ZPL's WYSIWYG' Performance Modeél

Bradford L. Chamberlain Sung-Eun Choi E Christopher Lewis
Calvin Lin? Lawrence Snyder W. Derrick Weathersbhy

University of Washington, Seattle, WA 98195-2350 USA
tUniversity of Texas, Austin, TX 78712 USA
zpl-info@cs.washington.edu

Abstract

ZPL is an array language designed for high performance tifateand engineering com-
putations. Unlike other parallel languages, ZPL is founde@ machine model (CTA) distinct
from any implementing hardware. The machine model, whidtrabts contemporary parallel
computers, makes it possible to correlate ZPL programs mvéthine behavior. Using this
association, programmers can know approximately how catlgo@form on a typical par-
allel machine, allowing them to make informed decisionsMeein alternative programming
solutions.

This paper describes ZPL's syntactic cues to the programiieh convey performance
information. Thewhat-you-see-is-what-you-gétvVYSIWYG) characteristics of ZPL opera-
tions are illustrated on four machines: the Cray T3E, IBMZFSGI Power Challenge and
Intel Paragon. Additionally, the WYSIWYG performance mbdeused to evaluate two algo-
rithms for matrix multiplication, one of which is considdrto be the most scalable of portable
parallel solutions. Experiments show that the performanoeel correctly predicts the faster
solution on all four platforms for a range of problem sizes.

1 Introduction

High-level programming languages offer an expressive and portable means of enfitegnal-
gorithms. They spare the programmer the burden of coding in assembly language anithello
resulting program to be effortlessly recompiled on different compilers estdtactures. Yet with-
out a well-defined performance model that indicates how language constructs aredrtafipe

target machine, the advantages of a high-level programming language are diminisitechoW

*What You See Is What You Get
TThis research was supported by DARPA Grant N00014-92-J-1824, ARE)SIR E30602-97-1-0152, and a grant
of HPC time from the Arctic Region Supercomputing Center.

guidelines as to the relative costs of language features, programmers tienmbis on which to
make implementation choices. The lack of a performance model also meaagtiogram which
executes efficiently on one platform may suffer significant performance degmada other plat-
forms, since there are no guarantees as to how the language will be implemented.

Performance models are well-understood for popular sequential languages such &so€ and
tran. In the parallel realm, there is a need for similar models to accounhé complex issues
related to running on multiple processors. Yet performance models for pdeaifgpiages have
received little attention. In this paper, we present the performance nwd&Pf., a portable data-
parallel language whose design goals included presenting users with a cleag pictive costs
involved in their algorithms. This is in stark contrast with languages ssscHigh-Performance
Fortran whose source code gives very little indication of how a program wilbparbn any par-
ticular machine or compiler.

During program design, programmers often use asymptotic analysis to decide beanieas
algorithmic choices. However, even after a specific algorithm is salesecond-order imple-
mentation details must still be considered to achieve optimal perform&océnstance, consider
the following C code fragments that add a pair of 2D arrays, as an example of hoguatge's

performance model helps the programmer make such implementation decisions.

const int N = 1000;
double A[N][N], B[N][N], C[N][N];

inti, j;
for (i=0; i<N; i++) { for (j=0; j<N; j++) {
for (j=0; j<N; j++) { for (i=0; i<N; i++) {
: Cilil = ALIIG] + BILI; } CIiIG1 = AiIG] + BIIL;
} }
Implementation Choice 1 Implementation Choice 2

Although these fragments are algorithmically and asymptotically equivadley,perform differ-
ently due to the way C's row-major array allocation policy interacth #ie caching mechanisms
of contemporary architectures. Thus, C's performance model dictates thastihapiementation
choice is preferable because it will traverse the arrays in an ordereacts the memory hier-

archy. One might argue that a sophisticated optimizing compiler might reordendps bf the

2

second fragment. However, relying on such an optimization makes the codi@sr@ace less
portable. Thus, the first implementation choice remainsctireect choice for C and has there-
fore become the de facto standard. In contrast, Fortran lays arrays out in colgjonorder,
and Fortran programmers therefore choose the second style in their programs aspies of
both languages are subject to similar evaluation: parameter passing maethamiscedure call
overhead, library routines, etc.

It should be noted that these tradeoffs are determined by the virtual machine medibiyus
language's compilers and, to a lesser degree, the actual machine on which thenpsagraning.
To a large extent, the successes of Fortran and C are due to the clear map@rgthhetween the
languages and the von Neumann machine model, which forms a reasonable descriptiderof m
uniprocessors. This ability to “see” an accurate picture of the machine thrbedghariguage is
the most crucial characteristic of a good performance model. Note that althougtoties will
not specify an exact cost for its operators and cannot be used to determine the rimaio§a
program, it nevertheless helps programmers by giving them a rough sense of the consegluence
their implementation choices.

In the realm of parallel languages, programmers would like similar perfocenanodels on
which to base algorithmic decisions. In addition to the standard concerns @th&otn the se-
guential domain, parallel language performance models need to emphasize the ntetpod-
cessor data transfer, since communication can have a significant impact pertbenance of
parallel computations. ZPL achieves this by using the CTA parallel machinelfiegies the
basis for its performance model. The CTA empahsizes data locality and tatgurendels con-
temporary parallel machines. ZPL's performance model has the additional lnéeefuring that
every operation which requires communication is visible to the programmaeaaurce level.
We affectionately refer to this property as ZPWA& SIWY Gperformance model.

The rest of the paper is organized as follows. In the next section, we sumrtiegiperfor-
mance models of various parallel languages. In Section 3 we provide a brief irttoydiacZPL,
and in Section 4 we describe its performance model. Section 5 contains egpeyidesigned to

validate our performance model. We conclude in Section 6.

2 Related Work

One method of parallel programming is to use a scalar language such as C or Famndimed

with message passing libraries such as PVM or MPI. This approach has aaitipgiformance

model in the sense that programmers are aware of where communication talessplae they
must specify it explicitly. However, coding at this low level is tedionsl &rror-prone, motivating
the existence of higher-level parallel programming languages.

In the arena of higher-level parallel languages, NESL is a language with -aefeled perfor-
mance model [1]. It uses a work/depth model to calculate asymptotic bounds for tidiexdéione
of NESL programs on parallel computers. Although this model fits NESL's functionadljgsn
well and allows users to make coarse-grained algorithm decisionsgtleevery little about the
lower-level impact of one's implementation choices and how they will beeamphted on the tar-
get machine. As an example, the cost of interprocessor communication is codsidghgible in
the NESL model and is therefore ignored entirely.

The most prevalent parallel language, High Performance Fortran [5], saftersplete lack of
a performance model. As a result, programmers must re-tune their programtiarozapiler and
platform that they use, neutralizing any notion of portable performance. Ngo deatesshat this
lack of a performance model results in erratic execution times when dogppiPF programs using
different compilers on the IBM SP-2 [11]. One of the biggest causes of ambiguibeiperfor-
mance of HPF programs is the fact that communication is completely hidden frarmehenaking
it difficult to evaluate different implementation options [4]. As an examiig compares matrix
multiply algorithms written in HPF, demonstrating that there is neithgrsarrce-level indication
of how they will perform, nor does either algorithm consistently outperform the dtt@t. By
defining a formal performance model to which all HPF compilers must adhergyrtibem could
be alleviated.

In response to HPF's hidden and underspecified communication modely&s developed
to make communication explicit and highly visible to the programmer using a samoleatural
syntax extension to Fortran 90 [12]. This results in a better performance nhaaeHPF, but not

without some cost. The user is forced to program at a local per-processotevrely forfeiting

some of the benefits of higher-level languages, such as sequential semanticseamindsgtic
execution. Furthermore, by explicitly specifying interprocessor data trangfeogrammers are
not as protected from nondeterminism, race conditions, and deadlock as they mighttigher-
level language. Thus, although Fis more convenient to use than scalar languages with message
passing, it does not raise the level of abstraction to a sufficiently conveeveht
These examples illustrate a tension between providing the benefits of a hifjfaleyeage
and giving the user a low-level view of the execution costs of their algorithniZPln, we strive
to achieve the best of both worlds by providing a powerful and expressive languagechnloxui
level operations such as communication are directly visible to programhrergyh the language's

operators.

3 Introduction to ZPL

ZPL is a portable data-parallel language that has been developed at the WnhvEvEashington.
Its syntax is array-based and includes operators and constructs designed teiexgrdsscribe
common programming paradigms and computations. ZPL has sequential semantits/ttaba
grams to be written and debugged on sequential workstations and then effpréesshpiled for
execution on parallel architectures. ZPL generally outperforms HPF argdwen to be competi-
tive with hand-coded C and message passing [9, 7]. Applications from a varigigcgdlines have
been written using ZPL [6, 3, 13], and the language was released for widespesiadluy 1997.
Supported platforms include the Cray T3D/T3E, Intel Paragon, IBM SP-2, SGIRehadlenge,
clusters of workstations using PVM or MPI, and sequential workstations.

In this section, we give a brief introduction to ZPL concepts that are requinaaderstand this
paper. A more complete presentation of the language is available in the ZPLiRmgra Guide

and Reference Manual [15, 8].

3.1 Regions and Arrays

Theregionis ZPL's most fundamental concept. Regions are index sets through which a program’'s

parallelism is expressed. In their most basic form, regions are simply deassgular set of

indices similar to those used to define arrays in traditional languages. Rediotiales can be

inlined directly into a ZPL program, or given names as follows:

regionR =[1.N ,1.N
BigR =[0..N+1,0..N+1]; 1)
Top =[0 AN

These declarations define three regidRss anN x N index setBIigR is equal toR extended by
an extra row and column in each directidop describes the row just abot®e
Regions have two main roles in ZPL. The first is to declare paralleysrrdhis is done by

referring to the region in a variable's type specifier as follows:

var A: [BigR] double; (2
B: [R] integer;

These declarations define two arrays:an array of doubles whose size is definedBigR; and
B, anNxN integer array. The second use of a region is to specify the indices over whauinay
operation should execute. For example, the following statement incremehtgleanent oA by
its corresponding value & over the index range specified By
[R]A:=A +B; 3)
Regions are ZPL's fundamental source of parallelism. Each region is qatitiacross the
processor set, resulting in the distribution of every array and operatiorsttafined in terms of

that region. The distribution of regions is discussed more fully in Section 4.1.

3.2 The @ Operator

Since regions replace explicit array indexing, ZPL providegsdheperatorto allow elements with
different indices to interact with one another. The @ operator takes anardchgn offset vector
called adirectionand shifts the references to the array by the offset. For example, toeegaab

element ofA with the average of its left and right neighbors, one would use:
[R]A:=A@[0,-1] + A@[0,1]; 4)
Directions are typically named in order to improve a program's readalilay example, the

previous example could have been written:

direction left =[0,-1];
right =[0,1 J; (5)

[R] A := A@left + A@right;
Directions are typically reused throughout a program, so this approach also reduveless in-

dexing mistakes through the selection of meaningful names.

3.3 Reductions and Floods

Reductionsandfloodsare ZPL's operators for combining and replicating array values. The re-
duction operatordp<<) uses a binary operator to combine array elements along one or more
dimensions, resulting in an array slice or scalar value. For example deorike following lines

of code:

[Top] A = +<<[R] A; (6)
[R] DbigA := max<< A,

In the first statement, we usepartial reductionto replace each element in the top rowfoWwith
the sum of the values in its corresponding column. Note that the region scope at the beginning
the statementTpp) specifies the indices to be assigned, while the one supplied to the reduction
operator R) specifies which elements are to be combined. The two regions are compéicadlgta
to determine which dimension(s) should be collapsed. The second statementasaplete
reductionto merge all the elements é&finto a single scalar using the “max” operator. Complete
reductions require only a single region scope since assignment to a scalar does netresgion.

The flood operatorX >) is the dual of a partial reduction. It replicates the values of an array

slice across an array. Consider:

[R] begin
A= >>[Top] A; (7)
B:=>>[11] B;
end;

This code demonstrates the application of a single region sé&p (@ block of statements. In
the first flood, the top row oA is replicated across all the rows Afin regionR. As with partial
reductions, two regions are needed to specify the flood operation: one to indicatarteiadices
of the flood {Top) and the second to specify the destinatiBi). (n the second statement, the value

of the first element oB is replicated across all elementsi®fn regionR.

7

3.4 Gather and Scatter

The gather(<##) andscatter(>##) operators are a means of arbitrarily rearranging data in ZPL.
As arguments, they take a list of arrays that are used to index randomly irgouhze or destina-
tion array (for gather and scatter, respectively). For example, thevioldpcode uses the gather

operator to perform a matrix transposeByfassigning the result ta:

var 1,J: [R] integer;

[R] begin
I :=Index2; (8)
J = Indexl;
A = <##{1,J] B;
end;

This code makes use of the standard ZPL artagexl andIndex2. Index is a constant array
in which every element's value is equal to its index in tfiedimension. Thus, this gather will
replace each element éf with the element oB whose index is specified by the corresponding
values ofl andJ. Although we have sdtandJ to perform a transpose in this example, in general
they can be used to specify any permutation or rearrangement of an arfags. va

These operators form a good sampling of the various types available to the ZPL pmogram

In the next section we will reason about their implementation costs and WY&Ipérformance.

4 ZPL's Performance Model

The performance of a ZPL program is dependent on three criteria: its scalamparice, its con-
currency, and its interprocessor communication. ZPL programs are compileastarCintermedi-
ate format, so its scalar performance is dictated heavily by C's pafarenmodel. Concurrency
and interprocessor communication are both dependent on how ZPL regions, arrays|arsdse

distributed across the processor set.

4.1 ZPL's Data Distribution Scheme

The key to ZPL's WYSIWYG performance model lies in its region distrdouinvariant, which
constrains hownteracting regionsare partitioned across the processor mesh. Two regions are

considered to be interacting if they are both used within a single stateentet, directly (using a

8

region scope) or indirectly (by referring to an array declared over one oéghens). For example,

in the code fragments of SectionBigR andR would be considered to be interacting due to the
use ofA (declared oveBigR) within the scope oR in code fragment 3. In additiofpp andR
interact due to their uses in the partial reduction and flood statementgmdrds 6 and 7. Thus
all three regions are interacting.

The ZPL language dictates that interacting regions must be distributed@sla-alignedash-
ion. Being mesh-aligned means that if twadimensional regions are partitioned across a logical
n-dimensional processor mesh, both regions' slices with indexdimensiond will be mapped
to the same processor mesh shda dimensiond. For example, sincR andTop are interacting,
they must be mesh-aligned, and therefore colunoh Top must be distributed across the same
processor column as colunif R. Moreover, mesh-alignment implies that elemgnj) of two
interacting regions will be located on the same processor. Thus, each elarRenill be located
on the same processor as its corresponding elemdigR. Note that using a blocked, cyclic, or
block-cyclic partitioning scheme for the bounding region of a set of interacting regauses the
regions to be mesh-aligned. Our ZPL compiler uses a blocked partitioning schemiaubly, dad
for simplicity we will assume that scheme for the remainder of this paper.

Once regions are partitioned among the processors, each array is allodatgdhessame
distribution as its defining region. Array operations are computed on the processatasing the
elements in the relevant region scopes. Thus, region partitioning resuttdydinghe concurrency
aspect of ZPL's performance model.

One final characteristic of ZPL's data distribution scheme is thatrszaliables are replicated
across processors. Coherency is maintained either through redundant computatiosdilee,
or interprocessor communication when not.

It might be argued that ZPL's data distribution scheme is too restriébr@ng programmers to
formulate their problems in terms that are amenable to the mesh-alignnmenpf@i Alternatively,
ZPL could allow arbitrary array alignment and indexing. In this scenario,dh@tunication cost
of a statement would be a function of its data access pattern and the alignmsraroays. This

model is complicated by the fact that a single source-level aergy & formal parameter) may refer

to a number of distinct arrays during execution, each with its own alignmentnechigstimating
performance in such a scheme is complex because communication is not manifessource
code, and the analysis required to locate and evaluate it requires looking morkydgloda the
statement level. In contrast, ZPL's communication costs are dependent otilg operations
within a statement. These costs are evaluated qualitatively in theseetxdon and experimentally

in Section 5.

4.2 Qualitative Evaluation of Operators

Once ZPL's data distribution scheme is understood, the relative cost of itg@sdsecomes read-
ily apparent. For example, in the element-wise addition and assignment of egpheeint 3, we
know that corresponding elements of A and B are assigned to the same processorefnockthe
communication is required to complete this operation. By this same reasoh#fgladtatements
that use only assignment, traditional operators, and function calls willasipnde communication-
free. Communication can only be incurred when operators specific to ZPL ateRus¢ghermore,
the cost of these communications can be estimated based on what we know abouittbripgrt

scheme.

The @ operator. Since the @ operator is used to shift an array's references, interagtiiyg a
values are no longer guaranteed to reside on the same processor. Thereforte;pointcommu-
nication is required to transfer remote values to a processor's locabmeRor example, in the
case of a blocked decomposition, the statement in code fragment 4 would reqhingreaessor
to exchange a column of data with its neighboring processors in its row. Since ther@oope
generally requires such communication, the programmer can expect that éerapces with @'s

will tend to be more expensive than normal array references.

Floods and Reductions. Flooding replicates values along one or more dimensions of an array.
Since the region distribution invariant guarantees that array slicesyd to processor slices, this
implies that flooding can be achieved by broadcasting values to the procesduorsthét appro-

priate slice. For example, the first flood in code fragment 7 requires thajpeacbssor owning a

10

block of Top to broadcast its relevant values Afto the processors in its column. Similarly, the
second statement requires the processor with the first element of B to brioticaalue to all
other processors. Once the data is received, it can be replicated acrpssciesor's local block
of values. Due to the fact that broadcasts become more expensive as the number sdopsoce
grows, we can expect the cost of flooding to increase similarly.

Partial reductions are the dual of flooding, so they will be implemented by combiningsva
along a processor slice, placing the result at the appropriate procesgouging a binary com-
bining tree). Full reductions are similar, but also require a broadcasptiwate the resulting
scalar value across all processors. Since reductions have communicatesngttat are similar
to flooding, we expect them to scale in similar ways, but to be more expensive theeatdditional

operations required to combine values.

Gathers and Scatters. Scatters and gathers are used to express arbitrary data movement and
therefore tend to move larger volumes of data in less regular communicatiemsa They will

tend to require more communication due to the fact that the source, target, axidgnaeays are

all distributed across processors. Performance is further impacted tgdhe contention resulting

from the number of arrays needed to express the operation and the random accessglidtath r

in the source or destination array. As a result of all of these factors, thegpnoggr can expect

gathers and scatters to be the most expensive operation described in this paper.

Other Operators. ZPL contains additional operators not described hereiy, (vraps, reflects,
and full and partial scans). Although it could be enlightening to discuss each ofithteinm, the
more important point is thisknowing what an operator does and being familiar with ZPL's data
distribution scheme, it is possible for a programmer to qualitatively askessammunication style
required by any operator as well as to roughly estimate its performance impathis way, the
communication implicitin a ZPL program is visible to programmers without burdgtiiem with

the task of explicitly specifying the data transfer. What they see is whaggte

11

5 Experiments

In this section, we experimentally demonstrate the effectiveness of the&formance model.
In the first experiment, we measure the performance of a number of ZPL operatiocsrapdre
the results to our qualitative analysis. In the second experiment, we shothéhaburce-level
evaluations of two matrix multiply algorithms can accurately predict tiedative performance.
Both experiments were run on four different parallel machines: the Cray T8E5&I Power
Challenge, the IBM SP-2, and the Intel Paragon. All interprocessor communieaefficiently
implemented using the communication libraries of each machine: SHMEM on3BeMPI on

the Power Challenge and the SP-2, and NX on the Paragon.

5.1 Performance of ZPL Operations

Figure 5.1 shows the measured performance of selected ZPL array operatragscagy, array
addition, translation using the @ operator, flooding, partial reduction, full reductidpermuta-
tion. Each graph shows the execution times of the operations on three processor abofiguf
different sizes. Each column of graphs represents a particular machine,eabh row represents
the number of elements 8f assigned teachprocessorR is scaled in this way to maintain similar
cache effects and data transfer sizes as the number of processors indiedseblat the running
time of a program that scales perfectly will therefore be constant acrdesedif configurations.
By comparing values within a graph, along a column, or along a row, one can evaluafPhts
operators scale with the number of processors and problem size, as well as hakleptireir
performance is across architectures.

Although countless observations could be made from these graphs, we will give just a fe
to highlight performance issues for each operator that corroborate our analysih&qrevious
section. To begin with, the WYSIWYG model indicates that the first two statés require no
communication and should therefore scale perfectly as the number of processesisésc Look-
ing over the graphs, one can see that this is true in all cases.

Comparing the statement with the @ operation to the array assignment, thatsegends to be

more expensive as expected, due to the required communication. As the problemgeihsg the

12

milliseconds

10 x 10

milliseconds

50 x 50

0.50

0.00
4.00

3.00

2.00

milliseconds

1.00

100 x 100

0.00

IBM SP-2 Intel Paragon SGI Power Challenge Cray T3E
1.50 1.00 0.30
0.75
1.00 0.20
0.50
0.50 0.10
I 0.25
0.00 0.00 rﬂ_i 0.00
2.50 3.00 0.30
2.00
2.00 0.20
1.50
1.00
1.00 0.10
0.50
0.00 0.00 0.00
8.00 12.00 1.50
10.00
6.00
8.00 1.00
4.00 6.00
4.00 0.50
2.00
2.00
0.00 0.00 0.00
x1 2x2 4x4 x1 2x2 4x4 x1 2x2 3x3 x1 4x4 8x8
processor configuration processor configuration processor configuration processor configuration
L] /T | | L1 / |
[RIA:=B [RIA:= A+B [R] A := B@south [RIA:=>>[Top] B [Top] A :=+<<[R] B [R] sum:=+<< B [R] A :=>##[1,J] B

Figure 1. Measured performance of ZPL operations. Each graph shows the ex¢ouésmon
three processor configurations. Each column of graphs represents a machine, anwveaphe-
sents a per-processor problem size.

time required to perform th&? assignments tends to dominate the time spent in communication,

reducing the performance gap between the two assignment statements.

As predicted, the flood operator's performance also becomes slower as the numioeesf

sors increases. On the T3E, where 64 processors are available, note thabpleea®@®r's perfor-

mance levels off at 16 processors, while the flood continues to become more exp&hsvies

our predictions perfectly since implementing an @ requires a constant amount otgpmitit

communication per processor while the broadcasts required to implement flood cdotigee

more expensive as the number of processors grows.

Comparing partial and full reductions, we see that the more expensive operatoermsldat on

the problem size and number of processors. On the smaller problem sizes, contioiische

dominant factor and the full reduction is generally more expensive since it requiveoadcast.

However, on larger problem sizes, the number of additions required to perforria patuction

13

[R] begin

region R =[1..N,1..N]; fori:=2toNdo
direction right = [0,1]; [right of R] wrap A;
below = [1,0]; [i..N,1..N] A := A@right;
var A,B,C:[R] double; [below of R] wrap B;
[1..N,i..N] B := B@below;
Declarations for NxN Matrix Multiply end;
C:=AxB;
fori:=2to Ndo
[right of R] wrap A;
[R] begin A = A@right;
C:=0.0; [below of R] wrap B;
fori:==1to Ndo B := B@below;
C +=(>>[1..N,i] A) = (>>[i,1..N] B); C+=AxB;
end; end;
end; end,
SUMMA Matrix Multiply Cannon's Matrix Multiply

Figure 2: Two algorithms for Matrix Multiplication in ZPL.

tends to outweigh the extra communication of the full reduction, making it the more expens
operator.

Finally, as predicted, the scatter operation consistently proves to béagtly more expen-
sive than the other operators, generally costing at least an order of magnituel¢harothe next

most expensive operator.

5.2 Matrix Multiply

Although evaluating the performance of individual ZPL statements is instrytcheereal test of
the WYSIWYG performance model is in evaluating entire algorithms. In Figusge show two
algorithms for matrix-matrix multiplication, SUMMA [16] and Cannon's Algoritfzh SUMMA

is considered to be the most scalable of portable parallel matrix multipircalgorithms. It
iteratively floods a column of matrix A and a row of matrix B, accumulatihgirt product in
C. Cannon's algorithm skews the A and B matrices as an initializationastgghen iteratively
performs cyclic shifts of A and B, multiplying them and accumulating into the @imaThe

skewing and cyclic shifts are achieved using ZRAdap operator within arof region— another

14

IBM SP-2 Intel Paragon SGI Power Challenge Cray T3E

0.20 0.05 0.02 0.02

SUMMA
o015 0.04
i Cannon

0.03

0.02

0.05

0.01
0.00 0.00 0.00 0.00
1.00 1.20 0.20 0.50

loséﬂl%so

505%0550

0.00 0.00 0.00 0.00

3.00 6.00 0.75

2.00 4.00 0.50

1.00 2.00 0.25

100,100

1.00

0.00 0.00 0.00 0.00
x1 2x2 4x4 Ix1 2x2 4x4 Ix1 2x2 3x3 x1 4x4 8x8

processor configuration processor configuration processor configuration processor configuration

Figure 3: Peformance of SUMMA and Cannon's algorithm for matrix multiplicaicdfRL. Each
graph shows the execution times on three processor configurations. Each colunphsfrggae-
sents a machine, and each row represents a per-processor problem size.

form of point-to-point communication in ZPL.

Analyzing these algorithms asymptotically, we see that they both pefgiv¥) computation
andO(N) communication. However, looking at the communication incurred by each program, we
can determine that they are not equal. The SUMMA algorithm is realized asinjpods while
Cannon's algorithm requirdsV cyclic shifts. Given that floods and shifts are similar in cost, we
can guess that SUMMA should be the better algorithm.

To test our hypothesis, we ran both algorithms on the same four machines for g obpedib-
lem sizes (once again scaling the problem to maintain a constant amount of dptagessor).
Figure 5.2 shows our results and verifies that SUMMA is faster than Cannon'#faigan all
cases. Performing the same experiment in HPF, Ngo demonstrated that na ibriytually im-
possible to predict the performance of these algorithms by looking at the HPF sauraksdithat
neither algorithm consistently outperforms the other across all compilers [PQ]sZVYSIWYG

performance model makes both source-level evaluation and portable perforanaadity.

15

5.3 Discussion

It should be noted that, as in the sequential realm, ZPL's performance model dgesddekact
information about a program's running time. However, it does allow a progranenter aware
of the implications of their implementation decisions by making the mapping of thde to a
parallel machine clear. As with sequential languages, a programmer' imttan be undermined
by the complexity of modern machines and the impact of compiler optimizategsgipelining
communication, removing redundant communications). However, as in the sequantdlwe
expect that ZPL's cues will be invaluable to programmers by allowing theseg¢dhe machine

through the language.

6 Conclusions and Future Work

A language's performance model gives programmers a rough understanding of a code's perfor-
mance, facilitating the selection between alternative implementat Though particularly im-
portant in the parallel domain — where the cost of language features may vatly,ggeg local
versus remote memory access — ZPL is the first parallel programming langupgesent a per-
formance model distinct from an implementing machine. Not only can programmwvedisaige a
code's approximate cost, they may do it simply, for they have a clear understandiog each
language feature is mapped to the underlying hardware via the CTA machine model.eTdali w
ZPL's WYSIWYG performance model. We have given a qualitative argument oftianguage
realizes this and experimentally verified that a diverse collectionrmaflehmachines respect it.

In future work we will extend the ZPL language to handle irregular and sparse prabldma

challenge will be to do so while preserving ZPL's WYSIWYG performance model.

References

[1] Guy E. Blelloch. Programming parallel algorithmSommunications of the ACN89(3):85—
97, March 1996.

[2] L. F. Cannon.A Cellular Computer to Implement the Kalman Filter Algorith®PhD thesis,
Montana State University, 1969.

16

[3] Marios D. Dikaiakos, Calvin Lin, Daphne Manoussaki, and Diana E. Woodward. The
portable parallel implementation of two novel mathematical biology algosttmZPL. In
Ninth International Conference on Supercomputib@95.

[4] Richard Friedman, John Levesque, and Gene Wagenlbi@tinan Parallelization Handbook,
Preliminary Edition Applied Parallel Research, April 1995.

[5] High Performance Fortran Forurhligh Performance Fortran Specification Version 2Jan-
uary 1997.

[6] E Christopher Lewis, Calvin Lin, Lawrence Snyder, and George Turkiyyah. Alplerparal-
lel n-body solver. In D. Bailey, P. Bjorstad, J. Gilbert, M. MascagniSBareiber, H. Simon,
V. Torczon, and L. Watson, editoBroceedings of the Seventh SIAM Conference on Parallel
Processing for Scientific Computingages 331-336. SIAM, 1995.

[7] C. Lin, L. Snyder, R. Anderson, B. Chamberlain, S. Choi, G. Forman, E. Lewd W. D.
Weathersby. ZPL vs. HPF: A comparison of performance and programming stglenidal
Report 95-11-05, Department of Computer Science and Engineering, University of Wash-
ington, 1995.

[8] Calvin Lin. ZPL language reference manual. Technical Report 94-10—-06, Department of
Computer Science and Engineering, University of Washington, 1994.

[9] Calvin Lin and Lawrence Snyder. SIMPLE performance results in ZiLKdshav Pingali,
Uptal Banerjee, David Gelernter, Alexandru Nicolau, and David Padua, gdiforkshop on
Languages and Compilers for Parallel Computipgges 361-375. Springer-Verlag, 1994.

[10] Ton A. Ngo.The Role of Performance Models in Parallel Programming and Langu&je3
thesis, University of Washington, Department of Computer Science and Engindéd8yy,

[11] Ton A. Ngo, Lawrence Snyder, and Bradford L. Chamberlain. Portable penfoera data
parallel languagedo appear in Supercomputing 1999ovember 1997.

[12] Robert W. Numrich and Jon L. Steidel. Simple parallel extensions todfo@0. In8th SIAM
Conference on Parallel Processing for Scientific Compytigrch 1997.

[13] Wilkey Richardson, Mary Bailey, and William H. Sanders. Using ZBldévelop a parallel
Chaos router simulator. K996 Winter Simulation Conferend@ecember 1996.

[14] Lawrence Snyder. Experimental validation of models of parallel computatigh.Hofmann
and J. van Leeuwen, editotsgcture Notes in Computer Science, Special Volume, Jidfes
78-100. Springer-Verlag, 1995.

[15] Lawrence SnydeiThe ZPL Programmer's Guidé/lay 1996.

[16] Robert van de Geijn and Jerrell Watts. SUMMA: Scalable universfiramultiplication
algorithm. Technical Report TR-95-13, University of Texas, Austin, Texas| Ap@5.

17

