
The Design and Implementation of a Database

Environment for Vision Research

�

Rex M. Jakobovits

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, Washington 98195

Abstract

The Database Environment for Vision Research (DEVR) is an entity-

oriented scienti�c database system based on a hierarchical relational data

model (HRS). This paper describes the design and implementation of the

data de�nition language, the application programmer's interface, and the

query mechanism of the DEVR system.

DEVR provides a dynamic data de�nition language for modeling image

and vision data, which can be integrated with existing image processing

and vision applications. Schema de�nitions can be fully interleaved with

data manipulation, without requiring recompilation. In addition, DEVR

provides a powerful application programmer's interface that regulates data

access and schema de�nition, maintains indexes, and enforces type safety

and data integrity.

The system supports multi-level queries based on recursive constraint

trees. A set of HRS entities of a given type is �ltered through a net-

work of constraints corresponding to the parts, properties, and relations

of that type. Queries can be constructed interactively with a menu-driven

interface, or they can be dynamically generated within a vision applica-

tion using the programmer's interface. Query objects are persistent and

reusable. Users may keep libraries of query templates, which can be built

incrementally, tested separately, cloned, and linked together to form more

complex queries.

�

Submitted in ful�llment of the Ph.D. Qualifying Project requirement. This research was

sponsored by the National Science Foundation under grant IRI-9116809, and by the Washing-

ton Technology Center. A shorter version of this paper to appear in IS&T/SPIE Symposium

on Electronic Imaging: Science and Technology, February 1995.

1

Contents

1 INTRODUCTION 2

2 THE HRS DATA MODEL 3

2.1 Components of the HRS : 3

2.2 Example Application: TRIBORS : : : : : : : : : : : : : : : : : : 3

3 IMPLEMENTING THE HRS 4

3.1 The Schema Class : 4

3.2 The Entity Class : 6

4 THE PROGRAMMER'S INTERFACE 7

5 THE QUERY SYSTEM 8

5.1 Query Model: Constraint Trees : : : : : : : : : : : : : : : : : : : 8

5.2 Implementation of the Query Model : : : : : : : : : : : : : : : : 10

6 THE TEXTUAL USER INTERFACE 11

7 CONCLUSION 13

A A Session with TUI 14

A.1 Browsing Schemas : 14

A.2 A Query over Object 3D Entities : : : : : : : : : : : : : : : : : : 15

A.3 A Query over View Classes : 19

1 INTRODUCTION

Experimentation with image-related data often involves a number of disjoint

applications, each with their own internal data representation, communicating

via at �les. This approach leads to redundant processing, as data is marshalled

in and out of the various structures and the �le system. Furthermore, it tends

to result in an unwieldy collection of cryptic disk �les that the researcher must

manage, making it di�cult to browse and correlate the intermediate data.

The Database Environment for Vision Research (DEVR) is an entity-oriented

scienti�c database system designed to facilitate experimentation with image-

related data[8]. The system provides a framework in which computer vision

researchers may structure their internal data to promote interoperability be-

tween applications. DEVR frees the researcher from having to manage data at

the �le system level, and it enables the user to formulate sophisticated queries

across all aspects of the experiment process.

I implemented DEVR on top of the Object Database Environment (ODE)[1],

a persistent C++ system. Objects are saved to disk automatically, and retrieved

2

into memory whenever they are referenced within an application. The DEVR

library consists of over 5000 lines of O++ code[3], including the application

programmer's interface and the textual user interface.

DEVR o�ers a dynamic data de�nition language for modeling image and

vision data. I have designed and implemented a powerful application program-

mer's interface, which allows users to integrate the database with existing im-

age processing and vision applications. I have also implemented a textual user

interface, which supports interactive browsing and template-driven query con-

struction. DEVR's query processor supports a wide range of multi-level queries

on complex user-de�ned types.

2 THE HRS DATA MODEL

2.1 Components of the HRS

DEVR is based on a hierarchical relational data model (HRS) which has evolved

from the Relational Data Structure (RDS) of Shapiro and Haralick[9]. Every

entity in the system (images, regions, edges, etc.) is described by a schema

consisting of three components: properties, parts, and relations.

The properties component of a schema is a table of attribute de�nitions,

where each entry speci�es an attribute label and declares its type. Proper-

ties may be either atomic (i.e. oat, integer, string, etc.), or complex types.

Instances of the HRS de�ned by a schema will have attribute values that corre-

spond to the entries in the schema's property table. These values record global

information about the entity, such as the number of rows in an image, or the

slope of an edge.

The parts component consists of any number of part sets, which are collec-

tions of pointers to other entities in the system. This allows the user to represent

the natural decomposition of spatial and image data in an organized hierarchy.

For example, a View Class HRS may be de�ned to contain an Images part

set, which in turn may contain an Edges part set, etc.

The relations component consists of attributed relations over the parts of

that entity. Each relation is made up of a set of tuples. A tuple consists of

an ordered list of pointers to entities in the parts sets, and an optional list

of attributes. For example, the Image HRS may contain a proximity rela-

tion, whose tuples consist of pairs of pointers to edges and a numeric attribute

describing the distance between them.

2.2 Example Application: TRIBORS

The HRS data model has been successfully used to support a number of vision

applications. Figure 1 shows some of the data types used in the Triplet-Based

Object Recognition System (TRIBORS)[7], an application that uses synthetic

3

images to create probability models for use in 3D object recognition. TRIBORS

was originally implemented without the HRS model or the DEVR system, using

arbitrary data structures and ASCII �le dumps to maintain data between exe-

cutions. The input image �les were scattered in various directories maintained

by the system's designer. The HRS model easily supported the TRIBORS

data types, and DEVR's application programmer's interface was used to link

TRIBORS with the database. DEVR maintained the input images, synthetic

images, and internal data structures (such as extracted edges).

Each 3D object to be processed by TRIBORS is represented by a Tri-

bors Object HRS, which consists of a 3D model and a set of view classes. The

Model 3DHRS is decomposed into faces, edges, and points. EachView Class

HRS contains a number of real images and synthetic images, which in turn ref-

erence viewable gray scale images. TRIBORS generates a probability model for

each view class, which is stored as a relation in the HRS for that view class.

Each tuple of the probability relation consists of a triple of edges from the model,

with attributes describing the orientation of the segments, the frequency of the

triple's occurrence within the images for that view class, etc.

Actual CAD models from TRIBORS experiments has been successfully im-

ported into DEVR, including multiple view classes consisting of over a hundred

images and their corresponding spatial entities.

3 IMPLEMENTING THE HRS

The HRS model is implemented as a hierarchy of C++ classes [10], as shown

in �gure 2. All objects stored in the database descend from the pBase class,

which de�nes generic methods for printing and identi�cation. Because of the

object-oriented design of the type system, DEVR can be cleanly extended to

incorporate new atomic types and functionality, making full use of the automatic

dispatching and type checking functionality of C++.

3.1 The Schema Class

One subclass of pBase is the Schema class, whose instances represent the HRS

types de�ned in the database. Each Schema object is assigned a unique name

when it is created. The system provides direct, e�cient retrieval of a Schema

object via its name.

Each Schema object stores the labels and type information that denote the

properties, parts, and relations of an HRS type. In addition, it maintains the

type extent, a collection of pointers to every instance of that type. Whenever the

user constructs a new entity, the system inserts a pointer to it in the type extent

of its schema. Conversely, when an entity is destroyed, the system automatically

removes the pointer from its schema's type extent. The extent provides an

e�cient means for navigating over all HRS entities of a particular type.

4

model Model_3D

PROPERTIES

PARTS

view_classes Set of View_Class

Tribors_Object Model_3D

PROPERTIES

the_object Tribors_Object

PARTS

faces Set of Face_3D

Set of Edge_3Dedges

points Set of Point_3D

PARTS

border

Face_3D

List of Edge_3D

Edge_3D

startp

endp

PROPERTIES

Point_3D

Point_3D

PROPERTIES

x_coord Real

Real

Real

y_coord

z_coord

Point_3D

PROPERTIES

the_object

min_lat

max_lat

min_long

max_long

Tribors_Object

Real

Real

Real

Real

Set of Edge_3D

Set of Real_Image

Set of Synth_Image

RELATIONS

model_edges

real_images

synth_images

real_probability_model

edge2 edge3edge1

Edge_3D Edge_3D Edge_3D

ATTRIBUTES

frequency

view_length

orientation

distance

theta

Real

Stat_Record

Stat_Record

Stat_Record

Stat_Record

synth_probability_model

(similar to real_probability_model)

PARTS

View_Class

PROPERTIES

Real_Image

the_object

origin_viewpoint

distance

sequence_num

image

Point_3D

Real

Integer

Gray_Scale_Image

Tribors_Object

Figure 1: Schemas from the TRIBORS Application.

5

Schema Entity Query

pBase

pInteger pFloat pString

AtomicComplex

Figure 2: The class hierarchy in DEVR.

New data types are recursively constructed from existing types. DEVR

supports self-referencing schemas and circular type relationships. For example,

consider the TRIBORS system described in �gure 1. An Object 3D refer-

ences aModel 3D, while the Model 3D refers back to the Object 3D which

it models. When de�ning components for a new type, the user may refer to

partially completed types.

3.2 The Entity Class

All data instances are derived from the Entity class. They can be either atomic

(oats, integers, strings, etc.), or complex entities (user-de�ned types). The

components of a complex entity may contain pointers to other entities, so each

entity is a network of sub-entities.

Entities are comprised completely of raw data (i.e. arrays of pointers to

other entities); all type-speci�c information (such as �eld labels and types) is

relegated to the schema object, thereby relieving complex entities from having

to store any redundant information. This allows entities to be as compact as

possible, which is especially important in vision applications that may involve

thousands of entities.

All complex entities are implemented using a single C++ class, regardless

of their speci�c type. Complex types are available immediately; entities may be

generated as soon as a type de�nition is completed, without requiring recompi-

lation of the system. By enabling �ne-grained interleaving of type de�nition and

data entry, DEVR promotes exible user interaction and allows versatile real-

time transactions. Furthermore, by treating data de�nition and manipulation

6

uniformly, application development is simpli�ed.

Each complex entity contains a pointer to the schema identifying its type.

In fact, every type declaration is actually implemented as a pointer to a speci�c

schema. For example, the property table of the Edge 3D schema contains

an entry called startp whose type is indicated by a pointer to the Point 3D

schema. This approach incurs minimal overhead during type checking. Consider

the case where a user attempts to assign the startp property of an Edge 3D

entity E1 to an entity E2 which is not a Point 3D. The system can detect

this by simply comparing the schema pointer of E2 against the pointer in the

startp entry of the Edge 3D property table.

4 THE PROGRAMMER'S INTERFACE

The DEVR system provides a powerful application programmer's interface,

called the MetaMaster, which can be linked with C++ applications. By regu-

lating schema de�nition and data access, the MetaMaster enforces type-safety,

maintains indexes, and guarantees data integrity. For example, the MetaMaster

does not allow a user to destroy a schema unless all instances of that Schema

have been deleted.

In addition, the MetaMaster provides a convenient template-driven interface

for constructing new types and cloning entities. A new schema may be created

by passing an existing schema as a parameter to the MetaMaster method cre-

ate new schema(). The new schema starts with all the components of the

template schema, and can then be edited as necessary. Similarly, the MetaMas-

ter has methods to create an identical copy of an entity.

Unlike traditional query languages which tend to impose restrictions on the

generality of data processing[2], the MetaMaster interface is a self-contained

C++ object that can interact seamlessly in any C++ program. It provides

all the exibility of a general programming language, thereby avoiding the

impedance mismatch problem associated with embedded query languages. Users

who prefer a declarative external query language may invoke the Transaction

Execution Manager for handling batch transactions.

The MetaMaster interface provides methods for building new data types.

For example, the following statements de�ne schemas for a Point 2D and an

Edge 2D:

persistent Schema *point_schema, *edge_schema;

point_schema = meta.new_schema("Point_2D");

meta.add_prop(point_schema, "x-coord", pFloat);

meta.add_prop(point_schema, "y-coord", pFloat);

edge_schema = meta.new_schema("Edge_2D");

7

meta.add_prop(edge_schema, "startp", point_schema);

meta.add_prop(edge_schema, "endp", point_schema);

The new Point 2D schema can be used immediately to create entities.

The following example shows a function newpoint, which constructs a new

Point 2D entity and returns its address:

persistent Complex *newpoint(float x, float y)

{

persistent Complex *c = meta.new_complex("Point_2D");

meta.set_prop(c, 0, x);

meta.set_prop(c, 1, y);

return c;

}

The newpoint function may now be used with the MetaMaster to create an

Edge 2D entity and assign it start and end points:

persistent Complex *edge;

edge = meta.new_complex("Edge_2D");

meta.set_prop(edge, 0, newpoint(5, 10));

meta.set_prop(edge, 1, newpoint(7, 15));

The MetaMaster interface was successfully used to develop a number of

applications, including the Transaction Execution Manager (a batch processor

providing database access from the Unix command-line) and the Textual User

Interface (a menu-driven system for interactive query sessions). In addition, the

MetaMaster was used to integrate pre-existing vision applications (e.g. TRI-

BORS) with the DEVR system.

5 THE QUERY SYSTEM

5.1 Query Model: Constraint Trees

The query model used in DEVR is that of a recursive constraint tree. Every

query has an associated return type that corresponds to a particular schema

de�ned in the system, either atomic or complex. The query object consists of

a root, internal nodes, and leaves. The root is a template resembling an HRS

entity of the return type, having constraint slots for each of the properties, parts,

and relations de�ned in the schema. A constraint slot may be empty (implying

no constraint), or it may contain a pointer to a sub-query of the type associated

with that slot. Constraint slots may be either atomic or complex, depending

on the type of the corresponding component in the schema. For atomic slots,

the sub-query will be a leaf in the constraint tree, consisting of a local boolean

8

expression over the value of that atomic type. The expression may contain an

arbitrary number of AND/OR/NOT clauses involving comparison operators (>,

<, ==, etc.) and constants.

For complex slots, the sub-query will itself be a constraint tree, whose root

is a template of the return type for that slot. For example, consider the query

\�nd all edges whose startp is in the upper left quadrant and whose endp is in

the lower left quadrant.". For a 512� 512 image, the query is depicted in �gure

3. The root of the constraint tree for this query is of type Edge 2D, with two

children nodes of type Point 2D, occupying the startp and endp slots.

x_coord

y_coord

PROPERTIES

PROPERTIES

x_coord

y_coord

LOCAL EXPR

LOCAL EXPR

pFloat

pFloat

< 255

> 255

endp

startp

PROPERTIES

Edge_2D

Point_2D

Point_2D

Figure 3: Query on a set of edge entities.

The boolean expression at each leaf only allows local constraints on the

atomic value for that component. To represent constraints involving more than

one component, each internal node may contain a regional constraint expression,

whose operands can be any leaves of the sub-tree rooted at that node. Any

component name used in a regional expression must be a fully speci�ed path to

a leaf, to distinguish it from other possible components. For example, consider

the query \�nd all horizontal edges", which can be modeled as a single node

of type Edge 2D containing the regional expression \startp.y-coord ==

endp.y-coord".

Some components of an HRS may be collections of objects (i.e. lists or sets).

For example, the Tribors Object HRS de�ned in 1 contains a view classes

part, which is a set of pointers to View Class entities. Queries over these ag-

gregate components are of the same form as a queries over a single entity of the

component type, with an additional cardinality requirement. This requirement

9

imposes a quantitative threshold that is used to determine if a candidate collec-

tion satis�es the query. Cardinality requirements can be of the form \at least

N items" or \at least N% of items".

To illustrate the expressive power of the DEVR query model, �gure 4 shows

the following query that was implemented on the TRIBORS application: \For

all objects whose models have at least 20 surfaces, �nd the view classes whose

latitude falls between 45 and 60."

PROPERTIES

the_object

min_lat

max_lat

View_Class

PROPERTIES

model

Tribors_Object

LOCAL EXPR

> 45

LOCAL EXPR

< 60

PARTS

faces
cardinality

> 20

Model_3D
pFloat

pFloat

Figure 4: Query on a set of view classes in TRIBORS.

5.2 Implementation of the Query Model

The Query model is implemented as the Query class, a subclass of pBase. Each

query constructed by the user is represented as an instance of the Query class,

and can be stored in the database. The Query class contains methods for editing

query components, parsing boolean expression, and determining whether a given

candidate HRS satis�es a set of constraints. As with the Entity class, each

Query has a pointer to a particular Schema that identi�es its root type. Each

Query contains a template entity whose component slots do not hold data, but

instead hold pointers to other Query objects. To add a constraint on a particular

component, a separate Query of that type is constructed and referenced from

the component slot of the parent Query.

Users may keep libraries of reusable query objects, which can be built incre-

mentally, tested separately, cloned, and linked together to form more complex

10

queries.

The query object acts as a �lter on a candidate set of HRS entities of the re-

turn type, yielding a result set which is the subset of those candidates satisfying

every constraint in the query. The system provides a Set class which enables the

user to store the results of queries for further processing and browsing. The Set

class includes facilities for iterating over its members and maintaining local in-

dexes. In addition, the system provides operators for standard set manipulation,

such as union, intersection, and di�erence.

To test whether a candidate entity satis�es a constraint, DEVR performs a

depth-�rst, recursive traversal of the constraint tree. Each constraint in the tree

is applied to the corresponding node of the candidate entity, whose components

must satisfy the boolean expression of that constraint. If any regional or local

expression evaluates to FALSE, the candidate entity is rejected. If all nodes

of the constraint tree are satis�ed, a pointer to the candidate entity is inserted

into the result set.

Users may construct queries interactively via the menu-driven Query Spec-

i�cation Interface, which prompts for boolean constraint expressions and sub-

query links. In addition, a graphical interface is being developed, in which

queries will be visualized as a network of icons that can be manipulated with a

pointing device.

The Query class includes methods to parse boolean constraint expressions.

When an expression is added to a query object, the expression is checked for

validity, and then a Filter object is constructed and attached to the query.

During query processing, the Query object passes each candidate value through

the Filter object, which e�ciently determines whether the constraint is satis�ed.

Once queries have been constructed, the Set Processing Interface may be

used to �lter candidate sets. The user chooses a query object and declares an

input set, and the system generates a result set. In addition to query processing,

the interface allows users to browse sets, create indexes, and employ the standard

set operations.

The interactive query interfaces are useful for vision researchers who want to

pose high-level queries over their experiment data. However, for vision applica-

tions to be integrated with the database, an application programmer's interface

is needed. The MetaMaster interface provides methods for constructing and

executing queries dynamically from within a C++ application. A wide range of

vision applications can be supported using automatic query generation, such as

query-by-example.

6 THE TEXTUAL USER INTERFACE

The Application Programmer's Interface is an important tool for integrating

DEVR with software applications, but it is not well suited for interactive ex-

perimentation or browsing data, since it requires the user to write and compile

11

programs. The Textual User Interface (TUI) is an interactive menu-driven sys-

tem that allows users to de�ne new data types, create and edit entities, view

textual data and images, construct queries, and process sets of data.

Figure 5: The DEVR Textual User Interface.

Existing schemas can be used as templates for constructing new schemas.

Properties, parts, and relations may be added or deleted using simple menu

commands. Users may also browse existing schema types and view the entities

associated with any schema.

Users may construct constraint trees via the Query Speci�cation Menu. Af-

ter prompting for the root type of the constraint tree, the system displays a

template of constraint slots corresponding to the components of that type. The

user may constrain each slot with a boolean expression or a pointer to a sub-

12

query. Query objects constructed in this manner are saved in the database and

available for later use. Users may construct simple queries, test them separately,

then incrementally build more complex constraint trees.

Once a query object has been de�ned, the user may return to the main

Query Menu to process the query on an input set. Input sets are collections

of pointers to entities, and can be either the entire extent of a given type, or a

speci�c subset maintained by the user. Sets themselves are persistent objects

that can be stored, browsed, and manipulated.

Appendix A demonstrates TUI being used to construct the following queries

for the TRIBORS system:

� Find all objects with 2 or more view classes, whose CAD models have at

least 40 edges and between 10 and 20 faces.

� Find all view classes of the object named \Cube3Cut" that have at least

15 real images, a minimum latitude of 50, and a maximum longitude of

100.

7 CONCLUSION

The DEVR system has demonstrated that the HRS model is e�ective in mod-

eling image processing and vision applications. The MetaMaster interface has

been used successfully to convert existing vision software to the HRS model

(e.g. TRIBORS), and has been tested on experiments involving over one hun-

dred images and their extracted spatial entities. In addition, it has proven to

be expedient in developing new applications. The Textual User Interface itself

was implemented using the MetaMaster interface.

A graphical interface is being developed[6], which will enhance the system's

querying and browsing facilities, and enable the user to design types and con-

struct queries visually.

Future work will involve testing the system on large volumes of data (e.g.

satellite images), and analyzing the performance of the query processor. DEVR

provides a good environment for research in query optimization because it is a

hybrid of relational and object-oriented systems. Queries over the relations

component of an HRS could rely on traditional relational query processing

techniques[5]. Since the tuple �elds are restricted to the members of the part

sets of a given entity, joins could be easily optimized and local indexes could

be maintained with little overhead. Queries that involve more than just the

relations of an entity would require the navigation of paths of pointers across

the properties and parts of candidate entities. To optimize the query paths,

indexes can be maintained on key components.

DEVR's query processing facilities provide a rich environment for organizing

and browsing experiment data. The HRS data model promotes interoperability

13

between applications, and provides a practical framework in which data may be

shared among researchers in the computer vision community.

A A Session with TUI

To demonstrate query speci�cation and processing, an annotated transcript of

a session with the Textual User Interface is included. Some of the output is

edited for brevity.

First, the TUI executable is invoked on a database called \tribtest" which

contains data imported from the TRIBORS application.

% tui tribtest

Database Environment for Vision Research

Textual User Interface

Opened database: tribtest

[DEVR Main Menu]

1: Schema Menu

2: Entity Menu

3: Query Menu

9: Return

A.1 Browsing Schemas

From the Schema menu, the user may see a list of all the data types that are

currently de�ned.

[Schema Menu]

1: View Schema

2: Create New Schema

3: Edit Existing Schema

4: Delete Schema

5: List Schemata

9: Return

Select> : 5

(List Schemata)

Schemata defined in the database tribtest:

integer real fixed_string var_string

Object_3D Model_3D Face_3D Edge_3D

14

Point_3D Edge_2D Point_2D View_Class

Stat_Record Real_Image Synth_Image Grey_Scale_Image

Edge_Image Image_Header Experiment

The user may now view the components of any schema by name.

Select> : 1

(View Schema)

Enter type: Object_3D

SCHEMA: Object_3D

NUMBER OF INSTANCES: 2

PROPERTIES:

[0] name <fixed_string>

[1] model <Model_3D>

PARTS:

[0] views <View_Class>

[1] experiments <Experiment>

NO RELATIONS

Select> : 1

(View Schema)

Enter type: Model_3D

SCHEMA: Model_3D

NUMBER OF INSTANCES: 2

PROPERTIES:

[0] the_object <Object_3D>

PARTS:

[0] faces <Face_3D>

[1] edges <Edge_3D>

[2] points <Point_3D>

NO RELATIONS

A.2 A Query over Object 3D Entities

The user now wishes to �nd allObject 3D entities with 2 or more view classes,

whose CAD model has at least 40 edges and between 10 and 20 faces. Using

the Query Speci�cation Menu, the constraint tree may be formulated from the

bottom up. First, a query over Model 3D entities is constructed, which will

later be used to constrain the model property slot of a Object 3D query.

[Query Specification Menu]

15

1: View Query

2: Define New Query

3: Edit Query

4: Delete Query

5: List Available Queries

9: Return

Select> : 2

(Define New Query)

Enter type: Model_3D

Created query#1<Model_3D>.

Edit this query [y/n]: y

The query currently selected for editing is:

query#1<Model_3D>

Constraints on Properties:

[0] the_object <Object_3D> : NULL

Constraints on Parts:

[0] faces <Face_3D> : unconstrained.

[1] edges <Edge_3D> : unconstrained.

[2] points <Point_3D> : unconstrained.

[Edit Query]

1: Select New Query to Edit

2: View Selected Query

3: Edit Property Constraint

4: Edit Parts Constraint

5: Edit Relation Constraint

6: Edit Constraint Expression

9: Return

Select> : 4

(Edit Parts Constraint)

Enter slot number of part to constrain: 0

Enter constraint on cardinality of faces: (>= 10) AND (<= 20)

Slot 0 has been updated.

Enter slot number of part to constrain: 1

Enter constraint on cardinality of edges: >= 40

Slot 1 has been updated.

16

The Model 3D query has been stored in the database, and assigned query

ID #1 for future reference. Next, the user creates an Object 3D query, adding

constraints to the model property and the view classes part slot.

Select> : 2

(Define New Query)

Enter type: Object_3D

Created query#2<Object_3D>.

Edit this query [y/n]: y

The query currently selected for editing is:

query#2<Object_3D>

Constraints on Properties:

[0] name <fixed_string> : NULL

[1] model <Model_3D> : NULL

Constraints on Parts:

[0] views <View_Class> : unconstrained.

[1] experiments <Experiment> : unconstrained.

[Edit Query]

1: Select New Query to Edit

2: View Selected Query

3: Edit Property Constraint

4: Edit Parts Constraint

5: Edit Relation Constraint

6: Edit Constraint Expression

9: Return

Select> : 3

(Edit Property Constraint)

Enter slot number of property to constrain: 1

Enter query ID of constraint for model<Model_3D>: 1

Slot 1 has been updated.

Select> : 4

(Edit Parts Constraint)

Enter slot number of part to constrain: 0

Enter constraint on cardinality of views: >= 2

17

Slot 0 has been updated.

Select> : 2

(View Selected Query)

The currently selected query:

query#2<Object_3D>

Constraints on Properties:

[0] name <fixed_string> : NULL

[1] model <Model_3D> : query#1<Model_3D>

Constraints on Properties:

[0] the_object <Object_3D> : NULL

Constraints on Parts:

[0] faces <Face_3D> : (((>= 10)) AND ((<= 20)))

[1] edges <Edge_3D> : (((>= 40)))

[2] points <Point_3D> : unconstrained.

Constraints on Parts:

[0] views <View_Class> : (((>= 2)))

[1] experiments <Experiment> : unconstrained.

Now the completed query is used as a �lter over all entities of type Ob-

ject 3D, creating an output set of pointers to those entities that satisfy the

constraints.

[Query Menu]

1: Query Specification Menu

2: Process a Query

3: View a Set

4: Delete a Set

5: List Sets

6: List Available Queries

9: Return

Select> : 2

(Process a Query)

Enter query ID: 2

Query is of type query#2<Object_3D>.

Query over all entities of this type [y/n]: y

18

input set: set of 2 items.

{ Object_3D#1, Object_3D#2 }

** testing an item: Object_3D#1 **

PROPERTIES:

[0] name <fixed_string> : Fork

[1] model <Model_3D> : Model_3D#1

PROPERTIES:

[0] the_object <Object_3D> : Object_3D#1

PARTS:

[0] faces <Face_3D> : set of 14 items.

[1] edges <Edge_3D> : set of 36 items.

[2] points <Point_3D> : set of 24 items.

PARTS:

[0] views <View_Class> : set of 2 items.

[1] experiments <Experiment> : set of 0 items.

** Object_3D#1 did not satisfy **

** testing an item: Object_3D#2 **

PROPERTIES:

[0] name <fixed_string> : Cube3Cut

[1] model <Model_3D> : Model_3D#2

PROPERTIES:

[0] the_object <Object_3D> : Object_3D#2

PARTS:

[0] faces <Face_3D> : set of 18 items.

[1] edges <Edge_3D> : set of 48 items.

[2] points <Point_3D> : set of 32 items.

PARTS:

[0] views <View_Class> : set of 3 items.

[1] experiments <Experiment> : set of 0 items.

** Object_3D#2 satisfies **

set#183 created with 1 elements.

{ Object_3D#2 }

A.3 A Query over View Classes

Only the Object 3D named \Cube3Cut" satis�ed the constraints of query #1.

Cube3Cut's Model 3D contains 3 distinct view classes. The user now wishes

to �nd out which of those view classes contain at least 15 real images, have a

minimum latitude greater than 50, and a maximum longitude less than 100.

19

Once again, the query is constructed bottom-up. First, the user constructs

the query \Find all 3D objects named Cube3Cut".

(Define New Query)

Enter type: Object_3D

Created query#3<Object_3D>.

Edit this query [y/n]: y

The query currently selected for editing is:

query#3<Object_3D>

Constraints on Properties:

[0] name <fixed_string> : NULL

[1] model <Model_3D> : NULL

Constraints on Parts:

[0] views <View_Class> : unconstrained.

[1] experiments <Experiment> : unconstrained.

Select> : 3

(Edit Property Constraint)

Enter slot number of property to constrain: 0

Enter constraint for name<fixed_string>: == Cube3Cut

Slot 0 has been updated.

Next, the root level query is constructed, of type View Class. The property

slot the object is constrained with the previously constructed query. Also, the

min lat and max long properties are assigned integer constraints. Finally, the

cardinality of the real images part set is constrained to be >= 15.

(Define New Query)

Enter type: View_Class

Created query#4<View_Class>.

Edit this query [y/n]: y

Select> : 3

(Edit Property Constraint)

Enter slot number of property to constrain: 0

Enter query ID of constraint for the_object<Object_3D>: 3

Slot 0 has been updated.

20

Enter slot number of property to constrain: 1

Enter constraint for min_lat<integer>: > 50

Slot 1 has been updated.

Enter slot number of property to constrain: 4

Enter constraint for max_long<integer>: < 100

Slot 4 has been updated.

Select> : 4

(Edit Parts Constraint)

Enter slot number of part to constrain: 1

Enter constraint on cardinality of real_images: >= 15

Slot 1 has been updated.

Select> : 2

(View Selected Query)

The currently selected query:

query#4<View_Class>

Constraints on Properties:

[0] the_object <Object_3D> : query#3<Object_3D>

Constraints on Properties:

[0] name <fixed_string> : (((== Cube3Cut)))

[1] min_lat <integer> : (((> 50)))

[2] max_lat <integer> : NULL

[3] min_long <integer> : NULL

[4] max_long <integer> : (((< 100)))

Constraints on Parts:

[0] model_edges <Edge_3D> : unconstrained.

[1] real_images <Real_Image> : (((>= 15)))

[2] synth_images <Synth_Image> : unconstrained.

Now the query is used to �lter all view classes of the system. The �rst two

view classes fail because they belong to the Fork object instead of the Cube3Cut

object:

[Query Menu]

1: Query Specification Menu

2: Process a Query

3: View a Set

21

4: Delete a Set

5: List Sets

6: List Available Queries

9: Return

Select> : 2

(Process a Query)

Enter query ID: 4

Query is of type query#4<View_Class>.

Query over all entities of this type [y/n]: y

input set: set of 5 items.

{ View_Class#1, View_Class#2, View_Class#3, View_Class#4, View_Class#5 }

** testing an item: View_Class#1 **

PROPERTIES:

[0] the_object <Object_3D> : Object_3D#1

PROPERTIES:

[0] name <fixed_string> : Fork

** did not satisfy. **

** testing an item: View_Class#2 **

PROPERTIES:

[0] the_object <Object_3D> : Object_3D#1

PROPERTIES:

[0] name <fixed_string> : Fork

** did not satisfy. **

Of the remaining three view classes, two satisfy the entire constraint tree,

while one is rejected because the max long property exceeds 100.

** testing an item: View_Class#3 **

PROPERTIES:

[0] the_object <Object_3D> : Object_3D#2

PROPERTIES:

[0] name <fixed_string> : Cube3Cut

[1] min_lat <integer> : 62

[4] max_long <integer> : 55

PARTS:

22

[1] real_images <Real_Image> : set of 20 items.

** satisfies! **

** testing an item: View_Class#4 **

PROPERTIES:

[0] the_object <Object_3D> : Object_3D#2

PROPERTIES:

[0] name <fixed_string> : Cube3Cut

[1] min_lat <integer> : 62

[4] max_long <integer> : 180

PARTS:

[1] real_images <Real_Image> : set of 20 items.

** did not satisfy. **

** testing an item: View_Class#5 **

PROPERTIES:

[0] the_object <Object_3D> : Object_3D#2

PROPERTIES:

[0] name <fixed_string> : Cube3Cut

[1] min_lat <integer> : 62

[4] max_long <integer> : 30

** satisfies! **

set#189 created with 2 elements.

23

References

[1] R. Agrawal and N. Gehani. Ode: Object database & environment. SIG-

MOD, 1989.

[2] F. Bancilhon and P. Buneman. Advances in Database Programing Lan-

guages. ACM Press, New York, 1990.

[3] A. Biliris, N. Gehani, et al. Ode 3.0.3 User Manual. AT&T Bell Labora-

tories, Murray Hill, New Jersey.

[4] R. Jakobovits, L. Shapiro, and S. Tanimoto. Implementing multi-level

queries in a database environment for vision research. In IS&T/SPIE Sym-

posium on Electronic Imaging: Science & Technology, February 1995.

[5] H. Korth and A. Silberschatz. Database System Concepts. McGraw-Hill,

New York, 1991.

[6] L. Lewis, L. Shapiro, and S. Tanimoto. Flexible data organization with

visualization support for a visual database system. In IS&T/SPIE Sympo-

sium on Electronic Imaging: Science & Technology, February 1995.

[7] K. Pulli. Tribors: A triplet-based object recognition system. Technical

Report 95-01-01, Deptartment of Computer Science and Engineering, Uni-

versity of Washington, Seattle, WA, January 1995.

[8] L. Shapiro, S. Tanimoto, J. Brinkley, J. Ahrens, R. Jakobovits, and

L. Lewis. A visual database system for data and experiment management

in model-based computer vision. In Proceedings of the Second CAD-Based

Vision Workshop, pages 64{72, February 1994.

[9] L. G. Shapiro and R. M. Haralick. A spatial data structure. In Geo-

Processing 1, pages 313{337, 1980.

[10] B. Stroustrup. The C++ Programming Language, 2nd Ed. AT&T Bell

Labs, Inc., Murray Hill, NJ, 1993.

24

