposed to e�ect preconditions) with satisfy is that the e�ects

of the action are unde�ned if the preconditions aren't true; this introduces an arbitrary about of

uncertainty about the resulting state of the world, thus invalidating all of the agent's beliefs.
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greater exibility a�orded by assumptions is largely responsible for the simpli�cations

to the UNIX domain discussed in Section 7.1.

Bookkeeping

While we can handle assumptions elegantly by lifting the ordering constraints imposed

along with observational links, that doesn't free us from bookkeeping. The e�ects

that are supported by assumptions are still contingent, and we must exercise care

in what we do with them. In particular, we should not store them in the agent's

knowledge base or execute actions whose primary preconditions are supported by

them until they have been observed.

This bookkeeping is really quite simple. Once the link A

p

q;e

!A

c

is known to repre-

sent an assumption, as opposed to an observational link (i.e., after the A

c

has been

constrained to come before the A

p

) all steps whose primary (satisfy) preconditions

are supported by A

c

are required to follow A

p

. When it comes time to execute an

action, all e�ects whose preconditions are unknown, including assumptions, must be

asserted as unknown in the agent's knowledge base. Additionally, all e�ects whose

assumed preconditions have been veri�ed should be asserted as true (this is valid,

since the causal link guarantees that the condition wasn't changed by the agent in

the interim.

5.3 Resolving Threats

We have said that the purpose of a causal link A

p

q

!A

c

is to protect condition q from

being violated during the interval between the execution of A

p

and the execution of

A

q

. How exactly does puccini prevent condition q from being violated? We could

just view the causal link as a constraint, and reject plans that have inconsistent con-

straints, but that would require doing costly constraint satisfaction for every partial

plan the planner considers. We instead take a more proactive approach, by adding
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new constraints to the plan whenever a causal link is potentially violated, to ensure

that it is not violated. See [39] for an excellent discussion of the various tradeo�s

involved.

When the condition is potentially violated, but could be saved, this is referred to

as a threat to the link, and the planner must take evasive action to avoid the threat.

The three standard threat avoidance mechanisms are promotion, demotion, and con-

frontation (Lines 1-3 of HandleThreats, Figure 5.6). Promotion and demotion order

the threatening action before the link's producer or after its consumer, respectively.

Confrontation works when the threatening e�ect is conditional; the link is protected

by subgoaling on the negation of the threat's antecedent [72]. For ordinary causal

links, puccini uses these standard techniques for resolving threats. But puccini has

other kinds of causal links, for which the standard techniques are insu�cient.

5.3.1 Threats to Forall Links

8 links can be handled using the same techniques used to resolve ordinary threats:

demotion, promotion, and confrontation. Additionally, the following rule applies

(Line 5 of HandleThreats, Figure 5.6).

� Protect forall: Given a link A

p

E;G

!A

c

in which

G = 8x(P

1

(x) ^ P

2

(x) ^ : : : ^ P

n

(x)) S(x))

and a threat A

t

with e�ect P

1

(foo), subgoal on achieving S(foo)_:P

2

(foo) _

: : : _ :P

n

(foo) by the time A

c

is executed.

For example, suppose a 8 link recording the condition that all �les in mydir be

group readable is threatened by action A

t

, which creates a new �le, new.tex. This

threat can be handled by subgoaling to ensure that new.tex is either group readable

or not in directory mydir.
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5.3.2 Threats to lcw

The other way to satisfy a 8 goal is to subgoal on obtaining lcw, and then add the

universal base to G. However, since lcw goals can also get clobbered by subgoal

interactions, puccini has to ensure that actions introduced for sibling goals don't

cause the agent to lose lcw. For example, given the goal of �nding the lengths all

�les in /papers, puccini might execute ls -la. But if it then compresses a �le in

/papers, it no longer has lcw on all the lengths.

To avoid these interactions, we use lcw links, which are like standard causal links

except that they are labeled with a conjunctive lcw formula. Since lcw(P(x) ^

Q(x)) asserts knowledge of P and Q over all the members of the set fx j P(x) ^ Q(x)g,

an lcw link is threatened when information about a member of the set is possibly lost

or a new member, for which the required information may be unknown, is possibly

added to the set. These two cases are simply information loss and domain growth,

respectively (see Section 3.5). Like threats to ordinary links, threats to lcw links

can be handled using demotion, promotion, and confrontation. In addition, threats

due to information loss can be resolved with a new technique called shrinking, while

domain-growth threats can be defused either by shrinking or by a method called

enlarging.

Information Loss We say that A

t

threatens A

p

G

!A

c

with information loss if G =

lcw(P

1

^ : : : ^ P

n

), A

t

possibly comes between A

p

and A

c

, and A

t

contains an e�ect

that makes R unknown, for some R that uni�es with some P

i

in G. For example,

suppose puccini's plan has a link A

p

H

!A

c

in which

H = lcw(in.dir(f,/papers)^length(f; n))

indicating that the link is protecting the subgoal of knowing the lengths of all the

�les in directory /papers. If puccini now adds the action compress myfile.txt,

then the new action threatens the link, since compress has the e�ect of making the
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length of myfile.txt unknown.

� Shrinking lcw: Given a link with condition lcw(P

1

(x)^ P

2

(x)^ : : :^ P

n

(x))

and threat causing P

1

(foo) to be unknown (or true), puccini can protect the

link by subgoaling to achieve :P

2

(foo) _ : : : _ :P

n

(foo)

4

at the time that the

link's consumer is executed. For example, compressing myfile.txt threatens

the link A

p

H

!A

c

described above, because if myfile.txt is in directory /papers,

then the lengths of all the �les in /papers are no longer known. However, if

in.dir(myfile.txt,/papers) is false then the threat goes away.

These cases are handled by line 4 of HandleThreats (Figure 5.6).

Domain Growth We say that A

t

threatens A

p

G

!A

c

with domain growth if G =

lcw(P

1

^ : : :^P

n

), A

t

possibly comes between A

p

and A

c

, and A

t

contains an e�ect

that makes R true, for some R that uni�es with some P

i

. For the example above in

which the link A

p

H

!A

c

protects lcw on the length of every �le in /papers, addition

of an action which moved a new �le into /papers would result in a domain-growth

threat, since the agent might not know the length of the new �le. Such threats can

be resolved by the following.

� Shrinking lcw (described above): If puccini has lcw on the lengths of all

postscript �les in mydir, then moving a �le into mydir threatens lcw. However,

if the �le isn't a postscript �le, lcw is not lost.

� Enlarging lcw: Given a link with condition lcw(P

1

(x)^ P

2

(x)^ : : :^ P

n

(x))

and threat causing P

1

(foo) to be true, puccini can protect the link by subgoal-

ing to achieve lcw(P

2

(foo)^ : : :^P

n

(foo)) at the time that the link's consumer

is executed. For example, moving a new �le xii.tex into directory /papers

4

Note the di�erence between shrinking and protecting a 8 link. Unlike the 8 link case, shrinking

does not have a disjunct corresponding to S(foo).
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threatens the link A

p

H

!A

c

described above, because the length of xii.tex may

be unknown. The threat can be resolved by observing the length of xii.tex.

Note that an e�ect which makes some P

i

false does not pose a threat to the link!

This corresponds to an action that moves a �le out of /papers | it's not a problem

because one still knows the lengths of all the �les that remain.

HandleThreats(O, B, C, G) 8` 2 C threatened by some step S

t

either

1. Promote: Add S

c

� S

t

to O.

2. Demote: Add S

t

� S

p

to O.

3. Confront: If threatening e�ect has a precondition, add its negation to G.

4. If lcw goal choose one of

(a) Enlarge lcw. If condition is lcw(P

1

(x) ^ P

2

(x) ^ : : : ^ P

n

(x)) and threat is

cause(P

1

(foo, T)) add hlcw(P

2

(foo) ^ : : : ^ P

n

(foo)), S

c

i to G.

(b) Shrink lcw. If condition is lcw(P

1

(x) ^ P

2

(x) ^ : : : ^ P

n

(x)) and threat is

cause(P

1

(foo; U _ T) add h:P

2

(foo) _ : : : _ :P

n

(foo), S

c

i to G.

5. If 8 goal

(a) If condition is P

1

(x) ^ P

2

(x) ^ : : : ^ P

n

(x)) S(x) and threat is P

1

(foo), add

subgoal hS(foo)_:P

2

(foo) _ : : : _ :P

n

(foo), S

c

i.

6. hands-o� goal

(a) If threatening e�ect is of the form cause('), add subgoal of the form

hinitially('), S

t

i.

Figure 5.6: Procedure HandleThreats
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5.3.3 Threats to hands-o�

As mentioned in Section 3.4.2, hands-o�(') is not violated by an action with an

e�ect cause(', T) if initially(', T) can be established. Similarly for cause(', F).

Thus one way of protecting a threat to hands-o�(') is to subgoal on initially(').

This is handled by line 6 of HandleThreats (Figure 5.6).

IsExecutable?(A

E

)

Return true i� all of the following hold:

� E(A

E

) = unexecuted

� All preconditions of A

E

are satis�ed

� All actions necessarily before A

E

have been executed

� No pending action has an e�ect that clobbers any e�ect of A

E

.

� A

E

does not threaten any links

� All parameters are bound.

Figure 5.7: Function IsExecutable

5.4 Controlling Execution

As with other decisions made by the planner, we describe execution in terms of

aws and �xes. For a plan to be complete, all actions must be executed. Thus an

unexecuted action is a aw in the plan, whose �x is to execute it. An action should

not be executed until certain minimal criteria are met. These criteria are tested in

the function IsExecutable? (Figure 5.7).

� All its preconditions must be satis�ed, since otherwise the e�ects of the action

are unde�ned.
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HandleExecution(A, O, B, C, E)

if A

E

2 A and IsExecutable?(A

E

):

� Add A

l

;A

E

to O, where A

l

is the most recently executed action in the plan, or

A

0

, if no actions have been executed.

� Call the exection procedure speci�ed in the interface of the action (see Ap-

pendix B for examples).

� Set E(A

E

) = executed

� Update the model

1. E�ects of A

E

whose preconditions were known true or veri�ed by observational

e�ects of A

E

are asserted to be true.

2. E�ects of previous actions whose assumed preconditions were veri�ed by this

action are asserted to be true.

3. E�ects of A

E

whose preconditions are unknown (including assumptions) are

asserted to be unknown.

� Update B. If there were observe e�ects, add all ground instances, returned by

the sensor function, to the plan. If any 8 e�ects were used to support 9 goals,

nondeterministically choose one way of satisfying the goal with the e�ects.

� If execution fails or bindings inconsistent, then return failure.

Figure 5.8: Procedure HandleExecution
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� It must be consistent for the action to be ordered before all other unexecuted

actions in the plan, since any action ordered prior to it must be executed prior

to it.

� The action must not be involved in any threats, since executing the action

�xes its order in the plan, thus eliminating from consideration threat resolution

techniques that involve action orderings.

� The physical action executed must be unambiguous. In particular, all plan-time

variables used as parameters to the command the agent is to execute must be

bound before the action can be executed. For example, a command such as

\Put block A on block x", where x is a variable, is obviously ambiguous, as is

ls d.

� Finally, it must be possible to verify the e�ects of the action that are used to

support causal links. Note that, in the case of assumptions, it is not necessary

that they be veri�ed before the action is executed, but there must be a plan to

verify them at some point before they are actually needed.

The action is executed by invoking a procedure (represented using exec-func and

translation in Appendix B. For example, in ls, the procedure consists of sending

the string "ls -F" to a UNIX shell). If there is a sensor function (sense-func)

associated with the action, then any output returned from the execution procedure

is processed by the sensor function, which returns sensed information in the form of

bindings to run-time variables. After the action is physically executed, the knowl-

edge base is updated with the e�ects of the action, including any sensed information

returned via variable bindings. While these updates usually consist of adding infor-

mation to the knowledge base, they could involve removing it as well. For example,

e�ects can have truth values of U, indicating that the literal in question will change in
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some undetected manner, becoming unknown to the agent. E.g, executing compress

bigfile changes the size of bigfile without notifying us (or the Softbot) what the

new size is. Thus the size becomes unknown. Another example is when a conditional

e�ect like chmod u+w * (which changes the permission of all �les, owned by the user,

in a given directory) is executed, but the precondition is unknown.

In ucpop, the choice of what aw to work on is not a backtrack point; goal

ordering and threat ordering inuence e�ciency but not completeness. This is not

the case for execution. Because executing an action entails �xing its position in the

plan, execution can restrict the number of subsequent choices available. For this

reason, execution is di�erent from other aws in that, for completeness, the decision

to execute an action must be a nondeterministic choice | that is, it must be regarded

by the planner as a choice point, to backtrack over as necessary.

5

In the worst case,

this means that the planner will consider all possible orderings of actions, which is

factorial in the number of actions. There is a tradeo� here between completeness and

e�ciency. In the absence of irreversible actions, the decision to execute rarely a�ects

completeness, and we have found it acceptable to treat execution the way we treat

other aws, despite the theoretical loss of completeness.

5.4.1 Impact of Execution

We described execution as a planner choice point, but as the previous discussion

illustrates, there are clearly ways in which execution di�ers from choices such goal

establishment and threat resolution. We now discuss what it means to execute an

action in a partial plan, both at an operational level, and how it a�ects the nature of

the search space. We then talk about potential problems that execution raises, and

ways those problems can be circumvented.

5

An alternative to this approach (discussed in the context of combining forward-chaining and

plan-space planning), which also preserves completeness, but at the expense of a large (in our case

in�nite) branching factor is discussed in [40].
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Execution of an action involves changes to the world, to the agent's knowledge

of the world, to the current plan, and to the entire search space. The most obvious

change is to the state of the world. Hopefully, whatever causal e�ects are listed in

the action description are now true in the world, and everything else remains as it

was. That may not be the case: Execution may simply fail. In general, this is due

to exogenous events that make a precondition false, or to unsatis�ed preconditions

not modeled by the domain theory. Examples of such preconditions are that the �le

server must be running for ls to succeed, and a robot's arm must not be broken if it

is to pick up a tool.

6

In any event, if the desired e�ects have not been achieved, it

is necessary to backtrack. Assuming the action was successfully executed, the agent

must process whatever information is returned by its sensors and record the e�ects

of the action in its knowledge base.

In addition to changing the world and its knowledge of the world, puccini must

change the current plan, by marking the action as executed and adding new binding

and ordering constraints. The run-time variables in the e�ects must be bound to

the values determined by the agent's sensors. In the case of observational 8 e�ects,

the number of binding constraints may be arbitrary. Since the ordering constraints

imposed on actions dictate relative order of execution, once an action A

exec

has been

executed, we add a constraint, A

prev

;A

exec

, where A

prev

is the previous executed

action (or A

0

if no other actions have been executed). This ensures that all unexecuted

actions, including actions not yet added to the plan, will follow A

exec

. If executing

the action reveals the values of a 8 variable, then even more profound changes to

the plan may be required. For example, say the plan contained the 9 goal of �nding

some �le in directory papers and printing it, where �nding a �le is to be achieved by

ls. Once ls papers is executed, the agent discovers there are �ve �les there. It now

6

Modeling such preconditions is pointless, since they are outside the ability of the agent to either

control or reliably detect. However, they bring home the point that the quali�cation problem is

alive and well in software domains.
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has a choice of printing one of those �ve �les, requiring a planner choice point. Thus

�ve new plans are generated, one for each �le in papers, and puccini chooses one of

them. Note that if the goal had been to print all of the �les, there would be only one

plan, with �ve new open goals, one for each of the �les that must be printed. These

�ve new goals constitute the universal base of the original 8 goal (see Section 5.2.2).

In addition to the above changes to the world state, knowledge base, and the

current plan, there may be a changes to the search space itself. Once an action has

been executed, other plans in the search space will no longer be consistent with the

state of the world and, to cope with this discrepancy, some extra work may be required

if these plans are ever adopted. We refer to adopting such a plan as backtracking over

execution and discuss it in length below.

5.4.2 Backtracking Over Execution

Because plans are sometimes partially executed before they are fully worked out, it

may happen that actions are executed in the course of following a blind alley, and

that these actions need to be undone somehow to get back to the true path to the

goal. We call this undoing of executed actions physical backtracking

If we want to support all possible search strategies, even BFS, it is necessary to

be able to jump to any plan in the fringe of the search tree, regardless of where it

is relative to the current plan. This may require not just backtracking, but forward-

tracking as well: re-executing actions that were previously executed but later undone.

Conceptually, going from plan p

a

to plan p

b

entails backtracking from p

a

to the

common ancestor of p

a

and p

b

and then forward-tracking to p

b

.

A few things are important to note. First, when we interleave planning and

execution, we are no longer just searching through plan-space. We are simultaneously

searching through the state-space of the world and plan-space. However, since we have

incomplete information about the current state, we never know exactly what state the

world is in. Also, while the state of the world is changing, our incomplete information
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about the world state is changing in response to the causal and observational e�ects

we execute. So while searching through world-state space, we are also searching

through the space of knowledge about the world. It should be clear by this point

that reliably returning the world to the exact state it was in at some earlier time is,

in the general case, impossible. Fortunately, there are backtracking strategies that

work in all but the most unforgiving domains. Before discussing these strategies, we

present a few useful de�nitions.

We want to capture the notion of returning the world back to the same state it was

in previously, but by the Unique Names Assumption, returning to the same situation

is impossible; the history is, in e�ect, part of the state. Furthermore, returning to

the same state of knowledge is generally impossible as well, since most agents can't

forget on demand. So we want some notion of two situations being equivalent, with

the possible exception of their history and the agent's knowledge. We do so simply

by exempting the DO and K predicates from consideration:

De�nition 5.1 (equivalence) Two situations s, s

0

are said to be equivalent (s � s

0

)

if for all uents ', not including K and DO, '(s), '(s

0

)

Given this de�nition, we can say what it means to \undo" an action:

De�nition 5.2 (inverse) An action sequence fag

n

1

�1

is an (unconditional) inverse

of action a i� for any states s, s

0

, (DO(a, s) � s

0

)) (DO(fag

n

1

�1

, s

0

) � s).

It is not in general the case that if fag

n

1

�1

is the inverse of a, then a is the inverse

of fag

n

1

�1

. For example, rm backup is the inverse of cp important.file backup,

but rm backup itself has no inverse (as many frustrated UNIX users have discovered).

Another important point is that any action a

obs

that has only observational e�ects

does not a�ect predicates other than K and DO (DO(a

obs

, s) � s). Therefore all

such purely observational actions have an inverse, namely the null action a

nop

. This

has important implications to physical backtracking, since we never need to worry
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about backtracking over observational actions. A possible concern might be that

while we can trivially return the world to its original state, we may not be able to

return the agent's knowledge about the world to its previous value. While that is

true, it is unimportant, since executing a purely observational action only increases

the agent's knowledge about the world, and having more knowledge about the world

cannot make a previously attainable goal unachievable.

While some actions that change the world, such as pushd /bin have an inverse

(namely popd), not many do. Even an action such as cd /bin, which can clearly be

undone, does not have an inverse, by the above de�nition, since the precise command

needed to undo the cd depends on what the current directory was when the cd was

executed. It is often the case that a given action sequence can reverse the e�ects of

an action in some states, but not in all. For example, the action of deleting a �le is

reversible just in case there is a backup of the �le. If no backup was made before

deleting the �le, then the �le is irretrievably lost. Otherwise, reversing the action is

merely a matter of restoring from the backup.

De�nition 5.3 (conditional inverse) We say an action fag

n

1

�1

is a conditional

inverse of action sequence a when there is some condition � such that for any situa-

tions s and s

0

, if �(s) and DO(a, s) � s

0

then DO(fag

n

1

�1

, s

0

) � s.

In general, an action may have many conditional inverses, each with its own

precondition �

i

. In this case, all the inverses, taken together, form a contingent plan

for reversing the action. This contingent plan is applicable in all situations in which

�

1

_ �

2

_ : : : _ �

n

is true. If this disjunction is true in all situations, then there is

an appropriate inverse of the action for each situation. In this case, we say that the

action is reversible.

De�nition 5.4 (reversible) An action a is reversible i� for any world states s, s

0

,

(DO(a, s) � s

0

) ) 9 fag

n

1

such that DO(fag

n

1

, s

0

) � s.
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If an action a is not reversible, but has a conditional inverse applicable in some

situations, we say a is conditionally reversible. Otherwise, we say it is irreversible.

5.4.3 Policies for Backtracking Over Execution

Pursuing any policy of backtracking over execution presupposes that it's okay to make

a mistake. If solving a goal requires the agent to execute irreversible actions, and if the

consequences of those actions are potentially dire, then it may be more appropriate

to use a contingency planner, i.e., to plan for every possible contingency in order to

ensure that the agent can't paint itself into a corner. Of course, contingency planning

is not always feasible, and a contingency plan doesn't always exist; an agent trying

to cross a mine �eld can spend all day thinking, but unless it knows where the mines

are, that won't do it much good.

Assuming no actions are irreversible, or at least that mistakes aren't deadly, there

are two strategies that puccini supports for backtracking over execution: \Safety

�rst" and \Lazy"

Safety-�rst backtracking

If all actions are conditionally reversible, but not all actions are unconditionally re-

versible, then the agent can guarantee that it can get out of any situation it gets

into by always ensuring that that the undo preconditions � of actions are satis�ed

before the actions are executed, and then executing the appropriate inverses when

backtracking. This is the equivalent of tying a rope to itself before attempting to

climb down into a pit. However, if some condition � is unachievable, or inconsistent

with the goal, then this strategy will cause the planner to fail when it might other-

wise have succeeded. If, on the other hand, the agent should not choose to ensure

that � is true, then it runs the risk of being stuck in a pit, which could also lead to

failure. At least in the case of achieving �, when the agent's plan fails, the agent is
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in a recoverable state.

We call this policy \safety �rst," since it puts recoverability ahead of complete-

ness. This policy may also yield ine�ciency, since inferring the conditions � and

ensuring that they are satis�ed could involve considerable computational cost. We

can avoid the cost of determining what the undo conditions are by requiring they be

stated explicitly in the action descriptions. However, that still leaves the problem of

achieving them.

We require all actions to be labeled with an undo precondition, along with a

procedure for undoing the e�ects of the action. The undo precondition could be

nil, in which case the action is irreversible (or t, in which case the action has an

unconditional inverse). Safety-�rst requires that irreversible actions be avoided.

Lazy backtracking

The safety-�rst policy is neither complete nor e�cient. Furthermore, if all actions

are reversible, then it is still possible to backtrack over execution without adding an

extra source of incompleteness, unless there are initially goals that have not yet been

achieved. The intuition is as follows. If we don't know what the state of the world was

when a given plan was created, then we may not be able to �nd the correct sequence

of actions to return to that state, and some information about that state will be

irretrievably lost (hence some initially goals may become unachievable). However, if

all we care about is reaching a state that satis�es some goal condition, then all that

matters is whether such a state is reachable. Because all actions are reversible, any

state that was reachable before execution will be reachable afterward. It is irrelevant

that the planner may be unable to return back to the original state, since the goal

condition does not depend on going through that particular state. Merely relying

on the reachability of past states is su�cient. But how is the planner to backtrack

over execution? Since the undo conditions are not necessarily satis�ed, it cannot

simply execute the inverses of the executed actions. It must actually plan in order
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to restore the state. It turns out that it is unnecessary to backtrack to the original

state; it is su�cient to re-establish the invalidated conditions of the plan by using

plan repair to retract the causal links and associated constraints supporting those

conditions and replanning to achieve them. In addition to constraints, the planner

records modi�cations to the state of the world that are not already reected in the

plan structure. These are regarded as e�ects of a new \dummy step" representing

the current state.

For example, say the planner is backtracking from plan p

x

to p

y

, and p

x

involved

the execution of cd newdir, but when p

y

was created, the current directory was

olddir. Unless p

y

had a commitment to being in olddir, doing another cd is

unnecessary. It may be the case that subsequent re�nements to p

y

will result in a

commitment to be in olddir, newdir, or some other directory, but those can be dealt

with as the need arises.

Note that this approach also can result in considerable computational cost, be-

cause the cost of reestablishing the invalidated conditions can be arbitrarily high.

So either approach, safety-�rst or lazy, comes with an extra planning cost, either to

satisfy undo conditions or to reestablish invalidated conditions.

Another concern is that the planner might spend all its time re-establishing in-

validated conditions, and never actually make progress along any plan branch. This

would happen if it decided to backtrack while re-establishing conditions from the

last backtrack point, e�ectively making backwards progress, and reconsidering the

same (or equivalent) plans repeatedly. Such behavior would be possible with a suf-

�ciently bad search strategy, but simply assigning a high penalty to plans requiring

physical backtracking ensures that the planner will make progress along one physical

branch before switching to another, thus always pushing the fringe of the search space

forward.
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Retry, Replan, Fail?

One might imagine buying out of the physical backtracking problem entirely, by

simply replanning from scratch whenever such backtracking would be required. This

is the approach taken by ipem [1]. It has the advantage that backtracking is simpler,

but the disadvantage of doing considerably more search. If changes to the world are

involved, it is also vulnerable to the kind of looping described above, and worse. By

throwing away the state associated with the planner's search space, the agent has

no knowledge of dead ends, so there is no way to avoid making the same mistakes

repeatedly.

5.5 Computational Complexity

strips planning is PSPACE-hard [6], so like simpler planners, puccini takes time

that is exponential in the size of the problem. However, the added expressiveness and

exibility over other planners does not come at an unreasonable price; in fact, the

computational complexity of evaluating individual plans is essentially the same as it

is for ucpop [72]. The only caveat is that the complexity of lcw reasoning depends

on the actual domain theory, and could be quite large. As we will see, lcw reasoning

dominates the time complexity of plan evaluation. Below we consider the costs of the

puccini extensions.

� puccini uses lcw both to prune away redundant sensing and to solve univer-

sally quanti�ed goals. lcw reasoning is polynomial in the size of the agent's

knowledge, and thus is polynomial in the size of the input to the planner. As

we show in Section 7.2, this polynomial growth doesn't materialize in practice,

but consultingM and L does add a signi�cant extra per-plan cost in practice.

However, as we demonstrate in Section 7.2, utilizing lcw speeds up planning

dramatically by allowing the planner to prune redundant sensing operations

and thus visit fewer plans. Planners like ucpop incur at most cubic-time costs
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for plan evaluation, so lcw reasoning does potentially increase the per-plan

complexity.

� Executing actions is a constant-time operation, though the constant is so large

that it tends to dominate the total running-time of the planner. Additionally,

two operations related to execution a�ect the complexity of plan evaluation.

1. Detecting whether an action can be executed requires iterating through the

steps in the plan to �nd those that can be safely ordered before all other

steps in the plan, which is a cubic-time operation. Fortunately, all the hard

work is already done by the planner's test for inconsistent constraints, so

the added cost of �nding executable actions is negligible.

2. Updating the agent's knowledge base, including L, after execution is poly-

nomial in the size of the knowledge base.

� The new ways of satisfying open conditions, including initially links, 8 links

and assumptions, utilize the same algorithm that standard causal links use,

and have the same cost, which is dominated by a cubic-time search for incon-

sistent constraints. As we mentioned, subgoaling on lcw is dominated by the

polynomial-time lcw inference procedure. Partitioning 8 goals doesn't con-

tribute to the per-plan cost, but potentially contributes dramatically to the

branching factor.

� The new ways of resolving threats don't add to the per-plan cost, with the

exception of lcw threats, where additional polynomial-time lcw queries are

involved. However, the increased number of re�nements adds to the branching

factor.

� Backtracking over execution using the lazy method requires checking for inval-

idated links. The number of links is potentially quadratic in the number of
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steps. The condition of each link must be checked against the knowledge base,

a linear-time operation.

In practice, puccini is fast enough for simple planning problems, but needs to be

more e�cient if it is to solve di�cult planning problems in real time (which is what we

want for softbot applications). As we mention in our discussion of the performance

results in Section 7.1, we consider the ultimate bottleneck to be execution time.

5.6 Summary

In this chapter, we presented the puccini planning algorithm, which uses the sadl

action language and the lcw knowledge representation language to construct and

execute plans in the presence of incomplete information. Novel contributions include

solving universally quanti�ed goals in the presence of incomplete information, solving

initially and lcw goals, using links to record assumptions, and new methods for

resolving threats to causal links labeled with lcw, 8 or hands-o�. We showed

that, with the exception of lcw reasoning, the puccini extensions do not a�ect the

computational complexity of plan evaluation.

In the next chapter, we prove that puccini is sound, though not complete.
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FORMAL PROPERTIES

Since a planner is at heart a search program, searching for the solution to a

planning problem among the set of all potential solutions, some natural questions to

ask about the program are: does it return only correct solutions, and does it return

all correct solutions? We refer to property of returning only correct solutions as

soundness. We refer to the property of returning all correct solutions as completeness.

1

Given that puccini not only searches the space of plans, but also executes those

plans, thus changing the state of the world, we must modify the standard de�nition

of soundness to take into account the behavior of puccini. Soundness means that

if puccini terminates and reports success, then the goal is achieved. We will show

that puccini is sound, but incomplete. Before proceeding directly to the statement

of soundness, we introduce some useful de�nitions and theorems. The proofs for all

the theorems are in Appendix A.3.

6.1 Causality Theorems

In his thesis [69], Pednault showed that given the standard assumptions of planning,

such as no exogenous changes, and plans of only �nite length, any condition ' true

at a given point in time must have either been true all along, or must have become

true as the result of executing a particular action. This is stated in his Causality

theorem, which has the following Corollary (Corollary 3.2 in Pednault's thesis)

1

As we discuss in Section 6.4, it is not entirely clear what completeness should mean when planning

with incomplete information.
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Theorem 6.1 (Pednault) Let fag

n

1

be a sequence of actions that is executable in

situation s. A condition ' will be achieved by action sequence fag

n

1

i� one of the

following holds

1. There is some pre�x of fag

n

1

, fag

m

1

such that

(a) � 6j= R

fag

m�1

1

(') and

(b) � j= R

fag

i

1

(') for all m � i � n.

2. � j= R

fag

i

1

('), for all i = 1 : : : n� 1.

Since we make the same assumptions Pednault does, this theorem is valid for us

as well. Since sadl goals include knowledge goals (satisfy and initially) and main-

tenance goals (hands-o�), we extend Pednault's theorem to indicate when goals of

these varieties are achieved. We do so simply by applying the de�nitions of regression

for each type of goal. We start with satisfy goals.

Corollary 6.2 (Causality Theorem for satisfy) A condition satisfy(', tv) will

be true after executing fag

n

1

from an initial state axiomatized by � i� one of the

following holds

1. (a) � j= R

fag

m�1

1

(�

a

m

KNOW(')

)

(b) For all i = m : : : n� 1, � j= R

fag

i

1

(KNOW(�

a

i+1

'

)).

2. � j= KNOW('), and for all i = 1 : : : n� 1, � j= R

fag

i

1

(KNOW(�

a

i+1

'

)).

Note that the causality theorem for satisfy is not the same as Pednault's causality

theorem, because satisfy speci�cally requires that the condition be known to the

agent.

Before proceeding to the causality theorem for initially, we introduce some useful

lemmas. First, note that a condition of the form initially('), once true will never

become false.
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Lemma 6.3 If initially(') is true in state DO(fag

m

1

; s), it is true in all states

DO(fag

m+i

1

; s), for i � 1

Another important observation is that a goal hands-o�(') will always be achieved

if every step in the plan preserves the truth value of the '.

Lemma 6.4 If R

fag

i

1

(KNOW(�

a

i+1

:'

) ^ KNOW(�

a

i+1

'

)) for all 0 < i < n, then

R

fag

n

1

(hands-o�('))

Note that the converse is false. An agent can execute an action that a�ects

' without violating the hands-o�(') as long as the agent knows that ' is not

changing truth value, i.e., that its new truth value is the same as its original truth

value. However, if the agent didn't know the original truth value, then it would in

fact need to avoid a�ecting ':

Lemma 6.5 If R

fag

n

1

(hands-o�(')) and :R

fag

n

1

(initially(')) then

R

fag

i

1

(KNOW(�

a

i+1

:'

) ^KNOW(�

a

i+1

'

)) for all 0 < i < n

We now present the causality theorem for initially. Note that initially di�ers

from satisfy in that the initially goal must preserve the condition before it is ob-

served, but not afterward. That is, the initially goal is achieved when the condition

' is observed, provided that ' has the same truth value it had in the initial state.

Once the initially goal is achieved, it is true ever after, so there's no need to protect

it.

Corollary 6.6 (Causality Theorem for initially) A condition initially(') will

be true after executing fag

n

1

from an initial state axiomatized by � i� one of the

following holds

1. (a) There is some pre�x of fag

n

1

, fag

m

1

, such that � j= R

fag

m�1

1

(�

tv

'

(a

m

)^')

and
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(b) For all i = 0 : : :m� 1 � j= R

fag

i

1

(KNOW(�

a

i+1

'

) ^KNOW(�

a

i+1

:'

))

2. � j= KNOW('),

The causality theorem for hands-o� allows the agent to preserve the truth value

of ' by either not a�ecting the truth value of ', or by ensuring that any actions

a�ecting ' only result in its having the same truth value. Either way, the truth value

of ' hasn't changed.

Corollary 6.7 (Causality Theorem for hands-o�) A condition hands-o�(') will

be true after executing fag

n

1

from an initial state axiomatized by � i� one of the fol-

lowing holds

1. For all i = 1 : : : n� 1, � j= R

fag

i

1

(KNOW(�

a

i+1

'

^ �

a

i+1

:'

)).

2. Either

(a) � j= R

fag

n

1

(initially(')) and for all i = 1 : : : n�1, � j= R

fag

i

1

(KNOW(�

a

i+1

'

))

OR

(b) � j= R

fag

n

1

(initially(:')) and for all i = 1 : : : n�1, � j= R

fag

i

1

(KNOW(�

a

i+1

:'

))

6.2 Resolving aws

The puccini algorithm relies on several subroutines for incrementally building plans,

discussed it the previous chapter. So before going on to the soundness proof, we will

prove that these subroutines are correct. puccini works by removing aws from an

agenda, and adding �xes to the plan, to eliminate the aws. To prove that these

subroutines are correct, we will show that they do in fact �x the aws.

HandleGoals removes goals from the agenda, and adds structures to the plan to

ensure that the goal is achieved. We rely on the causality theorem to show that Han-

dleGoals is correct. That is, any condition removed from the agenda will be replaced

by other conditions that satisfy the causality theorem for the original condition.



127

Theorem 6.8 (Correctness of HandleGoals) Given an open condition c, Handle-

Goals will add to the plan actions or constraints that, if obeyed, will result in c be-

coming true.

The causality theorem not only requires the condition to become true; it also

requires the condition to remain true until it is needed. HandleGoals is insu�cient

to ensure this, since new structures added to the plan could result in the condition

becoming false. HandleThreats deals with this case by adding new structures to the

plan that ensure that the condition is not violated. The proof that HandleThreats is

correct also relies on the causality theorem.

Theorem 6.9 (Correctness of HandleThreats) Given a threatened condition c,

HandleThreats will detect the threat and will add to the plan constraints that, if obeyed,

will prevent c from becoming violated.

6.3 Soundness

Below is a brief outline of the soundness proof. The details can be found in the proofs

for the individual lemmas, which are in Appendix A.3. We proceed by a standard

inductive argument, showing that a loop invariant holds when the planner starts, and

that it also holds after each iteration of the planner.

De�nition 6.10 (The puccini loop invariant) If plan P satis�es all the subgoals

on G, and all assumption links in C supported by steps that have not yet been executed

are labeled with conditions that are true, then executing the remaining (unexecuted)

actions in P will result in a situation s

n

that satis�es G.

Since we are interested in building plans incrementally, we will rely on Pednault's

Expansion Theorem, which describes the conditions under which executing a plan

P

0

, which is a re�nement of a plan P , will result in a condition ' being true. ' will

be true after executing P

0

if and only if one of the following conditions holds.
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� Some new action (in P

0

but not in P ) makes ' true, and all following actions

preserve its truth.

� Some old action (in P

0

and P ) makes ' true, and all following actions preserve

its truth.

� ' is true originally (in situation s

0

) and all actions in P

0

preserve its truth.

Thus we can build a plan to achieve some condition � as follows. Add � to a goal

agenda G, then for each subgoal on G, either add a new action that makes that subgoal

true, or add conditions to ensure that some existing action makes that subgoal true,

while ensuring that we don't violate the conditions that preserve previously solved

subgoals.

The inductive argument that puccini is sound begins by showing that the loop

invariant holds when puccini is �rst invoked.

Lemma 6.11 The puccini loop invariant holds on the initial call to puccini.

We then show that the loop invariant is preserved by the recursive call, regardless

of the control path that's taken. This relies on the theorems that HandleGoals and

HandleThreats are correct, and together satisfy the Causality Theorem, and that

HandleExecution detects when assumptions are invalidated.

Lemma 6.12 If the puccini loop invariant holds before an iteration of puccini, it

will hold afterward.

Finally, we show that the loop invariant is true when puccini terminates with

success.

Lemma 6.13 If the puccini loop invariant holds before an iteration of puccini,

and puccini halts, returning success, then the loop invariant still holds.
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The above lemmas would seem to capture all that we need to easily prove that

puccini is sound, but there's still the matter of backtracking over execution, which

is not captured by the nondeterministic algorithm we presented. Fortunately, safety-

�rst backtracking also preserves the loop invariant, and we conjecture that lazy back-

tracking does as well. It is easy to see that safety-�rst backtracking preserves the loop

invariant, since by executing undo actions, the agent is returning to a hplan; statei

pair that satis�ed the loop invariant, with the only di�erence being the agent may

know more about the state of the world. It is easy to see that increasing the agent's

knowledge without changing the plan or the world preserves the loop invariant.

It is less obvious that lazy backtracking satis�es the loop invariant, since it returns

to a hplan; statei pair that violates the loop invariant, and attempts to reestablish

the loop invariant by means of plan repair. But the intuition is that constraints in

the plan that violate the loop invariant are removed, leaving a plan that once again

obeys the loop invariant.

Given that the loop invariant is true in all calls to puccini, and at termination,

it is easy to prove that puccini is sound.

Theorem 6.14 (Soundness of puccini) If puccini halts and reports success, then

the goal is satis�ed.

6.4 Incompleteness

puccini is based on ucpop, which is both sound and complete. However, although

puccini is sound, it is not complete. The traditional de�nition of completeness

requires a planner to produce a plan that achieves the goal, assuming such a plan

exists. Such a de�nition is too strict when planning with incomplete information.

Consider, for example, the following variant of the bomb-in-the-toilet problem. There

are two packages, one of which contains a bomb. The agent has time to dunk exactly

one of the packages in the toilet. Dunking the package that contains the bomb will
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defuse the bomb. Dunking the other package will have no e�ect, and in the meantime,

the bomb will go o�. There is obviously a plan that will achieve the goal of defusing

the bomb, namely, dunking the correct package. But since the agent doesn't know

which package contains the bomb, it has no way of knowing a priori which package to

dunk. Thus by the traditional de�nition of completeness, no planner can be complete

in such domains.

Even with a more liberal de�nition of completeness, puccini is incomplete. There

are several sources of incompleteness added by the puccini algorithm.

� lcw reasoning is incomplete. Since puccini depends on lcw to solve univer-

sally quanti�ed goals, it may fail to solve a goal for which a solution exists due

to a failure to infer lcw.

� Execution commits to action ordering prematurely. By ordering the executed

action before all other actions, puccini excludes many valid action orders (and

hence many valid plans). Completeness would require puccini to consider all

possible action orders, which it does not.

� puccini is incomplete when executing plans that contain irreversible actions.

As discussed in Section 5.4, only contingency planning can preserve complete-

ness in the presence of irreversible actions.

� The exibility provided 8 goals, combined with the reality of incomplete in-

formation, makes it possible to devise goals that are in principle solvable, but

which puccini won't be able to solve. This is only an issue for goals that can't

be solved completely by subgoaling on lcw. For example, one could write a 8

goal that was a tautology. Since puccini lacks general theorem-proving capa-

bilities, it would not be able to detect this fact. In the absence of being able

to compute the universal base and discover that the goal was trivially true,
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puccini would be at the mercy of its ability to �nd 8 e�ects that would satisfy

the goal.



Chapter 7

EMPIRICAL EVALUATION

7.1 puccini

We demonstrate the e�ectiveness of the sadl language and the puccini implemen-

tation of sadl by showing that many UNIX commands and goals can be represented

cleanly and planned with easily. In Section 7.1.1, we show the result of running the

planner on ten representative goals from the Softbot domain. In Section 7.1.2, we

show a detailed plan trace of one of those goals. In Section 7.1.3 we discuss how

sadl can represent some of the more di�cult actions in the Softbot domain. 50

action schemas from the Softbot domain, including all those used in these examples,

can be found in Appendix B.

7.1.1 puccini Goals

As a demonstration of expressiveness of sadl and the e�ective of puccini, we pre-

sented the following goals to the Softbot, all of which it was able to solve quickly,

with very little domain-dependent search control.

1

1. Find a �le named paper.tex and containing the string "LCW," and rename

the �le to kr.tex (cf. Section 3.2.2).

2. Print the �le paper, but recompress it afterward (i� it was compressed initially)

(cf. Section 3.2.2).

1

Five search control rules, each two lines long
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3. Find the phone number of the person named Oren Etzioni. (This goal is solvable

by using the University of Washington sta� directory, staffdir.)

4. Find the phone number of Leslie Kaelbling, a CS professor at Brown University.

(Solving this goal requires using netfind.)

5. Display all web pages referenced by hyperlinks from both Dan Weld's homepage

and Oren Etzioni's homepage. (This goal requires consulting Ahoy! to �nd the

two homepages, reading in both pages to �nd links in common, and then running

Netscape on each common link.)

6. Compress all �les larger than the �le named bigfile."

7. Make all �les in the current directory group-writable.

8. Display the �le doc.tex. (This requires running latex to produce the �le

doc.dvi and then running xdvi to display it)

9. Print the �le color-picture to a research printer, making sure that the print-

out will be color, and report the status of the print job. (The printout will be

color if a color image is printed to a color printer, so the planner must make

sure the printer it selects is color. Executing lpq after the �le has been sent to

the print queue will reveal the job's status.)

10. Fetch all �les stored at a remote FTP site, and copy them to a local directory.

Table 7.1 shows the planner statistics for solving these goals, including both CPU

time and real time for planning and for executing actions. It is traditional just to

show CPU time as a measure of the time required to perform a computation, since

other processes running concurrently with the one being measured make real time a

less-than-reliable metric. The reason we show both measures, instead of just CPU
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time, is that CPU time is a poor measure of the time required to execute actions, as

Table 7.1 shows quite clearly. From the Softbot's perspective (and ours), executing a

UNIX command or fetching a Web page consists mostly of waiting for a reply, which

is not computationally expensive. However, the user still must wait that amount of

time, which is all that really matters.

We can see from Table 7.1 that all these goals �nish fairly quickly and don't involve

much search. Only two of the goals, 4 and 5, take more than a minute to solve, and

these are both dominated by execution time. There is room for improvement in the

e�ciency of the puccini planner; the current (Lisp) implementation requires 25 ms

of CPU time per plan. However, looking at the real time required for execution reveals

that the gains obtainable from speeding up the planner are limited. More substantial

gains could be obtained by allowing multiple actions to be executed simultaneously

and by continuing to plan while actions are executing.

7.1.2 Plan trace

Below we show a plan trace of the Softbot solving goal 4 from the Table 7.1: �nding

the phone number of Professor Leslie Pack Kaelbling, from Brown University in Rhode

Island. The Softbot solves this goal by using Net�nd to �nd a possible e-mail address

for Leslie Kaelbling at Brown, and using �nger to verify the e-mail address and to

get her .plan �le, from which it can extract her phone number. The goal given to

the Softbot was:

(and (satisfy (firstname ?lpk "Leslie"))

(satisfy (lastname ?lpk "Kaelbling"))

(satisfy (organization ?lpk "Brown University"))

(satisfy (state ?lpk "RI"))

(satisfy (field ?lpk "CS"))
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Table 7.1: Planner statistics for ten sample goals

prob plans actions planning execution execution planning

num. considered executed CPU (s) CPU (s) real time (s) real time (s)

1 53 3 1.306 0.355 1.458 1.623

2 40 3 0.529 0.056 0.376 0.763

3 19 1 0.442 0.105 0.663 0.482

4 721 6 19.721 0.672 38.904 22.945

5 198 8 7.351 3.083 86.44 8.057

6 190 12 5.384 1.017 6.660 7.583

7 565 10 18.426 1.073 3.884 20.320

8 268 6 4.565 0.190 5.294 5.687

9 137 3 2.034 0.139 1.3065 2.092

10 797 6 14.038 1.006 13.28 15.957
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(satisfy (office.phone ?lpk ?phone))))

For clarity, the following plan trace omits plans puccini considered that did not

lead to the goal. When multiple choices exist, the one chosen is indicated by a \=)"

1. plan = (:GOAL)

2. Add step NETFIND for open goal (SATISFY (ORGANIZATION ?LPK "Brown University")) of

goal step

3. plan = (NETFIND :GOAL)

4. Link to step 0 for open goal (SATISFY (CURRENT.SHELL CSH)) of step 1 (net�nd)

5. Link to step 0 for open goal (SATISFY (MACHINE.NETFIND.SERVER ?SERVER)) of step 1

(net�nd)

6. Reduce OR goal: (OR (FIELD ?PERSON ?KEY3) (EQ ?KEY3 "")) of step 1 (net�nd)

(a) =) Choose disjunct (FIELD ?PERSON ?KEY3))

(b) Choose disjunct (EQ ?KEY3 "")

7. Reduce OR goal: (OR (CONTEMPLATE (SERVER.BUSY ?SERVER ?TIME) U ((?SERVER)))

(AND (CONTEMPLATE (SERVER.BUSY ?SERVER ?TIME)) (CONTEMPLATE

(SECONDS-AGO ?TIME 300)))) of step 1 (net�nd)

(a) Choose disjunct =) (CONTEMPLATE (SERVER.BUSY ?SERVER ?TIME) U

((?SERVER)))

(b) Choose disjunct of (AND (CONTEMPLATE (SERVER.BUSY ?SERVER ?TIME))

(CONTEMPLATE (SECONDS-AGO ?TIME 300)))

8. Link to step 0 for open goal (CONTEMPLATE (SERVER.BUSY ?SERVER ?TIME) U

((?SERVER))) of step 1 (net�nd)

9. Link to step 1 for open goal (FIELD ?PERSON ?KEY3) of step 1 (net�nd)

10. Add step NETFIND for open goal (FIELD ?PERSON ?KEY3) of step 1 (net�nd)

11. Reduce OR goal: (OR (CITY ?PERSON ?KEY1) (ORGANIZATION ?PERSON ?KEY1)

(AFFILIATION ?PERSON ?KEY1)) of step 1 (net�nd)

(a) Choose disjunct (CITY ?PERSON ?KEY1)

(b) =) Choose disjunct (ORGANIZATION ?PERSON ?KEY1)

(c) Choose disjunct (AFFILIATION ?PERSON ?KEY1)
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12. CHOOSE:

(a) =) Link to step 1 for open goal (AFFILIATION ?PERSON ?KEY1) of step 1 (net�nd)

(b) Add step NETFIND for open goal (AFFILIATION ?PERSON ?KEY1) of step 1 (net�nd)

13. Reduce OR goal: (OR (COUNTRY ?PERSON ?KEY2) (STATE ?PERSON ?KEY2) (EQ ?KEY2

"")) of step 1 (net�nd)

(a) Choose disjunct (COUNTRY ?PERSON ?KEY2)

(b) =) Choose disjunct (STATE ?PERSON ?KEY2)

(c) Choose disjunct (EQ ?KEY2 "")

14. CHOOSE

(a) =) Link to step 1 for open goal (ORGANIZATION ?PERSON ?KEY1) of step 1 (net�nd)

(b) Add step NETFIND for open goal (ORGANIZATION ?PERSON ?KEY1) of step 1

(net�nd)

15. CHOOSE

(a) =) Link to step 1 for open goal (SATISFY (FIELD ?LPK "Cs")) of goal step

(b) Add step NETFIND for open goal (SATISFY (FIELD ?LPK "Cs")) of goal step

16. CHOOSE

(a) =) Link to step 1 for open goal (STATE ?PERSON ?KEY2) of step 1 (net�nd)

(b) Add step NETFIND for open goal (STATE ?PERSON ?KEY2) of step 1 (net�nd)

17. CHOOSE

(a) =) Add step FINGER for open goal (PERSON.DOMAIN ?PERSON !DOMAIN) of step 1

(net�nd)

(b) Add step STAFFDIR for open goal (PERSON.DOMAIN ?PERSON !DOMAIN) of step 1

(net�nd)

18. plan = (FINGER NETFIND :GOAL)

19. Link to step 0 for open goal (SATISFY (CURRENT.SHELL CSH)) of step 2 (�nger)

20. Reduce OR goal: (OR (LASTNAME ?PERSON ?STRING) (FIRSTNAME ?PERSON ?STRING)

(AND (USERID ?PERSON ?STRING ?DOMAIN) (EQ ?STRING E: !USERID::(?PERSON))))

of step 2 (�nger)

(a) Choose disjunct (LASTNAME ?PERSON ?STRING)

(b) Choose disjunct of (FIRSTNAME ?PERSON ?STRING)
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(c) Choose disjunct of (AND (USERID ?PERSON ?STRING ?DOMAIN) (EQ ?STRING E:

!USERID))

21. CHOOSE

(a) =) Link to step 2 for open goal (USERID ?PERSON ?STRING ?DOMAIN) of step 2

(�nger)

(b) Add step FINGER for open goal (USERID ?PERSON ?STRING ?DOMAIN) of step 2

(�nger)

(c) Add step STAFFDIR for open goal (USERID ?PERSON ?STRING ?DOMAIN) of step 2

(�nger)

22. CHOOSE

(a) =) Link to step 2 for open goal (PERSON.DOMAIN ?PERSON ?DOMAIN) of step 2

(�nger)

(b) Add step FINGER for open goal (PERSON.DOMAIN ?PERSON ?DOMAIN) of step 2

(�nger)

(c) Add step STAFFDIR for open goal (PERSON.DOMAIN ?PERSON ?DOMAIN) of step 2

(�nger)

23. CHOOSE

(a) =) Link to step 2 for open goal (USERID ?PERSON !USERID !DOMAIN) of step 1

(net�nd)

(b) Add step FINGER for open goal (USERID ?PERSON !USERID !DOMAIN) of step 1

(net�nd)

(c) Add step STAFFDIR for open goal (USERID ?PERSON !USERID !DOMAIN) of step 1

(net�nd)

24. CHOOSE

(a) =) Link to step 1 for open goal (SATISFY (STATE ?LPK "Rhode Island")) of goal step

(b) Add step NETFIND for open goal (SATISFY (STATE ?LPK "Rhode Island")) of goal step

25. CHOOSE

(a) Link to step 0 for open goal (SATISFY (MACHINE.NAME ?MACHINE ?NAME)) of step

2 (�nger)

(b) Link to step 0 for open goal (SATISFY (MACHINE.NAME ?MACHINE ?NAME)) of step

2 (�nger)
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(c) =) Add step PING for open goal (SATISFY (MACHINE.NAME ?MACHINE ?NAME)) of

step 2 (�nger)

(d) Add step HOSTNAME for open goal (SATISFY (MACHINE.NAME ?MACHINE

?NAME)) of step 2 (�nger)

(e) Add step HINFO for open goal (SATISFY (MACHINE.NAME ?MACHINE ?NAME)) of

step 2 (�nger)

(f) Add step USERID-LOGIN-MACHINES for open goal (SATISFY (MACHINE.NAME

?MACHINE ?NAME)) of step 2 (�nger)

26. plan = (PING FINGER NETFIND :GOAL)

27. Reduce OR goal: (OR (AND (MACHINE.NAME !MACHINE ?MACHINE-NAME)

(DOMAIN.MACHINE.NAME !DOMAIN !NAME)) (AND (MACHINE.DOMAIN !MACHINE

!DOMAIN) (CURRENT.DOMAIN !DOMAIN) (DOMAIN.NAME.NICKNAME !DOMAIN

!NAME !NICKNAME) (MACHINE.NICKNAME !MACHINE ?MACHINE-NAME))) of step 3

(ping)

(a) =) Choose disjunct (AND (MACHINE.NAME !MACHINE ?MACHINE-NAME)

(DOMAIN.MACHINE.NAME !DOMAIN !NAME))

(b) Choose disjunct (AND (MACHINE.DOMAIN !MACHINE !DOMAIN)

(CURRENT.DOMAIN !DOMAIN) (DOMAIN.NAME.NICKNAME !DOMAIN !NAME

!NICKNAME) (MACHINE.NICKNAME !MACHINE ?MACHINE-NAME))

28. CHOOSE

(a) Link to step 0 for open goal (MACHINE.ALIVE !MACHINE) of step 3 (ping)

(b) =) Link to step 3 for open goal (MACHINE.ALIVE !MACHINE) of step 3 (ping)

(c) Add step PING for open goal (MACHINE.ALIVE !MACHINE) of step 3 (ping)

29. CHOOSE

(a) Link to step 0 for open goal (SATISFY (MACHINE.NAME ?SERVER ?SERVER-NAME))

of step 1 (net�nd)

(b) =) Link to step 3 for open goal (SATISFY (MACHINE.NAME ?SERVER

?SERVER-NAME)) of step 1 (net�nd)

30. CHOOSE

(a) Link to step 1 for open goal (SATISFY (FIRSTNAME ?LPK "Leslie")) of goal step

(b) =) Link to step 2 for open goal (SATISFY (FIRSTNAME ?LPK "Leslie")) of goal step
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(c) Add step NETFIND for open goal (SATISFY (FIRSTNAME ?LPK "Leslie")) of goal step

(d) Add step FINGER for open goal (SATISFY (FIRSTNAME ?LPK "Leslie")) of goal step

(e) Add step STAFFDIR for open goal (SATISFY (FIRSTNAME ?LPK "Leslie")) of goal step

31. CHOOSE

(a) Link to step 1 for open goal (SATISFY (LASTNAME ?LPK "Kaelbling")) of goal step

(b) =) Link to step 2 for open goal (SATISFY (LASTNAME ?LPK "Kaelbling")) of goal step

(c) Add step NETFIND for open goal (SATISFY (LASTNAME ?LPK "Kaelbling")) of goal

step

(d) Add step FINGER for open goal (SATISFY (LASTNAME ?LPK "Kaelbling")) of goal step

(e) Add step STAFFDIR for open goal (SATISFY (LASTNAME ?LPK "Kaelbling")) of goal

step

32. CHOOSE

(a) =) Link to step 2 for open goal (LASTNAME ?PERSON ?LAST) of step 1 (net�nd)

(b) Link to step 1 for open goal (LASTNAME ?PERSON ?LAST) of step 1 (net�nd)

(c) Add step NETFIND for open goal (LASTNAME ?PERSON ?LAST) of step 1 (net�nd)

(d) Add step FINGER for open goal (LASTNAME ?PERSON ?LAST) of step 1 (net�nd)

(e) Add step STAFFDIR for open goal (LASTNAME ?PERSON ?LAST) of step 1 (net�nd)

33. CHOOSE

(a) Add step STAFFDIR for open goal (SATISFY (OFFICE.PHONE ?LPK ?PHONE)) of goal

step

(b) =) Add step INFER-OFFICE-PHONE-FROM-FINGER-REC for open goal (SATISFY

(OFFICE.PHONE ?LPK ?PHONE)) of goal step

(c) Add step INFER-OFFICE-PHONE-SHARED for open goal (SATISFY (OFFICE.PHONE

?LPK ?PHONE)) of goal step

34. CHOOSE

(a) Link to step 0 for open goal (MACHINE.NAME !MACHINE ?MACHINE-NAME) of step 3

(ping)

(b) Link to step 0 for open goal (MACHINE.NAME !MACHINE ?MACHINE-NAME) of step 3

(ping)

(c) =) Link to step 3 for open goal (MACHINE.NAME !MACHINE ?MACHINE-NAME) of

step 3 (ping)
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(d) Add step PING for open goal (MACHINE.NAME !MACHINE ?MACHINE-NAME) of step

3 (ping)

(e) Add step HOSTNAME for open goal (MACHINE.NAME !MACHINE ?MACHINE-NAME)

of step 3 (ping)

(f) Add step HINFO for open goal (MACHINE.NAME !MACHINE ?MACHINE-NAME) of

step 3 (ping)

(g) Add step USERID-LOGIN-MACHINES for open goal (MACHINE.NAME !MACHINE

?MACHINE-NAME) of step 3 (ping)

35. plan = (INFER-OFFICE-PHONE-FROM-FINGER-REC PING FINGER NETFIND :GOAL)

36. Execute step NETFIND

37. Link to step 0 for open goal (SATISFY (DOMAIN.MACHINE.NAME ?DOMAIN ?NAME)) of

step 2 (�nger)

38. Link to step 0 for open goal (DOMAIN.MACHINE.NAME !DOMAIN !NAME) of step 3 (ping)

39. Execute step PING ! "cs.brown.edu is alive"

40. Link to step 0 for open goal (SATISFY (MACHINE.ALIVE ?MACHINE)) of step 2 (�nger)

41. Execute step FINGER !

"Login name: lpk In real life: Leslie Pack Kaelbling

Office: 521 Watson, 863-7637 Home phone: 508-520-7826

Directory: /u/lpk Shell: /cs/bin/tcsh

Logged in on Since Idle Owner Location

neplus Jun 25 63:21 Leslie Kaelbling 521

Last login Fri Jun 27 11:53

New mail received Mon Jul 21 05:11:44 1997

Unread since Fri Jul 18 15:39:44 1997

Plan:

Back from sabbatical!

Brown Office:

521 CIT

Computer Science Department

Box 1910

Brown University
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Providence, RI 02912-1910

401-863-7637 (phone)

401-863-7657 (fax)

Email: lpk@cs.brown.edu

Home: 12 Mountain Rock Lane

Norfolk, MA 02056

508-520-7826

"

42. Expand universals to disjunction after execution

43. CHOOSE

(a) =) Link to step 0 for open goal (SATISFY (FINGER.RECORD ?PERSON ?F-REC

?DOMAIN)((?PERSON))) of step 4 (infer-o�ce-phone-from-�nger-rec))

(b) Add step FINGER for open goal (SATISFY (FINGER.RECORD ?PERSON ?F-REC

?DOMAIN) ((?PERSON))) of step 4 (infer-o�ce-phone-from-�nger-rec))

44. Execute step INFER-OFFICE-PHONE-FROM-FINGER-REC! "863-7637"

45. Planner success!

7.1.3 puccini Actions

sadl, like uwl, came out of an e�ort to build an agent that can \understand" UNIX.

Many of the UNIX commands were hard to represent, and the encodings of them went

through many generations. We discuss two of the trickier actions, among those used

in the previous example.

Finger

finger takes an argument that may be a userid or the user's �rst or last name. It

returns information about all users whose userid, �rst name or last name happens

to be the string in question. The information returned includes the full name and

userid of the user along with other information, which often includes the user's phone

number. This wealth of information and exibility of use makes finger quite useful,
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but also challenging to model. The reason is that finger can be thought of as

providing a user's name given her userid, a user's userid given her �rst or last name,

her �rst name given her last name, and so on. An additional complication is that

finger takes an optional domain argument, separated from the �rst argument by a

\@." if the domain name is missing, finger returns information about users in the

\current" domain, that is, the domain of the machine on which finger is executed.

Despite the best e�orts of a number of intelligent people who thought long and hard

on this matter, it proved impossible to represent finger in the precursor to sadl

using fewer than six operators, representing di�erent ways finger can be used. Even

these six didn't capture all the possibilities. The problem stemmed from confusion

about knowledge preconditions. Once one starts thinking in terms of knowledge

preconditions, there are all sorts of paradoxical problems that emerge. For example,

most of the \sensor" commands we've looked at can be thought of as either requiring

or providing some piece of information, but not both. If I have some person in mind

and I want to �nd out whether that person is logged on, I could use finger. But

then finger obviously has the precondition of knowing that person's userid. If I have

some userid in mind and I want to �nd out what person has that userid, I could use

finger for that purpose, but now finger had better not have the precondition of

knowing that person's userid, since then I'll have a goal-stack cycle.

The solution, as mentioned in Section 3.2.6, is to do away with knowledge precon-

ditions, and write the action instead using conditional e�ects. Doing so allowed us

to replace the six finger operators with one. We obtained similar results for other

operators as well. See Appendix B.2 for our version of finger.

Netfind

Netfind is a program for �nding a possible e-mail address of a person given infor-

mation about that person, including last name and either institution or su�ciently

precise geographic location. Netfind has a terrible user interface and is painfully slow,
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which makes it a good tool to take away from users and give to agents. Netfind has

been largely superseded by the Web, but the corresponding Web resources could be

represented in essentially the same way.

The most interesting aspect of Netfind is that it only returns a guess of the cor-

rect e-mail address, so the information must be veri�ed by some other way, such as

the UNIX �nger command. In fact, after executing Netfind, we don't even have con-

�rmation that the information provided is about the person we're looking for { all we

know is that some anonymous individual with the given last name and given location

possibly has the email address returned. This creates a serious representational chal-

lenge, since Netfind provides no useful information until its guess has been veri�ed,

but needs to be executed to provide the guess. In the precursor to sadl, this paradox

was handled by splitting Netfind into two actions, the �rst of which was executed to

generate the guess given to �nger, and the second of which was executed after �nger

to assert the location information for that person. The second action didn't actually

do anything { it just provided a way to temporally separate the e�ects of Netfind.

Using sadl, we can represent Netfind more simply by using conditional e�ects

with unannotated preconditions, asserting that the location information about that

person holds, provided that the person has the given e-mail address. puccini can use

assumptions to support these preconditions using the e�ects of �nger, even though

�nger is executed after Netfind. See Appendix B.2 for the encoding of Netfind.

7.2 lcw

In the previous sections, we argued that our lcw mechanism is computationally

tractable, but incomplete. However, asymptotic analysis is not always a good pre-

dictor of real performance, and incompleteness is a matter of degree. To evaluate

our lcw machinery empirically, we measured its impact on the performance of the
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Internet Softbot [26].

2

In this section, we address the following questions experimentally:

� Speed: What is the speed of lcw queries and lcw updates as a function of

the size of the lcw database and the size of lcw formulas?

As shown in Section 7.2.1, lcw inference is very fast, 2 milliseconds per query,

and updates are even faster: 1.2 milliseconds. Times increase for longer queries, but

are relatively una�ected by the size of L andM.

� Completeness: Because our lcw database is incomplete, a query may result

in the truth value U even though its \true" truth value is F (Figure 2.1). How

often does this occur as the database processes a sequence of queries and updates

issued by the planner?

Section 7.2.2 argues that the incompleteness of our lcw mechanism is more of

a theoretical concern than a practical one. In over 99% of the cases that occur in

practice, the lcw mechanism deduces the correct answer.

� Impact: What is the e�ect of the lcw machinery on the speed with which the

planner can control the Internet Softbot? In particular, does the use of lcw

information improve the agent's performance enough to o�set the cost of lcw

inference and update?

Even though lcw inference is fast and e�ectively complete, it is still conceivable

that its use might detract from an agent's overall performance. Section 7.2.3 shows

that this is not the case; indeed, lcw's ability to focus search and eliminate redundant

sensing operations yields a 100-fold improvement in overall performance.

2

The following data were collected using the xii planner, the immediate predecessor of puccini;

the only signi�cant di�erence between the two planners is support for sadl extensions, which has

no bearing on these experiments. The lcw machinery is identical.
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7.2.1 Factors Inuencing lcw Speed

The interesting questions regarding lcw speed are \How fast are queries and updates

on average?" and \How does the time vary as a function of the length of the lcw

formula and the size of L andM?" To answer these questions we randomly generated

several thousand goals as explained in Section 7.2.4. In the course of solving these

planning problems, the planner issued over 390,000 lcw queries and performed nu-

merous updates. On average, answering an lcw query required 2 milliseconds while

processing an update took 1.2 milliseconds.

In answer to the second question, Figure 7.1 shows query time as a function of

the length of the query and the size of the L database.

3

The graph shows the results

for query sizes of up to four conjuncts; larger queries don't occur in our softbot's

domain. In fact, even queries with four conjuncts occur only as a result of user-

supplied 8 goals. The slow growth of query time as a function of jLj is due to the

use of hashing, as opposed to the more expensive linear-time search assumed in our

complexity analysis (Section 3.5.7). As mentioned earlier, updates are even faster

than queries on average.

7.2.2 Completeness

Because our lcw machinery is incomplete, QueryLCW(�) may return \No" when the

agent does in fact have lcw(�). We refer to this event as an lcw miss. Below, we

explain how we measured the percentage of lcw queries that result in lcw misses.

The problem of detecting lcw misses raises a thorny issue. lcw is a semantic

notion de�ned in terms of S, the in�nite set of possible world states that are consistent

with the agent's observations. How can we measure, experimentally, the percentage

of times when the agent ought to have lcw, but does not? Comprehending the

3

The size ofM is strongly correlated with the size of L, resulting in a very similar graph of query

time with respect to the size of M.
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Figure 7.1: CPU Time for lcw queries as a function of the size of the lcw database

L, and the number of conjuncts in the query. Experiments were run on a Sun SPARC-

station 20; vertical bars indicate 95% con�dence intervals. Note that even as L grows

large, the average query time is approximately 2 milliseconds. Over 90% of the

390,000 queries contained fewer than three conjuncts. Because the sizes of L andM

are strongly correlated in all of our experiments, the graph of query time with respect

to the size ofM is similar, and thus omitted.



148

answer to this question requires a deep understanding of the formal basis for lcw.

The de�nition of lcw in Section 2.2, combined with the fact that if ' 2 M then

S j= ', implies that if lcw(�) then there is a one-to-one correspondence between

instances of � in W and inM.

This one-to-one correspondence is important because it can be tested experimen-

tally via simulation. Section 7.2.4 describes the methodology in more detail, but

the idea is simple. We replace the agent's e�ectors (which normally manipulate an

actual UNIX shell), with new procedures that update and sense a simulation of a

UNIX computer. Although the simulated environment doesn't model every aspect of

UNIX, it is complete relative to every action that could be executed in service of the

test suite.

Thus, to check whether QueryLCW(�) has resulted in an lcw miss, we do the

following: When QueryLCW returns \No," we check whether every instance of � in

the simulation in fact appears in M. If so, lcw is possible, and we report that

an lcw miss has occurred. Of course, this mechanism can over-report lcw misses.

Although lcw(�) is possible, and QueryLCW(�) failed, it may be that no sensing of

� has taken place and we could not expect any agent to deduce lcw(�).

For example, if directory dir1 is empty, then bothM and the simulation database

will agree on the extension of in.dir(dir1, f), even if the agent has never executed

a command such as ls dir1. But not knowing whether there are any �les in a

directory that happens to be empty is not the same as knowing that there aren't any,

so this case would be a false miss. We are able to eliminate some of these false misses,

but not all of them. However, since we are trying to demonstrate the success of our

lcw machinery, we are content to be conservative and overstate the number of lcw

misses.

In our experiments, fewer than 1% of the lcw queries generated by the planner

result in misses. The percentage of misses does not vary signi�cantly with the amount

of dynamism, or with the percentage of Domain Growth or Information Loss updates
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that occur.

Answering the question of how often misses occur independent of the xii planner

and the Softbot domain is problematic, since we could construct cases in which all

lcw queries are misses, or none are. For example, suppose we have a directory

containing only postscript and T

E

X �les, and we have lcw on the size of all �les

in that directory. Suppose we then compress one of the postscript �les. By the

Information Loss Rule, the lcw we had on the size of all the �les will be removed

from L, whereas if our lcw machinery were complete, it would retain lcw on the

size of all T

E

X �les in the directory. Now if all queries are of the form \Do I know

the size of all T

E

X �les in this directory?" then every query will be a miss. Perverse

cases like this one in practice are highly unlikely. This is due, in part, to the fact that

failed lcw queries are likely to be followed by actions that achieve the desired lcw.

7.2.3 Impact on Planning

We have shown that individual lcw queries are fast and that the reasoning mecha-

nism is e�ectively complete, but given that a signi�cant number of lcw queries are

performed during planning, it is still conceivable that lcw might slow the planner

down. We show that this is not the case; in fact lcw inference speeds planning

considerably by reducing redundant sensing operations. Figure 7.2 shows the per-

formance of the xii planner with and without lcw, solving a sequence of randomly

generated goals, with M and L initially empty. The planner runs faster with lcw

even on the �rst goal, since it leverages the lcw information which it gains in the

course of planning. In subsequent goals, the planner can take advantage of lcw

gained in previous planning sessions for an even more pronounced speedup. Without

lcw, the planner wastes an enormous amount of time doing redundant sensing. The

version of xii without lcw completed only 8% of the goals before hitting a �xed time

bound of 1000 CPU seconds. In contrast, the version with lcw completed 94% of

the goals in the allotted time.
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Figure 7.2: The use of lcw reasoning yields dramatic performance improvements

to the xii planner. Times indicated are CPU seconds on a Sun SPARCstation 20;

vertical bars indicate 95% con�dence intervals. The experiment was repeated 10

times on randomly generated initial worlds. Thus, each of 30 distinct points on the

X-axis represents the average of 10 planning sessions on randomly generated goals.

The databases M and L were left intact between goals to measure the impact of

increasing knowledge on planner performance. Thus, M and L tend to increase

along the X-axis. The curves show a best-�t to each set of 300 data points.
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Table 7.2: The number of executions performed by the planner with and without

lcw on 300 randomly generated problems. The number of executions for the planner

without lcw are drastically under-reported, because without lcw the planner could

only solve 8% of the problems within the 1000 CPU second time bound. In contrast,

with lcw reasoning the planner solved 94% of the problems. Had both versions

of the planner been run until every problem was solved, we would expect a much

larger di�erence in favor of the planner with lcw. Surprisingly, lcw also reduces the

amount of time xii spends per plan on average. This is because the non-lcw planner

tends to consider more complicated plans, which require more CPU time to evaluate.

lcw? % probs Total Number Time per

solved of executed actions plan (sec)

yes 94% 34,865 0.26

no 8% 93,050 1.16

7.2.4 The Experimental Framework

The goal of our experiments was to measure the performance of our lcw machinery

in a real-world setting. All of our evaluations of lcw are through queries and

updates generated by the xii planner in the course of satisfying randomly-generated

�le manipulation goals in the Softbot domain. To make our experiments easier

to control, vary, and replicate, we built a simulation environment that allows us to

generate arbitrary UNIX world states, which behave exactly as UNIX behaves in

response to actions executed by the softbot. Additionally, the simulation greatly

simpli�es the task of evaluating lcw, as we discuss in Section 7.2.2. Nearly all of

the results we report using simulated UNIX worlds are identical to the results we

would obtain if xii were executing in an equivalent, real UNIX environment. The one

exception is the report of total time in Figure 7.2, which does not reect the time

required to execute actions in a UNIX shell. However, the purpose of Figure 7.2 is

to evaluate the impact of lcw on planning, not to measure the performance of the

Internet Softbot. Based on earlier experiments in this domain (see [35]), it seems
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likely that accurately reporting execution time would only make our results stronger,

since, without lcw, xii spends a greater percentage of its time executing actions (see

Table 7.2), and execution is expensive.

7.2.5 The Simulation Environment

The simulation environment consists of a current world state w

s

, represented as a

database, which completely speci�es the state of all �les and directories in the simu-

lation, and an execution procedure that translates an action to be executed into the

appropriate queries and updates on w

s

. In our experiments, w

s

contains up to 80 di-

rectories, each directory holding between 5 and 20 �les. The topology of the directory

tree is random, each directory containing at most �ve other directories. Filenames

are all of the form dir1, file2, etc. The values of other �le attributes, such as size

and file.type, are chosen randomly. Although w

s

doesn't model every aspect of

UNIX, it is complete relative to every action that could be executed in service of the

test suite.

The execution procedure simply computes a mapping from an action to database

operations on w

s

. This mapping is straightforward; all the required information is

contained in the e�ects of the action. For example, ls -la dir3 determines, among

other things, the size of each �le in dir3, so the execution procedure handles the

execution of ls -la dir3 by querying w

s

for

in.dir(f, dir3) ^ size(f, n)

and updatingMwith the results. Similarly, since cd dir11 has the e�ect current.dir

(dir11), this update is done to w

s

as well as toM.

7.2.6 The Goal Distribution

The test suite consists of a series of runs. At the beginning of each run, a simulated

world w

s

is randomly generated, andM and L are empty. A sequence of 30 goals is
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then randomly generated, and the planner is given the goals to solve one by one. M

and L are left intact between goals, so for each goal, the planner has the bene�t of

knowledge obtained in solving the previous goals. After the 30 goals are completed,

a new world is generated,M and L are emptied, and the process is repeated.

Our goal generator creates either universally-quanti�ed or existentially-quanti�ed

goals. Quanti�cation aside, the two sets of goals are essentially equivalent, and consist

of �nding �les meeting certain properties, such as filename, in.dir, word.count and

file.type, and performing certain operations on them, such as compressing them,

moving them to a di�erent directory or �nding out their size. A typical goal is

\Compress all postscript �les in the directory /dir0/dir1/dir21."



Chapter 8

CONCLUSIONS

The work presented in this thesis seeks the middle ground between planning and

knowledge representation, between expressiveness and tractability, and between theo-

retical and empirical results. This quest for the middle ground is borne from practical

necessity. When building complete agents, many of the representational assumptions

made in planning must be reconsidered. For agents to be useful, they must support

expressive representations for reasoning about the world, but they must also perform

this reasoning quickly. Finally, to have con�dence in our agents, we want both formal

guarantees that the behavior of our agents is correct, and empirical veri�cation that

they are e�ective. We have presented three interrelated contributions to planning

and knowledge representation:

� The lcw representation of local closed world knowledge, along with sound

algorithms for performing inference and updates on this knowledge

� The sadl action language for representing information goals and sensors that

return an unbounded amount of information

� The puccini planning algorithm, which uses lcw and sadl to solve a wide

class of goals, including information goals and universally quanti�ed goals, in

the presence of incomplete information.
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8.1 Related Work

8.1.1 puccini

puccini is an extension of xii, which is based on the ucpop algorithm [72]. puccini

builds on xii by supporting sadl and handling assumptions. xii builds on ucpop

by supporting uwl, dealing with information goals and e�ects, interleaving planning

with execution and lcw. The algorithm we used for interleaving planning with

execution closely follows ipem [1]. puccini di�ers from ipem in that puccini can

represent actions that combine sensing and action, and can represent information

goals as distinct from satisfaction goals. ipem makes no such distinction, and thus

cannot plan for information goals. occam [49], and sage [43] can both create plans to

obtain new information, but unlike puccini, they can do nothing else; both planners

are specialized to the problem of information gathering or database retrieval. occam

derives signi�cant computational speedup and representational compression from the

assumption that actions don't change the world, and thus seems appropriate for

domains in which that assumption is valid. It is not clear whether sage, which

is based on ucpop as is puccini, gains similar advantage. puccini, in contrast,

can integrate causational and observational actions in a clean way, and in addition,

supports Local Closed World reasoning, which sage does not support, but a recent

version of occam [30] now does.

The sadl language is the synthesis and extension of uwl [27] and the subset of

adl [69] supported by ucpop. Our research has its roots in the socrates plan-

ner [50]. Like puccini, socrates utilized the Softbot domain as its testbed, sup-

ported the uwl representation language and interleaved planning with execution. In

addition, socrates supported a restricted representation of lcw, which it used to

avoid many cases of redundant information gathering. Our advances over socrates

include the ability to satisfy universally quanti�ed goals, a more expressive lcw

representation, and the machinery for automatically generating lcw e�ects and for
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detecting threats to lcw links.

More broadly, our work is inspired by previous work which introduced and for-

malized the notion of knowledge preconditions for plans and informative actions

[60, 63, 16, 64, 65]. While we adopted an approach that interleaves planning and

execution [29, 67, 47], other researchers have investigated contingent or probabilistic

planning. Contingent planners [85, 81, 38, 73, 15, 75] circumvent the need to in-

terleave planning with execution by enumerating all possible courses of action and

deferring execution until every possible contingency has been planned for. While

this strategy is appropriate for safety-critical domains with irreversible actions, the

exponential increase in planning time is daunting.

Some planners encode uncertainty in terms of conditional probabilities [48, 15], or

Markov Decision Processes [44, 10]. Our approach sacri�ces the elegance of a proba-

bilistic framework for an implemented system capable of tackling practical problems.

Robotics researchers have also addressed the problem of planning with actions

whose e�ects are uncertain, exploring combinations of sensory actions and compli-

ant motion to gain information [57, 22, 5, 13]. Recent complaints about \Sensor

abuse" [58, 61] suggest that the robotics community is aware of the high cost of

sensing and is interested in techniques for eliminating redundant sensing.

puccini's search space can be understood in terms of Kambhampati's Univer-

sal Classical Planner (UCP) [40], which uni�es plan-space planning with forward-

chaining and backward-chaining planning. When puccini works on open conditions

or threats, it is following a version of the Re�ne-plan-plan-space algorithm with book-

keeping constraints and conict resolution. When puccini executes an action, it is

following the Re�ne-plan-forward-state-space algorithm, though puccini actually ex-

ecutes the action and obtains sensory information, whereas Kambhampati's algorithm

only modi�es the plan. Another di�erence is that, to preserve completeness, Kamb-

hampati's algorithm considers adding and \executing" all applicable new actions,

whereas puccini will only execute actions that were previously added to the plan.
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An approach to planning similar in spirit to puccini's use of lcw is to count the

number of relevant ground propositions in the model, before inserting information-

gathering actions into the plan, to check whether the desired information is already

known [83, 67]. However, this heuristic is only e�ective when the number of sought-

after facts is known in advance. lcw reasoning is more general in that it can also deal

with cases when the size of a set (e.g. the number of �les in a directory) is unknown.

8.1.2 sadl

McCarthy and Hayes [60] �rst argued that an agent needs to reason about its ability

to perform an action. Moore [63] devised a theory of knowledge and action, based

on a variant of the situation calculus with possible-worlds semantics. He provided

an analysis of knowledge preconditions, which we discussed earlier, and information-

providing e�ects. Morgenstern [64] generalized Moore's results to express partial

knowledge that agents have about the knowledge of other agents (e.g. \John knows

what Bill said"), using a substantially more expressive logic, which is syntactic rather

than modal. Davis [9] extended Moore's theory to handle contingent plans, though,

like Moore, he doesn't discuss actions with indeterminate e�ects. Levesque [51] o�ers

an exceptionally clean theory of when a plan, with conditionals and loops, achieves

a satisfaction goal in the presence of incomplete information. However, Levesque

doesn't discuss knowledge goals, and his sensory actions can return only T or F, and

can't change the state of the world. Shoham [82] presents a language, with explicit

time, for representing beliefs and communication among multiple agents. Agents can

request other agents to perform actions, which can include (nested) communicative

actions, but not arbitrary goals. A discrete temporal logic, without 8, is used to

represent beliefs.

A number of contingent planning systems have introduced novel representations

of uncertainty and sensing actions. C-buridan [48, 14] uses a probabilistic action

language that can represent conditional, observational e�ects, including noisy sen-
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sors, and e�ects that cause information loss. Unlike sadl, the C-buridan language

is propositional, and makes no distinction between knowledge goals and goals of sat-

isfaction. Cassandra [75] represents uncertainty as a �nite disjunction of possibilities,

one of which will be true. Uncertain e�ects are represented as conditional e�ects with

preconditions labeled :unknown. Cassandra produces a single, loop-free contingent

plan guaranteed to solve the goal. It cannot represent actions, like ls that return

information about an unbounded number of objects, and it cannot produce plans

that contain actions which might not succeed, even if the entire plan will achieve the

goal. Examples of such plans are searching for a �le, trying all combinations to a

safe, or dunking two packages, one of which contains a bomb.

8.1.3 lcw

Below, we briey review the large body of related work on circumscription, autoepis-

temic logic, and database theory. At the end of this section, we summarize the key

di�erences between this body of work and ours.

The bulk of previous work has investigated the logic of closed world reasoning

(e.g., [45, 23, 78, 63, 52]), and the semantics of theory updates (e.g., [33, 41, 12]).

Results include logical axiomatizations of the closed world assumption (CWA), explor-

ing the relationship between the CWA and circumscription, distinguishing between

knowledge base revision and knowledge base update, and more. Although decidable

computational procedures have been proposed in some cases (e.g., [32], and the Min-

imality Maintenance System [77]), they remain intractable. Update procedures have

been described that involve enumerating the possible logical models corresponding to

a database (e.g., [90, 11]), or computing the disjunction of all possible results of an

update [42]. In contrast, we adopt the WIDTIO (When In Doubt Throw It Out [91])

policy. As [19] points out, this method is easy to implement e�ciently but has the

potential disadvantage that, in the worst case, all knowledge in the database has to

be retracted. In fact, we have developed novel rules that enable us to retain closed
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world information in the face of most updates. We believe our rules satisfy the up-

date postulates speci�ed in [41] and generalized in [12], but have not attempted a

proof. Instead, we prove that our update scheme has polynomial worst case running

time (Section 3.5) and we demonstrate experimentally that it is e�ective in practice

(Section 7.2).

Motro [66] uses meta-relations much like lcw formulas to encode local valid-

ity and completeness in a database. However, his scheme doesn't support updates,

and he gives no complexity results. Levy [53] has pointed out a close relationship

between closed-world reasoning and the problem of detecting the independence of

queries from updates. However, the computational model in the database literature

(Datalog programs) is di�erent from our own. Furthermore, polynomial-time algo-

rithms for this problem are rare in the database literature (e.g., [55] merely reports

on decidability). Notable exceptions include Elkan's [20] polynomial time algorithm

for conjunctive query disjointness (which is a su�cient condition for query indepen-

dence), and Elkan's [21] approach for handling monotonic updates.

Some excellent analyses of the computational complexity of closed-world reasoning

have emerged [7, 19], which show that the di�erent approaches described in the liter-

ature are highly intractable in the general case. Stringent assumptions are required

to make closed-world reasoning tractable. For example, Eiter and Gottlob [19, page

264] show that propositional Horn theories with updates and queries of bounded size

yield polynomial-time algorithms. However, all positive computational tractability

results reported in [7, 19] are restricted to propositional theories. Motivated by the

need for closed-world reasoning in modern planning algorithms, we have formulated a

rather di�erent special case where the knowledge bases record �rst-order information,

queries are �rst-order conjunctions, and updates are atomic.

1

1

Since we consider formulas with an essentially unbounded number of instances, it is impractical to

translate our �rst-order theories into propositional correlates. Furthermore, as shown in Sections 2.4

and 3.5, local closed-world reasoning makes essential use of �rst-order constructs such as uni�cation.
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Some recent work [54, 30, 18] builds on our lcw work, providing a more expressive

representation, though the price of higher complexity bounds. The extensions allow

one to state, for example, that formula � is complete for all instances satisfying 	.

All of these systems are designed for pure information gathering, such as database

query planning, and thus don't need to address the problem of updating lcw in

response to changes in the world.

8.2 Future Work

8.2.1 Contingency

As we discussed, interleaving planning with execution is fundamentally incomplete in

the presence of irreversible actions, yet contingency planning is impractical for real-

istic domains. We hope to overcome these limitations by combining both techniques.

The agent would interleave planning with execution when possible, but would plan

for contingencies when in danger of falling o� a cli�. How best to decide when to

plan for contingencies and when to execute is an interesting open problem.

8.2.2 Exogenous Events

Although we have relaxed the assumption of complete information, we still assume

correct information. Since we want our agents to cope with exogenous events, we

are in the process of relaxing this assumption as well. We are investigating two

complementary mechanisms to solve this problem. The �rst mechanism associates

expiration times with beliefs. If an agent has a belief regarding ', which describes

a highly dynamic situation (e.g., the idle time of a user on a given machine), then

the agent should not keep that belief in M for very long. Thus, the agent would

expect a block that it put on the table at 10:00 to be on the table at 10:05, but it

would not have the same expectations for a cat. Thus, after an appropriate amount

of time has elapsed, the update �('; T _ F! U) occurs automatically. Note that
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by the Information Loss Rule, this update will cause lcw to be retracted as well.

Although this representation has the advantage of being simple, there is quite a lot

it can't represent, such as the fact that the cat is more likely to remain on the table

if there's a saucer of milk present, or the fact that the milk is less likely to remain in

the saucer if the cat is present. Furthermore, this mechanism is only e�ective when

the belief about ' expires before ' changes in the world, which we cannot guarantee

in general.

Thus, an additional mechanism is required that enables the agent to detect and

recover from out-of-date beliefs. This is a harder problem, because it involves belief

revision, rather than mere update. If executing an action fails, and the action's pre-

conditions are known, it follows that one or more of the preconditions of the action

were not satis�ed | but which ones? A conservative mechanism would retract the

ground literals satisfying the action's preconditions from the agent's theory. How-

ever, this mechanism could discard a great deal of valuable information. We are

investigating less conservative mechanisms.

Both of these approaches are somewhat reactive. It would be much more satisfying

to have the agent reason explicitly about changes outside its control. This would be

useful not only for planning more e�ectively, but also as an aid in plan recognition.

For example, without some theory of exogenous events, there would be no way of

explaining why someone would carry an umbrella even though it's not raining.

However, it is not at all clear how best to represent this knowledge. The most

straightforward approach would be to assume that anything can change at any time.

However, if the agent can never assume that conditions it has achieved remain

achieved, it is forced into the obsessive-compulsive practice of repeatedly sensing to

make sure \closed" subgoals haven't been clobbered. Furthermore, without some in-

formation about the relative likelihood of various exogenous events, the agent might,

for example, avoid going outside for fear of getting hit by a meteor. While we could

address this problem using probabilities, unless the true probabilities are known, this
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approach is simply ad hoc. Furthermore, reasoning with probabilities is expensive.

8.2.3 Expressiveness

We need to investigate increasing the expressive power of M and L. First, the

introduction of negation into L would enable us to express sentences such as \I know

the size of each �le in /kr94 except myfile," which would make lcw update less

conservative. Second, suppose that an agent was unfamiliar with the contents of the

/kr94 directory, yet executed chmod g+r * while in that directory. The reasoning

mechanism described in this paper is incapable of inferring that all the �les in /kr94

are group-readable.

2

The lcw sentence

lcw(in:dir(f; /kr94) ^ group:protection(f; readable))

is not warranted because it implies that the agent is familiar with all the group-

readable �les in /kr94, which is false by assumption.

We could represent the information gained from the execution of chmod g+r * in

/kr94 by introducing the following Horn clause intoM:

in:dir(f; /kr94)! group:protection(f; readable)

The Horn clause says that all the �les in the directory /kr94 are group-readable, even

though the agent may be unfamiliar with the �les in /kr94. Although the mechanisms

described in this paper do not allow Horn clauses inM, this example demonstrates

that such an extension would provide increased expressiveness. Future work should

determine whether this increase in expressive power is worthwhile.

8.2.4 Background Goals

Much of the work in planning focuses on \satis�cing" search | the agent is given a

goal condition, which it must achieve at some future time. Any plan that achieves

2

Indeed, this inference is only licensed when the agent is authorized to change the protection on

each of the �les in /kr94; suppose this is the case.
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the goal is as good as any other, and once the goal is achieved, the agent can call

it a day. By these criteria, if the agent is given the goal \delete the �le named

core," executing rm -rf /* is just as good as executing rm core. The side e�ect

of the former, deleting all the �les on the �le system, is irrelevant. One way out

of this dilemma is to replace satis�cing search with optimizing search. The agent is

given a utility function that describes the relative desirability of all possible states

of the world, and it produces a plan to maximize its utility. While this approach is

appropriate for some domains, it has two signi�cant liabilities. The �rst is obvious:

computational cost. The second is less obvious but more problematic: Where do these

utility functions come from? Getting users to specify precise goals is hard enough;

eliciting utility functions is a even more challenging.

The approach we take in the Softbot is to require users to provide background goals

that the Softbot should always take into account while planning. Such background

goals can include safety goals such as \Don't delete my thesis" and tidiness goals,

such as \Re-compress my �les when you're done printing them." [87] While stating

background goals is less work than providing a utility function to the agent, it is still

too much work. It would be nice to have a meta-tidiness goal of \Keep everything in

its place," and a meta-safety goal of \Do no harm." But this just pushes the problem

into representing the \place" for everything, and de�ning \harm." Furthermore, it's

unlikely that we would want our agents to adhere to these rules too rigidly. There

are times, for example, when cleaning up isn't worth the trouble.

It may be possible to come up with a more general solution to the goal of pro-

viding background goals by understanding where background goals come from. One

possibility is that background goals result from anticipating future goals or exogenous

events. The reason I don't execute rm -rf /* is that I may need those �les in the

future. I re-compress my �les because otherwise I might run out of disk space some

time later. I hang up the phone when I'm done with it because I might get a call

later.
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It might be possible to �gure out appropriate background goals by doing an analy-

sis of the planning domain, possibly by taking sample problems and generating plans

for them, and �guring out what conditions are likely to be critical some time in the

future.

8.3 Summary

We began by describing our representation of the agent's incomplete information and

local closed world knowledge. We de�ned the semantics of the agent's knowledge

using the situation calculus and the knowledge relation, K. We presented inference

procedures for lcw, and showed that these procedures are sound and run in polyno-

mial time.

We then presented the sadl action language and provided the semantics using the

situation calculus, �rst de�ning the initially, satisfy and hands-o� goal annotations

and discussing universally quanti�ed goals, and then discussing the e�ect annotations

cause and observe, universally quanti�ed and conditional e�ects, and e�ects that

introduce uncertainty. We then discussed temporal projection in sadl, and showed

how lcw updates result from sadl actions. We presented procedures for performing

these updates, and showed that they are sound and run in polynomial time.

We next discussed plans formed from sadl actions and showed how these plans

are represented with structures used by the puccini algorithm. We de�ned a puccini

planning problem, and �nally presented the puccini planning algorithm, discussed

the novel ways of achieving sadl goals, including universally quanti�ed goals and

lcw goals, in the presence of incomplete information. We introduced an assumption

mechanism based on causal links and introduced novel ways of resolving threats to

causal links, including links that protect universally quanti�ed goals, lcw goals and

hands-o� goals. We discussed execution in puccini, and techniques for backtracking

over execution when a plan fails.
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We then proved that puccini is sound, and discussed the reasons that it is in-

complete. Finally, we presented empirical results that show lcw and puccini to be

e�ective.
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Appendix A

PROOFS

A.1 Proofs from Chapter 2

In many of the following proofs we rely on the following two facts:

� L contains only positive sentences.

� The variable substitution � maps a sentence � to a ground sentence ��. Thus,

once the truth value of �� is known, we have lcw(��).

A.1.1 Proof of Theorem 2.1 (NP-hardness of lcw queries, unrestricted L)

We reduce formula satis�ability (SAT) to the problem of answering a singleton lcw

query. Let � be an arbitrary propositional boolean formula. Let L = flcw(p _ �)g,

where p is a proposition not appearing in �, and letM be empty. We will show

that the query lcw(p) fails i� there is a truth assignment to propositions in � such

that � is true. Thus answering lcw(p) in the negative can be used to determine

whether � is satis�able.

1. Say there is no assignment such that � is true (i.e. � is provably false). Thus

p _ � has the same truth value as p, so it follows from the de�nition of lcw

that lcw(p _ �) implies lcw(p). Therefore, the query must succeed.

2. Conversely, if � is satis�able, then either � is provably true (a tautology), or

neither � nor :� is provable. If � is a tautology, then so is p _ �, which is

completely independent of the truth value of p. Since we have no other
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information about p, lcw(p) does not follow from anything we know, and

thus the query must fail. If neither � nor :� is provable, then p _ � is

irreducible. Since there are some truth assignments under which lcw(p)

follows and others under which it doesn't, it's impossible to conclude lcw(p)

in general, so again the query must fail.

The above two cases are exhaustive, so we have shown a (linear time) reduction of

SAT to lcw inference. Since formula satis�ability is NP-hard, it follows that

(unrestricted) lcw inference is also NP-hard.

A.1.2 Proof of Theorem 2.2 (Instantiation)

Let � be a logical sentence and suppose lcw(�) holds. Let � be an arbitrary

substitution; we need to show that lcw(��) holds. I.e., by de�nition of lcw

(Equation 2.1) we need show that for all substitutions, �, either S j= ��� or

S j= :���. But since the composition �� of substitutions is a substitution, and

since lcw(�) we conclude lcw(��).

A.1.3 Proof of Theorem 2.3 (Composition)

Let � and 	 be logical formulas and suppose lcw(�) and

8�; (S 6j= ��) _ lcw(	�). Let � be an arbitrary substitution. We need to show

[S j= (� ^	)�] _ [S j= :(� ^ 	)�]. If S j= (� ^ 	)�, then the proof is complete; so

instead assume that S 6j= (� ^ 	)�. Since lcw(�), either S j= �� or S j= :��. If

S j= :��, then clearly S j= :�� _ :	�, and the proof is complete. If S j= �� then

S 6j= 	� (otherwise, S j= (� ^	)�). Furthermore, S j= �� implies lcw(	�) (given),

so S j= :	�. Thus S j= :�� _ :	�, which means that lcw(� ^	).

A.1.4 Proof of Theorem 2.4 (Conjunction)

Let � and 	 be logical sentences and suppose lcw(�) and lcw(	). By the

Instantiation Rule, we have 8� lcw(	�), so the condition 8�;S 6j= �� _ lcw(	�)

is trivially true. Thus the Composition Rule applies, and we have lcw(� ^	).
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A.1.5 Proof of Theorem 2.5 (Negation)

lcw(�) � 8� [S j= ��]_ [S j= :��] � 8� [S j= :(:��)]_ [S j= (:��)] � lcw(:�).

A.1.6 Proof of Theorem 2.6 (Disjunction)

By the Theorem 2.5 (Negation), lcw(�) ^ lcw(	)) lcw(:�) ^ lcw(neg	),

which, by Corollary 2.4 (Conjunction), means lcw(:� ^ :	), which is equivalent

to lcw(:(� _ 	)), which, by Theorem 2.5 (Negation) means lcw(� _	).

A.1.7 Proof of Theorem 2.7 Incompleteness of lcw Inference Rules

We provide a simple counter-example. Consider the case in which we know

lcw(in.dir(bak, f) ^ is.backup(bak)), and we also know that

is.backup(bak) is true. Since is.backup(bak) is ground and true, in.dir(bak,

f) ^ is.backup(bak) always has the same truth value as in.dir(bak, f). It

follows then from the de�nition of lcw that lcw(in.dir(bak, f)). Since our

inference rules won't derive this formula, they are incomplete. The more general

problem is that whenever all possible instances of a formula A are both known and

true, lcw(A^B) implies lcw(B). For unbounded universes, and a �nite knowledge

base of positive ground facts, the formula must be ground for all instances to be

known true.

A.1.8 Proof of Theorem 2.8 Soundness of QueryLCW

We use induction on the number of conjuncts in �.

Case j�j = 0: An invocation of QueryLCW induces a call to QLCW* where line 1

returns T. This is correct, because the null clause (i.e., a ground query with zero

conjuncts) is unsatis�able by de�nition. Since every state in S agrees that the null

clause is false, Sj=:� and hence lcw(�).

Case j�j = k � 1: If QLCW* returns T, it must have terminated on line 2 or 6.

But line 2 only returns true when all ground instantiations, namely � itself, are

entailed byM. This corresponds directly to the de�nition of lcw.
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Line 6 will only return T under conditions matched by Composition which is sound

by Theorem 2.3, or Instantiation (line 4, �� �

0

= fg), which is sound by

Theorem 2.2. Since these are the only termination points for QueryLCW, the

algorithm is sound.

A.1.9 Proof of Theorem 2.9 Complexity of QueryLCW

Suppose � has c conjuncts, let L denote jLj, and let M = jMj. In the worst case,

control falls through to line 3, entering a loop over the elements of L, and then in

line 4 iterates over at most 2

c

conjuncts of �. In line 6, the loop body performs a

conjunctive match onM with a pattern whose length is at most v <= c (giving a

complexity O(M

v

)), and then possibly makes a recursive call for each of the O(M

v

)

possible matches. Thus the following recurrence relation de�nes the time required

by QueryLCW:

t[c] = L(2

c

)(M

v

)(t[c� v])

Unrolling the recursion yields

t[c] = L(2

c

)(M

v

1

)(L)(2

c�v

1

)(M

v

2

) : : : (L)(2

c�v

1

�v

2

�:::�v

n�1

)(M

v

n

)

The value of t[c] is maximized if each v

i

= 1. To see why this is, consider that

letting v

i

= 1 maximizes the number of iterations, which maximizes the exponent on

the L and the 2. The exponent on the M , on the other hand, doesn't depend on

what values are chosen for v

i

: since v

1

+ v

2

+ : : : v

n

= c. So the above equation

simpli�es to

t[c] = (L

c

)(2

c

2

=2

)(M

c

)

So QueryLCW requires at most O(jLj

c

jMj

c

) time. Given that c is bounded by the

domain theory, the complexity is polynomial in the size of L andM.

A.2 Proofs from Chapter 3
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A.2.1 Proof of Theorem 3.1 (Successor State Axiom)

Assume ACHV(�

a

; s; fg). We need to show that

P (DO(a; s)), �

a

P

(s) _ (P (s) ^ �

a

P

(s)) We will �rst show the \(" case: Assume

�

a

P

(s) _ (P (s) ^ �

a

P

(s)) (A.1)

By the de�nition of �

a

P

(Eqn 3.21),

�

a

P

(s)) 

T

P

(a; s) _ (Unk

P

(a; s) ^ 

U

P

(a; s)):

and by the de�nition of �

a

P

(Eqn 3.23)

�

a

P

(s)) :

F

P

(a; s) ^ (Unk

P

(a; s) _ :

U

P

(a; s))

Applying these two de�nitions to Eqn A.1 gives us



T

P

(a; s) _ (Unk

P

(a; s) ^ 

U

P

(a; s))

_[P (s) ^ :

F

P

(a; s) ^ (Unk

P

(a; s) _ :

U

P

(a; s))]: (A.2)

As we discussed in Section 3.4.1, because of the Completeness Assumption, when

clauses are actually bi-implications, so by Equations 3.17{3.19,



T

P

(a) , cause(P; T)



F

P

(a) , cause(P; F)



U

P

(a) , cause(P; U)

Applying the above bi-implications to Eqn A.2, we get

EFF(cause(P; T); a; s) _ (Unk

P

(a; s) ^ EFF(cause(P; U); a; s))

_[P (s) ^ :EFF(cause(P; F); a; s) ^ (Unk

P

(a; s) _ :EFF(cause(P; U); a; s))]: (A.3)
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By the de�nitions of T, F and U e�ects (Eqns 3.13{3.15),

EFF(cause(P; T); a; s) � P (DO(a; s))

EFF(cause(P; F); a; s) � :P (DO(a; s))

EFF(cause(P; U); a; s) � Unk

P

(a;DO(a; s)), P (DO(a; s))

We use :EFF(cause(P; F); a; s) in Eqn A.3 as a notational convenience, but we

must be careful when interpreting it. :EFF(cause(P; F); a; s) simply means that

the corresponding update doesn't occur, not that the negation of the update occurs,

so propagating the : would be an error. So, by Eqn A.3, either there is an update

of the form P (DO(a; s)), or P (s) holds and there is no update of the form

:P (DO(a; s)), which (by the Completeness Assumption discussed in Section 3.1)

means P (DO(a; s)).

We will now show the \)" case: P (DO(a; s)) holds. There are two possibilities for

the value of P in situation s. Either P (s) or :P (s). If P (s), then P didn't change

truth value, so no e�ects made it false. There are two e�ects that could have made

it false (Eqns 3.14, 3.15): cause(P, F) and cause(P, U) (if :Unk

P

(a; s)).

Since neither of these e�ects occurred, it must be the case that :

F

P

(a; s) and either

:cause(P; U) (and thus :

U

P

(a; s)) or Unk

P

(a; s).

So by de�nition (Eqn 3.23), �

a

P

(s). If P was false in s then there had to have been

an e�ect that made it true. The two possible e�ects are (Eqns 3.13, 3.15) cause(P,

T) and cause(P, U) (if Unk

P

(a; s)). Since one of these actions must have occurred,



T

P

(a) _ (Unk

P

(a) ^ 

U

P

(a)), i.e., �

a

P

.

Putting these two cases together we get �

a

P

(s) _ P (s) ^ �

a

P

(s), which is what we

were trying to prove.

Lemma A.1 (Knowledge e�ects) If K(s

0

; s) and not K(DO(a; s

0

);DO(a; s)),

then a has an observational e�ect that results in di�erent observations of some

uent P in s and s

0

.
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A.2.2 Proof of Lemma A.1 (Knowledge e�ects)

Assume otherwise: K(s

0

; s) and not K(DO(a; s

0

);DO(a; s)), but no observational

e�ect resulted in di�erent observations of any uent P in s and s

0

� If a has no e�ects then, by the Completeness Assumption discussed in

Section 3.1, nothing changed between s and s

0

, including K, so

K(s; s

0

), K(DO(a; s

0

);DO(a; s)) (a contradiction)

� If a has only causal e�ects, then the contradiction follows from essentially the

same argument. The only e�ects that refer to K are observational e�ects.

Since there were only causal e�ects, K was una�ected, so by the Completeness

Assumption, remains unchanged in situation DO(a; s), a contradiction.

� So a must have an observational e�ect that makes s and s

0

distinguishable.

Let that e�ect be observe(P; tv). If P is ground, then P must have di�erent

truth values in s and s

0

, since otherwise s and s

0

are not made distinguishable

by the observation. If P is not ground (i.e., P contains run-time variables),

then there must be some ground instance of P , P

0

, that has di�erent truth

values in s and s

0

.

A.2.3 Proof of Theorem 3.2 (Successor state axiom for K)

Assuming that ACHV(�

a

; s; fg) (i.e., the precondition of a, �

a

, is true in situation

s), we wish to prove that

K(s

00

;DO(a; s)), 9s

0

:K(s

0

; s) ^ (s

00

= DO(a; s

0

)) ^ 8P (�

v

P

(a; s)) [P (s

0

), v])

\)": Assume otherwise:

9s

00

(K(s

00

;DO(a; s)) ^ 8s

0

(:(K(s

0

; s) ^ (s

00

= DO(a; s

0

))) _

9P �

v

P

(a; s) ^ :[P (s

0

), v])): (A.4)
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Applying the de�nitions of �

v

P

(a; s) (Eqn 3.20) and observe (Eqn 3.11), we get:

�

v

P

(a; s)) 8s

000

(K(s

000

;DO(a; s))) 9s

i

:K(s

i

; s) ^ s

000

= DO(a; s

i

) ^ (P (s

i

), v))

Replacing �

v

P

(a; s) in Eqn A.4 with the above consequent, and rewriting, we get

9s

00

K(s

00

;DO(a; s)) ^ 8s

0

[(K(s

0

; s) ^ (s

00

= DO(a; s

0

))))

9P 8s

000

[K(s

000

;DO(a; s))) 9s

i

:K(s

i

; s) ^ s

000

= DO(a; s

i

) ^ (P (s

i

), v)]

^:[P (s

0

), v]] (A.5)

Since the above holds for all s

000

, it must hold in particular for s

000

= s

00

. Substi-

tuting s

00

for s

000

in Eqn A.5 and simplifying, we get:

9s

00

K(s

00

;DO(a; s)) ^ 8s

0

(K(s

0

; s) ^ (s

00

= DO(a; s

0

))) 9P [9s

i

:K(s

i

; s) ^

s

00

= DO(a; s

i

) ^ (P (s

i

), v)] ^ :[P (s

0

), v]) (A.6)

By the Unique Names Assumption (Section 3.1),

s

00

= DO(a; s

0

) ^ s

00

= DO(a; s

i

)) s

0

= s

i

:

So we can simplify Eqn A.6 further to

9s

00

K(s

00

;DO(a; s)) ^ 8s

0

(K(s

0

; s) ^ (s

00

= DO(a; s

0

)))

9P [P (s

0

), v] ^ :[P (s

0

), v]) (A.7)

The consequent of the above implication is false, so the antecedent must be false.

Negating it and rewriting it as an implication, we get:

9s

00

K(s

00

;DO(a; s)) ^ 8s

0

(K(s

0

; s)) (s

00

6= DO(a; s

0

)))

But this says that it's consistent with the agent's knowledge in situation DO(a; s),

but inconsistent with the agent's knowledge in s, to believe that the actual situation
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after executing a is s

00

, meaning the set of possible situations increased after executing

a, which cannot happen | a contradiction.

\(": We will assume

:K(s

00

;DO(a; s)) ^ 9s

0

K(s

0

; s) ^ (s

00

= DO(a; s

0

)) ^

8P (�

v

P

(a; s)) [P (s

0

), v]) (A.8)

and show that we get a contradiction. By Eqn A.8, 9s

0

(:K(DO(a; s

0

);DO(a; s)) ^

K(s

0

; s)), i.e., the agent has information in situation DO(a; s) that it didn't have in

situation s. By Lemma A.1, a must have an observational e�ect in situation s that

results in di�erent observations of some uent ' in s and s

0

. By the de�nition of

observe (Eqn 3.11), the observed truth value of ' in situation s is v, so '(s

0

) must

have a di�erent truth value than v. By Eqn A.8, �

v

'

(a; s)) ['(s

0

), v]. i.e., ' has

the same truth value as v, a contradiction. Thus the assumption must be wrong, and

the implication holds.

A.2.4 Proof of Theorem 3.5 (No Correlations)

Assume there are no correlations between unknown plan uents in situation s

0

, no

disjunctive e�ects, and that no action a

i

in fag

n

1

, or any e�ect of a

i

, has any

preconditions that are unknown in the situation DO(a

i

; s

i

). We will prove that

there will be no correlations between unknown plan uents at any time during the

execution of fag

n

1

.

We will prove the theorem for the execution of a single action. It follows by

induction on the number of actions that the result holds for the whole plan.

Assume otherwise. There must have been some e�ects in action a that introduced

correlations between unknown uents, despite the previous lack of correlations. The

only possible e�ects are ones with preconditions of the form 

T

'

(a), 

F

'

(a), 

U

'

(a) or

�

tv

'

(a). Since, by assumption the preconditions are known after execution of a, the

e�ects of T and F updates must also be known afterward. Similarly, e�ects with
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�

tv

'

(a) preconditions only result in ' being known. Such an e�ect can't result in

correlations between unknown uents because it makes uent ' known, depends

only on known preconditions, and inuences only the single uent ' (with no

disjunction), which, by the induction hypothesis, can't be previously correlated with

other uents. An e�ect with a 

U

'

(a) precondition can make a uent ' unknown,

but depends causally only on 

U

'

(a), which is known, and Unk

'

. By de�nition,

Unk

'

must be unknown. Since Unk

'

can't be listed in preconditions or e�ects of

any action, and since by assumption it is uncorrelated with any unknown uents, it

remains uncorrelated with everything except '. After execution, ' is correlated

with Unk

'

, but since Unk

'

cannot be mentioned anywhere in the plan, there is no

way, through Unk

'

, to introduce correlations between ' and other uents. So ',

though unknown, is uncorrelated with all other uents in the plan.

A.2.5 Proof of Theorem 3.6 (Successor state axiom for KNOW)

We wish to show that

KNOW(P;DO(a; s)), �

a

KNOW(P )

(s) _ (KNOW(P; s) ^ �

a

KNOW(P )

(s)):

\(": Assume �

a

KNOW(P )

(s) _ (KNOW(P; s) ^ �

a

KNOW(P )

(s)). One of the

following cases holds:

1. �

a

KNOW(P )

(s). By de�nition (Eqn. 3.26),

�

a

KNOW(P )

(s) ) KNOW(

T

P

(a; s)) _ (�

tv



T

P

(a)

(a; s) ^ 

T

P

(a; s)) _

(�

T

P

(a; s) ^ P (s) ^ �

a

P

(s)).

So one of the following holds: KNOW(

T

P

(a; s)), or (�

tv



T

P

(a)

(a; s) ^ 

T

P

(a; s)),

or (�

T

P

(a; s) ^ P (s) ^ �

a

P

(s)). We consider each in turn:

(a) KNOW(

T

P

(a; s)). By Eqn 3.21, this means KNOW(�

a

P

(s)), which (by

Theorem 3.1 (SSA)) gives us KNOW(P (DO(a; s))).
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(b) �

T

P

(a; s) ^ P (s) ^ �

a

KNOW(P )

(s). By Theorem 3.2 (SSA for K),

8s

00

[K(s

00

;DO(a; s))) 9s

0

K(s

0

; s) ^ (s

00

= DO(a; s

0

)) ^

8'(�

v

P

(a; s)) ['(s

0

), v])] (A.9)

Letting ' = P , and exploiting the assumption that �

T

P

(a; s), we get

8s

00

[K(s

00

;DO(a; s))) 9s

0

K(s

0

; s) ^ (s

00

= DO(a; s

0

)) ^ P (s

0

), v] (A.10)

Letting s

00

= DO(a; s) in Eqn A.10 gives us

8s

00

[K(DO(a; s);DO(a; s))) (P (s), v)]

But by de�nition, 8s

�

(K(s

�

; s

�

)), so the antecedent above must be true,

meaning (P (s), v). Since P (s) is true by assumption, v must also be

true. Applying this observation to Eqn A.10, we get

8s

00

[K(s

00

;DO(a; s))) 9s

0

K(s

0

; s) ^ (s

00

= DO(a; s

0

)) ^ P (s

0

)] (A.11)

�

a

KNOW(P )

(s), by assumption, which, by de�nition, is equivalent to

KNOW(�

a;s

P

), meaning K(s

0

; s)) �

a

P

(s

0

). Since P (s

0

) and �

a;s

P

, by the

successor state axiom (Theorem 3.1) for P in situation s

0

, it follows that

P (DO(a; s

0

)). Applying this to Eqn A.11 and simplifying gives us

8s

00

[K(s

00

;DO(a; s))) P (DO(a; s

0

)) (A.12)

i.e., KNOW(P;DO(a; s)).

(c) �

tv



T

P

(a; s)

(a) ^ 

T

P

(a; s). By Theorem 3.2 (SSA for K),

8s

00

[K(s

00

;DO(a; s))) 9s

0

K(s

0

; s) ^ (s

00

= DO(a; s

0

)) ^

8'(�

v

P

(a; s)) ['(s

0

), v])] (A.13)



185

Let ' = 

T

P

(a). By the argument given in item (c) and elsewhere,



T

P

(a; s), v. Since 

T

P

(a; s) is true by assumption, so is v. Also by

assumption, �

tv



T

P

(a; s)

(a). Given these facts, Eqn A.13 reduces to

8s

00

[K(s

00

;DO(a; s))) 9s

0

K(s

0

; s) ^ (s

00

= DO(a; s

0

)) ^ 

T

P

(a; s

0

)(A.14)

By de�nition (Eqn 3.21),

T

P

(a)(s

0

) ) �

a

P

(s

0

). By By Theorem 3.1 (SSA

for P), �

a

P

(s

0

) ) P (DO(a; s

0

)). Thus, Eqn A.14 can be simpli�ed to:

8s

00

[K(s

00

;DO(a; s))) P (s

00

)]

Which, by de�nition, is KNOW(P (DO(a; s))).

2. KNOW(P; s) ^ �

a

KNOW(P )

(s). By de�nition (Eqn 3.25),

�

a

KNOW(P )

(s)) KNOW(�

a

P

; s). Applying the de�nition of KNOW,

KNOW(P ) ^KNOW(�

a

P

; s) gives us

8s

0

(K(s

0

; s)) P (s

0

) ^ �

a

P

(s

0

))

By Theorem 3.1 (SSA) applied to P in situation s

0

, this gives us

8s

0

(K(s

0

; s)) P (DO(a; s

0

)))

By Theorem 3.2 (SSA for K),

8s

00

(K(s

00

;DO(a; s))) K(s

0

; s) ^ (s

00

= DO(a; s

0

)))

Combining the above two equations, we get

8s

00

(K(s

00

;DO(a; s))) P (s

00

))

which is equivalent to KNOW(P;DO(a; s)).

\)": Assume KNOW(P;DO(a; s)). We want to show

�

a

KNOW(P )

(s) _ (KNOW(P; s) ^ �

a

KNOW(P )

(s)) (A.15)
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First, we will show that �

a

KNOW(P )

(s). Assume otherwise. By de�nition

(Eqn 3.25),

:�

a

KNOW(P )

(s)) :KNOW(�

a

P

; s):

By the de�nition of KNOW, we can rewrite this as

9s

0

(K(s

0

; s) ^ :�

a

P

(s

0

)):

But by the de�nitions of �

a

P

(Eqn 3.23) and �

a

P

(Eqn 3.21), :�

a

P

(s

0

)) �

a

:P

(s

0

),

and by Theorem 3.1 (SSA), �

a

:P

(s

0

)) :P (DO(a; s

0

), so we have

9s

0

(K(s

0

; s) ^ :P (DO(a; s

0

)));

which is equivalent to :KNOW(P;DO(a; s)), a contradiction. Therefore

�

a

KNOW(P )

(s).

Now either KNOW(P; s) or :KNOW(P; s). We will consider each case in turn.

� If KNOW(P; s), then since �

a

KNOW(P )

, Eqn A.15 is satis�ed, and we're done.

� Assume :KNOW(P; s). But P is known in situation DO(a, s), possibly

because P changed. We will consider two exhaustive cases: Either executing a

in s is known to make P true, or it isn't.

1. The action is known to make P true: 8s

0

K(s

0

; s)) P (DO(a; s

0

)). By

Theorem 3.1 (SSA), we can replace P (DO(a; s

0

)), giving us

8s

0

K(s

0

; s)) P (DO(a; s

0

))) �

a

P

(s

0

) _ (P (s

0

) ^ �

a

P

(s

0

)):

Applying the de�nition of �

a

P

(Eqn 3.21), this gives us

8s

0

K(s

0

; s)) 

T

P

(a)(s

0

) _ (Unk

P

(a; s

0

) ^ 

U

P

(a)(s

0

)) _ (P (s

0

) ^ �

a

P

(s

0

));

which is equivalent to KNOW(

T

P

(a) _ (Unk

P

(a) ^ 

U

P

(a)) _ (P ^ �

a

P

); s).

We want to conclude KNOW(

T

P

(a); s), so we will argue away the other

terms.
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U

P

(a)(s

0

) must be false for all situations s

0

such that K(s

0

; s). The reason

is that Unk

P

(a) cannot, by de�nition be correlated with 

U

P

(a). Hence if



U

P

(a) is true in some situations, Unk

P

(a) will be false in some of those,

resulting in P becoming false, contradicting our assumption that the

action is known to make P true. Or more succinctly, U e�ects make a

condition unknown.

This leaves us with KNOW(

T

P

(a) _ (P ^ �

a

P

); s). By Theorem 3.5, there

are no correlations in the agent's knowledge, so

KNOW(

T

P

(a)) _ KNOW(P ^ �

a

P

; s). We know that :KNOW(P; s), by

assumption, so KNOW(

T

P

(a)), which implies �

a

KNOW(P )

.

2. The action a isn't known in s to make P true:

9s

0

:K(s

0

; s)) ^ :P (DO(a; s

0

)). Let us pick one such s

0

. But

K(DO(a; s

0

);DO(a; s))) P (DO(a; s

0

)), so :K(DO(a; s

0

);DO(a; s)). That

is, executing a reduces the set of possible worlds consistent with the

agent's knowledge. By Theorem 3.2 (SSA for K), it follows that there is

some predicate ' such that �

v

'

(a; s) ^ :('(s

0

), v); i.e., some predicate

' must have been sensed to eliminate DO(a; s

0

) from the set of possible

worlds. We cannot assume that ' = P , but we'll consider both

possibilities.

(a) Assume �

v

P

(a; s). If P (s) then since �

a

KNOW(P )

(s), by the de�nition

of �

a

KNOW(P )

(Eqn 3.26),

�

v

P

(a; s) ^ P (s) ^ �

a

KNOW(P )

(s)) �

a

KNOW(P )

, and Eqn A.15 is

satis�ed, so assume otherwise: �

v

P

(a; s) ^ :P (s), By Theorem 3.2

(SSA for K), we have

K(DO(a; s

0

);DO(a; s))) �

v

P

(a; s)) (P (s

0

), v). By the same

argument given in part 1(b) of this proof, P (s), v, so we can

conclude :v. Thus, K(DO(a; s

0

);DO(a; s))) :P (s

0

), i.e., since in
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situation s, P was observed (and false), it is known in DO(a; s) that

:P (s). But we know that P is true in situation DO(a; s), so it must

have become true. By Theorem 3.1 (SSA applied to P in situation

s

0

), :P (s

0

) ^ P (DO(a; s

0

))) �

a

P

(s

0

), which, by the de�nition of �

a

P

,

gives 

T

P

(a)(s

0

) _ (Unk

P

(a; s

0

) ^ 

U

P

(a)(s

0

)).

By the argument from case 1, we can eliminate the 

U

P

(a) term,

leaving us with K(DO(a; s

0

);DO(a; s))) 

T

P

(a)(s

0

), i.e., it is known

after a is executed in situation s that 

T

P

(a) was true in s. This fact

was not known in s, by assumption, so it became known after

executing a (becoming true isn't su�cient, since the condition needs

to have held before a was executed):

�

tv



T

P

(a)

(a; s) ^ 

T

P

(a; s)) �

a

KNOW(P )

.

(b) if :�

v

P

(a; s) then some other uent(s) must have been sensed. Let  

be the conjunction of all uents that were sensed. By Theorem 3.2

(SSA for K), we have

8s

00

K(s

00

;DO(a; s)), 9s

0

:K(s

0

; s)

^(s

00

= DO(a; s

0

)) ^ ( (s

0

), v); (A.16)

i.e., the only information gained was about  . Yet we know that

K(DO(a; s

0

);DO(a; s))) P (DO(a; s

0

)): There are two possibilities:

Either 8s

�

(K(DO(a; s

�

);DO(a; s))) P (s

�

)), i.e., after executing a,

the agent knows that P was true in s, or the agent has no such

knowledge: 9s

�

(K(DO(a; s

�

);DO(a; s)) ^ :P (s

�

)).

{ Assume 8s

�

(K(DO(a; s

�

);DO(a; s))) P (s

�

). Letting s

�

= s

0

, we

can combine this with Eqn A.16, exploiting the ,, to get:

8s

00

9s

0

K(s

00

;DO(a; s))) K(s

0

; s)

^(s

00

= DO(a; s

0

)) ^ ( (s

0

), v)) P (s

0

): (A.17)
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Since 8s

0

K(DO(a; s

0

);DO(a; s))) K(s

0

; s), we can eliminate the

K(s

0

; s) term and simplify. We can eliminate the s

00

and change

the 9s

0

to a 8s

0

by exploiting the Unique Names Assumption,

which says that there is only one s

0

such that s

00

= DO(a; s

0

):

8s

0

K(DO(a; s

0

);DO(a; s))) ( (s

0

), v)) P (s

0

): (A.18)

Depending on the value of v, this gives us either

8s

0

K(DO(a; s

0

);DO(a; s))) ( (s

0

)) P (s

0

)) or

8s

0

K(DO(a; s

0

);DO(a; s))) (: (s

0

)) P (s

0

)).

The agent knows after executing a that the value of P(s) is

correlated with the value of  (s). Since P was unknown in s, by

Theorem 3.5, the agent cannot have known about this

correlation in situation s, so it must have discovered it after

executing a. But since e�ects cannot contain disjunction or

implication, there's no way the agent could have made this

discovery without independently discovering the value of P (s)

and  (s). By assumption, the agent did not directly observe the

value of P | a contradiction. Therefore:

{ 9s

�

(K(DO(a; s

�

);DO(a; s)) ^ :P (s

�

), but

8K(DO(a; s

0

);DO(a; s))) P (DO(a; s

0

)), i.e., it is known that P

is true after execution. Since P is true in situation DO(a; s

�

) but

false in situation s

�

, it must have become true:

:P (s

�

) ^ P (DO(a; s

�

))) �

a

P

(s

�

). By the argument in case 2a,



T

P

(a)(s

�

). So either KNOW(

T

P

(a; s)), or it is unknown in s

whether or not 

T

P

(a)(s). By assumption, the truth value of all

preconditions must be known either just prior to execution or

immediately after, so by de�nition (Eqn 3.26),

KNOW(

T

P

(a; s)) _ �

tv



T

P

(a)

(a; s) ^ 

T

P

(a; s)) �

a

KNOW(P )

.
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A.2.6 Proof of Theorem 3.7 (Soundness of regression)

We wish to show that �j=(ACHV(R

fag

n

1

(�); s

0

; fg)) ACHV(�; s

0

; fag

n

1

)) The

proof is by induction on the number of actions in fag

n

1

.

Base case: n = 0. By the de�nition of R

fg

, �j=R

fag

n

1

(�) i� �j=�. Equations 3.27

and 3.29 give the conditions under which �j=� for initially, satisfy and hands-o�

goals. These conditions conform directly to the de�nitions of initially, satisfy and

hands-o� given in equations 3.3 { 3.5, for the case n = 0.

If n > 0, then we have the following cases.

1. R

fag

n

1

(satisfy(P)) ) �

a

KNOW(P )

_ satisfy(') ^ �

a

KNOW(')

, by de�nition

(Equation 3.30). Applying the de�nition of satisfy(') (Equation 3.3) yields:

�

a

KNOW(')

(s

n�1

) _ KNOW('; s

n�1

) ^ �

a

KNOW(')

(s

n�1

) By Theorem 3.6

(SSA for KNOW), this implies KNOW('; s

n

), which, by de�nition (Eqn 3.3),

means ACHV(satisfy('); s

0

; fag

n

1

). There is no need to invoke the induction

hypothesis for satisfy.

2. R

fag

n

1

(hands-o�(')) =

(KNOW(�

a

:'

)_ initially('))^ (KNOW(�

a

'

)_ initially(:'))^hands-o�(').

By assupmtion, this formula regresses sucessfully back to the initial state

(ACHV(R

fag

n

1

(�); s

0

; fg)), so the regression of each conjunct must be true.

By the induction hypothesis, ACHV(R

fag

n�1

1

(hands-o�(')); s

0

; fg) )

ACHV((hands-o�(')); s

0

; fag

n�1

1

). But by de�nition of hands-o�(Eqn 3.5),

ACHV((hands-o�(')); s

0

; fag

n�1

1

))

V

n�1

i=1

8s 2 ORIG

i

'(DO(fag

i

1

; s),

'(s)), so we need merely show that 8s 2 ORIG

n

['(DO(fag

n

1

; s), '(s))] to

show that ACHV(�nd-out('); s

0

; fag

n

1

).

Following the same reasoning as above, we can apply the induction hypothesis

to the initially preconditions, giving:



191

([8s2ORIG

n�1

'(s)] _ KNOW(�

a

:'

); s

n�1

) ^ ([8s2

ORIG

n�1

:'(s)] _ KNOW(�

a

'

); s

n�1

)

This can be rewritten as:

8s2ORIG

n�1

['(s) _ �

a

:'

(DO(fag

i�1

1

; s))] ^ 8s2

ORIG

n�1

[:'(s) _ �

a

'

(DO(fag

i�1

1

; s))]

Consider the following (exhaustive) cases:

(a) If '(s) is unknown in s

n�1

, then this formula simpli�es to

8s2ORIG

n�1

[�

a

:'

(DO(fag

i�1

1

; s)) ^ �

a

'

(DO(fag

i�1

1

; s))]

By Theorem 3.1 (SSA),

(8s2ORIG

n�1

['(DO(fag

n

1

; s)), '(DO(fag

n

1

; s)))]

Since ORIG

n�1

is a superset of ORIG

n

and since we already have,

through the induction hypothesis, '(DO(fag

n�1

1

; s), '(s)), this implies

(8s2ORIG

n

['(DO(fag

n

1

; s)), '(s))], which is what we wanted to

prove.

(b) If the value of '(s) is known in s

n�1

, then either it is known true or

known false. Assume, WLOG, that it is known true (the argument for

the opposite case is identical).

Then 8s2ORIG

n�1

['(s) ^ �

a

'

(DO(fag

i�1

1

; s))].

We already know, by the induction hypothesis, that

'(s)) '(DO(fag

i�1

1

; s)). By Theorem 3.1 (SSA),

8s2ORIG

n�1

['(s)^'(DO(fag

n

1

; s))]. which is what we wanted to prove.

3. R

fag

n

1

(initially(')) ) initially(') _ (�

tv

'

(a) ^ ' ^ hands-o�('))

(a) If initially(', s

n�1

), then by the induction hypothesis,

ACHV(initially('); s

0

; fag

n�1

1

) ) 8s 2 ORIG

n

['(s)]. Applying
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Theorem 3.2 (SSA for K) to ORIG reveals that ORIG

n

� ORIG

n�1

,

from which it follows, by de�nition, that ACHV(initially('); s

0

; fag

n

1

).

(b) Otherwise, by the induction hypothesis, applied to hands-o�, ' is

known to have the same truth value in situations s

0

and s

n�1

:

8s 2 ORIG

n�1

['(DO(fag

n�1

1

; s)), '(s)]. Furthermore, because

�

tv

'

(a)(s

n�1

) ^ '(s

n�1

), Theorem 3.2 dictates that ' is known in s

n

to

have been true in s

n�1

: 8s 2 ORIG

n

['(DO(fag

n�1

1

; s))] Combining these

results, we get 8s 2 ORIG

n

'(s), so ACHV(initially('); s

0

; fag

n

1

).

4. R

fag

n

1

(') ) �

a

'

(s) _ '(s) ^ �

a

'

(s) ) '(DO(a; s)), by de�nition (Eqn 3.33),

but that also satis�es the successor state axiom for '(Theorem 3.1), so, by

de�nition, ACHV('; s

0

; fag

n

1

).

A.2.7 Proof of Theorem 3.8 (Completeness of regression)

The proof is by induction on the number of actions in fag

n

1

. The base case, n = 0,

is discussed in the proof for Theorem 3.7.

If n > 0, then we have the following cases.

1. ACHV(satisfy('); s

0

; fag

n

1

)) KNOW('(DO(a; s

n�1

))).

By Theorem 3.6 (SSA for KNOW), KNOW(';DO(a; s

n

)) )

�

a

KNOW(')

(s

n�1

) _ KNOW('; s

n�1

) ^ �

a

KNOW(')

(s

n�1

). But by the

de�nition of satisfy, we can rewrite that as

�

a

KNOW(')

(s

n�1

) _ (satisfy('; (s

n�1

)) ^ �

a

KNOW(')

(s

n�1

)), which, by

de�nition of the regression operator for satisfy, gives us R

fag

n

1

(satisfy(')).

As with the previous theorem, we don't need the induction hypothesis for

satisfy.

2. ACHV(hands-o�('); s

0

; fag

n

1

)) 8s 2 ORIG

n

['(DO(fag

n�1

1

; s)),

'(s)]^

V

n�1

i=1

8s 2 ORIG

i

['(DO(fag

i

1

; s), '(s)], by de�nition (Equation 3.5).
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The second conjunct,

V

n�1

i=1

8s 2 ORIG

i

['(DO(fag

i

1

; s), '(s))], satis�es the

de�nition of ACHV(hands-o�; s

0

; fag

n�1

1

). By the induction hypothesis,

R

fag

n�1

1

(hands-o�(')).

The �rst conjunct, 8s 2 ORIG

n

['(DO(fag

n�1

1

; s)), '(s)], yields, by

Theorem 3.1 (SSA applied to '),

8s 2 ORIG

n

�

a

'

(s

n�1

) _ '(s

n�1

) ^ �

a

'

(s

n�1

), '(s), Since by assumption,

hands-o�(') holds in s

n

, by the de�nition of hands-o�, '(s

n�1

), '(s

0

), so

this simpli�es and expands to 8s 2 ORIG

n

[�

a

'

(s)_ �

a

'

(s)] ^ '(s

0

)_

[�

a

:'

(s)_ �

a

:'

(s)] ^ :'(s

0

).

Note that the rules of consistent e�ects imply �

a

'

) :�

a

:'

) �

a

'

, and

similarly for �

a

:'

. So, 8s 2 ORIG

n

[�

a

'

(s)_ �

a

'

(s)] ^ '(s

0

)_ [�

a

:'

(s)_

�

a

:'

(s)] ^ :'(s

0

). Which simpli�es to 8s 2 ORIG

n

[(�

a

'

(s) ^ '(s

0

))_

(�

a

:'

(s) ^ :'(s

0

))].

Converting to POS form, 8s 2 ORIG

n

[�

a

'

(s) _�

a

:'

(s)] ^[�

a

'

(s) _ :'(s

0

))]^

['(s

0

) _ �

a

:'

(s)]^ ['(s

0

) _ :'(s

0

)]. The �rst term is implied by the

requirement that e�ects be consistent. The last term is a tautology. Dropping

these terms, we get

8s 2 ORIG

n

([:'(s

0

) _ �

a

'

(s)] ^ ['(s

0

) _ �

a

:'

(s)])

Theorem 3.5 dictates that there are no correlated unknown truth values,

meaning KNOW(A _B)) KNOW(A) _KNOW(B), so we can rewrite:

[(8s 2 ORIG

n

:'(s

0

)) _ (8s 2 ORIG

n

�

a

'

(s))] ^ [(8s 2 ORIG

n

'(s

0

)) _ (8s 2

ORIG

n

�

a

:'

(s))]. By the de�nition of initially and the induction hypothesis,

[initially(') _ KNOW(�

a

'

; s

n�1

)] ^ [initially(:') _KNOW(�

a

:'

; s

n�1

)].

Which implies R

fag

n

1

(hands-o�(')).

3. ACHV(initially('); s

0

; fag

n

1

) ) 8s 2 ORIG

n

['(s)]. Either:
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� 8s 2 ORIG

n�1

'(s). By the induction hypothesis, R

fag

n�1

1

(initially(')),

which satis�es the de�nition of R

fag

n

1

(initially(')).

� Or 9 2 ORIG

n�1

:'(s). But since 8s 2 ORIG

n

['(s)], (applying

de�nitions of ORIG

n�1

and ORIG

n

)

9s such that K(DO(fag

n�1

1

; s);DO(fag

n�1

1

; s

0

)) ^ :'(s) ^

[K(DO(fag

n

1

; s);DO(fag

n

1

; s

0

))) '(s)]. Since :'(s), we can conclude

:K(DO(fag

n

1

; s);DO(fag

n

1

; s

0

)). Let s

0

= DO(fag

n�1

1

; s) and

s

n�1

= DO(fag

n�1

1

; s

0

). So DO(fag

n

1

; s

0

) = DO(a

n

; s

n�1

). Applying the

successor state axiom for K, :K(DO(a

n

; s

0

);DO(a

n

; s

n�1

)) ^K(s

0

; s

n�1

)

) 9 (�

v

 

(a; s

n�1

) ^ :( (s

n�1

,  (s

0

)))). The successor state axiom

dictates that the only information gained is relative to situation s

n�1

.

Since information was gained about ', by the same argument used in

part 2(b) of the proof for Theorem 3.6 (SSA for KNOW), we can

conclude that �

v

'

(a; s

n�1

) ^ '(s

n�1

). So it is known in situation s

n

that

'(s

n�1

). But by assumption, the agent knows that '(s

0

), so the agent

knows that the truth values of '(s

n�1

) and '(s

0

) are the same, but prior

to situation s

0

, the value of '(s

0

) was unknown. We can establish that

the agent knows that the truth value of ' did not change between

situations s

0

and s

n�1

. Assume otherwise. Because no actions were

executed that had unknown causal preconditions, the only ways that '

could have changed would be T (known true), F (known false), or U

(unknown and uncorrelated with any other knowledge). In any of these

cases, there would be no causal relationship between the old value of '

and the new value, and thus no way to infer its value in s

0

based on its

value in s

n�1

. Since ' didn't change, by de�nition, hands-o�(').

Therefore, R

fag

n

1

(initially(')).
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4. ACHV('; s

0

; fag

n

1

) ) ['(s) ) �

a

'

(s) _ '(s) ^ �

a

'

(s)] ) R

fag

n

1

(') (By the

successor state axiom for ', and the de�nitions of R

fag

n

1

(') and

ACHV('; s

0

; fag

n

1

).)

A.2.8 Proof of Theorem 3.9 (Updates generated by cause(', T)

If the only e�ect of action a executed in state s is of the form cause(', T), then for

all P , :

F

P

(a; s), :

U

P

(a; s) and :�

v

P

(a; s). Furthermore, for all P 6= ', :

T

P

(a; s).

And �nally, 

T

'

(a; s). ACHV(�

a

; s; fg)) KNOW(';DO(a; s)). From the above, it

follows by de�nition that �

a

'

(s), :�

a

:'

(s) and :�

a

'

(s). Furthermore, for all P 6= ',

�

a

'

(s) and �

a

:'

(s).

Since the agent knows the e�ects of the actions it executes, it is also easy to see

that KNOW(�

a

'

(s)) and for all P 6= ', KNOW(�

a

P

(s)) and KNOW(�

a

:P

(s)). It

follows by de�nition that �

a

KNOW(P )

(s) and �

a

KNOW(:P )

(s).

By the successor state axiom, it follows that

ACHV(�

a

; s; fg)) KNOW(';DO(a; s)), but for all P 6= ', ACHV(�

a

; s; fg)()

(KNOW(P;DO(a; s)), KNOW(P; s)) ^ (KNOW(P;DO(a; s)), KNOW(P; s))),

Now, in situation s, ' is either known true, known false or unknown. Collecting the

above statements together, we �nd that in situation s

0

= DO(a; s). 8P ,

P = ') (KNOW(P; s)) KNOW(P; s

0

)) ^ (A.19)

(KNOW(:P; s)) KNOW(:P; s

0

)) (A.20)

(:KNOW(:P; s) ^ :KNOW(P; s))) KNOW(P; s

0

) ^ (A.21)

P 6= ') ((KNOW(P; s

0

), KNOW(P; s))) ^ (A.22)

((KNOW(:P; s

0

), KNOW(:P; s)))^ (A.23)

If S � f� j KNOW(�; s)g and S

0

� f� j KNOW(�; s

0

)g, then we can rewrite the

above as 8P ,

P = ') (P 2 S _ :P 2 S _ (P 62 S ^ :P 62 S))) P 2 S

0

(A.24)
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P 6= ') (P 2 S

0

, P 2 S)) ^ (A.25)

((:P 2 S

0

), (:P 2 S))^ (A.26)

Applying the de�nitions of of the sets T , F , and U , we can rewrite it again as

T (';S) [ F(';S) [ U(';S) � T (';S

0

) (A.27)

S

0

	(U(';S) [ T (';S) [ F(';S)) = S	(U(';S) [ T (';S) [ F(';S)) (A.28)

Note that we can replace � with =, since by de�nition, T (';S) [F(';S) [ U(';S)

is the set of all literals matching '. Furthermore, we know that the set of true

literals remains unchanged. So we can rewrite this expression as:

T (';S

0

) = T (';S) [ F(';S) [ U(';S) (A.29)

S

0

	U(';S) [ F(';S) = S	U(';S) [ F(';S) (A.30)

which is equivalent to �('; U _ F! T)

We can easily decompose this into a combination of Domain Growth and

Information Gain. Any speci�c instance of ' in situation s will either be known

true, known false, or unknown, so we can divide the above into two cases. In the

�rst case, ' is initially known true or false, so U(', S) is empty, and we can rewrite

the above as

T (';S

0

) = T (';S) [ F(';S) (A.31)

S

0

	F(';S) = S	F(';S) (A.32)

which is the de�nition of �('; F! T).

In the second case, ' is initially unknown, so F(', S) is empty:
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T (';S

0

) = T (';S) [ U(';S) (A.33)

S

0

	U(';S) = S	U(';S) (A.34)

Because all literals in U(', S) are in T (';S

0

) and no other literals changed

membership, U(';S

0

) is empty. Furthermore, since F(', S) is empty by

assumption, it follows that F(';S

0

) � F(';S). Thus the above set of equations

satisfy the de�nition of �('; U! (T _ F)).

A.2.9 Proof of Theorem 3.10 (Updates generated by cause(', F)

The proof is identical to the proof for Theorem 3.9, but with all occurrences of T

and F reversed.

A.2.10 Proof of Theorem 3.11 (Updates generated by cause(', U)

Suppose the only e�ect is of the form cause(', U) (i.e., 

U

'

(a; s)). By de�nition,

�

a

'

(s), Unk

'

(a; s) and �

a

:'

(s), :Unk

'

(a; s). As in the proof for Theorem 3.9,

for all P 6= ', �

a

'

(s) and �

a

:'

(s).

By the successor state axiom, it follows that

ACHV(�

a

; s; fg)) (P (DO(a; s)), Unk

'

). Since :KNOW(Unk

'

), it follows by

de�nition of KNOW that

ACHV(�

a

; s; fg)) (:KNOW(P (DO(a; s))) ^ :KNOW(:P (DO(a; s)))). However,

for all P 6= ', ACHV(�

a

; s; fg)) (KNOW(P;DO(a; s)),

KNOW(P; s)) ^ (KNOW(P;DO(a; s)), KNOW(P; s)),

Collecting the above statements together, we �nd that in situation s

0

= DO(a; s).

8P ,

P = ') (:KNOW(P; s

0

) ^ :KNOW(:P; s

0

)) ^ (A.35)

P 6= ') ((KNOW(P; s

0

), KNOW(P; s))) ^

((KNOW(:P; s

0

), KNOW(:P; s)))^ (A.36)
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Applying the de�nitions of of the sets T , F , and U , we can rewrite it again as

T (';S) [ F(';S) [ U(';S) � U(';S

0

) (A.37)

S

0

	(U(';S) [ T (';S) [ F(';S)) = S	(U(';S) [ T (';S) [ F(';S)) (A.38)

Note that we can replace � with =, since by de�nition, T (';S) [F(';S) [ U(';S)

is the set of all literals matching '. Furthermore, we know that the set of unknown

literals remains unchanged. So we can rewrite this expression as:

U(';S

0

) = T (';S) [ F(';S) [ U(';S) (A.39)

S

0

	T (';S) [ F(';S) = S	T (';S) [ F(';S) (A.40)

which is equivalent to �('; T _ F! U)

A.2.11 Proof of Theorem 3.12 (Updates generated by observe(', tv)

If the only e�ect of action a executed in state s is of the form observe(', tv), then

for all P , :

F

P

(a; s), :

U

P

(a; s) and :

T

P

(a; s). For all P 6= ', :�

v

P

(a; s), and �nally,

�

v

'

(a; s). From the above, it follows by de�nition that for all P , :�

a

P

(s) and �

a

P

(s).

Since the agent knows the e�ects of the actions it executes, it is also easy to see

that KNOW(:�

a

P

(s)) and KNOW(�

a

P

(s)). It follows by de�nition that

�

a

KNOW(P )

(s). Because �

v

'

(a; s), and because either '(s) or :'(s), it follows by

de�nition that �

a

KNOW(')

(s). However, since for all P 6= ', :�

tv

'

(a; s), it follows

that for all P 6= ', :�

a

P

(s). By the successor state axiom, it follows that

ACHV(�

a

; s; fg)) KNOW(';DO(a; s)) _ KNOW(:';DO(a; s)). It also follows,

for all P 6= ', that ACHV(�

a

; s; fg)) (KNOW(';DO(a; s)), KNOW('; s)), i.e.,

there is no change to the agent's knowledge about P . Furthermore, for all P ,

ACHV(�

a

; s; fg)) ('(DO(a; s)), '(s)), i.e., there is no change to the world.

Since (1) there is no change to the world, (2) the agent's newly gained knowledge is

based on the state of the world in situation s and (3) the agent's knowledge in
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situation s is assumed to be correct, the successor state axioms further dictate that

that the agent's knowledge in situation DO(a; s) is consistent with its knowledge in

situation s: KNOW('; s)) KNOW(';DO(s)) and

KNOW(:'; s)) KNOW(:';DO(s)). Collecting the above statements together,

we �nd that in situation s

0

= DO(a; s), 8P ,

P = ') (KNOW(P; s

0

) _ KNOW(:P; s

0

)) ^ (A.41)

(KNOW(P; s)) KNOW(P; s

0

)) ^ (A.42)

(KNOW(:P; s)) KNOW(:P; s

0

)) (A.43)

P 6= ') (KNOW(P; s

0

), KNOW(P; s)) ^ (A.44)

(KNOW(:P; s

0

), KNOW(:P; s))^ (A.45)

If

S � f' j KNOW('; s)g

and

S

0

� f' j KNOW('; s

0

)g;

then we can rewrite the above as 8P ,

P = ') P 2 S

0

_ :P 2 S

0

) ^ (A.46)

(P 2 S ) P 2 S

0

) ^ (A.47)

(:P 2 S ) :P 2 S

0

) (A.48)

P 6= ') (P 2 S

0

, P 2 S)) ^ (A.49)

((:P 2 S

0

), (:P 2 S))^ (A.50)

Applying the de�nitions of of the sets T , F , and U , we can rewrite it again as

U(';S

0

) = fg ^ (A.51)

T (';S) � T (';S

0

) (A.52)
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F(';S) � F(';S

0

) (A.53)

S

0

	U(';S) = S	U(';S) (A.54)

which is the de�nition of �('; U! (T _ F)).

A.2.12 Proof of Theorem 3.13 (Information Gain Rule)

First we prove that for any formula, �, and literal, ', if lcw(�) holds before action

A is executed and the sole e�ect of A is �('; U! T _ F), then lcw(�) still holds.

Suppose lcw(�) holds and let � be an arbitrary substitution. By Equation 2.1, we

know that [S j= ��] _ [S j= :��]. Since, by the de�nition of �('; U! T _ F), S

0

	U(', S) = S 	U(', S), and by de�nition of U , S 	U(', S) = S, S � S

0

. As a

result, for any formula 	 if S j= 	 then S

0

j= 	. Thus, clearly

[S

0

j= ��] _ [S

0

j= :��]. Next we prove that if sole e�ect of A is �('; U! T _ F),

then lcw(') holds. By the de�nition of �('; U! T _ F), U(';S

0

) = fg. By the

de�nition of U , 6 9�(S 6j= '� ^ S 6j= :'�), or equivalently, 8�(S j= '� _ S j= :'�).

But that is exactly the de�nition of lcw(').

A.2.13 Proof of Theorem 3.14 (Counting Rule)

Let ' be a literal and suppose that Cardinality(';M) = Cardinality(';W).

We need show that lcw('); in other words, we need show that for an arbitrary

substitution �, [S j= '�] _ [S j= :'�]. Let M denote the

f� 2 M such that � is ground and 9� � = '�g. If '� 2 M then S j= '� and the

proof is complete, so assume that '� 62 M. In other words, '� is not in M . Let W

denote the set f� 2 W such that � is ground and 9� � = '�g. Since we assume

correct information, M �M , and so by our assumption of cardinality M = W . So

'� 62 W. So S j= :'�. We conclude lcw(').

A.2.14 Proof of Theorem 3.15 (Information Loss Rule)

Let � be a conjunction of positive literals and suppose that lcw(�). Let ' be a

positive literal and let A be an action whose execution leads solely to an update of
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the form �('; T _ F! U). To prove that the Information Loss Rule is sound in this

case, we need to show that if lcw(�) no longer holds after executing A then

� 2 REL(') (the set of beliefs removed from L), hence the update correctly

recognizes that lcw has been lost, and L remains conservative. Suppose that

lcw(�) doesn't hold after executing A; then there exists a substitution, � such that

[S

0

6j= ��] ^ [S

0

6j= :��] even though [S j= ��] _ [S j= :��]. Note that since � is

conjunctive, � = �

1

^ : : : ^ �

n

. There are two cases:

1. (S j= ��). So forall �

i

2 � we know that S j= �

i

�. But since S

0

6j= �� there

exists �

j

such that S

0

6j= �

j

�. Hence execution of A caused �(�

j

�; T! U).

But by the de�nition of �, the only updates produced by A were of the

speci�c form, '� = �

j

�. We conclude that � 2 PREL(').

2. (S j= :��). In this case we know that 9�

j

2 � such that S j= :�

j

� yet

S

0

6j= :�

j

�. As above, the restriction on � allows us to conclude that

'� = �

j

� = and � 2 PREL(').

To show � 2 REL('), we now need argue thatM[L 6j= :(�� �

j

)�. Suppose that

this is not the case. SinceM and L are conservative, S j= :(�� �

j

)� as well.

Furthermore, since the only change a�ected by action A had � restricted to �

j

�, we

know that S

0

j= :(�� �

j

)�. But since the falsity of a single conjunct entails the

falsity of the whole conjunction (and �� = �

j

� ^ (�� �

j

)�), we conclude that

S

0

j= :��. But this contradicts our assumption that A destroyed lcw(�). So it

must be the case thatM[L 6j= :(�� �

j

)�. Thus � 2 REL(').

A.2.15 Proof of Theorem 3.16 (Domain Growth Rule)

Let � be a conjunction of positive literals and suppose that lcw(�). Let ' be a

positive literal and suppose A is an atomic action whose only e�ect is �('; F! T).

Suppose that lcw(�) no longer holds after executing A; then there exists a

substitution, � such that [S

0

6j= ��] ^ [S

0

6j= :��] even though
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[S j= ��] _ [S j= :��]. A case analysis on the these disjuncts (as in the proof of

Theorem 3.15) yields that 9�

j

2 � such that �

j

� = '� and that � 2 PREL('). The

contradiction argument from that proof also extends to show that � 2 REL('). Now

note that after execution of A, we have lcw(�

j

�) (since we know that ' changed to

T), but by assumption not lcw(��). Therefore, by the contrapositive of

Theorem 2.4 (Conjunction), :lcw((�� �

j

)�). This leads to � 2 MREL(').

A.2.16 Proof of Theorem 3.17 (Domain Contraction Rule)

Let ' be a positive literal and suppose A is an action whose only e�ect is

�('; T! F). To show that the update rule is sound, it is su�cient to prove that for

any conjunction of positive literals, � = �

1

^ : : : ^ �

n

, if lcw(�) holds before

executing A then lcw(�) holds after executing A. If lcw(�) holds before

execution then, for arbitrary �, we know that [S j= ��] _ [S j= :��]. We need to

show that after executing A [S

0

j= ��] _ [S

0

j= :��]. Suppose, on the other hand,

that [S

0

6j= ��] ^ [S

0

6j= :��]. But since the � e�ected by A only made more

atomic formulas false, S

0

6j= :�� implies S 6j= :��. Since lcw(�) holds before

executing A, it follows that S j= �� which means that S j= �

i

� for all �

i

2 �. Now

consider the literal ' that has become false.

1. If ' 62 � then S

0

j= �� (since the truth will be unchanged).

2. If ' 2 � then S

0

j= :��.

Either way there is a contradiction.

A.2.17 Proof of Theorem 3.18 (Tractability of Updates)

The proof was sketched to such an extent in Section 3.5.7 that we will not repeat all

details here. Note however, that the exponent c� 1 (maximum number of conjuncts

in the longest element of L) is the correct one for the following reason. Theorem 2.9

shows that a call to QueryLCW with an argument of b conjuncts requires
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O(jLj

b

jMj

b

) time. When computing REL(') or MREL(') however, the longest

argument to QueryLCW has c� 1 conjuncts since the conjunct \x" is removed before

the call to QueryLCW. (Refer to the de�nition of REL and MREL).

A.2.18 Proof of Theorem 3.19 (Minimal Information Loss)

Let ' be a positive literal and let A be an atomic change whose only e�ect is

�('; T _ F! U). Suppose � 2 REL('). We need to show that lcw(�) does not hold

after A has occurred. Thus it su�ces to show that there exists a � such that

S

0

6j= �� and S

0

6j= :��. Since � is conjunctive, the de�nition of PREL(') dictates

that there exists � 2 � such that �� = '�. Since the only change from s to s

0

is

that all instances of ' changed their value to unknown, and since from the de�nition

of REL('), we also have L^M 6j= :(�� �)�, i.e. all other conjuncts may be true in

s, it follows that �� may be true in s

0

. LetM

0

denote the state ofM after the

update due to A, and let S

0

denote the possible states of the world after the update

due to A. Since �� may be true in s

0

, we have that S

0

6j= :��. Furthermore, since

M

0

6j= '�,M

0

6j= ��, and thus S

0

6j= ��. Therefore, lcw(�) does not hold.

A.2.19 Proof of Theorem 3.20 (Minimal Domain Growth)

Let ' be a positive literal and let A be an atomic change whose only e�ect is

�('; F! T). We need show that if � 2 MREL(') then lcw(�) does not hold after A

has occurred. Since � is conjunctive, the de�nition of PREL(') dictates that there

exists � 2 � such that �� = '�. Since � 2 REL('); we know that �� may be true in

s

0

. So, S

0

6j= :��. Since � 2 MREL('), we conclude that :lcw((�� �)�), meaning

that for some  2 �;  � 62 M

0

. HenceM

0

6j= ��, and since � contains only positive

literals we can conclude that S

0

6j= ��. Therefore, lcw(�) does not hold.



204

A.3 Proofs from Chapter 6

A.3.1 Proof of Corollary 6.2 (Causality theorem for satisfy)

First, we show that the corollary follows from the causality theorem. Clause 1 of

Pednault's theorem states that there is some point in the plan at which the satisfy

goal becomes true, before which it is false, and after which it remains true:

� j= R

fag

m�1

1

R

a

m

(satisfy(')) ^ � 6j= R

fag

m�1

1

(satisfy(')).

By regressing satisfy('), we obtain:

� j= R

fag

m�1

1

(�

a

KNOW(')

_ (satisfy(') ^ �

a

KNOW(')

))^

� 6j= R

fag

m�1

1

(satisfy(')), so

� j= R

fag

m�1

1

(�

a

KNOW(')

), giving us clause 1(a) of the corollary.

Since the satisfy goal is true from s

m

to s

n

, we can regress R

fag

n

1

(satisfy(')),

giving us

R

fag

n�1

1

(�

a

KNOW(')

_ (satisfy(') ^ �

a

KNOW(')

)).

Since �

a

KNOW(')

) �

a

KNOW(')

, this gives us

R

fag

n�1

1

(�

a

KNOW(')

).

By de�nition (Eqn 3.25), �

a

KNOW(')

) KNOW(�

a

'

), giving us clause 1(b) of the

corollary.

Clause 2 of Pednault's causality theorem states that the goal is true at all time

points. Regressing satisfy(') back to the initial state, we �nd that � j= KNOW('),

and for all i = m : : : n� 1 � j= R

fag

i

1

(�

a

i+1

KNOW(')

), giving us Clause 2 of the

corollary.

We now prove the \only if" case by starting from the corollary and showing that

the causality theorem follows. If clause 2 of the corollary holds, then

� j= KNOW('), and for all i = 1 : : : n� 1 � j= R

fag

i

1

(�

a

i+1

KNOW(')

).

Applying the regression operator for satisfy in the forward direction, we �nd that

� j= KNOW(')) R

fg

(satisfy(')) and it follows by induction for each pre�x fag

i

1

that
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�j=R

a

fag

i�1

1

(satisfy(') ^ �

a

i+1

KNOW(')

)) R

a

fag

i

1

(satisfy(')), satisfying clause 2.

If clause 2 of Pednaut's theorem doesn't hold, � 6j= KNOW('), or for some i < n,

� 6j= R

fag

i

1

(�

a

i+1

KNOW(')

), and clause 1 must hold. For some m,

1. � j= R

fag

m�1

1

(�

a

m

KNOW(')

)

2. For all i = m : : : n� 1 � j= R

fag

i

1

(�

a

i+1

KNOW(')

).

Consider the smallest m for which the above holds. By the regression operator for

satisfy, R

fag

m�1

1

(�

a

m

KNOW(')

)) R

fag

m

1

(satisfy(')).

By applying regression forward once more, we �nd

R

fag

m

1

(�

a

m+1

KNOW(KNOW('))

^ satisfy('))) R

fag

m+1

1

(satisfy(')), and by

induction, the same holds for all m+ 1 � i � n. This gives us clause 2(b) of the

causality theorem.

We picked the smallest m satisfying clause 1 of the corollary, so we know that for all

earlier time points, KNOW(') is either not established or not subsequently

preserved. It follows from the regression operator for satisfy that

� 6j= R

fag

m�1

1

(satisfy(')). This gives us clause 1(b) of the causality theorem.

A.3.2 Proof of Lemma 6.3

By de�nition, initially(') is true in state s

m

i� 8s2ORIG

m

: P (s). But

ORIG

m

� ORIG

m+i

, since the agent cannot forget about what it knows of previous

situations (this follows directly from Theorem 3.2 (SSA for K). So initially(') must

hold in situation s

m+i

as well.

A.3.3 Proof of Lemma 6.4

The proof is by induction on n. The base case is trivial. R

fg

(hands-o�(')) is true

by de�nition. We will assume that R

fag

k�1

1

(hands-o�(')) and show that

R

fag

k

1

(hands-o�(')).
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R

fag

k�1

1

(KNOW(�

a

k

:'

) ^KNOW(�

a

k

'

)) by assumption. Combining this with the

induction hypothesis, we get

R

fag

k�1

1

(KNOW(�

a

k

:'

) ^KNOW(�

a

k

'

) ^ R

fag

k�1

1

(hands-o�(')) By the de�nition

of regression for hands-o�, we get R

fag

k�1

1

R

a

k

(hands-o�(')), which is equivalent

to R

fag

k

1

(hands-o�(')), which is what we wanted to prove.

A.3.4 Proof of Lemma 6.5

By the contrapositive of Lemma 6.3, if R

fag

n

1

(initially') is false, so is

R

a

fag

i

1

(initially') , for 0 < i < n. Combining this fact with the regression operator

for hands-o� gives us R

fag

n�1

1

(KNOW(�

a

i+i

:'

) ^ KNOW(�

a

i+i

'

) ^ hands-o�(')).

Continuing to regress on hands-o�(') in this manner yields

R

fag

i

1

(KNOW(�

a

i+1

:'

) ^ KNOW(�

a

i+1

'

)) for all 0 < i < n,

A.3.5 Proof of Corollary 6.6 (Causality theorem for initially)

First we prove that the corollary follows from the causality theorem. Clause 1 of

Pednault's theorem states that there is some point in the plan before which the

initially goal is false, and after which it is true, so

� j= R

fag

m�1

1

R

a

m

(initially(')) ^ � 6j= R

fag

m�1

1

(initially('))

By regressing initially('), we get:

� j= R

fag

m�1

1

(initially(') _ (�

tv

'

(a

m

) ^ ' ^ hands-o�(')))) ^ � 6j=

R

fag

m�1

1

(initially('))

Simplifying, we get:

� j= R

fag

m�1

1

(�

tv

'

(a

m

) ^ ' ^ hands-o�(')))

Since � 6j= R

fag

m�1

1

(initially(')), we by Lemma 6.5,

R

fag

m�1

1

(hands-o�(')), R

fag

i

1

(KNOW(�

a

:'

) ^KNOW(�

a

'

)) for all 0 < i < m.

So we can rewrite the above formula as:

1. � j= R

fag

m�1

1

(�

tv

'

(a

m

) ^ ' ^



207

2. � j= R

fag

i

1

(KNOW(�

a

:'

)) ^ (KNOW(�

a

'

)) for all 0 < i < m,

which is the same as item 1 of the corollary.

Item 2 of Pednault's causality theorem states that the goal is true in the initial

state and remains true thereafter. By Lemma 6.3, it will necessarily remain true, so

we only care that it is true in the initial state. By the de�nition of regression on

initially('), this is the case if and only if KNOW(') is true in the initial state,

which is equivalent to item 2 of the corollary.

Next we show the reverse case, i.e., that the causality theorem follows from the

corollary. If clause 2 of the corollary applies, then � j= KNOW('), and by

de�nition, � j= R

a

fg(initially(')). By Lemma 6.3, the same holds for all plans of

any length, thus satisfying clause 2 of the causality theorem.

Otherwise, � 6j= KNOW('), so clause 1 must hold. By clause 1, at some point, the

agent must observe '. Without loss of generality, consider the earliest such time

point, i.e., the smallest m for which

1. � j= R

fag

m�1

1

(�

tv

'

(a

m

) ^ ' ^

2. � j= R

fag

i

1

(KNOW(�

a

:'

)) ^ (KNOW(�

a

'

)) for all 0 < i < m,

By Lemma 6.4, R

fag

i

1

(hands-o�(')), for all 0 < i < m. By the regression operator

for initially,

� j= R

fag

m�1

1

(�

tv

'

(a

m

) ^ ' ^ hands-o�(')))) � j= R

fag

m

1

(initially(')).

Since we chose the earliest time at which ' was observed, and since � 6j= KNOW('),

it follows by regression on initially that � 6j= R

fag

m�1

1

(initially(')).

Thus clause 1 of the causality theorem is satis�ed.

A.3.6 Proof of Corollary 6.7 (Causality theorem for hands-o�)

First we prove that the corollary follows from the causality theorem. Clause 1 of

Pednault's theorem states that there is some point in the plan at which the
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hands-o� goal becomes true, before which it is false.

� j= R

fag

m�1

1

R

a

m

(hands-o�(')) ^ � 6j= R

fag

m�1

1

(hands-o�(')) However, this

contradicts the de�nition of hands-o�: By regressing hands-o�('), we obtain:

� j= R

fag

m�1

1

(hands-o�(') ^ : : :) ^ � 6j= R

fag

m�1

1

(hands-o�(')), a contradiction.

So clause 1 of the causality theorem is always false for hands-o�. Turning to clause

2, we see that the goal is true in the initial state and remains true thereafter:

� j= R

fag

m

1

(hands-o�(')), for all i = 1 : : : n� 1. There are two cases. If neither

initially(') nor initially(:') is achieved at any point, then by Lemma 6.4, for all

i = 1 : : : n� 1, R

fag

n�1

1

(hands-o�('))) R

fag

i

1

(KNOW(�

a

:'

) ^KNOW(�

a

'

)),

which corresponds to clause 1 of this theorem.

Suppose that either initially(') or initially(:') is achieved at some point.

Without loss of generality, we will assume that initially(') is true. The other case

is symmetric. If initially(') is achieved at some point, then we know from

Lemma 6.3 that it is true at all time points afterward. Thus we can regress

hands-o� as follows until the initially condition is no longer met.

By the de�nition of regression on hands-o�, � j= R

fag

n�1

1

((KNOW(�

a

:'

) _

initially(')) ^ (KNOW(�

a

'

) _ initially(:')) ^ hands-o�(')). But since

initially(') is true, this simpli�es to � j= R

fag

m�1

1

(KNOW(�

a

'

) ^ hands-o�(')).

Continuing to regress on hands-o�, we get KNOW(�

a

i+1

'

) for all situations after

the initially goal was met. Regressing on hands-o� beyond that point is

unnecessary, as a casual inspection of the regression operator for initially reveals.

That is, initially regresses to hands-o�. Because of the hands-o�, we know that

KNOW(�

a

i+1

'

) will in fact hold for all situations before the initially goal is

achieved. Thus initially(') is true in the �nal state, and KNOW(�

a

i+1

'

) is true for

all situations.

Next we will show that the causality theorem follows from the corollary. First,

consider clause 1 of the corollary:
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For all i = 1 : : : n� 1 [� j= R

fag

i

1

(KNOW(�

a

i+1

'

) ^ �

a

i+1

:'

)].

By Lemma 6.5, � j= R

fag

i

1

(hands-o�(')), for all i.

If clause 2 holds, then either

1. � j= R

fag

n

1

(initially(')) and for all i = 1 : : : n� 1

� j= R

fag

i

1

(KNOW(�

a

i+1

'

)) OR

2. � j= R

fag

n

1

(initially(:')) and for all i = m : : : n� 1

� j= R

fag

i

1

(KNOW(�

a

i+1

:'

))

In either case, by the regression operator for hands-o�,

� j= R

fag

i+1

1

(hands-o�(')). We can continue regressing hands-o� all the way

back to the initial state, thus giving us clause 2 of the causality theorem.

A.3.7 Proof of Theorem 6.8 (Correctness of HandleGoals )

We show that for every goal given to it, the HandleGoals algorithm (Figure 5.2)

replaces the goal with structures that ensure, by the causality theorem, that the

goal will be achieved.

If line 1 applies then the goal is of the form P ) Q, where P j=Q, so the goal is true

tautologically.

If line 2 applies, then the goal is of the form hands-o�('). HandleGoals achieves

this goal by calling AddLink, which adds a causal link to C, protecting both ' and

:'. As is discussed in the proof for Theorem 6.9, this causal link ensures that the

conditions speci�ed in the causality theorem for hands-o� are true.

Otherwise, line 3 must apply. Line 3(a) reduces the goal to one that is logically

equivalent. Lines 3(b) and 3(c) correspond to Pednault's Expansion Theorem: 3(a)

adds a new step to the plan that will make the goal true. 3(b) ensures that either

an existing step or the initial state (represented by the dummy step A

0

) supports
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the goal. In either case, various structures are added to the plan to satisfy the

Causality Theorem.

The proof will proceed by considering each each class of goals in turn, showing that

HandleGoals satis�es the Causality Theorem for each.

� satisfy('): Only line three of HandleGoals applies. By MGU, the only e�ects

that will be selected are those annotated with cause or observe, matching '.

In the call to AddLink MGU(e,g) will be added to B, ensuring that the e�ect

does indeed match the goal and the preconditions of the e�ect (along with the

preconditions of the step, if it was just added) will be added to G. An

ordering constraint is added to O to ensure that the action producing the

e�ect is executed before the time when the goal is required,

Recall that preconditions for cause(') are of the form 

T

'

(a). Preconditions

for observe(') are of the form �

T

P

(a). These preconditions are added to G,

ensuring that they will either be achieved by the planner, or will be assumed

to be true and veri�ed by subsequent observation some time before the satisfy

goal must be achieved. In either case, the agent will know whether the desired

e�ect occurred. We will �rst assume that these (assumed) preconditions are

veri�ed immediately after the action is executed, conforming to the de�nition

of �

a

KNOW(')

. Then we show in the item assumptions below that we can

relax that assumption, using the causal links to keep track of correlations. We

will take it as a given that any assumed conditions actually hold, since if they

don't, that fact will be detected and the plan will be rejected.

If the precondition of cause is not assumed, then the agent will know before

executing the action that the condition is true: KNOW(

T

'

(a)). If an assumed

precondition of a cause e�ect is veri�ed by that e�ect, then we have

�

tv



T

'

(a)

(a) ^ 

T

'

(a).
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One precondition of observe(') that is always assumed is ' itself. The

remaining preconditions may be assumed as well. �

tv

'

(a) ^ ': The condition

�

s

KNOW(')

is ensured by the causal link. If S

p

threatened that condition,

then it would violate the causal link that it itself provided.

Putting all this together, we get the de�nition of �

a

KNOW(')

:

KNOW(

T

'

(a)) _ (�

tv



T

'

(a)

(a) ^ 

T

'

(a)) _ (�

tv

'

(a) ^ ' ^ �

a

KNOW(')

) Thus

satisfying clause 1(a) and the �rst part of clause 2 of the Causality Theorem

for satisfy. The remainder of the Causality Theorem is provided by

Theorem 6.9.

� initially('): If ' is known to be true in the initial state, then HandleGoals

will not add any additional structures to the plan. This is correct, since

condition 2 of the causality theorem for initially is satis�ed. Otherwise,

HandleGoals will select a new or existing action that has an e�ect unifying

with the goal. MGU will only choose matching observe e�ects in support of

initially goals, and will return the binding constraints that must be satis�ed

for the match to succeed. HandleGoals adds these constraints to B and adds to

G the preconditions needed to ensure that the e�ect will occur. As discussed

in the case for satisfy above, the observe e�ect ensures that �

tv

'

(a) ^ ', thus

satisfying condition 1(a) of the causality theorem for initially. Unlike

satisfy, there's no need to ensure that ' is still true after execution, the the

causal link extending forward from the e�ect is not required. However, a

causal link is added extending from the initial step to the producer, satisfying

condition 1(b) of the Causality Theorem for initially.

� 8 goals: If line 3(a) of HandleGoals is chosen, then line 2 of Reduce applies.

Both reductions replace g with goals that are logically equivalent. Item 2(b)

replaces g with the universal base. Since the universal base of a goal is
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equivalent to the original goal, and since lcw(�) makes it possible to

correctly compute the universal base, this results in no logical change to G.

Line 2(b) replaces the goal g with two equivalent goals, one of the form

$) g, and the other :$ ) g. The two contexts are mutually exclusive and

exhaustive, so the two new goals together are equivalent to g. If line 3(b) or

3(c) of HandleGoals is chosen, then by MGU, the supporting e�ect must entail

the goal. Any restrictions on the e�ect from the when clause will be added as

a full universally quanti�ed goal to G. If the precondition is entailed by the

context of the goal, it will be removed in Line 1. Otherwise, it must become

true for all members of the universe.

� lcw goals: Line 1(a) of Reduce is equivalent to the composition rule, which is

proved sound in Theorem 2.4. Line 1(c) is the same as the conjunction rule, a

corollary of the composition rule. Lines 3(b) and 3(c) of HandleGoal call

MGU, which only succeeds if there is a perfect match, which corresponds to

be instantiation rule, proved sound in Theorem 2.2.

� assumptions: The successor state axiom for KNOW (Theorem 3.6) requires

that if a condition is made true by an action, its preconditions be known |

immediately after the action is executed | to have held immediately prior.

The assumption mechanism used by puccini violates this condition. The

reason for the di�erence is that Theorem 3.6 is based on the assumption that

correlations between unknown uents are forbidden, and delaying the

veri�cation of the preconditions introduces such correlations. However, the

causal link mechanism used by the planner provides a limited ability to keep

track of such correlations, so delaying the veri�cation is allowed.

Speci�cally, there is a correlation between the truth value of the precondition

immediately before execution and the truth value of the e�ect immediately
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after. This correlation persists until either the precondition or the

postcondition is a�ected, so if the precondition is later observed, that reveals

the truth value of the e�ect. The causal link between the assumed

precondition and the observation used to verify it both records the fact that

the correlation exists and ensures that the precondition isn't a�ected before

it's observed. The e�ect condition is also protected { by the causal link to the

precondition that it supports (it must support some condition or the planner

wouldn't be trying to make it true). The e�ect condition is guaranteed to

persist at least until the assumed precondition is observed, since the the

observation is required to occur before the assumed e�ect is needed.

A.3.8 Proof of Theorem 6.9 (Correctness of HandleThreats)

The purpose of HandleThreats (Figure 5.6) is to maintain the preservation

conditions required by be causality theorem, which are recorded in the plan using

causal links. There are two things to prove: that all threats are detected, and that

each re�nement for resolving threats makes the threat go away. We will prove the

latter �rst, by considering each line of HandleThreats in turn.

1. Promotion: By the causality theorem, the truth of a condition at a given time

depends only on what happened before that time, not on what follows. So an

action executed at a time point after the goal is required to be true cannot

violate the causality theorem for that goal.

2. Demotion: Demotion can never succeed for initially or hands-o�, since the

causal link extends all the way to the initial state. By the causality theorem

for satisfy, moving the threatening action before the point at which the

enabling precondition is satis�ed eliminates the threat, since the condition

only needs to be preserved after it becomes true.
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3. Confrontation: Making sure that the :�

a

:'

is equivalent to ensuring that �

a

'

.

4. lcw threats:

(a) If P

1

(foo) is true, then lcw(P

1

(foo)) is true. If

lcw(P

2

(foo)) ^ : : : ^ lcw(P

n

(foo)) then by the conjunction theorem,

lcw(P

1

(foo) ^ : : : (P

n

(foo)). Since all that changed was P

1

(foo) and

lcw(P

1

(x) ^ : : : ^ P

n

(x)) held before the change, by the instantiation

theorem, lcw(P

1

(x

i

) ^ : : : ^ P

n

(x

i

)) is true for all x

i

6= foo. Since it is

also true for x

i

= foo, it is true for all x

i

.

(b) If any of P

2

(foo); : : : ; P

n

(foo) is false then lcw(P

2

(foo) ^ : : : ^ P

n

(foo))

is true, and by the argument above, lcw(P

1

(x) ^ : : : ^ P

n

(x)) is true.

5. An implication can be made true by making the antecedent false or the

consequent true, so each of the updates mentioned makes

8x[q

1

(foo)) S(foo)] true. Since this formula was originally true for all x,

and the only threat came from a change to P

1

(foo), it is true for all

x

i

6= foo. Since it is also true for x

i

= foo, it is true for all x

i

.

6. hands-o�: The handso� condition is threatened because the cause e�ect

violates clause 1 of the causality theorem for hands-o�. But adding the

subgoal initially(') ensures that clause 2 is satis�ed, so the threat goes away.

We now show that all threats are detected by HandleThreats. A condition is

threatened in a plan P whenever the preservation conditions in the causality

theorem are violated in some re�nements of the plan. These threats are detected by

examining the causal links added during goal establishment. It is shown in theorem

6.8 that the intervals and conditions recorded by these links correspond to the

requirements of the causality theorem. We will show here that the possible ways

that the links can be violated are in fact detected.
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1. satisfy: The only conditions that violate the presevation condition

KNOW(�

a

) are of the form cause(', T) or cause(', U). Both are detected.

2. initially and hands-o�: The only conditions that violate KNOW(�

a

) are of

the form cause(', T), cause(', F) or cause(', U). All three are detected.

3. 8: 8 goals are always implications. The only way to violate an implication is

to make the antecedent true or the consequent falls. The latter is detected as

an initially or satisfy threat, whichever is the case. The former is detected in

line 5 of HandleForall.

4. lcw: By Theorems 3.13 through 3.17, the only way to invalidate an lcw

formula is through Domain Growth or Information Loss. Both of these cases

are detected in line 4 of HandleThreats.

A.3.9 Proof of Lemma 6.11 (puccini loop invariant (initial))

In the initial call to puccini, G contains the high-level goal . So if the conditions

on G are satis�ed in the initial call to puccini, and the current plan (consisting of

no actions) is executed, then  is trivially satis�ed. Since no actions have been

executed, the executed pre�x of the plan is trivially consistent with the state of the

world.

A.3.10 Proof of Lemma 6.12 (puccini loop invariant)

We will show that each recursive control path of puccini preserves the loop

invariant.

1. HandleGoals, followed by HandleThreats: A goal is removed from the G, but by

Theorems 6.8) and 6.9, HandleGoals HandleThreats together ensure that the

Causality Theorem is obeyed, and HandleThreats ensures that the Causality
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Theorem for all previously removed goals continues to to be obeyed. Thus, the

loop invariant is preserved.

2. HandleExecution: IsExecutable? only returns true when the preconditions of

the action are true, so executing the action is well-de�ned. Because some

e�ects may be supported by assumptions, not all e�ects are guaranteed to be

valid, but if any assumption the executed action supports (including self-links)

is not true, this will be detected due to the observational e�ects supporting

the assumptions, and the plan will be rejected, thus preserving the loop

invariant requirement that executing the remainder of the plan will succeed,

provided that the assumptions supported by unexecuted actions are valid.

A.3.11 Proof of Lemma 6.12 (puccini loop invariant true on termination)

puccini will only terminate with success if all aws have been �xed, in which case

it makes no further modi�cations to the plan. Since the loop invariant was true on

the previous iteration, it is true afterward.

A.3.12 Proof of Theorem 6.14 (Soundness of puccini)

Lemmas 6.11-6.13 combine to form a simple inductive argument that puccini is

sound. Since the loop invariant holds on the initial call to puccini and on each

subsequent iteration, it holds when puccini terminates with success. Since puccini

only terminates with success if G is empty and all actions have been executed, it

follows from the loop invariant that the goal � has in fact been achieved.



Appendix B

SOFTBOT DOMAIN

Following are some of the more important operators, (aka action schemas) from

the UNIX domain. The Lisp-style syntax di�ers from the in�x notation used in the

body of the thesis, but the correspondence should be obvious. The interface block

collects all parts of the operator that concern interaction with the outside world. The

exec-func and translation together correspond to the execute �eld in the sadl

EBNF (Table 3.2), and the sense-func corresponds to the sense �eld in the EBNF.

B.1 File Operators

(defoperator CD ((directory ?d) (path ?n))

(declare ((directory ?old) (path ?oldpath)))

(documentation "Change the current working directory")

(precond (satisfy (pathname ?d ?n)))

(undo-cond (and (satisfy (current.directory ?old))

(satisfy (pathname ?old ?oldpath))))

(interface ((exec-func execute-unix-command)

(translation ("cd " ?n))

(undo-trans ("cd " ?oldpath))

(error-func default-unix-error?)

(terminate-detect read-unix-prompt)))

(effect (cause (current.directory ?d))))
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(defoperator FIND-FILE ((path ?pathname) (file !file))

(precond (satisfy (current.shell csh)))

(effect (observe (pathname !file ?pathname)))

(interface ((exec-func execute-unix-command)

(sense-func ( (!file) (find-file-sense :new)))

(translation ("ls -dF " ?pathname))

(sensor-bind-func ucpop::my-get-sense-bindings)

(error-func no-error))))

(defoperator LS ((directory ?d) (path ?dp))

(precond (and (satisfy (current.shell csh))

(satisfy (pathname ?d ?dp))))

(effect (forall ((file !f))

(exists ((path !p) (filename !n))

(when (parent.directory !f ?d)

(and (observe (parent.directory !f ?d))

(observe (pathname !f !p))

(observe (filename !f !n)))))))

(interface ((exec-func execute-unix-command)

(translation ("ls -F " ?dp))

(sense-func ((!f !n !p) (ls-sense ?dp :new)))

(sensor-bind-func ucpop::my-get-sense-bindings)

(error-func default-unix-error?)

(terminate-detect read-unix-prompt))))
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(defoperator PWD ((directory !dir))

(declare ((path !path)

(filename !name)))

(precond (satisfy (current.shell csh)))

(effect (when (current.directory !dir)

(and (observe (current.directory !dir))

(observe (pathname !dir !path))

(observe (filename !dir !name)))))

(interface ((exec-func execute-unix-command)

(sensor-bind-func ucpop::my-get-sense-bindings)

(sense-func ((!path !name !dir) (pwd-sense :new)))

(translation ("pwd")))))

(defoperator WC ((simple.file ?x) (number !char) (number !word)

(number !line) (directory ?dir))

(declare ((filename ?name)))

(precond (and (satisfy (current.shell csh))

(satisfy (current.directory ?dir))

(satisfy (parent.directory ?x ?dir))

(satisfy (filename ?x ?name))))

(effect (and (observe (character.count ?x !char))

(observe (word.count ?x !word))

(observe (line.count ?x !line))))

(interface ((exec-func execute-unix-command)

(sensor-bind-func ucpop::my-get-sense-bindings)

(sense-func ((!char !word !line) (wc-sense)))
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(error-func default-unix-error?)

(translation ("wc \"" ?name "\"")))))

(defoperator GREP ((string ?string) (simple.file ?x) (bool !grep-t))

(declare ((filename ?nm) (directory ?d)))

(precond (and (satisfy (current.shell csh))

(satisfy (current.directory ?d))

(satisfy (filename ?x ?nm))

(satisfy (parent.directory ?x ?d))))

(effect (observe (string.in.file ?string ?x) !grep-t))

(interface ((exec-func execute-unix-command)

(sense-func ((!grep-t) grep-sense))

(error-func no-error)

(translation ("grep " ?string " " ?nm)))))

(defoperator OWNER-OF-FILE ((file ?x) (userid !owner))

(declare ((filename ?nm) (directory ?d)))

(precond (and (satisfy (current.shell csh))

(satisfy (current.directory ?d))

(satisfy (parent.directory ?x ?d))

(satisfy (filename ?x ?nm))))

(effect (and (observe (owner ?x !owner))))

(interface ((exec-func execute-unix-command)

(sensor-bind-func ucpop::my-get-sense-bindings)

(sense-func ((!owner) owner-of-file-sense))

(translation ("ls -lLd " ?nm )))))
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(defoperator PROTECTION-ON-FILE ((file ?x) (bool !g-read)

(bool !g-write) (bool !g-exec))

(declare ((path ?nm)))

(precond (and (satisfy (current.shell csh))

(satisfy (pathname ?x ?nm))))

(effect (and (observe (group.protection ?x readable) !g-read)

(observe (group.protection ?x writeable) !g-write)

(observe (group.protection ?x executable) !g-exec)))

(interface ((exec-func execute-unix-command)

(sensor-bind-func ucpop::my-get-sense-bindings)

(sense-func ((!g-read !g-write !g-exec)

(protect-on-file-sense)))

(translation ("ls -lLd " ?nm )))))

(defoperator GROUP-PROTECT-FILE ((file ?x))

(declare ((path ?nm)

(userid ?person)))

(precond (and (satisfy (current.shell csh))

(satisfy (current.userid ?person))

(satisfy (owner ?x ?person))

(satisfy (pathname ?x ?nm))))

(effect (and (cause (group.protection ?x readable))

(cause (group.protection ?x writeable))

(cause (group.protection ?x executable))))

(interface ((exec-func execute-unix-command)
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(translation ("chmod g+rwx " ?nm )))))

(defoperator GROUP-UNPROTECT-FILE ((file ?x))

(declare ((path ?nm)

(userid ?person)))

(precond (and (satisfy (current.shell csh))

(satisfy (current.userid ?person))

(satisfy (owner ?x ?person))

(satisfy (pathname ?x ?nm))))

(effect (and (cause (group.protection ?x readable) F)

(cause (group.protection ?x writeable) F)

(cause (group.protection ?x executable) F)))

(interface ((exec-func execute-unix-command)

(translation ("chmod g-rwx " ?nm )))))

(defoperator MOVE-DIR ((file ?x) (directory ?d2))

(declare ((filename ?nm)

(path ?d2path)

(directory ?d)))

(precond (and (satisfy (current.directory ?d))

(satisfy (pathname ?d2 ?d2path))

(satisfy (parent.directory ?x ?d))

(satisfy (filename ?x ?nm))

(satisfy (current.shell csh))))

(effect (cause (parent.directory ?x ?d2)))

(interface ((exec-func execute-unix-command)
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(translation ("mv " ?nm " " ?d2path)))))

(defoperator COMPARE-LENGTH ((file ?f1) (file ?f2) (number ?l1)

(number ?l2) (bool !t))

(declare (directory ?d))

(precond (and (satisfy (parent.directory ?f1 ?d))

(satisfy (parent.directory ?f2 ?d))

(satisfy (character.count ?f1 ?l1))

(satisfy (character.count ?f2 ?l2))))

(effect (observe (same.length ?f1 ?f2) !t))

(interface ((exec-func execute-lisp-command)

(sense-func ((!t) lisp-true?))

(sensor-bind-func ucpop::my-get-sense-bindings)

(error-func null-function)

(translation (compare-length-sense ?l1 ?l2)))))

(defoperator GET-PATH ()

(precond (satisfy (current.shell csh)))

(effect (forall ((directory !d))

(exists ((path !p))

(when (current.path !d)

(and (observe (pathname !d !p))

(observe (current.path !d)))))))

(interface ((exec-func execute-unix-command)

(translation ("echo $path"))

(sensor-bind-func ucpop::my-get-sense-bindings)
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(sense-func ((!d !p) (get-path-sense :new))))))

(defoperator ADD-PATH ((directory ?dir))

(declare ((path ?dirname)))

(precond (and (satisfy (current.shell csh))

(satisfy (pathname ?dir ?dirname))

(satisfy (current.path ?dir) f)))

(effect (cause (current.path ?dir)))

(interface ((exec-func execute-unix-command)

(error-func default-unix-error?)

(translation ("set path = ( " ?dirname " $path )")))))

(defoperator RESET-PATH ()

(precond (satisfy (current.shell csh)))

(effect (and (forall ((directory !path))

(when (current.path !path)

(cause (current.path !path) F)))

(cause (current.path.reset) t)))

(interface ((exec-func execute-unix-command)

(translation ("set path = (/bin)")))))

B.2 Person Operators

(defoperator netfind ((person ?person))
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(declare ((machine ?server)

(machine.name ?server-name)

(number ?time) (number ?current-time) (bool !busy)

(number ?now)

(city ?city) (field ?field) (state ?state)

(country ?country)

(organization ?organization) (person ?person)

(domain !domain) (string ?key1)

(string ?key2) (string ?key3)

(userid !userid) (firstname ?first)

(lastname ?last) (first.initial ?fi)

(organization ?affiliation)))

(precond (and (satisfy (current.shell csh))

(satisfy (machine.netfind.server ?server))

(satisfy (machine.name ?server ?server-name))

(or (contemplate (server.busy ?server? ?time) u)

(and

(contemplate (server.busy ?server ?time))

(contemplate (seconds-ago ?time 300))))))

(effect (and

(when (and (eq !busy (bool t))

(contemplate (universal-time ?current-time)))

(observe (server.busy ?server ?current-time)))

(when (eq !busy (bool f))

(and (observe (server.busy ?server ?time) u)

(when (and (neq !userid (userid "notfound"))

(or (city ?person ?key1)

(organization ?person ?key1)



226

(affiliation ?person ?key1))

(or (country ?person ?key2)

(state ?person ?key2)

(eq ?key2 ""))

(or (field ?person ?key3)

(eq ?key3 "")))

(and

(when (and (person.domain ?person !domain)

(userid ?person !userid !domain))

(and

(when (city ?person ?key1)

(observe (city ?person ?city)))

(when (organization ?person ?key1)

(observe (organization ?person ?organization)))

(when (affiliation ?person ?key1)

(affiliation ?person ?affiliation))

(when (country ?person ?key2)

(observe (country ?person ?country)))

(when (state ?person ?key2)

(observe (state ?person ?state)))

(when (field ?person ?key3)

(observe (field ?person ?field)))

(when (first.initial ?person ?fi)

(observe (first.initial ?person ?fi)))

(when (firstname ?person ?first)
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(observe (firstname ?person ?first)))

(when (lastname ?person ?last)

(observe (lastname ?person ?last)))))))))))

(interface ((exec-func execute-unix-command)

(sense-func (!busy !userid !domain

(netfind-sense ?first ?last)))

(logical-sense-call t)

(translation ("netfind.exp " ?server-name " '"

?last " " ?key1 " " ?key2 " "

?key3 "'")))))

(defoperator WHOAMI ((userid !userid))

(precond (satisfy (current.shell csh)))

(effect (and (observe (current.userid !userid))))

(interface ((exec-func execute-unix-command)

(sensor-bind-func ucpop::my-get-sense-bindings)

(sense-func ((!userid) bind-output-to-string))

(translation ("whoami")))))

(defoperator FINGER ((string ?string))

(declare ((machine ?machine)

(machine.name ?name) (domain ?domain)

(bool !unfingerable)))

(precond (and (satisfy (current.shell csh))
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(satisfy (domain.machine.name ?domain ?name))

(satisfy (machine.name ?machine ?name))

(satisfy (machine.alive ?machine?))))

(effect

(and

(observe (machine.unfingerable ?machine) !unfingerable)

(forall ((person !person))

(exists

((firstname !firstname) (lastname !lastname)

(userid !userid) (first.initial !fi)

(finger.record !record))

(when (and (eq !unfingerable (bool u))

(person.domain !person ?domain)

(or (lastname !person ?string)

(firstname !person ?string)

(and (userid !person ?string ?domain)

(eq ?string !userid))))

(and

(observe (userid !person !userid ?domain))

(observe (first.initial !person !fi))

(observe (person.domain !person ?domain))

(observe (firstname !person !firstname))

(observe (lastname !person !lastname))

(observe (finger.record !person !record

?domain))))))))

(interface ((exec-func execute-unix-command-downcase)

(sense-func (!unfingerable

(!person !userid !firstname
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!lastname !record !fi)

(finger-sense ?string :new)))

(logical-sense-call t)

(translation ("finger " ?string "@" ?domain)))))

(defoperator FINGER-MACHINE-GREP-USERID ((userid ?userid)

(machine ?machine)

(bool !finger-t)

(number !idle-time)

(bool !is-active))

(declare ((machine.name ?machine-name)))

(precond (and (satisfy (current.shell csh))

(satisfy (machine.name ?machine? ?machine-name))

(satisfy (machine.alive ?machine?))))

(effect (and (observe (logged.on ?userid ?machine) !finger-t)

(observe (idle.time ?userid ?machine !idle-time))

(observe (active.on ?userid ?machine) !is-active)))

(interface ((exec-func execute-unix-command)

(sense-func ((!finger-t !idle-time !is-active)

(finger-user-sense ?userid)))

(translation ("finger @" ?machine-name

" |& egrep '^"

?userid "|Login|User'")))))
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(defoperator STAFFDIR ((lastname ?lastname))

(precond (and (satisfy (current.shell csh))))

(effect

(and (observe (staffdir.record ?lastname))

(forall ((person !person))

(exists

((domain !domain)

(userid !userid)

(machine !machine)

(machine.name !machine-name)

(string !room) (phone.number !phone)

(title !title) (department !dept) (mailbox !mail)

(phone.number !voice) (bool !t-user) (bool !t-room)

(bool !t-dept) (bool !t-voice) (bool !t-mail)

(bool !t-title) (bool !t-phone)

(first.initial !fi)

(firstname !firstname))

(when

(and (lastname !person ?lastname)

(staff.member !person !domain))

(and

(observe (state !person "Washington"))

(observe (country !person "Usa"))

(observe (city !person "Seattle"))

(observe (firstname !person !firstname))

(observe (first.initial !person !fi))

(observe (lastname !person ?lastname))

(when (eq !t-user (bool t))
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(and (observe (staff.member !person !domain))

(observe (person.domain !person !domain))

(observe (userid !person !userid !domain))))

(when (eq !t-phone (bool t))

(observe (office.phone !person !phone)))

(when (eq !t-title (bool t))

(observe (person.title !person !title)))

(when (eq !t-room (bool t))

(observe (office.room !person !room)))

(when (eq !t-title (bool t))

(observe (mailbox !person !mail)))

(when (eq (!t-voice (bool t)))

(observe (voicemailnum !person !voice) !t-voice))

(when (eq (!t-dept (bool t)))

(observe (department !person !dept) !t-dept))))))))

(interface

((translation ("staffdir -full -N " ?lastname))

(exec-func execute-unix-command)

(error-func staffdir-error)

(logical-sense-call t)

(sense-func ((!person !firstname !userid

!domain !t-user !room !t-room !phone !t-phone

!title !t-title !dept !t-dept

!mail !t-mail !voice !t-voice !fi)

(staffdir-sense :new ?lastname))))))
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(defoperator PERSON-OFFICE-ROOM ((person ?person) (room.number !room))

(declare ((userid ?userid) (domain ?domain)))

(precond (and (satisfy (current.shell csh))

(satisfy (current.domain ?domain))

(satisfy (userid ?person ?userid ?domain?))))

(effect (and (observe (office.room ?person !room))))

(interface

((translation ("grep " ?userid "

/cse/student-affairs/mailing-lists/room-*.dis"))

(exec-func execute-unix-command)

(logical-sense-call t)

(sense-func ((!room) (person-office-room-sense ?userid))))))

(defoperator USERS-IN-ROOM ((room.number ?room))

(precond (and (satisfy (current.shell csh))))

(effect (forall ((userid !uid))

(when (userid.room !uid ?room)

(observe (userid.room !uid ?room)))))

(interface

((translation ("cat /cse/student-affairs/mailing-lists/room-"

?room ".dis"))

(exec-func execute-unix-command)

(logical-sense-call t)

(sense-func ((!uid) (users-in-room-sense))))))

(defoperator PEOPLE-IN-ROOM ((room.number ?room))

(declare ((person ?person) (userid ?userid) (domain ?domain)))
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(precond (and

(satisfy (userid.room ?userid ?room?))

(satisfy (current.domain ?domain))

(satisfy (userid ?person ?userid? ?domain?))

(satisfy (person.domain ?person ?domain?))

))

(effect (observe (office.room ?person ?room))))

(defoperator INFER-OFFICE-PHONE-FROM-FINGER-REC ((person ?person)

(phone.number !phone)

(bool !phone-t))

(declare ((finger.record ?f-rec) (domain ?domain)))

(precond (and (satisfy (finger.record ?person? ?f-rec ?domain))))

(effect

(observe (office.phone ?person !phone) !phone-t))

(interface

((exec-func execute-lisp-command-no-vcs)

(translation (stringify ?f-rec))

(sense-func ((!phone !phone-t)

(office-phone-from-finger-rec-sense ?f-rec))))))

(defoperator INFER-HOME-PHONE-FROM-FINGER-REC ((person ?person)

(phone.number !phone)

(bool !phone-t))

(declare ((finger.record ?f-rec) (domain ?domain)))

(precond (and
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(satisfy (finger.record ?person? ?f-rec ?domain))))

(effect

(observe (home.phone ?person !phone) !phone-t))

(interface

((exec-func execute-lisp-command-no-vcs)

(translation (stringify ?f-rec))

(sense-func ((!phone !phone-t)

(home-phone-from-finger-rec-sense ?f-rec))))))

(defoperator INFER-OFFICE-PHONE-SHARED ((person ?person)

(phone.number ?phone))

(declare ((person ?officemate) (room.number ?shared-room)))

(precond

(and (neq ?person ?officemate)

(satisfy (office.room ?person ?shared-room))

(satisfy (office.room ?officemate? ?shared-room?))

(satisfy (office.phone ?officemate? ?phone))))

(effect

(observe (office.phone ?person ?phone))))

(defoperator userid-login-machines ((machine ?machine)

(machine !machine))

(declare ((userid ?userid) (machine.name ?name)))

(precond (and

(satisfy (machine.name ?machine? ?name))

(satisfy (machine.alive ?machine?))
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(satisfy (machine.domain ?machine? "cs.washington.edu"))))

(effect (forall ((machine !machine))

(exists

((machine.name !name))

(when (userid.login.machine ?userid ?machine !machine)

(and

(observe (userid.login.machine ?userid

?machine !machine))

(observe (machine.name !machine !name)))))))

(interface

((translation

("rsh " ?name " \"who /var/adm/wtmp | grep "

?userid " | tail -50\""))

(exec-func execute-unix-command)

(logical-sense-call t)

(sense-func ((!machine !name)

(sense-userid-login-machines ?userid :new))))))

B.3 Machine Operators

(defoperator PING ((string ?machine-name)

(machine !machine))

(declare ((machine.nickname !nickname) (domain !domain) (bool !tv)

(machine.name !name)))

(precond (satisfy (current.shell csh)))

(effect
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(when (or (and (machine.name !machine ?machine-name)

(domain.machine.name !domain !name))

(and (machine.domain !machine !domain)

(current.domain !domain)

(domain.name.nickname !domain !name !nickname)

(machine.nickname !machine ?machine-name)))

(and (observe (machine.alive !machine) !tv)

(when (machine.alive !machine)

(and

(observe (machine.name !machine !name))

(observe (machine.nickname !machine !nickname))

(observe (machine.domain !machine !domain)))))))

(interface ((exec-func execute-unix-command)

(translation ("/usr/etc/ping " ?machine-name))

(logical-sense-call t)

(sense-func ((!tv !machine !name !nickname !domain)

(ping-machine-sense :new ?machine-name))))))

(defoperator FINGER-MACHINE ((machine ?machine))

(declare ((machine.name ?machine-name)))

(precond (and (satisfy (current.shell csh))

(contemplate (is-bound ?machine))

(satisfy (machine.alive ?machine?))

(satisfy (machine.name ?machine? ?machine-name))

(contemplate (machine.unfingerable ?machine) u)))

(effect (and

(forall ((userid !uid))
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(when (logged.on !uid ?machine)

(observe (logged.on !uid ?machine))))

(forall ((userid !uid) (number !idle-time))

(when

(idle.time !uid ?machine !idle-time)

(observe (idle.time !uid ?machine !idle-time))))

(forall ((userid !uid) )

(when (active.on !uid ?machine)

(observe (active.on !uid ?machine))))))

(interface ((exec-func execute-unix-command)

(sense-func (((!uid) (!uid !idle-time) (!uid))

(finger-machine-sense ?machine)))

(logical-sense-call t)

(error-func finger-error)

(translation ("finger @" ?machine-name)))))

(defoperator HOSTNAME ((machine !host))

(declare ((machine.name !n) (domain ?domain-name)))

(precond (and (satisfy (current.shell csh))

(satisfy (current.domain ?domain-name))))

(effect (when (current.host !host)

(and (observe (machine.name !host !n))

(observe (current.host !host)))))

(interface ((exec-func execute-unix-command)

(sensor-bind-func ucpop::my-get-sense-bindings)

(sense-func ((!host !n) (hostname-sense

:new ?domain-name)))
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(translation ("hostname")))))

(defoperator UPTIME ((machine ?m1) (number !load)

(number !user-num))

(declare ((machine.name ?n1)))

(precond (and (satisfy (current.shell csh))

(satisfy (machine.name ?m1? ?n1))))

(effect (and (observe (load ?m1 !load))

(observe (users ?m1 !user-num))))

(interface ((exec-func execute-unix-command)

(sense-func ((!load !user-num) uptime-sense))

(error-func null-function)

(translation ("rsh " ?n1 " uptime")))))

(defoperator MACHINE ((string !type))

(precond (satisfy (current.shell csh)))

(effect (observe (current.machine.type !type)))

(interface ((exec-func execute-unix-command)

(sense-func ((!type) machine-sense))

(translation ("machine")))))

(defoperator HINFO nil

(declare ((domain ?domain)))

(precond

(and (satisfy (current.shell csh))
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(satisfy (current.domain ?domain))))

(effect

(and

(forall ((machine !m))

(exists

((machine.name !name)

(machine.nickname !nickname) (domain ?domain)

(bool !tv-xterm) (machine.model !model)

(bool !unfingerable) (bool !unrshable)

(string !room) (room.number !room-number))

(when (machine.domain !m ?domain)

(and

(observe (machine.nickname !m !nickname))

(observe (machine.xterm !m) !tv-xterm)

(observe (machine.unrshable !m) !unrshable)

(observe (machine.unfingerable !m) !unfingerable)

(observe (machine.name !m !name))

(observe (machine.domain !m ?domain))

(observe (machine.room !m !room))

(observe (machine.room.number !m !room-number))

(observe (machine.model !m !model))

(forall ((userid !admin))

(when (machine.admin !m !admin)

(observe (machine.admin !m !admin))))

(forall ((op.sys !op-sys))

(when (machine.op.sys !m !op-sys)

(observe (machine.op.sys !m !op-sys))))

(forall ((display.color !color))
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(when (machine.color !m !color)

(observe (machine.color !m !color))))))))))

(interface ((exec-func execute-unix-command)

(sense-func ((!m !name !tv-xterm

!nickname !model !room !room-number

!unfingerable

(!admin) (!op-sys)

(!color))

(hinfo-all-sense ?domain :new)))

(logical-sense-call t)

(sensor-bind-func ucpop::my-get-sense-bindings)

(translation ("hinfo")))))

(defoperator FIND-DOMAIN ((machine ?machine) (domain !domain))

(declare ((machine.name ?m-name)))

(precond (satisfy (machine.name ?machine? ?m-name)))

(effect (observe (machine.domain ?machine !domain)))

(interface ((exec-func execute-lisp-command-no-vcs)

(sense-func ((!domain) bind-output-to-string))

(translation (find-domain-name ?m-name)))))

B.4 Printer Operators

(defoperator LPR ((printer ?printer) (simple.file ?file))

(declare ((printer.name ?printer-name)
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(path ?pathname)

(filename ?filename)

(pstext ?ps)

(dvi.document ?dvi)

(document ?doc)

(print.job !printout)

(string ?option)

(print.job ?printout)

(string !jobname)

(directory ?parent-dir)))

(precond (and (satisfy (current.shell csh))

(satisfy (pathname ?file ?pathname))

(satisfy (filename ?file ?filename))

(satisfy (printer.name ?printer ?printer-name))

(satisfy (located.at ?doc ?pathname))

(or (and (eq ?doc ?dvi) (eq ?option " -d "))

(and (eq ?doc ?ps) (eq ?option " ")))))

(effect (and (cause (printed ?file ?printer))

(when (and (job.name ?printout !jobname)

(job.printer ?printout ?printer))

(and (cause (document.job ?doc ?printout))

(when (and (iscolor ?printer) (iscolor ?doc))

(cause (iscolor ?printout)))))))

(interface ((exec-func execute-unix-command)

(sense-func ((!jobname) (lpr-sense ?filename)))

(translation ("lpr -h -P" ?printer-name

?option ?pathname)))))
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(defoperator lpq (?printer)

(declare ((printer.name ?printer-name)

(print.job !job)

(print.job !done-job)

(string !job-name)

(number !job-number)

(thing !job-status)

(userid !job-user)

(status !job-status)

(status !status)

(status !queue-status)))

(precond (and (satisfy (current.shell csh))

(satisfy (printer.name ?printer ?printer-name))))

(effect (and (observe (print.queue.status ?printer !queue-status))

(observe (printer.status ?printer !status))

(forall ((print.job !job))

(when (and (job.printer !job ?printer)

(job.status !job working))

(and (observe (job.name !job !job-name))

(observe (job.number !job !job-number))

(observe (job.user !job !job-user))

(observe (job.printer !job ?printer))

(observe (job.status !job working)))))))

(interface ((exec-func execute-unix-command)

(logical-sense-call t)

(sense-func (!status !queue-status

(!job !job-number !job-name !job-user)
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(lpq-sense :new)))

(translation ("lpq -P" ?printer-name)))))

B.5 Web Operators

(defoperator get-web-page ((url ?url) (http.text !text))

(declare ((web.page ?www)))

(precond (satisfy (current.shell csh)))

(effect (when (located.at ?www ?url)

(and (observe (contents ?www !text))

(observe (located.at ?www ?url)))))

(interface ((exec-func execute-unix-command)

(translation ("lynx -source " ?url))

(logical-sense-call t)

(sense-func (!text (output)))

(error-func no-error)

(terminate-detect read-unix-prompt))))

(defoperator get-urls-in-page ((web.page ?p))

(declare ((http.text ?text)))

(precond (and (satisfy (contents ?p? ?text))

(satisfy (located.at ?p ?pu))))

(effect (forall ((web.page !child))

(exists ((url !u) (string !name))

(when (points.to ?p !child)
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(and (observe (points.to ?p !child))

(observe (name !child !name))

(observe (located.at !child !u)))))))

(interface ((exec-func execute-lisp-command-no-vcs)

(translation (identity ?text))

(logical-sense-call t)

(sense-func ((!child !u !name)

(scan-for-urls :new ?pu)))

(error-func no-error)

(terminate-detect read-unix-prompt))))

(defoperator web-ftp-file-info ((ftp.directory !d))

(declare ((url ?url)))

(precond (and (satisfy (current.shell csh))))

(effect (when (located.at !d ?url)

(and (observe (located.at !d ?url))

(forall ((ftp.file !f))

(exists ((url !u)

(minute !minute)

(hour !hour)

(date !day)

(month !month)

(year !year)

(time !t)

(filename !n))

(when (points.to !d !f)

(and
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(observe (points.to !d !f))

(observe (located.at !f !u))

(observe (creation.date !f !t))

(observe (month !t !month))

(observe (date !t !day))

(observe (year !t !year))

(observe (hour !t !hour))

(observe (minute !t !minute))

(observe (name !f !n)))))))))

(interface ((exec-func execute-unix-command)

(translation ("lynx -source " ?url))

(logical-sense-call t)

(sense-func (!d (!t !month !year

!day !hour !minute !u !n !f)

(ftp-sense :new :new :new)))

(error-func no-error)

(terminate-detect read-unix-prompt))))

(defoperator save-web-page ((document ?f)

(directory ?dir))

(declare ((url ?url)

(directory ?dir)

(path ?path)

(path ?dirname)

(filename ?n)

(file ?random)))

(precond (and (satisfy (located.at ?f? ?url))
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(satisfy (pathname ?dir ?dirname))

(satisfy (name ?f ?n))

(satisfy (concat ?dirname? "/" ?n? ?path))))

(effect (exists ((file !local))

(and (cause (copy.of ?f !local ?dir))

(cause (parent.directory !local ?dir))

(cause (pathname !local ?path))

(cause (filename !local ?n)))))

(interface ((exec-func execute-unix-command)

(translation ("lynx -source " ?url " >! " ?path))

(sense-func ((!local) (ident :new))))))

B.6 Display Operators

(defoperator xless ((path ?filepath))

(documentation "Xless displays text files")

(declare ((simple.file ?file) (text.document ?doc)))

(precond (and (satisfy (current.shell csh))

(satisfy (located.at ?doc ?filepath))

))

(effect (cause (displayed ?doc)))

(interface ((exec-func execute-unix-command)

(error-func default-unix-error?)

(translation ("xless " ?filepath))

))

)
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(defoperator ghostview ((path ?filepath))

(documentation "Ghostview displays Postscript Files")

(declare ((simple.file ?file) (postscript.document ?doc)))

(precond (and (satisfy (current.shell csh))

(satisfy (located.at ?doc ?filepath))

))

(effect (cause (displayed ?doc)))

(interface ((exec-func execute-unix-command)

(error-func no-error)

(translation ("ghostview " ?filepath))

))

)

(defoperator xv ((path ?filepath))

(documentation "XV displays some graphical image type files")

(declare ((simple.file ?file) (image.document ?doc)))

(precond (and (satisfy (current.shell csh))

(satisfy (located.at ?doc ?filepath))))

(effect (cause (displayed ?doc)))

(interface ((exec-func execute-unix-command)

(error-func default-unix-error?)

(translation ("xv " ?filepath))

))

)
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(defoperator xdvi ((path ?filepath))

(documentation "Xdvi displays DVI files from TeX")

(declare ((simple.file ?file) (dvi.document ?doc)))

(precond (and (satisfy (current.shell csh))

(satisfy (located.at ?doc ?filepath))

))

(effect (cause (displayed ?doc)))

(interface ((exec-func execute-unix-command)

(error-func default-unix-error?)

(translation ("xdvi " ?filepath))

))

)

(defoperator mpeg.play ((path ?filepath))

(documentation "Mpeg_play displays mpeg format animation files")

(declare ((simple.file ?file) (animation.document ?doc)))

(precond (and (satisfy (current.shell csh))

(satisfy (located.at ?doc ?filepath))

))

(effect (cause (displayed ?doc)))

(interface ((exec-func execute-unix-command)

(error-func mpeg.play-error)

(translation ("mpeg_play " ?filepath " ; echo \newline"))

))

)
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(defoperator netscape ((string ?filepath))

(documentation "Display document using Netscape")

(declare ((simple.file ?file) (web.page ?doc)))

(precond (and (satisfy (current.shell csh))

(satisfy (located.at ?doc ?filepath))

))

(effect (cause (displayed ?doc)))

(interface ((exec-func execute-unix-command)

(error-func default-unix-error?)

(translation ("netscape -remote \"openURL("

?filepath ")\"" ))

))

)

(defoperator file-type ((path ?filepath))

(documentation "Find out type of document contained in file")

(declare ((simple.file ?file) (document !doc) (string ?type)))

(precond (and (satisfy (current.shell csh))

(satisfy (pathname ?file ?filepath))))

(effect (observe (located.at !doc ?filepath)))

(interface ((exec-func execute-unix-command)

(error-func find-file-type-error)

(logical-sense-call t)

(translation ("file " ?filepath))

(sensor-bind-func xii::my-get-sense-bindings)

(sense-func ((!doc) (file-sense ?filepath :new)))

(error-func no-error)
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)))

(defoperator latex ((path ?filepath))

(documentation "Converts latex files to dvi files")

(declare ((simple.file !dvifile)

(simple.file ?file)

(path ?dvipath)

(directory ?dir)

(tex.document ?doc)

(dvi.document !dvidoc)

))

(precond (and (satisfy (string.in.file "\batchmode" ?file?))

(satisfy (located.at ?doc ?filepath))

(satisfy (pathname ?file ?filepath))

(satisfy (latexed.path ?filepath ?dvipath))

))

(effect (and (cause (pathname !dvifile ?dvipath))

(cause (located.at !dvidoc ?dvipath))

(cause (derived.from !dvidoc ?doc))

(when (title ?doc ?title)

(cause (title !dvidoc ?title)))

(when (author ?doc ?author)

(cause (author !dvidoc ?author)))

))

(interface ((exec-func execute-unix-command)

(sensor-bind-func ucpop::my-get-sense-bindings)

(sense-func ((!dvifile !dvidoc)
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(converter-sense :new :new)))

(error-func default-unix-error?)

(translation ("latex2e " ?filepath))

))

)

(defoperator dvips ((path ?filepath))

(documentation "Converts latex dvi files to postscript")

(declare ((simple.file !psfile)

(simple.file ?file)

(path ?pspath)

(directory ?dir)

(dvi.document ?doc)

(postscript.document !psdoc)

))

(precond (and (satisfy (current.shell csh))

(satisfy (located.at ?doc ?filepath))

(satisfy (pathname ?file ?filepath))

(sense (dvitps.path ?filepath ?pspath))

(satisfy (file.type ?file "data"))

))

(effect (and (cause (pathname !psfile ?pspath))

(cause (located.at !psdoc ?pspath))

(cause (derived.from !psdoc ?doc))

(when (title ?doc ?title)

(cause (title !psdoc ?title)))

(when (author ?doc ?author)
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(cause (author !psdoc ?author)))

))

(interface ((exec-func execute-unix-command)

(sensor-bind-func ucpop::my-get-sense-bindings)

(sense-func ((!psfile !psdoc)

(converter-sense :new :new)))

(error-func default-unix-error?)

(translation ("dvitps -o" ?pspath " " ?filepath))

))

)


