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. Introduction

A. The Human Brain Project

The human brain is the most complex system on eanthscientists’ efforts to
understand the brain are now pushing the limits of databakadlogy, and in the
process generating the richest source of multimedattat science has ever known.
The data crosses all levels of the biological strucgpattrum, including molecules,
cells, systems of cells, and human behavior. Theatathighly multidimensional and
interconnected: findings at a molecular level may hay®igations for interpretation of
behavioral data. In 1991, a committee of brain resees@me computer scientists
recommended a grand undertaking: to develop a national riebivdatabases mapping
the brain and its function [CNN91]. In 1993 the HumanilBRroject (HBP) was
announced, representing an unprecedented coordination afdunoim 16 federal
organizations, to sponsor a wide range of independentcisdg visualizing,
simulating, and mapping knowledge about the brain. TlekdiEneuroinformaticsvas
born [KH97].

The HBP proposal was divided into two stages. The ddhkdirst stage was to develop
tools and independent databases to aid in neuroscienaecteseMany of the projects
have been extremely successful, generating a pletti@rabling technologies in the
form of renderings, atlases, knowledge bases, and neudators with hundreds of
users. Now the second stage has arrived, in whiclméinddual research groups are
mandated to integrate their systems and develop “querying appsodet will allow
varied databases to be accessed with a single quersgtaipstal of different types of
data into a common information space” [KH97].

Computer scientists and informatics researchers haveesg#ring database integration

techniques for twenty years [SL90], but never has theinlaedomain as challenging as



that posed by the Human Brain Project. As you wél 8em the systems described in
this paper, most attempts at implementing a multidatagystem have had their hands
full dealing with the heterogeneities of much simpler dors.  This is crossover
research, combining complex data type management witlratien issues [SSU96].
This paper is a survey of the existing computer scieneargs approaches to achieving
interoperability between autonomous heterogeneous dateesour

B. Schematic Conflicts

Before describing approaches to integration, it is impottannderstand the nature of
the challenge. When schema from heterogeneous dat@sa@ueccompared, the local
schemas will exhibischematic conflictayhich naturally arise from uncoordinated
representations of a given real world object. Thesdlicts must be addressed during
schema integration or view generation. Six commonstgieschematic conflicts are
listed here [KS91].

Generalization conflictsin which a class or attribute in one database suésumultiple
classes or attributes in another database. For ezaome Brain Map might distinguish
between English language sites and Chinese languagendisgeas a different Brain
Map might combine them into a single concept.

Data type conflictsin which different types are assigned to semanyieguivalent

attributes. For example, a Patient ID could be a septed as a string or an integer.

Structural conflictsjn which an entity in one system is modeled as aibaté in another
system, e.g. a Surgery could be a represented as a aitnjplete of a Patient, or it could
be modeled as a separate entity.

Missing attributessuch as when the age of a Patient is included in atersybut not in
another.



Naming conflictsin which semantically equivalent classes or attribaie assigned

different names.

Scale conflictssuch as when distances are measured in inches in steensynd

centimeters in another, or when different levelpraision are used.

ll. Approaches to Achieving Interoperability

This section provides a categorical overview of existirggesys, and discusses two

major facets of every integration system: the intégmadrchitecture, and query handling

strategy.

A. Overview of Multidatasource Systems

A “multidatasource systénfMDSS), to coin a term, is a collection of inforneat

sources which are integrated to some degree to support ghatispan across multiple

sources.

may be semi-structured or unstructured, and may not be upslarattheterogeneous

datasource systén(HDSS) is a MDSS whose component sources don’'t canfo a

single structural model.

| use the term “sources” as opposed to “datshascause some of the sources

.| |DaaModel | Sources |
Multibase Tightly- Computer | [DH84] Functional + | Yes Structured
Coupled FDBS| Corp. of general- databases
America ization
MRDSM Loosely- INRIA, [LMR90] Relational Yes Relational
Coupled FDBS| France databases
TSIMMIS Mediator Stanford [PMU96] Object No Semi-
System Exchange structured or
Model (OEM) unstructured,
dynamic
HERMES Knowledge Univ. of [AE95] Two-Stage No Knowledge
Amalgamation | Maryland Entity bases, spatial
Mediator Relationship and temporal
System reasoning
systems
Information Information AT&T [LRO96] Relational + | No Web-based
Manifold Gathering Bell Labs class data sources
Agent hierarchies
Metadatabase| Metadata Rensselaer | [CC96] None (but No Enterprise
Repository Polytechnic metadata databases,
System expressed in CIM




| | | ER model) |

Figure 1. Systems Overview

This paper focuses on four classes of HDSS: federatedadatapstems, mediator
systems, decision-logic based systems, and metadaisitogp systems. A brief

overview of each class is defined below.

1. Federated Database Systems

A “federated database syste(RDBS) is an integrated collection of full-featured
autonomous databases, in which the component administragantain control over
their local systems, but cooperate with the federdiyosupporting global operations
[LS90]. There are two kinds of FDBS: tightly coupled doosely coupled.

In a“tightly coupled FDBS”,such as Multibase [DH84] or Pegasus [Ahm+91], the
federation DBA provides the end-user with a predefined stewe upon which to query
and perform update operations. The federation DBA perfathsghematic and semantic
integration in advance. A tightly coupled FDBS may heeer asingle federatior{one
global schema), anultiple federationgschemas tailored to specific user groups).

A*loosely coupled FDBS;such as MRDSM [L+89], is a dynamic integration sysiem
which the end-users interact with the component dagaldisectly by means of a special
data manipulation language. The end-users look at compsciginas and formulate
their own federated schema.

Note that there is no consensus of terminology irféterated database community. For
example, the terrfmultidatabase” is used by [LMR90] to mean a loosely coupled
FDBS, whereas [SL90] uses it to mean any collectiantegrated databases.



2. Mediator Systems

A “mediator system’is a collection of information sources that are irgéegn to provide
a uniform read-only interface to the end-user, and af$ebls for performing the
integration tasks. There are three classes of uberdomain integratorwho translates
an information source into the common data modelntédiator authorwho integrates
the translated sources, and émal-user who submits queries to the integrated sources
[PMU96]. The key difference between a mediator sysiachan FDBS is that the user
cannot perform updates to the component sources. A toedistem is similar to a
tightly coupled FDBS in that the end-user works with pfiedd static views. It is also
like a loosely coupled FDBS, in that the component seuace highly autonomous.

Two mediator systems are discussed in sectiondllTSIMMIS [PMU96, PMW95], the
focus is integrating sources that are unstructured orstenatured, i.e. that do not have
a well-defined schema. In HERMES [AE95], the focustiegrating knowledge bases

and reasoning systems.

3. Description-Logic Based Systems

The “Information Manifold is a description-logic-basedpproach, which uses Al
planning techniques to solve queries over multiple web-basednatmn sources
[LRO96B]. This approach is similar to the mediator syst, except that it imposes a
single global view, whereas the mediator systems geowiultiple views that can be
layered and tailored to specific user groups.

4. Metadata Repository Systems

Another approach is theetadata repositoryas demonstrated by tMetadatabase
system [CC96]. In this system, queries are formulat@dmhycally by interacting with

an on-line global dictionary of metadata. An ing®int user interface helps the user
articulate queries by traversing the local models ottdmponent databases, and assists
in resolving semantic and schematic heterogeneities siistem is similar to a loosely
coupled FDBS, in that there is no predefined integrated view.also like a mediator



system in that the user is limited to read-only queriéswever, unlike all the other

systems, there is no canonical data model.

In section 111, | will discuss the data models, ineggyn techniques, and query handling

approaches of each of these systems in more detail.

B. Integration Architectures

The approaches described above can be broadly classifietivb groupsstatic

integration systemanddynamic integration systemsn static integration systems,

schematic and semantic heterogeneities are resolved avhew component database is

incorporated into the system. In dynamic integration syst¢he heterogeneities are

resolved by the end-user at query time. A general referambitecture for each class is

described below.

Global Metadata
'

Tools
_Language __ Techniques |

or Stati View Resource

‘

Multibase Static Superview| Auxiliary DAPLEX and | General- Language
(Global Schema NQUEL. ization extensions
Schema)

MRDSM Dynamic | None None MSQL implicit Language
joins, extensions
dynamic
attributes

TSIMMIS Static None None Mediator Rule MedMaker

Specification | Specific-
Language ation,
(MSL) Virtual
Objects
HERMES Static None Yellow Generalized | Amalga- Mediatory
Pages Annotated mation Programming
Program using Environment
Framework Annotated
Logic

Information Static World Source CARIN- Correspond-| Future work

Manifold View Descriptions| CLASSIC ence
functions.

Metadatabase| Dynamic None Global MQL rule Model

Information processor, | Traversal
Resource model Interface
Dictionary traversal

Figure 2: Integration Issues



1. Static Integration Systems

In static integration systems, shown in Figure 3, theeehree kinds of usedomain
integrators mediator authorsandend-users As new component databases are

integrated into the system, heterogeneities are mddiy the domain integrators and

End User

IntegratedSchema

Integratior os > .
Tools = Mediatol
Mediatol
Author /

Component Schema

Component Schema

Domair Domair
Integrato Integrato

Translatior
Tools

Translatior
Tools

LDB LDB

Figure 3: Static Integration Architecture

mediator authors during a two-stéagghema integration processtgesulting in an
integrated schema, which hides the semantic and strudttieaénces of the underlying
component databases from the end-users.

In the first stage, the domain integrators utilizaeyssuppliedranslation toolso
implement avrapperthat translates the domain schema from their lodal mi@del into
the system-wide canonical data model. In federated dstabeminology, the wrapper is



called a‘transforming processor{SL90]. The resulting schemas are calfedmponent
schemas! By first translating into an intermediary componseitema, the overall
process of integration is greatly simplified. In fededadatabase systems, the task of
domain integration is often performed by the databaseéngstrators of the local
databases, with the help of the federated database iattator.

In the second stage, the mediator authors use systernieslippegration toolgo
implement amediatorthat combines multiple component schemas intmt&grated
schemain which inconsistencies are resolved and duplicateseareved. In federated
database terminology, the integrated schema is rdfesras dfederated schemabr
“export schema” In some systems, all component schema are intelgrdatea single
global schema, while in others, multiple integratduesaa exist for different classes of
end-users. Mediators may be combined in layers to proiedeer views [PMU96].

The process of translating and integrating schemas desenappings that will later be
used by the query processor to modify global queries.

The tightly coupled federated database systems, megigitmms, and decision-logic
based systems described in this paper are all staticahtegsystems. They differ in
their approaches to schema translation and mediatoorang. The design of semi-
automatic translation and integration tools is curreatlhactive research area [KWD97].

2. Dynamic Integration Systems

In dynamic integration systems, shown in Figure 4getigusers are not provided with a
predefined view. Instead, they are given direct acced®etcomponent schemas at query
time by means of a multidatabase query language or a gabpbér interface. A

metadata resource dictionaf C96] contains descriptions of the component schema
(including conversion information). Using the metadtdia,end-user constructs an

integrated schema on the fly, and poses queries digagaipnst the custom-built view.
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Loosely coupled FDBMs and the Metadatabase are examipdgmamic integration

systems.

Because integrated schemas can be promptly created gmkdron the fly, dynamic
integration systems allow the end-user more flexibdigd are much easier to maintain in
the presence of evolving component schema. Howeverreheire a more sophisticated

@ Integrated View
/ EnolT User

[ User Interface or Query Languag}

- / Metadat: -
Component View Dictionan Component View

A Domair Domair
Integrato Integrato
DB Translatior —LDB
Tools

Figure 4: Dynamic Integration Architecture

end-user who understands the semantics of the compahemas and is responsible for

integration.

By contrast, static integration systems tend to eviohaegradual, controlled fashion, as
they require negotiation between the three classasasé. However, the development of
new integration techniques is allowing static systemtoime more dynamic in nature,
and the distinction between the two classes is baggrioi blur. Some of these techniques

are described in section Il below.
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C. Query Handling

Every system described in this paper follows the sarmie bagep approach to query
handling: query specification, query modification, querpsfation, result translation,

and result integration.

In the first stepguery specificationthe user articulates a request for data by specifying
constraints on attributes. In athticintegration systems, such as tightly coupled
federated databases and mediator systems, end-users puse ageanst a predefined
integrated view using a declarative query language, or byimyiEynstraints in a
graphical interface. For example, in Multibase, quaresspecified using an SQL-like
language called NQUEL against a gloBalperview In TSIMMIS, queries are

formulated using an Object Exchange query language againgegnated view supplied
by a mediator, tailored for that particular user. ERMMES, users pose queries as logical
predicates. In Information Manifold, users select refetiand supply constraints in the
World Viewusing a web-based interface, which generates a query egpressisisting

of a conjunction of clauses in a description logic language

In dynamicintegration systems, such as loosely coupled federatelagss or
metadatabases, end-users first generate a view and t$ethpo queries as in static
integration systems. In MRDSM, queries are articdlaneMSQL, a multidatabase query

language.

In the second stepguery modificationa query is decomposed into sub-queries, one for
each component database to be accessed by the quéyenated databases and
mediator systems, the query processor obtains a patéised on the integration
functions that were used to resolve the heterogeneitiesch attribute. Then for each
subset in the partition, a local query is generated dgcieyy each global attribute with
the corresponding component schema attribute. By contiession-logic based
systems such as Information Manifold perform query decorposising a query
planning algorithm. And in metadata repository systemsjegiare decomposed

12



explicitly by the user via a model-assisted approach. if8pegamples are given for the

various systems in section lll.

In the third stepguery translationthe component sub-queries are translated into the
syntax required by the corresponding local data sourcether it be query language
commands, input to a web-based form, or invocation tereal applications. The
component information system reads the query and produesslaset. A large body of
research is devoted to translating queries between datdsmode

_ Heuristics
| | Technigues

Multibase NQUEL Partitioning on simple union, not covered

conditional duplicate
functions, elimination
subrange tables

TSIMMIS OEM-QL View Expansion, | logical datamerge | partial object

push selections rules fetches
down

HERMES Mediatory clauses, expert system Information Unspecified
special predicates| invokes external | Pooling toolkits

programs

Information Conjunctive query plans simple union. prune irrelevant

Manifold Queries in sources
description logic.

Metadatabase MQL, visual model-assisted equijoin minimize number
query formulation, | decomposition of equijoins
automatic
completion

Figure 5: Query Issues

In the fourth step, each result is translated backthe common data model as

necessary. In the fifth step, the multiple resets @re integrated and returned to the user.

Each system has its own method for merging resulisiiver it is based on logical

datamerge rules, information-pooling toolkits, or a singgjaijoin.

lll. System Details

In this section, | describe in five of the systemgd tixere outlined above, focusing on the

key aspects of each system’s integration techniques ang loppuadling strategies.
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A. Multibase

Multibase is the classic tightly coupled federated degalsystem. It is based on the
functional data model, augmented with the concepgenéralizatioh, described below.
The user is presented with a single global schemagdddlesuperviewwhich provides
the illusion of a homogenous database. View definisgrerformed by the federated
database administrator, using d@PLEXIlanguage, which is a functional query
languages with loop constructs and nesting. The comp&®i&hs translate theilocal

host schemasnto local schemasgi.e. component schemas) in the functional model,

Users

¢

Global Schema

A

View Definition Facility

|

LS1 e LSa

a
L

Auxiliary Schema

Mapping into a
Common Data
Model

LHS1 oo LHESn

recording metadata information in a gloBaixiliary Schema (AS)The federated
database administrator then uses generalization to dbé&r@lobal Schema (i.e.
integrated schema) as a view of the LS’s and AS.

Generalization is an integration technique that a8dsinheritance relationships for both

entities and functions. For example, if one databaeesdean employee &VIP(name,

sal, age)and a second database defines EM® (name, sal, address)generalization
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allows us to define aupertypeEMP(name, sal) that includes the common attributes,
and subsumes twsubtype€£MP1(name, ageandEMP2(name, address)which

contain only the key value and specialized attributdss i§ in contrast to theouter

join” integration technique, which would cre&® P(name, sal, age, addressyith

NULL values padding the non-applicable fields.

The semantics for determining attribute values are spda functions in the supertype.
For example, suppose the two employee databases rapeparate jobs, and an
employee appearing in both should have a salary thia¢ sum of his two salaries. The
following supertype definition, specified in NQUEL, dohs trick:

DEFINE SUPERTYPE EMP BY
EMP1 ISAe EMP, EMP2 ISAe EMP
ID : Name
FOR e IN EMP
Sal := CASE
e ISIN EMP1 — EMP2 => Sall(e)
e ISIN EMP2 — EMP1 => Sal2(e)
e ISIN EMP1 Intersect EMP2 => Sall(e) + Sal2(e)
ENDCASE
ENDFOR

B. TSIMMIS

TSIMMIS is a mediator system being developed by the Stdrfatabase group, in
conjunction with IBM. A major focus of the projecttize development of tools to speed
up the integration process by extracting properties frommuststed or semi-structured
sources with no well-defined static schema, such ad do@iments or a finger facility.
The key to their approach is tlibject Exchange Model (OEMy, which data items are
self-describing.As opposed to relying on a schema, the object strustimeluded as
labels embedded in every data item. Each OEM objedhkeastructurecObject-1D,

Label, Type, Value> This is analogous to tiREPOmodel of my Web-Interfacing
Repository Manager [JB97], in which data objects are aedess perl associative arrays.
Like REPO, OEM differs from the Object-Oriented modatethat it is much simpler:

supporting only nesting and object-identity.
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For example, here is a set of results from the fiogeration (note the variable structure

of the person elements):
<&g1l, finger, set, {&92, &g3, ...}>
<&g2, person, set, {&g21, &g22}>
<&g21, name, string, ‘Linda Shapiro’>
<&g22, login, string, ‘shapiro’>
<&g3, person, set, {&g31, &g32, &g33}>
<&g31, name, string, ‘Rex Jakobovits'>
<&g32, plan, string, ‘To pass generals!>

<&g33, login, string, ‘rex’>

User/Application 1 User/Application 2

Integrated View 1 Integrated View 2
(Mediator 1 } [Mediator 2 J
00 View 00 View
of Source 1
of Source 3
(Wrapper 1 ] \Wrapper 2 J (Wrapper 3 J

Information
Source 1

Information Information
Source 2 Source 3

Because OEM forces no regularity on the data, it caityd@andle structure irregularities
and can handle schema evolution without the need ity Mediators. The schema-
less nature of OEM is useful when clients do not no vaade the structure of OEM
objects, and can discover the structure as queries se€el pdJsers pose queries via
OEM-QL, an SQL-like query language which supports wild-carcepatnatching. Wild

16



cards can bind to both labels and attribute values. Fong&ato discover the structure
of Rex’s finger entry:

SELECT *.* from FINGER
WHERE login = “rex”

In addition to the OEM, a major contribution of TSIN®is theMediator Specification
LanguaggMSL), a high-level declarative language for integratingad®urces. MSL
uses prolog-like rules and functions for translating objeg@ihe tail of a rule specifies
patterns found in the sources, while the head describesnzatf the top-level objects of
integrated views.
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Figure 8: HERMES

C. HERMES

HERMES is a Mediator system being developed at the UntiyerfsMaryland. Unlike
TSIMMIS, which integrates semi-structured data soutdeR}RMES focuses on
integrating knowledge bases and reasoning systems. Sggifigarovides support for
amalgamating knowledge from relational, object-oriensedfial, and temporal domains
into a single reasoning system. Integration is achievdwbiting up each component
system to the semantic model, called the Generalirewtated Program (GAP)
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Framework, an extension of logic programming. GAP suppiontsain-specific

semantic expressions, such as:

SPATIAL:RANGE(‘brainmap’, P, 5.0)

which finds all points within 5 units of poiftin the spatial database callecinmap.

Like TSIMMIS, HERMES defines a rule-based mediator lagguamplemented within
aMediator Programming Environmenthe Mediators are written as prolog-like clauses,

with two special predicates:

* in(): executes a select statement on the target dataesourc

» =(): tries to unify two values.

The model also supports uncertainty, and atoms are maritedomfidence factor
values. Related systems are Carnot [CHS91] which us&Syih knowledge base, and

SIMS, based on the Loom knowledge representation language.

D. Information Manifold

The Information Manifold (IM) is a decision-logic systdor integrating web-based
information sources, being implemented at AT&T Bell LAgsAlon Levy. Asin a
Mediator system, the end-user specifies their querieardéiokly against a static view.
Unlike TSIMMIS, however, the IM presents the user waithingle global view, called the
World View which is a collection of virtual relations and clasges describes the
contents of the information sources. The IM usedadioeal data model, augmented

with class hierarchies. A key feature of the IM modehat classes can be declared to be

disjoint, guaranteeing that no object can belong to both.
Using the CARIN-CLASSIC description logic language, ititegrator specifiesource

descriptionsfor each data source, consistingcohtent recordsindcapability records

The content record of a given source identifies tbddwiew attributes which can be

18



found in that source. For example, consider the fatigweontent record for a source

which describes a database of car reviews for modelerriéan 1985:

V(product, year, review):
Review(model, year, review)] Car(model) O year=> 1985

Because web-based sources often have limited query ctipabdi capability record
describes which attributes can be used as binding and selecteria. A capability

record is a tupl&Sy, Su, Sse, Min, max>which specifies that the elementsSyfcan be
used as input parameters, bindings must be supplied fasamia of the input
parametershe elements i are the possible output parameters, and the elements of

User interface Answers

-------------------- N
/ (WWW-based)
[ World view ]
NG e Query
: i ol
' 1 .
P Relevance reasonin
Source descriptions ‘i/\a Plan g
1

Contents

Logical planner

Capabilties

Execution planner

1

1

]

i

I

:

1]

: Execution plan
] -
i

]

]

1

1

i

]

....................

Execution engine

Select, project, join, union...

Interface program Interface program Interface program Interface program
I INTERNET —I
Structured WWW Form Relational Object-oriented
Files interface Database database

Sselare parameters on which the source can apply inequaldgteons. For example, if
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the car review query form allows reviews to be retiielg model or year, the capability

record might look like this:

({model, year}, {model, year, review}, {year}, 1, 2)

User queries are formulated in terms of the world-vielations by means @bnjunctive
gueries. For example, the following query requests 1992 or later madglfor sale and

their reviews:

Q(model, yr, price, rev) : CarForSale(model, yr, prie) 0 Review(model, yr, price)d yr > 1992

The IM usegjuery plansconsisting of conjunctive subgoals, to prune out ik

sources and decide on the order of query execution.
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Figure 10: Metadatabase

E. Metadatabase
The Metadatabase is a dynamic integration system deacklat the Rensselaer
Polytechnic Institute. Unlike the majority of systemsered here, the Metadatabase
does not provide the user with a unified schema or data pimdeither provides an on-

line repository of enterprise metadata to facilitate alajuery formulation. The user
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interface allows the user to articulate queries diydnylvisually traversing the local data
models. The user picks items and attributes directlyr fmenus rather than entering
their names. The system uses a detailed metadataoepts provide assistance in
traversing models, checking semantics, and deriving implied déhe user’s dialog with
the interface results in the generation of a quetheMetadatabase Query Language
(MQL). The Metadatabase includes a table of conversion iauese during query

processing. ARules Processmearches for applicable rules and fires them.

The metadata about local models are represented usi@jadibal Information Resource
Dictionary (GIRD)model. GIRD supports four categories of metadata: fomati
models, structural models, software and hardware resoar@gspplication families.
GIRD itself is implemented usingTavo-Stage Entity Relationsh{pSER)method, in
which metadata are defined as a network of SUBJECTSs (funadtobjects), ENTITIES
(structural objects), and CONTEXTSs (rule-based descriptidiprocesses).

IV.Alternative Approaches

The four classes of systems described above define tiregoedige of integration
research, and all of them seek to provide a framewmr&dhematic integration while
maintaining the autonomy of the component systems.aBuimber of other approaches

are being used in industry, and they deserve consideratien h

A. Point-to-Point Gateways

Rather than attempt to integrate multiple systems uadergle query interface, pairs of
systems can be integrated by building customized intexfaegveen them. The
adoption of an intermediary call-level-interfacenstard, such as ODBC [Gei96] or
JDBC [PP96], provides a uniform way to communicate, aljhoschematic conflicts

must still be handled on a case-by-case basis.

B. Data Warehouses

A data warehouse is a centralized repository of infoonagxtracted from multiple data
sources [Wid95]. The difference between a data warelaukéhe integration systems
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described in this paper is that a data warehouse is @iy of the integrated data, and
updates to the component databases are not readilstedfia the warehouse. The
warehouse is a kind aistantiated viewIhe view tends to be subject-oriented,
containing histories of the data changing over time, anagstescon categorizing the data
across various dimensions. Data is integrated atrtteedf gathering or by “data
cleaning” techniques. The disadvantage of this centratippdoach is that it is hard to
keep the warehouse in synch with local systems fromhwthie data was copied without

severely restricting their local autonomy.

But in spite of their static nature, data warehouses pawen to be extremely valuable
to corporate enterprises. They provides users wittbigger picture”, and facilitate
knowledge discovery and on-line analytical processing. Amtgban industry solution,
they come with industrial strength tools: high-level aggtions for developing the
warehouse, cleaning the data, deploying web interfacesaaitithfing data mining.

And most importantly, because query execution does nolvmdata translation and
communication with remote sources, complex queriedeasxecuted easily and

efficiently.

C. Distributed Objects

The opposite approach to integration is the adoptioteatiards. The Human Brain
Project could encourage its constituents to adopt ahdistd object model for their
applications and databases. The distributed object mdowkabbjects to interact
without knowing anything about their location [OHE95]. Objeuts encapsulated
entities that are accessed by means of well-defindegdassdribing interfaces. Local
DBA's could still define their own internal data modelafa structures, schema,
implementation languages, system platforms, etc.@patticipate in the “federation”
their systems would need to comply withabect request brokestandard, such as
CORBA [Vin97].

D. Shared Class Libaries

This is the most restrictive approach of all with relg@ar component autonomy. The
community agrees on a common application language (@@ oda&++) and develops a

23



set of domain-specific superclasses from which applicatioay inherit their data
structures and interfaces. Using an object-oriented dedba. a persistent

programming language), data objects naturally gain persistence

A classic example of this approach is thge Understanding EnvironmefiUE), an
ARPA project to develop a common object-oriented softvesnvironment for facilitating

the exchange of research results within the Image Wtateting community [IUE-url].

The approach has the obvious benefits of a common datel,namd independent
projects can avoid “reinventing the wheel”. It greafilyilitates the design applications
that use multiple sources, and programmers can berafitdther people’s tools at the
application level. For example, a system for hawgdépatial queries over atlases can be
made into a “spatial_query_processor” class, which opevatéspatial_query_objects”
and “spatial_data_objects” which are specified as cldbaesnultiple groups may use.

E. Shared Ontologies

Perhaps the greatest promise of all lies with shama@mn knowledge ontologies, which
are essential for integration at any level. Every agpgralescribed in this paper would
benefit from a detailed knowledge ontology. An ontolgggnore than just a controlled
vocabulary: it should contain deep domain knowledge amd émmonceptuaktandard.
Our Structural Informatics Group has proposed that anai®iine ultimate framework

for organizing biological knowledge [Ros+97].

V. Conclusion

The question remains, which approach is best for the HBrain Project? Because the
various approaches differ greatly in their models presetat the user, we must first
identify thetarget usersof the HBP databases. Then we can identify the rexeints of

each user group, and adopt an approach (or combination of epgspaccordingly.
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An immediate user class is tlozal database developat each HBP site: when
designing their local applications, they could beneditrfra global model. However, they
probably value their autonomy more than the conveniehaeglobal model. Another
user will be théederation DBAthe person responsible for managing the “motherl of al
databases”, which could require a deep knowledge of thedolsamas.

A broader class of users are thBP researchershemselves, who are not necessarily
working on the database aspects of their systems, duitiviaave a high interest in
learning more about the other projects’ data.

An important class of users are tlieriders: members of Congress and grant issuers,
who will use the federated database as a means oia¢wvag the success of the entire
brain project effort.

But in the long term, the ultimate users are those metttyy affiliated with the HBP:

hard core neuroscientists, students, and clinicians.

It is clear that the wide range of users will exhibifetiént levels of sophistication with
regard to domain knowledge, internal data models, and pnogiray sophistication.

Therefore a combination of the approaches must be undertakaltaneously.

In the face of the complexity of the data, integrat®a daunting task. But we don'’t
have to start from scratch: a number of sub-commurtieeady exist, sharing schemas
and data at point-to-point level, and groups have alrbadyn adopting their own
protocols and standards. The route to success mustastartwo directionstop-down

in which a data warehouse or global view is gradually cortslyandbottom-up in

which closely related research groups gradually increasantiount of sharing and cross-
fertilization. At every step of the way, the desagm operational autonomy of the
independent groups must be preserved.
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