
ZPL's WYSIWYG� Performance Modely

Bradford L. Chamberlain Sung-Eun Choi E Christopher Lewis

Calvin Linz Lawrence Snyder W. Derrick Weathersby

University of Washington, Seattle, WA 98195-2350 USA
zUniversity of Texas, Austin, TX 78712 USA

zpl-info@cs.washington.edu

Abstract

ZPL is an array language designed for high performance scientific and engineering com-
putations. Unlike other parallel languages, ZPL is foundedon a machine model (CTA) distinct
from any implementing hardware. The machine model, which abstracts contemporary parallel
computers, makes it possible to correlate ZPL programs withmachine behavior. Using this
association, programmers can know approximately how code will perform on a typical par-
allel machine, allowing them to make informed decisions between alternative programming
solutions.

This paper describes ZPL's syntactic cues to the programmerwhich convey performance
information. Thewhat-you-see-is-what-you-get(WYSIWYG) characteristics of ZPL opera-
tions are illustrated on four machines: the Cray T3E, IBM SP-2, SGI Power Challenge and
Intel Paragon. Additionally, the WYSIWYG performance model is used to evaluate two algo-
rithms for matrix multiplication, one of which is considered to be the most scalable of portable
parallel solutions. Experiments show that the performancemodel correctly predicts the faster
solution on all four platforms for a range of problem sizes.

1 Introduction

High-level programming languages offer an expressive and portable means of implementing al-

gorithms. They spare the programmer the burden of coding in assembly language and allow the

resulting program to be effortlessly recompiled on different compilers and architectures. Yet with-

out a well-defined performance model that indicates how language constructs are mapped to the

target machine, the advantages of a high-level programming language are diminished. With no

�What You See Is What You Get
yThis research was supported by DARPA Grant N00014-92-J-1824, AFOSRGrant E30602-97-1-0152, and a grant

of HPC time from the Arctic Region Supercomputing Center.

1



guidelines as to the relative costs of language features, programmers have little basis on which to

make implementation choices. The lack of a performance model also means thata program which

executes efficiently on one platform may suffer significant performance degradation on other plat-

forms, since there are no guarantees as to how the language will be implemented.

Performance models are well-understood for popular sequential languages such as C andFor-

tran. In the parallel realm, there is a need for similar models to account for the complex issues

related to running on multiple processors. Yet performance models for parallellanguages have

received little attention. In this paper, we present the performance model for ZPL, a portable data-

parallel language whose design goals included presenting users with a clear picture of the costs

involved in their algorithms. This is in stark contrast with languages suchas High-Performance

Fortran whose source code gives very little indication of how a program will perform on any par-

ticular machine or compiler.

During program design, programmers often use asymptotic analysis to decide betweenvarious

algorithmic choices. However, even after a specific algorithm is selected, second-order imple-

mentation details must still be considered to achieve optimal performance.For instance, consider

the following C code fragments that add a pair of 2D arrays, as an example of how a language's

performance model helps the programmer make such implementation decisions.

const int N = 1000;
double A[N][N], B[N][N], C[N][N];
int i, j;

for (i=0; i<N; i++) f for (j=0; j<N; j++) f
for (j=0; j<N; j++) f for (i=0; i<N; i++) f

C[i][j] = A[i][j] + B[i][j]; C[i][j] = A[i][j] + B[i][j];
g g

g g

Implementation Choice 1 Implementation Choice 2

Although these fragments are algorithmically and asymptotically equivalent,they perform differ-

ently due to the way C's row-major array allocation policy interacts with the caching mechanisms

of contemporary architectures. Thus, C's performance model dictates that the first implementation

choice is preferable because it will traverse the arrays in an order that respects the memory hier-

archy. One might argue that a sophisticated optimizing compiler might reorder the loops of the

2



second fragment. However, relying on such an optimization makes the code's performance less

portable. Thus, the first implementation choice remains thecorrect choice for C and has there-

fore become the de facto standard. In contrast, Fortran lays arrays out in columnmajor order,

and Fortran programmers therefore choose the second style in their programs. Other aspects of

both languages are subject to similar evaluation: parameter passing mechanisms, procedure call

overhead, library routines, etc.

It should be noted that these tradeoffs are determined by the virtual machine model used by a

language's compilers and, to a lesser degree, the actual machine on which the program is running.

To a large extent, the successes of Fortran and C are due to the clear mapping that exists between the

languages and the von Neumann machine model, which forms a reasonable description of modern

uniprocessors. This ability to “see” an accurate picture of the machine through the language is

the most crucial characteristic of a good performance model. Note that although themodel will

not specify an exact cost for its operators and cannot be used to determine the running time of a

program, it nevertheless helps programmers by giving them a rough sense of the consequences of

their implementation choices.

In the realm of parallel languages, programmers would like similar performance models on

which to base algorithmic decisions. In addition to the standard concerns inherited from the se-

quential domain, parallel language performance models need to emphasize the cost of interpro-

cessor data transfer, since communication can have a significant impact on theperformance of

parallel computations. ZPL achieves this by using the CTA parallel machine model [14] as the

basis for its performance model. The CTA empahsizes data locality and accurately models con-

temporary parallel machines. ZPL's performance model has the additional benefitof ensuring that

every operation which requires communication is visible to the programmer at the source level.

We affectionately refer to this property as ZPL'sWYSIWYGperformance model.

The rest of the paper is organized as follows. In the next section, we summarizethe perfor-

mance models of various parallel languages. In Section 3 we provide a brief introduction to ZPL,

and in Section 4 we describe its performance model. Section 5 contains experiments designed to

validate our performance model. We conclude in Section 6.

3



2 Related Work

One method of parallel programming is to use a scalar language such as C or Fortran,combined

with message passing libraries such as PVM or MPI. This approach has an implicit performance

model in the sense that programmers are aware of where communication takes place, since they

must specify it explicitly. However, coding at this low level is tedious and error-prone, motivating

the existence of higher-level parallel programming languages.

In the arena of higher-level parallel languages, NESL is a language with a well-defined perfor-

mance model [1]. It uses a work/depth model to calculate asymptotic bounds for the execution time

of NESL programs on parallel computers. Although this model fits NESL's functional paradigm

well and allows users to make coarse-grained algorithm decisions, it reveals very little about the

lower-level impact of one's implementation choices and how they will be implemented on the tar-

get machine. As an example, the cost of interprocessor communication is considered negligible in

the NESL model and is therefore ignored entirely.

The most prevalent parallel language, High Performance Fortran [5], suffersa complete lack of

a performance model. As a result, programmers must re-tune their program for each compiler and

platform that they use, neutralizing any notion of portable performance. Ngo demonstrates that this

lack of a performance model results in erratic execution times when compiling HPF programs using

different compilers on the IBM SP-2 [11]. One of the biggest causes of ambiguity inthe perfor-

mance of HPF programs is the fact that communication is completely hidden from theuser, making

it difficult to evaluate different implementation options [4]. As an example,Ngo compares matrix

multiply algorithms written in HPF, demonstrating that there is neither any source-level indication

of how they will perform, nor does either algorithm consistently outperform the other.[10]. By

defining a formal performance model to which all HPF compilers must adhere, thisproblem could

be alleviated.

In response to HPF's hidden and underspecified communication model, F�� was developed

to make communication explicit and highly visible to the programmer using a simpleand natural

syntax extension to Fortran 90 [12]. This results in a better performance model than HPF, but not

without some cost. The user is forced to program at a local per-processor level,thereby forfeiting

4



some of the benefits of higher-level languages, such as sequential semantics and deterministic

execution. Furthermore, by explicitly specifying interprocessor data transfers, programmers are

not as protected from nondeterminism, race conditions, and deadlock as they might be ina higher-

level language. Thus, although F�� is more convenient to use than scalar languages with message

passing, it does not raise the level of abstraction to a sufficiently convenientlevel.

These examples illustrate a tension between providing the benefits of a high-level language

and giving the user a low-level view of the execution costs of their algorithm. InZPL, we strive

to achieve the best of both worlds by providing a powerful and expressive language in which low-

level operations such as communication are directly visible to programmers through the language's

operators.

3 Introduction to ZPL

ZPL is a portable data-parallel language that has been developed at the University of Washington.

Its syntax is array-based and includes operators and constructs designed to expressively describe

common programming paradigms and computations. ZPL has sequential semantics that allow pro-

grams to be written and debugged on sequential workstations and then effortlessly recompiled for

execution on parallel architectures. ZPL generally outperforms HPF and hasproven to be competi-

tive with hand-coded C and message passing [9, 7]. Applications from a variety ofdisciplines have

been written using ZPL [6, 3, 13], and the language was released for widespread use in July 1997.

Supported platforms include the Cray T3D/T3E, Intel Paragon, IBM SP-2, SGI Power Challenge,

clusters of workstations using PVM or MPI, and sequential workstations.

In this section, we give a brief introduction to ZPL concepts that are required to understand this

paper. A more complete presentation of the language is available in the ZPL Programmer's Guide

and Reference Manual [15, 8].

3.1 Regions and Arrays

Theregion is ZPL's most fundamental concept. Regions are index sets through which a program's

parallelism is expressed. In their most basic form, regions are simply denserectangular set of

5



indices similar to those used to define arrays in traditional languages. Region definitions can be

inlined directly into a ZPL program, or given names as follows:

region R = [1..N ,1..N ];
BigR = [0..N+1,0..N+1]; (1)
Top = [0 ,1..N ];

These declarations define three regions:R is anN � N index set;BigR is equal toR extended by

an extra row and column in each direction;Top describes the row just aboveR.

Regions have two main roles in ZPL. The first is to declare parallel arrays. This is done by

referring to the region in a variable's type specifier as follows:

var A: [BigR] double; (2)
B: [R] integer;

These declarations define two arrays:A, an array of doubles whose size is defined byBigR; and

B, anN�N integer array. The second use of a region is to specify the indices over which an array

operation should execute. For example, the following statement increments each element ofA by

its corresponding value ofB over the index range specified byR:

[R] A := A + B; (3)

Regions are ZPL's fundamental source of parallelism. Each region is partitioned across the

processor set, resulting in the distribution of every array and operation that is defined in terms of

that region. The distribution of regions is discussed more fully in Section 4.1.

3.2 The @ Operator

Since regions replace explicit array indexing, ZPL provides the@ operatorto allow elements with

different indices to interact with one another. The @ operator takes an arrayand an offset vector

called adirectionand shifts the references to the array by the offset. For example, to replace each

element ofA with the average of its left and right neighbors, one would use:

[R] A := A@[0,–1] + A@[0,1]; (4)

Directions are typically named in order to improve a program's readability. For example, the

previous example could have been written:

6



direction left = [0,–1];
right = [0,1 ]; (5)

[R] A := A@left + A@right;

Directions are typically reused throughout a program, so this approach also reducescareless in-

dexing mistakes through the selection of meaningful names.

3.3 Reductions and Floods

Reductionsandfloodsare ZPL's operators for combining and replicating array values. The re-

duction operator (op<<) uses a binary operator to combine array elements along one or more

dimensions, resulting in an array slice or scalar value. For example, consider the following lines

of code:

[Top] A := +<<[R] A; (6)
[R] bigA := max<< A;

In the first statement, we use apartial reductionto replace each element in the top row ofA with

the sum of the values in its corresponding column. Note that the region scope at the beginningof

the statement (Top) specifies the indices to be assigned, while the one supplied to the reduction

operator (R) specifies which elements are to be combined. The two regions are compared statically

to determine which dimension(s) should be collapsed. The second statement uses acomplete

reductionto merge all the elements ofA into a single scalar using the “max” operator. Complete

reductions require only a single region scope since assignment to a scalar does not require a region.

The flood operator (>>) is the dual of a partial reduction. It replicates the values of an array

slice across an array. Consider:

[R] begin
A := >>[Top] A; (7)
B := >>[1,1] B;

end;

This code demonstrates the application of a single region scope (R) to a block of statements. In

the first flood, the top row ofA is replicated across all the rows ofA in regionR. As with partial

reductions, two regions are needed to specify the flood operation: one to indicate the source indices

of the flood (Top) and the second to specify the destination (R). In the second statement, the value

of the first element ofB is replicated across all elements ofB in regionR.

7



3.4 Gather and Scatter

Thegather(<##) andscatter(>##) operators are a means of arbitrarily rearranging data in ZPL.

As arguments, they take a list of arrays that are used to index randomly into thesource or destina-

tion array (for gather and scatter, respectively). For example, the following code uses the gather

operator to perform a matrix transpose ofB, assigning the result toA:

var I,J: [R] integer;
[R] begin

I := Index2; (8)
J := Index1;
A := <##[I,J] B;

end;

This code makes use of the standard ZPL arraysIndex1 and Index2. Indexi is a constant array

in which every element's value is equal to its index in thei

th dimension. Thus, this gather will

replace each element ofA with the element ofB whose index is specified by the corresponding

values ofI andJ. Although we have setI andJ to perform a transpose in this example, in general

they can be used to specify any permutation or rearrangement of an array's values.

These operators form a good sampling of the various types available to the ZPL programmer.

In the next section we will reason about their implementation costs and WYSIWYG performance.

4 ZPL's Performance Model

The performance of a ZPL program is dependent on three criteria: its scalar performance, its con-

currency, and its interprocessor communication. ZPL programs are compiled to Cas an intermedi-

ate format, so its scalar performance is dictated heavily by C's performance model. Concurrency

and interprocessor communication are both dependent on how ZPL regions, arrays, and scalars are

distributed across the processor set.

4.1 ZPL's Data Distribution Scheme

The key to ZPL's WYSIWYG performance model lies in its region distribution invariant, which

constrains howinteracting regionsare partitioned across the processor mesh. Two regions are

considered to be interacting if they are both used within a single statement,either directly (using a

8



region scope) or indirectly (by referring to an array declared over one of theregions). For example,

in the code fragments of Section 3,BigR andR would be considered to be interacting due to the

use ofA (declared overBigR) within the scope ofR in code fragment 3. In addition,Top andR

interact due to their uses in the partial reduction and flood statements in fragments 6 and 7. Thus

all three regions are interacting.

The ZPL language dictates that interacting regions must be distributed in amesh-alignedfash-

ion. Being mesh-aligned means that if twon-dimensional regions are partitioned across a logical

n-dimensional processor mesh, both regions' slices with indexi in dimensiond will be mapped

to the same processor mesh slicep in dimensiond. For example, sinceR andTop are interacting,

they must be mesh-aligned, and therefore columni of Top must be distributed across the same

processor column as columni of R. Moreover, mesh-alignment implies that element(i; j) of two

interacting regions will be located on the same processor. Thus, each elementof R will be located

on the same processor as its corresponding element inBigR. Note that using a blocked, cyclic, or

block-cyclic partitioning scheme for the bounding region of a set of interacting regions causes the

regions to be mesh-aligned. Our ZPL compiler uses a blocked partitioning scheme by default, and

for simplicity we will assume that scheme for the remainder of this paper.

Once regions are partitioned among the processors, each array is allocated using the same

distribution as its defining region. Array operations are computed on the processorscontaining the

elements in the relevant region scopes. Thus, region partitioning results directly in the concurrency

aspect of ZPL's performance model.

One final characteristic of ZPL's data distribution scheme is that scalar variables are replicated

across processors. Coherency is maintained either through redundant computation whenpossible,

or interprocessor communication when not.

It might be argued that ZPL's data distribution scheme is too restrictive,forcing programmers to

formulate their problems in terms that are amenable to the mesh-alignment principle. Alternatively,

ZPL could allow arbitrary array alignment and indexing. In this scenario, the communication cost

of a statement would be a function of its data access pattern and the alignment of its arrays. This

model is complicated by the fact that a single source-level array (e.g., a formal parameter) may refer

9



to a number of distinct arrays during execution, each with its own alignment scheme. Estimating

performance in such a scheme is complex because communication is not manifest in the source

code, and the analysis required to locate and evaluate it requires looking more globally than the

statement level. In contrast, ZPL's communication costs are dependent only onthe operations

within a statement. These costs are evaluated qualitatively in the nextsection and experimentally

in Section 5.

4.2 Qualitative Evaluation of Operators

Once ZPL's data distribution scheme is understood, the relative cost of its operators becomes read-

ily apparent. For example, in the element-wise addition and assignment of code fragment 3, we

know that corresponding elements of A and B are assigned to the same processor and therefore no

communication is required to complete this operation. By this same reasoning all ZPL statements

that use only assignment, traditional operators, and function calls will similarly be communication-

free. Communication can only be incurred when operators specific to ZPL are used. Furthermore,

the cost of these communications can be estimated based on what we know about the partitioning

scheme.

The @ operator. Since the @ operator is used to shift an array's references, interacting array

values are no longer guaranteed to reside on the same processor. Therefore, point-to-point commu-

nication is required to transfer remote values to a processor's local memory. For example, in the

case of a blocked decomposition, the statement in code fragment 4 would require each processor

to exchange a column of data with its neighboring processors in its row. Since the @ operator

generally requires such communication, the programmer can expect that array references with @'s

will tend to be more expensive than normal array references.

Floods and Reductions. Flooding replicates values along one or more dimensions of an array.

Since the region distribution invariant guarantees that array slices will map to processor slices, this

implies that flooding can be achieved by broadcasting values to the processors within the appro-

priate slice. For example, the first flood in code fragment 7 requires that eachprocessor owning a

10



block of Top to broadcast its relevant values ofA to the processors in its column. Similarly, the

second statement requires the processor with the first element of B to broadcast the value to all

other processors. Once the data is received, it can be replicated across theprocessor's local block

of values. Due to the fact that broadcasts become more expensive as the number of processors

grows, we can expect the cost of flooding to increase similarly.

Partial reductions are the dual of flooding, so they will be implemented by combining values

along a processor slice, placing the result at the appropriate processor (e.g., using a binary com-

bining tree). Full reductions are similar, but also require a broadcast to replicate the resulting

scalar value across all processors. Since reductions have communication patterns that are similar

to flooding, we expect them to scale in similar ways, but to be more expensive due tothe additional

operations required to combine values.

Gathers and Scatters. Scatters and gathers are used to express arbitrary data movement and

therefore tend to move larger volumes of data in less regular communication patterns. They will

tend to require more communication due to the fact that the source, target, and indexing arrays are

all distributed across processors. Performance is further impacted by thecache contention resulting

from the number of arrays needed to express the operation and the random access of data required

in the source or destination array. As a result of all of these factors, the programmer can expect

gathers and scatters to be the most expensive operation described in this paper.

Other Operators. ZPL contains additional operators not described herein (e.g., wraps, reflects,

and full and partial scans). Although it could be enlightening to discuss each of themin turn, the

more important point is this:Knowing what an operator does and being familiar with ZPL's data

distribution scheme, it is possible for a programmer to qualitatively assess the communication style

required by any operator as well as to roughly estimate its performance impact.In this way, the

communication implicit in a ZPL program is visible to programmers without burdening them with

the task of explicitly specifying the data transfer. What they see is what they get.

11



5 Experiments

In this section, we experimentally demonstrate the effectiveness of the ZPL performance model.

In the first experiment, we measure the performance of a number of ZPL operations andcompare

the results to our qualitative analysis. In the second experiment, we show thatthe source-level

evaluations of two matrix multiply algorithms can accurately predict their relative performance.

Both experiments were run on four different parallel machines: the Cray T3E, the SGI Power

Challenge, the IBM SP-2, and the Intel Paragon. All interprocessor communicationwas efficiently

implemented using the communication libraries of each machine: SHMEM on the T3E, MPI on

the Power Challenge and the SP-2, and NX on the Paragon.

5.1 Performance of ZPL Operations

Figure 5.1 shows the measured performance of selected ZPL array operations: array copy, array

addition, translation using the @ operator, flooding, partial reduction, full reduction, and permuta-

tion. Each graph shows the execution times of the operations on three processor configurations of

different sizes. Each column of graphs represents a particular machine, while each row represents

the number of elements ofR assigned toeachprocessor.R is scaled in this way to maintain similar

cache effects and data transfer sizes as the number of processors increases. Note that the running

time of a program that scales perfectly will therefore be constant across different configurations.

By comparing values within a graph, along a column, or along a row, one can evaluate how ZPL's

operators scale with the number of processors and problem size, as well as how portable their

performance is across architectures.

Although countless observations could be made from these graphs, we will give just a few

to highlight performance issues for each operator that corroborate our analysis from the previous

section. To begin with, the WYSIWYG model indicates that the first two statements require no

communication and should therefore scale perfectly as the number of processors increases. Look-

ing over the graphs, one can see that this is true in all cases.

Comparing the statement with the @ operation to the array assignment, we seethat it tends to be

more expensive as expected, due to the required communication. As the problem set size grows, the

12



IBM SP-2 Intel Paragon SGI Power Challenge Cray T3E
10

 x
 1

0

0.00

0.25

0.50

0.75

1.00

1.25

m
ill

is
ec

on
ds

0.00

0.50

1.00

1.50

0.00

0.25

0.50

0.75

1.00

0.00

0.10

0.20

0.30
50

 x
 5

0

0.00

0.50

1.00

1.50

2.00

2.50

m
ill

is
ec

on
ds

0.00

0.50

1.00

1.50

2.00

2.50

0.00

1.00

2.00

3.00

0.00

0.10

0.20

0.30

10
0 

x 
10

0

1x1 2x2 4x4
processor configuration

0.00

1.00

2.00

3.00

4.00

m
ill

is
ec

on
ds

1x1 2x2 4x4
processor configuration

0.00

2.00

4.00

6.00

8.00

1x1 2x2 3x3
processor configuration

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1x1 4x4 8x8
processor configuration

0.00

0.50

1.00

1.50

[R] A := B [R] A := A+B [R] A := B@south [R] A := >>[Top] B [Top] A := +<<[R] B [R] sum:=+<< B [R] A := >##[I,J] B

Figure 1: Measured performance of ZPL operations. Each graph shows the executiontimes on
three processor configurations. Each column of graphs represents a machine, and eachrow repre-
sents a per-processor problem size.

time required to perform theN2 assignments tends to dominate the time spent in communication,

reducing the performance gap between the two assignment statements.

As predicted, the flood operator's performance also becomes slower as the number ofproces-

sors increases. On the T3E, where 64 processors are available, note that the @operator's perfor-

mance levels off at 16 processors, while the flood continues to become more expensive. This fits

our predictions perfectly since implementing an @ requires a constant amount of point-to-point

communication per processor while the broadcasts required to implement flood continueto get

more expensive as the number of processors grows.

Comparing partial and full reductions, we see that the more expensive operator is dependent on

the problem size and number of processors. On the smaller problem sizes, communication is the

dominant factor and the full reduction is generally more expensive since it requires a broadcast.

However, on larger problem sizes, the number of additions required to perform a partial reduction

13



region R = [1..N,1..N];
direction right = [0,1];

below = [1,0];
var A,B,C:[R] double;

Declarations for N�N Matrix Multiply

[R] begin
C := 0.0;
for i := 1 to N do

C += (>>[1..N,i] A) � (>>[i,1..N] B);
end;

end;

SUMMA Matrix Multiply

[R] begin
for i := 2 to N do

[right of R] wrap A;
[i..N,1..N] A := A@right;
[below of R] wrap B;
[1..N,i..N] B := B@below;

end;
C := A � B;
for i := 2 to N do

[right of R] wrap A;
A := A@right;
[below of R] wrap B;
B := B@below;
C += A � B;

end;
end;

Cannon's Matrix Multiply

Figure 2: Two algorithms for Matrix Multiplication in ZPL.

tends to outweigh the extra communication of the full reduction, making it the more expensive

operator.

Finally, as predicted, the scatter operation consistently proves to be significantly more expen-

sive than the other operators, generally costing at least an order of magnitude more than the next

most expensive operator.

5.2 Matrix Multiply

Although evaluating the performance of individual ZPL statements is instructive, the real test of

the WYSIWYG performance model is in evaluating entire algorithms. In Figure2, we show two

algorithms for matrix-matrix multiplication, SUMMA [16] and Cannon's Algorithm[2]. SUMMA

is considered to be the most scalable of portable parallel matrix multiplication algorithms. It

iteratively floods a column of matrix A and a row of matrix B, accumulating their product in

C. Cannon's algorithm skews the A and B matrices as an initialization stepand then iteratively

performs cyclic shifts of A and B, multiplying them and accumulating into the C matrix. The

skewing and cyclic shifts are achieved using ZPL'swrap operator within anof region— another

14



IBM SP-2 Intel Paragon SGI Power Challenge Cray T3E

10
 x

 1
0

0.00

0.05

0.10

0.15

0.20

se
co

nd
s

SUMMA

Cannon

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.01

0.02

0.00

0.01

0.02

50
 x

 5
0

0.00

0.20

0.40

0.60

0.80

1.00

se
co

nd
s

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00

0.05

0.10

0.15

0.20

0.00

0.25

0.50

10
0 

x 
10

0

1x1 2x2 4x4
processor configuration

0.00

1.00

2.00

3.00

4.00

se
co

nd
s

1x1 2x2 4x4
processor configuration

0.00

2.00

4.00

6.00

8.00

1x1 2x2 3x3
processor configuration

0.00

0.25

0.50

0.75

1.00

1x1 4x4 8x8
processor configuration

0.00

1.00

2.00

3.00

4.00

5.00

Figure 3: Peformance of SUMMA and Cannon's algorithm for matrix multiplication in ZPL. Each
graph shows the execution times on three processor configurations. Each column of graphs repre-
sents a machine, and each row represents a per-processor problem size.

form of point-to-point communication in ZPL.

Analyzing these algorithms asymptotically, we see that they both performO(N

3

) computation

andO(N) communication. However, looking at the communication incurred by each program, we

can determine that they are not equal. The SUMMA algorithm is realized using2N floods while

Cannon's algorithm requires4N cyclic shifts. Given that floods and shifts are similar in cost, we

can guess that SUMMA should be the better algorithm.

To test our hypothesis, we ran both algorithms on the same four machines for a variety of prob-

lem sizes (once again scaling the problem to maintain a constant amount of data perprocessor).

Figure 5.2 shows our results and verifies that SUMMA is faster than Cannon's algorithm in all

cases. Performing the same experiment in HPF, Ngo demonstrated that not only is it virtually im-

possible to predict the performance of these algorithms by looking at the HPF source, but also that

neither algorithm consistently outperforms the other across all compilers [10]. ZPL's WYSIWYG

performance model makes both source-level evaluation and portable performancea reality.

15



5.3 Discussion

It should be noted that, as in the sequential realm, ZPL's performance model does notyield exact

information about a program's running time. However, it does allow a programmer to be aware

of the implications of their implementation decisions by making the mapping of their code to a

parallel machine clear. As with sequential languages, a programmer's intuition can be undermined

by the complexity of modern machines and the impact of compiler optimizations (e.g., pipelining

communication, removing redundant communications). However, as in the sequentialworld, we

expect that ZPL's cues will be invaluable to programmers by allowing them tosee the machine

through the language.

6 Conclusions and Future Work

A language's performance model gives programmers a rough understanding of a code's perfor-

mance, facilitating the selection between alternative implementations. Though particularly im-

portant in the parallel domain – where the cost of language features may vary greatly, e.g., local

versus remote memory access – ZPL is the first parallel programming languageto present a per-

formance model distinct from an implementing machine. Not only can programmers evaluate a

code's approximate cost, they may do it simply, for they have a clear understandingof how each

language feature is mapped to the underlying hardware via the CTA machine model. This we call

ZPL's WYSIWYG performance model. We have given a qualitative argument of howthe language

realizes this and experimentally verified that a diverse collection of parallel machines respect it.

In future work we will extend the ZPL language to handle irregular and sparse problems. The

challenge will be to do so while preserving ZPL's WYSIWYG performance model.

References
[1] Guy E. Blelloch. Programming parallel algorithms.Communications of the ACM, 39(3):85–

97, March 1996.

[2] L. F. Cannon.A Cellular Computer to Implement the Kalman Filter Algorithm. PhD thesis,
Montana State University, 1969.

16



[3] Marios D. Dikaiakos, Calvin Lin, Daphne Manoussaki, and Diana E. Woodward. The
portable parallel implementation of two novel mathematical biology algorithms in ZPL. In
Ninth International Conference on Supercomputing, 1995.

[4] Richard Friedman, John Levesque, and Gene Wagenbreth.Fortran Parallelization Handbook,
Preliminary Edition. Applied Parallel Research, April 1995.

[5] High Performance Fortran Forum.High Performance Fortran Specification Version 2.0. Jan-
uary 1997.

[6] E Christopher Lewis, Calvin Lin, Lawrence Snyder, and George Turkiyyah. A portable paral-
lel n-body solver. In D. Bailey, P. Bjorstad, J. Gilbert, M. Mascagni, R.Schreiber, H. Simon,
V. Torczon, and L. Watson, editors,Proceedings of the Seventh SIAM Conference on Parallel
Processing for Scientific Computing, pages 331–336. SIAM, 1995.

[7] C. Lin, L. Snyder, R. Anderson, B. Chamberlain, S. Choi, G. Forman, E. Lewis, and W. D.
Weathersby. ZPL vs. HPF: A comparison of performance and programming style. Technical
Report 95–11–05, Department of Computer Science and Engineering, University of Wash-
ington, 1995.

[8] Calvin Lin. ZPL language reference manual. Technical Report 94–10–06, Department of
Computer Science and Engineering, University of Washington, 1994.

[9] Calvin Lin and Lawrence Snyder. SIMPLE performance results in ZPL. In Keshav Pingali,
Uptal Banerjee, David Gelernter, Alexandru Nicolau, and David Padua, editors,Workshop on
Languages and Compilers for Parallel Computing, pages 361–375. Springer-Verlag, 1994.

[10] Ton A. Ngo.The Role of Performance Models in Parallel Programming and Languages. PhD
thesis, University of Washington, Department of Computer Science and Engineering,1997.

[11] Ton A. Ngo, Lawrence Snyder, and Bradford L. Chamberlain. Portable performance of data
parallel languages.to appear in Supercomputing 1997, November 1997.

[12] Robert W. Numrich and Jon L. Steidel. Simple parallel extensions to Fortran 90. In8th SIAM
Conference on Parallel Processing for Scientific Computing, March 1997.

[13] Wilkey Richardson, Mary Bailey, and William H. Sanders. Using ZPL to develop a parallel
Chaos router simulator. In1996 Winter Simulation Conference, December 1996.

[14] Lawrence Snyder. Experimental validation of models of parallel computation.In A. Hofmann
and J. van Leeuwen, editors,Lecture Notes in Computer Science, Special Volume 1000, pages
78–100. Springer-Verlag, 1995.

[15] Lawrence Snyder.The ZPL Programmer's Guide. May 1996.

[16] Robert van de Geijn and Jerrell Watts. SUMMA: Scalable universal matrix multiplication
algorithm. Technical Report TR-95-13, University of Texas, Austin, Texas, April 1995.

17


