
Persistent Programming Languages:

The Best of Both Worlds

Rex Jakobovits

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, Washington 98195

December 9, 1993

Abstract

The integration of databases and programming langauges is being

motivated from two directions. The database community requires a

more
exible and powerful way of modeling the world, whereas the

programming language community wants the convenience of a reli-

able, e�cient means of enabling entities to persist between program

invocations. Traditionally, the query facilities provided to database

users are not computationally complete, precluding arbitrarily com-

plex processing of data. Furthermore, they support only primitive

data types, making them inappropriate for modeling certain real world

applications. Processing must be done o�-line in a host language, but

translation between the database and the language results in an im-

pedence mismatch problem. One solution is to extend an existing

programming language with the notion of persistence, enabling it to

seamlessly interact with the storage manager. This paper is a survey

of such e�orts and the issues involved, focusing primarily on persistent

object-oriented languages.

1

Contents

1 Integrating Databases and Programming Languages 4

1.1 The Programming Language Perspective : : : : : : : : : : : : 4

1.2 The Database Perspective : 4

2 Overcoming the Impedence Mismatch Problem 5

2.1 Milestones in Persistent Programming Langauge Development 6

3 Comparison to Relational Databases 7

4 Case Study: Two Object-Oriented Databases 7

4.1 Transparent Persistence : 8

4.2 Declarative Query Facility : 10

4.3 Collections and Iterators : 11

4.4 Constraints : 12

A Active Databases: Triggers 15

A.1 Once-Only Triggers : 15

A.2 Perpetual Triggers : 16

A.3 Intra-Object vs. Inter-Object Triggers : : : : : : : : : : : : : 16

A.4 Eager vs. Lazy Computation : : : : : : : : : : : : : : : : : : : 17

A.5 Triggers and Constraints in Other Systems : : : : : : : : : : : 17

B Misc. Features of Object-Oriented Database Systems 18

B.1 Mandatory Features : 18

B.2 Optional Features : 19

B.3 Swizzling : 19

B.4 Referential Integrity : 20

B.5 Versioning : 20

C Other Object-Oriented Systems 21

C.1 BETA : 21

C.2 PROCOL : 22

D Constraint-Based Imperative Languages 23

D.1 Constraints and Object Identity : : : : : : : : : : : : : : : : : 23

D.2 Kaleidoscope : 23

2

D.3 Adding Transactions to Kaleidoscope : : : : : : : : : : : : : : 23

D.4 Techniques for Integration: Summary : : : : : : : : : : : : : : 24

E Persistent Prolog: Motivation and Issues 25

E.1 Expert Systems : 25

E.2 Why Prolog Could Use Persistence : : : : : : : : : : : : : : : 26

E.3 Database Interface for Prolog : : : : : : : : : : : : : : : : : : 27

E.4 Translation Between SQL and Prolog : : : : : : : : : : : : : : 27

E.5 Meta-Translation : 29

E.6 MIMER: A Back End to Prolog : : : : : : : : : : : : : : : : : 29

3

1 Integrating Databases and Programming

Languages

The integration of databases and programming langauges is being motivated

from two directions. The database community requires a more
exible and

powerful way of modeling the world, whereas the programming language

community wants the convenience of a reliable, e�cient means of enabling

entities to persist between program invocations.

1.1 The Programming Language Perspective

From the programmer's perspective, implementing the functionality of a

database is no small task. Most programming languages provide some mech-

anism for recording information to disk at the granularity of a �le. Without

a database, much time and e�ort would be spent within applications con-

verting structured entities of the language into a
at, unstructured format

suitable for �le transfer. This is further complicated by the presence of im-

plicit object identity, as pointers between objects must be translated into

explicit ids and recorded so that the corresponding links can be rebuilt.

But a database provides more than just a means of e�ciently storing

and retrieving large volumes of data. It allows concurrent access to data by

multiple programs and users, while guaranteeing data integrity, (i.e. protect-

ing the data from invalid updates via atomic transactions). To provide such

features without a database would require the programmer to use the under-

lying �le system as a locking mechanism. The application programmer would

need to be concerned with the details of physical storage, such as caching

disk updates, maintaining low-level data structures, and supporting recov-

erability in the face of hardware failure. Furthermore, a database provides

a high level interactive query language, which allows simple queries to be

expressed elegantly, and enables the use of indexing capabilities to improve

response time for frequently accessed �elds.

1.2 The Database Perspective

Traditionally, the query facilities provided to database users are not compu-

tationally complete languages, precluding arbitrarily complex processing of

4

data. Furthermore, they support only primitive data types, such as strings,

oats, and integers, which makes it inappropriate for modeling certain real

world applications.

1

The reason for such limitations is that they enable the

system to perform automatic query optimizations which would not be pos-

sible in a more general language. However, if the database user required

more complex processing and modeling, the use of an external programming

language was necessary.

Some systems allowed the user to embed query processing facilities in

a host language by linking with library modules, and calls to the database

were treated like remote procedure calls, where the data was sequentially

marshalled from the database into atomic variables via parameter passing,

and those data types were then converted into the arbitrary data structures

preferred by the language. This was generally ine�cient, and lead to a bot-

tleneck, in which the program is constricted because it has to force it's data

into primitive formats which are perhaps unnatural. This became known as

the impedence mismatch problem, which was analogous to the problem faced

by programmers trying to convert their data structures into a format suitable

for storage in a
at-�le system.

2 Overcoming the ImpedenceMismatch Prob-

lem

One approach for overcoming the impedence mismatch problem is to extend

an existing programming languages with the notion of persistence, enabling it

1

The earliest databases were hierarchical, in which the relationships between data ob-

jects were represented by pointers to disk locations, and the user was required to explictly

traverse access paths through the physical medium. Because the physical details of the

database were not hidden from the user, changing the structure of the data (i.e. adding a

�eld to a record) was di�cult, since the corresponding access paths had to be updated by

the user.

In response to this problem, a new class of databases emerged: the relational database.

In relational systems, the physical details are abstracted away from the user, and replaced

by a logical view of the data. Data is organized into records, which are composed of

logically related data items. Each record (or \tuple") consists of a group of named �elds,

each of which conforms to a basic data type, such as integer,
oat, or string. Records were

grouped together to form tables of data which could be retrieved by the user through a

standard relational query language.

5

to seamlessly interact with an object manager.

2

In such a system, persistent

structures can be directly manipulated by the language, and facilities are

provided to support relational query techniques over sets of data.

2.1 Milestones in Persistent Programming Langauge

Development

The integration of database management facilities with a programming lan-

guage was pioneered in Pascal/R [22], an extension of Pascal designed and

implemented in the mid 1970's. The success of the Pascal/R system demon-

strated that it was possible to extend the type system of a language to

accomodate the relational model. Database schema were represented by a

special tuples type, whose instances were able to persist beyond the lifetime

of a program.

The �rst language to demonstrate uniform persistence was PS-algol.[4].

Whereas persistence in Pascal/R was limited to a subset of the types ex-

pressible in that language, PS-algol allowed all types be declared persistent.

The notion of persistence being orthogonal to type has become an important

feature of modern systems, allowing programmers to apply pre-existing code

to persistent entities with little or no modi�cation.

The �rst object-oriented langauge to be extended with persistence was

Smalltalk in the early 1980's, which lead to the Gemstone system [16]. The

software engineering bene�ts of object-oriented databases make them com-

mercially viable for such CAD tools, o�ce information systems, graphical

information systems, and image processing applications. Soon, numerous

implementations of persistent object-oriented languages began to arise, most

of which were an extension to C++. These systems were mostly experimen-

tal, and varied greatly in their handling of persistence, due to the lack of a

formal model for object-oriented databases. The next section discusses some

emergent properties of these systems.

2

Another approach was to extend the existing relational query language with new

functionality to increase their power and
exibility. Some query languages, such as TEDM,

were enriched by allowing declarative Prolog-style clauses, such as TEDM. Others systems

were given object-oriented properties, such as Iris's Object-SQL, or extensions to INGRES'

QUEL.

6

3 Comparison to Relational Databases

Traditional relational database applications were characterized by a slow,

constant rate of data growth, and infrequent, centralized updates to database

schema. But object-oriented databases tend to involve a much more sporadic

pattern of data creation and schema design. Changes to schema are frequent

and made by multiple users instead of a central database administrator.

Traditional databases allow a small number of atomic, �xed-size data

types, with a large number of instances of each type. In contrast, object-

oriented databases contain an arbitrarily large number of types which are

extremely varied in size and structure (e.g. documents, images, etc.), and

there may be only a few instances of each type. The relationships between

types in a traditional database are mostly simple and �xed, whereas object-

oriented applications are characterized by complex inter-object relationships

which are subject to frequent change.

In relational systems, transactions are �ne-grained and short-lived, sup-

porting strong consistency during concurrent access. However, object-oriented

database applications such as CAD development require transactions to be

long-lived and may involve large portions of the database simultaneously.

Such systems must have a relaxed view of data consistency in order to sup-

port concurrent access.

Relational systems are value oriented, in which relationships between

records are established by having attributes with common values. Object-

oriented langauges are reference oriented, in which relationships are estab-

lished by embedding the identity of one object within another.

Data access in a relational system consists of associative joins within a set-

based, closed algebra. Queries do not involve user-de�ned operations, and

optimization techniques are relatively easy to implement. Object-oriented

applications could bene�t from such a query mechanism, but it is more nat-

ural to access data by navigation, i.e. traversing a path of pointers between

objects.

4 Case Study: Two Object-Oriented Databases

In order to illustrate some of the issues that arise in object-oriented databases,

we will compare the features of two existing systems: ODE, a prototype

7

system designed at AT&T, and ObjectStore, a commercial product from

ObjectDesign. Both are persistent extensions to C++. Both meet all the re-

quirements described in the previous section, providing facilities for creating

and manipulating peristent objects, versioning, and associating constraints

and triggers with objects.

4.1 Transparent Persistence

One of the main goals of Objectstore was to provide a uni�ed programmatic

interface, in which persistence is truly orthogonal to type. From the pro-

grammer's perspective, there is no di�erence between persistent and volatile

objects. Dereferencing pointers is syntactically the same in both cases. Vari-

ables do not need to have their type declarations changed when persistent

objects are used. Thus, C++ code written for transient objects can be used

directly on persistent objects with little or no modi�cation. A pointer can

refer to persistent or transient data at di�erent times during program execu-

tion. Furthermore, the access speed for persistent objects is usually equal to

that of dereferencing transient data already in memory.

By contrast, ODE programmers must treat persistent objects di�erently

from transient objects. There are three types of pointers in ODE: volatile

pointers, persistent pointers, and dual pointers. Volatile pointers can only

refer to volatile objects. Persistent pointers can only refer to persistent ob-

jects. A new persistent object is allocated by calling the special constructor

pnew, which generates a unique object id that can be stored in a persistent

pointer:

persistent Person *p;

p = pnew Person(``Jon Smith'');

The third pointer type, dual pointers, can refer to either volatile or persistent

objects, and the question of persistence is determined at runtime. Unlike

Objectstore pointers, a dual pointer in ODE cannot refer to both volatile and

peristent objects within the same program; once it is assinged to a persistent

object, it can only refer to persistent objects, and vice-versa.

The ODE designers rejected the Objectstore approach to persistent point-

ers beause they wanted an e�cient implementation which would not require

special hardware assists. By having no restrictions on pointers, a run-time

check would be required on every pointer dereference. If a pointer happened

8

to point to a persistent object, it's address must be translated by the ob-

ject manager before it is accessed. This check would impose unacceptable

overhead on dereferencing non-persistent pointers, especially considering the

heavy use of pointers in C++.

Objectstore avoids this runtime overhead by overloading the operating

system's underlying page-fault mechanism. The addresses of persistent ob-

jects are denoted with illegal values (e.g. negative numbers), so references

to them automatically incur segment violations. The object manager inter-

cepts the segment violations and performs the appropriate translation into

persistent store.

Although this technique combines the advantages of transparent persis-

tence and fast access, it su�ers from four problems:

1. In many operating systems, applications are allowed to intercept the

segment violation signals. Such actions may inadvertantly interfere

with the object manager, rendering persistent objects inaccessible. I

encountered this problem while trying to build an application using

Objectstore, and it was an extremely di�cult bug to identify.

2. A user program may erroneously generate an illegal address which the

object manager may interpret as a valid persistent address. Thus, the

robustness of the system has been compromised.

3. Pointers to persistent objects are now limited to the size of ordinary

pointers. This may be a problem for larger databases, which may

require more address space than can be represented by a normal sized

pointer. Also, it reduces the
exibility of what information may be

stored as part of a persistant object's id.

4. Trapping mechanisms are architecture and operating-system depen-

dent, and there is no machine-independent way to generate an illegal

address, so the database system will be hard to port across systems.

By allowing the user to declare pointers to be of one type or another,

persistent references can be handled at compile-time, eliminating all four

problems. The ODE designers also claim that their pointer scheme leads

to better program readability and allows better error checking by the com-

piler. In my experience with both systems, however, I am convinced that the

9

convenience of a single uni�ed pointer mechanism outweighs the problems

described by ODE.

4.2 Declarative Query Facility

One of the requirements of a persistent programming language is to provide a

high level query language. The query language must be declarative, allowing

relavitely complex data structures to be queried simply, and should provide

obvious handles for query optimization.

The ODE system provides a declarative front-end language called CQL++

which is based on a type-generic object algebra that preserves the closure

property of standard SQL. CQL++ allows users to directly manipulate ob-

jects without explicit use of their object ids. The encapsulation properties

of the O++ versions of the objects are preserved, i.e. CQL++ users are not

given access to private methods and data members. There are 3 views of

an object: the CQL++ view, the O++ de�nition, and the object manager's

view, which consists of an <object id,state> pair[21]. The state corresponds to

the private and public data members of the O++ object. The O++ object

also consists of computed attributes, update methods, and other methods

(non-updates). From the CQL++ user's perspective, the object merely con-

sists of a set of query attributes (formed by the public data members and

computed attributes), and the update methods.

An example of a CQL++ query is:

SELECT E.name, E.age(), E.dept.name

FROM Employee E

WHERE E.salary > 50000

In a relational database, the query would return a table consisting of

three columns corresponding to the three selection attributes. In CQL++,

SELECT creates a new anonymous object type which contains data members

corresponding to the selection attributes. In this case, the anonymous object

type has data members extracted from both the Employee class and the

Department class. Although the attribute E.age() was originally a method,

it is represented as a simple data member in the anonymous class.

New objects can be created via the INSERT statement. The following

statement creates a new Course object by invoking the Course constructor.

10

The set of Students in the Course object will be initialized to contain all

Student objects whose year data member contains the string '�styear':

INSERT INTO Course

VALUES ('CSE', 505,

SELECT * FROM Professors WHERE name = 'Borning',

SELECT * FROM Students WHERE student.year = 'firstyear')

CQL++ also provides DELETE and UPDATE statements. The UP-

DATE statement allows the user to set public data �elds directly, or invoke

public member functions for updating the object.

4.3 Collections and Iterators

In addition to CQL++, ODE also allows the expression of recursive queries

through set iterators. In O++, sets are part of the language, and built-in

operators allow assignment, union, di�erence, intersection, deletion, and set

iteration. The iteration facilities provide an alternative to using object-ids

for navigation. An arbitrary join can be expressed by iterating over clusters,

3

with join conditions speci�ed as iteration conditions. This is achieved with

the for and suchthat clauses, inspired by SQL.

4

Iterators can be nested,

as demonstrated by the following O++ statement for retrieving a set of all

employees who make high salaries and work in the same department as Alex:

persistent Employee *overpaid<>;

for p in Employees

for q in p->dept->emps

suchthat (p->salary > 50000 && q->name == 'Alex')

overpaid->insert(p);

3

All persistent objects of the same class are grouped together on disk in a cluster

named after the class. Thus, clusters are type extents. The de�nition of new classes

causes the object manager to automatically create a cluster for that type, and whenever

a new instance is created, a pointer to it is inserted in the appropriate cluster. The

programmer is freed from explicitly specifying and maintaining a class extent.

4

The for statement applies only to objects which directly belong to the speci�ed class,

and not objects of descendent classes. To facilitate iteration over all instances of a class

hierarchy, O++ provides the forall statement.

11

Objectstore provides a similar mechanism with a slightly di�erent syntax.

The above query would be expressed as:

os_Set<Employee*>overpaid =

all_employees

[: salary > 50000 &&`

dept->emps[:

name == 'Fred' :] :]

Note that this is really a relational join. There are two paths along which

to perform the query. One path is to iterate over the each employee in the

employees set: for each employee that is overpaid, the query solver traverses

that employee's dept pointer to see if the department contains Fred. The

second path starts with Fred, traverses his dept pointer and then iterates

over all the employees in that department, checking their salaries.

The query optimizer must decide which path to navigate based on the

cardinality of each set and the presence of indices over data members.

Index maintenance is di�cult, since arbitrary updates may involve side-

e�ects for updating index values. If Employee instances are frequently ac-

cessed via their salary, it would be desirable to have an index over that data

member. But it would not be practical to incur a run-time check on every

object update to determine if index maintenance is required. Objectstore

solves this problem by requiring the programmer to use the indexable key-

word to explicitly tag those data members which could potentially be used

as index types, the appropriate handling can be set up at compile-time.

4.4 Constraints

Constraint facilities have been traditionally provided in databases to main-

tain consistency beyond what is typically expressible by the limited type

systems typically available. In persistent programming languages, the func-

tionality of constraints can be implemented by the programmer. However, a

constraint facility would still be useful, enabling the programmer to specify

constraint relations declaratively rather than procedurally.

The database community and the programming language community

have two di�erent interpretations of the notion \constraint maintenance". In

a constraint-based programming language, constraint maintenance involves

12

a constraint solver which resolves constraint violations via perterbation or

re�nement of underconstrained values. In traditional database systems, the

notion of constraint maintenance is much more primitive: if a constraint is

violated, simply abort the transaction and roll back any updates that have

occured. Constraint maintenance in database systems has typically been

limited to constraint detection.

ODE provides the latter form of constraint maintenence. The O++ lan-

guage allows users to annotate class de�nitions with constraints (arbitrary

boolean expressions) over their data items. Two kinds of constraints are pro-

vided: deferred and immediate.

5

n ODE terminology, a deferred constraint is

called soft, and an immediate constraint is called hard. In a constraint-based

programming language, hard and soft refer to the level of compliance ex-

pected of a constraint rather than the granularity of enforcement. To avoid

confusion, I have chosen to rename the ODE constructs for this discussion.

Immediate constraints are checked every time an object is updated. Deferred

constraints are checked only at the end of a transaction. In database sys-

tems, a transaction is often the smallest unit across which integrity must be

maintained. Finer granularity can be problematic, forcing an overly strict

ordering among events within a transaction. Consider, for example, a check-

book balancing application in which a the balance is constrained never to

fall below zero. In a single transaction, the user may write some checks and

make a deposit. In this case, a deferred transaction is appropriate, since we

are only concerned with the balance at commit time.

Another reason for having deferred constraints is to allow complementary

constraint relationships to be maintained. Consider the classic example in

which a person's spouse must have that person as a spouse:

class person

{

...

persistent person *spouse;

constraint:

(spouse == NULL) || (this == spouse->spouse);

};

Without deferred constraints, it would be impossible to record a marriage,

5

I

13

since as soon as we tried to update one of the newlyweds, the constraint would

be violated.

Objectstore provides a di�erent solution for maintaining complementary

relationships. The Objectstore language allows programmers to declare in-

verse pointers. If one side of the inverse pointer is set or deleted, the other

side is automatically updated. This is a powerful mechanism for maintaining

referential integrity, freeing the programmer from having to implement ref-

erence counting and garbage collection techniques. Inverse pointers are fully

integrated with the collection facilities, and can be one-to-one, one-to-many,

or many-to-many. Here is an example of a one-to-many relationship:

class Student

{

public:

...

Department* dept

inverse member Department::grads;

};

class Department

{

public:

os_Set<employee*> grads

inverse member Student::dept;

}

Whenever a Student is inserted into a Department's set of grads, the Stu-

dent is automatically updated to refer to the Department, and vice-versa.

Similarly, when a Student is deleted from a Department's set of grads, the

dept pointer in the Student is set to null. If alex is currently in cse dept,

and alex->dept is reset to point at history dept, then alex is removed from

cse dept->students and put in history dept->students automatically.

In both ODE and Objectstore, constraints obey the inheritence mecha-

nism. Derived classes inherit the constraints of parent classes and can be

specialized with new constraints. Hierarchical constraints can be useful in

many applications, such as frame-based knowledge bases.

I plan on extending this paper, and this appendix is a rough draft of

future sections. Comments and suggestions appreciated!

14

A Active Databases: Triggers

In traditional passive systems, software components that update objects must

themselves recognize the consequences of the update and then perform the

appropriate actions. This compromises s/w modularity, since the updating

component is logically performing the task of another s/w component that

should respond to the update. Modularity can be maintained by having a

separate s/w module that polls the objects and takes appropriate actions

when they are changed in speci�ed ways. but this wastes resources, and

response time depends on polling period.

Passive systems are program-centric: applications must themselves check

object states and initiate actions if conditions are satis�ed. active db is data-

centric. triggers automatically, applications need not worry about it. Actions

can be noti�ed by trigger if appropriate.

triggers. sometimes called \alerters" or \monitors". like constraints,

monitor db for some conditions, except these conditions do not represent

consistency violations. when trigger cond becomes true, trigger action is

executed. active database.

A.1 Once-Only Triggers

triggers associated with objects. two types. once-only (default), and perpet-

ual. once-only deactivated after it �res. can be reactivated explicitly. triggers

speci�ed within class defns:

trigger:

[perpetual] T1 (params) : body

trigger body:

trigg-cond ==> trigg-action

timed trigger:

within expression ? trigger-cond ==> trigger-action

[: timeout-action]

timed trigger must be �red within speci�ed period, or timeout action is

�red.

to explicitly activate:

15

object_id->T1(args)

when condition becomes true, trigger \�res", i.e. action becomes sched-

uled for action. independent transaction is created with trigger in body.

trigger conditions are evaluated at the end of each transaction. trigger trans-

action weakly coupled to trigger action, i.e. occurs sometime after �ring, but

not necessarily imediately after.

trigger may explicitly be deactivated before �red:

~object-id->T1

special macro for use in trigger conds:

changed arg

true if arg has changed in current transaction, false otherwise.

A.2 Perpetual Triggers

perpetual triggers cannot be simulated with once-only triggers by reactivating

trigger after trigger action. trigger action executed at some later time, so

trigger will be inactive for the period until activation instruction in trigger

action occurs.

class stock {

public:

double price;

...

trigger:

sellorder(int amount, double lowlimit, double time):

within time ? price > lowlimit ==>

sellstock(this, amount, price);

};

A.3 Intra-Object vs. Inter-Object Triggers

ODE uses intra-object triggers. intra = trigger associated with a particular

object, and condition is evaluated when the obj is updated. inter = con-

dition evaluated for multiple objects. for inter, would need to list trigger

16

in de�nition of each obj involved. alternatively: use a mechanism based on

\friend". physical locality makes intra-object constraints and triggers more

e�cient. when event occurs, object being updated is already in memory. [11]

says that \most inter-object constraints and triggers can be implemented us-

ing one or more intra-object constraint or triggers...A typical case is the

\employee's salary no greater than the manager's salary" example. This is

clearly an inter-object constraint...this inter-object constraint is then con-

verted into two complementary intra-object constraints, one to be associated

withthe employee and the other to be associated with he manager." p.14

[double-dispatching?]

[multiple dispatching! multi-constraints]

A.4 Eager vs. Lazy Computation

eager or lazy computation? suppose every object has attribute age() which

may change on every clock update. eager method ine�cient: compute new

age for every person on every clock update. but attribute which is refer-

enced often and updated infrequently should use pre-computation, i.e. ea-

ger. reasonable system should provide boh options. how to choose which

one? POSTGRES optimizer decides. for ODE, virtual attributes are used to

specify computation on demand, and triggers are used to specify computaion

on update.

A.5 Triggers and Constraints in Other Systems

trigger and constraint mechanisms related, because constraints can be im-

plemented as triggers. seperate facilities provided because they are logically

di�erent: constraints are used to ensure consistency: violation causes vi-

olating transaction to be aborted. in contrast, triggers are not concerned

with consistency, they are initiated as seperate transactions. all objects of

same type have the same constraints, but di�erent triggers may be active or

de-active for objects of same type.

facilities for active dbs �rst appeared in CODASYL: ON conditions.

System R provided triggers and constraints as mechanism for enforcing

integrity.

Sybase provides facilities to specify RULES and TRIGGERS. RULES are

integrity constraints that go beyond column datatype with no actions asso-

17

ciated. TRIGGER is a special kind of stored procedure that goes into e�ect

when speci�ed table is updated. roll back changes that violate constraint.

can only be a�ected by changes to only one table. at most 3 triggers per

table: update, insert, delete trig. one trig cannot call another.

these limits not in ode.

in many systems, integrity constraints and triggers are expressed in a

seperate lang that is distinct from normal db query lang. di�cult to invoke

arbitrary actions when such triggers and constraints �re. di�cult to check

conditions on every update.

B Misc. Features of Object-Oriented Database

Systems

�eld of oodbs is currently getting lots of attention from both experimental

and theoretical standpoint. �eld is characterized by lack of common data

model, lack of formal foundations, and strong experimental activity. clear

speci�cation exists for rdb data model and query langauge, but not for oodbs.

no consensus on data model.

logic programming has strong theoretical framework, but not oodbs. thus

ill-de�ned semantics of such concepts as types.

characteristics it should possess:

B.1 Mandatory Features

[9]

support complex objects. minimal set of constructors: sets, tuples, lists.

sets for representing collections, tuples for representing properties, lists to

capture order. all 3 things occur in real world.

these 3 constructors should appy to any object, i.e. be orthogonal to type

of obj. relational model constructors don't meet this requirement, since set

constructor can only be applied to tuple, and tuple can only be applied to

atomic values.

object identity. object sharing (i.e. components can be shared, not just

copied). supporting identity implies o�ering object assignment, deep and

shallow copy, tests for identity and equality (both deep and shallow). new

concept for pure relational systems, where relations are value based.

18

encapsulation. need for distinction between implementation and speci�-

cation, and need for modularity.

types or classes must be supported.

class or type hierarchies shall be supported.

computational completeness shal be provided. more than SQL.

extensibility. no distinction between system-de�ned and user-de�ned

types from the application programmer's perspective.

persistence. user should not have to explictly copy or move data to make

it persistent.

secondary storage management. must be able to handle very large amounts

of data. performance features: index management, data clustering, data

bu�ering, access-path selection, query optimization. should be invisible to

user. [gripe with ode].

concurrency. ensure harmonious coexistence among users working simul-

taneously. controlled sharing, atomicity, some degree of serializability.

recovery from h/w and s/w failures. bring back to some coherent state

of data.

ad hoc query facility. simple queries should be simple. relational queries

should be supported. 3 criteria: high level and declarative, e�cient (lend

itself to optimization), and application independent.

B.2 Optional Features

� multiple inheritance.

� type checking and type inferencing. more compile time checking, the

better.

� distribution.

� design transactions. ie. long, nested transactions.

� versions.

B.3 Swizzling

PS-Algol uses pointer swizzling to optimize access to persistent objects. �rst

reference to persistent object results in its being cached in volatile memory

19

and original pointer is replaced by ptr to cached location. when obj is written

back to store, swizzled ptrs that contain the cache address of this obj must

be deswizzled.

B.4 Referential Integrity

if entity is referred to in some relation, then the entity must exist in a \pri-

mary" relation listing all entities of that type. e.g., if \Supplier" relation

records a company as supplying a certain part number, then the part num-

ber must be a valid part number recorded in some \Parts" relation. In an

object-oriented db framework, referential integrity means that htere should

not be any refs to non-existent objects. db must guarantee that if an object

id is recorded in db, corresponding obj must be present in the db.

when object is deleted, need reference count or indexing to enforce refer-

ential integrity.

B.5 Versioning

representation of multiple object versions is essential to many applications,

particularly engineering design activities. 3 approaches:

1. versioning is so fundamental that language primitives should be pro-

vided for versioning. ie. part of data model. example is DAMOKLES

[8], which allows classes to be versionable.

2. versions not considered part of data model, but a version service is

provided by s/w layer implemented directly on top of kernel data model.

Encore [23] implements versioning as a seperate layer on top of basic

data model.

3. versions considered to be application issue. apps must set up their own

types for recording version control. GemStone [16] takes this approach.

Create a version class, which has info such as \version-number" and

\latest update", whose behavior can be inherited by sublcasses.

versioning in ODE: all persistent objects can have versions. no prede�ned

limit on number of versions object can have. can access latest version or

speci�c historical version. object and all its versions considered one logical

20

object with one id. ptr can refer to a speci�c version of an object. need to

explicitly create a new version.

newversion(p)

henceforth, p refers to new version. access nth previous version of p:

pp = previous(p,n)

given p, pdelete deletes object and all versions. given pp, pdelete only deletes

version.

C Other Object-Oriented Systems

C.1 BETA

BETA [17]

when an object is made persistent, all objects that can be reached via

references will also be persistent. this includes statically enclosing objects.

transitive closure of the object.

persistent store is itself a BETA object. = collection of persistent objs.

current implementation: obj in one pers.store cannot refer to obj in another.

persistent root = entry point to store. has string name.

implementation issue:

(# T: (# c: @integer;

A: (# b: @integer do c->b #);

X: @ A;

Y: @ A;

#);

V: @ T;

W: @ T

#)

V and W are instances of T. Each has internal attribs. The pattern

attribute A of V is di�erent from W.A, since each may only refer to the

attribs of their enclosing object V or W.

Betaenv is a fragment de�ning a pattern that encloses all BETA code.

each program creates a new betaenv object. patterns described in di�erent

21

programs will never be identical, since they will always be attribs of the

betaenv instance created by program execution.

thus, patterns described in di�erent executions will never be identical. to

overcome this prob, betaenv is made to be a persistent object existing on the

entire system/network where persistent objs are to be shared, so all progs

will have the same betaenv.

implication: if multiple progs want to share a pattern, it should be de�ned

in a library slot if it wil be used to generate persistent objects.

object has a reference to it's corresponding fragment and compiled code. if

the frag changes, the corresponding persistent obj becomes obsolete. current

implementation does not check integrity of objs, i.e. it is up to the user to

make sure frag hasn't changed since object's creation.

[maybe use texthashtable example pp.6-7?]

object can be saved as a persistent root via:

(R[],'foo') -> PS.put;

PS is an instace of persistentStore. All objects referred by R are also

made persistent.

object is retrieved by:

('foo',T##) -> PS.get -> R[]

where T## is a pattern from a library.

if an object is modi�ed after having been sved, the state of the modi�ed

object is not automatically saved. a new put operation must be executed.

actual storing of persistent objects occurs when operation \close" is exe-

cuted on persistent store.

pesistent store is stored as a �le on secondary storage.

C.2 PROCOL

PROCOL[13]

object-oriented language given persistence. major motivation: GIS, geo-

metric and graphic data.

upward compatible: existing non-persistent procol programs can be com-

piled by procol compiler.

transparent persistent objects: persistence independence (i.e. persistent

and volatile objects interchangeable as parameters), and persistence data

22

type orthogonality: all objects allowed to be persistent, no matter how com-

plex the type.

extendibility with new ADTs: as compared to traditional dbms's, which

allow only basic types.

e�cient associative searching (via B-trees, etc.).

highly interactive for graphical applications.

D Constraint-Based Imperative Languages

D.1 Constraints and Object Identity

From [14]: constraint imperative programming = integrate declarative con-

straints and imperative oo programming. goal: use constraints to express

relations among objects explicitly instead of implicitly. but object-identity

can result in implicit relations. solution: identity constraints.

CIP Identity Gap

D.2 Kaleidoscope

From [10]:

constraints useful because they are declarative: emphasize relation itself

instead of procedural steps necessary to maintain the relation. obstacle to

thorough integration of constraints in an object-language: objects provide a

larger, arbitrarily general computational domain, which cannot be solved by

an e�cient constraint solver.

like kaleidoscope, ode's constraints obey the languages inheritance mech-

anism

kaleid. has required and preferential constraints. constraint hierarchy:

arbitrary number of levels of preference.

D.3 Adding Transactions to Kaleidoscope

when are they solved? is the solver automatically invoked whenever a variable

changes, or does the programmer have to explictly trigger the solver when

necessary?

Motivation for transactional approach:

23

\The Kaleidoscope'91 language and implementation meets �ve of our six

original goals...The one goal that it does not yet meet is number 6: rea-

sonable e�ciency...To this end, our implementation and research e�ort is

divided between improving our constraint solvers and developing specialized

compilation techniques."

[Do we really need the solver to be invoked on every update? If program-

mer had explicitly control as to when, we have ODE deferred constraints, i.e.

transactional. could be more e�cient, and solve the following:]

D.4 Techniques for Integration: Summary

local propagation: start with known set of values and use constraint to de-

termine other values. simple and fast. but limited to acyclic constraints, and

no partial info constraints (i.e. >).

constraints on Primitive Leaves: seperate the domain into user-de�ned

objects and primitives, split compound constraint into basic ones. bad be-

cause it freezes variable types, and violates encapsulation when asserting

inter-object constraints, since leaves must be accessed directly and they may

be private instance variables.

de�ne new solver to handle new domain.

kaleidoscope uses multiple dispatching: implementation inheritence graph

of EACH arg is searched for applicable methods, which are placed into a

parital order.

con
ict between declarative constraints and imperative assigments, which

are destructive. assignment is de�ned as an equality constraint between the

PREVIOUS value of the RIGHT expression and the CURRENT value of the

LEFT variable. Thus, all expressions denote constraints.

all expressions are de�ned relative to a CURRENT TIME. current time is

advanced at the end of each statement. compound statements can be created

without advancing the clock by using || operator.

constraints can be once, always, assert during (loop).

constraint constructors are dispatched upon. they are free of nonlocal

side-e�ects. may not contain out-of-scope variables or advance the global

time.

\greatest savings in execution time will come from moving as much of the

constraint satisfaction problem from run time to compile time as possible."

p.12.

24

E Persistent Prolog: Motivation and Issues

� Language Perspective: Prolog could use the ability to treat large exter-

nal databases as though their data was inside prolog. Tight coupling

to database system.

� Database Perspective: prolog = powerful extension to query language.

Allows tools to be written which aid expert in rule de�nition. Rules

and facts =
exible, elegant query language

� recusive rules

� metalogical features: alter how query is solved, or have side-e�ects

which may alter results of subsequent queries.

{ retract- remove fact from db

{ asserta, assertz

{ cut- restrict backtracking options

E.1 Expert Systems

PROLOG and EXPERT SYSTEMS /citelucas-88 prolog good for expert

systems because it is:

� rule-based:

{ rules largely independent of eachother.

{ naturally models human skills, which are rule-based.

{ rules can be incrementally updated.

� declarative: rules easily inspected. but programmer should be aware

of the procedural implications of the rules he writes in order to write

more e�cient programs, since careless ordering of subgoals can cause

much unnecessary searching.

� facilitates programs that can explain their own reasoning: intermix rule

bodies with text statements to trace subgoal ful�llment.

25

E.2 Why Prolog Could Use Persistence

� limited, unstructured internal database:

{ partial solution: link to external �lesystem.

{ linkage should be transparent.

{ tightly coupled: each record processed before subsequent record

is retrieved.

{ loosely coupled: table downloaded into prolog, then records pro-

cessed one at a time.

� motivation: existing relational db users can access their data via logic

language without the necessity for preprocessing. powerful pattern-

matching and reasoning capabilities of prolog make it a good tool for

implementing high-level front-ends. i.e. use it to apply expert-system

rules to analyze db data. facilitates recursive queries.

most prolog systems represent the set of clauses in primary memory, ei-

ther as literal representatinos of prolog source clause (in interpretive sys-

tems), or as executable machine code (in compiled systems). prolog internal

database organized as a heap, with clauses dynamically allocated and deleted

as records within a network of linked lists. degrades when number of clauses

is more than a few thousand. /citeirving-88.

constraint on max size of system: clauses held in main mem. many

prolog systems use virtual mem techniques to page sections of db to and from

backing storage. paging is random, leads to poor performance. procedural

languages exhibit locality of reference, but not prolog.

clause indexing: prolog systems use hashing techniques to identify the

set of clauses for the relation corresponding to the current goal. hashing

mechanism is extended with predicates so that goal args can be used to

restrict subset of candidates which are tried sequentially via uni�cation and

backtracking. works well for static clauses representing procedural part of

prog. however, does not allow indexed predicates to be modi�ed by the

addition or deletion of component cluases, as is often the case with declarative

predicates representing dynamic info. we need more general clause indexing

scheme which allows dynamic modi�cation of clause store without extensive

recompilation and rehashing. B-trees are a good mechanism.

26

to solve real world problems, we want to use prolog reasoning on pre-

existing non-prolog data, which may exist in multi-tasking environment,

which requires dbms support.

E.3 Database Interface for Prolog

minimum speci�cation for interface:

� generality of representation. must support transparent mapping of

complex tree-like prolog terms into linear db records.

� uniform syntax and transparent uni�cation: ideal situation: program-

mer speci�es each table he intends using and what it is to be known

by. from that point on, use of table exactly the same as using sets of

facts in prolog's internal db.

� interface should determine column names of tables and know how to

tranlate between param position and col name. thus, interface should

access data dictionary.

� transparent backtracking: searches on tables must mimic prolog's search

mechanism. left to right, depth �rst, allow recursion. need to interleave

searches on di�erent tables and allow multiple simultaneous searches on

the same table. We need: CURSORS. cursor = control block de�ning

current status of search (position within table).

� low performance overhead required. sequential clause lookup will be

much slower than for internal clauses. but indexed access should be

acceptably fast using external dbms. as much as possible, mapping

should be copmiled and not interpreted at runtime.

E.4 Translation Between SQL and Prolog

2-D tables of records. set of facts all with same functor and same number of

components. unlike prolog, columns of tables have LABELS. in prolog, �eld

position replaces names of columns. select conditions are set via variable

instantiation. [show prolog facts and table]

gateway = inter-query-language translation between dbs.

27

[18] describes how to implement SQL and QBE queries in prolog.

each relation comprises a set oftuples. each tuple can be represented as

a ground unit clause in prolog:

emp(1,'fernando'2,30,3).

emp(2,'carlos',3,60,3).

emp(3,'jose',1,25,4).

For each relation, there is a scheme clause which de�nes the structure of the

relation: name, no.tuples, no.attribs, list of attrib names.

scheme(emp,4,5,[empno,name,dno,sal,mgr]).

SQL processor translates query into prolog clauses:

SELECT name,sal

FROM emp

WHERE dno=2

becomes:

emp(_,X1,2,X3,_).

each attrib name that occurs in SQL query needs to be fully identi�ed,

checking the relation to which it belongs and its position in the list of at-

tributes. each attrib name is mapped into a structure of the form: [Rel-

name,Label,Position,Attname]. A special parser is used to build a structure

representing the SQL query before translating it into prolog query.

[15]

equi-join: relates data between tables. i.e. here's a join on MANUF �eld

SELECT ADDRESS FROM SUPPLIERS

WHERE CARS.MODEL = 'Metro' AND

SUPPLIERS.MANUF = CARS.MANUF

here's the prolog version:

?-car(Man,metro,_,_,_,_,_),supplier(Man,Address,_),write(Address),nl.

key �elds = �elds for which an index will be created allowing direct access

retrieval of entire record whenever key value is known. unique key can either

be new �eld with unique id, or concatenation of several �elds to de�ne key.

28

E.5 Meta-Translation

source-to-source meta-translation system which generalizes the production

of translators. uses intermediate relational algebra tree.

� source-input to tree translator: syntax of new query language is entered

via meta-notation that allows query language semantics to be easily

speci�ed.

� tree to source-output translator: speci�ed via form-based interface

which prompts user for syntactic constructs in the new query language.

motivation: distributed, heterogenous db systems need to talk to ea-

chother.

E.6 MIMER: A Back End to Prolog

Mimer = relational database used by [15] as back-end to prolog.

prolog search mechanism duplicated via: stack of cursors. new search

on a table opens a new cursor, which is pushed onto stack whenever there

remained furthre rows in the table that cold be retrieved via sleect condition.

to continue search, pop cursor. selection conditions established via current

variable instantiation set.

declare external table:

?-external(manufact,'MANUFACT').

Every time prolog processes goal which is named as the �rst param, it

should access Mimer table given as second param. interpreter associates a

ag with each functor: external functors contain pointers to Mimer table

names.

accesstab: build template of next table entry, leaving blanks on unknown

�elds. pass template to fortran routine, which accesses db and �lls in blanks.

existing prolog programs should work without modi�cation, their datasets

being arbitrarily extended via interface.

CUT must be supported: cut removes all backtrack points as far back as

the parent goal from the backtrack stack. prolog must tell interface when a

cut occurs, how many cursors to be popped and discarded.

29

ASSERT and RETRACT: must support dynamic modi�cation for clauses

held externally.

basic update primitives assert and retract should be encased in transac-

tion primitives in order to ensure conistency in a multi-user environment.

special problems arise with asserta and assertz, which specify WHERE facts

are inserted. Most database applications do not provide this
exibity.

concurrent reading and writing must be supported: consider

?-p(X),assert(p(b)).

Call to p(X) does not complete before assert(p(b)) is called. Data structures

associated with p must allow concurrent reading and writing. deadlock must

be avoided...

CALL and NOT: solve routine called recursively for new goal sequence...maintains

appropriate backtracking behavior.

need powerful garbage collection techniques

optimisation: consider prolog goal:

?- employees(Name,Salary,_,_), (Salary>10000),...

ine�cient to retrieve each row and backtrack if salary condition not met.

database software may have e�cient index on salary key. database search

noti�ed of optimisable constraints.

=OTHER PROLOG PERSISTENT SYSTEMS

Another persistent prolog implementation: Perlog citemo�at-88, tightly

coupled with PS algol back end POMS. Rather than having a global name

space, Perlog parititions name space with modules, which can be committed

individually to backing store.

30

References

[1] R. Agrawal and N. Gehani. Ode: Object database & environment.

SIGMOD, 1989.

[2] R. Agrawal and N. Gehani. Ode: Rationale for the design of persistence

and query processing facilities in the database programming language

o++. In 2nd International Workshop on Database Programming Lan-

guages, Portland, Oregon, 1989.

[3] T. Andrews and C. Harris. Combining language and database advances

in an object-oriented development environment. In Proceedings of the

1987 ACM Conference on Object-Oriented Programming Systems, Lan-

guages and Applications, pages 430{440, Orlando, October 1987.

[4] M. Atkinson and et. al. P. Bailey. An approach to persistent program-

ming. Computer Journal, 26(4), November 1983.

[5] F. Bancilhon and P. Buneman. Advances in Database Programing Lan-

guages. ACM Press, New York, 1990.

[6] A. Brown. Object-Oriented Databases: Applications in Software Engi-

neering. McGraw-Hill, Berkshire, England, 1991.

[7] G. Copeland and D. Maier. Making smalltalk a database system. In

Proceedings of SIGMOD 84, volume 14, pages 316{325, June 1984.

[8] K. Dittrich, W. Gotthard, and P. Lockemann. Damokles: A database

system for software engineering environments. In Proceedings of the IFIP

Workshop on Advanced Programming Environments, Springer-Verlag,

Berlin, 1987. Lecture Notes in Computer Science.

[9] C. Delobel F. Bancilhon and P. Kanellakis. Building an Object-Oriented

Database System: The Story of O

2

. Morgan Kaufmann, San Mateo, CA,

1992.

[10] B. Freeman-Benson and A. Borning. Integrating constraints with an

object-oriented language. In Proceedings of the European Conference on

Object-Oriented Programming, pages 268{286, 1992.

31

[11] N. Gehani and H. Jagadish. Ode as an active database: Constraints and

triggers. In VLDB 1991, 1992.

[12] T. Irving. A generalized interface between prolog and relational

databases. In P. Gray and R. Lucas, editors, Prolog and Databases: Im-

plementations and New Directions, pages 81{94. Ellis Horwood, Chich-

ester, England, 1988.

[13] C. La�ra and P. Oosterom. Persistent graphical object. In Advances in

Object-Oriented Graphics I, pages 95{129. EUROGRAPHICS Seminars,

Germany, 1991.

[14] G. Lopez, B. Freeman-Benson, and A. Borning. Constraints and ob-

ject identity. In European Conference on Object-Oriented Programming,

1994. Submitted.

[15] R. Lucas. Database Applications Using Prolog. Ellis Horwood, Chich-

ester, England, 1988.

[16] D. Maier and J. Stein. Development of an object-oriented dbms. In

Proceedings of the 1986 Object-Oriented Programming Systems and Lan-

guages Conference, pages 472{482, 1986.

[17] Persistence in beta. Technical Report MIA 91-20-0.3, Mjolner Informat-

ics, 1992.

[18] F. Mouta, M. Williams, and J. Neves. Implementing query languages in

prolog. In P. Gray and R. Lucas, editors, Prolog and Databases: Imple-

mentations and New Directions, pages 13{21. Ellis Horwood, Chichester,

England, 1988.

[19] J.E. Richardson and M.J. Carey. Persistence in the e language: Issues

and implementation. Sciences 791, Univ. Wisconsin, Madision, Septem-

ber 1988.

[20] L. Rowe and K. Shoens. Data abstraction, views and updates in rigel.

In Proceedings of ACM SIGMOD, 1979.

[21] N. Gehani S. Dar and H. Jagadish. Cql++: A sql for a c++ based

object-oriented dbms. In EDBT 92, Vienna, Austria, 1992.

32

[22] J.W. Schmidt. Some high level language constructs for data of type rela-

tion. ACM Transactions on Database Systems, 2(3):247{281, September

1977.

[23] A. Skarra and S. Zdonik. The management of changing types in an

object-oriented database. ACM SIGPLAN Notices, 21(11):483{495,

1986.

[24] D. Stemple and T. Sheard. Construction and Calculus of Types for

Database Systems, pages 3{22. ACM Press, New York, 1990.

33

