
Integrating Autonomous Heterogeneous
Information Sources

Rex Jakobovits
Dept. of Computer Science & Engineering

University of Washington

July 15, 1997

2

I. Introduction____________________
A. The Human Brain Project ___ 3

B. Schematic Conflicts___ 4

II. Approaches to Achieving Interoperability _ 5
A. Overview of Multidatasource Systems _____________________________________ 5

1. Federated Database Systems__6
2. Mediator Systems __7
3. Description-Logic Based Systems__7
4. Metadata Repository Systems___7

B. Integration Architectures__ 8
1. Static Integration Systems__9
2. Dynamic Integration Systems __10

C. Query Handling___ 12

III. _______________________System
13

A. Multibase __ 14

B. TSIMMIS__ 15

C. HERMES __ 17

D. Information Manifold__ 18

E. Metadatabase___ 21

IV. _________________Alternative Approac
22

A. Point-to-Point Gateways__ 22

B. Data Warehouses__ 22

C. Distributed Objects__ 23

D. Shared Class Libaries __ 23

E. Shared Ontologies ___ 24

V.Conclusion_____________________

VI. ___________________________R
26

3

I. Introduction

A. The Human Brain Project

The human brain is the most complex system on earth, and scientists’ efforts to

understand the brain are now pushing the limits of database technology, and in the

process generating the richest source of multimedia data that science has ever known.

The data crosses all levels of the biological structural spectrum, including molecules,

cells, systems of cells, and human behavior. The data are highly multidimensional and

interconnected: findings at a molecular level may have implications for interpretation of

behavioral data. In 1991, a committee of brain researchers and computer scientists

recommended a grand undertaking: to develop a national network of databases mapping

the brain and its function [CNN91]. In 1993 the Human Brain Project (HBP) was

announced, representing an unprecedented coordination of funding from 16 federal

organizations, to sponsor a wide range of independent projects for visualizing,

simulating, and mapping knowledge about the brain. The field of neuroinformatics was

born [KH97].

The HBP proposal was divided into two stages. The goal of the first stage was to develop

tools and independent databases to aid in neuroscience research. Many of the projects

have been extremely successful, generating a plethora of enabling technologies in the

form of renderings, atlases, knowledge bases, and neural simulators with hundreds of

users. Now the second stage has arrived, in which the individual research groups are

mandated to integrate their systems and develop “querying approaches that will allow

varied databases to be accessed with a single query, and retrieval of different types of

data into a common information space” [KH97].

Computer scientists and informatics researchers have been exploring database integration

techniques for twenty years [SL90], but never has their been a domain as challenging as

4

that posed by the Human Brain Project. As you will see from the systems described in

this paper, most attempts at implementing a multidatabase system have had their hands

full dealing with the heterogeneities of much simpler domains. This is crossover

research, combining complex data type management with integration issues [SSU96].

This paper is a survey of the existing computer science research approaches to achieving

interoperability between autonomous heterogeneous data sources.

B. Schematic Conflicts

Before describing approaches to integration, it is important to understand the nature of

the challenge. When schema from heterogeneous data sources are compared, the local

schemas will exhibit schematic conflicts, which naturally arise from uncoordinated

representations of a given real world object. These conflicts must be addressed during

schema integration or view generation. Six common types of schematic conflicts are

listed here [KS91].

Generalization conflicts, in which a class or attribute in one database subsumes multiple

classes or attributes in another database. For example, one Brain Map might distinguish

between English language sites and Chinese language sites, whereas a different Brain

Map might combine them into a single concept.

Data type conflicts, in which different types are assigned to semantically equivalent

attributes. For example, a Patient ID could be a represented as a string or an integer.

Structural conflicts, in which an entity in one system is modeled as an attribute in another

system, e.g. a Surgery could be a represented as a simple attribute of a Patient, or it could

be modeled as a separate entity.

Missing attributes, such as when the age of a Patient is included in one system but not in

another.

5

Naming conflicts, in which semantically equivalent classes or attributes are assigned

different names.

Scale conflicts, such as when distances are measured in inches in one system and

centimeters in another, or when different levels of precision are used.

II. Approaches to Achieving Interoperability

This section provides a categorical overview of existing systems, and discusses two

major facets of every integration system: the integration architecture, and query handling

strategy.

A. Overview of Multidatasource Systems

A “multidatasource system” (MDSS), to coin a term, is a collection of information

sources which are integrated to some degree to support queries that span across multiple

sources. I use the term “sources” as opposed to “databases” because some of the sources

may be semi-structured or unstructured, and may not be updatable. A “heterogeneous

datasource system” (HDSS) is a MDSS whose component sources don’t conform to a

single structural model.

System Classification Institution Reference Common
Data Model

Updates Target Data
Sources

Multibase Tightly-
Coupled FDBS

Computer
Corp. of
America

[DH84] Functional +
general-
ization

Yes Structured
databases

MRDSM Loosely-
Coupled FDBS

INRIA,
France

[LMR90] Relational Yes Relational
databases

TSIMMIS Mediator
System

Stanford [PMU96] Object
Exchange
Model (OEM)

No Semi-
structured or
unstructured,
dynamic

HERMES Knowledge
Amalgamation
Mediator
System

Univ. of
Maryland

[AE95] Two-Stage
Entity
Relationship

No Knowledge
bases, spatial
and temporal
reasoning
systems

Information
Manifold

Information
Gathering
Agent

AT&T
Bell Labs

[LRO96] Relational +
class
hierarchies

No Web-based
data sources

Metadatabase Metadata
Repository
System

Rensselaer
Polytechnic

[CC96] None (but
metadata
expressed in

No Enterprise
databases,
CIM

6

ER model)

Figure 1: Systems Overview

This paper focuses on four classes of HDSS: federated database systems, mediator

systems, decision-logic based systems, and metadata repository systems. A brief

overview of each class is defined below.

1. Federated Database Systems

A “ federated database system” (FDBS) is an integrated collection of full-featured

autonomous databases, in which the component administrators maintain control over

their local systems, but cooperate with the federation by supporting global operations

[LS90]. There are two kinds of FDBS: tightly coupled and loosely coupled.

In a “tightly coupled FDBS”, such as Multibase [DH84] or Pegasus [Ahm+91], the

federation DBA provides the end-user with a predefined static view upon which to query

and perform update operations. The federation DBA performs all schematic and semantic

integration in advance. A tightly coupled FDBS may have either a single federation (one

global schema), or multiple federations (schemas tailored to specific user groups).

 A“loosely coupled FDBS”, such as MRDSM [L+89], is a dynamic integration system in

which the end-users interact with the component databases directly by means of a special

data manipulation language. The end-users look at component schemas and formulate

their own federated schema.

Note that there is no consensus of terminology in the federated database community. For

example, the term “multidatabase” is used by [LMR90] to mean a loosely coupled

FDBS, whereas [SL90] uses it to mean any collection of integrated databases.

7

2. Mediator Systems

A “mediator system” is a collection of information sources that are integrated to provide

a uniform read-only interface to the end-user, and a set of tools for performing the

integration tasks. There are three classes of users: the domain integrator, who translates

an information source into the common data model, the mediator author, who integrates

the translated sources, and the end-user, who submits queries to the integrated sources

[PMU96]. The key difference between a mediator system and an FDBS is that the user

cannot perform updates to the component sources. A mediator system is similar to a

tightly coupled FDBS in that the end-user works with predefined static views. It is also

like a loosely coupled FDBS, in that the component sources are highly autonomous.

Two mediator systems are discussed in section III. In TSIMMIS [PMU96, PMW95], the

focus is integrating sources that are unstructured or semi-structured, i.e. that do not have

a well-defined schema. In HERMES [AE95], the focus is integrating knowledge bases

and reasoning systems.

3. Description-Logic Based Systems

The “Information Manifold” is a description-logic-based approach, which uses AI

planning techniques to solve queries over multiple web-based information sources

[LRO96B]. This approach is similar to the mediator systems, except that it imposes a

single global view, whereas the mediator systems provide multiple views that can be

layered and tailored to specific user groups.

4. Metadata Repository Systems

Another approach is the metadata repository, as demonstrated by the Metadatabase

system [CC96]. In this system, queries are formulated dynamically by interacting with

an on-line global dictionary of metadata. An intelligent user interface helps the user

articulate queries by traversing the local models of the component databases, and assists

in resolving semantic and schematic heterogeneities. This system is similar to a loosely

coupled FDBS, in that there is no predefined integrated view. It is also like a mediator

8

system in that the user is limited to read-only queries. However, unlike all the other

systems, there is no canonical data model.

In section III, I will discuss the data models, integration techniques, and query handling

approaches of each of these systems in more detail.

B. Integration Architectures

The approaches described above can be broadly classified into two groups: static

integration systems and dynamic integration systems. In static integration systems,

schematic and semantic heterogeneities are resolved when a new component database is

incorporated into the system. In dynamic integration systems, the heterogeneities are

resolved by the end-user at query time. A general reference architecture for each class is

described below.

System Dynamic
or Static

Global
View

Metadata
Resource

View
Specification
Language

Semantic
Integration
Techniques

Integration
Tools

Multibase Static Superview
(Global
Schema)

Auxiliary
Schema

DAPLEX and
NQUEL.

General-
ization

Language
extensions

MRDSM Dynamic None None MSQL implicit
joins,
dynamic
attributes

Language
extensions

TSIMMIS Static None None Mediator
Specification
Language
(MSL)

Rule
Specific-
ation,
Virtual
Objects

MedMaker

HERMES Static None Yellow
Pages

Generalized
Annotated
Program
Framework

Amalga-
mation
using
Annotated
Logic

Mediatory
Programming
Environment

Information
Manifold

Static World
View

Source
Descriptions

CARIN-
CLASSIC

Correspond-
ence
functions.

Future work

Metadatabase Dynamic None Global
Information
Resource
Dictionary

MQL rule
processor,
model
traversal

Model
Traversal
Interface

Figure 2: Integration Issues

9

1. Static Integration Systems

In static integration systems, shown in Figure 3, there are three kinds of users: domain

integrators, mediator authors, and end-users. As new component databases are

integrated into the system, heterogeneities are resolved by the domain integrators and

mediator authors during a two-stage“schema integration process”, resulting in an

integrated schema, which hides the semantic and structural differences of the underlying

component databases from the end-users.

In the first stage, the domain integrators utilize system-supplied translation tools to

implement a wrapper that translates the domain schema from their local data model into

the system-wide canonical data model. In federated database terminology, the wrapper is

End User

Mediator
Author

LDB

Component Schema

Translation
Tools

Wrapper
Domain

Integrator

LDB

Component Schema

Translati
on

Wrappe
Domain
Integrat

Integration
Tools

LDB

Integrated Schema

Translation
Tools

Wrapper
Domain

Integrator

Mediator

Figure 3: Static Integration Architecture

10

called a “transforming processor” [SL90]. The resulting schemas are called “component

schemas”. By first translating into an intermediary component schema, the overall

process of integration is greatly simplified. In federated database systems, the task of

domain integration is often performed by the database administrators of the local

databases, with the help of the federated database administrator.

In the second stage, the mediator authors use system-supplied integration tools to

implement a mediator that combines multiple component schemas into an integrated

schema, in which inconsistencies are resolved and duplicates are removed. In federated

database terminology, the integrated schema is referred to as a “federated schema” or

“export schema”. In some systems, all component schema are integrated into a single

global schema, while in others, multiple integrated schema exist for different classes of

end-users. Mediators may be combined in layers to provide cleaner views [PMU96].

The process of translating and integrating schemas generates mappings that will later be

used by the query processor to modify global queries.

The tightly coupled federated database systems, mediator systems, and decision-logic

based systems described in this paper are all static integration systems. They differ in

their approaches to schema translation and mediator authoring. The design of semi-

automatic translation and integration tools is currently an active research area [KWD97].

2. Dynamic Integration Systems

In dynamic integration systems, shown in Figure 4, the end-users are not provided with a

predefined view. Instead, they are given direct access to the component schemas at query

time by means of a multidatabase query language or a graphical user interface. A

metadata resource dictionary [CC96] contains descriptions of the component schema

(including conversion information). Using the metadata, the end-user constructs an

integrated schema on the fly, and poses queries directly against the custom-built view.

11

Loosely coupled FDBMs and the Metadatabase are examples of dynamic integration

systems.

Because integrated schemas can be promptly created and dropped on the fly, dynamic

integration systems allow the end-user more flexibility and are much easier to maintain in

the presence of evolving component schema. However, they require a more sophisticated

end-user who understands the semantics of the component schemas and is responsible for

integration.

By contrast, static integration systems tend to evolve in a gradual, controlled fashion, as

they require negotiation between the three classes of users. However, the development of

new integration techniques is allowing static systems to become more dynamic in nature,

and the distinction between the two classes is beginning to blur. Some of these techniques

are described in section III below.

End User

LDB

Component View

Translation
Tools

Wrapper
Domain

Integrator

User Interface or Query Language

Integrated View

LDB

Component View

Wrapper
Domain

Integrator

Metadata
Dictionary

Figure 4: Dynamic Integration Architecture

12

C. Query Handling

Every system described in this paper follows the same basic 5-step approach to query

handling: query specification, query modification, query translation, result translation,

and result integration.

In the first step, query specification, the user articulates a request for data by specifying

constraints on attributes. In all static integration systems, such as tightly coupled

federated databases and mediator systems, end-users pose queries against a predefined

integrated view using a declarative query language, or by entering constraints in a

graphical interface. For example, in Multibase, queries are specified using an SQL-like

language called NQUEL against a global Superview. In TSIMMIS, queries are

formulated using an Object Exchange query language against an integrated view supplied

by a mediator, tailored for that particular user. In HERMES, users pose queries as logical

predicates. In Information Manifold, users select relations and supply constraints in the

World View using a web-based interface, which generates a query expression consisting

of a conjunction of clauses in a description logic language.

In dynamic integration systems, such as loosely coupled federated databases or

metadatabases, end-users first generate a view and then pose their queries as in static

integration systems. In MRDSM, queries are articulated in MSQL, a multidatabase query

language.

In the second step, query modification, a query is decomposed into sub-queries, one for

each component database to be accessed by the query. In federated databases and

mediator systems, the query processor obtains a partition based on the integration

functions that were used to resolve the heterogeneities on each attribute. Then for each

subset in the partition, a local query is generated by replacing each global attribute with

the corresponding component schema attribute. By contrast, decision-logic based

systems such as Information Manifold perform query decomposition using a query

planning algorithm. And in metadata repository systems, queries are decomposed

13

explicitly by the user via a model-assisted approach. Specific examples are given for the

various systems in section III.

In the third step, query translation, the component sub-queries are translated into the

syntax required by the corresponding local data source, whether it be query language

commands, input to a web-based form, or invocation of external applications. The

component information system reads the query and produces a result set. A large body of

research is devoted to translating queries between data models.

System Query
Specification

Query
Decomposition

Result
Integration
Techniques

Optimization
Heuristics

Multibase NQUEL Partitioning on
conditional
functions,
subrange tables

simple union,
duplicate
elimination

not covered

TSIMMIS OEM-QL View Expansion,
push selections
down

logical datamerge
rules

partial object
fetches

HERMES Mediatory clauses,
special predicates

expert system
invokes external
programs

Information
Pooling toolkits

Unspecified

Information
Manifold

Conjunctive
Queries in
description logic.

query plans simple union. prune irrelevant
sources

Metadatabase MQL, visual
query formulation,
automatic
completion

model-assisted
decomposition

equijoin minimize number
of equijoins

Figure 5: Query Issues

In the fourth step, each result is translated back into the common data model as

necessary. In the fifth step, the multiple result sets are integrated and returned to the user.

Each system has its own method for merging results, whether it is based on logical

datamerge rules, information-pooling toolkits, or a simple equijoin.

III. System Details

In this section, I describe in five of the systems that were outlined above, focusing on the

key aspects of each system’s integration techniques and query handling strategies.

14

A. Multibase

Multibase is the classic tightly coupled federated database system. It is based on the

functional data model, augmented with the concept of “generalization”, described below.

The user is presented with a single global schema, called the superview, which provides

the illusion of a homogenous database. View definition is performed by the federated

database administrator, using the DAPLEX language, which is a functional query

languages with loop constructs and nesting. The component DBAs translate their local

host schemas into local schemas (i.e. component schemas) in the functional model,

recording metadata information in a global Auxiliary Schema (AS). The federated

database administrator then uses generalization to define the Global Schema (i.e.

integrated schema) as a view of the LS’s and AS.

Generalization is an integration technique that adds ISA inheritance relationships for both

entities and functions. For example, if one database defines an employee as EMP(name,

sal, age) and a second database defines it as EMP(name, sal, address), generalization

15

allows us to define a supertype EMP(name, sal) that includes the common attributes,

and subsumes two subtypes EMP1(name, age) and EMP2(name, address) which

contain only the key value and specialized attributes. This is in contrast to the “outer

join” integration technique, which would create EMP(name, sal, age, address) with

NULL values padding the non-applicable fields.

The semantics for determining attribute values are specified as functions in the supertype.

For example, suppose the two employee databases represent separate jobs, and an

employee appearing in both should have a salary that is the sum of his two salaries. The

following supertype definition, specified in NQUEL, does the trick:

DEFINE SUPERTYPE EMP BY

EMP1 ISAe EMP, EMP2 ISAe EMP

ID : Name

 FOR e IN EMP

Sal := CASE

e ISIN EMP1 – EMP2 => Sal1(e)

e ISIN EMP2 – EMP1 => Sal2(e)

e ISIN EMP1 Intersect EMP2 => Sal1(e) + Sal2(e)

ENDCASE

 ENDFOR

B. TSIMMIS

TSIMMIS is a mediator system being developed by the Stanford database group, in

conjunction with IBM. A major focus of the project is the development of tools to speed

up the integration process by extracting properties from unstructured or semi-structured

sources with no well-defined static schema, such as email documents or a finger facility.

The key to their approach is the Object Exchange Model (OEM), in which data items are

self-describing. As opposed to relying on a schema, the object structure is included as

labels embedded in every data item. Each OEM object has the structure <Object-ID,

Label, Type, Value>. This is analogous to the REPO model of my Web-Interfacing

Repository Manager [JB97], in which data objects are accessed as perl associative arrays.

Like REPO, OEM differs from the Object-Oriented model in that it is much simpler:

supporting only nesting and object-identity.

16

For example, here is a set of results from the finger operation (note the variable structure

of the person elements):

<&g1, finger, set, {&g2, &g3, …}>

 <&g2, person, set, {&g21, &g22}>

 <&g21, name, string, ‘Linda Shapiro’>

 <&g22, login, string, ‘shapiro’>

 <&g3, person, set, {&g31, &g32, &g33}>

 <&g31, name, string, ‘Rex Jakobovits’>

 <&g32, plan, string, ‘To pass generals!’>

 <&g33, login, string, ‘rex’>

Because OEM forces no regularity on the data, it can easily handle structure irregularities

and can handle schema evolution without the need for rewriting Mediators. The schema-

less nature of OEM is useful when clients do not no in advance the structure of OEM

objects, and can discover the structure as queries are posed. Users pose queries via

OEM-QL, an SQL-like query language which supports wild-card pattern matching. Wild

17

cards can bind to both labels and attribute values. For example, to discover the structure

of Rex’s finger entry:

SELECT *.* from FINGER

WHERE login = “rex”

In addition to the OEM, a major contribution of TSIMMIS is the Mediator Specification

Language (MSL), a high-level declarative language for integrating data sources. MSL

uses prolog-like rules and functions for translating objects. The tail of a rule specifies

patterns found in the sources, while the head describes patterns of the top-level objects of

integrated views.

C. HERMES

HERMES is a Mediator system being developed at the University of Maryland. Unlike

TSIMMIS, which integrates semi-structured data sources, HERMES focuses on

integrating knowledge bases and reasoning systems. Specifically, it provides support for

amalgamating knowledge from relational, object-oriented, spatial, and temporal domains

into a single reasoning system. Integration is achieved by hooking up each component

system to the semantic model, called the Generalized Annotated Program (GAP)

Figure 8: HERMES

18

Framework, an extension of logic programming. GAP supports domain-specific

semantic expressions, such as:

SPATIAL:RANGE(‘brainmap’, P, 5.0)

which finds all points within 5 units of point P in the spatial database called brainmap.

 Like TSIMMIS, HERMES defines a rule-based mediator language, implemented within

a Mediator Programming Environment. The Mediators are written as prolog-like clauses,

with two special predicates:

• in(): executes a select statement on the target data source.

• =(): tries to unify two values.

The model also supports uncertainty, and atoms are marked with confidence factor

values. Related systems are Carnot [CHS91] which uses the Cyc knowledge base, and

SIMS, based on the Loom knowledge representation language.

D. Information Manifold

The Information Manifold (IM) is a decision-logic system for integrating web-based

information sources, being implemented at AT&T Bell Labs by Alon Levy. As in a

Mediator system, the end-user specifies their queries declaratively against a static view.

Unlike TSIMMIS, however, the IM presents the user with a single global view, called the

World View, which is a collection of virtual relations and classes that describes the

contents of the information sources. The IM uses a relational data model, augmented

with class hierarchies. A key feature of the IM model is that classes can be declared to be

disjoint, guaranteeing that no object can belong to both.

 Using the CARIN-CLASSIC description logic language, the integrator specifies source

descriptions for each data source, consisting of content records and capability records.

The content record of a given source identifies the world view attributes which can be

19

found in that source. For example, consider the following content record for a source

which describes a database of car reviews for models newer than 1985:

V(product, year, review):

 Review(model, year, review) ∧ Car(model) ∧ year ≥ 1985

Because web-based sources often have limited query capabilities, a capability record

describes which attributes can be used as binding and selection criteria. A capability

record is a tuple <Sin, Sout, Ssel, min, max> which specifies that the elements of Sin can be

used as input parameters, bindings must be supplied for at least min of the input

parameters, the elements in Sout are the possible output parameters, and the elements of

Ssel are parameters on which the source can apply inequality selections. For example, if

20

the car review query form allows reviews to be retrieved by model or year, the capability

record might look like this:

({model, year}, {model, year, review}, {year}, 1, 2)

User queries are formulated in terms of the world-view relations by means of conjunctive

queries. For example, the following query requests 1992 or later model cars for sale and

their reviews:

Q(model, yr, price, rev) : CarForSale(model, yr, price) ∧ Review(model, yr, price) ∧ yr > 1992

The IM uses query plans, consisting of conjunctive subgoals, to prune out irrelevant

sources and decide on the order of query execution.

21

E. Metadatabase

The Metadatabase is a dynamic integration system developed at the Rensselaer

Polytechnic Institute. Unlike the majority of systems covered here, the Metadatabase

does not provide the user with a unified schema or data model, but rather provides an on-

line repository of enterprise metadata to facilitate global query formulation. The user

Figure 10: Metadatabase

22

interface allows the user to articulate queries directly by visually traversing the local data

models. The user picks items and attributes directly from menus rather than entering

their names. The system uses a detailed metadata repository to provide assistance in

traversing models, checking semantics, and deriving implied data. The user’s dialog with

the interface results in the generation of a query in the Metadatabase Query Language

(MQL). The Metadatabase includes a table of conversion rules for use during query

processing. A Rules Processor searches for applicable rules and fires them.

The metadata about local models are represented using the Global Information Resource

Dictionary (GIRD) model. GIRD supports four categories of metadata: functional

models, structural models, software and hardware resources, and application families.

GIRD itself is implemented using a Two-Stage Entity Relationship (TSER) method, in

which metadata are defined as a network of SUBJECTs (functional objects), ENTITIES

(structural objects), and CONTEXTs (rule-based descriptions of processes).

IV. Alternative Approaches

The four classes of systems described above define the cutting edge of integration

research, and all of them seek to provide a framework for schematic integration while

maintaining the autonomy of the component systems. But a number of other approaches

are being used in industry, and they deserve consideration here.

A. Point-to-Point Gateways

Rather than attempt to integrate multiple systems under a single query interface, pairs of

systems can be integrated by building customized interfaces between them. The

adoption of an intermediary call-level-interface standard, such as ODBC [Gei96] or

JDBC [PP96], provides a uniform way to communicate, although schematic conflicts

must still be handled on a case-by-case basis.

B. Data Warehouses

A data warehouse is a centralized repository of information extracted from multiple data

sources [Wid95]. The difference between a data warehouse and the integration systems

23

described in this paper is that a data warehouse is a static copy of the integrated data, and

updates to the component databases are not readily reflected in the warehouse. The

warehouse is a kind of instantiated view. The view tends to be subject-oriented,

containing histories of the data changing over time, and focuses on categorizing the data

across various dimensions. Data is integrated at the time of gathering or by “data

cleaning” techniques. The disadvantage of this centralized approach is that it is hard to

keep the warehouse in synch with local systems from which the data was copied without

severely restricting their local autonomy.

But in spite of their static nature, data warehouses have proven to be extremely valuable

to corporate enterprises. They provides users with the “bigger picture”, and facilitate

knowledge discovery and on-line analytical processing. And being an industry solution,

they come with industrial strength tools: high-level applications for developing the

warehouse, cleaning the data, deploying web interfaces, and facilitating data mining.

And most importantly, because query execution does not involve data translation and

communication with remote sources, complex queries can be executed easily and

efficiently.

C. Distributed Objects

The opposite approach to integration is the adoption of standards. The Human Brain

Project could encourage its constituents to adopt a distributed object model for their

applications and databases. The distributed object model allows objects to interact

without knowing anything about their location [OHE95]. Objects are encapsulated

entities that are accessed by means of well-defined, self-describing interfaces. Local

DBA’s could still define their own internal data models, data structures, schema,

implementation languages, system platforms, etc. But to participate in the “federation”

their systems would need to comply with an object request broker standard, such as

CORBA [Vin97].

D. Shared Class Libaries

This is the most restrictive approach of all with regard to component autonomy. The

community agrees on a common application language (e.g. Java or C++) and develops a

24

set of domain-specific superclasses from which applications may inherit their data

structures and interfaces. Using an object-oriented database (i.e. a persistent

programming language), data objects naturally gain persistence.

A classic example of this approach is the Image Understanding Environment (IUE), an

ARPA project to develop a common object-oriented software environment for facilitating

the exchange of research results within the Image Understanding community [IUE-url].

The approach has the obvious benefits of a common data model, and independent

projects can avoid “reinventing the wheel”. It greatly facilitates the design applications

that use multiple sources, and programmers can benefit from other people’s tools at the

application level. For example, a system for handling spatial queries over atlases can be

made into a “spatial_query_processor” class, which operates on “spatial_query_objects”

and “spatial_data_objects” which are specified as classes that multiple groups may use.

E. Shared Ontologies

Perhaps the greatest promise of all lies with share common knowledge ontologies, which

are essential for integration at any level. Every approach described in this paper would

benefit from a detailed knowledge ontology. An ontology is more than just a controlled

vocabulary: it should contain deep domain knowledge and form a conceptual standard.

Our Structural Informatics Group has proposed that anatomy is the ultimate framework

for organizing biological knowledge [Ros+97].

V. Conclusion

The question remains, which approach is best for the Human Brain Project? Because the

various approaches differ greatly in their models presented to the user, we must first

identify the target users of the HBP databases. Then we can identify the requirements of

each user group, and adopt an approach (or combination of approaches) accordingly.

25

An immediate user class is the local database developer at each HBP site: when

designing their local applications, they could benefit from a global model. However, they

probably value their autonomy more than the convenience of a global model. Another

user will be the federation DBA: the person responsible for managing the “mother of all

databases”, which could require a deep knowledge of the local schemas.

A broader class of users are the HBP researchers themselves, who are not necessarily

working on the database aspects of their systems, but would have a high interest in

learning more about the other projects’ data.

An important class of users are the “funders”: members of Congress and grant issuers,

who will use the federated database as a means of evaluating the success of the entire

brain project effort.

But in the long term, the ultimate users are those not directly affiliated with the HBP:

hard core neuroscientists, students, and clinicians.

It is clear that the wide range of users will exhibit different levels of sophistication with

regard to domain knowledge, internal data models, and programming sophistication.

Therefore a combination of the approaches must be undertaken simultaneously.

In the face of the complexity of the data, integration is a daunting task. But we don’t

have to start from scratch: a number of sub-communities already exist, sharing schemas

and data at point-to-point level, and groups have already begun adopting their own

protocols and standards. The route to success must start from two directions: top-down,

in which a data warehouse or global view is gradually constructed, and bottom-up, in

which closely related research groups gradually increase the amount of sharing and cross-

fertilization. At every step of the way, the design and operational autonomy of the

independent groups must be preserved.

26

VI. References

[AE95] S. Adali and R. Emery. A uniform framework for integrating knowledge
in heterogeneous knowledge systems. Proc. of the Eleventh International
Conference on Data Engineering, pp. 513-520, 1995.

[Ahm+91] R. Ahmed et. al. The Pegasus heterogeneous multidatabase system. IEEE
Computer 24(12):1991, 19-27.

[CC96] W. Cheung and H. Cheng. The Model-Assisted Global query system for
multiple databases in distributed enterprises. ACM Transactions on
Information Systems. 14(4): 421-470, 1996.

[CCT94] Wesley Chu, A. Cardenas, and R. Taira. KMeD: A knowledge-based
multimedia medical distributed database system. Information Systems,
20(2): 75-96, 1994.

[CHS91] C. Collet, M. Huhns, and W. Shen. Resource integration using a large
knowledge base in Carnot. IEEE Computer 24(12):55-63, Dec. 1991.

[CNN91] Committee on a National Neural Circuitry Database. Mapping the brain
and its functions: integrating enabling technologies into neuroscience
research. National Academy Press, Washington D.C., 1991.

[DH84] U. Dayal and H. Hwang. View definition and generalization for database
integration in MULTIBASE: A system for heterogeneous distributed
databases. IEEE Trans. Software Engineering, SE-10, 6, 628-644, 1984.

[Gei96] Geiger, Kyle. Inside ODBC. Microsoft Press, 1996.

[GMS94] C. Goh, S. Madnick and M. Siegel. Context interchange: overcoming the
challenges of large-scale interoperable database systems in a dynamic
environment. Proceedings of the Third International Conference on
Information and Knowledge Management, Dec. 1994.

[IUE-url] http://www.aai.com/AAI/IUE/IUE.html

[JB97] R. Jakobovits and J.F. Brinkley. Managing medical research data with a
web-interfacing repository manager. Submitted to 1997 JAMIA Fall
Symposium.

[KH97] S. Koslow and M. Huerta. Neuroinformatics: an overview of the human
brain project. Lawrence Erlbaum, Mahwah, NJ, 1997.

27

[Kim95] W. Kim. Modern database systems: the object model, interoperability,and
beyond. ACM Press, New York, 1995.

[KS91] W. Kim and J. Seo. Classifying schematic and data heterogeneity in
multidatabase systems. IEEE Computer 24(12) 12-18, Dec. 1991.

[KWD97] N. Kushmerick, D. Weld and R. Doorenbos. Wrapper induction for
information extraction, IJCAI-97, 1997.

[L+89] W. Litwin, et. al. MSQL: a multidatabase language. Information Science,
49, 59-101, 1989.

[LMR90] W. Litwin, L. Mark, N. Roussopoulos. Interoperability of multiple
autonomous databases. ACM Computing Surveys, 22, 3, 267-293, 1990.

[LRO96] A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous
information sources using source descriptions. Proceedings of the 22nd
VLDB Conference, 1996.

[LRO96b] A. Levy, A. Rajaraman, and J. Ordille. Query answering algorithms for
information agents. Proceedings of the 13th National Conference on
Artificial Intelligence, August 1996.

[OHE95] B. Orfali, D. Harkey and J. Edwards, Intergalactic client/server
computing. BYTE, April 1995.

[PMU96] Y. Papakonstatniou, H. Garcia-Molina, and J. Ullman. MedMaker: A
mediation system based on declarative specifications. IEEE 12th Int.
Conference on Data Engineering, pp. 132-141, 1996.

[PMW95] Y. Papakonstatniou, H. Garcia-Molina, and J. Widom. Object exchange
across heterogeneous information sources. 11th International Conference
on Data Engineering, pp. 251-260, 1995.

 [PP96] P. Patel. Java database programming with JDBC. Coriolis Group, 1996.

[Ros+97] C. Rosse, R. Jakobovits, B. Modayur, and J. Brinkley. Motivation and
organizational principles for the Digital Anatomist Symbolic Knowledge
Base: an approach towards standards in anatomical knowledge
representation. To appear in Journal of AMIA.

[SL90] A. Sheth and J. Larson. Federated database systems for managing
distributed, heterogeneous and autonomous databases. ACM Computing
Surveys, 22, 3, pp. 183-236, 1990.

28

[SSR94] E. Sciore, M. Siegel, and A. Rosenthal. Using semantic values to facilitate
interoperability among heterogeneous information systems. ACM
Transactions on Database Systems 19(2): 254-290, June 1994.

[SSU96] A. Silbershatz, M. Stonebraker, J.Ullman. Database research:
achievements and opportunities into the 21st century. SIGMOD Record,
25(1):52-63, 1996.

[Sub94] V. Subrahmanian. Amalgamating Knowledge Bases. ACM Transactions
on Database Systems, 19, 2, pp. 254-290, 1994.

[Vin97] S. Vinoski. CORBA: integrating diverse applications within distributed
heterogeneous environments. IEEE Communications Magazine, 35(2): 46-
55. Feb. 1997.

[Wid95] J. Widom, "Research Problems in Data Warehousing." Proceedings of the
4th Int’l Conference on Information and Knowledge Management (CIKM),
November 1995.

[Wie93] G. Wiederhold. Intelligent integration of information. Proceedings of the
ACM SIGMOD Conference pp. 434-437, May 1993.

